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ABSTRACT

Analyses of an extensive network of high-resolution 
seismic records and borehole samples including sediment- 
ological and aminostratigraphical data outline three 
generations of drainage valleys beneath the continental 
shelf south of the Chesapeake Bayrs mouth.

Based on the geomorphic distributions, internal 
structures, and amino acid geochronology of the fill 
sequences, the three systems have been identified to 
be compatible in age with the well-defined Cape 
Charles, Eastville, and Exmore ancient valley systems 
beneath the Chesapeake Bay.

Analysis of fourteen aminostratigraphic samples 
from the paleochannel fills, overlying barrier-spit 
complex, and basal strata yielded A/I values 
ranging from 0.01 to 0.55 (basal strata), 
corresponding to oxygen isotope Stages 1 to 12.
The A/I values for the fill sequences of the three 
paleochannel systems are 0.01, 0.10 - 0.15, and
0.15 - 0.21, apparently corresponding to the Stages 2,
6, and 8, or to ages of 30 +/- 10 kyr, 150 +/-20 kyr, 
and 260 +/-20 kyr BP respectively.

The two lower paleochannel systems are late 
Pleistocene, fluvial dominated deposits, with the 
characteristics of relatively strong and irregular 
seismic reflections, physically consisting of coarse 
sand and fine gravel; the upper paleochannel system, 
in contrast, shows relatively weak and smaller- 
scaled reflections, with finer and litho- 
logically complicated muddy sand-silt-peat deposits 
which indicate a nearshore marine (at a baymouth) and 
/or a restricted river-estuary to open-bay environment.

The sedimentological and sedimentary analyses of the 
boreholes (grain-size analysis, X-ray stratigraphy, 
paleotonlogical analysis, Q-mode factor analysis, etc) 
further support our determinations for the paleo— 
channel systems.



AN INVESTIGATION OF 

LATE PLEISTOCENE PALEOCHANNEL SYSTEMS 

IN THE CONTINENTAL SHELF, SOUTH OF CHESAPEAKE BAY MOUTH



OVERVIEW

In recent years, investigators have been working to unravel the 

history of the Quaternary paleochannel systems in the Chesapeake Bay and 

adjecent areas by interpreting high-resolution seismic reflection 

records, geological mapping, and analyzing borehole data and beach 

sediments (Shideler et al., 1984; Mixon, 1985; Williams, 1987; Colman and 

Hobbs, 1987, 1988; Colman et al., 1988, 1990; Colman and Mixon, 1988; and 

Hobbs, 1990).

These studies, combined with the researches in the Quatenary 

evolution of the inner shelf of Virginia (Shideler et al., 1972; Swift et 

al., 1975; Cronin et al., 1981; Balknap et al., 1981; Wehmiller et al., 

1982 and 1988; Niedoroda et al., 1985; Peebles, 1984; Shideler et al., 

1984; Finkelstein and Kearney, 1988; Hobbs, 1990) and on the origin and 

the dynamic features of the sand and shoal complex in the lower 

Chesapeake Bay (Kimball et al., 1989; Kimball and Dame, 1989; and Dame, 

1990), have greatly extended our knowledge on these subjects, especially 

on sea-level fluctuations and the coastal sedimentation history. The 

evidence provided in these studies suggests that at least three major 

paleochannels exist beneath the Bay which were the late Pleistocene 

fluvial channel systems in the bay, and may represent three major events 

of sea level low stand during Pleistocene time.
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In a recent study, Colman et al. (1990) offered an excellent review 

on the historical development of our knowladge about the paleochannel 

systems beneath the Chesapeake Bay and the Delmarva Peninsula, as well as 

about the associated geological problems in this region. They outlined 

the regional geographic and temporal pattern of the paleochannels, 

discussed the origin and the preservation of the paleochannels within the 

bay, as well as the long-term evolution of the bay.

The three major paleo-channel systems are informally refered to as 

the Cape Charles, Eastville, and Exmore channels in young-to-old age 

order. The Cape Charles Channel is estimated to be related in age to the 

time of Imbrie*s oxygen-isotope stage 2, at about 18 ka, the late 

Wisconsin glacial maximum. This has been supported by geomorphic and 

stratigraphic evidence (Colman and Hobbs, 1987; Colman et al., 1988).

The age estimates for the two older paleochannel systems have been 

the subject of considerable discussion and intensive argument (Cronin et 

al., 1981; Wehmiller and Balknap, 1982; Szabo, 1985; Wehmiller et al., 

1988; Colman et al., 1988; and Mixon, 1982). Although so, the generally 

proposed ages for the two paleochannels beneath the bay are considered to 

be 150 +/- 20 ka and 260 +/-20 ka BP, or correspondant to the Stage 6 and 

Stage 8.

However, the existing geochronologic and stratigraphic knowledge 

exclusively derived from the bay and/or from the Delmarva region can not 

be applied directly to this study area without careful examination 

(Figure 1, this study area).
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The geographic distributions of the paleochannel systems in the study 

area need to be investigated. Furthermore, the age assigments for the 

paleochannel systems in the study area need to be estimated which then 

would allow a better reconstruction of the evolution of the paleochannel 

systems in the region. Systematic study of the seismic stratigraphy and 

the sedimentological features are essential for estimating the 

paleoenvironments and the relative ages of the stratigraphic units within 

the paleochannel systems. The determinations of the absolute ages of the 

fillings and/or the fossil records are significant approaches for 

depicting the geohistory of the sedimentation, and may also provide some 

information about the rate and the scale of the sea—level changes in the 

Middle Atlantic Bight region.

3
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REGIONAL GEOLOGY

1. Brief Geo-history of the Chesapeake Bay Region

Prior to Permian time, approximately 225 million years ago, the North 

America Continent was centered around what is now Hudson Bay. Its 

southern shorelines were through the present day Great Lakes and southern 

Ontario; the region that was to become the Chesapeake Bay lay thousands 

of kilometers offshore (Hallam, 1974).

By the end of the Permian time, the three continents of North 

America, Africa, and Europe had drifted together. The sediments caught 

among the colliding plates were folded; the subsequent faulting and 

metamorphism exerted their utmost on the previous sediments, as a result 

the rocks of the piedmont Province were emplaced.

During the Triassic time the united continent, the Pangea, began to 

drift apart. At the continental edges, huge faults and rifts were very 

active, creating enormous valleys or 'red-bed' basins. Sediments worn 

from the mountains were deposied into the foreland basins. Sandy and 

silty fluvial deposits spread over the Appalachian regions, formed the 

Potomac Group of Cretaceous age.

With the widening of the huge 'cracks’ between continents, the Tethys 

Sea invaded the opening(s), and the Atlantic Ocean began to form. The 

coastal—plain sediments since have been deposited upon the crystalline 

basement. Meanwhile, uplifting took place in the continents, and produced
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series of the non-marine sedimentary sequences. By the time of the Middle 

Cretaceous, the sea inundated the mid—Atlantic region; the marine 

sediments were subsequently graded upward through the Oligocene 

stratifications (approximately 24 or 25 million years ago).

Since the early Miocene strata are missing regionally, an episode of 

the sea withdrawal lasting until the middle Miocene (15 to 16.6 ma.) is 

inferred. The sea returned with the result that marine sediments of the 

Chesapeake Group, which includes Calvert, Choptank, St. Marys, Eastover 

and Yorktown formations of mid-Miocene to Pliocene age were deposited. 

This is thought to have continued until 1.6 ma ago, the very beginning of 

Quaternary period.

With the development of the mid—Atlantic geosyncline (Drake et al., 

1968) the faulting and uplifting took place first in northern Maryland, 

then spread southward until the early Pleistocene. During the mid- 

Miocene—Pliocene time, the framework of the Chesapeake Bay formed.

On the newly formed coastal plain along the mid-Atlantic coast, the 

Delaware, Susquehanna, and Potomac Rivers meandered, cut and filled, and 

dropped sand and gravel on the courses of their adjustments to the 

Pliocene ocean basin.

2. Quaternary Sea-level Fluctuations

Changes of sea level due to various effects have long been 

authenticated. In general, it is believed that sea level was almost the 

same as the present sea level during the later Pliocene (Vail et al.,

6



1977). In the early Pleistocene, approximately 1.6 ma ago, a very high 

sea—level stand about 30 meters above the present occurred. Sea level 

highs are thought to be the same or slightly above the present one in the 

mid—Atlantic region during the following 500,000 years (Belknap and 

Wehmiller, 1980). However, other researchers from different areas 

conclude that sea level had never been appreciably above its present 

height during the Quaternary.

Fairbridge (1968) outlined a model wherein sea level descended from 

Early Pleistocene elevations in a series of glacioeustatic oscillations 

superimposed on a longer term fall. However, more recent researches have 

firmly indicated that Fairbridge*s sea—level curves are merely 

representative and differ regionally (Bowen, 1978; Fairbanks, 1989).

Shackelton and Opdyke (1973), using oxygen-isotope analyses of deep 

sea cores, defined oxygen isotopic stages which reflect the sea-level 

fluctuations (actually represent alternation of glacial and interglacial

episodes) by determining the ^ 0 / ^ 0  ratios in foraminifera tests. This 

was further confirmed by the paleoecology of reef complexes which were 

carefully compared with models based on modern coral associations 

(Chappell, 1974).

Other studies have utilized radiocarbon and uranium-series dating to 

estimate the oscillations* ages. Chappell and Shackleton (1986) defined 

the maxima of sea level for the past 240,000 years in the terrace reefs 

in New Guinea; Cronin et al.(1981) used uranium-series dates from corals 

along the United State Atlantic Coastal Plain in documenting five

7



relatively high sea-level stands for the past 200,000 years with 

reference to the paleoclimate data in the region. Faribanks (1989) 

detailed a sea level curve for the past 17,000 yrs in Barbados by using 

coral Acropora palmata which is believed to be sensitive to the water

14depth. More recently, Bard et al.(1990) calibrated the traditional C 

timescale of the sea—level changes for the past 30,000 yrs in Barbados 

offshore from the same locality where Faribanks worked. By using their 

newly established technique of Thermal-ionization Mass Spectrometry 

(TIMS) for U-Th dating, they concluded that before 9,000 years BP, the 

14C ages are systematically younger than the U-Th ages, and that the last 

deglaciation started 3,000 yrs earlier than previously thought. Bard et 

al. (1990) later extended their research to the past 130,000 yrs BP and 

confirmed that there were two surges in melt water at about 11,000 and

14.000 yrs BP during the last deglaciation.

The Holocene (C-14 stage one, began 12,800 years BP (Bowen, 1978)) 

sea-level oscillations have been well documented. At approximately 18,000 

to 20,000 yrs ago the sea level is believed to be about 100 meters below 

the present level, the shoreline of the Atlantic Ocean was approximately 

100 kilometers east of Chesapeake Bay’s mouth along the break in slope of 

the continental shelf. Much of the shelf was semi-arid land or swamp over 

which the fluvial systems drained, traversing and filling the bay area. 

Sand and graval sediments were spread all over the region. In the first

10.000 to 8,000 years of the deglaciation, the sea level rose 

approximately 80 meters, or one meter per century (Shackleton and Opdyke,

8



1973) : Chesapeake Bay would have started to flood and young paleochannel 

system formed during the last major glaciation would have begun to be 

filled with sediments.

