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Abstract

Newly settled blue crabs, Callinectes sapidus, are found in highest densities in 
seagrass beds within the Chesapeake Bay. Densities of newly settled blue crabs in 
seagrass beds were highly variable from 1983-1992 and are regulated by density- 
dependent processes. The mean annual densities of larger instars were dependent on 
smaller instars. These inter-instar relationships between the mean annual densities first 
seven instars were determined to be either hyperbolic or parabolic functions. The inter
instar relationship began to decay at the fifth instar, the size when crabs begin to emigrate 
to unvegetated habitats. Subsequent laboratory and field tethering experiments were 
performed to assess the effects of habitat, crab size, and crab density on the relative rates 
of predator-induced mortality on first, third, fifth, seventh and ninth instar crabs. A full- 
factorial experimental design laboratory experiment with tethered and untethered prey was 
conducted and determined that tethering was an unbiased technique for assessing predation 
-induced mortality on newly settled blue crabs. Crab survival was significantly higher 
in vegetated habitats (ANOVA, F 1 1 9 9  = 16.00, p  < .001), with increasing crab size 
(ANOVA, F4199=61.10, p  <  .001), and in the absence of a tether (ANOVA, 
F{ 1 9 9 =7.677, p  < .01). Similarly, the field tethering experiments performed at replicate 
locations near the mouth of the York River, Virginia indicated that crabs survival was 
significantly higher in vegetated habitats (G-Test, X2x =  15.75, p  <  .0001) and with 
increasing crab size (G-Test, X24= 18.07, p  <  .001); densities of tethered crabs had no 
effect on survival (G-Test, Y2 1 =  .24, p  >  .05). Additionally, the close passage of 
Tropical Storm Danielle to the field location allowed for the assessment of the effects on 
relative rates of predation and on habitat utilization by newly settled blue crabs. Crabs 
had significantly higher survival during and after the tropical storm (G-Test, X22=8.38, 
p  < .01) and significantly higher densities at locations of lower energy regime (ANOVA, 
F mo=202.73, p  <  .0001).
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Introduction

Structurally complex habitats are common in nature and have been generally 

characterized by diverse assemblages of high density, small-sized individuals. However, 

the ecological processes that contributes to this pattern are poorly understood. In shallow 

marine environments the association of small mobile organisms with structurally complex 

habitats has been demonstrated to be in response to differential predation (Woodin 1978, 

Sih et al. 1985) as well as selection due to predation pressure (Leber 1985, Main 1987). 

This is true for small organisms (Ryer 1988, Hacker and Steneck 1990) as well as 

juvenile forms of larger benthic (Wahle and Steneck 1992) and demersal (Heck and 

Thoman 1984, Kneib 1987) species that utilize structurally complex habitats as initial 

nursery habitats. Organisms that utilize structurally complex habitats as nursery habitats 

exhibit a shift in habitat due to the decline in effectiveness of predation refuge afforded 

by the structurally complex habitat declines as size increases. As animal size increases, 

animals must compete for a limited number of appropriately sized niches, emigrate to 

appropriate habitat, or halt growth until the appropriate habitat is available (Caddy 1986). 

Typically these organisms inhabit a variety of habitats during complex life histories.

In recent years a more comprehensive approach to understanding the population 

dynamics of organisms with complex life-history patterns has occurred. Many 

researchers hypothesize that stochastic forces and density-dependent processes regulate 

populations during various phases of the life-history (Paulik 1973, Fogarty and Idoine 

1986, Lipcius and Cobb 1993). Within these models, densities of the larval life-history 

stage is deemed to be controlled by stochastic variation (e. g. meteorological or
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oceanographic processes) resulting in density-independent survival and dispersal. 

Populations of early juvenile stages, sub-adults, and adults are regulated by density- 

dependent processes such as predation and emigration.

Further, Menge and Sutherland (1986) suggest that there are three major 

ecological processes that regulate communities and ultimately individual species 

abundances; physical factors, predation, and competition. The Menge-Sutherland model 

define predation and competition as density-dependent processes and physical factors as 

density-independent processes. Mathematically, density-independent processes are 

represented by linear functions and density-dependent processes by nonlinear functions.

Ontogenetic shifts in habitat utilization are common for early benthic forms of 

large decapod crustaceans (Smith and Hermkind 1992, Wahle and Steneck 1992). 

Predation on juveniles is inversely related to habitat complexity (Leber 1985, Wilson et 

al. 1987, Eggleston et al. 1990, Connell and Jones 1991) and increasing size (e. g., Paine 

1966, Wilson 1975, Robinson and Wellborn 1987). Ideally, the shift in habitat occurs 

when the risk of predation is higher than the energetic value gained by remaining in the 

habitat. Frequently, ontogenetic shifts in habitat are associated with behavioral 

adaptations that additionally reduce predation risk (Connell and Jones 1991, Smith and 

Hermkind 1992, Eggleston and Lipcius 1993).

The blue crab, Callinectes sapidus, is an estuarine species and typifies all of these 

processes. Within the Chesapeake Bay, female blue crabs migrate to the mouth where 

larvae are released in early summer through late fall (Van Engel 1958, Provenzano et al. 

1983). Larval development through 7 or 8  zoeal stages occurs on the continental shelf
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(Costlow and Bookhout 1959, McConaugha et al. 1983, Epifanio et al. 1989) and is 

followed by a reinvasion of the estuary by the megalopal stage from July to November 

(van Montfrans et al. 1990). The initial nursery habitat for young juvenile blue crabs is 

seagrass (Heck and Thoman 1984, Orth and van Montfrans, 1987, Lipcius 1993), Newly 

recruited juveniles are found in the highest densities in seagrass beds and are not found 

in unvegetated habitats until the third instar and are at very low densities. Fifth instar 

crabs are found in moderate densities in both vegetated and unvegetated habitats, whereas 

by the time the crabs have reached between 18-20 mm spine to spine carapace width they 

are found in highest abundance in unvegetated habitats (Orth and van Montfrans 1987). 

Juvenile crabs are found in shallow-water lower salinity regions typified by unvegetated 

habitats and are partitioned by sex, molt stage and size (Miliken and Williams 1984, 

Hines et al. 1986). Mature crabs utilize higher salinity deep-water habitats.

Primarily, recruitment to the benthic form occurs in the seagrass beds of the lower 

Chesapeake Bay and tributaries. Newly settled blue crabs are found only in vegetated 

habitats which suggests that they are either selecting these habitats or not surviving in 

unvegetated habitats. Therefor, the abundance of larger newly settled crabs is dependent 

on the abundances of the smaller instars during the period of residence within the seagrass 

beds. The function that describes the relationship of larger to smaller instars indicates 

what ecological processes may be regulating the abundances of newly settled blue crabs. 

This study was undertaken to address (1) the relationships between successive instars 

within the initial nursery habitat, (2 ) the effects of habitat complexity, crab size, and crab 

density on predation-induced mortality with field and laboratory experiments.
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Additionally, Tropical Storm Danielle moved along the mid-Atlantic coast during the field 

experiments allowing for the assessment of the storms effect on the habitat utilization and 

predation-induced mortality of newly settled blue crabs.
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Materials and methods

Study sites

Benthic suction samples were collected from 1983 to 1992 in Brown’s Bay, which 

is located north of the mouth of the York River, a tributary of lower Chesapeake Bay 

(Figure 1). Field tethering experiments were performed at replicate locations within the 

York River: Goodwin Islands, located on the south shore of the York River, and near 

Guinea Marsh, located on the north shore (Figure 1). Both sites are characterized by 

dense beds of eelgrass, Zostera marina, and widgeongrass, Ruppia maritima, and adjacent 

unvegetated areas of muddy sand. Tidal range is generally 0.8-1.0 m and underwater 

visibility 1-2 m. Samples from the plankton and artificial settlement substrates, and 

measurements of wind speed, wind direction and water height were taken at the Ferry 

Pier of the Virginia Institute of Marine Science (VIMS), The College of William and 

Mary, Gloucester Point, Virginia. The pier is located approximately 12 km upstream 

from the mouth of the York River (Figure 1) .

Field experiments were conducted 21-28 September 1992. Tropical Storm 

Danielle moved along the central Atlantic coast from southeast of Cape Hatteras to 

Pennsylvania on 23-26 September 1992, impacting both the Goodwin Islands and Guinea 

Marsh locations (Figure 2). Tropical Storm Danielle caused a storm surge of 0.81 m in 

Norfolk, Virginia, located south of the study site within Chesapeake Bay (National 

Hurricane Center Preliminary Report 1992), and 1.5-2.5 m waves at both York River 

locations. This period also coincided with astronomical high tides, increasing tidal range 

1.0 m. Underwater visibility decreased to 0 m at the field locations.
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Figure 1. Map of the field sites. l=B row n’s Bay the location of the long term benthic 

sampling, 2 = Goodwin Islands and Guinea Marsh the location of field tethering 

experiments, 3 =  Virginia Institute of Marine Science location of the plankton sampling 

and artificial substrate deployment.
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Figure 2. Map of the path of Tropical Storm Danielle from 22-26 September 1992. 

Adapted from NOAA preliminary report. From 22-25 September each dot represents the 

storms location every 1 2  h and every 6  h from the 25th -26th.
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Benthic sampling

Macrobenthos were sampled in Brown’s Bay from 1983-1992 using a suction 

dredge apparatus (Orth and van Montfrans 1987). From 1983-1989 six 3 m2  cylindrical 

drop nets were haphazardly deployed in areas of 1 0 0 % vegetation coverage during low 

tide, suctioned for 10 min, and dip netted with a 1.2 mm mesh net for 5 min. Efficiency 

studies by Lipcius (1993) modified the sampling protocol from 1990-1992 to deployment 

of 1.674 m2  rings, suctioning for 6  min, and dip netting for 3 min. Samples from 1983- 

1987 were live-sorted, whereas samples from 1988-1992 were frozen for processing at 

a later date. Blue crabs were enumerated and spine to spine carapace width (cw) 

measured as the width between the tips of the lateral spines. Crabs <  15 mm cw were 

measured to the nearest 0.1 mm with a Wild M-5 dissecting microscope and ocular 

micrometer. Crabs > 15 mm cw were measured with calipers to the nearest 0.1 mm.

Samples were collected during the summer, fall, and winter of each year either 

monthly or biweekly, resulting in 90 sample dates. Sample dates from July through 

December were used in this analysis (Table 1).

