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ABSTRACT

Controversy over the validity of describing newly-hatched cephalopods 
as "larvae" prom pted the introduction of the term  "paralarva" to describe the 
post hatching phase of life. This thesis examines the concept of a paralarva and 
describes the end of the paralarva stage for three families of squid 
(Cephalopoda: Teuthoidea: Oegopsida).

Specimens (n=2860) from the Am sterdam  Mid N orth Atlantic Plankton 
Expedition (1980-1983) were examined and identified to family. Families were 
selected for further examination that were expected to exhibit gradual 
(Chtenopterygidae), m oderate (M astigoteuthidae) and radical (Brachioteuthidae) 
ontogenic changes in m orphology.

Daytime and nighttim e vertical distributions were used as an indicator of 
ontogenic change as required by the definition of a paralarva. Depth of capture 
for Chtenopteryx sicula increases gradually with increased dorsal m antle length 
(DML) during  the day (ontogenic descent); all nighttim e captures were in the 
upper 300m, regardless of size. All Mastigoteuthis agassizii specimens were 
caught >500m in day  and night, regardless of size. All Idioteuthis magna were 
vertically spread betw een 0-1000m during the day, but in the upper 300m at 
night, regardless of size. Brachioteuthis sp. 3 daytim e distributions could not be 
accurately described because of m alfunctioning collecting equipm ent; nighttim e 
distributions were spread over the upper 300m. Brachioteuthis sp. 4 captures 
were spread throughout the water column during both day and night.

Changes in the grow th trajectories were found in all species; in some 
species, these grow th discontinuities coincide with the onset of vertical 
migration. An inflection point in the grow th trajectory describing the m antle 
opening w idth  (MOW) and the fin length (FL) of Chtenopteryx sicula was found 
at 10-12mm DML; this size m arks the beginning of ontogenetic descent. The 
MOW, FL, fin w idth  (FW) and eye diam eter (ED) of Idioteuthis magna changed at 
6-7mm DML, which is the size at which night captured specimens are first found 
at depths greater than 100m. The head w idth (HW), head length (HL) and ED 
grow th trajectories of Mastigoteuthis agassizii changed at 11mm DML; no 
concomitant change in d a y /n ig h t depth of capture was noted. The FL and FW of 
Brachioteuthis sp. 3 changed at 15-18mm DML and again at 30mm DML, the 
funnel and head dimensions changed at 30mm DML; m alfunctioning equipm ent 
precluded any observations as to the onset of diel vertical m igration (DVM). 
Finally, the arm  length (AL) tentacle length (TL), FL, FW, and MOW of 
Brachioteuthis sp. 4 changed at 20-22mm DML with no concomitant change in 
d ay /n ig h t depth of capture.



The definition of a paralarva is broadened, and thus becomes applicable 
to species w ithin the Teuthoidea, Octopoda and Sepioidea. The proposed 
definition is, "a cephalopod of the first post-hatching phase of life that has a 
distinctly different m ode of life from that of older, conspecific individuals". The 
paralarva phase ends at the assum ption of the adult niche (the end of the niche 
shift); concomitant changes in the grow th trajectory are expected but not 
required and should not be relied upon to describe the paralarva phase of life in 
the absence of ecological data.

A generalized description of the early life history of cephalopods is 
proposed. A two stage paralarval phase, a two stage juvenile phase and a single 
stage adult phase of life is recognized, and both ecological and morphological 
indicators are required. Stage 1 of the paralarva phase (PI) begins at hatching 
and lasts until the beginning of the niche shift; stage 2 (P2) begins at the onset of 
the niche shift and lasts until the end of the niche shift. Stage 1 of the juvenile 
phase (Jl) begins at the assum ption of the full expression of adult ecology or 
behavior, and ends at when all adu lt morphological characters, except mature 
gonads, are present; stage 2 (J2) begins when all adult morphological characters 
are recognizable, and ends at the onset of gonad m aturity. The adult phase 
begins at the time of reproductive organ m aturation and ends at death.

Based on this new description, the PI phase of C. sicula ends at 10mm 
DML, the size at which the first specimen is captured in daytim e deeper than 
100m; the P2 phase of C. sicula phase ends at 18.5mm DML with the onset of full 
adult diel vertical m igration (DVM). The P2 stage of I. magna begins at 7mm 
DML with the first nighttim e catch deeper than 100m. The paralarva stage of the 
rem aining species could not be defined based on DVM, and results of 
m ultidim ensional scaling did not provide good evidence for other potential 
ecological characteristics of importance.

In addition, changes in the num ber of rows of suckers on arms 1-3 in the 
Chtenopterygidae, in the eye position in the M astigoteuthidae, and in the eye 
and internal organ position of Brachioteuthidae can be used to quickly and 
easily distinguish betw een the paralarval and juvenile phases of the life cycle.



"PARALARVA" IN THREE FAMILIES OF OEGOPSID CEPHALOPODS



INTRODUCTION

Life cycle research encom passes m any seemingly disparate topics of 

study. Scientists who study  distribution patterns, growth, energetics and diet all 

add  pieces to the life cycle puzzle. But even with all these bits of m erging 

information, the complete life cycles of m ost cephalopods rem ain a mystery. 

A lthough life cycle research has received increased attention in recent years, 

m ost of the emphasis has been on juveniles and adults. Only in the last 15 years 

have the early life histories have begun to be explored by m any investigators. 

There are several reasons for this, including difficulties in identification, 

taxonomic confusion of new ly-hatched and adult cephalopods, and 

disagreem ents over the term inology of life history stages. Early life histories are 

best know n for commercially im portant species such as Loligo pealei (Haefner 

1964, M cConathy et al. 1980, Yang et al. 1980, Vecchione 1981) and Illex 

illecebrosus (Hatanaka 1986, Roper and Lu 1979, Vecchione 1979), which are 

found in relatively near-shore plankton samples; however, knowledge of even 

the m ost commonly investigated species contains large gaps. For example, the 

early stages of lllex illecebrosus have been described from the M iddle Atlantic 

Bight (Roper and Lu 1979, Vecchione 1979), but the spatio-temporal details of 

spaw ning are unknow n (Vecchione, pers. comm.). The trem endous gaps in 

knowledge of young cephalopods are outlined in an
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extensive chapter on juvenile ecology (Vecchione 1987) in the second volume of 

Cephalopod Life Cycles (Boyle 1987). This w ork presents the most 

com prehensive review of literature on early life history published since the 

1960s. Pre-1965 literature on early life history is sum m arized in detail by several 

authors including Clarke (1966) and Roper and Young (1975).

Identification and Taxonomy-of.Newly-hatched Cephalopods

In the mid-1980's, the Cephalopod International Advisory Council 

organized a w orkshop and sym posium  (CIAC-85) specifically to present new 

information on newly-hatched cephalopods and to focus attention on the 

problem s of working w ith these small specimens. Several issues were 

em phasized that rem ain stum bling blocks to future life cycle research. The first 

im pedim ent is the delicate nature of the tiny organisms. Specimens are easily 

dam aged or ruined by nets or im proper preservation. Often, the characters that 

are used to discriminate am ong species, genera, and families are those that are 

m ost easily dam aged (tentacles, clubs, fins, skin, chromatophores). This 

problem  will be solved only w ith im proved collection devices and preservation 

techniques.

In cases where all diagnostic characteristics are intact, the researcher faces 

a second problem. Newly-hatched specimens have been historically identified 

based on the morphological characteristics of the adults. The considerable
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taxonomic disorder of the adults (Roper 1983) is a hindrance to identification. 

W hen the adult identification is questionable, the newly-hatched specimen can 

not be identified w ith confidence.

W orking w ith young cephalopods can also present several unique 

taxonomic problems. For m any families, the young look sim ilar to their adult 

counterparts, differing in the relative sizes of body parts and the developm ent of 

features such as photophores and hooks (e.g., Enoploteuthidae, 

Onychoteuthidae); however, the adult and young of some families have more 

extreme differences in their m orphology (e.g., Chiroteuthidae). These 

differences have led to several inappropriate generic designations by early 

authors. One very conspicuous example can be found in the family 

O m m astrephidae. Newly-hatched om m astrephids are easily identified by the 

fusion of their tentacles into a "proboscis". As the animal grows, the tentacles 

separate (Vecchione 1979). A lthough Chun (1903) suspected the specimens he 

assigned to the genus Rhynchoteuthis (subsequently changed to Rhynchoteuthion 

by Pfeffer (1908) because the generic nam e was preoccupied) were actually 

newly-hatched O m m astrephidae, he m aintained the name (Chun 1910). Similar 

problem s have been found with post hatching specimens of the family 

Chiroteuthidae. Newly-hatched Chiroteuthis are very distinctive, characterized 

by an elongate neck and brachial pillar not found in the adult (Young 1991). 

These newly-hatched cephalopods were placed in a separate genus (Doratopsis)
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even after evidence was presented that they were young forms of Chiroteuthis 

(see Young 1991 for full discussion). N ow  they are known to be an early stage 

(the doratopsis stage), which is characteristic of the Chiroteuthidae. Young

(1991) described the post-hatching, planktonic stages of the family 

C hiroteuthidae from Hawaiian waters, and redefined the family based on 

characteristics of the young.

Papers presented at CIAC-85 were published in a special volume of Vie et 

Milieu: The Biology and Distribution of Early Juvenile Cephalopods (Vie et Milieu 35(3- 

4) 1985). A second major publication from this workshop was Sweeney et al.

(1992) which included a key for identification of newly-hatched cephalopods. 

Prior to the compilation of this key, researchers depended upon their individual 

knowledge of adu lt m orphology to identify hatchlings and early juveniles. 

W hereas Sweeny et al. (1992) presented a comprehensive sum m ary for m any of 

the early life forms, problem  areas still exist. There are m any genera for which 

the newly-hatched specimens still have not been described (e.g., Architeuthis, 

Neoteuthis, Lycoteuthis, Joubiniteuthis) or have been described based on only a few 

specimens (Sweeney et al. 1992).

One of the m ost heated controversies that arose during CIAC-85 was the 

debate over the validity of the existence of a larval stage during cephalopod 

developm ent. According to Geigy and Portm ann's definition (1941), a larva



undergoes m etam orphosis w hen larval parts are lost and adult parts form from 

embryonic rudim ents. Based on this definition, Boletzky (1974a) argued that 

newly-hatched squids and octopods differed from the adults only in 

m orphom etries, and therefore the term  "larva" was not appropriate. In contrast, 

Nesis (1979) focused on the similarities between fish and cephalopod 

developm ent, and considered m etam orphosis to be an abrupt change in grow th 

coefficients.

These debates led Young and H arm an (1988) to introduce the term 

"paralarvae" (para-, Greek m eaning closely resembling, or almost) to describe 

the planktonic young of cephalopods. They defined a paralarva as, "a 

cephalopod of the first post-hatching grow th stage that is pelagic in near-surface 

w aters during the day and that has a distinctly different m ode of life from that of 

older conspecific individuals". Thus, the inclusion of behavioral and ecological 

criteria uniquely defines a paralarval cephalopod. Young and H arm an (1988) 

further stipulate that the subadult stage begins with the full attainm ent of 

morphological features used to define the species. This definition renders the 

juvenile as the life stage prior to the subadult stage, m eaning that some juveniles 

m ay be called paralarvae. The adult stage is m arked by the attainm ent of sexual 

m aturity, a condition that may not occur in some cephalopods until extremely 

late in the life cycle.



Ecology of Newly-Hatched Cephalopods

Two types of distributions m ust be considered when discussing the 

ecology of cephalopods: geographic (or horizontal), and bathym etric (or 

vertical). M any neritic species are know n to undergo extensive latitudinal and 

longitudinal m igrations (e.g.,Illex illecebrosus, Todarodes sagittatus). Vertical 

distributions are less well known. In fact, it was not until the 1960s and the 

advent of opening and closing nets that cephalopod vertical distributions could 

be accurately described (Clarke 1966). Roper and Young (1975) investigated the 

vertical m igrations of adult cephalopods, but the newly-hatched cephalopods 

were not included in the analysis because, "the larvae of m ost species of pelagic 

cephalopods occur in the near-surface w aters both during the day and night and 

as such do not dem onstrate the same distributional patterns as their juvenile and 

adu lt forms (p.2)."

Vertical and geographical distribution of newly-hatched cephalopods 

m ust be pieced together from a variety of historical and recent documents; no 

review  of the topic has ever been attem pted. Distribution patterns for the most 

well know n species show considerable variability, bu t some within-species 

generalizations of ranges can be made. For example, I. illecebrosus ranges from 

central Florida to N ew foundland (Lu 1973, Roper and Lu 1979) but the young 

seem to be most abundant in the northern Gulf Stream or Slope W ater (Dawe 

and Beck 1985; Vecchione and Roper 1986). In the M iddle Atlantic Bight, young



8

Loligo pealei generally are confined w ithin the coastal boundary layer (Vecchione 

1981). The distribution of the young loliginid Lolliguncula brevis, the only 

euryhaline species of cephalopod, is described in the M iddle Atlantic Bight in a 

brief note on the northern limit of the species range (Vecchione 1982) and in a 

paper on the ecology of the young in the Gulf of Mexico (Vecchione 1991a).

Currently, very few papers describe the distributions of young squid that 

are not commercially im portant. Commercially im portant squid, such as the 

Loliginidae and O m m astrephidae, are found close to the continental margins. 

Squids from the open ocean are m uch m ore difficult to capture and for this 

reason, m any potentially harvestable species rem ain unexploited. If fishing 

techniques evolve to perm it easy, selective capture of these open ocean squid, it 

has been predicted that some families (for example, Gonatidae) m ay become 

commercially im portant food sources. Several papers from CIAC-85 as well as 

several papers resulting from the 1991 AM U/CIAC sym posium  in memory of 

Dr. Gilbert L. Voss, addressed these frequently neglected families. The newly- 

hatched enoploteuthid (Young and H arm an 1985), and brachioteuthid (Young et 

al. 1985) distributions in H aw aiian waters were described, as were the Antarctic 

distribution of young cranchiids (Rodhouse and Clarke 1985) the world-wide 

distribution of young O ctopoteuthidae (Stephen 1985), the Enoploteuthidae 

(Abralia: Burgess 1991) m ultiple families (Piatkowski and Welsch 1991, Nesis 

1991) These families m erit increased attention as they are abundant in the
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w orlds oceans and are im portant com ponents of the oceanic food web (Clarke 

1977, Rodhouse et al. 1992).

In addition to zoogeography, laboratory experiments on the grow th and 

energetics of early stages of octopods and neritic squids are beginning to 

advance. Rearing squid through the life cycle has proven to be extremely 

difficult, and m ost studies have been descriptive rather than experimental 

(Forsythe and Van Heukelem  1987). Only recently have eggs and young been 

reared to sub-adult or adult specim ens (see reviews in Boletzky and Hanlon 

1983, Yang et al. 1986, H anlon 1987). The culture of cuttlefishes and octopods 

w ith large eggs, however, has been m ore successful. For example, laboratory 

rearing of Sepia officinalis and Octopus joubini has been conducted since the late 

1960s and 1970s, respectively. Richard (1966,1975) pioneered w ork on 

com parative grow th rates of juvenile Sepia raised in the laboratory at several 

different tem peratures. M any of the near shore, commercially im portant species 

have been studied, and their grow th is well described (Forsythe and Van 

Heukelem  1987); however, m ost studies have concentrated on changes in the 

overall size of the organism  (DML or weight) w ith little attention paid to other 

characteristics. In general, these studies have concluded that newly-hatched 

cephalopods grow  exponentially over the first 1-2 m onths of the life cycle 

(Teuthoidea: Loligo opalescence Yang et. al 1986; Abralia trigonura Bigelow 1992; 

Octopoda: Octopus maya Van Heukelem  1977; M ultiple species Forsythe and Van
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H eukelem  1987). Because these results are based on either DML or weight 

m easurem ents, they do not provide m uch detail about the life history of the 

species. Perfecting these rearing techniques and modifying them for other 

species will allow future researchers additional insights into early life cycles. 

Until that time, collected sam ples and the associated station data m ust be used to 

infer ecological regimes and habits.

Thesis Problem

This thesis examines the early life history of five species (three families) of 

Oegopsid cephalopods. The utility of the concept of a "paralarva” as defined by 

Young and H arm an (1988) is examined, and the end point of the paralarval stage 

is described. A revised definition of a paralarva is proposed and the paralarva 

phase of each family is redescribed.

Species-specific ontogenetic changes in m orphology and ecology (diel 

vertical m igration, DVM) are examined. Diel vertical m igration was selected 

because a daytim e v. nighttim e difference in habitat is an intricate part of Young 

and H arm an’s 1988 definition. The onset of DVM is an indication of ontogenetic 

change because newly-hatched squids are not known to undergo vertical 

m igrations and adults of m any species are renow ned for this behavior. Simple
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morphological m arkers that m ay provide visual concordance with the end of the 

paralarval phase of the life cycle are examined.



MATERIALS AND METHODS

MATERIALS1

Cephalopods collected by the University of Am sterdam  on the 1980-1983 

cruises of the H.M.S. Tydeman (the Am sterdam  Mid N orth Atlantic Plankton 

Expeditions (AMNAPE)) were examined. The University conducted collecting 

trips during four different seasons for the purpose of, "elucidating the patterns 

of latitudinal diversity, taxonomic variation below species level, vertical 

variation and the interaction of climate, hydrographic features and ecology on 

morphological variation of m arine plankton" (p. 139 in Van der Spoel 1985). 

Cephalopods from these cruises were given to the Division of Mollusks, 

Smithsonian Institution, and they constitute one of the m ost comprehensive 

collections (approxim ately 1500 lots) of young cephalopods in existence.

Collecting Stations

Stations (Fig la-d) were located between 55°N and 25°N along the 30°W 

longitudinal line. The same approxim ate locations were sam pled along this 

north-south transect at different seasons over a four year period in an attem pt to 

understand the seasonal variation in the plankton assemblages. The 1981 cruise

1 The following sections are compiled from van der Spoel (1981,1985) and van der 
Spoel and M eerding (1983).

12
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Figure 1. Location of sam pling stations, a) Spring 1980 b) A utum n 1981 c) W inter 

1982 d)Spring/Sum m er 1983. M ultiple hauls were taken at each sam ple station; 

latitude and longitude of first haul is plotted.
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also included east-west sam pling (Stations 52-55) to "obtain inform ation on 

neritic influences" (p. 77 in Van der Spoel and M eerding 1983).

Cruise Conditions

The 1980 (Fig. la ) conditions (spring) were optim al for sam pling and data 

retrieval, and effectively set the stage for the four-year sam pling program .

Sample stations were located between 55°-25°N, approxim ately along the 30°W 

longitudinal line. W arm  tem perate and Sargasso Sea w ater dom inated the upper 

500m between 27°-50°N. The influence of the Canary C urrent was noted below 

27°N, and the Subarctic polar w ater was found above 50°N. Arctic waters were 

found at depths > 500m (Van der Spoel 1981).

In the 1981 autum n cruise (Fig. lb ), an east-west transect (20-30° W) was 

added to the prim arily north-south (24-55° N) cruise program  to understand the 

influence of the African Shelf. Conditions were substantially different from the 

1980 cruise, w ith the absence of a polar front and of Subarctic water in the 

northern section and a more pronounced thermocline in the upper 100m of water 

being the m ost obvious changes (Van der Spoel and M eerding 1983).