During the next 6,000 to 7,000 years the rate of sea-level rise 

slowed, sea level rose approximately 10 to 15 meters, or 15 to 20 

centimeters per century. During the last 6,000 years the sea-level rise 

curves are considered to be smooth and continuous in the entire U.S. 

Atlantic costal plain (de Plassche, 1990), total 3 meters of sea level 

rise are thought to have been achieved.

One of the major heritages of the Quaternary sea-level fluctuations 

in this region is the coastal lithological stratifications which are 

marked by the several paleochannel systems and the barrier-spit system: 

the former are clearly related to major low stands of sea level; the 

latter represent the major sea-level maxima. During the major low stands 

of sea level, fluvial processes and widespread erosion were the 

predominant mode of morphologic development on the coastal plain. During 

the subsequent sea-level rise, the ocean transgressed landward. The 

previous fluvial sediments were redistributed into /or covered by the 

estuarine, nearshore, and other marine environmental deposits.

The general trend for the Quaternary sea-level changes are widely 

recognized (Fig.2). However, the changes vary regionally, most likely due 

to local tectonic activities, isostatic and hydrostatic adjustments, 

sediment loading, land erosion, and anthropogenic effects (such as 

groundwater withdrawl).

9
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3. Quaternary Stratigraphy

The interface between continents and oceans, the coastline, has been 

considered as a linkage between the stratigraphic framework of the global 

sea—level curves and the local sedimentary sequences. The analysis of the 

sedimentary sequences has been a major approach to reveal the complex 

geologic history of the marine regressions and transgressions. The 

carvings of paleochannels and the infillings of estuarine-nearshore 

sedimentary sequences in Chesapeake Bay and in the inner Virginia shelf 

have been well documented in some areas through interpreting seismic- 

reflection records, geological mapping and studies of borehole data and 

beach sediments (Sideler and Swift, 1972; Meisburger, 1972; Oaks et al., 

1974; Swift et al., 1976; Swift et al., 1975.; Cronin et al., 1981; 

Niedoroda et al., 1985; Peebles, 1984; Shideler et al., 1984; Colman and 

Hobbs, 1987; Williams, 1987; Finkelstein and Kearney, 1988; Colman et 

al., 1988; Colman and Mixon, 1988; Dame, 1990). These studies, among 

others, have described the regional stratigraphy, and indicated, as well, 

the primary and distinctive seismic stratigraphic units of sedimentary 

sequences in the region.

(1) Regional Stratigraphy:

The late Pliocene and Quaternary stratigraphy in this region has 

been summarized by Oaks et al.(1974), Johnson (1976), and Peebles (1984). 

Table 1 shows the correlation of the stratigraphic names used in the 

study area (modified from Peebles, 1984):
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Yorktown Formation consists of a sandy silt facies which locally is 

bio-fragmental sand with unbroken fossil shells usually, a crossbedded 

shell hash facies with high carbonate content, and a glauconitic silty 

fine sand facies which consists of extensively burrowed, gray sandy silt 

with laminae of shell fragments and fine to medium quartz sand.

Ferricrete is commonly found at the contact between the Yorktown 

sediments and younger deposite (Peebles, 1984). The age of this formation 

is generally believed to be early to late Pliocene.

Chowan River Formation occurs as subsurface sediments in the study 

region (Peebles, 1984). This late Pliocene marine formation consists of 

interbedded silty fine sand, silty clay, and bio-fragmental sand. Fossils 

include a diverse, shallow-water faunal assemblage which differs from 

that in the marine Yorktown Formation. The base of the formation is 

characterized by a discontinuous pebbly to bouldery sand. Groundwater 

migration has caused a distinctive leaching feature in the formation. The 

basal unit grades upward into the upper unit of fine to medium sand, clay 

silt and biofragmental sand. This formation is of late Pliocene age 

(Peebles, 1984).

Windsor Formation; The basal and lower portion of the formation 

consists of fine to medium sand interbedded with plant detritus, wood 

fragments and/or silty clay containing fine sand laminae. Pine cones and 

oyster shells were observed in the channel-filling deposits and basal lag

13



deposits (Peebles, 1984); Sediments of the formation are more deeply 

weathered and much more compact than those of younger formations. Its age 

is believed to be early Pleistocene (Peebles, 1984).

Shirley Formation consists of a stratigraphic sequence which exhibits 

both vertical and lateral variation in lithology, fossil content and 

thickness. Local valley-fill deposits and estuarine peat/organic—rich 

deposits are the two extremes. Generally, the valley fill deposits grade 

upward into a discontinuous sheet of cobbly to bouldery coarse sand which 

defines the base of the formation. Cronin and others (1981 and 1984) 

determined tha U-series age of the formation as 187 +/— 20 ka indicating 

a middle Pleistocene age.

Tabb Formation is divided into Sedgefield Member and Lynnhaven Member 

which were named and mapped by Johnson (1976) on the York-James 

Peninsula. Sediments of these members underlie broad inner continental 

shelf of many terrances throughout the Deep Creek swale, the Oceana 

ridge, and the subsurface of the Dismal Swamp (Johnson, 1976).

I. Sedgefield Member: The sediments of the Sedgefield constitute most 

of the above mentioned areas. Its base is characterized by fill sediments 

with organic-rich silty clay and peat contain tree trunks in living 

position as well as roots, tree branches and stems. In its upper portion 

the organic rich clay contains wood fragments. A coarse sheet of pebbly 

to cobbly, fine to coarse sand forms a sharp contact between Sedgefield

14



Member sediments and those of the Shirley Formation, the Chowan River 

Formation and the Yorktown Formation. Sediments overlying the coarse base 

of the Sedgefield sediments vary with respect to geographic location. 

However, the sediments grade upward into a fine to medium sand, and into 

a fine-sandy, clayed silt. In places, the fining-upward sequence is 

covered by a series of arcuate sandy ridges which are less than 1.5 meter 

in relief. The coarse basal deposits sometimes grade into a fine to 

medium quartz sand with heavy minerals.

II. Lynnhaven Member: the basal valley—fill deposits grade upward 

into gray silty clay. The sediments of the member rest unconformably on 

the sedimentary sequences of the Sedgefield Member, Shirley Formation 

and/or Yorktown Formation. The Lynnhaven basal lag deposits grade upward 

into finer grained sediments. However, the upward-fining sequences are 

relatively thin compared to the Sedgefield and the Shirley deposits 

(Peebles, 1984).

(2) Seismic Stratigraphic Units 

With the development of seismic-reflection techniques, some regional 

seismic stratigraphic units in the Bay and the study area have been 

suggested (Shideler et al., 1972; Williams, 1982 and 1987; Colman and 

Hobbs, 1987 and 1988). More recently, Hobbs (1990) and Dame (1990) 

confirmed the relationships among the primary stratigraphic units.
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UNIT A: The deepest and oldest sedimentary unit identified in the

study area (Shideler et al., 1972) exhibits only faint and discon

tinuous traces on seismic profiles (even on the deep—penetrating 

"boomer” profiles) (Williams, 1987). This formation appears 

throughout much of Virginia*s coastal plain and most of the inner 

shelf (Oaks et al., 1974). Off Virginia Beach the depth of its upper 

surface is approximately 40 meters below mean sea level (MSL). Its 

stratigraphic depth and acoustic features suggest that the surface 

probably represents an unconformity, an erosion surface in the 

Virginia coastal plain (Williams, 1987; Hobbs, personal 

communications, 1991).

UNIT B: The next younger sedimentary sequence, is characterized by

lenticular to planar stratification and prominent fluvial channels 

with considerable relief (Shideler et al., 1972; Williams, 1987).

Its structural character and stratigraphic position imply the

channels were formed during the late Pleistocene when sea

level was low, and the ancestral rivers, such as the Susquehanna

and James, flowed southeastward across the then subaerially exposed

surface of the continental shelf. Early correlation of the

sedimentary sequences was with the Great Bridge Formation -

Sandbridge Formation of the adjacent coastal plain

(Shideler et al., 1972; Oaks and Coch, 1973). More recently,

this sequence has been assigned to the sedimentary sequences from the
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Windsor Formation to Shirley Formation (187 +/- 20 to 90 ka) , and to

the Sedgefield member (90-70 ka) and Lynnhaven member (7 0-20 ka ?) of

the Tabb Formation (Johnson, 1976; Belknap and Wehmiller, 1980; 

Cronin et al., 1981; and Peebles, 1984).

UNIT C; This unit exhibits relatively uniform and fairly 

horizontal stratification, and is composed of homogeneous layers of 

gray silt and clay. It appears to be the most common

sedimentary sequences on the seismic profiles and in the cores. This 

unit is believed to have formed in a low energy environment, such as 

an estuary and/or backbarrier lagoon during the later Pleistocene 

sealevel high stand (20.5 ka to 26 ka (Shideler et al., 1972)).

UNIT D: The uppermost and youngest sedimentary sequence makes up the

majority of modern surfacial inner shelf deposits except for local

outcrops of older units. This unit is a discontinuous 

Holocene transgressive sand sheet of fine to medium sand or muddy 

silt with modern marine fauna (Swift et al., 1977). The origin of the 

sand sheet is thought to be shoreface erosion and redistribution of 

the eroded material that resulted from sea-level rise.

Table 2 is a brief summary of the previous stratigraphic investi

gations and some absolute-age dating results.
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OBJECTIVES

Simply speaking, the specific objectives of this study are:

(1) to extend the seismic study on the Pleistocene paleochannel 

systems from the inside Chesapeake Bay to the adjacent area south of the 

Chesapeake Bay mouth. This task is primarily to determine the geographic 

distributions and the morphologic characters of the paleochannel systems;

(2) to re—evaluate the interpretations of the depositional 

environments and the sedimentological conditions for the fill sequences 

of the paleochannel systems by analyzing the sedimentary structure, 

lithology, and sequence stratigraphy in the selected vibracores and 

correlating these information vertically and laterally in a cross- 

section;

(3) to utilize absolute age determinations/estimates for the 

establishment of the age—order or the timetable of the paleochannel 

systems and associated channel fill sequences in the study region;

(4) to approach a quantitive correlation to the multiple sub-layered 

substrata among the vibracores in order to obtain insights to the 

relationship between the sediments of the fill sequences and their 

depositional (hydraulic) environments.
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METHODS

In order to accomplish these goals, several study methods were 

utilized.

1. Shallow Subbottom Seismic Reflection Data

Geographic distribution and morphologic features of the Pleistocene 

paleochannel systems were determined by interpreting the shallow seismic 

reflection records which were obtained during the past few year's 

investigations on the evaluation of sand resources offshore of Virginia 

Beach (Kimball and Dame, 1987/a; Hobbs, 1990). The seismic surveys were 

carried out aboard VIMS research ship Bay Eagle in a grid pattern with a 

loran positioning system (Figure 3).

The VIMS Bay Eagle subbottom reflection system consists of a two 

channel, dual frequency transceiever, which is connected to a towfish 

carrying transducers. 3.5 kHz was used because it gave the best 

comnbination of the penetration and the resolution in the experimental 

conditions (an overview of the principles involved in this technique can 

be found in Williams (1982), Dame (1990), and Hobbs and Dame, 1992)).