Size classification

Crabs were categorized by instars using two systems of size classification (Table 

2). The stage between molts is the instar, hence, the number of the instar represents the 

number of molts to obtain a certain size. This is useful for categorizing small blue crabs 

since growth is relatively uniform until approximately 10 mm (Newcombe et al. 1949). 

Size ranges for each instar were adapted from laboratory growth studies performed from
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Table 1. Sample dates for the years 1983-1992 that were used to determine the annual 
mean densities.

Year Dates of Samples N

1983 7/19, 8/15, 8/29, 9/12, 9/26, 10/13, 10/28, 11/7, 12/7 9
1984 7/31, 8/14, 8/29, 9/10, 9/24, 10/30, 12/10 7
1985 7/8, 8/5, 8/19, 9/3, 9/16, 9/30, 11/12 7
1986 7/8, 8/5, 9/2, 9/15, 9/29, 10/27, 12/12 7
1987 7/15, 8/3, 8/17, 9/1, 9/16, 10/1, 11/2, 12/1 8

1988 7/12, 8/3, 8/17, 8/31, 9/13, 10/3, 11/3, 12/1 8

1989 7/11, 8/1, 8/16, 8/29, 9/13, 9/28, 10/25 7
1990 7/12, 8/1, 8/16, 8/29, 9/18, 9/27, 10/30, 12/11 8

1991 7/11, 8/1, 8/15, 8/29, 9/17, 10/2, 11/4, 12/9 8

1992 7/13, 8/3, 8/18, 8/31, 9/18, 10/1, 10/29, 12/9 8

Total N 77
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Van Engel in 1951 (personal communication) at VIMS. Size ranges for each instar were 

determined from the mean and standard deviations reported in the two studies. The first 

system of size ranges was modified from Newcombe et al. (1949), and the second from 

a combination of Newcombe et al. (1949) and Van Engel (unpublished data). All 

analyses were done using both systems.

Annual mean densities of each instar were determined from sampling dates when 

an instar was present in at least 50% of the replicate rings. Though sampling was 

designed to evaluate 0 + year-class crab densities, it did not always coincide with episodic 

recruitment events associated with the new and full moon (van Montfrans et al. 1990). 

Given the short intermolt periods for the first through the third instar (approximately 10 

days; Van Engel, Pile unpublished data), bimonthly sampling that did not occur 

immediately following a recruitment event would miss most of the first and second 

instars.

The size ranges for the first through fourth instars are not different using the 

Newcombe and Newcombe-Van Engel size classification systems. However, the size 

ranges for the Newcombe-Van Engel instars are larger than the Newcombe size ranges, 

which results in different annual density estimates using the two systems. Differences 

between the annual density estimates for the fifth, seventh, and ninth instars using the two 

classification systems were evaluated with (1) 95% confidence limits of annual density, 

a, calculated as a ±  d, where d=t(a(l-a)/ri)0 5, t being the normal deviate (1.96 at the 

95% level, and n the sample size (Sokal and Rohlf 1981) and (2) correlation of the 

annual density determined with Newcombe size ranges to the annual density determined
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using the Newcombe-Van Engel size ranges.

Instar-specific abundance and relationships

Relationships between annual mean densities of first, third, fifth and seventh 

instars with larger instars were determined using simple linear regression, a general 

functional response model, and the Ricker function. The combination of these analyses 

is an objective test for differentiating statistically between linear, hyperbolic, sigmoid and 

parabolic functions (Ricker 1975, Real 1977, 1979, Lipcius and Hines 1986, Lipcius et 

al. 1993 in review). First, a linear regression was performed on untransformed annual 

mean densities and if the fit was significant and met the statistical assumption of 

randomly distributed residuals, the relationship was determined to be linear. If the fit 

was not significant or if the residuals were not distributed randomly then hyperbolic, 

sigmoid, and parabolic functions were distinguished using simple linear regression of log- 

transformed data, the general functional response model, and the Ricker function.

A power curve has the function:

Y = aX0

where Y  = yearly mean density of the larger instar,

X  = yearly mean density of the smaller instar.

The log transformation of Y  and X  linearizes the equation to:

log Y  =  log a +  (3 (log X) 

where loga =  y intercept in the linearized function,

13 = the parameter associated with the form of the curve.
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The curve is positively exponential when p > I, hyperbolic when 0 <  p <  1, and linear 

when >9 =  1 .

The general functional response model was employed to distinguish between

hyperbolic and sigmoid relationships. The model is:

Y = A-YP 
B + X0

where A  =  asymptotic density of the dependent instar (the highest density
recorded on an individual sample date for each instar from 1983- 
1992),

B = the value of X at which Y = 0.5(A), and

p — the parameter associated with the form of the function.

The function is hyperbolic when 0 <  p < 1, sigmoid when p >  1, and approaches a 

horizontal line as p  approaches 0 . p is determined using the linearized form of the 

equation:

log (_JL ) =  -log(B) +  plog(X)
A - Y

Linear regression was employed with both linearized forms, yielding an estimate of p that 

was tested against hypothetical values of 0  and 1  with standard t-tests.

The Ricker function was used to fit a parabolic curve and is:

Y =  A(Y)exp(-BX) 

where Y = yearly mean density of the larger instar,

X  =  yearly mean density of the smaller instar.

The linearized form of the equation is:

In(Y/X) = ln(A) - BY
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Mean annual densities were transformed and linear regression was employed to determine 

the fit of the Ricker function.

The best fitting function was determined by meeting the statistical assumption of 

linear regression of randomly distributed residuals as determined by visual inspection. 

Additionally, r2 values and the significance of the regression were considered to 

determine the best fitting function when more than one was significant.

Experimental animals

First, third, fifth, seventh, and ninth instar crabs were used in all experiments 

(Table 2). These instars appear to be ecologically significant in that through the third 

instar crabs are residents in the seagrass beds; emigration to unvegetated habitats begins 

at the fifth instar and completed by the ninth instar (Orth and van Montfrans 1987). 

Juveniles and megalopae of the blue crab were collected nightly from the plankton at the 

VIMS Ferry Pier, sorted by instars using the Newcombe size ranges, and held in the 

laboratory until needed. Crabs were staged in the laboratory so that the day of molting 

was known; only crabs that had molted within 24 h were used, to reduce the occurrence 

of crabs molting off their tethers. First and third instar crabs were laboratory reared and 

maintained on a diet of frozen adult Artemia(sp); all others were fed frozen silver perch.

Tethering

Tethering is a technique commonly employed during field studies with decapod 

crustaceans (Heck and Thoman 1981, Hermkind and Butler 1986, Wilson et al. 1987,
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1990, Eggleston et al. 1990, 1992, Wahle and Steneck 1991, 1992, Mintz 1992, 

Fernandez et al. 1993, Lipcius et al. 1993 in review) to measure relative predator-induced 

mortality rates between experimental treatments. It is not intended to measure absolute 

rates of predation, but to assess the effects of treatments on survival.

Tethering material depended on the size of the crab. First and third instars were 

tethered with nylon thread, fifth and seventh instars with 4-pound-test monofilament line, 

and ninth instars with 6-pound-test monofilament line. Tethers were 5 cm long and tied 

to a #12 snap swivel. Tethering involved: (1) placing the free end of the tether in 

cyanoacrylate glue (Krazy Glue Extra Strength Gel, The Bordon Company), (2) placing 

this end to the dry carapace of the crab and applying light pressure so that it extended 

between the fifth pair of walking legs, (3) allowing the glue to dry for 30-45 sec, and (4) 

checking the tether before returning crabs to the water. Crabs were tethered and held in 

the laboratory 12 to 24 h prior to use.

Tethered crabs were observed in the laboratory and with underwater video 

equipment in the field. These crabs exhibited natural behaviors after becoming 

accustomed to the tether; observed behaviors included foraging, feeding, burial into the 

substrate, climbing on seagrass, and attempted escapes from predators. The only means 

of escapement by a crab from the tether was to molt, a process which was easily 

identified by the intact molt shell attached to the tether. This differed from situations 

where tethered crabs were consumed by predators, which typically either left a small 

portion of the carapace secured to the tether, or severed the tether, leaving it noticeably 

shorter with the nylon pinched at the free end.
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Laboratory Experiment

A laboratory study conducted from October to December 1992 tested: (1) whether 

tethering provides accurate and unbiased estimates of predation in newly settled blue 

crabs, and (2) the effects of crab size, predator presence and habitat type upon crab 

survival. Although tethering has been used to assess relative predation rates in the field 

for crustaceans (e.g. Heck and Thoman 1981, Hermkind and Butler 1986, Wilson et al. 

1987, 1990, Barshaw and Able 1990, Eggleston et al. 1990, Wahle and Steneck 

1991,1992, Mintz 1992, Smith and Hermkind 1992, Fernandez et al. 1993), mollusks 

(Poole et al. 1991, Ambrose and Irlandi 1992, Marshall 1992) and fish (Shulman 1985, 

Mclvor and Odum 1988), only two studies (Barshaw and Able 1990, Marshall 1992) have 

quantitatively partitioned tethering artifacts.

Tethering artifact may be partitioned into two types, accuracy and bias. Accuracy 

is defined as the closeness to the absolute value. Since tethering is assumed to measure 

relative rates of predation and not absolute predation rates, previous investigators have 

assumed that the test is not an accurate measure of predation. This implies that the 

relative effects of treatments will be proportional in untethered organisms, thereby 

allowing use of the technique to quantify relative predation rates. However, bias may be 

introduced into the data if tethering effects are specific to the treatments (e.g. tangling 

of the tether in one type of habitat and not another). Such biases do not decrease survival 

proportionally across all treatments, and thereby confound treatment effects with those 

of the technique. Previous studies have addressed bias using qualitative observations of 

tethered organisms (Heck and Thoman 1981, Herrnkind and Butler 1986, Wilson et al.
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1987, 1990, Eggleston et al. 1990, 1992, Wahle and Steneck 1991,1992, Mintz 1992, 

Smith and Hermkind 1992, Fernandez et al. 1993, Lipcius et al. 1993 in review) but 

none have conducted experimental tests of bias.

Accuracy is addressed as a main effect of tethering in the context of a full- 

factorial experimental design using tethered and untethered experimental animals. If the 

effect is statistically significant tethering would decrease survival and relative rates of 

predation are measured. Bias is indicated by statistically significant interaction effects 

and if present precludes utilization of tethering to measure relative rates of predation 

within the experimental framework.