W eather conditions during the 1982 w inter cruise (Fig. lc) were extremely 

bad, and very little tem perature and salinity data were collected. Station 62-63 

were occupied close to N orth Atlantic Drift water, and all other stations were
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taken from Sargasso Sea w ater (Van der Spoel 1985). Very few comparisons can 

be m ade between the winter and the other season cruises because of the lack of 

data.

Conditions in 1983 (sum m er, Fig. Id ) im proved substantially and the 

majority of the samples were taken from N orth Atlantic Central waters. More 

specimens in all species except M. agassizii were found during this cruise than 

any other.

Collecting Gear- Nets

Discrete-depth and open-net hauls were taken at each station. Discrete- 

depth  samples were obtained w ith the Rectangular M idw ater Trawl (RMT1+8), 

an opening and closing net system  developed by the Institute of Oceanographic 

Sciences, Great Britain. The RMT1 net (m outh area 0.8 m2, mesh size 0.32mm) is 

positioned above the RMT8 (m outh area 8.0 m2, mesh size 4.5mm, cod end linear 

mesh size 1.0mm); the nets are deployed simultaneously. Further discussion on 

the developm ent and testing of the R M T 1+8 can be found in Baker et al. (1973) 

or Roe et al. (1980). Open oblique hauls were taken with an open RMT1 net.

O ther nets used include an open ringnet, designed specifically for this series of 

cruises, and open fine-meshed square nets (Van der Spoel and M eerding 1983). 

The ringnet was constructed w ith a circular m outh opening of 0.78 m2 and was
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m ade of conical sifting cloth with a m esh size of 0.18mm. Table 1 sum m arizes 

the collection data and gear for each of the 1980-1983 expeditions.

Collecting Gear- Physical Data

Physical oceanographic data were collected using expendable 

bathytherm ographs (XBTs) and Conductivity, Tem perature and  Depth collectors 

(CTDs), a net m onitoring system for tem perature at depth, satellite data (surface 

tem peratures, supplied by the U.S. D epartm ent of Commerce, National Oceanic 

and Atm ospheric Administration), and sound velocity m easurem ents (for 

calculation of salinity, supplied by the H ydrographic Office of the Royal Dutch 

Navy). Data from these sources were combined to create yearly vertical profiles 

of tem perature (T), salinity (S), and vertical mixing, as well as T /S  diagram s, 

and plots of sea surface T and S for the study area. Physical data are sum m arized 

in Van der Spoel (1981) (1980 cruise), Van der Spoel and M eerding (1983) (1981 

cruise) and Van der Spoel (1985) (1982 and 1983 cruises).

METHODS

CQlIectiQn.MethQ.ds

All hauls, except for the small fine-meshed nets, were m ade from the 

stem  of the ship. The sam pling regime targeted depth intervals of 0-50m, 50- 

100m, 100-200m, 200-300m, 300-400m, 400-500m, and 500-1000m. The RMT1+8
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Table 1. Sum m ary of station and collection data for 1980-1983 cruises.
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nets were opened at the top of the discrete-depth range and the layer was 

sam pled in a dow nw ard direction.

All sam ples were sorted to major group on board ship and fixed 

according to m ethods specific to each animal group. Most frequently used 

fixatives were: 70% alcohol, propylene phenoxetol, and 2% or 4% form alin in 

seaw ater (Heyman 1981). Cephalopod specimens were stored at the Smithsonian 

Institution in 45% isopropyl alcohol according to protocol recom m ended by 

Roper and Sweeney (1983).

Identification

All cephalopods were sorted to family using adult and juvenile keys 

(Roper et al. 1969, Sweeney et al. 1992). Three families were chosen for detailed 

exam ination according to the following criteria. Families were supposed to 

have:

1) a relatively stable taxonom y in the study region;

2) a large num ber of specim ens (50-100);

3) a range of recognizable ontogenetic stages;

4) specimens caught during  both day and night hauls;

5) specimens caught at several depth horizons;
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From the pool of families that m et the above criteria, three were selected 

that were expected to represent gradual, interm ediate and radical ontogenic 

changes in morphology.

D epth Distribution

Data were examined initially as a histogram  of the num ber of specimens 

caught per haul in each depth horizon during separate day and night sam pling 

periods. This graphing technique is typical for identifying vertical distributions 

of cephalopods (Clarke and Lu 1975, Lu and Clarke 1975a&b, Roper and Young 

1975). Specimen records then were sorted by size to examine if trends in depth  

of capture with increasing size were evident.

Separate day and night graphs were created for each species. Because the 

sam pling period spanned four years and four seasons, defining a consistent day 

and night time period was critical. Crepuscular periods were determ ined for 

each year of data using a m arine navigation program  (Twilight) based on the 

m onth, day and year of the sam pling effort and the latitude and longitude at the 

sam pling station. The program  output was time of sunrise and sunset for that 

day at that latitude and longitude. Separate program  runs were done for each 

station. The range of sunrises and sunsets was determ ined, and the m edian time 

of sunrise or sunset was used to identify the beginning of day or night for each 

year.



Latitude and Longitude D istributions

To understand the geographical and vertical distribution of the collected 

specimens, two sets of graphics were developed. The first presents the latitudes 

and longitudes where each of the three families were found. The occurrence of 

each species within the study families is broken dow n by year, to identify 

seasonal differences in geographic distribution.

The second group of graphs plots the depths of capture over the range of 

latitudes and longitudes. All occurrences (1980-1983) were graphed together for 

each species. These graphs were then compared with w ater column data 

(collected and sum m arized during the 1980-1983 cruises) to identify 

relationships between the species and its water mass.

Morphomeiric-Data

Specimens from each species were examined under a stereomicroscope 

and m easured using an ocular micrometer. Those specimens which were too 

large to be viewed under the microscope were m easured with calipers. Dorsal 

m antle length (DML) was m easured on all specimens. M antle length is the 

standard  for size determ ination in cephalopods, and according to Roper and 

Voss (1983), the mantle length is defined for squid as, "measured from anterior 

m ost point of mantle to posterior apex of m antle or tip of united fins, whichever



21

is longest". Dorsal mantle length was used as an indicator of the overall size and 

assum ed relative age of the organism. Considerable variability in grow th rates 

presum ably occurs w ithin cephalopod species. More precise aging m ethods are 

being developed for cephalopods, such as reading daily grow th rings on 

statocysts, which are analogous to fish otoliths (Jereb et al. 1991). In the absence 

of ring num ber-to-growth correlations for each species, DML is the accepted 

m easure of relative age in spite of its limitations. Other m easurem ents were 

m ade for each species depending on the external m orphology. For example, the 

tentacles of M astigoteuthids often are lost during capture so tentacle length was 

not m easured in that family. Features that appeared to change over time (such as 

neck length in the family Brachioteuthidae) were chosen. Growth trajectories of 

m orphological characters plotted against DML that deviated from a simple, 

linear pattern are presented in the text. All rem aining graphs are presented in 

A ppendix A.

Changes in external m orphology w ith ontogeny were described for each 

of the study species. Sizes were chosen to represent the time before, at, and after 

any described inflection point in the grow th trajectories.

On several occasions there was a single specimen that was considerably 

outside the predom inant size range. These single specimens provide interesting
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anecdotal evidence, bu t can not be relied upon for interpretations and were 

elim inated from subsequent analyses.

Table 2 presents all character m easurem ents taken within each family and 

their acronyms. Figure 2 (from Roper and Voss 1983) shows how each 

m easurem ent was taken. Funnel dim ensions are not commonly m easured but 

are included in Figure 2.

Statistical Methods

For each species that did not appear to exhibit a diel vertical m igration 

(DVM), m orphom etric characters and collection data were analyzed 

sim ultaneously using non-metric m ultidim ensional scaling (Pielou 1984; Systat 

1992) to provide insight into w hat other ecological data m ay be used as an 

indicator of the change in DML. M ultidim ensional scaling (MDS) refers to a 

group of statistical techniques that uses matrices of proximity data (how close 

one object is to another in n-dim ensional space) to "uncover the 'h idden 

structure'" (Kruskal and Wish 1978) of a data set. The procedure fits a set of 

points into n-dimensions (2 or 3 dim ensions usually provide the most 

interpretable results) so that the distances between points in the solution 

correspond as closely as possible to a given set of similarities or dissimilarities 

betw een a set of objects (Systat 1992). The techniques were developed for use in
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Table 2. M orphom etric characters m easured in all species of each family.
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Figure 2. M easurem ents used for m orphom etric analysis (adapted from Roper 

and Voss 1983).

ED = Eye diam eter HL = H ead length
FL = Fin length HW = H ead w idth
FW = Fin w idth ML = M antle length
FunL = Funnel length MW = Mantle w idth
FunW -A = Funnel w idth, anterior TL = Tentacle length
FunW-P = Funnel w idth, posterior

Funnel length (FunL), funnel w idth, anterior (FunW-A) and funnel w idth, 

posterior (FunW-P) are not generally m easured, bu t are defined as follows:

FunL: Length from the top of the funnel opening to the bottom, m easured

dow n the m iddle of the funnel to the bottom  of the funnel locking 

cartilage.

FunW-A: W idth of the top of the funnel, m easured horizontally across

anterior opening.

FunW-P: W idth of the bottom  of the funnel, m easured horizontally across

opening at the posterior end of the funnel locking cartilage.

The m antle opening w idth (MOW) was m easured instead of the m antle w idth, 

and is defined as follows:

MOW: the m axim um  w idth of the mantle at the anterior most end.
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the behavioral sciences, bu t have been applied successfully to biological data 

(M atthews 1978, W hittaker 1987, Prentice 1977). It is particularly useful when 

disparate (e.g. environm ental and m orphom etric data) are used together to 

describe a set of objects.

M ultidim ensional scaling typically is divided into two types—m etric and 

non-metric. In metric m ultidim ensional scaling, the solution is based on a 

function described by a particular equation. In non-metric scaling, the solution 

function m ust describe a rising or falling pattern, but not any particular 

equation. The non-metric m ethod does not depend on any arithmetic properties 

(sums, products, differences) of the proxim ity data. Instead, it depends solely on 

the rank order of the proximities and is considered a nonparam etric m ethod 

(Kruskal and Wish 1978).

No statistical distribution assum ptions are necessary w ith MDS, because 

the m ethod inputs are sim ilarity /  dissim ilarity matrices. But, because MDS is a 

spatial model, the data m ust satisfy the following conditions (Systat 1992):

1. The distance from an object to itself is zero.

2. The distance from object A to object B is the same as that from B to A.

3. The distance from object A to C is less than or equal to the distance from A to

B plus B to C (the triangle inequality).
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There are several indicators of the "goodness" of the solution's final 

configuration that are generated for review  by Systat for W indows. The two 

m ost im portant are the stress of the solution and the Shepard diagram . Stress is 

the goodness-of-fit statistic that MDS tries to minimize as it searches over m any 

iterations for the best configuration. The larger the stress value, the worse the 

resulting configuration. Stress m ay approach zero, but stress = 0 implies that the 

distances on the MDS plot exactly equal the proximities, which is improbable. 

Problems associated w ith stress (e.g., reaching a local m inim um  instead of a 

global m inim um ) are further discussed in Kruskal and Wish (1978). Systat for 

W indow s release 5.0 uses KruskaPs stress form ula 1, which is the sim plest and 

m ost commonly used formula (Kruskal 1964).

The Shepard diagram  (a scatterplot) provides a visual indication of the 

relationship between the distances betw een points in the MDS plot and the 

proximities of the points in space (for further discussion, see Kruskal and Wish, 

1978). One of the fundam ental assum ptions of m ultidim ensional scaling is that 

these two m easures correspond to each other. In a perfect solution, there w ould 

be an exactly linear relationship; however, in all cases, the Shepard diagram  

should form either a smoothly rising or falling pattern, depending on w hether 

the inputs were similarity or dissim ilarity data. Any discontinuity (frequently 

m anifested as a step-like configuration of points) or clum ping in the Shepard 

diagram  m ay indicate a degenerate solution has been reached. According to
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Kruskal and Wish (1978), a degenerate solution occurs m ost often when: "1) 

nonm etric scaling is being used [when metric w ould be m ore appropriate], 2) the 

objects have a natural clustering".

To execute the MDS statistical procedure, several modifications of the 

original data were necessary. The following steps were taken to move from the 

m easurem ent data to the final scaled configuration:

1. A text file com posed of all m easurem ent data, the depth horizon, the latitude 

& longitude, and the date and time of capture was generated from dBase3+.

2. Data were im ported from dBase3+ into QuattroPro, segregated by species and 

crepuscular period, and saved as a Lotus 1-2-3 (.w kl) file. Salinity and 

tem perature data were then keyed into the spreadsheet.

3. The spreadsheets were im ported into Systat (version 5.01 for W indows) and 

standardized (variables were replaced with their z-scores), so that millimeters of 

dorsal m antle length were not com pared with 1000s of m eters in depth of 

capture.
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4. Spearm an's correlations were calculated to create a m atrix suitable for input 

into m ultidim ensional scaling. Spearm an's technique was chosen because it, like 

nonm etric MDS, is a nonparam etric method.

5. The resulting sim ilarity m atrix was used to perform  the m ultidim ensional 

scaling. MDS results were generated in two, three, four and five dim ensions for 

comparison.

6. Resulting MDS configurations in 2,3,4, and 5 dimensions were examined.

The optim al configuration was chosen based on 1) m inimization of stress; 2) 

shape and r2 of the Shepard diagram ; and 3) reasonable assignm ent of variables 

to the axes. The assignm ent of reasonable and easily interpretable variables 

often was the determ ining factor in choosing dimensionality. For example, a 

two dim ensional configuration w ould be selected over a three dimensional 

result in the following situation:

2-Dimensions 3-Dimensions

stress = .107 stress = .099

Shepard 's r2 = .913 r2 = .966

variable 1 = latitude/long itude  variable 1 = lat., long.,temp.

variable 2 = all morphological data variable 2 = FL, MOW, temp., salinity

variable 3 = DML, HW, FW, avg. depth
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7. The degree to which each variable (e.g. DML, FL, salinity, latitude, etc) 

explained the resulting 2 ,3 ,4  or 5 dim ensions was determ ined by running  a 

second Spearm an's correlation. This correlation compared the rank order of 

coordinates of the solution's configuration with the standardized m easurem ent 

data.

8. Matrices generated by the second correlation in the day and night captures 

w ithin each species were reviewed. D epending on the strength of the 

correlations, axes were assigned variables. A high correlation (generally greater 

than +/-.750) implied that m ost of the variability along the axis was due to the 

selected variable(s).

The data set for the daytim e analysis of Brachioteuthis sp. 3 was too large 

for Systat version 5 to process. Several alternative m ethods of segregating the 

data (e.g., by year, a n d /o r  gear type) were considered and rejected because m ost 

of the specimens caught during the day were caught in the same haul. Three 

stations (Station 77-01 n=76; Station num ber unknow n, n=22 Station 36-08, n=17) 

accounted for 44% of the captures of Brachioteuthis sp. 3; most of these specimens 

were sim ilar in size. For these reasons, half of the specimens caught at these 

locations were selected using a random  num ber table, and subsequently 

elim inated from the analysis. This m ethod brought the num ber of specimens
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dow n to a num ber that Systat could successfully process as previously 

described.



RESULTS

Specimens (n=2860) were exam ined and assigned to families w ithin the 

Class Cephalopoda (Table 3). M ost specim ens (89.1%, n=2548) were identified to 

24 families of the O rder Teuthoidea (squids); 8.7% (n=250) were identified to 6 

families of the O rder Octopoda (octopods); 0.8% (n=22) were O rder Sepioidea 

(cuttlefish) and 1.4% (n=40) were unidentifiable, usually due to the poor 

condition of the specimens. The families Chtenopterygidae, M astigoteuthidae 

and Brachioteuthidae were chosen for further analysis based on the criteria 

outlined in the Materials and M ethods section. Specimen from these families 

w ere further identified to species according to published keys for newly-hatched 

(Sweeney et. al. 1992) or adult specim ens (Chtenopterygidae: Roper et al. (1969); 

M astigoteuthidae: Nesis (1987); Brachioteuthidae: Roper et al. (1984)).

Family Chtenopterygidae 

Chtenopteryx sicula (Fig. 3)

Young: "Club suckers in distinctive circular pad (at <4mm ML), equals 

length of m anus (at 6mm ML); single chrom atophore occurs on aboral 

surface of club (at >=2mm ML); fins separate dorsally, fringe m antle 

laterally; hatchlings w ith transversely elongate fins, trabeculae (at 3.5mm 

ML); fin length increases w ith size; eyes small, w idely separated" (Jefferts, 

p. 125 in Sweeney et al. 1992)

31
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Table 3. Sum m ary of families identified in the AMNAPE collection, the num ber 

of stations where these families were caught and the total num ber of specimens 
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Figure 3. Illustration of 2.7mm DML Chtenopteryx sicula (Station-haul: 54-09). 

Ventral view.
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Identification and Historical Synopsis

The m ost w idely recognized and frequently assigned species in the 

family is Chtenopteryx sicula (Verany, 1851), although the type species of the 

genus was designated by Chtenopteryx fimbriatus (Appellof, 1889) which is a 

junior synonym  of C. sicula (fide Clarke 1966). Chtenopteryx cyprinoides w as 

described by Joubin (1894) and was synonym ized with C. fimbriatus by 

A shw orth and Hoyle (1906). Chtenopteryx sepioloides Rancurel, 1970 was 

proposed because of a consistent variation in the m antle w idth to m antle length 

ratio noted in squid specimen collected from the stomach of Alepisaurus ferox. 

This species is m aintained as separate from C. sicula, although the author himself 

expressed doubts about its validity. All squids with fringed or ribbed fins are 

assigned to Chtenopteryx sicula, pending a complete revision of the family.

In spite of some evidence for two m orphotypes based on head w idth  (see 

Fig. 6b), all specimens (n=114) were identified as C. sicula. Based on the 

m orphological changes w ith ontogeny presented by Clarke (1966) and on 

comparisons between small and large specimens of the AMNAPE collection, this 

species was not expected to exhibit any radical morphological changes over 

time, and thus was designated as the "gradual" species (see M aterials and 

Methods).
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Depth and Areal Distributions

D uring the day, C. sicula w as m ost frequently caught between 0-300m, 

w ith a peak capture per haul at 50-100m (Fig. 4a); five specim ens were recorded 

at depths >400m. N ight captures show  specimens were evenly distributed 

throughout the 0-300m depth  range w ith no deep captures recorded.

In the daytim e sam ples, DML increased with depth of capture (Fig. 4b,c). 

The sm allest specimens (3.2-9.8mm DML) all were caught in the upper 200m, 

except for a single 4.5mm DML specim en caught betw een 500-1000m. This 

specimen m ay represent contam ination (e.g., a specimen entangled in the deeper 

net while going through the surface waters). Larger specimens were found at 

progressively deeper depths (50-300m), with the two largest specimens (18.5, 

21.5mm DML) caught the deepest (600-1000m). At night, all specimens (2.2- 

41.7mm DML) were found in the upper 300m; m ost of these (43 of 48) were in 

the upper 200m.