The seismic profiles are interpreted by tracing their acoustic 

horizons which are further inferred to sedimentary horizons or 

sedimentary sequences.
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Nearly sixty tracklines of seismic network in the study area were 

analyzed systmatically. The result of the trackline interpretations has 

profoundly illustrated the outlines of the Pleistocene paleochannel 

systems in the area. The interpretation of the trackline data effectively 

provided detailed information about morphology and geographic 

distribution of the paleochannel systems which is listed in Table 4, 

Figures 5-8 and Figures 9-11 in later chapters

2. Vibracore Sediment Analyses

To supplement the seismic subbottom reflection interpretations, core 

control is a necessity. This allows the more distinctive acoustic or 

lithologic stratigraphic units to be recognized and correlated in the 

seismic record.

To determine the depositional geology (such as the thicknesses, 

contact relationships and diagnostic characteristics of sedimentary 

units, facies and depositional environments, etc.) and chronology of the 

study area, samples of both surface and subsurface sediments are 

required. Vibracores provide a mostly undisturbed sedimentary record with 

some well-preserved physical and biological structures.

In a recent investigation of the offshore Virginia Beach region 

(Williams, 1986), the U.S. Army Corps of Engineers collected 

approximately 163 nautical miles (300 km) of single-channel reflection 

profiles and about 88 vibracores in the northern portion of this study 

area. Based on previous studies, these vibracores are well—distributed
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along the upper distal channel valley for two younger major paleochannel 

systems. The cores penetrate 3 to 7 meters into the substrate. The choice 

of vibracores in this study was primarily based on the location and the 

distance of the cores to the acoustically-indicated paleochannel valleys. 

Due to the limitations of time and budget, however, I picked only three 

cores, plus two VIMS vibracores drilled during the 1987 investigation, 

from the representative localities to detail the sedimentary characters 

and the depositional features in the study area (Figure 4).

Sediment, geochronal, and faunal samples were taken from the cores. 

Sediments were described visually by routine techniques described in Folk 

(1974) and in VIMS sediment analysis manual. All the vibracore samples 

are analyzed through standard grain—size analyses in order to insure 

standardization of sample descriptions. Vibracores were split into equal 

halves. Central "channel” samples were then taken from the split cores 

for each lithological or physical segment of the vibracores. The 

"channel" samples were sieved and pipetted and/or run on the RSA in 

accordance with standard sediment analysis procedures as described in 

Folk and VIMS Manual.

Grain-size analyses are performed to characterize the sediments that 

make up strata and to suggest some depositional hydraulic environmental 

features. Results of these analyses were then subjected to further 

treatment: sedimentological analysis by using Folk, Friedman and otherfs 

diagrams(see details in Exercises In Sedimentology by Friedman and 

Johnson, 1982; Origin Of Sedimentary Rocks by Blatt and Murry, 1980), and
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Figure 4 Locations of The Vibracores
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a number of statistical analyses* such as cluster, PCA(EOF), and Q-mode 

factor analysis (Statistics and Data Analysis in Geology by Davis, 1986). 

These treatments, combined with the seismic interpretations and vibracore 

describtions provided useful information on the paleo— sedimentary 

environments for those channel filling systems.

3. Amino Acid Geochronology

Geochronal studies are important in determining the Pleistocene 

paleochannel systems, the relative stratifications and the lateral 

correlations of regional stratigraphy. Three major dating methods were 

planned to be carried out in this proposed study: Amino Acid Dating, 

Radiocarbon and Mass Spectrometric U-Th Dating (Table 3 lists three 

common dating methods for the early Quaternary geochronology). However, 

due to the time and financial limitations, only amino acid geochronal 

studies were carried out in this research. Table 3 shows the brief 

comparason of the three methods.

Amino acids, the basis of protein, exist in organisms. During life 

they are bonded in the protein, but after death, such bonds break down, 

releasing the amino acid. As well as releasing free amino acid, those 

with 'D* isonomers will convert from 'L' to *Df, an interconversion 

called racemization. The rate of breakdown as well as racemization is 

temperature dependent, hence for chronological purposes a uniform
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Table 3. Some Common Geochronal Measures for Early Quaternary Studies

Dating Method I 
(sample size) 1

_ . ________ I

isotope | 1/2 life 
1

1 range 
1
1 _ ___

IMethod| 
1 1

Material

1
1

Radiocarbon |
(10 gm) I

1
1

___ ... 1
1

C-1A | 5.7 ka 
!
1

.. . i

1
|50 ka 
1
(25 ka
1
1

1 I 
1 1 
1 decay I 
1 1 
1 1 
t i

wood, peat...

coral, 
molluska...

(TIMS) Mass I 
Spectrometer| 
U-Th (lOg) |
_ ___ _______|

230 |
Th | 75 ka 

1
...... i

I
1 150 
1 ka
I

1 1 
1 1
IGrowth|
1 1 
1

Organics: 

coral
1

Amino acid I 
(0.5 gra) |

I

----1 ----- -

Amino Acid 
Diagensi s,
D/L ratio

1
I 200
I ka 
1

l
IRecemiI 
izationI
1 I

bone, shell
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temperature over time generally is necessary. Thus, the variation in the 

ratio of certain amino acid has been used as a measure of relative age. 

Since the temperature dependent limitation of the method (for both the 

rate of protein breakdown and the rate of racemization), the assumption 

of uniform Quarternary temperature is obviously invalid. However, the 

dependence on temperature can be dealt with by assuming uniform 

paleoclimatic conditions within a spatial domain instead of in temporal 

domain. In other words, shell materials within a particular region would 

have been subjected to similar temperature variations (Belknap and 

Wehmiller, 1980; Miller and Hare, 1980; Wehmiller et al., 1988). With 

recent developments, this technique has been found to be vary reliable 

when shells from the same genera are compared (Wehmiller and Belknap, 

1982; Wehmiller et al, 1988).

For same genera organisms, the D/L ratio is assumed the same. Thus, 

aminozones are defined by a range or cluster of D/L values. The greater 

the value, the older the sample, or/and the warmer (the more southernly, 

in North Hemisphere, the geographic region). The term of 

naminostratigraphy" has been coined by Miller and Hare (1980). Absolute 

AA-dating ages need to be calibrated with other independent geochronal 

data.

In studies along the central and southern US Atlantic coastal plain, 

Wehmiller et al. (1982 and 1988) have found that within local regions the 

AA ages agreed with coral U-series ages and biostratigraphic data in many 

sites. However, this trend does not hold in South Carolina and central
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Chesapeake Bay (Wehmiller et al, 1988; Colman and Mixon, 1989). These 

differences indicate that there are problems in the fundamental 

tempreture assumptions in aminostratigraphy and that the conflicting U— 

series ages may represent the minimum ages for the dating localities. As 

described earlier, the only coral U-series age in the region can be also

230 232questioned because of the low Th/ Th ratio which implies a 

diagenetic alternation. Thus, the AA—age here served as a check to other 

dating results in return.

In this study more than a dozen of amino acid age samples were taken 

from the vibrocores. But only eight of them stand in good qualification: 

no remarkable evidence of reworking and in good remaining forms, as well 

as with suitable dating sizes. All the fossil samples were identified by 

Drs. Robert Diaz and Linda Schaffner at VIMS of the College of William 

and Mary. The amino acid dating processes were carried out at Dr. John 

Wehmiller?s Amino Acid Labrotary in the University of Delaware.
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RESULTS

1. Geomorphology and Geography of the Paleochannel Systems

The paleochannel systems in the study area are outlined by the seismic 

reflection network. The seismic reflection profiles delineate the top of 

strata from the Late Pleistocene through Tertiary (Dame* 1990) in age, which 

were involoved in the signifigant surficial erosion during at least three 

major marine regressions. These reflections have been mapped across the 

study area. Each of them may not represent a single erosional event, rather 

a composite surface. These topographic features of the reflection profiles 

lead the determinations of the locality and morphology of the buried 

paleochannel systems (Figures 5-8).

Different paleochannels or different generations of paleochannels can be 

traced from the extensive seismic track network which consists of 54 track 

lines, a total about 680 kilometer track-line survey, covering the offshore

2area of about 700 km (see Figures 1 and 4). The densely spaced survey lines 

made it possible to correlate the buried paleochannel systems and their host 

sedimentary sequences, and to determine the relative reliefs and the maximum 

axial depths for each paleochannel.

Based on the morphologic features of the paleochannels in the seismic 

profiles and the relative positions of the paleochannels and the fill
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sequences, the reconstructions of the ancient valley systems and their 

geographic distributions have been made throughout the study area. Three 

distinct generations of paleochannel systems can be identified in this study 

region (Figures 9-11).

The two lower drainage valleys among the three have distinct seismic- 

reflection attributes which are characterized by relatively strong and 

discontinuous reflections; whereas the upmost (youngest) one is by 

relatively weak and scattered reflections. The summary of relief and axial 

depth for the three drainage valleys is listed in Table 4. The relative 

relief and axial depth of the paleochannels were determined by direct 

graphic measurements from seismic reflection profiles in this study. These 

measurements are believed to be quite representative to the original channel 

features because most of the side—walls of the paleochannels, as well as the 

the basal fill of sediments, remain apparently primary valley features 

although both relief and width of a paleochannel could have been modified by 

erosion before the following marine transgression (filling). Most of the 

side-walls of the paleochannels appear in steep channel margins in seismic 

profiles; and natural levees (?) also appear along the paleochannels in some 

profiles, which confine the boundary of the paleochannel systems (see the 

seismic reflection profiles of (track line) Line 5 and Line 4 in Figures 7 

and 8).

From Table 4, the paleochannel systems in the study area appear 

diminished in scales from bottom to top, or weakened with time since the
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Table 4. Geometrical Features of the Three Paleochannel Systems

relative relief axial depth(m) Width locations w/ good controls

Present tidal 0~4m —4 to —14 0~.1km (on Line ll.btw 230CT2305;
channel (l~4m) (2~10m) on Line 16, btw 525~530;

on Line 25, stack# 1930);

Upmost Channel 0 to 5m —12 to —24 0~0.2km (Line 15, near stack 330;
(2~5m) (—14"—24) (50~80m) on Line 32, near 1605;

on Line 17, near 725);

Middle Channel 0 to 8m -15 to —24 0~.6km (on Line 16, near 440~445;
(II) (4~7m) (—18~—24) ( . 1 4km) on Line 6, around 915;

on Line 5, btw 1450~1455;
on " 4, btw. 1335~1345;
on Line 3, around 1105
on Line 42, near 625 );

Lowest Channel 0 to 14m -15 to -31 0~1 km (on Line 22, near 1715;
(I) (9~12m) (—24~-31) (.2~.6km) on Line 16, btw. 440~445;

on Line 6, around 915;
on " 5, btw. 1450~1455;
on " 4, btw. 1335~1345;
on Line 3, around 1105;
on Line 42, near 625) .
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Late Pleistocene: for instance, the relief of the lowest channel is about 9 

to 12 meters with a maximum of 14 meters; respectively, the relative relief 

for the middle paleochannel system and the upper one are about 4 to 7 m, and 

2 to 5; the channel widths also show the trend: from the lowest channel to 

modern channel the valley width for the three channel systems changes from 

0.2-0.6 km, 0.1-0.4 km and 0.05-0.08 km (the modern channel width ranges 

around 2 to 10 meters).

In most crossings, a single axial channel was found along the valley 

floor (especially for the upper paleochannel). However, on the north margin 

of the study area, a composite and/or a multi-cutoff meander loop may be 

present, this may be especially true for the two lower channels (see Figures 

7 and 8 ).

The two lower channels appear to follow southeastward to southward 

courses across the study area. The paleochannel of the next lowest channel 

is almost directly confined within the lowest one’s valley system, but has a 

relatively smaller scale (Figures 10 and 11).