This study was designed to determine the accuracy of the tethering if there was 

any bias between the treatments of predator presence or absence, habitat, and crab size 

with tethered and untethered crabs. Tethering artifact trials were conducted in 12 aerated 

10-gallon aquaria with the randomly assigned factors of habitat (vegetated and 

unvegetated), tethering (tethered and untethered), size (first, third, fifth, seventh and 

ninth instars), and predators (presence or absence). Aquaria were filled with 2 cm of 500 

um sieved sand and 20 cm of filtered estuarine water. Vegetated aquaria were 

haphazardly planted with eelgrass trimmed to a shoot height of 20-24 cm and planted 

equivalent to 300 shoots/m2 (Orth and Moore 1986). Grass was cleaned of epifauna and 

epiphytes by soaking in fresh water. Photoperiod was on a 12/12 cycle; water 

temperature and salinity were measured at the beginning and end of each trial. The mean 

water temperature was 23.6° C (1.0° C sd) and mean salinity was 19.6 ppt (0.5 ppt sd).
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Six prey crabs of a single instar were placed in aquaria 12 h prior to introduction 

of predators. In tethering treatments, two tethered crabs were secured with the snap 

swivel to opposite ends of each of three 0.1 x 0.03 m vexar mats, which were buried 0.1 

m apart in the sand. The predator suite was represented by one naked goby, Gobiosoma 

bosci, 20-30 mm standard length (si), one naked goby 30-40 mm si, and one blue crab 

20-30 mm cw. These predators have been observed in the field consuming early instar 

crabs. Predators were starved for 24 h prior to experiments. Predators were removed 

after 24 h, aquaria drained through a 500 um sieve, and remaining crabs enumerated. 

Missing claws or walking legs were noted for survivors and considered as sublethal 

predation. Crabs that were killed by predators were indicated by a small piece of 

carapace remaining on the tether, by obvious mortal wounds, or by complete absence. 

Crabs that died during trials due to the fitness of the crab or the tethering procedure were 

distinguished by the presence of an intact dead crab on the tether or in the tank; these 

were not considered in the statistical analysis. Dead crabs composed 1 % of all crabs and 

their percentage did not differ significantly between tethered and untethered crabs 

(ANOVA, Fj 206=2.00, P=0.139, 0.50 < power <  0.55) or trial (ANOVA 

F 4 , 2 0 6 =  1-50, P=0.204, power >  0.80).

Numbers of surviving crabs were converted to proportion of survival per treatment 

and analyzed as dependent on habitat, tether, and crab size using three-way fixed-factor 

analysis of variance models (ANOVA, Sokal and Rohlf 1981). Numbers of surviving 

crabs with sublethal predation were converted to proportion per treatment and analyzed 

as dependent on habitat, tether, crab size, and predator presence or absence using four



20

way fixed-factor ANOVA models (Sokal and Rohlf 1981). Five trials of each treatment 

were performed and time was used as a blocking factor; where time was not significant 

separate trials were combined (Sokal and Rohlf 1981).

Field experiments

Field tethering trials were performed 21-28 September 1992 to test the effects of 

habitat complexity, crab density, and crab size on the survival of newly settled blue 

crabs. The unexpected arrival of Tropical Storm Danielle on 23 -25 September allowed 

deployment of tethered crabs before (September 21-22), during (September 23-24), and 

after the storm (September 26-27) and assessment of the effects of the storm on the 

survival of newly settled blue crabs. Rough weather prevented deployment of crabs on 

September 25th.

Tethering grids were used to facilitate the replication of crab densities and the 

retrieval of tethered crabs in the turbid conditions at the field sites. Tethering grids were 

1.1 x 1.1 m rebar frames with 50-pound test monofilament line woven at 0.1 m intervals 

(Figure 3). This created a i m 2 tethering arena capable of holding 100 crabs. Snap 

swivels were used to secure tethered crabs at intersecting lines. Each grid was marked 

with an orange buoy at a corner.

Tethering grids were tested prior to utilization to determine if individual crabs or 

grids could be considered independent for statistical analysis. Eight grids with 45 

crabs/m2, proportionally correct for the first, third, fifth, and seventh instar, were 

deployed at the Guinea Marsh site in vegetated and unvegetated habitats for 24 h during
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Figure 3. Schematic diagram of a tethering grid.
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a three day period. There was no apparent pattern in the proportional survival due to size 

or habitat nor a significant correlation between proportional survival of each instar and 

grid. The absence of pattern in crab survival on the grids indicated that the assumption 

of independence between individual crabs for statistical analysis was reasonable.

A total of 1,057 crabs were randomly allocated to the grids at densities of 23 

crabs/m2 (low) or 46 crabs/m2 (medium). Size-frequency analysis of the first through 

seventh instars at Brown’s Bay from 1983-1988 (July through December) indicated the 

most common densities were 22, 41, and 89 total juvenile crabs/m2 with densities rarely 

reaching 89 crabs/m2. The correct proportion of each instar (Table 2) was allocated to 

a grid 12 to 24 h prior to a trial, and held in flow-through tanks before field deployment.

One grid of each density was deployed for a 24-h trial at each location in 

vegetated and adjacent unvegetated sand habitats (Figure 4). Grids were: (1) wrapped 

in damp sheets and transported to the site, (2) checked for proper placement of crabs 

prior to deployment and any missing or dead crabs replaced, and (3) haphazardly 

deployed and secured with one 30-cm rebar stake in the buoy comer. At vegetated sites 

care was taken to prevent seagrass from being flattened down by the grids.

Grids were examined every 4-6 h during daylight and crab survival recorded. 

About 2% o f the tethered crabs either molted while on the tethers or were missing 

appendages and had hollow intact carcasses. Mottled dog whelks, Nassarius trivittatus, 

were observed consuming live crabs with missing appendages. The snail utilized its
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Figure 4. Schematic diagram of tethering grid placement during the field tethering 

experiment. L=low  density grid M=medium density grid.
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proboscis to extract the internal soft body tissues of the constrained tethered crab, leaving 

a hollow intact carcass. These crabs were considered tethering artifact and not used in 

analyses.

Mortality and survival for 24 h were converted to frequencies per treatment and 

did not differ significantly by location (X21=0.51, P=0.4735); hence, data from the 

separate locations were combined (Sokal and Rohlf 1981). These data were analyzed 

using a log-linear model (G-Test, Sokal and Rohlf 1981) as dependent on habitat 

(vegetated and unvegetated), crab density (low and medium), size (first, third, fifth, 

seventh, and ninth instars), and storm (pre-storm, storm, and post-storm). Time was 

used as a blocking factor and data from separate trials were combined when time was not 

significant (Sokal and Rohlf 1981).

Physical data, blue crab abundance, and video identification of predators

Temperature and salinity were recorded during each visit to the field sites and 

analyzed with two-way fixed factor ANOVA models (Sokal and Rohlf 1981) as functions 

of location and day. Wind speed and direction were taken every six min at the VIMS 

Ferry Pier and daily mean direction and speed calculated. Hourly water height was 

measured at VIMS and compared to projected height to determine storm surge.

Prior to retrieval, 4-cm sediment cores were taken from all grids and analyzed as 

described by Folk (1974) into 3 size categories: less then '1.0 phi (gravel), 4.0-T.0 phi 

(sand), and greater than 4.0 phi (mud). Sediment type was converted to frequency per 

treatment and analyzed as dependent on habitat and location using the G-Test (Sokal and
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Rohlf 1981). Grids in vegetated habitats had 10 randomly selected 0.1 x 0.1 m plots 

within the tethering arena clipped of vegetation near the roots. Vegetation was identified 

to species, and shoot density and biomass by dry weight determined for each plot. Shoot 

density and dry weight were log(x+ l) transformed to maintain the assumption of 

homogeneity of variance and analyzed as dependent on location with a one-way fixed- 

factor ANOVA model (Sokal and Rohlf 1981). Water turbidity prevented obtaining 

vegetation samples for trials on 22-24 September; sediments were not sampled on 

September 24 due to rough weather.

Benthic suction samples were taken on September 21st and 28th 1992 to quantify 

short-term changes in crab abundance at the study sites (Goodwin Islands and Guinea 

Marsh) during the tethering experiments. Densities of crabs were square root transformed 

to maintain the assumption of homogeneity of variance, and analyzed with three-way 

fixed-factor ANOVA models (Sokal and Rohlf 1981) as dependent on location, habitat 

and time. Frequencies of megalopae and first instar (newly recruited), second and third 

instars (newly settled), fourth and fifth instars (grass-bed residents), sixth instar through 

23 mm cw (0+ year-class), and greater than 23 mm cw ( l +-year class) using the 

Newcombe and Newcombe-Van Engel size ranges were converted to frequency per 

treatment and analyzed as dependent on location, habitat and time using the G-Test (Sokal 

and Rohlf 1981).

Predation events at the Goodwin Islands site were recorded with underwater video 

equipment (Fieldcam, Fuhrman Diversified, Inc., Laporte, Texas, USA) using fifth 

instars. Crabs were tethered within the focal range of the camera in vegetated and
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unvegetated habitats for 2-h trials. Trials were run twice a day on September 22nd and 

27th near dawn and dusk.

Planktonic abundance and settlement of blue crab megalopae

Blue crab megalopae recruit and settle during nocturnal flood tides (Meredith 

1982, Olmi unpublished data) from July through November. Paired plankton nets were 

fished during this period at the VIMS Ferry Pier for 20 min during maximum nocturnal 

flood tides. 750 iim  mesh nets were 1 m apart and filtered an area 50 cm wide and 80 

cm deep from the surface. Megalopae were enumerated, standardized to water flow by 

attached current meters (General Oceanics Model 2030), and mean nightly abundance 

determined.

Four artificial settlement substrates were retrieved and deployed daily between 

0700-0900 h. Artificial settlement substrates were 37.5 cm PVC pipe, outside diameter 

16.3 cm, fitted with a synthetic fiber air conditioning filter (hog’s hair) sleeve, weighted 

at the bottom with a float attached at the top, and deployed so that they were 10 cm from 

the bottom. Megalopae were enumerated and daily mean settlement calculated.

Mean annual planktonic abundance and settlement were determined from daily 

samples taken from July through November. A peak in planktonic abundance or 

settlement was twice the respective annual mean (van Montfrans et al. 1990). Planktonic 

abundance and settlement of blue crab megalopae are reported for August 15 through 

October 15, 1992.
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Statistical analysis

The assumption of homogeneity of variance was tested with Cochran’s C-test. In 

all cases, either the variances were homogeneous, or the hypotheses were rejected at 

alpha values lower than the P-values of the test for homogeneity of variance (Underwood 

1981). Power analysis was performed for all the tests where the null hypothesis was not 

rejected, and except where noted, power was greater than 0.80 (Peterman 1990). 