During the spring 1980 cruise (Fig 5a), C. sicula was m ost frequently 

captured in hauls along the 30° W longitudinal line south of 43°N, with a pocket 

of captures m ade at 35-36° W. All b u t one capture were taken from the upper 

300m of water. Van der Spoel (1981) identifies the w ater masses at this depth as 

Canary Current w ater (at latitudes south of 27°N), Sargasso Sea water (27-40° N)
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Figure 4. Depth distribution of Chtenopteryx sicula. a) N um ber of specimen per 

haul at each depth horizon during  day and night b)day time depth  of capture 

plotted  against DML c)night time depth  of capture plotted against DML. Net 

opened at triangle and closed at horizontal line. Each triangle/line combination 

represents one collected specimen. Note: Bottom depth is illustrated for O-lOOOm 

depth  horizon collected by m alfunctioning opening/closing net.
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Figure 5. Areal distribution of Chtenopteryx sicula. a)Spring 1980 b) A utum n 1981 

c) W inter 1982 d)Spring/Sum m er 1983. Center of the triangle m arks the 

collection point. Overlapping triangles were combined and the num ber of 

specimens were added. N orth - South and East - W est depth distributions of 

Chtenopteryx sicula. Hauls that contained cephalopods at each latitude and 

longitude are represented. M ultiple specimen m ay have been caught in each 

depth horizon e) Spring 1980 f) A utum n 1981 g) W inter 1982 h) Summer 1983.
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and W arm  Tem perate w ater (42-50° N). One specimen was taken from > 500m, 

in Arctic deep w ater (Van der Spoel 1981).

Captures of C. sicula were less frequent and m ore geographically 

dispersed in A utum n 1981 (Fig. 5b). All captures were south of 38° N, putting  

them  in the Sargasso Sea w ater (Van der Spoel and M eerding, 1983), and  all bu t 

one were from the upper 200m; 1-2 specimens were caught in each of the 6 hauls 

betw een 20-35° W. Depth of capture varied over the latitudes and longitudes, bu t 

m ost were caught in the upper 300m.

Only four specimens were captured during  the winter 1982 cruise (Fig.

5c); all were at the southernm ost stations between 27-30° W in the upper 200m in 

Sargasso Sea w ater (Van der Spoel 1985).

Most specimens were collected during the sum m er 1983 cruise (Fig. 5d). 

Captures were m ade all along the cruise track (49-24°N), w ith the highest 

concentration found at 45° N, 30°W. The depth of capture was predom inantly in 

the upper 200m, (Sargasso S ea/ N orth Atlantic Central water) with two 

exceptions: one betw een 400-500m and the other from 500-1000m (N. Atlantic 

Deep water).
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M orphom etric Data

All bu t one specim en of C. sicula fell w ithin the 2-25mm DML size range; 

this data sub-set is very robust, w ith m any specimens spread over the entire 

range.

Fin length (Fig. 6a) was the only fin m easurem ent taken because the ribs of 

the fins frequently were detached from the m antle and could not be reattached 

for accurate fin w idth m easurem ent At approxim ately 10mm DML, the slope of 

the grow th trajectory doubles, indicating that the fin length begins to grow  very 

quickly.

The head dimensions (Fig. 6b) show  two different patterns. W hereas HL, 

ED (Appendix A) and HW  (Fig. 6b) appear to rem ain linear over the entire size 

range, the head w idth graph show s a second parallel trajectory. This second 

trajectory m ay represent a gender difference, a second species, or unknow n 

factors such as population variability.

Finally, the slope of the scatterplot for the mantle opening width (Fig. 6c) 

decreases w ith increasing DML, w ith the inflection point betw een 10-12mm 

DML.
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Figure 6. M orphom etric analysis of Chtenopteryx sicula. a) fin length b) head 

w idth  c) m antle opening width.
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Qntogenic Changes in External M orphology

4.4mm DML (station-haul 68-04, bottle no. ?): Mantle broad, alm ost U- 

shaped, no chrom atophores evident because of skin damage. Funnel very large, 

anterior funnel projects past the base of the fourth arms; FBW = MOW. Eyes are 

small, anterior. All arms virtually equal in length; arm  suckers small, stalked, 

and in two rows. Tentacles not m uch longer than arms, with circular "pad" 

m arking beginning of club developm ent; suckers and sucker buds beginning to 

grow  from the "pad" causing the distal tip to bend. 5 rows of suckers on the club 

"pad"; no suckers on the tentacular stalk. Fins tom  off.

5.1mm DML (station-haul 86-07, bottle no. 7106) All characters as above. 

Fins ribbed, present on posterior end only; FL = approxim ately 1 /5  DML.

9.0mm DML (station-haul 77-01, bottle no. 8853): Characters as above 

w ith following exceptions: DML > ventral mantle length (VML) with a peak at 

the anterior end of the DML. Arm  suckers are small, but plentiful; proximal end 

of all arm s w ith 2 rows of suckers; distal end of arms 1-3 with 4-6 rows; 

sw im m ing keel on both sides of 4th arm.

19.5mm DML (station-haul 81-08, bottle no. 8000): Same characters as 

above w ith the following exceptions: Fins run along entire lateral mantle. Eyes
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antero-laterally directed. Funnel ends at base of the arm  crown. Arm lengths can 

be differentiated, arm  form ula 2>3>4>1; arm s 2 & 3 have developed a sw im m ing 

keel on the ventral side.

M ultidim ensional Scaling

Because evidence of diel vertical m igration was seen, a MDS analysis was 

not conducted.

Family M astigoteuthidae

Young: "Mantle elongate; fins transversely oval; tentacular club w ith > 4 

rows of suckers (6mm ML); tentacular stalk thicker than arms; stalk and 

club circular in cross section; club not expanded; eyes at front of head 

project diagonally anteriorly; g ladius extends well posterior to fins as 

long, spike-like tail" (Roper and Sweeney, p.175 in Sweeney et al. 1992).

Historically, the family M astigoteuthidae has been comprised of 18 

species in 2 genera and 2 subgenera. Based on his earlier w ork (Nesis, 1977), 

Nesis (1987) presented a key w ith the family divided into two genera, 

Mastigoteuthis Verrill, 1881 which contained the subgenera Mastigoteuthis (s. str.) 

and Mastigopsis Grim pe, 1922, and Echinoteuthis Joubin, 1933. All bu t two 

described species (M. Mastigopsis hjorti and E. dame) were placed in the genus 

Mastigoteuthis subgenus Mastigoteuthis.
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Recently, a new  classification recognizing 8 species in 2 genera and 4 

subgenera was proposed (Salcedo-Vargas & Okutani, 1994). The new 

classification resurrects the genus Idioteuthis Sasaki, 1916, collapses the subgenus 

Mastigopsis, relegates Echinoteuthis to subgeneric status, and creates a new 

subgenus Magnoteuthis, w ith the type species Mastigoteuthis magna Joubin, 1913. 

Salcedo-Vargus (1994) subsequently changed his m ind and resurrected the 

genus Echinoteuthis, based on specimens from the N etherlands Indian Ocean 

Program m e. In addition, Salcedo-Vargas & Okutani (1994) resolved the 

"grimaldii-group" (Nesis 1977,1987). Rancurel (1971) first pointed out the 

sim ilarities between grimaldii, dentata, flammea and schmidti. Nesis (1977,1987) 

defined the "grimaldii-group" to include grimaldii, schmidti, dentata and pyrodes. 

Salcedo-Vargas and O kutani (1994) finally concluded that grimaldii, dentata, 

flammea and schmidti are all synonym ous with M. aggassizii.

Five different m orphotypes of M astigoteuthidae were identified in the 

AMNAPE collection using the key presented in Nesis (1987) and modified after 

Salcedo-Vargas and O kutani (1994). Four of the m orphotypes were confidently 

identified to species - Mastigoteuthis agassizii (n=42), Idioteuthis magna (n=62), 

Idioteuthis hjorti (n=l) and Echinoteuthis familica (n=3). The fifth species, Idioteuthis 

sp. A.(n=7), was separated from I. magna based on the shape of the funnel 

locking apparatus (FLA). Idioteuthis. sp. A  has a very long, narrow , straight FLA,
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contrasting notably to the oval, alm ost pear-shaped FLA of I. magna. Idioteuthis 

magna Joubin, 1913 and Mastigoteuthis agassizii (Verrill, 1881) had enough 

specim ens to allow further study. Based on historical literature, and the 

perceived change in fin shape over time w hen comparing adult and newly- 

hatched specimens, these two species were designated the "intermediate" 

species.

Idioteuthis magna (Fig. 7)

Depth and Areal Distribution

Histogram s of specimens at depth show  that during the day, I. magna is 

found in two groups; the first at 0-200m, w ith most specimens in 50-100m of 

water. The second group is found in w aters >400m (Fig. 8a). D uring the night, 

m ost I. magna move up into the 50-200m range, with one exception (23.6 mm 

DML, 300-400m).

No trend in depth of capture is noted with increasing DML during the 

day (Fig. 8b). Specimens are generally distributed over the top 500m of the w ater 

column, w ith m ost specimens betw een 5-12 mm DML found between O-lOOm. 

Two deep captures (>500m) were recorded. N ight data (Fig. 8c) show a 

trem endous increase in the num ber of specimens at 50-100m. Specimens <7mm

DML are caught only in the upper 100m. Specimens larger than 7mm are found
a

in the upper 200m. The deepest capture depth was recorded for the largest
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Figure 7. Illustration of 11.3mm DML Idioteuthis magna (Station-haul: 50-13). 

Dorsal and ventral view.
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Figure 8 . Depth distribution of Idioteuthis magna. a) N um ber of specimen per 

haul at each depth horizon during  day and night b)day time depth of capture 

plotted against DML c)night time depth  of capture plotted against DML. Net 

opened at triangle and closed at horizontal line. Each triangle/line combination 

represents one collected specimen. Note: Bottom depth is illustrated for O-lOOOm 

depth horizon collected by m alfunctioning opening/closing net.
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specimen, indicating a possible n ight time descent in depth of capture for larger 

specimen. A dditional larger specim ens are required to confirm this observation.

In the spring cruise of 1980,1, magna was caught in a very narrow  

latitudinal range, betw een 39-45°N, m ost in the upper 200m (Fig. 9a), w ith the 

largest concentration being caught at about 35°W. According to van der Spoel 

(1981), this location is a transition betw een the Sargasso Sea water mass and the 

W arm  Tem perate w ater mass. W ater tem perature at 200m [Figure 2 in van der 

Spoel (1981)] changes from 17°C at 39°N to 13-14 °C at 45° N. One of the hauls at 

the higher latitudes (40°N and 45°N) was in the 400-500m depth  horizon. Van 

der Spoel (1981) identified this com bination of depth and latitude as belonging 

to Arctic waters (<12 °C).

Only two specimens of I. magna were captured during the fall cruise of 

1981 (Fig. 9b); both were found along the 30° W longitude line between 27-30° N  

(North Atlantic Central water), one from 100-200m, the other 300-400m. No 

specimens were captured during  the w inter cruise of 1982 (Fig. 9c).

Thirty-two specimens were caught during the 1983 sum m er cruise (Fig. 

9d); m ost were captured between 41-45° N, although two tows were taken from 

29-36° W. All but two hauls were taken from <200m in N orth Atlantic Central
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Figure 9. Areal distribution of Idioteuthis magna. a) Spring 1980 b) A utum n 1981 

c) W inter 1982 d) Spring/Sum m er 1983. Center of the triangle m arks the 

collection p o in t O verlapping triangles were combined and the num ber of 

specimens were added. N orth - South and East - W est depth distributions of 

Idioteuthis magna. Hauls that contained cephalopods at each latitude and 

longitude are represented. M ultiple specimen m ay have been caught in each 

dep th  horizon e) Spring 1980 f) A utum n 1981 g) W inter 1982 h) Sum m er 1983.



Distribution of 1. magna - Spring 1980A

_J3

JS

Distribution of /. magna - Autumn 1981B

Distribution of I. magna - Winter 1982 JS Distribution of L magna - Spring/Summer 1983



D
ep

th
 

H
ei

teo
n 

(m
) 

De
pt

h 
H

or
ko

n 
(m

) 
De

pt
h 

H
or

ko
n 

<m
)

E.
North-South Oopth Otatnbuttoh

o

•100

1000

1300
20 a 50» 40

lattuOe (degree* North)

N orm -South O eptn O rstnou tcn  
no • 1941

Lettudo (deyees North)

North-South Oopth Distribution 
Uiatouttts megne • f9W

-1000 \~

le&tude (degrees North)

East-West Oopth Ototributton

East-West Depth Otstnbution 
me - 1941

200

0

-1200
IS 20 40

Congeude (degree* West)

East-W est Depth Distribution 
UiatMttHS megne - 1943

Longeude (degrees West)



49

water; the two deeper hauls were from 500-1000m, which had characteristics of 

both the N orth Atlantic Central waters and the N orth Atlantic Deep waters.

M orphom etric Data

All bu t one specim en of I. magna fell w ithin the 3-12mm DML size range; 

this data sub-set is very robust, w ith m any specimens spread over the entire 

range.

The predom inant pattern in /. magna is sim ple linear grow th w ith a 

relatively low slope indicating that the DML grows faster than the other 

characteristics. Three exceptions occur, the fin dimensions, the m antle opening 

w idth, and the eye diam eter.

Fin measurement (Fig. 10a,b) data show a decrease in the slope of both 

w idth  and length at about 7mm DML. Fin w idth is slightly larger than FL at all 

DML. At the largest DMLs, the FW grows to be approxim ately 80% of total 

DML, which is one of the species-diagnostic characteristics (Nesis 1987).

The mantle opening width (Fig. 10b) appears to level off after 

approxim ately 7mm DML, although there is considerable variation.
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Figure 10. M orphom etric analysis of Idioteuthis magna. a) fin w idth  b) fin length 

c) m antle opening w idth  d) eye diam eter.
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The eye diameter (Fig. 10c) trajectory appears to level off at approxim ately 

6m m  DML.

Qntogenic Changes in External Morphology

5.3mm DML (station-haul 14-10, bottle no. 544): Mantle m oderately long, 

sack like, w ith large chrom atophores along the dorsal midline. H ead square, 

w ith statocysts large and clear; chrom atophores on dorsal and ventral head, but 

pattern  difficult to discern because of condition. Eyes small, anterior. Buccal 

apparatus large, with large beak. Tentacles missing. Arm formula 4 »2> 1> 3 ; 

sw im m ing keel on fourth arm. Gladius extends considerably beyond the end of 

the m antle and beyond the end of the fins. Tail length approxim ately = to ML. 

Fins are large, circular; FL = 4 /5  ML.

11.3mm DML (station-haul 50-13, bottle no. 3575): Characters sam e as 

before with the following exceptions: Eyes oriented anterio-laterally. Arm 

form ula 4»2> 3> 1 ; arm suckers stalked; arm suckers on fourth arm  are in 1 row, 

suckers on other arms are in 2 rows. Fin length has changed to 1 / 4th ML.

Multidimensional Scaling

The optim al configuration of both the day (Fig. 11a) and night (Fig. 11b) 

analysis was found in three dim ensions, with stress equal to .107 and .126,
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Figure 11. M ultidim ensional scaling analysis optim al configuration for 

Idioteuthis magna. Each letter represents one specimen. Axes described as 

follows, characters listed in order of im portance. a)Day. Axis 1: latitude, 

longitude, ED, DML. Axis 2: HW, HL, salinity, tem perature. Axis 3: funnel 

dim ensions b) N ight. Axis 1: DML, salinity, FL, FW, MOW, Funnel length. Axis 

2: FL Axis 3: MOW.
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respectively. Shepard diagram s for both show ed some variability, b u t the overall 

patterns were straight lines w ithout any evidence of steps.

In the daytime, the first axis was described by the DML (-.769), ED (-.743), 

FL (-.673), HW  (-.642), HL (-.650), latitude (-.686) and longitude (.627); the 

second axis by the HW  (-.725), HL (-.699), salinity (.763) and tem perature (.762); 

and the third axis by FunW-A (.796), FunW-P (.837) and FunLen (.885). The 

optim al configuration shows specimens fall out in two groups based on the first 

axis. Salinity and tem perature were im portant in describing the variability but 

were not responsible for grouping the data. Average depth of capture did not 

describe the variability of the configuration at all.

At night, the DML (-.709), FL (-.643), FW (-.606), MOW (-.615), FunLen (- 

.600), and salinity (.670) describe the variability in the first dimension; fin length 

(.600) also descreibes the second axis. The MOW (-.627) describes the third axis. 

The variability of the optimal configuration is mostly described by the 

m orphom etric characters of the m antle (DML, MOW) fin (w idth and length) and 

the funnel length. Two groups of specimens are found based on the first 

dim ension, as indicated in Fig. l ib ;  the difference between the two groups can 

be principally attributed to size differences in the captured specimens. The 

second and third dimension descriptors are also found describing the first
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dim ension, and the circular patterns seen are m ost likely artifacts of this 

duplicity.

Mastigoteuthis agassizii (Fig. 12)

Depth and Areal Distribution

Histogram s of specimens at depth  (Figure 13a) show  that during  the day, 

all specimens were caught between 500-1000m. Three were taken with a 

m alfunctioning opening/closing net that fished a 0-1000m depth horizon. At 

night, a slight decrease in depth occurs, with some specimens found between 

400-500m.

W hen the captures are sorted by DML (Figures 13b,c) the day time 

captures show that m ost specimens were caught between 500-1000m. No trend 

in dep th  of capture w ith increasing DML is evident. At night, one specimens 

(15.5 mm) was taken from the 0-500 depth horizon. The rem aining 12 specimens 

(7.5-62.5 mm) were found betw een 500-1000m.

D uring the spring cruise of 1980, all specimen were found north of 35° N 

(Fig 14a), and alm ost all were found in water >500m depth. This combination of 

latitude and depth puts them squarely in the Arctic deep waters (van der Spoel 

1981). In 1981, all specimens were caught above 41° N (Fig 14b). All b u t two 

specimens were caught between 500-1000m, again in the Arctic polar w ater (van
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Figure 12. Illustration of 9.7 m m  DML Mastigoteuthis agassizii (Station-haul:16-3, 

bottle 706 ). Dorsal and ventral view.



o
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Figure 13. Depth distribution of Mastigoteuthis agassizii. a) N um ber of specim en 

per haul at each depth  horizon during  day and night b)day time depth  of 

capture plotted against DML c) night time depth of capture plotted against 

DML. N et opened at triangle and  closed at horizontal line. Each triangle/line 

combination represents one collected specimen. Note: Bottom depth is illustrated 

for 0-1000m depth horizon collected by malfunctioning opening/closing net.
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Figure 14. Areal distribution of Mastigoteuthis agassizii. a)Spring 1980 b) A utum n 

1981 c) W inter 1982 d)Spring/Sum m er 1983. Center of the triangle m arks the 

collection point. O verlapping triangles were combined and the num ber of 

specim ens were added. N orth - South and East - W est depth distributions of 

Mastigoteuthis agassizii. Hauls that contained cephalopods at each latitude and 

longitude are represented. M ultiple specimen m ay have been caught in each 

dep th  horizon e)Spring 1980 f) A utum n 1981 g)W inter 1982 h) Spring/Sum m er 

1983.
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der Spoel and M eerding 1983). Because of the very strong trend for M. agassizii 

to be found in the deep waters, it is probable that these specimens were also 

taken from  the deeper portion of the haul in the Arctic polar waters.