The uppermost paleochannel system in the study area, here called Cape 

Charles paleochannel system (see texts in later chapters), apparantly has a 

scattered geographic distribution (Figure 9), trending generally 

southeastward, but its geometry was not well controlled in this study area. 

Some reasons for this are: (l)its relatively smaller scale; (2)destruction 

during erosion and filling; (3)seismic reflecting resolution. For instance, 

Colman and Hobbs (1987) have pointed out that hard-packed surfacial sand on 

the shelf could hinder penetration by high-resolution acoustic signals.
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Figures 12 shows some portions of seicmic tracklines 15, 14 and 6 along 

which five vibracores were taken and examined in detail. The vibracores here 

provide important cross-checks on the resolution of the seismic survey in 

this study. It is clear, from Figure 13, that the significant seismic 

reflection surfaces indicated by obvious reflecting interfaces in the 

seismic profiles are reasonablly compatible with the major lithological 

boundaries, such as coarse sand —  fine sand boundary, throughout the A-A* 

cross-section of the five vibracores, and that the seismic resolutions using 

the 3.5 kHz band are well confined within a half meter limit (Hobbs, 

personal communications). Detailed vibracore descriptions can be found in 

Figures 14-18.

2. Stratigraphy and Sedimentology of the Channel Fill Sequences:

The Stratigraphy of the channel fill and underlying deposits is revealed 

by the seismic reflection data. In general, the paleochannel fill is 

transparent to the acoustic signal. To massive sediments, the acoustic 

reflection appears generally isolated and/or discontinuous. However, at the 

bases of the paleochannels and at the physically well seperated sediment 

boundary (e.g., between two sedimentary sequences), a relatively strong 

reflection is generally present (along a physical boundary).

Only three major seismic stratigraphic units (see Regional Seismic 

Stratigraphic Units B, C and D in the previous Chapter of "Regional 

Geology") among the four regional seismic units, are apparent in this study 

area, (see the seismic reflection profiles in Figure 5 to Figure 8, which
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Fig. Log of Vibracore vims-44

_0 cm

156

184

3 2 2

3 9 5

465

SA-44-1
44-1

 SA-44-2
44-2

SA-44-2A

 S A -44-3
44-3

 SA-44-3A
44-3A

 SA-44-4
44-4

 SA-44-5
44-5

Dark grey fine sand with shell fragments 
interbedded with lighter fine sand bands.
at bottom, dark grey coarse-pdbble sand, 
with big shells (4 cm) and/or small shell 
(2mm) layer; SA-44-1 taken;

Dark grey med-fine sand with shell frags;

Dark grey fine sand with dark fine sand 
layer or thin bands; from top to bottom, 
mud gets richer and richer; At bottom, 
coarse sand with a shell-frag rich layer 
(SA-44-3A) and a mud 1 ens.

Dark grey fine sand with abundent shells; 
At bottom, dark grey coarse sand with 
fine-med sand nodules (btw 364-395cm).

Top: Dark grey coarse sand with l-2cm mud 
interbeds; then gradually coarse sand is 
prodominent; at bottom the mud (or fine 
sand) interbeds with coarse sand, and mud 
is prodominant, coarse sand is 2-3cm bands, 
decayed wood/vegetation occur.

Dark grey mud layer with coarse sand hands;
Rusty mud/fine sand interbeded w/ coarse sand; 
the bottom is perhaps a ancient erosion ...surface.

Dark grey fine-med sands

'44-51 for sediment samples.
TSA-44-5’ for fossil samples for age dating usage.

( see text for details)
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Fig. 15 Log of Vibracore vims-39

_0 cm

<3P
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Dark grey fine sand with shell fragments; 
occasionally dark organic-rich noduals can

 3 9 - 1  be seen (perhaps a piece of decaied wood);
there are number of dark bands (l-20mm in 
thickness) interbeded with light grey ones.

At bottom, coarse sand and pepples occurs; 
— SA -39-i peppie siZe are some 4 mm.

.160  39-2
163

—39-3 Dark grey fine sand ;—171 & J
—39-4 Grey fine-medieum sand with dark fine

-188 s a -39-2 sand layer or thin bands;
39-5 Grey med-coarse sand with shells (7-11cm)

-235 as well as some pebbles (10mm);

Grey -dark grey fine-med sand;

 SA-39-3 in 277-280cm, there is a shell layer, age
39'6 sample SA-39-3 was taken;

_515 39-7

 SA-39-4 two shell rich layers occur, and SA-39-4
39-6-mud was taken; a number of mudyy band (12

cm thick) occur.

—sa-39-5 Color suddenly change from grey into rusty;
m ed-fine sand; som e shells and fragments.

see text for details.
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Fig .16 Log of Vibracore 86-54

_58

__96

__166
__168

_  202

c m
Modem loose medium gray sand , 

s 54 x 2~4mm shell fragments can be seen;

58-168cm: Dark gray medium sand, 
interbeding with ~3mm mud layers, or 
mixture of the two; 58-96 mud 
prodominebt, bot shell fragments get rich 

s54‘3 (166-168cm is shell layer);

S-54-5 Greenish gray coarse sand

_  S-54-2

286

344

  S-54-6

 S-54-7

Medium-coarse sand with 2.6cm cobbles, 
top is heavy-rusty colored and gradually 
into coarse - pebble bottom portion;

Yellowish gray medium sand, well 
sorted;

Light yellowish gray /  light gray medium ~ 
coarse sand, from top to bottom gradually 
get coarser.

45.



Fig. 17 Log of Vibracore 86-55

k t t p

iSw
few

cm

60  s-55-i Coarse to medium gray sand , 2~4mm
shell detritals occaionally can be seen;

140

>-55-2 Dark gray medium sand, interbeding with
~3mm mud layers, or mixture of the two; 
shell fragments

Light yellow-greenish gray medium 
>-55-3 sand; bottom get coarser,

298
gray coarse sand interbedded with greenish 

334 — 3-55-4 gray mud 0.8mm bends, no shell/fragments;

-55-7

Yellowish gray medium sand with 3mm- 
sized pebbles, at bottom there are 2 mud 
/or fine sand layers;

 S-55-5

400
— S-55-6 rusty-color coarse sand / pebbles;

mud layer occasionally wity 4mm 
pebbles or coarse sand noduals, in the

 Picture-1&2 middle portion there are l~3mm thick
493 mud interbedded with l~4mm thick sand

, 55 g bands, at bottom gradually into sand layer;

5 1 7  Brownish gray medium sand.
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Fig. 18 Log of Vibracore 86-37

cm

Coarse to medium gray san d , 2~4m m  
58 — s-37-i shell detritals common, at bottom a

mud-fine sand layer 2cm thick;

-37-2

216

308

S-37-6

553

. 612 cm

Dark gray medium-coarse sand, with dark 
and light gray color noduals;

Rusty colored coarse sand, at top pebbles 
are rich, and gradually get into dark gray 

s-37-3 coarse-fine sand noduals, at bottom there
is a pebble-cobble layer, rock fragments 
can be as big as 9cm in size;

  S-37-4A Greenish gray fine sand /  mud with
— s 37-4 aboundent clam shells o f l-3cm  in size;

453 " erosion color is brick-red;

Brown-reddish gray mud /  fine sand, 
contain bentonite(?)—popped up.

  S-37-7 Reddish gray mud.
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can be considered as the representative of the study area's seismic 

stratigraphy). The three units, capping the Virginia coastal plain*s major 

erosion surface of the Yorktown Formation, probably are representative of 

the sedimentary sequences formed during the three periods, early—mid to 

early Late Pleistocene, the Late Pleistocene, and the Holocene. The 

generalized stratigraphy (including the seismically faint—signalled Yorktown 

Formation) is described in the earlier chapter of 1Regional Geology. 1 

Basically, the three—fold seismic stratigraphic framework is similar to 

those studied in the nearby areas (Colman and Hobbs, 1987; Colman and Halka, 

1989; Dame, 1990).

The detailed lithological logs of the fill are described in Figures 14- 

18. The descriptions of the stratigraphic columns (vibracores) were carried 

out based on AAPG standard charts and color guidance. The lithologic and 

petrologic features are relatively similiar in the vibracores each other. 

Grain—size samples and fossil samples were collected from these vibracores 

after stratigraphic description and X-ray stratigraphic analyses.

X-ray analysis was also utilized in this study for revealing, in a fine 

scale and an un-disturbed pattern, the sedimentary structures and the 

depositional environments, as well as the bioturbation and burrowing traces. 

The X-ray stratigraphy was carried out on a DINEX 120F X-ray Machine at VIMS 

Benthic Lab. ( The results are displayed in Photos la, lb and lc; Photo 2 

shows fossil layers in the vibracore of Core-39). The X-ray Stratigraphic
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Analysis Guidance at the VIMS was closely followed. In general, long 

exposure (2.5 mins) and high voltage (75 kv) were applied in analysing the 

sediment samples of this study, due to the fact that the predominant 

sediments in the stratigraphic columns are dense mud and sand, or sand-silt. 

Photo 1-a to 1-c are a complete x-ray stratigraphy log for the vibracore VB- 

86—39: at the depth from 160—163 cm, rhythmic bedding was shown, each unit 

layer has a thickness from 1 to 4 mm. The silt-sandy beddings are not 

identified by eye in lithological stratigraphic examination. However, the x— 

ray graphics revealed the rhythmical depositional sequence. Other 

sedimentary structures, such as scattered fossil (shells) accumulating beds 

and relatively featureless (homogeneous/massive) beddings were also revealed 

in the X-ray stratigraphy. The 'homogeneous' beddings in the X—radiography 

occupy a very large portion of the stratigraphic sequences in this study.

The reason for this is probably the primarily low-energy depositional 

environment (silt—clay minerals with sand aggragation); but other possible 

explanations are biological agitating at semi- and post- depositional 

processes and the compacting destruction (for instance, degas/dewater 

processes could destroy primary depositional structures) (Pettijohn, 1975).

Sedimentologic analyses for these sedimentary sequences are conducted 

with two aspects: (l)grain-size analysis and its direct indication to the 

depositional hydrodynamic condition (Dyer, 1980, 1986; Dyer and Soulsby, 

1988; Sternberg, 1971); (2)Graphic provenance/depositional environmental 

analysis majorly based on Folk's and Friedman's empirical diagrams (Folk and
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Ward, 1957; Friedman, 1967, 1979; Friedman and Sanders, 1978; Friedman and 

Johnson, 1982),

(1) Grain-size analysis: based on petrologic and lithologic descriptions 

of the vibracores, eight(8) layers for VIMS-86-44 (or Core-44), seven(7) 

layers for VIMS-86-39 (Core-39), seven(7) layers for Army-86—54 (Core-54), 

eight(8) layers for Army-86-55 (Core-55) and six(6) layers for Army-86-37 

(Core—37) were subdivided for each vibracores (Figures 12 to 16 for each 

column). The sampling locations in these vibracores are also indicated on 

these figures.