Differences among means in parametric analyses were determined using Ryan’s Q Test 

(Day and Quinn 1989) unless there was a significant interaction effect; then lower level 

ANOVAs were utilized. In non-parametric analyses, differences with in treatments were 

determined using lower level G-tests and hypotheses rejected at probabilities lower than 

the p-values for the main effect (Underwood 1981).
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Results

Instar classification systems

The 95 % confidence intervals for annual mean densities of the Newcombe and 

Newcombe-Van Engel size ranges for the fifth instars were significantly different for 

1987 and 1990 and highly correlated (R2=0.927, Figure 5). For the seventh instar, the 

Newcombe annual mean densities were significantly higher in 1983, 1985, 1987, 1988, 

1990, 1991, and 1992, yet the two classification systems were not significantly different 

and highly correlated (R2=0.936, Figure 6). The Newcombe annual mean densities were 

significantly higher for all years except 1988 and 1991 for ninth instars. Similarly, the 

size ranges were highly correlated (R2=0.840, Figure 7).

Benthic sampling

Numerically, blue crabs smaller than 20 mm cw dominated crabs found in 

seagrass beds. Mean annual blue crab densities varied over nearly an order of magnitude 

from 1983-1992 (Figure 8) with high densities in 1984, 1991, and 1992. Across years, 

densities of crabs smaller than the seventh instar were highly variable, yet densities 

became more uniform at the seventh instar. Crab densities in 1984, 1991 and 1992 were 

high enough that there was a generally decreasing trend from the third instar to the 

seventh instar indicative of a loss of newly settled blue crabs from the seagrass habitat.
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Figure 5. (a) 95% confidence intervals for the mean annual density determined using the 

Newcombe and Newcombe-Van Engel size ranges for the fifth instar, (b) Correlation of 

the mean annual densities determined using the Newcombe-Van Engel size ranges with 

the Newcombe size range.
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Figure 6. (a) 95% confidence intervals for the mean annual density determined using the 

Newcombe and Newcombe-Van Engel size ranges for the seventh instar, (b) Correlation 

of the mean annual densities determined using the Newcombe-Van Engel size ranges with 

the Newcombe size range.



o
CD

>“

1992
1991
1990
1989
1988
1987
1986
1 9 8 5
1984
1983

0
/ / 2 Mean d e n s i t y  ( c r a b s / m  )

•  Newcombe—Van Engel size range 

O Newcombe size range

a;
cn
c
o

<D
N

*£0

<L)
a*
c

Ld

c
0 
>
1(D

-Q
E
oo
$<D

2. 5

2.0

0 . 9 3 6

0. 5

0.0
1.0 1.5 2 . 0  2 . 5  3 . 0  3 . 5  4 . 0

Newcombe s i ze  range



31

Figure 7. (a) 95 % confidence intervals for the mean annual density determined using the 

Newcombe and Newcombe-Van Engel size ranges for the ninth instar, (b) Correlation 

of the mean annual densities determined using the Newcombe-Van Engel size ranges with 

the Newcombe size range.
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Figure 8. Mean annual densities (± 1  sd) of the first through ninth instar crabs from 

1983 to 1992 in seagrass beds in Brown’s Bay (a) determined using the Newcombe size 

ranges (b) determined using the Newcombe-Van Engel size ranges.
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Density decreases: linear, hyperbolic, sigmoid or parabolic functions?

Except for the relationship between ninth and seventh instars, the regressions, r2, 

and /3 between the Newcombe and Newcombe-Van Engel size ranges did not differ. 

Only the simple linear regression of ninth instar dependent on seventh instar using the 

Newcombe size ranges was linear (Figure 9, Regression; F 1>9=33.22, P  <  0.001, 

^ = 8 0 .6 ). All other regressions of large to smaller instars were either not significant or 

exhibited a poor fit associated with non-random residuals with lower than average 

residuals at the high and low densities and larger than average residuals at intermediate 

densities. Subsequent analysis with the log transformed densities and the functional 

response model distinguished between hyperbolic and sigmoid functions when the 

regression was significant while the Ricker function distinguished parabolic functions 

(Tables 3-5). There was no difference between the log-transformed data and the 

functional response model.

Mean annual densities of third and fifth instars were dependent on first instars and 

the relationship hyperbolic, while seventh instars had a parabolic function with third 

instars and ninth instars were not dependent on third instars (Figure 10, Table 3-5). The 

r2 and (3 decreased from the third through the ninth instars. Annual mean densities of 

fifth, seventh, and ninth instars were all dependent on third instars. The relationship to 

third instars was a parabolic function for all larger instars (Figure 11, Table 3-5). Mean 

annual densities of seventh instars were dependent on fifth instars and the relationship
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Figure 9. Plot of the annual mean densities of the ninth instars against the seventh instars 

(a) using the Newcombe and (b) Newcombe-Van Engel size classification systems.
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Table 3a. Density curve analyses with the annual mean density log transformed to assess
the linear, hyperbolic or sigmoid characteristics of the curve for the Newcombe size
ranges.

Instar Source of 
variation

SS df ms F r2 P (3>0 (3> 1 
? ?

First Instar

Third Regression 0.615 1 0.615 5.95* 42.7 0.615 * ns

Error 0.827 8 0.103

Fifth Regression 0.376 1 0.376 17.94** 69.2 0.481 * ns

Error 0.167 8 0.021

Seventh Regression 0.078 1 0.078 2.95ns 27.0 0.220
Error 0.219 8 0.219

Ninth Regression 0.023 1 0.023 0.45ns 5.3 0.120
Error 0.417 8 0.052

Third Instar

Fifth Regression 0.410 1 0.410 24.53**** 75.4 0.533 * ns

Error 0.136 8 0.136

Seventh Regression 0.141 1 0.141 7.52* 48.5 0.312 * ns

Error 0.150 8 0.019

Ninth Regression 0.077 1 0.077 1.70“ 17.5 0.231
Error 0.363 8 0.045

Fifth Instar

Seventh Regression 0.186 1 0.186 14.34** 64.2 0.586 * ns

Error 0.104 8 0.013

Ninth Regression 0.110 1 0.110 2.68ns 25.1 0.451
Error 0.330 8 0.041

Seventh Instar

Ninth Regression 0.328 1 0.328 23.29**** 74.4 1.063 * ns

Error 0.113 8 0.014

* P  <  0.05, ** P  <  0.01, **** P  <  0.001, ns P  >  0.05.
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Table 3b. Density curve analyses with the annual mean density log transformed to assess
the linear, hyperbolic or sigmoid characteristics of the curve for the Newcombe-Van
Engel size ranges.

Instar Source of 
variation

SS df ms F r 2 P / 3 > 0  (3>l  
? ?

First Instar

Third Regression 0 .6 1 5 1 0 .6 1 5  5 .9 5 * 4 2 .7 0 .6 1 5 * ns

Error 0 .8 2 7 8 0 .1 0 3

Fifth Regression 0 .3 8 4 1 0 .3 8 4  1 7 .34** 6 8 .4 0 .4 8 6 ■|‘ ns

Error 0 .1 7 7 8 0 .0 2 2

Seventh Regression 0 .1 0 0 1 0 .1 0 0  2 .2 4 ns 2 1 .9 0 .2 4 9
Error 0 .3 5 8 8 0 .0 4 5

Ninth Regression 0 .0 2 8 1 0 .0 2 8  0 .2 3 ns 2 .8 0 .1 3 2
Error 0 .9 6 9 8 0 .1 2 1

Third Instar

Fifth Regression 0 .3 2 3 1 0 .3 2 3  1 0 .8 4 * * 5 7 .5 0 .4 7 3 * ns

Error 0 .2 3 8 8 0 .0 3 0

Seventh Regression 0 .2 6 5 1 0 .2 6 5  1 0 .9 2 .* * 5 7 .7 0 .4 2 9 * ns

Error 0 .1 9 4 8 0 .0 2 4

Ninth Regression 0 .0 1 2 1 0 .0 1 2  0 . 0 9 ns 1 .2 0 .0 9 0
Error 0 .9 8 5 8 0 .1 2 3

Fifth Instar

Seventh Regression 0 .2 9 2 1 0 .2 9 2  1 4 .0 3 * * 6 3 .7 0 .7 2 2 * ns

Error 0 .1 6 7 8 0 .0 2 1

Ninth Regression 0 .1 1 2 1 0 .1 1 2  1 .0 1 ns 1 1 .2 0 .4 4 7
Error 0 .8 8 5 8 0.111

Seventh Instar

Ninth Regression 0.000 1 0.000 0.00ns 0 . 0 0 .0 2 1
Error 0 .9 9 9 8 0 .1 2 5

* P  <  0.05, ** P  <  0.01, ns P  >  0.05.
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Table 4a. Density curve analyses with the linearized functional response model to assess
the linear, hyperbolic or sigmoid characteristics of the curve for the Newcombe size
ranges.

Instar Source of 
variation

SS df ms F r 2 P f3> 0  (3> 1
? ?

First Instar

Third Regression 0 .7 4 4 1 0 .7 4 4  5 .7 8 * 4 1 .9 0 .6 5 9 * ns

Error 0 .9 7 5 8 0 .1 2 3

Fifth Regression 0 .4 8 1 1 0 .4 8 1  1 8 .4 5 * * 6 9 .8 0 .5 4 4 * ns

Error 0 .2 0 9 8 0 .0 2 6

Seventh Regression 0 .1 2 8 1 0 .1 2 8  2 .9 6 ns 2 7 .0 0 .2 8 1
Error 0 .3 4 6 8 0 .0 4 3

Ninth Regression 0 .0 3 5 1 0 .0 3 5  0 .4 9 ns 5 .8 0 .1 4 7
Error 0 .5 7 5 8 0 .0 7 1

Third Instar

Fifth Regression 0 .4 1 0 1 0 .4 1 0  25 .55**** 7 6 .2 0 .6 0 4 * ns

Error 0 .1 3 4 8 0 .0 1 7

Seventh Regression 0 .2 1 7 1 0 .2 1 7  6 .7 6 * 4 5 .8 0 .3 8 8 * ns

Error 0 .2 5 7 8 0 .0 3 2

Ninth Regression 0 .1 0 4 1 0 .1 0 4  1 .6 5 ns 1 7 .1 0 .2 6 9
Error 0 .5 0 5 8 0 .0 6 3

Fifth Instar

Seventh Regression 0 .2 9 5 1 0 .2 9 5  1 3 .2 6 * * 6 2 .4 0 .7 3 8 * ns

Error 0 .1 7 8 8 0 .0 2 2

Ninth Regression 0 .1 5 5 1 0 .1 5 5  2 . 7 3 ns 2 5 .4 0 .5 3 4
Error 0 .4 5 5 8 0 .0 5 7

Seventh Instar

Ninth Regression 0 .4 5 7 1 0 .4 5 7  23 .64**** 7 4 .7 1 .2 5 3
* *

Error 0 .1 5 4 8 0 .0 1 9

* P  <  0.05, ** P  <  0.01, **** P  <  0.001, ns P  >  0.05.
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Table 4b. Density curve analyses with the linearized functional response model to assess
the linear, hyperbolic or sigmoid characteristics of the curve for the Newcombe-Van
Engel size ranges.