Six specimens were caught during the 1982 w inter cruise between 39-41°

N  along the 36° W line, presum ably from the N orth Atlantic Drift w ater (Van der 

Spoel 1985) (Fig. 14c). Depth of capture was 500-1000m. Six specimens were 

caught during the 1983 sum m er cruise, between 34-45° N  in 500-1000m of water, 

in the N orth  Atlantic Deep w ater (Fig. 14d).

M orphom etric Data

All but one specimens of Mastigoteuthis agassizii were between 3-40mm

DML.

The head and eye measurements (Figure 15a,b) have the m ost dram atic 

changes apparent in the scatterplot. H ead length and head w idth appear to be 

alm ost constant over the 3-11 m m  DML range; at approxim ately 11mm DML a 

sudden  increase occurs in the length and w idth with increasing DML. 

Throughout the entire size range, the length and width data are virtually 

superim posed on each other, indicating that they are not only equal in 

m easurem ent, bu t also follow the same grow th patterns. The eye diam eter
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Figure 15. M orphom etric analysis of Mastigoteuthis agassizii. a) head 

m easurem ents b) eye diam eter c) funnel w idth vs. funnel length.
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follows the sam e patterns as described above with the inflection point a t 11- 

12mm DML.

The anterior and posterior w idths of the funnel (Fig. 15c) com pared to the 

funnel length show  a leveling off (FTW) or a decrease in slope (FBW) at 

approxim ately 2.5mm FunLen. A 4m m  funnel length corresponds 

approxim ately to a DML of 12mm (see Appendix A).

Ontogenic Changes in External M orphology

9.7 m m  DML (station-haul 16-03, bottle no. 706): M antle sac-shaped, 

gelatinous. Chrom atophores small, circular, dark brow n to purple. HW = MOW. 

Eyes large, anterior. Arm form ula 4»> 2> 3> 1.. Arm suckers very small in two 

rows. Arm  suckers more densely packed on arms 1-3 than on arm  4. Buccal 

apparatus and beak large and protruding.

10.8 m m  DML (station-haul 39-14, bottle no. 4532): M antle long, 

gelatinous, tapered to a point at the posterior end. M antle chrom atophores small, 

densely spaced, red to purple. G ladius continues past end of m antle to form 

support for large, semi-circular fins; gladius extends beyond fins. H ead square- 

ish, w ith dorsal and ventral chrom atophores; statocysts very large. HW = MOW. 

Eyes large, anterior; ED = 1 /2  HL. No reflective tissue on ventral eye. Buccal 

mass and beak very large. Arm form ula 4»2> 3> 1 . Arm suckers small, stalked;
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in 2 row s on arm s 1-3,2 rows then 1 row  on arm  4. Remnant sw im m ing keel 

noted on arm s 4,3,2. No trabeculae present. Tentacles absent. Statocysts very 

large and obvious.

16.5 mm DML (station-haul 14-05, bottle no. 0537): Mantle long, 

gelatinous, becoming more sac-shaped. Posterior end of the ventral mantle 

getting thicker, as if mantle is growing into the fin area. Mantle chrom atophores 

small, dense, red to purple. More chrom atophores on ventral m antle than dorsal 

mantle. End of gladius broken. Fins very large and w ide com pared to mantle. 

HW  = > MOW. Statocysts not noticeable. ED = 3 /4  HL. Arm formula 4 » 3 > 2> 1 . 

Buccal m ass and beak are very large and reddish. Tentacles absent. Internal 

organs in upper 1 /2  of m antle cavity, very near funnel.

27.8 m m  DML (station-haul 81-06, bottle no. 7935): mantle long, 

gelatinous. Chrom atophores over entire mantle and arm  complex, small red to 

purple im bedded in skin. Fins very large, FL = ML and FW > ML. Head 

compact, statocysts not noticeable. HW > MOW. Eyes lateral and approxim ately 

equal to head length. Arm formula: 4»2> 3> 1 . Buccal mass large, but 

proportional to rest of body. Internal organs enlarged to encompass entire 

m antle cavity.



M ultidim ensional Scaling

Results of the daytim e analysis (Fig. 16a) w as best represented in three 

dim ensions (stress= .085, Shepard diagram  = straight); the night time 

configuration (Fig. 16b) was best in two dim ensions (stress = .076, Shepard 

diagram  = straight). The lack of night time salinity data is m ost likely the reason 

for this disparity in dimensionality, since the variability in the th ird  dim ension 

during  the day was explained by the salinity data.

The first day time axis was described prim arily by latitude (.850) and 

longitude (-.883) and som ew hat by tem perature (-.645) and depth  (-.501). The 

second axis was described by all the morphological m easurem ent data (range: 

DML = .721 to MOW = .858), and the third was explained by the salinity data 

(.663). Specimens are clum ped into four groups based on the first axis (station 

data); one group incorporates considerable variation in m orphology and salinity, 

the other three group according to differences in m orphology and salinity.

The night time analysis show ed similar results, w ith the latitude (-.956), 

longitude (.819) and depth  (.819) explaining m ost of the variability of the first 

axis, and the morphological m easurem ents explaining the second (range: DML = 

.613 to FW = .973). The resulting optimal configuration is a circular pattern 

which can be broken into two groups because of a discontinuity along the first
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Figure 16. M ultidim ensional scaling analysis optimal configuration for 

Mastigoteuthis agassizii. Each letter represents on specimen. Axes described as 

follows, characters listed in order of importance. A) Day. Axis 1: latitude, 

longitude, tem perature and depth. Axis 2: morphological characters. Axis 

3:salinity B) Night. Axis 1: latititude, longitude and average depth. Axis 2: 

morphological characters.
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Family Brachioteuthidae

Young: M antle elongate to elongate/bulbous; fins separate, terminal, 

paddle-shape, transversely oval; distinctive long, slender neck (no arm- 

crown stalk); eyes lateral bu t frequently occur tow ard ventral part of 

head; distinctive sw elling on dorsal surface of head; m antle opening wide 

relative to neck; club suckers develop at hatching and adult-like pattern of 

num erous suckers on proxim al m anus well established by about 10mm 

ML; tentacles large, present at hatching, robust relative to arms" (Roper 

and Sweeney, p.158 in Sweeney et al. 1992).

The family Brachioteuthidae contains one genus (Brachioteuthis) and five 

species (beanii, riisei, behnii, bvwmanii, and picta), but it is greatly in need of 

revision. Taxonomic confusion w ithin the family can be attributed in part to 

poor original descriptions, and in part to the paucity of available m ature 

specim ens in good condition. A brief chronology of the family, and evidence that 

identifies two of the four m orphotypes found in the AMNAPE collection 

follows.

A.E. Verrill erected the genus Brachioteuthis in 1881 and described its type 

species, B. beanii. Verrill used the sim ilarity in external m orphology (in 

particular, the rounded head and extended neck) to attribute the new  genus to
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the family Chiroteuthidae. N o m easurem ents were given w ithin the text, bu t a 

life-size illustration of the dorsal arm s, head and m antle was provided.

Steenstrup (1882) established a new  genus, Tracheloteuthis, which he 

placed in the family O m m atostrephidae (Hoyle 1886, Pfeffer 1900). He w ent on 

to identify two new  species attributed to the new  genus, Tracheloteuthis riisei and 

T. behni. The species are separated based on the relative lengths of the fins and 

arms. In T. riisei, the fin length equals one-third the m antle length and the 

ventral arm s equal two-thirds the lateral arms; the proportions of T. behni are 

very similar- fin length = 1 /4  m antle length and ventral arm  length = 1 /2  lateral 

arms. Steenstrup ended his paper prom ising a more detailed description and 

figures later. Unfortunately, his next paper (Steenstrup 1898), which was 

published post-hum ously, reiterates the original description verbatim, and then 

adds an examination of the sim ilarities and differences between Verrillola 

(Pfeffer 1884) and Tracheloteuthis (Steenstrup 1882). No additional characters 

w ere described to augm ent the original descriptions.

In 1905, Hoyle attem pted to retrieve Steenstrup's type specimens to verify 

some of his own identifications. After deducing the identity of the type 

specim en, Hoyle addressed the usefulness of the diagnostic characters given by 

Steenstrup (1882), and he concluded that there is no reason to differentiate
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betw een T. riisei and T. behni, "It will be seen that in several instances the sam e 

specim en w ould be placed in one species by the form er criterion and in another 

by the latter. This is sufficient to throw  grave doubt upon the efficacy of such 

features as diagnostic characters." (p. 96 in Hoyle 1905) Hoyle placed behni in 

synonym y with riisei m aintaining the nam e riisei because it was the first species 

described by Steenstrup (1882); however, T. riisei and T. behni should  be 

considered of dubious status because of their poor original descriptions, and 

because the designated type specimens are uncertain (Hoyle, 1095).

Mr. E.S. Russell described Brachioteuthis bowmanii (family = 

Brachioteuthidae) in 1909 from a single female of 61 mm ML caught a t 61° 27' N, 

003° 42'W (Russell 1909). He included a general description and m easurem ents 

of external features. Russell (1922) gave a verbatim  copy of the original 

description, but augm ented the description with station data and six drawings. 

Russell believed that the specimen closely resembled B. beanii, bu t described it as 

new  because it differed in 'The great size of the head and eyes, the pigm ented 

cornea, the shape of the anterior m argin of the m antle, the peculiarities in the 

structure of the suckers and of the tentacular club" (p. 451). I believe that the 

specim en was sufficiently differentiated from other species, and that confident 

identification of new specimens to B. beanii is possible.
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Soon after Russel’s 1909 paper, Chun (1910) described the fifth and final 

new  species, Brachioteuthis picta, from  a 33 mm ML male caught in the Benguela 

C urrent (5° 6'N, 009° 58'E). His description provided a detailed exam ination of 

the external m orphology as well as a brief treatm ent of the organs of the m antle 

cavity and the vascular system. In addition to the new description, Chun (1910) 

devoted the rest of this section to describing four specimens from three stations 

which "certainly belong to the developm ental cycle of Brachioteuthis". 

Unfortunately, the first and  best described specimen was later designated as the 

type specim en for Histiochromius chuni Pfeffer, 1912. Chun (1910) attributed the 

rem aining three specimens to B. riisei, because they resem bled the larva 

described by Hoyle (1886) as being B. riisei.

The selection "of Brachioteuthidae as a representative family was initially 

thought to be straightforw ard, as Brachioteuthis riisei was the only species 

recognized in the region of the AMNAPE collections, however, based on the 

above chronology, B. picta, B. beanii, and B. bcrwmanii are the only adequately 

described species in the Brachioteuthidae.

Furtherm ore, a detailed examination of the specimens show ed that four 

m orphotypes (Brachioteuthis sp. 1-4) were consistently distinguishable (Fig. 17) 

based on the shape of the head, the mantle chrom atophore patterns and the
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Figure 17. M orphotypes of newly-hatched Brachioteuthidae.
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shape of the tentacle. Only Brachioteuthis sp. 3 (n=157) and Brachioteuthis sp. 4 

(n=31) had enough specim ens to allow for further study.

Table 4 sum m arizes the original description of several major diagnostic 

features of the well described Brachioteuthidae species and for Brachioteuthis sp.

3 and Brachioteuthis sp. 4. A com parison shows that Brachioteuthis sp. 3 is 

described similarly to B. picta, and Brachioteuthis sp. 4 has m any of the same 

characters as B. bowmanii. The two best characters for discrim inating betw een 

species are the dentition of the sucker rings and the presence or absence of 

trabeculae. The use and interpretation of other, non-quantifiable characters (such 

as color, shape, or relative size) are subject to the past experience of both the 

author and the reader, as well as the grow th stage of the specimen and the 

preservation technique used. The designation Brachioteuthis sp. 3 and 

Brachioteuthis sp. 4 will be m aintained pending a complete revision of the 

Brachioteuthidae.

Based on historical (Chun 1910) and recent observations (Young et al 

1985), brachioteuthid specimens were expected to undergo a substantial 

m etam orphosis, especially in the length of the neck; therefore, this family was 

designated as the "radical" species.
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Table 4. Com parison between original descriptions of Brachioteuthis bozvmanii, B. 

beanii, and B. picta and characteristics noted in B. sp. 3 and B. sp. 4.
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Figure 18. Illustration of 9.5mm DML Brachioteuthis sp. 3 (Station-haul: 77-01, 

bottle no. 8853). Dorsal and ventral view.
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Brachioteuthis sp. 3 (Fig. 18)

Depth and Areal Distributions

D uring the day, two groups of Brachioteuthis sp. 3 are present: one at 0- 

200m and the other at >500m (most of these specimens were caught in O-lOOOm 

hauls in m alfunctioning opening and closing nets, and therefore m ay also have 

been in near-surface waters) (Fig. 19a). Most specimens in the first group were 

caught in the upper 50m in concentrated hauls. N ight captures were not as 

plentiful, bu t all were m ade in the upper 300m.

W hen sorted according to DML (Fig 19b,c), the day captures show  an 

intriguing, bu t inconclusive pattern. All specimens <30mm DML were in the 

upper 200m. Larger specimens were taken from 0-1000m depth  horizon from a 

net w ith a m alfunctioning net opening/closing mechanism.

N ight captures show all specimens, regardless of size, in the upper 300m. 

G raphs of nighttim e captures have more vertical spread than the day captures. 

Smallest specimens came from slightly deeper tows than larger specimens.

No specimens of Brachioteuthis sp. 3 were captured during the spring 

cruise of 1980 or the winter cruise of 1982. The fall cruise of 1981 (Fig. 20a) 

caught a m oderate num ber (n=24) of specimens, all of which were found north 

of 49° N, and along 30° W, putting them in N orth Atlantic Drift w ater (Van der
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Figure 19. Depth distribution of Brachioteuthis sp. 3. a) N um ber of specimen per 

haul at each depth horizon during  day and night b)day time depth  of capture 

plotted against DML c)night time depth  of capture plotted against DML. N et 

opened at triangle and closed a t horizontal line. Each triangle/line combination 

represents one collected specimen. Note: Bottom depth is illustrated for 0-1000m 

depth  horizon collected by m alfunctioning opening/closing net.
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Figure 20. Areal distribution of Brachioteuthis sp. 3. a) A utum n 1981 b) 

Spring/Sum m er 1983. Center of the triangle m arks the collection point. 

O verlapping triangles were combined and the num ber of specimens were 

added. N orth - South and East - W est depth distributions for Brachioteuthis sp. 3. 

Hauls that contained cephalopods at each latitude and longitude are 

represented. M ultiple specimen m ay have been caught in each depth horizon e) 

A utum n 1981 g) Spring /Sum m er 1983.
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Spoel 1985). A large concentration of specimens was caught at 55° N, 30° W. All 

specim ens were caught in the upper 300m in the Subpolar w ater mass (Van der 

Spoel 1985).

The sum m er cruise of 1983 collected the largest num ber of specimens of 

this species by far (Fig. 20b). As in 1981, m ost were captured above 49° N  in the 

upper 200m of N orth Atlantic Drift water (Van der Spoel 1985). An 

extraordinarily high concentration of specimens was caught at 30° W, betw een 

48-50° N  in the N orth Atlantic Drift w ater (Van der Spoel 1985). Most of the 

individuals of B. sp. 3 were collected at stations 76 and 77 (approx. 49-50°N 29- 

29.5°W), from the upper 200m.

Morphometric-dala

Brachioteuthis sp. 3 had  a very large size range of specimens (3-50mm 

DML) and num ber of specimens (n=114). No gaps exist in the size range, 

allowing for confident interpretation of the changes in the trajectory of the 

scatterpoints. In general, the characteristics m easured resulted in an s-shaped 

grow th trajectory w ith increasing DML. Thus, the trajectory can be divided into 

three sections. At the sm allest sizes (<15mm DML), DML grows faster than the 

other individual characteristics; at approxim ately 15mm DML (inflection point 

A), the m easured characters begin to grow m uch faster than the DML; at 30mm
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DML (inflection point B), increases in the size of the character begin to decrease, 

w ith the resulting scatterplot m ore level.

The arms and tentacles (Fig. 21a) appear to show  exponential grow th, with 

an inflection point at approxim ately 20mm DML. Both the arm s and tentacles 

appear to grow  in a sim ilar m anner, w ith the tentacles approxim ately twice as 

long as the fourth arm.

The inflection points of the fin measurements (Fig. 21b) are approxim ately 

the sam e as those of the arms and tentacles; inflection point A is at 

approxim ately 15-18mm DML, and point B is around 30mm DML. The fin 

w idth  is slightly larger than the fin length at any given DML, bu t both 

characteristics appear to follow the same patterns of grow th w ith increasing 

DML.

The funnel dimensions (Fig. 21c-e) present a pattern distinct from those 

previously discussed; however, the inflection points of the w idth m easurem ents 

rem ain at approxim ately the sam e DMLs as previous m easurem ents. The 

incremental change in the posterior funnel w idth (FW-P) (Fig.21c) over the first 

18mm DML is greater than that of the m iddle portion, where it becomes m ore 

level. The third section of the graph shows a return to a rapid increase in the 

m easurem ent with increasing DML. The anterior funnel w idth (FW-A) does not



Figure 21. M orphom etric analysis of Brachioteuthis sp. 3 a) arm  and tentacle 

length b) fin dim ensions c) funnel w idths d) funnel length e) funnel length 

w idth  f) head m easurem ents g) eye diameter.
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appear to have any inflection point across the range of DML; however, it does 

appear to level off at approxim ately 2mm FW-A at 30mm DML. The posterior 

w idth  is alm ost exactly twice as large as the funnel top w idth at any DML. The 

funnel length (Fig. 21 d) increases very slowly w ith increasing DML, and appears 

to level off at 4mm FL, at approxim ately 30mm DML. W hen the funnel w idths 

are com pared to the funnel length (Fig. 21 e), the FW-P increases very rapidly 

w ith small increases in FL; the FW-A show s a less rapid increase.

Head and eye measurements (Fig. 21f,g) appear to have only one inflection 

point, again at about 28-30mm DML. Prior to 30mm DML, DML increases m uch 

faster than either the head length, the head width or the eye diameter. After 

30mm, the HL, HW  and ED begin to increase faster with respect to DML. In any 

case, the head length is always larger than the head width, which in turn  is 

larger than the eye diameter. W hen com paring the head w idth with the head 

length, the length is significantly larger than the w idth up to approxim ately 

7mm HL. At this point, the slope of the scatterplot increases and the w idth 

begins to increase in size faster than the length. At the largest DMLs, the head 

length is only slightly larger than the w idth.

Ontogenic Changes in External M orphology

10.1mm DML (station-haul 77-01, bottle no. 8852.5): Mantle long and 

m oderately thin, w ith large, w idely spaced chromatophores on the dorsal and
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ventral sides; paddle-shaped fins very short w ith respect to DML (FL=1/9ML); 

head is square with four large dorsal chrom atophores, 2 smaller ones at 

posterior end of dorsal-lateral head; eyes are anterior on the head, ED approx. H 

HL; tentacles longer than arm s, suckers begin half way up in one series, then 2, 

then 4, then many; distal tip of tentacle is sucker bud w ith 4+ rows of suckers; 

arm  formula is 2>3>4>1, Arm 1 & 4 with only one sucker, arm  3 w ith 1 sucker 

plus sucker buds.