The grain-size study includes two parts of analysis: Pipette Analysis 

and Rapid Sediment Analysis (RSA). The former analysis is to distinguish 

finer (4—8 phi) sediments from the rest of the sediments. The latter is for 

sandy sediments. Detailed laboratory operation can be found in the RSA 

Guide Book in the VIMS Sediment Laboratory. Figure 19 is a composite 

display of gravel—sand-silt—clay ratios for each sublayer in all the five 

cores. It also provides a comparative indication for the hydrodynamic or 

energy conditions for these sediments in the vibracores. As indicated in 

this diagram, at least two or three different hydrodynamic conditions appear 

within the columns, or during the sedimentation history. These RSA data (for 

each sublayer sample there are thirty—three(33) measurements automatically 

made (at 33 different phi-value intervals). The consequent 33 x 

38(sublayers)-sized data matrix was the foundation for further statistical 

manipulations. (Table 6 shows a portion of the 33x38 data base). The 

complete statistical treatment of these grain size data and the analytical
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results will be discussed in a later chapter.

(2)The sandy portion of sediments (0-4 phi or 0.05-2mm) are sensitive to 

hydrodynamic conditions and associated variations (Bagnold, 1963; Dyer,

1980 and 1986; Sternberg, 1971), thus the analysis of sandy components has 

specific meanings for estimating depositional energy environments and 

sediment provenances. Based on this pressumption, Folk (1957) and Friedman 

(1967), have developed, so called, size-environment diagrams from more that 

tens of thousand observations. By analysing the sediment sample*s 

kurtosis(KG) and skewness(SK), Folk (1957) tested KG vs SK diagram in 

differentiating coastal marine environments, such as beach sand, wind-flat, 

beach-dune and so on. Instead of using two extreme end-member feature to 

discriminate sedimentary environments, Friedman (1967 and 1979), Friedman 

and Sanders (1978), and Friedman and Johnson (1982) used so-called 'skewness 

vs standard deviation (SK-sigma) diagram,* which was employed to different 

fluvial enviroment from a beach environment.

In this study, however, neither Folk's nor Friedman's graphics were 

conclusive for the grain-size data. This may hint that cautions need to be 

taken when employing these two diagrams for depositional environment 

analyses.

3. Amino Acid Geochronology

As Wehmiller (1982) and Wehmiller et al. (1988) pointed out, 

aminostratigraphy relies upon the observation that amino acids contained in
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fossilized skeletal organic matter (in molluscs, for instance) undergo 

racemization during diagenesis:

Polypeptides (high weight molecules -> low ones)

 > Free AAs

 > Racemization (L->D)

The L->D change of amino acids is temperature dependent. The 

racemization rate differs intergenetically as well. And the D/L ratio ranges 

from 0.0 (modern samples) to 1.0 (equilibrium). The time to equilibrium 

takes around 0.2 million years (in tropic regions) to 10 million years (at 

high latitudes). This leads the establishing of so-called kinematic amino- 

stratigraphic zones along the Atlantic coast (Wehmiller et al., 1982, 1988), 

which offer estimates of sample ages, rather than "dates".

This study area is within the documented aminozone II (Wehmiller, 1982, 

1988). In this region, five aminozones are divided based on D/L ratios:

D/L age estimates ka isotope stage

Il-a* 0.16 to 0.22 100 +/- 25 5a to 5e

Il-b ~ 0.33 ???? ????

II-c* ~ 0.44 220 +/- 25 7

Il-d ~ 0.59 500 +/- 100 U, 13 or

Il-e ~ 0.89 ---- ----

* Well calibrated by U-series and U-Th ages. (Szabo, 1985; Wehmiller,1988)
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In this study, all the amino acid analyses were carried out at Dr. 

Wehmiller's laboratory in the University of Delaware between September and 

November, 1991. All the D/L ratios are reported in A/I values (two of major 

Amino acids: Alloisoleucine(-D) and Isoleucine(-L)). The reason for this is 

simply because the two amino acids are common. Since the D/L or A/I values 

vary intergenetically, it is important to limit the comparison of amino acid 

results to fossil groups of which the amino racemization rates are similar. 

For the data considered in this study, Dr. Wehmiller suggested that the 

Mercenaria and Rangia racemize at similar rate, and Mulinia and Ensis at a 

similar rate but slower than the former pair. (Results of amino acid data in 

this study are displayed in Table 5). Dr. Wehmiller offered the following 

comments on the analytic results:

"The preliminary conclusion to be drawn from the results 

we have obtained is that the Mercenaria A/I values 

between 0.15 and 0.28 probably all represent 'late 

Pleistocene' material—  definitely Stage 5 and perhaps 

Stage 7 (reworked or in place?). We have seen these 

same ratios in on-shore deposits, and the range of A/I 

values is quite consistent with a range of ages between 

about 75,000 and 130,000 years. Belknap calculated ages 

in this range for each sample that he analyzed—  I prefer 

to group these apparant ages into a 'Stage 5' age assignment 

rather than assigning specific ages to each sample because
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Table 5 Amino Acid Analysis Result

vb—core# fossil information A/I ratio amino zone#

Army-37-5 Rangia Mactridae .51, .55, .61 II—d

Vims-A4-3 Mulinia cf Lateralis .10, .11 ~II-a

l 1 ii ii it .14, .15 ~II-a

" -44-5 Mercenaria Veneridae .18, .20 II-a~b?

Vims—39-1 Ensis Solenidae .01 modern

" -39-3 Spisula Mactridae .11, ~II-a

" -39-4 it ti ii .14 Il-a
h -39-5 Nassariidae Nassarius .15, .21 II—a~b?
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there are so many geochemical factors that can affect the 

actual A/I measurement."

"The Mulinia samples that I analyzed from the (vibracore 

Vims—89—44) S-44 are interesting in that they show 

increasing A/I values with increasing stratigraphic age—  

this is always a important test! The Mulinia A/I values 

are quite consistent with a Stage 5 age assignment, and 

they are consistent with the slightly higher A/I values 

for Mercenaria from the same core. The Ensis sample from 

(vibracore Vims-89)-39 is clearly Holocene;..."

"Perhaps the most interesting result is that for the 

Rangia sample that you sent. This sample is clearly much 

older than the others, and I note that Belknap also 

’found* old Rangia in samples obtained in Dame’s study.

I can’t tell from the limited data whether the two ’old1 

Rangia are really the same age (by aminostratigraphy) or 

whether there might be two different ages instead. It 

certainly appears that there are some middle Pleistocene 

units being sampled in the area of study"

The above statement well reasons the age-assignments for the amino acid 

results obtained in this study. The age for the major sedimentary sequences
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of the two lower channel fill can be infered as Stage 5 and Stage 7 

respectively, ranging from about 70,000 years to 250,000 years; the fill age 

for the upper channel is to be assigned to the Stage 1. Consequently, the 

ages for the three major paleochannel systems in the area come to be refered 

to the Stage 8, Stage 6 and the Stage 2 respectively. Further disscusions on 

age assignments and the stratigraphic correlations for the paleochannel 

systems will be presented in a later chapter.
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4. Sediment Garin-size Factor Analysis And Results

In the earlier description we have discribed how the grain-size 

analysis was carried out in this study. Rapid sediment analysis(RSA) 

resulted in a 33 x 38 data matrixfor the study sediments (Table 6). The 

"33" stands for 33 phi-value intervals in RSA analysis, namely, the sandy 

sediments of different sizes (0 to 4 phi <or roughly 2 to 0.05 mm>) are 

measured at 33 equal length intervals; the "38" for 38 substrata sediment 

samples taken from the five vibracores in this study.

In order to understand the sediment vertical and lateral correlations 

among the sub-strata sediments, a Q—mode factor analysis was utilized in 

this study. Other geo-statistic methods, such as PCA, cluster and 

discrimnant analysis, were employed in early reconnaissance operations.

The PCA (principle component analysis) result (Table 7) only shows 

that there exist a few 'key* variables which can effectively represent the 

raw matrix variables (33x38); the first six variables(components) account 

on nearly 90% sample weight. However, the physical assignments to these 

principle "representatives" of components (the 'key* variables) are vague. 

Besides, the operation of a 33x38 matrix is relatively cumbersome, 

especially when the sample is to be precessed in cluster and/or factor 

analyses.

Simplification of the raw data matrix was made upon the correlation 

between sediment grain-sizes and hydrodynamic conditions, or the Shield's

$2.,



ROW
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

All

Table 6 The Datafile Used for D5_scriminant Analysis (pqrt of it)

Phi c37 .1 c37.2 c37.3 c37 . 4 c37 .5 c37.6 c37 .7
0.000 0.0538 1.5141 2.9333 0.0000 1.1350 0.0000 2.1072
0.125 0.8219 1.0680 5.4518 0.7682 1.2948 0.0000 1.1757
0.250 0.0000 1.5617 4.8772 2.9568 6.0172 0.2443 3.8480
0.375 0.0000 3.3777 4.5958 2.2830 4.9726 2.5069 2.1939
0.500 0.8314 0.6236 6.3708 1.9662 3.9143 1.8112 0.3138
0.625 0.0000 2.3798 4.8129 4.9488 2.0688 0.0000 1.5565
0.750 0.0000 3.4411 8.3545 2.1557 2.4815 3.3805 2.1914
0.875 0.0000 3.5794 5.1616 3.5902 4.4704 2.6028 0.8629
1.000 1.6858 1.9354 6.2.349 2.5916 2.6386 0.9221 3.0029
1.125 0.1198 3.2484 5.3394 8.2074 2.0762 0.9271 0.3887
1.250 0.0000 5.1528 4.7127 1.6084 4.3286 1.8904 2.3599
1.375 1.5149 3.7439 5.6145 4.8354 2.7057 3.2924 0.2584
1.500 0.8588 6.7824 2.0148 3.0367 0.5375 1.1558 2.6424
1.625 0.0000 5.6549 4.2701 3.9532 4.0092 1.8717 0.9687
1.750 0.4317 8.2358 0.3358 1.1435 1.1953 1.3168 2.1065
1.875 2.0174 6.8295 2.1375 5.1030 0.4865 0.8316 0.2639
2.000 0.0000 8.0893 1.5537 2.0775 1.6846 1.8405 0.7331
2.125 1.1177 7.0561 0.5398 1.9192 1.8914 1.7278 2.0529
2.250 1.6392 5.5220 0.9604 1.8326 0.6225 0.0000 0.6261
2.375 1.9940 3.3655 0.7947 I.8226 1.8344 1.0372 0.8405
2.500 2.1292 1.3014 0.0000 0.0000 0.3389 0.0000 0.0000
2.625 0.4005 2.9368 0.7327 3.6961 0.1549 1.9178 1.6275
2.750 4.4693 0.2021 0.0000 2.2601 0.9252 0.8148 0.1129
2.875 7.3408 1.3538 0.4275 1.5332 1.9867 1.3484 2.7697
3.000 16.4705 1.4642 1.6120 2.5644 0.9969 4.1090 5.1457
3.125 18.5929 0.2301 0.8420 5.1187 2.4505 7.2499 6.8415
3.250 13.2756 1.3826 0.0000 3.3477 4.4253 8.0728 8.8315
3.375 7.8445 1.1254 0.0000 4.8251 6.7484 8.8388 7.9800
3.500 5.6511 0.0782 0.0000 4.4777 5.7728 10.6381 6.9316
3.625 3.4173 0.1057 0.0000 3.2506 6.4656 8.3355 7.6193
3.750 2.3528 0.0000 0.0000 2.7525 6.5990 7.5898 5.1696
3.875 2.1813 0.0000 0.0000 1.0706 3.0004 4.4634 4.4181
4.000 0.3674 0.0000 0.0000 3.4942 3.1539 2.5559 3.5535

each individual
i

sample (38 samples total)

i
1
1
1

33 x 38 dimensions

I Phi intervals
I

sample numbers are the same as the ones in each vibracore logs.
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Table 7 PCA Results (Eigenvectors and Scores to Each Sample)

Eigenanalysis

Eigenvalue

of the 

13.619

Correlation

10.055

Mat rix 

5.378 2.028 1.556 1.338
Proportion 0.358 0.2.65 0.142 0.053 0. 041 0.035
Cumulative 0.358 0.623 0.765 0.818 0.859 0.894
Omitted. . . 