Instar Source of 
variation

SS df ms F r 2 P P > 0  p > l  
? ?

First Instar

Third Regression 0 .7 0 4 1 0 .7 0 4  5 .7 8 * 4 1 .9 0 .6 5 9 * ns

Error 0 .9 7 5 8 0 .1 2 2

Fifth Regression 0 .4 6 7 1 0 .4 6 7  1 7 . 4 0 - 6 8 .5 0 .5 3 3 * ns

Error 0 .2 1 5 8 0 .0 2 7

Seventh Regression 0 .1 3 1 1 0 .1 3 1  2 . 1 5 ns 2 1 .2 0 .2 8 4
Error 0 .4 8 8 8 0 .0 6 1

Ninth Regression 0 .0 4 7 1 0 .0 4 7  0 .3 0 ns 3 .6 0 .1 7 1
Error 1 .2 7 2 8 0 .1 5 9

Third Instar

Fifth Regression 0 .3 8 8 1 0 .3 8 8  1 0 . 5 6 - 5 6 .9 0 .5 1 9 * ns

Error 0 .2 9 4 8 0 .0 3 7

Seventh Regression 0 .3 5 1 1 0 .3 5 1  1 0 . 5 0 - 5 6 .8 0 .4 9 4 * ns

Error 0 .2 6 8 8 0 .0 3 3

Ninth Regression 0 .0 0 7 1 0 .0 0 7  0 .0 4 ns 0 .5 0 .0 7 1
Error 1 .3 1 2 8 0 .1 6 4

Fifth Instar

Seventh Regression 0 .3 8 9 1 0 .3 8 9  1 3 . 4 9 - 6 2 .8 0 .8 3 2 * ns

Error 0 .2 3 1 8 0 .0 3 0

Ninth Regression 0 .1 7 7 1 0 .1 7 7  1 .2 4 ns 1 3 .4 0 .5 6 2
Error 1 .1 4 2 8 0 .1 4 3

Seventh Instar

Ninth Regression 0 .0 0 4 1 0 .0 0 4  0 . 0 3 ns 0 .3 0 .0 9 5
Error 1 .3 1 5 8 0 .1 6 4

* P  <  0.05, ** P  <  0.01, ns P >  0.05.
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Table 5a. Density curve analyses with the annual mean density of each instar using the
Ricker Stock Recruit Function for the Newcombe size ranges.

Instar Source of 
variation

SS df ms F r2

First Instar

Third Regression
Error

0.274
0.793

1

8

0.274
0.099

2.76 25.6

Fifth Regression
Error

0.468
0.137

1

8

0.468
0.017

27.26**** 77.3

Seventh Regression
Error

0.929
0.271

1

8

0.929
0.034

2 7 11A

Ninth Regression
Error

1.125
0.417

1

8

1.125
0.052

16.40** 67.2

Third Instar

Fifth Regression
Error

0.381
0.067

1

8

0.067
0.008

45.30**** 85.0

Seventh Regression
Error

0.777
0.054

1

8

0.777
0.007

114.33**** 93.5

Ninth Regression
Error

0.973
0.243

1

8

0.973
0.030

32.08**** 80.0

Fifth Instar

Seventh Regression
Error

0.094
0 . 1 0 2

1

8

0.094
0.013

7.33* 47.8

Ninth Regression
Error

0.155
0.339

1
8

0.155
0.042

3.65ns 31.3

Seventh Instar

Ninth Regression
Error

0.003
0.111

1

8

0.003
0.014

0.24ns 2.9

* P  <  0.05, ** P  < 0.01, **** P  <  0.001, ns P  >  0.05.
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Table 5b. Density curve analyses with the annual mean density of each instar using the
Ricker Stock Recruit Function for the Newcombe-Van Engel size ranges.

Instar Source of 
variation

SS df ms F r 2

First Instar

Third Regression
Error

0.274
0.793

1

8

0.274
0.099

2.76 25.6

Fifth Regression
Error

0.517
0.233

1

8

0.517
0.029

17.12** 68.9

Seventh Regression
Error

0.956
0.319

1

8

0.956
0.040

23  9 8 **-* 75.0

Ninth Regression
Error

0.918
0.520

1

8

0.918
0.065

14.12** 63.8

Third Instar

Fifth Regression
Error

0.461
0.086

1

8

0.461
0 . 0 1 1

42.72**** 84.2

Seventh Regression
Error

0.587
0.078

1
8

0.587
0 . 0 1 0

60.30**** 88.3

Ninth Regression
Error

0.912
0.215

1

8

0.912
0.027

33.99**** 80.9

Fifth Instar

Seventh Regression
Error

0.016
0.111

1
8

0.016
0.014

1 .16ns 1 2 . 6

Ninth Regression
Error

0.067
0.188

1
8

0.067
0.023

2.87ns 26.4

Seventh Instar

Ninth Regression
Error

0.085
0.228

1
8

0.085
0.029

2.98ns 27.2

** P  <  0.01, **** P  <  0.001, ns P  >  0.05.
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Figure 10. Plot of the annual mean densities of third, fifth, seventh and ninth instars

against first instars using the Newcombe size classification system.
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Figure 11. Plot of the annual mean densities of fifth, seventh and ninth instars against

third instars using the Newcombe size classification system.
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hyperbolic while ninth instars were not dependent (Figure 12, Table 3-5). Ninth instars 

determined using the Newcombe-Van Engel size ranges were not dependent on seventh 

instars (Figure 9, Table 3-5).

Laboratory experiment

There were significant differences in crab survival for all main effects and no 

statistically significant interactions of effects (Table 6). Crab survival was higher (1) in 

vegetated habitats, (2) when untethered, and (3) with increasing crab size (Figure 13). 

Crab survival for seventh and ninth instars, while not being significantly different from 

each other, was significantly higher than survival for fifth, third, and first instars, which 

were all significantly different from each other (Ryan’s Q, a  =  .05, Table 6). Predation 

occurred in only 8% of the control treatments due to prey crabs molting and cannibalizing 

cohorts.

Sub-lethal predation

Sub-lethal predation was significantly higher in the presence of predators and when 

crabs were untethered for the fifth, seventh, and ninth instars (Figure 14). No sub-lethal 

predation occurred in crabs from the first and third instars and in treatments of control 

tethered crabs. Sub-lethal predation was not effected by habitat or size and there were 

no significant interactions of effects (Table 7). Percent of total missing appendages for 

all instars was 20% for claws, 68% for legs and 12% for swimming legs (Figure 14) and 

did not deviate from expected of 20% for claws, 60% for legs and 20% for swimming
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Figure 12. Plot of the annual mean densities of the seventh and ninth instars against fifth

instars using the Newcombe size classification system.
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Table 6. 3-way fixed factor ANOVA table and multiple comparisons for proportional 
survival in laboratory study.

Source df SS F Power

Habitat (H) 1 0.75111516 16.00*’,,,,,’,,
Tether (T) 1 0.36000120 1.61**
Size (S) 4 11.47385028 61.10****
H*T 1 0.00444422 0.09ns
H*S 4 0.30167257 1.61ns > .99
T*S 4 0.40944186 2.18ns > .8 0
h *t *s 4 0.13722161 0.73ns
ERROR 180 8.458866

TOTAL 199 21.8877932

** P <  0.01, *** P  <  0.001, ns P > 0.05.

Ryan’s Q Test of Multiple Comparisons (a =0.05). Means with the 
same letter are not significantly different.

Instar Mean survival Grouping

1 0.93333 A
3 0.67500 B
5 0.29167 C
7 0.11667 D
9 0.05000 D
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Figure 13. Proportional survival (X ± l se) after 24 h for each instar, tethered and 

untethered, in the presence or absence of predators. Underlined instars are not 

significantly different. Predation in the absence of predators was due to cannibalism by 

crabs that molted during the trial.
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Table 7. 4-way fixed factor ANOVA table for proportion of sub-lethal predation in 
laboratory study.

Source df SS F POWER

SIZE (S) 2 0.08224035 1.42ns
HABITAT (H) 1 0.02845920 0.98ns
TETHER (T) 1 0.13912830 4.79*
PREDATOR (P) 1 0.41043603 14.13**
S*H 2 0.05173035 0.89ns
S*T 2 0.12167855 2 09ns .74 <  P <  .76
S*P 2 0.11835732 2.04ns .72 <  P <  .74
H*T 1 0.00389880 0.13ns
H*P 1 0.00221880 0.08ns
T*P 1 0.01302083 0.45ns
S*H*T 2 0.01916295 0.33ns
S*H*P 2 0.03615845 0.62ns

2 0.02407032 0.41ns
JJ*T*P 1 0.03386880 1.17ns
5}*JJ*rp*p 2 0.03279185 0.56ns
ERROR 96 2.78933

TOTAL 119 3.90655

* P  <  0.05, ** P  <  0.01, ns P  >  0.05.
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Figure 14. Proportional sub-lethal predation (X ± l se) tethered and untethered crabs in 

the presence or absence of predators. There was no sub-lethal predation for first and 

third instars and tethered controls. For graphical representation data has been combined 

along the nonsignificant main effects of instar and habitat. Pie charts represent 

proportion of limbs missing for each treatment.
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legs (X22=4.721, 0.05 <  P  <  0.1). Composition of missing appendages for the fifth 

instars was 13% claws, 73% legs, and 14% swimming legs, for the seventh instars was 

33% claws, 63% legs, and 4% swimming legs, and for the ninth instars 22% claws, 66% 

legs, and 12% swimming legs.