26.0mm DML (station-haul unknow n, bottle no. 6): Mantle long and 

m oderately thin with large, w idely spaced chrom atophores; fins heart shaped, 

F L = l/3  ML; eyes anterior, bu t m ore lateral than in sm aller specimens; head 

squarish w ith four dorsal chrom atophores, and two additional smaller 

chrom atophores at base of head; arm  formula is 2> 3> 4»1  with arm  suckers in 2 

rows on stalks; sw im m ing keel developing on fourth arm; tentacle long and thin, 

suckers start 1 /3  way up stalk in 1 series, then 2 series, then many; very small 

suckers on stalk; change from m any, very small suckers to four rows of large 

suckers at distal end; three columns of 4-5 sessile suckers at the end of the 

tentacle, sw im m ing keel form ing at end of tentacle; digestive gland at the 

posterior mantle cavity.

43.2mm DML (station-haul 38-14, bottle no. 4684): Mantle long and 

relatively thin; chrom atophores on m antle are large and widely dispersed,
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sm aller m ore densely packed chrom atophores have developed betw een larger 

chrom atophores; head square w ith m any chrom atophores on dorsal and ventral 

sides, 4+2 ''original" arrangem ent still recognizable; eyes large, equal to head 

length, lateral; arm  formula 2>3>4>1,1st arm  has grow n considerably; 

sw im m ing keel present on all arms, arm  suckers large, stalked, w ith trabeculae 

at base of arms 1-3; tentacle long and thin with small chrom atophores along 

ventral midline; suckers tiny along stalk, at distal end change suddenly to four 

rows of larger suckers which are small on the ventral edge (inside) getting 

gradually larger tow ards the dorsal edge (outside); 4 sessile suckers at very 

distal end; digestive gland is near center of mantle cavity.

M ultidim ensional Scaling (Fig. 22a,b)

The optimal configuration for the daytime analysis was found in two 

dimensions. All morphological characters, except the NL, described the 

variability along the first axis (range: FunW-A = -.743 to FL = -.952); the 

rem aining station data (depth latitude, longitude, and salinity), described the 

second axis, but the correlation was not very strong (either + /-  .487 for each 

param eter). The daytim e configuration was arch-shaped, but w ithin this arch, 

three size clusters could be distinguished.
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Figure 22. M ultidim ensional scaling analysis optim al configuration for 

Brachioteuthis sp. 3. Each letter represents one specimen. Axes described as 

follows, characters listed in order of importance. A) Day. Axis 1: morphological 

data, except NL. Axis 2: depth, latitude, longitude, salinity, tem perature (very 

low correlation). B) Night. Axis Irm orphological characters, latitude, longitude, 

salinity, tem perature. Axis 2: depth.



DIMENSION 2

e  b
qno k ; j T 2 4 2 X U 4 g 0 2 I J \

/ D 2 \ l p -  l e i  ZQ M 22KL
/  2 \ \  ) { y  x y 2 A/  □□ 2 )

0D3 // E /□ 0 22032  /
I qdo 1 D o oo/

X . □□□□OO V

-1 0
DIMENSION 1

1

DIMENSION 2

DIMENSION 1



82

The optim al nighttim e configuration was also found in two dimensions. 

The stress of the final configuration was .067 and the Shepard diagram  was 

stra ig h t The variability on the first axis was prim arily described by the station 

data (latitude = -.873, longitude = .848, salinity = .848, tem perature = .848), 

although all the morphological data was also slightly associated with the first 

axis (range: fourth arm  -.582 to FunW -P = -.727). The variability on the second 

axis was associated with depth (.750). Two very distinct groups are formed 

based prim arily on the station data.

Brachioteuthis sp. 4 (Fig. 23)

Depth and Areal Distributions

Depth distribution of Brachioteuthis sp. 4 was alm ost continuous (Fig. 24a); 

several specimens were present at m ost depth horizons; the greatest 

concentration of specimens was from 0-200m. Specimens also were spread 

throughout the w ater column at night, with groups at 0-100m, 200-300m, and 

400-500m.

W hen specimens are sorted by DML (Fig. 24b,c) the day captures show 

that m ost captures are m ade in the upper 100m, but there are exceptions. These 

exceptions do not follow any size-specific pattern. N ight captures show  a 

broader range of depths of capture over all DML; two of the largest specimens 

were taken from 0-500m hauls.
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Figure 23. Illustration of 9.6 mm DML Brachioteuthis sp. 4 (Station-haul:80-21, 

bottle no. 8318). Dorsal and ventral view.
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Figure 24. Depth distribution of Brachioteuthis sp. 4. a) N um ber of specimen per 

haul at each depth  horizon during  day and night b)day time depth  of capture 

plotted against DML c)night time depth  of capture plotted against DML. Net 

opened at triangle and closed at horizontal line. Each triangle/line combination 

represents one collected specimen. Note: Bottom depth is illustrated for O-lOOOm 

depth  horizon collected by m alfunctioning opening/closing net.
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A few specimens of Brachioteuthis sp. 4 were captured in spring 1980 between 33- 

43° N  (Fig. 25a). Most of the captures occurred betw een 35-36° W, instead of 

around 30° W w here m ost of the hauls were made. D epth of capture for B. sp. 4 

w as more variable than for B. sp. 3; m ost captures were recorded in the upper 

200m, bu t several were from the m iddle ranges, 300-500m. H auls of 500m or less 

in the 33-43° w indow  were taken prim arily in the Sargasso Sea water mass. As 

discussed previously, the waters between 40-43° N are transitional between 

Sargasso Sea and W arm Tem perate w ater masses. Hauls a t depths >500m were 

from Antarctic polar waters.

Only four specimens were caught during the autum n 1981 cruise (Fig. 

25b). All of them  were collected north of 49° N, along the 30° W longitude line. 

All were caught in the upper 200m, in W arm Tem perate W aters (Van der Spoel 

and M eerding 1983). No specimens were caught during the w inter 1982 cruise 

(Fig. 25c).

M ost specimens of B.sp. 4 were caught during the sum m er 1983 cruise 

(Fig. 25d). All captures were recorded between 39-45° N  and 29-36° W, m ost in 

the upper 200m of water. This location and depth data places the specimens 

from  the upper 75m in Tem perate water, and the 75-200m specimens in N orth 

Atlantic Central W ater (Van der Spoel 1985).
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Figure 25. Areal distribution of Brachioteuthis sp. 4. a) Spring 1980 b) A utum n 

1981 c) W inter 1982 d) Spring/Sum m er 1983. Center of the triangle m arks the 

collection point. O verlapping triangles were combined and the num ber of 

specim ens were added. N orth - South and East - West depth distributions of 

Brachioteuthis sp. 4. H auls that contained cephalopods at each latitude and 

longitude are represented. M ultiple specimen m ay have been caught in each 

depth horizon e)Spring 1980 f) A utum n 1981 g) W inter 1982 h)

Spring/Sum m er 1983
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M orphom etric data

Brachioteuthis sp. 4 had a very large num ber of specimens between the size 

of 3-48mm DML. Specimens were well distributed over the size range. The lack 

of size gaps enabled solid interpretations of data. In general, m ost grow th 

trajectories were either linear or exponential; only one inflection point was seen 

in any of the graphs of characteristics plotted against DML. This inflection point 

occurred at or about 20mm DML, and is the point at which the size of several 

m easured characteristics began to increase rapidly with increasing DML.

The arm and tentacle length m easurem ents (Fig. 26a) show a change in the 

slope of the line at approxim ately 20mm DML. As expected, at any given DML, 

the tentacle length is longer than the fourth arm  length. It is interesting that the 

TL and arm  length appear to have the same pattern of changes with increasing 

DML, because tentacle lengths were expected to be more variable due to their 

elasticity.

The fin measurements (Fig. 26b) show  a pattern similar to the arm s and 

tentacles, with an inflection point seen at about 20mm DML. The fin length is 

just slightly larger than the fin w idth (although there is considerable variability), 

and the two m easurem ents appear to change similarly with increasing DML.
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Figure 26. M orphom etric analysis of Brachioteuthis sp. 4. a) arm  and tentacle 

length b) fin dimensions c) head m aesurem ents d) eye diam eter e) mantle 

opening w idth.
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Head and eye measurements (Fig. 26c,d) indicate that the head length is 

usually larger than the w idth, and the eye diam eter is generally smaller than 

either head m easurem ent A t about 20-22mm DML, an inflection point in the 

eye diam eter can be found; head length and w idth appear to increase linearly, 

w ith no leveling off evident.

The grow th trajectory for the mantle opening zoidth (Fig. 26e) shows an 

increasing rate of grow th w ith increasing DML, w ith an inflection point at 

approxim ately 20-22mm DML.

Qntogenic Changes in External M orphology

14.6mm DML (station-haul 16-02, bottle No. 1297): Mantle long and thin, 

tapered at posterior end, gladius protrudes as a sharp point; anterior end also 

tapered to point on dorsal side; fins trapezoidal, very short compared to DML; 

chrom atophores on dorsal and ventral m antle very small, close together; head is 

square with four large chrom atophores on central dorsum , two m edium  dorsal 

posterior, close to neck; eyes anterior, ED=1/2HL; arm formula 2>3>4>1; arm 

suckers are large, especially arm s 2 & 3; tentacles stout, m uch longer than arms. 

Tentacle suckers start lA w ay up in 2 series, then 4, then m any (>5), turning into 

sucker bud area w ith four tiny series on dorsal edge; distal end of tentacle has 3 

rows of suckers, w ith ventral edge suckers much larger than dorsal edge 

suckers. Beginning of club portion of tentacle difficult to discern.
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23.4mm DML (station-haul 21-03, bottle no. 1401): m antle very long and 

thin, anterior not pointed as before, chrom atophore pattern not discemable; fins 

short com pared to mantle (F L = l/4 -l/3M L ); gills very long and thin; head 

squarish; neck thick; arm  formula 2>3>4>1, keel developing on all arms, suckers 

on arm  1-3 very large and on stalks, arm  4 suckers smaller and not noticeably on 

stalks; tentacles m oderately longer than arms, stout; tentacle suckers start Vi way 

up  stalk in 1 series, then 2, then 4 then num erous, then suckers too tiny to count 

columns; four series of suckers on distal end, small suckers on inner edge, large 

suckers on outer edge.

37.3mm DML (station-haul 17-01, bottle no. 749): Mantle long and thin, 

fins are m uch longer com pared to m antle (FL=1/2ML); small, dense 

chrom atophores all over body, with larger ones interspersed at broad intervals; 

head  squarish w ith four large chrom atophores on central dorsum  and two 

sm aller chrom atophores at dorsal base of head; eyes lateral, ED approx. = to HL, 

reflective tissue on ventral eyeball; arm  formula 2>3>4>1 with sw im m ing keel 

along length, arm  4 suckers are large like arm 1-3, arms 1-3 with trabeculae 

supporting  m em brane at base of stalk; tentacle stout, only slightly longer than 

3rd arm; tentacle suckers start Vi w ay up  stalk in 1 column, then 2, then 4 (2 

colum ns of 2 suckers), then many; sudden change at distal end, suckers 2-3x 

larger; at the terminal distal end, there are 3 distinct series of 5 suckers each.
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M ultidim ensional Scaling (Fig. 27a,b)

The optim al MDS configuration for daytim e captures was three 

dim ensional (stress = .159, Shepard diagram  = straight); analysis of night 

captures was best interpreted in three dimensions (stress = .074, Shepard 

diagram  = straight).

M ost of the variability along the first axis of the day analysis is described 

by the latitude (-.857) and longitude (.781) of sam ple location, although CL (- 

.715), ED (-.656), HW  (-.617), and HL (-.623) were also im portant descriptors. 

The variability of the second axis is best described by the rem aining 

m orphom etric data (range: MOW = .532 to FunW-A = .889), w ith the notable 

exception of the NL (-.052). The third axis was described again by the 

m orphology and the station data combined, but with a m uch lower range of 

correlation values (MOW = .070 to HW = .590). Several groups of specimens are 

evident in the resulting optimal configuration; the groups are based prim arily 

on differences in areal distribution.

The night time configuration is very different from the day time 

configuration because the axes are very distinct. The first axis is described by 

the m orphological characteristics except the NL (-.587) (range: CL = -.692 to FL = 

-.844), the second axis by latitude (-.781) and longitude (.859), and the third axis 

by salinity (-.740), tem perature (-.784) and depth (.839). As in the daytime, the
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Figure 27. M ultidimensional scaling analysis optim al configuration for 

Brachioteuthis sp. 4. Each letter represents one specimen. Axes described as 

follows, characters listed in order of importance. a)Day. Axis lrlatitude, 

longitude, CL, ED,HW, HL. Axis 2: salinity, DML,FL,FW, 4AL, TenLen, NW, 

FBW. b) Night. Axis 1: morphological characters, except NL. Axis 2 latitude, 

longitude. Axis 3: salinity, tem perature, depth.
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nighttim e optimal configuration show s four groups of specimens, b u t this time 

the groups are based on size differences.



DISCUSSION

A paralarva is defined a s ," a cephalopod of the first post-hatching grow th 

stage that is pelagic in near-surface waters during  the day and that has a 

distinctively different m ode of life from that of older conspecific individuals” 

(Young and H arm an 1988, p.202). According to the authors, "mode of life” can 

be inferred from "(1) major differences between the daytim e habitat of the 

paralarva and that of older individuals a n d /o r  (2) distinct early discontinuities 

in grow th patterns" (p. 202). The term was developed to be applied to oceanic 

Teuthoidea and Octopoda, because m any species within these orders are found 

in the plankton early in life and in the deeper pelagic waters later in the life 

cycle.

W hereas this d ay /n ig h t planktonic/pelagic criterion is valuable for 

oceanic squids and octopods, it does not consistently apply to neritic or benthic 

species. Those cephalopods that do not follow this distributional pattern, 

including the entire order Sepioidea, challenge the usefulness of "paralarva" as a 

unifying term inology for the Cephalopoda. This flaw in the criterion was 

acknowledged by Young and H arm an (1988). They recom m ended careful 

m orphological examination to determ ine if developm ental discontinuities exist, 

as being adequate to describe the end of a paralarval stage if planktonic /  

pelagic data are not available or applicable; however, this simple

94
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recom m endation m akes the concept of a "paralarva" subject to the same debates 

as those that surround "larva". Calling morphological discontinuities in grow th 

trajectories a m etam orphosis has been a subject of m uch debate. These 

discontinuities can be used to suggest possible ecological changes, bu t they are 

not necessarily indicators of a lifestyle change. The inclusion of ecological 

elements that makes the definition of a paralarva unique; if the ecological data 

are not available or included, the usefulness of the definition is dim inished 

considerably.

Several recent studies on the age and grow th of paralarvae (Bigelow 1992, 

Vidal 1994) have used statolith or character m easurements to describe ontogenic 

changes or discontinuities. Vidal (1994) for example, examined the changes in 

m orphology of the arms, tentacles, fins, head and eyes over the early life history 

of Illex argentinus, a commercially im portant, neritic species of the family 

Om m astrephidae. As previously discussed (see introduction), w hen 

om m astrephid squids hatch, the tentacles are fused into a proboscis. This 

"rhynchcoteuthion stage", as it is commonly known, is based solely on the fusion 

of the tentacles. The end of the paralarval phase has been expected to end at the 

separation of the proboscis into two tentacles. Vidal (1994) exam ined this event 

in detail and found, "No other morphological change, besides the proboscis 

division, takes place at the end of the rhynchoteuthion stage". She then 

suggested the paralarval stage of developm ent in the Om m astrephidae ends at
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the first discontinuity in the grow th of the arm s, suckers and fins (ca. 14mm 

DML) (Vidal 1994). This suggestion is contrary to the formal definition of a 

paralarva in that two critical com ponents of the definition of a paralarva are 

missing: 1) differences in day-night habitat were not addressed; and 2) changes 

in m orphology were not related to vertical distributions as required by the 

definition; instead they were attributed to changes in ecology (food type, 

survival ability, w ater masses). Equally im portant, actual ecological data that 

illustrated the proposed link were not analyzed.

Defining the end of the paralarval stage according to Young and H arm an 

1988, ideally w ould identify a change in niche from the planktonic to a m id- or 

deep-w ater m ode of life, then a concomitant discontinuity in the grow th 

trajectory. The onset of diel vertical m igration is used as an indicator of this 

ecological change; however, areal distributions are also examined. If ecological 

data are unavailable, incomplete or do not show a change in d a y /n ig h t 

distributions, morphological data are used to define the paralarva phase of life, 

as allowed by the definition.

Family Chtenopterygidae 

Chtenopteryx sicula

The geographic distribution of adult C. sicula generally is described as 

w orldw ide, bu t captures are m ost frequently recorded from the M editerranean,
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Pacific (Sweeney et al. 1992). The AMNAPE expedition sam pled well w ithin 

those boundaries, and the presence of newly-hatched and juvenile C  sicula is 

expected. No recent revision of the family exists.

The distinct difference betw een the frequent occurrence of C. sicula 

betw een 49-23°N in the sp rin g / sum m er and their virtual disappearance north of 

37°N in the au tum n /w in ter suggests that specimens are spaw ning, hatching, and 

grow ing during the warm  m onths or the population moves south  during  the 

colder m onths (Fig. 5a-d). W inter captures m ay be biased low because of the 

poor collecting trip, but the autum n data support this trend. The num ber of 

specim ens peaked in the sp ring /sum m er and was at a low point during  the 

au tum n/w in ter.

Roper and Young (1975) provided vertical distributional data (open net) 

that show  adult C. sicula capture depths for larger specimens ranging from 0- 

850m during the day (38-62mm DML) and 100-200m at n ight (20-83mm DML). 

Because these were open net data, they give only a very broad indication of the 

depth  horizons occupied by the species. Nevertheless, they classify the adult 

Chtenopterygidae as First O rder Diel Vertical M igrators, m eaning that they 

occur at m oderate depths during the day (600-800m), bu t move to the surface 

waters (0-150m) at night. Young (1978) described open net captures from off
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Hawaii at 675-800m during the daytim e and 25-260 during the night, w ith 80% 

from 50-150m.

W hen the AMNAPE capture records are ordered according to increasing 

m antle length, an interesting pattern emerges, one of gradual ontogenic descent 

in the day time and a concentration of all sizes in the upper waters during  the 

night. This finding contrasts w ith Roper and Young (1975), who indicate in their 

section on Ontogenetic Descent (p.2) that in m ost species of cephalopods, the 

larvae[sic] live in near surface w aters and at a particular size abruptly descend 

into the adult habitat. In fact, the idea of a radical change from m igrating to non- 

m igrating behavior does not seem reasonable in cephalopods as a whole, as it 

implies that the instinct to migrate is som ehow suppressed and then turned on at 

a particular size or under particular ecological conditions. A m ore likely scenario 

is that the newly-hatched specimens conduct micro-vertical m igrations in the 

upper 100m of the water column, and as the organisms grow, they descend to 

deeper and deeper depths during the daytim e hours. The sam pling regime was 

not detailed enough to determ ine if the micro- vertical migrations occur in the 

upper 100m, bu t the gradual ontogenetic descent thereafter is evident in the 

Chtenopterygidae (Fig.4b,c). Therefore, for C. sicula several changes in ecology 

occur during  the life history. The beginning of the ontogenetic descent occurs 

w hen the specimens of approxim ately 7mmDML first descend deeper than the 

upper 100m. Specimens of 10mm DML are collected in the 200-300m depth
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horizon; and finally at 15mm from 400-500m. The squids finally begin to 

undergo the full or m axim um  vertical m igration known for the adu lt of the 

species (as described by Roper and  Young, 1975) at approxim ately 18mm DML.