Variable PCI PC2 PC3 PC4 PC5 PC6
c37.1 -0.216 -0.030 0.228 0.004 -0.069 0.093
c37.2 0.200 “0.112 0.161 -0.190 -0.089 -0.033
c37 .3 0.147 0.121 “0.014 0.367 -0.241 0.264
c37. 4 0.004 0.066 0.168 0.095 0.309 0.508
c37.5 “0.064 0.214 -0.010 -0.160 0.213 0.223
c37 .6 “0.165 0.119 0.107 -0.251 0.296 0.194
c37.7 “0.190 0.133 0.112 -0.262 0.121 0.061cn c39.1 “0.213 0.001 0.237 -0.026 -0.092 0.099

E> c39.2 “0.159 “0.007 0.227 0.225 -0.332 -0.034
K c39.3 “0.189 “0.044 0.228 0.171 -0.231 -0.098hd c39.4 “0.076 “0.230 0.071 -0.282 -0.118 0.218f c39.5 “0.080 “0.273 -0.080 -0.037 0.084 0.108ted c39.6 “0.071 “0.243 -0.169 0.188 0.195 -0.073

c39.6mud “0.082 “0.255 -0.107 0.179 0.148 -0.071
2! c39.7 -0.011 “0.286 -0.035 -0.208 -0.036 0.032
a c44.1 “0.211 0.006 0.228 -0.052 -0.068 0.157
s c44. 2 -0.133 -0.246 -0.093 0.051 0.093 0.043
to c44.3 “0.054 -0.267 -0.175 0.101 0. 132 -0.025
td c44.3mud “0.001 -0.273 “0.174 -0.051 0.010 0.113
W c44. 4 0.052 -0.234 “0.114 0.063 -0.094 0.389
CO c44.5 0.199 0.003 0.060 0.277 -0.052 0.355

c44. 6 “0.133 -0.160 0.213 0.153 0.155 0.031
c54.1 0.166 -0.022 0.234 0.105 0.333 -0.135
c54. 2 “C.155 “0.135 0.243 0.042 “0.021 “0.113
c54. 3 0.128 -0.217 0.062 -0.251 -0.240 0.016
c54.5 0.227 -0.031 0.118 -0.031 -0.095 0.028
c54. 6 0.220 -0.088 0.172 -0.081 0.028 -0.067
c54. 7 0.187 “0.121 0.178 -0.218 0.027 -0.191
c54.3 0.236 -0.036 0.162 -0.006 0.013 0.038
c55.1 0.189 -0.011 0.229 0.126 0.209 -0.045
c55.2 “0.157 “0.138 0.256 0.040 -0.132 -0.108
c55.3 0.216 -0.042 0.205 0. 078 0.137 -0.030
c55.4 0. 203 “0.100 0.061 -0.023 “0.216 0.225
c55.5 0.062 -0.288 -0.013 “0.085 0.025 0.063
c55.6 0.215 0.015 0.133 0.112 0.125 -0.098
c55.7 “0.241 -0.009 0.171 -0.038 0.084 0.010
c55.8 “0.154 -0.191 0.082 0. 294 0.153 -0.093
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Table. 8 The Raw Data For The Selected Phi Intervals

Phi

H3

M

CO
>
S
*-C>

M
co

W
M

CO
>
K
w

>
&

>
2J
O
w
s
M
ns
H

.i 0.0 .5 .75 1.25 1.5 2.75 3.25

0.0000 0.0000 0.000 9.689 36.792 100.313 297.969
10.0491 22.1424 33.157 52.995 35.532 1.300 8.897
30.8711 52.8813 29.830 2.126 6.079 0.000 0.000
8.5664 6.2455 4.660 3.313 5.309 6.548 9.699
23.6177 9.7400 16.990 4.692 2.443 3.631 17.369
2.1416 29.6345 16.572 11.544 0.000 7.143 70.770

24.4331 13.9144 14.984 13.375 3.975 0.717 56.076
0.0000 23.3376 0.000 13.833 0.000 51.485 533.186
5.2201 27.8814 45.154 8.591 18.777 13.606 55.577
0.0000 0.0000 0.000 0.000 0.000 133.470 493.366
0.0000 22.5718 14.729 36.966 92.154 18.837 62.776
0.0000 14.8905 25.148 25.045 56.955 69.7 08 46.540
0.0000 0.0000 0.000 0.000 158.867 798.369 47.027
0.0000 14.6138 40.638 30.217 107.594 322.842 40.734
0.0000 14.3780 10.218 44.752 145.143 101.126 34.670
0.0000 0.0000 0.000 7.267 17.197 34.225 665.906
18.6233 0.0000 0.000 22.290 60.891 101.371 66.178
8.1789 24.5368 16.350 49.326 190.524 376.992 25.19 2
0.0000 46.1465 25.672 21.262 201.616 141.654 0.000
5.4191 17.0516 8.483 8.915 32.328 18.695 5.323
18.1301 29.3471 22.577 12.811 15.531 15.437 6.005
1.6430 2.0774 4.943 5.975 11.108 27.563 19.066
O.OOOC- 16.7611 30.862 42.100 30.122 19.617 11.563
0.0000 0.0000 185.740 304.016 12.131 78.130 0.000
0.0000 0.0000 6.343 28.609 29.049 110.960 82.987
14.7563 7.8454 11.075 33.906 46.808 5.040 13.110
23.2506 15.6616 23.985 42.547 24.420 4.932 0.000
7.8490 10.8050 38.352 56.004 41.972 6.250 0.000
3.5596 13.6384 28.983 164.416 80.354 3.585 0.000
21.3106 19.2695 23.7 09 52.885 20.125 6.572 0.000
15.2324 71.9626 114.227 116.189 11.061 3.882 18.043
0.3656 0.0000 8.088 28.999 29.809 38.235 45.447
1.8762 21.8373 53.537 51.202 19.167 16.148 0.000
12.1531 13.4686 23.813 9.390 29.837 2.269 2.490
3.9053 0.0000 16.700 35.158 70.742 26.693 13.669
15.7909 20.8879 32.660 43.303 4.691 10.422 0.000
15.4234 3.5 29 2 12.837 16.439 9.403 67.199 114.757
3.27 00 0.0000 8.458 7.916 18.496 68.540 28.918
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sediment threshold curve in the sea (Sternberg, 1971; Dyer, 1980 and 

1986). This led the raw data matrix of 33x38 into a 38x7 matrix(Table 8). 

This step of manipulation significantly decreased the computational time 

required, and assess an explainable multivariable correlation pattern. 

Also, it eliminated grain-size components that might form groupings among 

themselves "for lack of any unifying characteristic other than rarity" 

(Diaz, 1989).

Q-mode factor analysis was employed to ordinate the simplified grain- 

size data and to find clearly physical assignment for explanation to the 

data. Basic algorithms for this method can be found in Davis (1986). 

Operation of the analysis was performed using StatisticPac (modified) 

programs. Table 9 lists the factor analysis results(factor loadings, 

factor scores and explained variable percentages). The first five factors 

(variables) accounted more than 94% of the total variance. In order to 

achieve more straightforward physical meanings for the factors (physical 

assignments), a rotating of the factor coordinate was performed which 

resulted in a clear distinction among the factor scores. Axes (or factors) 

I, II, and III have relatively higher loading values (Table 10) and are 

considered to be closely related to the grain-size components of 3.25 phi, 

2.75 phi and 1.25 phi. (The first three axes were correlatively plotted in 

Figures 20 and 21). Three or four groups can be then recognized; the Group 

I (or G— I), G-II, G-III, (and G-IV), representing the grain-size 

components 1.25 phi, 2.75 phi, 3.25 phi, (and 1.5 phi).

Based on the Q-mode factor analysis, a quantative correlation for the
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TABLE 9. Q-mode Factor Analysis Result
38 (samples) x 7 (grain—sizes)

Factor Loadings Matrix
1 0.3937 -0.3028 -0.5840 0.4395 0.4591 -0.0897 -0.0154
2 0.4647 0.0697 -0.4944 -0.7150 0.1304 0.0479 0.0651
3 0.8693 0.2606 0.3272 -0.0659 0.1116 0.1508 -0.1725/.M- 0.7587 0.3384 0.4751 0.1428 G.G788 -0.1831 0.1550r -0.2682 0.8564 -0.2419 -0.0616 0.0024 -0.3551 -0.0786
6 -0.4397 0.7570 -0.0137 0.1365 0.3212 0.3294 0.0564
7 -0.4990 -0.3329 0.5133 -0.3041 0.5136 -0.1411 -0.0239

Factor Scores Matrix
a -1.1449 -0.3857 0.9824 -0.0843 0.3022 -0.2746 -0.2250
b 0.3607 0.0286 0.2262 -0.6412 -1.0308 0.0869 0.5453
c 0.5154 -0.3918 -0.9034 -2.3022 -0.7136 1.4595 1.1571
d -0.1879 -0.8407 -0.4693 0.8710 -0.4773 0.3528 0.0389
e -0.1309 -0.6762 -0.0490 0.2331 -0.9202 0.7803 -0.4076
f 0.0515 -0.6398 -0.2418 -1.0450 -0.5155 0.8807 1.1102
g -0.0773 -0.7C91 -0.0720 0.0143 -0.5591 0.5027 0.1870
h -1.0007 -1.1108 1.1930 -1.8653 1.7146 -0.3332 1.3492
i 0.3979 -0.3935 -0.3374 -0.7549 -0.0828 0.8476 -1.7052
j -1.4492 -0.9202 1.5695 -0.4798 1.4497 0.2818 -0.0727
k -0.1812 0.4189 -0.1046 -0.8594 -0.8097 -1.2167 0.0177
1 -0.2012 0.2408 0.1693 -0.3675 -0.7919 0.1253 -0.6191
m -2.0734 3.2080 -0.2606 1.0736 1.4441 2.8810 1.2228
n -0.4460 1.5988 0.1104 -0.1483 0.1821 1.0161 -1.2392
o -0.4862 1.2027 -0.1575 -0.3049 -0.7772 -1.8943 -0.4471
P -1.5584 -1.2505 2.0240 -0.9918 2.0419 -1.3432 -1.1018
q -0.5430 -0.0570 -0.2832 1.1753 0.1150 -0.6335 -0.0115
r -0.4876 2.3343 -1.1604 0,0966 1.3210 -1.1114 0.1924
s -0.1699 1.9802 -1.3041 -2.0607 -0.3612 -1.9424 -1.6002
t -0.1274 -0.3830 -0.5484 0.0283 -0.6520 0.1178 0.2344
u 0.3413 -0.5224 -0.8588 -0.4051 -0.0888 0.5965 0.3337
V -0.4743 -0.5354 0.1770 0.5204 -1.2240 0.5969 0.0980
w 0.1772 -0.0334 0.2965 -0.3649 -1.0668 0.3557 0.1591
X 3.3671 1.6020 3.7893 1.0990 0.3025 0.4394 -0.7792
y -0.6379 -0.0580 0.6192 0.4811 -0.7411 0.4625 0.8036
z -0.1073 -0.1975 -0.1045 0.4823 -0.7876 -0.5869 0.1368
aa 0.7932 -0.8119 -1.4777 1.6573 1.5380 -0.7389 -0.1441
bb 0.5019 -0.0997 -0.0605 0.6249 -0.2477 -0.4012 -0.7733
cc 0.9033 0.7434 0.7341 0.4187 -0.5235 -2.2710 3.8988
dd 0.8551 -0.7472 -1.3368 1.3444 1.3835 -0.6284 0.6965
ee 2.8217 0.0852 -0.9733 -2.0154 2.0863 0.8532 0.0944
ff -0.4532 -0.2271 0.5107 0.5139 -1.-1510 0.0445 0.3314
crcrOO 0.6635 -0.0389 0.2789 —0.4660 -0.7077 0.7785 -0.6719
hh 0.2285 -0.5831 -0.8377 0.7357 0.1116 -0.0628 -1.3811
ii -0.2474 0.1322 0.1198 0.8107 -0.8783 -0.9110 -1.0761
jj 0.7944 -0.7171 -0.9040 0.7758 0.7856 0.2084 0.2865
kk -0.0974 -0.8653 -0.4993 1.4241 1.1632 0.0426 -0.4195
11 -0.4900 -0.3799 0.1439 0.7764 -0.8335 0.6387 -0.2191