Field Experiment

The mean water temperature at the field sites differed significantly by day 

(ANOVA, F5 31 = 10.76, P  <  0.0001) and not by location (ANOVA, F 131=0.07, 

P=0.7883) . Mean water temperature was highest prior to the storm, decreased during 

the storm, and was lowest the day after the storm, (Figure 15). The mean salinity did 

not differ by location (ANOVA, Fj 31=0.85, P = 0.3642) but was significantly higher 

during post-storm conditions (ANOVA, F5 31 =5.53, P = 0.0009) (Figure 15).

Water height within the York River increased above expected height from 23 

September until reaching a maximum of 2.34 ft above expected on 25 September (Figure 

16). Water levels then decreased until returning to expected levels on 28 September.

Sediment composition did not differ significantly by location (G-Test, X2x =0.49, 

P=0.7838) or habitat (G-Test, X2x =0.11, P=0.9488) and the mean composition was 2% 

gravel, 90% sand, and 8% mud. Mean proportion of eelgrass of total shoot density of 

eelgrass did not differ by location (ANOVA, F 1>39=0.01, P=0.93). Total shoot density 

(ANOVA, F! 39=0.01, P=0.93) and dry weight (ANOVA, F 139=0.03, P=0.875) did 

not differ significantly by location. Back transformed mean total shoot density was 

19.294 (1.982 sd) shoots/0.1 m2 with a mean dry weight of 0.835 (0.521 sd) g/0.1 m2.
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Figure 15. Mean daily salinity and water temperature (X +  1 sd) during tethering 

experiment. Water temperature was not significantly different between location (two-way 

fixed factor ANOVA with date and location as independent variables, F 131 salinity=5.53, 

p =  .0009; F 131 water temperature=0.07, p =  .7883) and data combined. Dates with the 

same letter were not significantly different.
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Figure 16. Water height deviation from projected from 21 September to 1 October 1992 

at VIMS.
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Relative rates of predation

Crab survival was significantly higher (1) in vegetated habitats, (2) with increasing 

crab size (fifth, seventh, and ninth instars survival >  first and third instars survival), and 

(3) during storm and post-storm conditions. Location (north shore vs south shore) and 

density of tethered crabs (23 crabs/m2 vs 46 crabs/m2) did not significantly effect survival 

of newly settled blue crabs and there were no significant interaction effects (Table 8).

During pre-storm conditions crab survival was higher in vegetated habitats for first 

and third instars while for the fifth, seventh and ninth instars not significantly different 

than survival in unvegetated habitats. Survival was higher for fifth, seventh, and ninth 

instars. Under storm conditions, survival was significantly higher for all instars in both 

habitats with survival in vegetated habitats significantly higher than unvegetated habitats, 

and retaining the increased survival with size. Losses at low density crab treatments in 

both habitats was zero from September 24th at 1400 to 0700 on September 25th, indicating 

that crabs were not "ripped off" their tethers by increased tidal and wave action during 

the storm. Survival during post-storm conditions decreased from storm conditions for 

both habitats for first, third, and ninth instar crabs while remaining elevated for fifth and 

seventh instars and was significantly higher than pre-storm survival (Figure 17, Table 8).

Qualification of predators

One lethal predation event by a larger blue crab and 4 sub-lethal attacks by 

Gobisoma (sp) in groups of two or three were recorded in the grass habitat. No lethal 

or sub-lethal predation events were recorded in the sand habitat. Four larger than fifth
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Table 8. G-test analysis of variance table for 
the field tethering experiment.

Source df X 2 P Power

Intercept 1 154.06 0.0001
Size (S) 4 18.07 0.0012
Density (D) 1 0.24 0.6276
Habitat (H) 1 15.75 0.0001
Storm (ST) 2 8.38 0.0152
S*D 4 1.32 0.8585
S*ST 8 3.87 0.8686
S*H 4 4.41 0.3531
D*H 1 1.83 0.1764 > .8 0
H*ST 2 2.75 0.2532
D*ST 2 0.48 0.7857
S*D*H 4 1.09 0.8960
S*D*ST 8 2.35 0.9684
S*H*ST 8 10.48 0.2327
D*H*ST 2 4.17 0.1244 > .8 0
S*D*H*ST 8 5.78 0.6717

** P < 0.01, **** P  <  0.0001, ns P > 0.05.

(b) Lower level G-Test for multiple comparisons

Main Effect Source df X2

Size 1st vs 5th 1 8.57ns
1st vs 3rd 1 3.07ns
1st vs 9th 1 15.40*
5th vs 9th 1 0.81ns
1st,3rd vs 5th,7th,9th 1 22.33*

Storm Pre vs Storm 1 7.92*
Pre vs Post 1 11.47*
Storm vs Post 1 0.30ns
Pre, Post vs Storm 1 1.30ns

* P < P  main effect ns P > P main effect
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Figure 17. Proportional survival for each instar in vegetated and unvegetated habitats 

during pre-storm, storm, and post-storm conditions. Crab survival significantly increased 

in vegetated habitats (G-Test, X2{ =  15.75, p =  .0001) with crab size (G-Test, X2A= 18.07, 

p= .0012), and during storm and post-storm conditions (G-Test, X22=8.38, p=0.0152). 

Instars sharing an underline did not have significantly different survival. Crab survival 

did not differ by location (G-Test, X2{ =  0.51, p=.4735) or density (G-Test, X2x =  0.24, 

p =  .6276) and data combined.
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instar blue crabs were observed in foraging behavior; however they did not successfully 

find the tethered prey crab.

Lethal attacks by larger blue crabs on smaller blue crabs (video analysis, personal 

observation) are characterized by ambushing of the prey crab with swift forward sweeping 

motions of the claws of the larger blue crab. The predator crab then holds the smaller 

crab by the body and systematically fractured the claws of the prey crab with an outward 

snapping motion. The crab then manipulated the prey so that the dactyl of one claw is 

placed in the mouth of the prey crab and the other held the carapace of the crab along the 

anterior margin. The predator crab then pried the crab apart and consumed the internal 

soft portions.

In contrast, Gobisoma (sp) consumed first and third instar crabs whole (personal 

observation) and attacks on larger instar were sublethal, resulting in missing appendages 

(video analysis, personal observation). While attacking, Gobisoma (sp) in groups of two 

or three swam quickly towards the lateral or posterior aspects of the prey crabs from 

various angles, conspicuously avoiding the anteriorly located claws. The fish would then 

bite at a leg of the crab as the crab attempted to escape by swimming upward (video 

analysis, personal observations) Tethered and untethered crabs exhibited the same escape 

response with equal success. The attacking Gobisoma (sp) (a benthic fish) would not 

swim after the crab once it was 5 cm above the bottom.
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Blue crab abundance

Blue crabs densities at the Goodwin Islands and Guinea Marsh during the field 

study were significantly lower in (1) sand habitats and (2) under pre-storm conditions. 

While location was not a significant main effect, there was a significant interaction effect 

between location and date and location and habitat (Table 9, Figure 18). Crab densities 

at the Guinea Marsh were significantly higher after the storm (lower level ANOVA 

Fj 20=37.80, P  <  0.0001) while the densities at the Goodwin Islands were not 

significantly different by date (lower level ANOVA Fj 2o=2.00, P = 0.1723). Blue crab 

densities in vegetated habitats were not significantly different by location on the pre-storm 

date (lower level ANOVA F 1U =0.36, P=0.5610) and significantly higher at the Guinea 

Marsh location on the post-storm date (lower level ANOVA F U1 =34.51, P <  0.0001). 

Crab densities were significantly lower in unvegetated habitats at the Guinea Marsh 

location on the pre-storm date (lower level ANOVA F 1U =27.48, P = 0.0004) and not 

significantly different by location on the post-storm date (lower level ANOVA 

F U1 =0.003, P=0.9553).

There was no difference between the analysis of size frequencies using the two 

size ranges. Hence, the results using the Newcombe size range are reported to be 

consistent with the tethering experiments. Size frequencies were significantly different 

by date and there was a significant interaction between location and habitat (Table 10). 

The date effect is due to significantly higher frequencies of megalopae and first instars 

after the storm in both habitats and locations. Frequencies of 0 year-class blue crabs 

larger than first instars were not significantly different by date (lower level G-test,
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Table 9. Three-way ANOVA table for the abundance of 
blue crabs during the field tethering experiment.

Source df SS F

Date (D) 1 
Location (L) 1 
Habitat (H) 1 
D*L 1 
L*H 1 
D*H 1 
D*L*H 1

7.24
1.04

202.73
24.10
31.16
1.34
0.05

7.26*
1.04ns

203.37****
24.18****
31.26****
1.34ns
0.05ns

* P  <  0.05, **** P  <  0.001, ns P  >  0.05.

(b) Lower level ANOVA’s for the date x location interaction 
effect by habitat. Treatments are arranged in increasing order 
of abundance and are not significantly different if sharing 
an underline. GI=Goodwin Islands, G M = Guinea Marsh.

Interaction
Date Sand Grass

September 21 
September 28

GM GI 
GI GM

GI GM 
GI GM

Location

Goodwin Islands 
Guinea Marsh

9/28 9/21 
9/21 9/28

9/28 9/21 
9/21 9/28

(c) Lower level ANOVA’s for the location x habitat interaction 
effect by date. Treatments are arranged in increasing order 
of abundance and are not significantly different if sharing 
an underline. GI=Goodwin Islands, GM =Guinea Marsh.

Interaction
Location September 21 September 28

Goodwin Islands 
Guinea Marsh

Sand Grass 
Sand Grass

Sand Grass 
Sand Grass

Habitat

Sand
Grass

GM GI GI GM
GI GM GI GM
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Figure 18. Density of crabs/m2 at the Guinea Marsh and Goodwin Islands on 21 (pre

storm) and 28 (post-storm) September 1992 in grass and sand habitats. Bars with the 

same symbol are not significantly different.
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Table 10. G-test analysis of variance table for 
the size frequency of blue crabs during the 
field tethering experiment.

Source df X2

Intercept 4 61.64****
Date (D) 4 9.98-
Location (L) 4 9.03ns
Habitat (H) 4 6.73ns
D*L 4 3.86ns
D*H 4 6.77ns
L*H 4 11.74-
D*L*H 4 7.16ns

Residual 0 -0.00ns

* P < 0.05, —  P  <  0.001, ns P  >  0.05.

(b) Lower level G-test for the Location x Habitat 
interaction effect. Treatment levels that are 
not significantly different are underlined.