The developmental pattern of C. sicula generally is characterized by linear 

grow th over the 2-25mm DML range examined; however, two im portant 

exceptions exist. A change occurs in the relative growth rate of the fin length and 

the m antle opening w idth at approxim ately 10-12mm DML. The slope of the 

trajectory in the fin length after 12mm DML is almost double the slope before 

12mm DML; conversely, the m antle opening w idth appears to grow  quickly 

before 10mm DML, then to level off. Both the fins and the m antle opening are 

thought to be im portant in the locomotion of young cephalopods. Newly- 

hatched specimens are assum ed to move by the same m ethods as the adults, 

although the actual mechanics of newly-hatched locomotion are unknown. It is 

interesting that the funnel m easurem ents were linear over the entire range of 

DML (Appendix A). Lack of change in the growth trajectory of the funnel 

indicates that the funnel does not undergo any radical change in dimensions that 

m ay m ark a beginning of adu lt style function, supporting the hypothesis that the 

m echanism  of locomotion is the sam e in adult and newly-hatched specimens.

The change in fin and m antle grow th trajectories in the AMNAPE 

collection occurs almost sim ultaneously with the first daytim e capture of C.
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sicula deeper than the upper 200m (10.2mm DML). N ighttim e captures at depths 

greater than 200m begin at approxim ately 5mm DML. This contradiction 

indicates that even the sm allest specimens have the ability to move into the 

deeper w aters, bu t they have no t yet assum ed the adult behavior of ascending to 

the surface w aters during the night, and descending during the day. The m odes 

of life before and after 10-12 m m  DML are distinctly different and the difference 

is m arked sim ultaneously by a change in growth trajectories. According to 

Young and H arm an’s definition, the paralarval phase of the life cycle may be 

said to end at approxim ately 10-12mm DML in C. sicula, which is the size at 

which the m orphology and ecology also change. The presence of a paralarval 

stage in C. sicula was predicted by Young and H arm an (1988).

Family M astigoteuthidae

The geographic distribution of adults in the family M astigoteuthidae is 

w orldw ide, from tropical to boreal oceanic waters (Sweeney, et al. 1992). 

M astigoteuthids are common inhabitants of the deep sea, bu t only rarely are 

m ore than 1-2 specimens taken at any one time (Young 1972). Thus, it is not 

surprising to find M astigoteuthids in the AMNAPE collection bu t it is unusual to 

collect so m any specimens w ith such a large size range.

The M astigoteuthids are know n to be deep water, open ocean squids. 

Nesis (1987) stated that the family M astigoteuthidae contains bathypelagic and
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meso-pelagic squids, w ith som e benthic species. Adults of m ost species appear 

to be concentrated in the 500-1000m range during the day. This broad deepest- 

depth  distribution is som ew hat artificial, as sam pling regimes frequently change 

from 100m discrete intervals of depth  to 500m intervals at 500m depth , so the 

actual depth  horizon of interest can not be firmly established. Some species m ay 

ascend to shallow er depths at n ight (Roper and Young, 1975), while others are 

expected to stay in the deep waters throughout their diurnal cycle. Closing net, 

vertical distribution data are available for adult M. magna (NW Atlantic: Lu and 

Roper, 1979) M. schmidti (=M .) (NE Atlantic: Clarke and Lu 1975, Lu and Clarke 

1975) M. pyrodes (California: Roper and Young 1975) M. hjorti (Bermuda: Roper 

and Young 1975) and now  for young M. agassizii and M. magna (Central Atlantic: 

this report). All reports, except for the AMNAPE specimens, have been based on 

very lim ited data sets.

M. agassizii

According to Nesis (1987), adu lt Mastigoteuthis agassizii are boreal and 

northern subtropical Atlantic, w ith northw ard extensions to the area south of 

Iceland. Geographic distribution of young and juvenile M. agassizii from the 

AMNAPE collection show s a relatively low frequency of capture and a tendency 

to be caught in the upper latitudes (>40°N) (Fig.l4a-d). This finding contrasts 

w ith that of Lu and Clarke (1975a) in which the highest capture rate of M.
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agassizii was from the lowest latitude (11°N) of their four-cruise study; at higher 

latitudes, the num ber of specimens declined drastically. Interestingly, all 

captures were m ade in the waters closest to the Azores, possibly indicating that 

oceanographic processes are concentrating M. agassizii around the islands, as 

Reid et al (1991) show ed for Hawaii. Little variation occurs in the seasonal 

distributions— the same areas of occurrence are found during each of the four 

cruises. This pattern suggests that the newly-hatched specimens do not undergo 

any large scale geographic m igrations. This prediction is not surprising, based 

on the relatively bulbous body shape and gelatinous composition of the m antle 

of M. agassizii. Individuals of this species have not been considered to be strong 

swimmers.

The AMNAPE collection shows that M. agassizii specimens as small as 

6.2mm DML are found in the 500-1000m depth horizon during both day and 

night, im plying relatively newly-hatched and adult specimens share similar 

habitats. Lu and Clarke (1975) found that during the day, all specimens 

occurred deeper than 500m; during the night they found four specimens in the 

50-100m depth  horizon. They interpreted this as a diel spreading, bu t in light of 

the results of this study, the four specimens likely were "contaminants" from 

deeper hauls. Mastigoteuthis agassizii eggs, egg deposition, and hatching are 

undescribed at this time, bu t finding such small specimens at great depths 

suggests that hatching may occur in deep water. An alternative explanation is
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that eggs hatch in the near-surface plankton and the newly-hatched young 

rapidly  descend to the 500-1000m horizon. This scenario is unlikely because of 

the trem endous distance that w ould have to be traversed, and because the adults 

are not known to be strong swim m ers. Lu and Clarke (1975a) describe a second 

trend that is not apparent in the AMNAPE data. As the specimens got larger, 

the upper lim it of their depth  horizon got deeper. In other w ords, as they grew  

(>40mm DML), they show ed signs of an ontogenic descent into deeper waters.

The developm ental pattern of M. agassizii is characterized by linear 

grow th over the 6.2-62.5mm DML with two notable exceptions: the eye and  head 

m easurem ents have inflection points at approxim ately 11-12 mm DML. These 

inflection points do not coincide with changes in the depth of capture, which is 

500-1000m over the 6.2-62.5mm size range regardless of the size of the specimen. 

Because no change develops in the depth of occurrence betw een the smallest and 

largest specimens, the end point of the paralarval stage of life can not be 

delineated based on ecology alone. In this situation, Young and H arm an (1988) 

recom m end using discontinuities in morphological grow th trajectories as an 

indicator of the end of the paralarval stage. Thus, according to the definition M. 

agassizii does have a paralarval stage: those specimens < 12mm DML; but, since 

there is no obvious coincidental change in diel vertical distribution between the 

very small and the very large, the need for distinguishing betw een a paralarva



104

and non-paralarva is diminished. In fact, Young and H arm on (1988) predicted 

that M. schmidti (synonym of M. agassizii) w ould not have a paralarva.

The station data used in the MDS did not provide a good indication of 

w hat ecological param eters w ould be more applicable to use to m ark the end of 

the paralarval phase. Depth describes the variability about the first axis for both 

day and night. In other groups, this m ight indicate considerable variability in 

depth  of capture occurs over the size range during the daytim e and nighttime. 

But, based on the depth vs. DML graph (Fig. 13b,c), it seems to be an artifact of 

the use of an average depth instead of the actual depth of capture. Salinity and 

tem perature did not describe the variability of the optimal configuration at all. 

Predictions for im portant ecological param eters are then best based on 

m orphological observations. The fins of the newly-hatched M. agassizii are very 

large w ith respect to the overall DML. This observation m ay indicate that there 

is some change in the animal with respect to its ability to move, or position itself 

to attack prey; it could be a change unrelated to the currently know  m ethod of 

locomotion in squids. Secondly, the head dimensions are the only 

m easurem ents to change in their grow th trajectories. This m ay indicate a change 

in visual acuity and possibly a new  diet. M uch more needs to be learned about 

these deep-ocean creatures before inferences can be m ade about the ecological 

specializations.
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Id io te u th is  m agna

Idioteuthis magna occurs in the tropical and northern  subtropical Atlantic 

and Indian Ocean and Tasman Sea (Nesis 1987). Depth distribution data have 

only been described once from few specimens, indicating that during the night, 

adult specimens are found in the 200-500m range; whereas daytim e captures are 

from 700-800, and O-lOOOm (Lu and Roper 1975).

The 1980 and 1983 areal distribution (Fig. 9a-d) shows several samples 

w ith m oderate to large num bers of specimens, bu t in 1981 and 1982, virtually no 

specimens were caught. These seasonal differences suggest that the I. magna 

population migrates out of the area in the fall/w in ter and back into the NW 

Azores area during the spring/sum m er. This presence /  absence pattern in 7. 

magna is very distinct from that of M. agassizii, which is found in the same 

locality throughout the seasons.

Patterns in the depth distribution of newly-hatched 7. magna are not as 

sim ple as those of M. agassizii. Specimens are collected during the day from a 

variety of depths; although m ost are found in the upper 200m, four were found 

below 200m, two of which were from the 500-1000m depth  zone. At night, the 

sm allest specimens (<7mm DML) were found in the upper 100m, with a gradual 

increase in depth  of capture with increasing DML. This nighttime pattern is
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sim ilar to C. sicula's daytim e distribution, and again lends support to the idea 

that vertical m igration is a behavior that m ay be m anifested in the smallest 

specim ens of some species. The d ay /n ig h t distribution patterns described are 

not consistent w ith any patterns described by Roper and Young (1975). A Diel 

Vertical Spreader as defined by Roper and Young (1975 p. 39) as when, "the 

night time vertical distribution... not only encompasses the daytim e levels, bu t 

spreads well beyond the daytim e limits." In the case of I. magna, the daytime 

vertical distribution encompasses the nighttime levels, and spreads well beyond 

them , just the reverse of the aforem entioned definition. For this reason, I w ould 

propose calling them Reverse Diel Vertical Spreaders, even at the sm allest of 

sizes.

The sm allest of specimens appear to be spread out over the entire water 

colum n during the daytime, w ith the deepest specimens caught at about DML = 

8-9mm. Although the data are not as convincing as for C. sicula, the inflection 

point does appear to coincide w ith the first records of night time captures at 

>100m (DML = 7.2mm). The scatter of depths found during the daytim e is not 

found at night; instead, the specimens become very aggregated in the upper 

200m, with those over 7.2mm being the only representatives of the 100-200m 

horizon.
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Changes in most of the characters m easured in I. magna can be categorized 

as sim ple and linear. The slope of m ost trajectories is relatively small (exception 

= AL), indicating that characters grow  slowly in relation to the overall body 

length (Appendix A). The exceptions to the linear developm ental pattern (Fig.

10) are once again the MOW, and the fin dimensions which are better described 

as logarithm ic w ith an inflection point a t approxim ately 7mm DML. MOW 

m easurem ents are variable, which is expected based on the plastic nature of the 

mantle.

The morphological inflection point at 7mm corresponds well with the 

nighttim e descent. A DML of 7mm does not appear to have any special 

significance for the daytim e captures, although specimens less that 8mm were 

always caught in the upper 500m. According to the definition, I. magna does 

have a paralarva: those specimens <7mm DM; however, the im portant ecological 

criterion was not the diel difference in vertical distribution as expected.

The station data used in the MDS did not provide a good suggestion of 

w hat ecological param eters w ould be m ore applicable than depth of capture to 

m ark the end of the paralarval phase. A lthough the station data, with the 

exception of average depth of capture, do describe the variability w ithin the day, 

the groups of specimens are based on areal distribution. Com parisons to Fig. 9 

show  that this result is an artifact of the sam ple collection locations.
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The nighttim e analysis show ed several groups of specimens arranged in a 

circular pattern. Because the axes shared characters (e.g. the FL explained 

variability around the 1st and 2nd axes) the circular pattern that prevailed was 

m ost likely an artifact of the analysis. Salinity w as the only station param eter 

that explained the variability of the data set.

Family Brachioteuthidae

The geographic distribution of the family Brachioteuthidae is w orldw ide 

(North and South Atlantic, the M editerranean, the Indian Ocean, the Southwest 

Pacific, and the Southeast Pacific (based on B. riisei, Clarke 1966) between 60°N 

and 60°S (Pfeffer 1912).

The depth  distribution of brachioteuthids is not well known, although 

species are suspected to undergo strong vertical migrations. Roper and Young 

(1975) presented depth distribution data for 6 large (38-42mm DML) specimens 

from Hawaii and show they are found in deep waters (830-1000m) during the 

day, and in the shallow w aters at night (50-200m). No data for juvenile or newly- 

hatched specimens were available. Clarke (1966) cited evidence that adult 

specimens have been captured in open nets from the surface dow n to 3000m.

Brachioteuthis sp. 3
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Juvenile and young specim ens of Brachioteuthis sp. 3 were caught only 

during  the 1981 and 1983 seasons (Fig. 20a,b). All bu t 10 specim ens were caught 

north of 45°N and m ost specim ens were caught as part of a large aggregation. 

The presence of so m any specimens of approxim ately the sam e size is a strong 

indication that the species aggregates in schools as juveniles. Since the specimens 

w ere of an interm ediate size, they probably were not recently hatched. The vast 

seasonal differences at the same sam pling locations may indicate that the schools 

m ake large scale seasonal migrations. This would not be surprising, as the body 

shape and m usculature are consistent with other squids thought to undergo vast 

geographical m igrations (for exam ple, Illex illecebrosus and Todarodes saggitatus).

The interpretation of the daytim e distribution of Brachioteuthis sp. 3 is 

greatly dim inished because the largest specimens were caught in m alfunctioning 

opening and closing nets. But, the fact that only the larger (>30mm DML) 

specim ens were caught in the m alfunctioning nets is in itself interesting and 

other useful information can be gleaned from the graphs. At small sizes, the 

specim ens are clustered in the upper depth  horizons during both the day and 

night. N o specimen smaller than 30mm DML was caught deeper than 200m 

during  the day. In fact, in the daytim e, alm ost all specimens sm aller than 30mm 

DML were collected in the upper 100m of the water column. This pattern of 

distribution is similar to that found in C. sicula. Curiously, the nighttim e data 

shows a vertical spreading of the smallest specimens dow n from the upper 100
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m eters to the 200-300m depth horizon. This fact shows again that even at the 

sm allest sizes, the specimens are likely m oving under their ow n pow er and 

exhibit a tendency to m igrate vertically. Furtherm ore, specimens larger than 

30mm DML are found in the upper 300m during the night. This finding is 

consistent w ith w hat has been suggested in the literature, bu t w hether they have 

m oved from m uch deeper depths and how  the distribution changes w ith 

ontogeny rem ains to be examined.

In contrast to the Cthenopterigydae and M astigoteuthidae, the 

developm ental pattern of Brachioteuthis sp. 3 cannot be easily categorized (Fig.

21). Each morphological character has a different growth trajectory; however, 

two different inflection points are repeatedly seen in the trajectories. The first is 

at approxim ately 15-18mm DML; the second at 28-30mm DML. N o change in 

the depth  of capture co-occurs w ith the first inflection point, and no accurate 

correlations w ith depth of capture can be m ade at the second inflection point due 

to the broken opening/closing net mechanisms. Based on the grow th 

trajectories, specimens larger than 30mm DML are going through a time of 

decreased relative fin growth, bu t an increase in the trajectory of every other 

character.

The fact that the other species of this family do show signs of vertical 

m igration w ould suggest that m em bers of this family do vertically migrate.
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U nder the circumstances, the end of the paralarval stage of developm ent can not 

be determ ined based on the ecology proposed by Young and H arm an (1988). 

Better collection data of larger squids could potentially be pooled w ith these 

data to find the answer.

The identification of the end of the paralarval stage in Brachioteuthis sp. 3 

using m orphology alone presents further problems. The grow th trajectories 

change twice, at 15-18mm DML and at 28-30mm DML w ith no discernable 

change in ecology. If the depth distribution were known, it could give an 

indication of which to choose. This dilemma shows the weakness in using only 

morphology.

The station data used in the MDS did not provide a good suggestion of 

w hat ecological param eters w ould be more applicable than depth  of capture to 

use to m ark the end of the paralarval phase. The daytim e analysis d id  not give 

any new  information, show ing only that there was a very large variability in the 

size and the shape of the organism  captured; station data described the second 

axis, bu t the correlation values were low. Interesting, alm ost all of the 

param eters used in the analysis were im portant in describing the first axis; only 

average depth of capture was assigned to the second axis. The inclusion of 

depth  on the nighttim e configuration bu t not the daytim e supports that there 

was some vertical spreading. The arc-shape of the optimal configuration m ay be
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the result of interactions betw een the variables that described the first axis. The 

configuration can be broken into three sections, based bu t the sections are based 

on size and station data together, which m akes predictions difficult.

Brachioteuthis sp. 4

The geographic distribution of Brachioteuthis sp. 4 (Fig. 25a-d) is vastly 

different from that of Brachioteuthis sp. 3. Brachioteuthis sp. 4 was caught in all but 

the w inter seasons, when the w eather precluded an extensive sam pling regime.

In contrast to Brachioteuthis sp. 3, most Brachioteuthis sp. 4 specimens were caught 

singly or in small groups, in the waters around the Azores islands, generally 

betw een 43-33°N. The change in capture records from spring to sum m er to 

autum n implies that the population gradually moves from the Southwest side of 

the island complex to the north side, then due north. The w inter catch records 

are hard  to interpret because of the bad w eather conditions; however, the fact 

that no Brachioteuthis sp. 3 or Brachioteuthis sp. 4 were caught during the w inter 

m ay im ply that brachioteuthids move out of the study  area in the cold months.

Depth distribution data for Brachioteuthis sp. 4 were also very different 

from those of Brachioteuthis sp. 3. Most of the specimens caught during the day 

(7.1-36.7mm DML) were found in the upper 100 m of water. At night, specimens
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of all sizes spread ou t over the 0-500m depth  horizon and, interestingly, some of 

the sm allest specimens w ent to the deepest depths. According to the 

categorization of Roper and Young (1975), B. sp. 3 should be considered Diel 

Vertical Spreaders, m eaning that the nighttim e vertical distribution encompasses 

and m ay spread beyond the daytim e vertical distribution.

The growth trajectory of Brachioteuthis sp. 4 is exponential over the 3.5- 

45.3mm DML size range. All m easurem ents follow this trajectory except for the 

funnel length and w idth, eye diam eter, and head length, which are linear. At 

each inflection point (10-15mm and 20mm DML), the slope of the line changes: 

before the inflection point DML grows faster than the m easured character; after 

the inflection point the converse is true.