Percent: of total variance explained by 7 factors
31.6663 24.2320 17.7203 12.0575 8.7627 4.5872 0.9740
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Table 10 Rotated Scores For the First Four Q—mode Factors
( For the Raw Data of 38 x. 7 )

1 0.1197 0.0268 -0.0019 -0.1408
2 0.2249 0.0647 -0.0111 -0.6170
3 0.4219 0.0728 -0.0559 -0.5352
4 0.7180 0.0333 -0.0725 0.1955
5 0.4717 -0.05 29 0.4183 0.4552
6 —0.1302 0.0026 0.9032 -0.2392
7 -0.0474 0.9929 0.0272 0.1016

The Phi numbers 1, 2, 3, 4, 5, 6, and 7 represent the following 
Phi values (respectively):

1: 0.0
2: .5
3: .75
4: 1.25
5: 1.5
6: 2.75
7: 3.25

(see text for detial)



Figure 20 Correlation Plot for Factors X and II
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Figure 21 The Correlation Plot for Factors IX and III

1.05T

0.70+

F—II

0.35+

0.00+

G-I

G-II

3* G-I II

0.00 0.50 1.00 1.50

F—III

G-IV

2.00 2.50

* : grain-size sample

2 : two superposed samples

(see text for detial)

70.



Fig
ure

 22
 

Sta
tis
tic
al 
Ar
ra
ng
em
en
t 
for 

the 
Sub

str
ata

 < A
-A'
>

71.



multiple sub-layers among the vibracores was made (Figure 22, the so- 

called geo-statistical arrangement diagram). In this diagram, one can find 

that three major stratificational units can be outlined by the Q-mode 

factor groupings (G-I, G—II, and G-III), and that the two distinctive 

regimes at the top and the bottom (G-I and G-III) are apparantly 

interrelated by a narrow transitional zone G—II throughout the A-A* cross- 

section.
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DISCUSSION

1. Geomorphology and Age Assignments of The Major Paleochannel Systems:

The geometry and fill stratigraphy of the Late Pleistocene paleochannel 

systems beneath Chasapeake Bay have been well documented (Colman and Hobbs, 

1987 and 1988; Colman and Halka, 1989; Mixon, 1985; Shideler et al., 1984; 

Colman et al., 1991; and Hobbs, 1990). Three generations of paleochannel 

systems, the Cape Charles Channel, Eastville Channel, and Exmore Channel, 

have been identified. Multiple across-profile mappings within the bay have 

shown that seismic reflection profiles and interpretive cross sections of 

the main stem of the Exmore paleochannel are commonly cut by a major 

tributary of the Eastville paleochannel.

The similar physical characteristics can also be identified in this 

study region: the lowest paleochannels are often cut by a younger (upper) 

paleochannel systems (see Figures 7-8). The seismic reflection features of 

the upper (youngest) paleochannel system and the two lower paleochannel 

systems in the study region are characterized respectively by the relatively 

weak reflections, and by relatively strong—and-irregular reflections.

The major geomorphological difference of the paleochannel systems 

between the two regions is that beneath the bay all three paleochannels 

cross beneath the Delmarva Penisula east-southeast ward into the Atlantic 

Ocean (Figure 23; and Figures 9-11). The paleochannels in this study region,
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Figure 23 Three Generations of Paleochannel System in the Bay

( from Colman et al, 1988)

76® 20' 76°  75°40

(See text for detials)
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however, are oriented more to the south ---  apparently inherited from the

more southerly located ancient rivers (the ancient James River?). The 

ancient Susquehana River has been considered the major tributary of the 

Eastville and Cape Charles paleochannels in the bay (Mixon, 1985; Colman and 

Hobbs, 1987; Colman et al., 1988; and Colman et al., 1990).

The amino acid dates for the fill sequences and 'basal' sediments range 

from A/I values 0.01 to 0.61 representing Quaternary oxygen-isotope Stage 1, 

Stage 5 and/or Stage 7, through Stage 13, namely ranging in age from modern 

age to middle Pleistocene of approximately 500 thousand years (ka) BP.

Except for some of the extreme Rangia ages which came from a muddy section 

of an unusual core (Vibracore 37), the amino acid groups for the sedimentary 

fill sequences are distributed as A/I values of 0.01, 0.11-0.14, and 0.15- 

0.21, corresponding to the isotope Stage 1 (Holocene), Stage 5 (100+/-25 ka) 

and Stage 7 (210+/-25 ka). Consequently, the ages for the major paleochannel 

systems in this study area are assigned to Stage 2, Stage 6 and Stage 8, 

correspondent to 30+/-10 ka, 150+/-25 ka and 260+/-20 ka BP.

Comparing these age assignments with the paleochannel ages beneath the 

bay, one finds that the paleochannel systems in this study region are 

compatible in age with the relatively better—studied Cape Charles 

paleochannel, the Eastville paleochannel and the Exmore paleochannel (Colman 

and Mixon, 1988; and Colman et al., 1990). So, the three generations of the 

paleochannel systems in this study region are then named as age equivalents 

of the Cape Charles, Eastville, and Exmore paleochannel systems (Figures 24- 

26).
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Recent studies on Europen Pleistocene sedimentary sequences have 

suggested that Stage 11, rather than Stage 7(or 9), is a more important 

interglacial marine deposition period (Sarnthein et al, 1986). Thus some 

authers (Colman et al., 1988) suggest that the Exmore paleochannel beneath 

the bay might hvae formed during Stage 12 rather than Stage 8 (or 10). 

However, the morphology and geographic distribution of the three 

paleochannel systems in this study region seemingly do not favor this. The 

middle-level (next youngest) paleochannel system is, in most seismic- 

reflection profiles, well confined within the lowest (oldest) channel’s 

valley system. This probably indicates that the scale of the next oldest 

paleochannel system is relatively small and did not exceed the oldest one’s 

configuration. If looking at the well-evidenced global Pleistocene sea-level 

curve, we may be able to rule out the possibility that the two lower 

paleochannel systems in this study region were formed during the Stage 6 and 

Stage 12.

(Even if the Exmore paleochannel beneath the bay is assigned in age to 

Stage 12, the age assignments for the lowest paleochannel system in this 

study is probably still corespondenses to Stage 8. Because the period 

between Stage 12 and Stage 6 was long enough to have significant 

transgression-regression sequences developed which can not be thoroughly 

eraesed from the sedimentary record. One question is, then, whether or not 

the lowest paleochannel system in this study region is compatible in age 

with the Exmore paleochannel beneath the bay).
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2. Fill Stratigraphy and Depositional Environments

Based on the seismic reflection characteristics, the lithological, 

sedimentological and stratigraphic features of the vibracores, and the amino 

acid geochronal determinations, the cross-section (AA1) stratigraphic 

correlation was carried out (Figure 24) on which all the selected vibracores

were projected on the AA1 at the NE 45° direction.

From the cross-section correlation diagrams, there are three or four 

major stratigraphic units that can be identified in the substrata 

sedimentary sequences which are inferred in this study to the sedimentary 

sequences of the Holocene (early and late phases), the Late Pleistocene, the 

undivided Middle-Late Pleistocene, and the undivided Tertiary-to-Pleistocene 

deposits.

The upmost (youngest) sedimentary sequences, with an amino acid A/I 

value of 0.01 or less, making up the majority of modern top and surfacial 

inner shelf-beach deposits, represent the Holocene transgressive sand sheet. 

A thin coarse sand layer, often with local accumulation of marine fossil 

bands, occurs in most vibracores. This may refer to the major diastem 

between lower and upper Holocene deposits which occured about 6,000 — 7,000 

years ago when Holocene rate of sea-level rise slowed (Bowen, 1978). The 

lithology of the upmost paleochannel fill consists of interbedded muddy 

sand, silt and peat, characterizing a restricted river-estuary to open-bay 

and to modern marine beach environment. This seems well supported by the 

lithological evidence from the five vibracores. From the Figures 14 to 18, 

we can find that the upmost sedimentary sequences in all the samples of the
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five vibracores have similar lithological features, indicating similar 

depositional environments for these sequences.

Below the Holocene sequences, the two lower sedimentary units of each 

fill are characterized on seismic reflection profiles by relatively strong 

and discontinuous reflections. These characteristics, together with 

lithological and sedimentological data from the vibracores, indicate that 

these sedimentary units are fluvial to river—mouth delta deposits, typically 

consisting of coarse sand to fine gravel.

From the vibracore logs (Figures 14-18), one can find that the fill of 

the lowest paleochannel is generally made up of, from bottom to top, coarse 

sand and some 2-3mm sized pebbles, often with thin (<0.4 cm) silt-mud belts 

or nodules; upward into fine sand to sand layers with occasional dark bands 

or thin layers, sometimes with rusty-colored bands. Bottom fragments of 

vegetation can be observed in most of the vibracores. Shell bedds or shell 

fragment layers (0.5-2cm in thickness) can also be found in the fill 

sequences. These sedimentary features indicate that the sequences were being 

deposited in a complex coastal environment in which delta, localized fluvial 

chutes or cutting outlets, tidal channels, estuaries, lagoons, marshes, and 

bay—mouth or tidal shoals exerted themselves. This resulted the 

establishment of the multi—facies sedimentary sequences. At the very bottom, 

or beneath the fill of the lowest paleochannel valley, a well-sorted thick 

medium sand layer is gradually truncated by a mud(silt)-coarse sand 

interbedding sequences (each band of the interbedds is generally 1-3 mm in 

thickness, Photo 3) which probablly originated in a fluvial dominated
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deltaic environment during a marine regression (Figure 14). Above the 

deltaic sequences, a coarse sand and/or fine gravel sequence commonly occurs 

in the bottom sequence of the fill (Figures 14 and 17) which is apparently a 

fluvial basal lag deposit or a chute fill in some cases; dark (organic-rich) 

bands in the middle and upper portion of the fill sequences were likely 

generated in estuarine, lagoonal to marsh environments, especially where 

vegetation occures in the dark bands; the layered shell deposits are related 

to tidal shoal (bay-mouth to marine beach) environments. The upper portion 

of the paleochannel fill is generally prodominated with fine-medium well- 

sorted sand. The overall sedimentery sequences indicate a regressive to 

transgressive evolution which is vertically marked with the establishment of 

a consequent facies complex (A fluvial dominated regressive delta, coastal 

fluvial channel, restricted estuary and lagoon, to tidal shoaling beach 

deposits) (Blatt et al., 1980).