Interaction
Location Habitat

Goodwin Islands Sand Grass
Guinea Marsh Sand Grass

Habitat Location

Grass
Sand

Goodwin Islands Guinea Marsh
Guinea Marsh______ Goodwin Islands
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Figure 19. Size frequencies of crabs during the field tethering study at the Guinea Marsh 

and Goodwin Islands. Frequencies of 1 +  crabs was significantly higher at the Guinea 

Marsh location while frequencies of <  3.1 mm crabs was significantly higher on the 

post-storm date.
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X22= 2 .13, P=0.35), location (lower level G-test, X22=2.05, P=0.36), or habitat (lower 

level G-test, X22=4.05, P = 0 .13) or had any significant interaction effects (Figure 19). 

The location habitat effect is due to significantly more 1+ year-class blue crabs in sand 

habitats than grass habitats at the Guinea Marsh location (lower level G-test, X21=5.84, 

P=0.0157) before and after the storm.

Megalopae plankton abundance and settlement

Two significant peaks in blue crab megalopae planktonic abundance occurred 

while there were no significant peaks in megalopae settlement during 22-28 September 

1992 (Figure 20). Peaks in blue crab megalopae planktonic abundance occurred on 22 

and 27 September 1992. There was an increasing trend in blue crab megalopae 

settlement associated with the new moon on 26 September, it was not greater than two 

times the yearly mean settlement.
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Figure 20. Mean blue crab megalopae planktonic abundance during maximum flood tide 

and mean nightly settlement from 15 August to 15 October 1992 at VIMS. The line 

through each graph represents two times the yearly mean abundance or settlement, above 

which peaks in abundance or settlement are considered significant. Dates marked with 

open circles represent the full moon, solid circles the new moon. Dotted vertical lines 

enclose period of field experiment.
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Discussion

Instar classification

There appears to be no difference between the Newcombe and the Newcombe-Van 

Engel classification systems. There were no differences in the cw for crabs smaller than 

the fifth instar, indicating that the sizes of the first five instars have low variability. 

Carapace width differs between the two classification systems after the fifth instar, with 

the Newcombe ranges smaller. However, there were differences between the annual 

mean densities of the fifth, seventh, and ninth instars as compared by 95% confidence 

intervals (Figures 5-7) the annual mean densities were highly correlated (Figures 5-7) 

indicating that yearly trends are adequately represented by both classification systems. 

Additionally, all statistical tests using frequencies or densities of crabs by instar were 

performed using both the Newcombe and Newcombe-Van Engel size ranges and were not 

different. While the Newcombe size ranges are smaller, either classification system will 

adequately represent the density or frequency of first through ninth instar crabs.

Loss of 0 vear-class blue crabs in seagrass beds

The relationship of the mean annual densities of larger instar crabs to smaller 

instar crabs between the first seven instars was either a positive hyperbolic or parabolic 

function indicating a negative density-dependent relationship. Density-dependent losses 

were between the first and third, first and fifth, first and seventh, third and fifth, third 

and seventh, third and ninth, and fifth and seventh instars (Tables 3-5, Figures 9-11). 

While both of these functions are indicative of regulation by density-dependent processes
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they have different end results on a population. The hyperbolic function indicates a 

constant maximum population level that is not effected by high values of the independent 

variable. The opposite is true of the parabolic function in that at once the maximum 

sustainable population is reached further increases in the independent variable result in 

decreases in the dependent variable. These decreases may result from increased predation 

or competition for resources resulting in increased natural mortality or emigration to other 

habitats (Menge and Sutherland 1987).

The relationship between instars within seagrass beds begins to decay once newly 

settled crabs start emigrating to unvegetated habitats; the fifth through ninth instars. 

Mean annual densities of seventh instars were dependent on fifth instars and regulated by 

density-dependent processes. Additionally, there was a possible linear relationship 

between seventh and ninth instars. This indicates that a different suite of processes are 

regulating the abundances of these larger instars.

Predation on juveniles is a major deterministic process characteristic of inverse 

density dependent relationships for many marine species. Previous studies on inverse 

density dependent relationships have been focused on typical predator-prey relationships 

(e.g. crab-clam Lipcius and Hines 1986, Mansour and Lipcius 1990, Eggleston et al. 

1992) while this study considers newly settled blue crabs as prey. Density of tethered 

crabs did not significantly affect the survival of newly settled blue crabs in the field 

tethering study (Table 8). This may be due to selecting experimental densities that were 

on portions of the density dependent survival curve that resulted in the same proportional 

survival. The effect of crab density may be confounded by the profound effect that
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Tropical Storm Danielle had on relative rates of predation. Further studies on the effects 

of newly settled crabs densities on survival are warranted before predation can be 

eliminated as a factor in density dependent loss to the nursery habitat.

Identification of predators

The observed predation event by a larger blue crab and foraging behavior of four 

larger blue crabs for the prey crab suggests that conspecifics are a major predator of 

newly settled blue crabs. Intra (Hines et al. 1990, Laughlin 1982, Mansour 1992, 

Moody and Lipcius unpublished data) and inter year class (Perry 1989, Moskas and van 

Montfrans unpublished data) cannibalism is common for blue crabs. Conspecifics can 

comprise between 2% (Hines et al. 1990) to 39% (Mansour 1992) of the diet of 1+ year 

class blue crabs. Similarly, dungeness crabs (Botsford and Wickham, 1978, Fernandez 

et al. 1993) and the cape anchovy (Szeinfeld 1991) exhibit intra and inter year-class 

cannibalism. Cannibalism may function to regulate year class size or provide food of a 

higher nutritional content (Polis 1981).

The sub-lethal predation during the laboratory study and observed in the field is 

characteristic of agonistic behavior amongst blue crabs and attack behaviors when dealing 

with dangerous prey. The agonistic behavior between blue crabs is evident by the lack 

of limb loss for tethered crabs in the absence of predators (Figure 14). These crabs were 

far enough apart so that interaction was prevented. In contrast, 8% of untethered crabs 

in the absence of predators lost limbs (Figure 14). Agonistic behavior in a variety of 

laboratory studies (Mansour and Lipcius 1991, Lipcius and Moody unpublished data)
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using larger blue crabs has similarly resulted in limb loss. Missing limbs are common 

in blue crabs, comprising 18-23% of natural populations (Smith 1990). The presence of 

predators resulted in a significantly higher percent of limb loss in both tethered and 

untethered treatments (Figure 14) and this study suggests that sub-lethal predation is 

responsible for a significant loss of limbs in newly settled blue crabs.

These results are consistent with attack patterns exhibited by diamondback 

terrapins (Malaclemys terrapin) on shore crabs (Carcinus maenas). When crabs were 

larger than could be consumed, turtles attacked crabs from the lateral or posterior aspects 

and frequently removed the 3rd and 4th pairs of legs while avoiding the anteriorly 

positioned claws (Davenport et al. 1992). Similarly, the attack behaviors of predatory 

blue crabs focused their initial effort on disabling the prey crab by removing the claws 

prior to consumption, whereas Gobisoma (sp) consumed walking legs when prey crabs 

were too large to eat whole.

Tethering accuracy and bias

Tethering was demonstrated to be an appropriate method to assess predator- 

induced mortality on newly settled blue crabs. The lack of any statistically significant 

interaction effects between habitat, crab size, and tethering (Figure 13, Table 6) indicates 

that the technique is unbiased. However, since crab survival was significantly lower for 

tethered crabs (Figure 13, Table 6) any results would not yield an accurate rate of 

predation. Yet just as untethered crabs, tethered crabs had significantly higher survival 

rates in vegetated habitats which increased with crab size (Figure 13). Thus, field
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experiments using this experimental framework would measure relative rates of predation 

that assessed predator-induced mortality between treatments.

Previous field studies utilizing tethering to examine relative rates of predation for 

blue crabs (Heck and Thoman 1981, Wilson et al. 1987, 1990), spiny lobsters (Hermkind 

and Butler 1986, Eggleston et al. 1990,, 1992, Mintz 1992, Smith and Hermkind 1992, 

Lipcius et al. 1993 in review), American lobsters (Wahle and Steneck 1991, 1992), and 

dungeness crabs (Fernandez et al. 1993) have not quantitatively tested the accuracy of 

predation rate or for the presence of bias and assumed that the rate was an inaccurate and 

unbiased measure of the relative rates of predation. The quantitative method of indicating 

bias as the statistical interaction between treatments (Barshaw and Able 1990, Marshall 

1992) is a more powerful method to determine bias and should be utilized in all tethering 

experiments.

The effects of habitat and size on crab survival

Crabs had significantly higher survival in vegetated habitats and with increasing 

crab size in both the laboratory (Figure 13, Table 6) and field (Figure 17, Table 8) 

experiments. During the field study crab survival was significantly higher in vegetated 

habitats and with increasing size regardless of the storm conditions (Figure 17, Table 8). 

The lack of statistically significant interactions between habitat, crab size and storm 

conditions indicates that where survival was significantly higher during and after the 

storm the main effects of habitat and size, while smaller during pre-storm conditions, are 

valid.
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Habitat effects were different during pre-storm conditions as compared to storm 

and post-storm conditions (Figure 17). During pre-storm conditions there was 

significantly higher survival in vegetated habitats for first, third, fifth and seventh instar 

crabs while survival for ninth instar crabs was not significantly different by habitat. In 

contrast, survival was significantly higher in vegetated habitats during storm and post

storm conditions for all instars. There was of increasing survival as crab size increased 

in both vegetated and unvegetated habitats. Survival was significantly higher for fifth, 

seventh, and ninth instars than first and third instars in the field (Figure 17, Table 8). 

While in the laboratory survival increased with size from the first through the seventh 

instars with the survival of seventh and ninth instars not significantly different (Figure 13, 

Table 6). The laboratory study utilized a representative guild of small predators from 

both vegetated and unvegetated habitats. This is an inherent limitation of laboratory 

studies and the larger instar crabs reached a size refuge that is artificial for the field 

conditions.

The higher survival in vegetated habitats is consistent with previous studies for 1+ 

year-class blue crabs (Heck and Thoman 1981, Wilson et al. 1987, 1990). However, 

previous studies indicated no increase in survival associated with increasing size (Heck 

and Thoman 1981, Wilson et al. 1987, 1990). These studies utilized crabs ranging from 

12-80 mm cw and this study is unique in evaluating predation induced mortality in the 

field for 0 year-class blue crabs (Table 2). Survival increased with increasing size 

through the fifth instar (7.5-9.1 mm cw) and was not significantly different for crabs 

from the fifth through the ninth instar (7.5-16.1 mm cw) indicating that a size refuge
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from predation for 0+ year-class blue crabs is reached by the fifth instar. Similarly, 

increased habitat complexity and increasing size does provide a refuge from predation for 

0 year-class spiny lobsters (Hermkind and Butler 1986, Smith and Hermkind 1992), 

American lobsters (Wahle and Steneck 1991, 1992), and dungeness crabs (Fernandez et 

al. 1993), other juvenile marine invertebrates (e.g. Paine 1966, Sousa 1992, Ugaccioni 

and Posey 1992) and vertebrates (e.g. Connell and Jones 1991, Cowan and Houde 1992).