The first dram atic change that takes place in the life cycle is the increased 

relative growth of the tentacles length, head w idth and eye diameter. Along the 

grow th continuum , the inflection point for each of these characters occurs 

betw een 10 and 15mm DML (Fig. 26). Changes in these characters m ay indicate 

an increased ability to focus on and capture prey (see M essenger 1968 for full 

description of the adu lt Sepia attack sequence). The next combination of 

characters to change (inflection point approxim ately 20mm DML) is the fin 

length and w idth, m antle opening w idth and arm length. The change in fin 

developm ent m ay indicate a m ore active phase of life, perhaps one where prey is
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m ore actively pursued, and the escape behavior becomes better developed.

None of these morphological changes can be correlated w ith any particular 

change in the depth of capture. Specimens were spread vertically over the upper 

400-500m regardless of size. The day and night vertical distribution data 

indicate that the newly-hatched specimens already m ay be able to migrate, even 

at sizes <20mm DML (Fig. 24). Funnel m easurem ents w ithout discontinuities 

further support this hypothesis. Two of the larger daytim e specimen were 

captured between 0-1200m, b u t the suggestion that they were taken from the 

deepest depths are obscured by the presence of a larger specimen caught in the 

upper 50m. The rapid  developm ent of the arm  length at this size m ay help in 

handling prey, or it may have some effect on m aking the squid more 

hydrodynam ic.

Since the ecological data are inconclusive and both the juveniles/adults 

and paralarvae appear to inhabit the upper portion of the w ater column, even 

the "last resort" definition of a paralarva a s ," young pelagic cephalopods that 

can be sam pled quantitatively by standard  plankton nets in near surface waters, 

during  the day" (Young and H arm an 1988, p .203) cannot be used. Once again, 

the paralarval phase m ust be delineated by changes in the grow th trajectories 

alone. As in B. sp. 3, two possible sizes exist, 10-15mm DML or 20mm DML. 

W ithout good ecological data, the choice is arbitrary.
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The station data used in the MDS did not provide a good suggestion of 

w hat ecological param eters w ould be m ore applicable than depth of capture to 

use to m ark the end of the paralarval phase. The daytim e results show ed that 

species were taken over a large range of stations, and that there was very little 

variation in the average depth of capture. Conversely, the nighttim e 

configuration is described, in part, by the average depth  of capture. This 

difference suggests that the specimens m ay be clustered at one level during the 

day, bu t dispersed during the night, which is consistent with earlier data. 

A lthough the station data does not provide insight into the im portant ecological 

param eters, the fact that the head and eye m easurem ents are responsible for 

m uch of the variability during the day m ay mean that the specimens were 

grouped based on visual acuity.

Utility of the Concept of a Paralarva

Cephalopods often are characterized as having direct development; fishes 

have been similarly labeled. This characterization does not mean that there are 

no differences a t all between a new ly-hatched and an adult cephalopod. In fact, 

several morphological and ecological characters can be used to differentiate 

betw een a newly-hatched and juvenile or adu lt form. For a example, the fins of 

m ost newly-hatched cephalopods have a characteristic "paddle" shape, and are 

attached dorsally to the distal end of the mantle. Newly-hatched cephalopods 

also have species-specific chrom atophore patterns (e.g., Octopus, Brachioteuthis)
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that are substantially different from the adult form. An ecological difference, as 

Young and H arm an (1988) pointed out, is the planktonic vs. pelagic life style. 

O ther ecological differences m ay include food preferences or geographic 

distributions. These ecological changes represent a significant change in the 

m ode of life and are referred to here as niche shifts.

W hereas the 1988 definition was a positive first step tow ards a unifying 

concept describing the early life history of Teuthoid and Octopod cephalopods, 

expansion of the "paralarva" definition w ould allow the concept to be applicable 

to all cephalopods and potentially to all organisms that undergo direct 

developm ent. It w ould also rem ove the need to rely on m orphology as a 

"backup" indicator of the end of the paralarval stage.

For these reasons, I propose that the concept of a "paralarva" be simplified 

to the following, ecologically-based definition:

"a cephalopod of the first post-hatching life phase that has a distinctly 

different m ode of life from that of older, conspedfic individuals"

A "different m ode of life" is intended to include spedes whose newly- 

hatched forms m ay exhibit the potential for, but do not fully express, a 

characteristic juven ile /adu lt m ode of life (see Boletsky 1979). In these cases, the
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full expression of the juven ile /adu lt m ode of life m arks the end of the paralarval 

stage.

The life cycle of all cephalopods can be described according to this 

definition (Fig. 28). The paralarval life stage starts at hatching and ends at the 

full expression of the juven ile /adu lt niche. Two stages can be differentiated— 

Stage 1 ends at the beginning of the niche shift; Stage 2 ends and the juvenile 

stage begins at the full expression of the juvenile /a d u lt  ecology/behavior. The 

juvenile phase can also be divided into two parts: Stage 1 ends at the time w hen 

all adult characters, except m ature gonads, are present. Stage 2 ends at the onset 

of gonad m aturation. Finally, the adult phase begins at the m aturation of the 

reproductive organs.

This new  description of the life cycle relies on both morphological and 

ecological criteria, as did the original description, but it also eliminates the 

possibility of a paralarva being called a juvenile (see Young and H arm an 1988 

for discussion). It has the additional benefit of elim inating the term "subadult" 

in cephalopod terminology. The definition for subadult of Young and H arm an 

(1988) could be assum ed for the Stage 2 juvenile.

Ecological niche shifts m ay be represented by the assum ption of the 

juvenile or adult m ode of life in any of the following categories: vertical
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Figure 28. Schematic representation of the proposed description of the life cycle 

of the Class Cephalopoda.
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distribution (Young and H arm an 1988), geographical distribution, behavior 

(including bu t not limited to characteristic resting positions, banding patterns, or 

schooling (proposed by H anlon et. al 1987), and predator-prey interactions 

(including attack sequence, m anipulation of prey, escape m ethods. See 

M essenger 1978). This list m ust be augm ented as new adult ecological or 

behavioral patterns are discovered. The niche shift will m ost likely, bu t not 

necessarily, be accompanied by a change in the growth trajectories of 

morphological features. Frequent changes noted thus far are in the dimensions 

of the fins, arms, tentacles or clubs. Additional characteristics that m ight be 

im portant include sucker counts and  chrom atophore patterns.

The literature on the age and grow th of newly-hatched or paralarval 

cephalopods, regardless of the O rder discussed, can be assim ilated easily into 

the new  life history description. Octopodid paralarvae already are considered to 

have two stages (Hochburg et al. 1992). Stage 1 includes those specimens that 

occur in the upper 200-300m and that do not have any developing sucker buds. 

Stage 2 specimens are caught in deeper w ater and have sucker buds. Possibly, 

stage 1 ends at the beginning of the change from the newly-hatched niche, and 

stage 2 ends at the final assum ption of the juven ile /adu lt niche. Because the 

m orphology of the arms of the stage 1 and stage 2 octopods is overtly different, 

prey capture and m anipulation m ay be the ecological param eter of concern.
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Newly-hatched Sepiolinae provide a behavioral example of a niche-shift. 

Im m ediately after hatching, Sepiodea (Sepiola and Sepietta) burrow  in the sand 

just as the adults do (Boletzky et al 1971). How ever, the adult feeding behavior is 

not fully expressed until the organism  waits until dusk  to feed, regardless of the 

availability of food provided during the day (Boletzky et al 1971). Finally, a 

cellular m orphology example can be given from the Teuthoidea . Cross-striated 

muscles are not present in the tentacles of Sepioteuthis lessoniana specimens less 

than 2 weeks after hatching (PI). M uscular differentiation begins at 

approxim ately 3 weeks (P2) and is fully form ed by day 36 (Jl). As a consequence 

of this lack of differentiation, newly-hatched S. lessoniana have a very different 

m ethod of capturing prey. In general, adult squid capture prey with a tentacle 

"strike” and use their arm s for prey m anipulation. In contrast, S. lessoniana 

paralarvae use a burst of speed to overtake the prey, and use their arms for 

capture (W. Kier, personal communication, University of N orth Carolina at 

Chapel Hill).

According to the new  definition, the end of the paralarval stage for C. 

sicula takes place at the assum ption of the full "adult" vertical migration range 

(18mm DML). In Idioteuthis magna, the P2 stage begins when the nighttime 

specim ens are caught deeper than 100m during the night (7mm DML), but the 

end of P2 cannot be determ ined because of a lack of specimens. The paralarval
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phase of the other spedes in this study can not be defined based on the vertical 

distribution.

Finally, each of these families appears to have an easily recognizable 

m orphological m arker of the shift from a paralarva to a juvenile. The position of 

the eye can be used as an indicator in all three families, as it apparently moves 

from the anterior-m ost position on the head (paralarva) to a lateral position 

(juvenile) that extends over m ost if not all of the length of the head. In the two 

Brachioteuthis spedes examined, the internal organs move from the posterior end 

of the m antle cavity (paralarva) to the anterior (juvenile). In Chtenopteryx sicula, 

the num ber of rows of suckers on arm s 1-3 also can be used.
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APPENDIX A. Ontogenic changes in m orphology in Chtenopteryx sicula, 

Idioteuthis magna, Mastigoteuthis agassizii, Brachioteuthis sp. 3 and Brachioteuthis sp. 

4.



H
ea

d 
W

id
th

 
(m

m
) 

Fu
nn

el
 L

en
gt

h 
(m

m
) 

Fu
m

el
 W

id
th

 
(m

m
) 

Aim
 

or 
Te

nt
ac

le
 

Le
ng

th
 

(m
m

)
Arm and Tentacle Length vs. DML

Xao° V
------

10 1S 20
Oorsai Mantle Length (mm)

O Fourth Ami Length x  Tentacle Length

F unnel D im en sio n s vs. DML

9

9
-------

^g-ogo-b^

4

2

0
10 15 2<

Dorsal Mantle Length (mm)

O Funnel Width - Anterior x  Funnel Width - Posterior

Funnel Width vs. Funnel Length
12

10

s

4

2
0

Funnel Length (mm)

O Funnel Width- Anterior x  Funnel Width - Posterior

H ead  M e a su re m e n ts  vs. DML

8
6 "O'

4

2
0

S 250 15 20 3010
Dorsal Mantle Length (mm) 

O Head Length (mm)

Funnel Length vs. DML

a

s

4

2

30 5 10 15 3020 25
Dorsal Mantle Length (mm) 

A Funnel Length

Eye D iam ete r vs. DML

10

8

6

4

2

0
0 5 10 15 20 25 30

Dorsal Mantle Length (mm)

a  Eye Diameter

H ead  W idth vs. H ead  Length

-§-e-

: |—

s
Head Length (mm)

C h te n o p te ry x  s i c u l a



Arm and Tentacle Length vs. DML

40

30

20

10
i°o

o
8 10 12 

D orsal Mantle len g th  (mm)

O  Fourth Aim  Length x  Tentacle len g th

14 10

Funnel Dimensions vs. DML

3

2

i
o <odo oo<ob 
o c p  o o  o ,

C O  o0
D orsal Mantle Length (mm)

O Funnel W idth - Anted o r  x  Funnel Width -  P osterior

Fin Length vs. Fin Width Funnel Length vs. DML

CL,CT

s cd-

o0 s 10

3

2

I
1

00 5 1510
D orsal Mantle Length (mm) 

A Funnel Length
Fin Length (mm)

Funnel Width : Anterior v. Posterior Funnel Width vs. Funnel Length

□ Q □ □a □ □

-i — r~□ COa □ □ □ □ o □ □
C

1 2 
Funnel Width- P osterior (mm)

3

2

1
O O

00 31 2
Funnel Length (mm)

O Funnel Width - A nterior x  Funnel Width - P osterior

I 2

Head Width vs. Head Length

ryn

Head M easurements vs. DML

s
5

4

3

CD
2

1

0

H ead Length (mm)

5 10
D orsal Mantle Length (mm)

O H ead Length (mm) x  H ead Width (mm)

I d i o t e u t h i s  magna



M
an

tle
 

O
pe

ni
ng

 
W

id
th

 
(m

m
) 

Ne
cK

 
W

id
th

 
(m

m
) 

Ne
ck

 
le

ng
th

 
or 

W
id

th
 

(m
m

) 
Fin

 
W

id
th

 
(m

m
)

Fin Length vs. Fin Width

40

30

20

10

0

Funnel Width: Anterior vs. Posterior

3

2.5

2

1.5

1

0.5 □ □

0
0 1 0  20 30 0 2 4 9 8 10

Fin length (mm) Funnel Width - Posterior (mm)

Neck Width vs. DML

9

3

1

00 40 9020
D orsal Mantle Length (mm)

Neck Length vs. DML

9

55 d>

-© © -

V
Z

Oo
00 20 40 90

Dorsal Mantle len g th  (mm) 

O Neck Length

Neck Width vs. Neck Length Head Width vs. Head Length

CL

□ cr □
&at i ° a o a 

a i SB O  2—
%

Neck Length (mm)

14

12

10

8

9
4

2

0
128 10 140 2 94

H ead Length (mm)

Mantle Opening Width vs. DML

15

10

5

o
20 30 40 50 900 10

Oorsal Mantle Length (mm)

B r a c h i o t e u th i s  sp .  3



Fin Length vs. Fin Width Funnel Width: Anterior vs. Posterior

□

a
□

a

a  131
a

□

n

□ *u “ 

* *
to is 20 25

Fin Length (mm)

Funnel Width vs. Funnel Length

X >xo
2 4 6 8

Funnel Length (mm)

O Funnel Width - Anterior x  Funnel Width - Posterior

a a

a a aa a □

□ □

Q
BBS a

B Qa

2 4 s
Funnel Width - Posterior (mm)

Head Width vs. Head Length

D

:□ b-

- q m— cr
□
O Q C D D

8 8 
Head Length (mm)

Funnel Length vs. DML Neck Length and Width vs. DML

20 30
Dorsal Mantle lengtn (mm) 

a  Funnel Length

6

'50
o
£  c» 
c  w 
-I 2

0 SO20 30 400 10
Dorsal Mantle Length (mm)

O Neck Length x  Neck Width

Funnel Dimensions vs. DML

10 20 30 40
Dorsal Manfle Length (mm)

O Funnel Width - Anterior x  Funnel Width - Posterior

Neck Width vs. Neck Length

6

4

□ □

2

0
Neck Length (mm)

B r a ch i o t e u t h i s  sp.  4



LITERATURE CITED

Appelloff, A. Teuthologische Beitrage, 1. Chtenopteryx n.g., Veranya sicula Krohn, 
Calliteuthis Verrill. Bergens M useum s A arsberetning for 1888.34pp.

Ashw orth, J.H. and W.E. Hoyle. 1906. The species of Ctenopteryx, a genus of 
dibranchiate cephalopoda. Memoirs and Proceedings of the Manchester 
Literary and Philosophical Society. 50(14): 1-8.

Baker, A. de C., M.R. Clarke, and M.J. Harris. 1973. The N.I.O. combination net 
(RMT 1+8) and further developm ents of rectangular m id w ater trawls. 
Journal of the Marine Biological Association of the United Kingdom. 53:167-184.

Bigelow, K. 1992. Age and growth in paralarvae of the mesopelagic squid Ahralia 
trigonura based on daily growth increments in statoliths. Marine Ecology 
Progress Series. 83:31-40.

Boletzky, S.v., M.V.v. Boletzky, D. Frosch, V. Gatzi. 1971. Laboratory rearing of 
Sepiolinae (Mollusca: Cephalopoda). Marine Biology. 8(1):82-87.

Boletzky, S.v. 1974a. The "larvae" of Cephalopoda: a review. Thalassia Jugoslavica. 
10:45-76.

Boletzky, S.v. 1974b. Elevage de Cephalopodes en aquarium . Vie Milieu. 
24(2):309-340.

Boletzky, S. 1975. Le developpem ent d'Eledone moschata (Mollusca,
Cephalopoda) elevee au laboratoire. Bulletin de la Societe Zoologique de 
France. 100(3):361-367.

Boletzky, S. 1977. Post-hatching behavior and m ode of life in cephalopods. Symp. 
zool. Soc. Lond., 38:557-567.

Boletzky, S.v. and R.T. Hanlon. 1983. A review of the laboratory maintenance, 
rearing and culture of cephalopod molluscs. Memoirs of the National 
Museum of Victoria. 44:147-187.

Boyle, P.R. ed. 1987. Cephalopod Life Cycles Volume 2: Com parative Studies. 
Academic Press, London.

123



124

Burgess, L.A. 1991. Squids of the genus Abralia (Cephalopoda) from the central 
equatorial Pacific w ith a description of Abralia heminuchalis, new  species. 
Bulletin of Marine Science. 49(1-2):! 13-136.

Chun, C. 1903. Rhynchoteuthis. Eine m erkw urdige Jugendform  von 
Cephalopoden. Zoologischer Anzeiger. 26:716-717.

Chun, C. 1910. Die Cephalopoda. I. Teil: Oegopsida. W issenschaftliche 
Ergebnisse der Deutschen Tiefsee-Expedition auf dem  Dam pfer 
"Valdivia" 1898-1899.18(l):plates I-LXI. [Translated from  Germ an by the 
Israel Program  for Scientific Translations, Jerusalem, 1975.]

Clarke, M.R. 1966. A review of the system atics and ecology of oceanic squids. 
Advances in Marine Biology. 4:147-187.

Clarke, M.R. 1977. Beaks, nets and num bers. Symposia of the Zoological Society of 
London. 38:89-126.

Clarke, M.R. and C.C. Lu. 1974. Vertical distribution of cephalopods at 30° N  23° 
W in the N orth Atlantic. Journal of the Marine Biological Association of the 
U.K. 54:969-984.

Clarke, M.R. and C.C. Lu. 1975. Vertical distribution of cephalopods a t 18° N  25° 
W in the N orth Atlantic. Journal of the Marine Biological Association of the 
U.K. 55:165-182.

Dawe, E.G. and  P.C. Beck. 1985. D istribution and size of juvenile short-finned 
squid (Illex illecebrosus) (Mollusca: Cephalopoda) south of N ew foundland 
during  winter. Vie et Milieu. (3/4):139-147.

Forsythe, J.W. and W.F. Van Heukelem. 1987. Growth. In: Cephalopod Life 
Cycles, Vol. 2. Com parative Reviews. Academic Press, Inc. London, p. 
135-156.

Geigy, R. and A. Portm ann. 1941. Versuch einer m orphologischen O rdnung der 
tierischen Entwicklungsgange. Naturwissenschaften. 29:734-743.

Grim pe, 1922. Systematische ubersicht der europaischen Cephalopoden.
Sitzungberichte der Naturforschenden Gesellschaft zu Leipzig. 45-48:36-52.



125

Haefner, P.A. 1964. M orphom etry of the common Atlantic squid, Loligo pealei, 
and the brief squid, Lolliguncula Brevis in Delaware Bay. Chesapecike 
Science. 5:138-144.

Hanlon, R.T. 1987. M ariculture. Pages 291-305 in: Boyle, P.R. ed. Cephalopod life 
cycles, Vol. II: Com parative reviews. Academic Press, London.

H anlon, R.T., R.F. Hixon, and W.H. Hulet. 1983. Survival, g row th, and behavior 
of the loliginid squids Loligo plei, Loligo pealei, and  Lolliguncula brevis 
(Mollusca: Cephalopoda) in closed seaw ater systems. Biological Bulletin. 
165: 637-685.