Figure 27 is a simplified reconstruction of the depositional environment 

for the fill sequences of the three generation paleochannel systems in this 

study area. It was mainly based upon "coarse-grained" analyses of the 

lithological, sedimentological and aminostratigraphical data from the five 

vibracores. No detailed paleontological study, especially on spore and 

pollen, was involved in the reconstruction.

The amino acid A/I ratios for the lowest paleochannel fill range from 

0.21 to 0.10. As discussed in earlier chapters, the age assignment for the 

fill sequences is infered here to oxygen isotope Stage 8, namely 260+/-20 ka 

BP.
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The middle paleochannel fill is characterized by sedimentary development 

similar to the lowest one's. As described in vibracores 39, 44 and 54 

(Figures 14-18), the paleovalley is filled with, from bottom to top, coarse 

sand with pebbles and shell fragments, fine-medium sand, fine sand-muddy 

sediments often interrupted by shell and/or shell fragment layers as well as 

dark muddy bands. In general, the major difference between the two lower 

paleochannel fill sequences are that the fill of the mid-level paleochannel 

system does not have a mud-sand interbedding unit of sediment at bottom, and 

represents a relatively smaller—scaled channel valley and filling sequences. 

This may further imply that the age assignment for this paleochannel is 

prefered to be Stage 6 that was generated "shortly" after the previous 

channel (Stage 8) was being filled.

Figure 28 shows the stratigraphic correlations among the five 

vibracores. In this figure one finds that the major boundaries of these 

amino-stratigraphic units match the boundaries drawn from the seismic 

stratifications (Figure 13) and the depositional environments (Figure 27). 

This may imply the validity of our elucidations to the depositional 

environment, the seismic stratification, and the aminostratigraphy.

The multi-cycled channel incisions and back-fillings in this 

reconstruction are clearly related to sea level fluctuations in the mid- 

Atlantic Bight (Colman and Hobbs, 1987). Every major cycle of the glacial- 

interglacial revolution started with a very low sea level stand (as low as 

150 m below the present sea level). The shoreline was far east out onto the 

present day shelf. If the preceding interglaciation ended gradually,
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a regressive fluvial delta could be built up along the retreating river 

mouth. Intergrated fluvial system deeply incised previous sedimentary 

sequence(s) creating many valley walls and interfluves, often leaving coarse 

lag deposits behind. As sea level rose during the interglacial period, the 

fluvial system was filled with sediments, so did the chutes and the 

interfluves. A further rise of sea level might have generated coastal 

physiographic units, such as a estuary, open bay, lagoon, barrier-spit, 

tidal delta, and shoreface. Sediments from both landward and seaward sources 

were trapped in these units. Marine organism, especially shell (mollusca) 

species, were washed over along tidal shoals and/or beaches that become the 

shell (fossil) layers present in stratigraphic columns. The cross-section 

correlations of depositional environments among the vibracores (Figure 27) 

here can also be considered as a sedimentary facies model for representing 

the geologic history of the paleochannel systems in this region.

3. Geostatistical Rearrangement and Its Stratigraphic Implication 

Based on the Q-mode factor analysis, a so-called 1geo-statistic 

rearrangement1 for the vibracore substrata was made (Figure 22) which 

simplifies the multi-sublayered sedimentary sequences into three or four 

depositional enviornment—orientated statistic units. These units can be well 

correlated among the vibracores. The only exception in the re-arrangement, 

assumed here as a rarity, occurs in the vibracore Core-37. The causes for 

the exception are not clear. It may have something to do with the 

vibracore*s location ---  Core-37 was drilled in the area very close to the
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dredged U.S. Naval "Atlantic Channel" (Williams, 1988); it may also be an 

artifact generated by the mathematical operation.

According to the study of the sedimentary facies and lithology, we find 

it plausible to assign the factor analytic groups of G-I, G-II and G-III 

(Figure 23) to the following physical entities: the G—I is representative of 

a marine dominated (beach—surfzone-shoreface-inner shelf) depositional 

environment condition, the G—III of a fluvial active depositional 

environment condition, and the G-II of a transition zone between the two.

The G—IV is assigned to the same depositional environment condition as G-I. 

This is based on the correlation between the two on the sediment factor 

laoding diagram (Figure 22).

The phrase "depositional environmental condition” is utilized here to 

refer to a specific regime in the geo-statistical world which does not 

necessarily correspond to the reality of the coastal environment or the 

associated hydraulic condition.

A question that arises from the physical assignments is how a relatively 

coarser component of G-I is assigned to a marine dominated environment, 

whereas the finer sediments of G-III to a fluvial system? A hypothetical 

answer is that the statistics picked up a grain-size population that is not 

the one commonly plotted in a grain-size compositional distribution diagram. 

Instead, it may have picked up a weight- or shape-orientated sub-population, 

such as the one suggested by Cook and Gorsline (1972), and Niedoroda et al. 

(1989 and 1991). Recent research on coastal marine sedimentation (Niedoroda 

et al., 1991) has shown that there are always two grain-size populations of
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sediments being distributed along a long-term erosion coastal depositional 

zone: a granular finer upper shoreface sand, and a coarser lower shoreface- 

inner shelf sand. The former represents a substantial amount of rip—current 

fallout which originates from breaking wave-driven processes within surf 

zone; the latter represents a major lower shoreface to inner shelf sand. The 

more spherical grains could be relatively larger (coarser) along the marine 

beach (the finer grains are washed over into the offshore environments), but 

they have to be relatively much finer in a fluvial dominated systems (only 

wind transported fine grains have more spherical shapes).

Comparing the geostatistical arrangement of sub-strata with the output 

of both the stratigraphic correlation and the reconstruction of the 

depositional environments (Figures 22, 27, and 28), one can find that the Q- 

mode factor analysis on the rearrangement of the substratum units (sub

layers) provides a simplified picture about the depositional environments on 

which the fill sequences of the two lower paleochannel systems are grouped 

into a single category, infered as "a fluvial-estuary dominated depositional 

system”; whereas the fill sequence of the upper paleochannel system 

basically remains as an unit of a "shallow marine depositional system."

It is encouraging that the output of the Q-mode factor analysis matches 

the lithological and stratigraphic observations well. This hints that the 

selected grain sizes, from the RSA sandy sediment, at the Phi values of 0.0,

0.5, 0.75, 1.25, 1.5, 2.75 and 3.25, are plausible in the statistic

operation to delineate, at least at a large scale, the depositional

environment condition for the fill sequence of the paleochannel systems in
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this region. The agreement of the Q-mode factor analysis with the lithology 

further reenforces the credibility of the methods.

A. Synthesis of the Analysis Results

Comparing the major seismic stratifications (Figure 13) with the output 

of the depositional environment reconstruction (Figure 27),

aminostratigraphy (Figure 28), and geostatistics (Figure 22), one finds that 

the major boundaries in these diagrams are compatible. For instance, the 

primary depositional environment boundaries can be well correlated with the 

aminostratigraphic ones (Figures 27 and 28).

The primary, seismic reflecting boundaries (Figure 13) appear 

conformable with, but higher than, the corresponding lithological, or depo- 

environmental, boundaries (usually 0.2 to 0.5 meter above). The reason is 

that a strong seismic reflecting signal recorded on the seismic reflection 

profile generally comes from an interface between two sharply different 

sedimentary assemblies (layers), for example, between a coarse sand layer 

and a fine sand or muddy layer. And such a reflection interface often 

indicates the top surface of the coarse sediment assembly (layer). Whereas, 

the lithological, or environmental, boundaries start from the very bottom of 

the assembly (layer). This difference is well indicated in Figure 13 on 

which the primary seismic reflecting surfaces are systematically above the 

lithological boundaries.

The geostatistical arrangement of the multi-layered substrata (Figure 

22) divides the whole unit of the fill sedimentary sequeces in the A-A*
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cross-section into two major geo-statistical segments: a shallow marine 

dominated sedimentary entity, and a fluvial-estuarine dominated one. This 

division appears plausible as the lithological, aminostratigraphical, and 

seismological outputs are compared with the geostatistical result. The 

transitional zone between the two segments (the G-II in Figure 22) seemingly 

however, does not closely follow the outlines of the physical (lithological 

and aminostratigraphycal) boundary. It apparently moves through the inferred 

Pleistocene-Holocene timeline (aminostratigraphical boundary) in the cross- 

section. This may imply a strong sediment reworking process during that 

period of geological time; it also could be a artificial effect generated by 

the geostatistics.
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SUMMARY

Results from the closely-spaced, high-resolution seismic survey, the 

vibracore stratigraphic analysis, geochronal control, and geostatistic 

manipulation embrace the following:

1. Three major paleochannel systems were identified from the seismic 

reflection profiles in this region. The two lower paleochannel systems have 

a similar geographic distribution pattern, trending south southeast; whereas 

the upper paleochannel system has a scattered pattern. The apparent scales 

of the valley relief and axial depth for the three paleochannel systems 

diminish from bottom to top;

2. Fossils collected from the fill sequences of the paleochannel systems 

in five selected vibracores provided more than ten amino acid dates ranging 

in amino acid A/I value from 0.01 to 0.21. Three A/I groups of 0.01, 0.10- 

0.15 and 0.15—0.21 were categorized and are correpondent to the oxygen 

isotope stages of Stage 1, Stage 5, and Stage 7. Thus, the three 

paleochannel systems were infered to be the Stage 2, Stage 6 and Stage 8, 

corresponding to 30 +/-10 ka, 150 +/-20 ka and 260 +/-20 ka BP respectively. 

This implies that the three major paleochannel systems in the study area, on 

the continental shelf south the Chesapeake Bay's mouth, are compatible in 

age with the Cape Charles, Eastville, and Exmore paleochannels beneath the 

bay;
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3. The study on the sedimentary structure, lithology and stratigraphy 

from the selected vibracores, combined with geochronal data and X-ray 

stratigraphic study, resulted the re-construction of depositinal 

environments for the fill sequences of the major paleochannel systems. Three 

major depositional cycles (some of them are only partially preserved) were 

outlined, which are featured with multi-facies sedimentary sequences 

representing a broad physiographic complex ranging from the fluvial channel 

(lag, chute, flood plain...), to fluvial dominated delta, tidal channel, 

estuary, marsh, lagoon, bay-mouth, tidal shoal and shoreface etc;

4. Using grain-size data, a Q—mode factor analysis was carried out which 

demonstrates a geostatistical correlation for the multiple sub-layered 

substrata in the vibracores. Three factor groupings were recognized and 

physically assigned to three conjunctive depositional environment 

conditions. The statistic simplication indicates that the fill sequences of 

the three paleochannel systems can be further categorized as a "shallow 

marine sedimentary environment (Beach—surfzone—shoreface—inner shelves)," 

and a "fluvial-estuarine dominated environment;"

5. The synthesis of the seismological interpretation, the depositional 

environment reconstruction, the amino acid geochronal determination, and the 

geostatistical simplification shows a general agreement among the outputs of 

the various approaches of methodology. This further supports our earlier 

conclusions.
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