Increasing size within a complex habitat hypothetically creates a situation in which 

the number of appropriate crevices becomes limiting resulting in increased predation or 

emigration to a more suitable habitat (Caddy 1986). While this is easy to conceptualize 

for obligate crevice dwellers (i.e. spiny and American lobsters, dungeness crabs) seagrass 

and algal habitats provide a structure that creates niches suitable for hiding in both the 

leaf structure (Robinson and Wellborn 1987, Wellborn and Robinson 1987, Ryer 1988, 

Hacker and Steneck 1990) and rhizome mat (Orth et al. 1984). As the crabs grow, 

competition for larger crevices limits the effectiveness of the complex habitat as a refuge 

from predation and may create a bottleneck for the population. When predation risk is 

equal to that of other habitats emigration to less complex habitats occurs (Smith and 

Hermkind 1992).

Effects of Tropical Storm Danielle

The close passage of Tropical Storm Danielle to the field location (Figure 2) had 

profound effects on the relative rates of predation and habitat utilization of the 0 year- 

class blue crabs. Survival of 0 year-class crabs was significantly higher during and 

immediately following the storm and relative rates of predation were 0 for a 17 h period
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during the storm. There is little information available on the effects of storms on 

predation pressure and most researchers briefly mention the effects of a storm as an aside. 

This finding is opposite from that of Aronson (1992) who found no effect on arm loss of 

tethered star fish, Ophiothrix oerstedi, due to hurricanes in the Caribbean. However, 

Reis wig (1971) found that filter feeding tropical sponges stop filtering water during storm 

events with in situ experiments. Additionally, during a storm conditions in the southern 

Kattegat phytoplankton grazing by zooplankton ceased (Nielsen and Kioerboe 1991).

Decreased predation during the storm may be due to changes in a variety of 

physical factors that caused behavioral changes in predator and prey. There was a 5° C 

drop in mean temperature associated with the storm (Figure 15). Sharp decreases in 

temperature are associated with decreased activity level for a variety of crustaceans 

(Eggleston 1988, Lipcius unpublished data). Additionally, predators utilizing visual (e. 

g. Atlantic croaker (Micropogonias undulatus) and the naked gobi) and chemotacticle 

(blue crabs) search modes would have been severely hampered during the storm due to 

increased turbidity (Gilmurray and Dubom 1981, Minello et al. 1985, 1987) and 

turbulent flow (Moore et al. 1991, Weissburg and Zimmer-Faust 1993).

The absence of spontaneous return of survival rates at both locations to those 

associated with pre-storm conditions is linked to the residual effect of the storm on the 

physical environment. Water levels did not recede to normal until 28 September (Figure 

16), temperature did not rise to pre-storm levels until 27 September (Figure 15), and 

salinity increased after the storm. This is typical for storm events which create surges 

of water into the Chesapeake Bay. Time series analysis of water height to projected
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water height during 1985 indicated that it takes three days for water heights to return to 

the projected levels after a storm surge (David Evans, The College of William and Mary, 

Virginia Institute of Marine Science, personal communication). The delay in the return 

of the physical environment to pre-storm levels prolongs the effect of the storm and 

contributes to the increased survival of newly settled blue crabs during post-storm 

conditions.

Storm events are common during the recruitment period of the blue crab (July - 

November) and are associated with peaks on megalopeal recruitment (Goodrich et al. 

1989, Olmi unpublished data). These events are highly correlated with east winds which 

create surface Eckman Transport from offshore into the mouth of Chesapeake Bay 

facilitating the transport of blue crab megalopae from offshore into the initial nursery 

habitats of the Lower Chesapeake Bay (Goodrich et al. 1989, Olmi unpublished data). 

Settlement events are also associated with new and full moon periods (van Montfrans et 

al. 1990). A new moon occurred on September 26, 1992 and the increase in megalopae 

and first instar crabs frequencies at both locations (Figure 19, Table 10) is due to a post

storm new moon settlement event. This event coincided with an increase of blue crab 

megalopae in the nightly plankton samples (Figure 20). While increased blue crab 

megalopal settlement were not high enough to be considered a settlement event at VIMS, 

the field location is 12 km down stream from the monitoring point and VIMS may be 

projecting a lower record due to unusual flow regimes associated with the storm.

This study suggests that survival of newly settled blue crabs may be enhanced 

during storm events due to decreased predation pressure during and immediately
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following a storm event. Caution should be used since evidence is limited by the 

sampling period and it is possible that the post-storm decreasing trend in survival may 

drop below non-storm conditions before returning to non-storm levels or a rebound effect. 

A rebound effect could have a net result on survival that would (1) be greater than the 

increased survival due to the storm resulting in a net decrease in survival, (2) be equal 

to the increase in survival due to the storm resulting in no net effect on survival or (3) 

be lower than the increase in survival due to the storm resulting in a net increase in 

survival. Further studies are necessary to determine the overall effects of storms on 

predation levels.

Additionally, there was an increase in blue crab densities at the Guinea Marsh 

location (Figure 18, Table 9) . Crab densities were significantly higher on the northern 

shore which was the lee side of the storm. This suggests that during the storm crabs 

found refuge in the lower energy regimes associated with the northern shore and were not 

moved with the storm surge to the southern shore. While a portion of this was due to 

the post-storm settlement event there was a proportional increase in the frequencies of 

crabs larger than the first instar (Figure 19). This may indicate that early benthic stages 

of blue crabs may have the capability to select a habitat associated with a lower energy 

regime during a storm event.

While storms of the magnitude of Tropical Storm Danielle are not frequent 

occurrences, storm of smaller magnitude do occur frequently within the Chesapeake Bay. 

The effects of these storms on blue crabs is unclear, yet they are reflected in the mean 

annual densities used to determine the inter-instar relationships. Storm events are a
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portion of the dynamic environment that organisms live. However, it has not been 

determined if they are destructive or beneficial to marine communities. This study 

suggests that storms potentially enhance blue crab populations by increasing survival from 

predation.

Conclusions

The influences and controlling factors of populations vary during different life 

history stages (Paulik 1973, Fogarty and Idoine 1986, Lipcius and Cobb in press). The 

results of this study are novel in that they present evidence that density dependent 

processes are influencing loss of newly settled blue crabs to the initial nursery habitat and 

examine the effects of habitat complexity and size as refuges from predation, a density 

dependent process was examined.

This study is unique in demonstrating a density dependent loss within the O-year- 

class of a decapod crustacean in the initial nursery habitat. Fogerty and Idoine (1986) 

by examining larval abundance and subsequent harvests for the American lobster 

concluded that the early benthic stages may be subject to density dependent controls . 

However, a density dependent relationship within the 0 year-class of lobsters has yet to 

be demonstrated. Phillips’ (1990) re-evaluated the claim that density dependent processes 

on the juvenile western rock lobster (Panulirus cygnus) at nursery reefs were the 

determinant of year-class strengths of recruitment to the fishery. Now he suggests that 

density dependent processes are occurring at the extreme highs and lows of the 

populations and density independent processes at the intermediate levels.
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Ontogenetic shifts in habitat utilization are common for other decapod crustaceans 

such as spiny lobsters (Hemnkind et al. 1975, Marx and Hermkind 1985, Hermkind and 

Butler 1986) and American lobsters (Cobb 1983, Botero and Atema 1982, Wahle and 

Steneck 1991) and remains uninvestigated for early benthic stages of the blue crab while 

juvenile and adult blue crabs partition themselves by habitats within the Chesapeake Bay 

(Van Engel 1958, Miliken and Williams 1984, Hines et al. 1987). The seagrass beds of 

the lower Chesapeake Bay serve as the initial nursery habitat (Heck and Thoman 1984, 

Orth and van Montfrans 1987, Orth and van Montfrans 1990, Lipcius et al. 1993). 0 

year-class blue crabs are not found outside of vegetated habitats until the third instar, and 

not at significant densities until the fifth instar (Orth and van Montfrans 1987, Lipcius 

et al. 1991). In this study, the frequency of 0 year-class crabs was significantly higher 

in vegetated habitats, while the frequency of 1 +-year class crabs was significantly higher 

in unvegetated habitats (Figure 19, Table 10). The appearance of fifth instar crabs in 

unvegetated habitats is associated with a decrease in crab densities in seagrass habitats 

(Figure 8, years 1984, 1991, 1992) and the low variability in annual mean density 

associated with crabs larger than the seventh instar, suggesting an ontogenetic shift in 

habitat utilization.

Further evidence for an ontogenetic shift in habitat is provided by the inter-instar 

relationships. Since crabs smaller than the fifth instar are not found outside of vegetated 

habitats it is valid to assume that seagrass habitats are a closed system or that larger 

instars result from the growth of smaller instars. The densities of fifth, seventh, and 

ninth instars were dependent on third instars and regulated by density-dependent
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processes. However, these inter-instar relationships change or become not significant 

beginning when subsequent densities depend on the fifth instar. This indicates that the 

densities of fifth, seventh, and ninth instars are not solely dependent on each other and 

that other processes are regulating these instars. Further, the size refuge associated with 

vegetated habitats is maximize between the fifth and ninth instar resulting in a predation 

risk may be similar in unvegetated habitats, as evident by the identical survival of ninth 

instar crabs in vegetated and unvegetated habitats during pre-storm conditions. If 

predation pressure is equal between habitats then other factors (e. g. food resources, 

increased size with ecdysis associated with lower salinities) may be controlling emigration 

to unvegetated habitats and further investigation is warranted.

This study provides evidence that seagrass beds are a crucial nursery habitat for 

newly settled blue crabs. Yet, the Chesapeake Bay has experienced an unprecedented 

decline in seagrass beds since the 1970’s (Orth and Moore 1983). This loss of habitat 

has been associated with a decrease in the catch per unit effort in the blue crab fishery 

(Anderson 1989). Restoration of seagrass beds is warranted for the successful survival 

of the blue crab within Chesapeake Bay.
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