Hanlon, R.T., P.E. Turk, P.G. Lee and W.T. Yang. 1987. Laboratory rearing of the 
squid Loligo pealei to the juvenile stage: grow th com parisons with fishery 
data. Fishery Bulletin. 85(1):163-167.

Heym an, R.P. 1981. Narcotisation, fixation and preservation experiments w ith 
m arine zooplankton (AMNAPE Project 101A, rept. no. 2). Versl. techn. 
Gegev. 1.1.Z. 28:1-36.

Hochburg, F.G., M.Nixon and R.B. Toll. 1992. O rder Octopoda Leach, 1918. In: 
Sweeney et al. (eds.) "Larval" and juvenile cephalopods: a m anual for 
their identification. Sm ithsonian Contributions to Zoology, no. 513. 
Smithsonian Institution Press, W ashington, D.C. 282 p.

Hoyle, W.E. 1905. On specim ens of Tracheloteuthis and Cirroteuthis from deep 
w ater off the w est coast of Ireland. Annual Report on Fisheries, Ireland, 
1902-1903, Pt. II, App., III. p. 93-98.

Hoyle, W.E. 1886. Report on the Cephalopoda collected by H.M.S Challenger 
during the years 1873-76. Edinburgh. 245p.

Jefferts, J. 1992. Family Ctenopterygidae Grimpe, 1922. In: Sweeney et al. (eds.) 
"Larval" and juvenile cephalopods: a m anual for their identification. 
Smithsonian Contributions to Zoology, no. 513. Smithsonian Institution 
Press, W ashington, D.C. 282p.

Jereb, P., S. Ragonese and S. von Boletzky (eds.) 1991. Squid Age Determ ination 
Using Statoliths. Proceedings of the International W orkshop H eld in the 
Istituto di Tecnologia della Pesca e del Pescato (ITPP-CNR), Mazara del 
Vallo, Italy, 9-14 October 1989. NTR-ITPP Special Publications, no. 1.
128pp.



126

Joubin, L. 1894. Note prelim inaire su r les Cephalopodes recueillis dans l'estomac 
d 'un  dauphin  de la M editerranee. Extrait du Bulletin de la Societe Zoologique 
de France. 19:1-8.

Joubin, L. 1913. Cephalopodes recueillis au cours des Croisieres de S.A.S. le 
Prince de Monaco. 3eme Note: Mastigoteuthis magna nov. sp. Bulletin de 
VInstitut Oceanographique. 275:1-11.

Joubin, L. 1933. Notes preliminaires su r les cephalopodes des croisieres du  Dana 
(1921-1922), 4e partie. Annales de VInstitut Oceanographique. 13(l):l-49.

Kear, A.J. 1992. The diet of Antarctic squid: comparison of conventional and
serological gut contents analysis. Journal of Experimental Marine Biolovy and 
Ecology. 156:161-178.

Koslow, J.A., S. Brault, J.Dugas and F. Page. 1985. Anatom y of an apparent year- 
class failure: the early life history of the 1983 Browns Bank haddock 
Melanogrammus aeglefinus. Transactions of the American Fisheries Society. 
114:478-489.

Kubodera, T. and Okutani, T. 1977. Description of a new  species of gonatid 
squid, Gonatus madokai, n. sp. from the northw est Pacific w ith notes on 
m orpholopgical changes w ith grow th and distribution in im m ature stages 
(Cephalopeda: Oegopsida) Venus 36(3):123-151.

Lu, C.C. 1973. Systematics and zoogeography of the squid genus Illex
(Oegopsida; Cephalopoda). M emorial University of New foundland. PhD 
dissertation.

Lu, C.C. and M.R. Clarke. 1975. Vertical distribution of cephalopods at 40° N, 53° 
N  and 60° N  at 20° W in the N orth Atlantic. Journal of the Marine Biological 
Association of the United Kingdom. 55:143-163.

Lu, C. and Clarke, M. 1975. Vertical Distribution of Cephalopods at 11 degrees 
N , 20 degrees W in the N orth Atlantic. Journal of the Marine Biological 
Association of the United Kingdom. 55:369-381.

Lu, C. and Roper, C. 1979. Cephalopods from Deepwater Dum psite 106 (Western 
Atlantic): Vertical Distribution and Seasonable Abundance. Smithsonian 
Contributions to Zoology. No. 288, SI Press, City of W ashington.



127

M atthews, J.A. 1978. An application of non-metric m ultidim ensional scaling to 
the construction of an im proved species plexus. Journal of Ecology. 66:157- 
173.

M cConathy, D.A., R.T. Hanlon, and R.F. Hixon. 1980. Chrom atophore
arrangem ents of hatchling loliginid squids (Cephalopoda, Myopsida). 
Malacologia. 19:279-288.

M essenger, B. 1968. The visual attack of the cuttlefish Sepia officinalis. Anim. 
Behav. 16(2-3) :342-357.

Naef, A. 1921-23. Flora and Fauna of the Bay of Naples. M onograph #35 - 
Cephalopoda. Part I, Vol. I, Fascicle I-II. pp. 1-917.

Nesis, K.N. 1977. Mastigoteuthis psychrophila sp. n. (Cephalopoda,
M astigoteuthidae) from the southern oceans. Zoological Journal 56(6):835- 
841. (Translated 1979 by the Canadian D epartm ent of the Secretary of 
State, M ultilingual Services Division)

Nesis, K.N. 1979. Larvae of cephalopods. Biologiya Morya. 4:26-37. In Russian. 
(Translated 1980 for Plenum  Publishing Corporation).

Nesis, K.N. 1987. Cephalopods of the world. T.F.H. Publications, Inc., Ltd., 
N eptune City, NJ. 351 pp.

Nesis, K.N. 1991. Cephalopods of the Benguela upw elling off Namibia. Bulletin 
of Marine Science. 49(1-2):199-215.

Pfeffer, G. 1884. Die Cephalopoden des H am burger N aturhistorischen
M useums. Abhundlungen des Naturwissen Verenins in Hamburg, 8(l):22-23.

Pfeffer, G. 1908. Die Cephalopoden. Nordisches Plankton Expedition. 2(4):9-116.

Pfeffer, G. 1900. Synopsis der oegopsiden Cephalopoden. Mitth. Naturh. Mus. 
Hamb. 17:147-198.

Pfeffer, G. 1912. The Cephalopoda of the Plankton Expedition. Results of the
Plankton Expedition of the H um boldt Foundation Vol. 2 F.a. [Translated 
by the Smithsonian Institution Libraries and the National Science 
Foundation, 1993]



128

Pielou, E.C. 1984. The Interpretation of Ecological Data: A Prim er on
Classification and Ordination. John W iley & Sons, New York, 263 pp.

Pietkowski, U. and W. Welsch. 1991. On the distribution of pelagic cephalopods 
in the A rabian Sea. Bulletin of Marine Science. 49(1-2):186-198.

Prentice, I.C. 1977. Non-m etric ordination m ethods in ecology. Journal of Ecology. 
65:85-94.

Rancurel, P. 1970. Les contenus stomacaux d 'Alepisaurus ferox dans le sud-ouest 
pacifique (Cephalaopodes). Cah. O.R.S.T.O.M. ser. Oceanogr. VTII(4):3-87.

Rancurel, P. 1971. Mastigoteuthis grimaldii (Joubin, 1895) Chrioteuthidae peu 
connu de l'A tlantique tropical (Cephalopoda-Oegopsida). Cah. 
O.R.S.T.O.M. ser. Oceanogr. IX(2):125-145.

Reid, S. B., J. H irota, R.E. Young, and L.E. Hallacher 1991. Mesopelagic-
boundary com m unity in Hawaii: m icronekton at the interface between 
neritic and oceanic ecosystems. Marine Biology. 109:427-440.

Richard, A. 1966. La tem perature, facteur externe essentiel de croissance pour le 
cephalopode Sepia officinalis L. C.R. Acad. Sci. Paris. 263(D):1138-1141.

Richard, A. 1975. L'elevage de la seiche (Sepia officinalis L., M ollusque,
Cephalopode). 10th European Symposium on Marine Biology, Ostend, 
Belgium. 1:359-380.

Rodhouse, P.G. and  M.R. Clarke. 1985. Grow th and distribution of young
Mesonychoteuthis hamiltoni Robson (Mollusca, Cephalopoda), an Antarctic 
squid. Vie et Milieu. 35(3/4):223-230.

Rodhouse, P.G., M.G. W hite and M.R.R. Jones. 1992. Trophic relations of the 
cephalopod Martialia hyadesi (Teuthoidea: Om m astrephidea) at the 
Antarctic Polar Front, Scotia Sea. Marine Biology. 114:415-421.

Roe, H.S.J., A. de C. Baker, R.M. Carson, R. Wild and D.H. Shale. 1980.
Behaviour of the Institute of Oceanographic Sciences' rectangular m id 
w ater trawls: Theoretical aspects and experimental observations. Marine 
Biology. 56:247-259.



129

Roper, CF.E. 1983. An overview of cephalopod systematics: status, problem s
and recom mendations. Memoirs of the National Museum of Victoria. 44:13-27.

Roper, CF.E. and  C C . Lu. 1979. Rhynchoteuthion larvae of om m astrephid
squids of the western N orth  Atlantic, with the first description of larvae 
and juveniles of Illex illecebrosus. Proceedings of the Biological Society of 
Washington. 91:1039-1059.

Roper, C.F.E. and  M.J. Sweeney. 1983. Techniques for fixation, preservation, and 
curation of cephalopods. Memoirs of the National Museum of Victoria. 44:29- 
47.

Roper, C.F.E and M.J. Sweeney. 1992. Family M astigoteuthidae Verrili, 1881. In: 
Sweeney et al. (eds.) "Larval" and juvenile cephalopods: a m anual for 
their identification. Smithsonian Contributions to Zoology, no. 513. 
Sm ithsonian Institution Press, W ashington, D.C. 282p.

Roper, C., M. Sweeney, and M. N auen. 1984. FAO Species Catalogue Vol 3. 
Cephalopods of the world. An annotated and illustrated catalogue of 
species of interest to fisheries. FAO Fish. Synop., (125) Vol.3:277p.

Roper, C.F.E. and R.E. Young. 1975. Vertical distribution of pelagic cephalopods. 
Smithsonian Contributions to Zoology, no. 209. Smithsonian Institution 
Press, W ashington, D.C. 51 pp.

Roper, C.F.E., R.E. Young and G.L. Voss. 1969. An illustrated key to the Families 
of the O rder Teuthoidea (Cephalopoda). Smithsonian Contributions to 
Zoology, no. 13. Smithsonian Institution Press, W ashington, D.C. 32 pp.

Roper, C.F.E. and G.L. Voss. 1983. Guidelines for taxonomic descriptions of
cephalopod species. Memoirs of the National Museum of Victoria. 44:49-63.

Russell, E. 1909. On the Cephalopoda collected by the fishery c ru iser,'Goldseeker'. 
Annals and Magazine of Natural History, eighth series. 3(17):445-455.

Russell, E. 1922. Report on the Cephalopoda collected by the research steam er 
"Goldseeker," during the years, 1903-1908. Fishery Board for Scotland.
Scientific Investigations, 1921. (3):32-36.

Salcedo-Vargus, M.A. 1994. Cephalopods from the N etherlands Indian Ocean 
Program m e (NIOP) (Expeditions 1992-1993). Bulletin Zoologisch Museum 
14(4):41-50.



130

Salcedo-Vargus, M.A. and T. Okutani. 1994. N ew  classification of the squid
family M astigoteuthidae (Cephalopoda: Oegopsida). Venus. 53(2):119-127.

Sasaki, M. 1916. Notes on Oegopsid Cephalopods found in Japan. Annotationes 
Zoologicae Japonenses. 9(2):89-121.

Steenstrup, J. 1882. A new  cephalopod genus: Tracheloteuthis. Vidensk. Medd.
dansk. naturk. Foren. Kbh. p. 293-294 (trans). In: Volsoe, A. J. Knudsen and 
W. Rees (eds.). The Cephalopod papers of Japetus Steenstrup. Danish 
Science press Ltd. Copenhagen. 1962.

Steenstrup, J. 1898. Notae Teuthologicae, 9. Overs, danske Vidensk. Selsk. Forh. 
p.111-118 (trans). In: Volsoe, A. J. K nudsen and W. Rees (eds.). The 
Cephalopod papers of Japetus Steenstrup. Danish Science press Ltd. 
Copenhagen. 1962.

Stephen, S.J. 1985. The distribution of larvae of the genus Octopoteuthis Ruppell, 
1844 (Cephalopoda, Teuthoidea). Vie et Milieu. 35(3/4):175-180.

Sweeney, M.J., C.F.E. Roper, K.M. M angold, M.R. Clarke, and S.v. Boletzky, 
editors. 1992. "Larval" and juvenile cephalopods: a m anual for their 
identification. Smithsonian Contributions to Zoology, N um ber 513, 
Smithonian Institution Press, W ashington, D.C. 282p.

SYSTAT. 1992. SYSTAT for W indows: STATISTICS, Version 5 Edition. Evanston, 
IL: SYSTAT, Inc., 1992.

Van der Spoel, S. 1981. List of discrete depth sam ples and open net hauls of the 
A m sterdam  Mid N orth Atlantic Plankton Expedition 1980 (Project 101A). 
Bulletin Zoologisch Museum, Universiteit van Am sterdam . 8(1):1-10.

Van der Spoel, S. 1985. List of discrete depth sam ples and open net hauls of the 
Am sterdam  Mid N orth Atlantic Plankton Expeditions 1982 and 1983 
(Project 101 A). Bulletin Zoologisch Museum , Universiteit van Amsterdam . 
10(17):129-152.

Van der Spoel, S. and A.G.H.A. Meerding. 1983. List of discrete depth  sam ples 
and open net hauls.of the A m sterdam  Mid N orth Atlantic Plankton 
Expedition 1981 (Project 101A). Bulletin Zoologisch Museum , Universiteit 
van Amsterdam . 9(9):77-91.



131

Van Heukelem , W.F. 1977. Laboratory m aintenance, breeding, rearing, and 
biomedical research potential of the Yucatan octopus (Octopus maya). 
Animal Science. 27(5 part II):852-859.

Vecchione, M. 1979. Larval developm ent of Illex (Steenstrup, 1880) in the 
northw estern Atlantic w ith comments on Illex larval distribution. 
Proceedings of the Biological Society of Washington. 91:1060-1074.

Vecchione, M. 1981. Aspects of the early life history of Loligo pealei
(Cephalopoda: M yopsida). Journal of Shellfish Research. 1(2):171-180.

Vecchione, M. 1982. M orphology and developm ent of planktonic Lolliguncula 
brevis (Cephalopoda:M yopsida). Proceedings of the Biological Society of 
Washington. 95(3):602-609.

Vecchione, M. 1987. Juvenile Ecology. Pages 61-84 in: Boyle, P.R. ed. Cephalopod 
Life Cycles, Volume 2. Academic Press, London.

Vecchione, M. 1991. Observations on the paralarval ecology of a euryhaline 
squid, Lolliguncula brevis (Cephalopoda: Loliginidae). Fishery Bulletin 
(US). 89:515-521.

Vecchione, M. and C.F.E. Roper. 1986. Occurrence of larval Illex illecebrosus and 
other young cephalopods in the slope w ater/G u lf Stream interface. 
Proceedings of the Biological Society of Washington. 99(4):703-708.

Vecchione, M., C.F.E. Roper, CC Lu and M.J. Sweeney. 1986. Distribution and 
relative abundance of planktonic cephalopods in the western N orth 
Atlantic. American Malacological Bulletin 4:101.

Verany, J.B. 1851. M ollusques M editerraneans, le re  Partie: Cephalopodes de la 
M editerranee. Im prim ere des sourds-m uets, Genes, France. 129 p.

Verrill, A.E. 1881. The Cephalopods of the northeastern coast of America, part II: 
The sm aller Cephalopods, including the "squids" and the "octopi" with 
other allied forms. Transactions of the Connecticut Academy of Science. 
5(6):259-446.

Vidal, E. 1994. Relative Growth of Paralarvae and Juveniles of Illex argentinus in 
southern Brazil. Antarctic Science. 6(2):275-282.



132

W hittacker, R.J. 1987.An application of detrended correspondence analysis and 
non-m etric m ultidim ensional scaling to the identification and analysis of 
environm ental factor complexes and vegetation structures. Journal of 
Ecology. 75:363-376.

Yang, Y.T., R.T. Hanlon, R.F. Hixon, and W.H. Hulet. 1980. First success in 
rearing hatchlings of the squid Loligo pealei Lesueur 1821. Malacological 
Review. 13:79-90.

Yang, W.T., R.F. Hixon, P.E. Turk, M.E. Krejei, W.H. H ulet and  R.T. Hanlon.
1986. Grow th, behavior and sexual m aturation of the m arket squid, Loligo 
opalecense, cultured throughout the life cycle. Fishery Bulletin (US). 84:771- 
798.

Young, F. and Ham er, R. 1987. M ultidimensional Scaling: History, Theory, and 
Applications. Lawrence Erlbaum Associates, Publishers, pp. 307.

Young, R. 1972. The systematics and areal distribution of pelagic cephalopods
from the seas off southern California. Smithsonian Contributions to Zoology, 
no. 97. Smithsonian Institution Press, W ashington, D.C. 59pp.

Young, R. 1978. Vertical distribution and photosensitive vesicles of pelagic 
cephalopods from Hawaiian waters. Fishery Bulletin. 76(3):583-615.

Young, R.E. 1991. Chiroteuthid and related paralarvae from Hawaiian waters. 
Bulletin of Marine Science. 49(1-2):162-185.

Young, R.E. and R.F. Harm an. 1985. Early life history stages of Enoploteuthin 
squids (Cephalopoda: Teuthoidea: Enoploteuthidae) from Hawaiian 
W aters. Vie et Milieu. 35(3/4):181-201.

Young, R.E. and  R.F. Harm an. 1988. "Larvae", "paralarvae" and "subadult" in 
cephalopod terminology. Malacologia. 29(1 ):201-207.

Young, R., R.F. H arm an, R., and F. Hochberg. 1989. Octopodid paralarvae from 
H aw aiian waters. The Veliger. 32(2):152-165.

Young, R.E., R.F. H arm an, and K. Mangold. 1985. The eggs and larvae of
Brachioteuthis sp. (Cephalopoda: Teuthoidea) from Hawaiian waters. Vieet 
Milieu. 35:203-209.



133

Young, R., R.F. Harm an, and K. M angold. 1985. The common occurrence of 
oegopsid squid eggs in near-surface oceanic waters. Pacific Science. 
39(4):359-366.

Young, R., and K. Mangold. 1994. G row th and reproduction in the mesopelagic- 
boundary squid Abralia trigonura. Mar. Biol. 119:413-421.



VITA

134

Elizabeth Keane Shea

Bom in Boston, M assachusetts on July 11,1967. G raduated from the 

M adeira School, Greenway, Virginia in 1985. G raduated from the College of 

W illiam and M ary, W illiamsburg, Virginia in 1989 w ith a BS in Biology.

Entered the Masters program  at the College of William and Mary, School 

of M arine Science in A ugust 1991.


	The Early Life Histories of Three Families of Cephalopods (Order Teuthoidea) and an Examination of the Concept of a Paralarva
	Recommended Citation

	tmp.1539724688.pdf.COMiF

