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ABSTRACT
This study investigated the nutrient standing stocks in a 

small, pristine, bottomland hardwood swamp and partitioned the 
nutrient sources and sinks at the marsh/upland interface. Nutrient 
concentrations of water samples collected during two hydroperiods in 
1990 in the Taskinas Creek watershed of the York River Estuary, 
Virginia, showed the importance of groundwater as a potential source 
of nutrients to the system, particularly during the spring 
hydroperiod. Observed orthophosphate concentrations were high 
during both hydroperiods at all sampling stations. Groundwater 
concentrations ranged from 1.37 to 6.78 ug-at/L during the spring 
hydroperiod and from 1.44 to 12.52 ug-at/L during the summer 
hydroperiod. Nitrate+nitrite concentrations were greatest in 
Taskinas Creek during the spring hydroperiod ranging from 0.87 to 
14.90 ug-at/L. During the summer hydroperiod, the stream exhibited 
the greatest concentrations of nitrate+nitrite ranging from 1.50 to 
2.56 ug-at/L. Ammonium concentrations generally were highest in the 
groundwater during the spring ranging from 0.41 to 4.56 ug-at/L 
while the highest summer ammonium concentrations fluctuated between 
the groundwater and stream sampling stations. Groundwater 
ammonium concentrations ranged from 1.37 to 6.57 ug-at/L and the 
stream station ranged from 2.22 to 3.50 ug-at/L during the summer 
hydroperiod. The Taskinas Creek sampling station showed great 
variation in nutrient concentrations, presumably due to York River 
influence. The results indicate that during the spring groundwater 
acts as an ammonium source for the stream. The results indicate 
that spring groundwater also may be an important source of nitrate+ 
nitrite, while groundwater may serve as a source for orthophosphate 
in the system in both hydroperiods.
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INTRODUCTION

Bottomland hardwood forest ecosystems include extensive 

palustrine forested wetlands in the southeastern United States. 

These areas are characteristically found on river floodplains and 

streambanks with soils that are saturated periodically by surface or 

groundwater during the growing season. Frequently they are narrow, 

being located along rivers and streams. The vegetation associated 

with these regions contains a diversity of trees adapted to a wide 

range of environmental conditions, woody species in the understory, 

and marsh species on the floodplain. These ecosystems possess large 

transition zones where aquatic and terrestrial ecosystems interface, 

providing important exchange sites for material and energy in the 

landscape (Brinson et al. 1981). Bottomland hardwood wetlands are 

of particular interest due to their rapid conversion to agriculture 

or development. More than 70% of the riparian ecosystems have been 

altered. Natural riparian communities now make up less than 2% of 

the land area in the United States (Brinson et al. 1981). It is

estimated by the United States Fish and Wildlife Service (Wilen and 

Frayer 1990) that during the 1950's riparian ecosystems made up 

approximately 6% of the land area of the United States and that 

palustrine vegetated wetlands have decreased from 40 million 

hectares in the 1950's to 36 million hectares in the 1970's with an



3
average annual loss of 216,000 hectares. Palustrine forested- 

wetland (swamps) losses accounted for 122,000 hectares (net average 

annual loss), while palustrine emergent-wetland (inland marshes and 

wet meadows) losses accounted for a net average annual loss of 

95,000 hectares a year (Wilen and Frayer 1990).

Due to their location along streams and rivers, the seasonal 

cycle in the bottomland hardwood system tends to be defined more by 

precipitation and flooding than temperature (Gosselink and Lee 

1989) . Rising waters in the late winter and spring typically flood 

the forest floor and determine, to a great degree, the flora and 

fauna which inhabit the floodplain. Diversity and productivity are 

high in the bottomland hardwood wetland system due to the presence 

of marsh species and hardwood trees which flower and/or produce 

fruit for a large portion of the year. During the summer the 

floodplain buffers the adjacent stream from the uplands. Species 

composition and density all play an important role in productivity 

and nutrient cycling in these environments. General aspects of 

nutrient cycling in these systems has been described by Brinson et 

al. (1981), revealing a complex series of interactions among the 

soils, vegetative cover, hydrology, and organisms. Flooding also 

plays a key role in the nutrient cycles of these wetlands.

Groundwater discharge to estuarine waters has been recognized 

as a potential nutrient source (Valiela et al. 1978; Valiela et al. 

1990; Capone and Slater 1990) and has recently attracted much 

scientific attention. Field measurements have shown the importance 

of shallow, subsurface flow on nutrient budgets of the estuary. In
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cases where the soils are coarse and unconsolidated, groundwater may 

be the major source of nutrients. In the last ten years the 

transport of nutrients into coastal waters by groundwater has been 

shown to be more significant than previously realized (Capone and 

Bautista 1985; Giblin and Gaines 1990). Valiela and colleagues 

(1990) determined that the importance of groundwater was not so much 

due to the magnitude of flow rates, but due to the high nutrient 

concentrations in groundwater compared to those in receiving 

seawater. Evidence also suggests nutrient content of groundwater 

may be up to five orders of magnitude higher than the nutrient 

content of receiving seawater (Valiela et al. 1978; D'Elia et al.

1981).

The objective of this study was to investigate the standing 

stocks of nutrients and partition nutrients at the marsh/upland 

interface of a small, unimpacted bottomland hardwood forest during 

two hydroperiods. One hydroperiod was characterized by high 

precipitation and runoff, the other by low precipitation and runoff. 

The study focused on the nutrient concentrations of groundwater and 

stream water in the Taskinas Creek watershed of the York River 

Estuary, Virginia (Figure 1). The data also serve to establish 

baseline water quality conditions in the region.
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LITERATURE REVIEW

Bottomland hardwood forests were classified according to 

flooding conditions and divided into zones by the Society of 

American Foresters at a workshop held at Lake Lanier, Georgia in 

1980. The zones range from intermittently exposed (Zone II) to 

intermittently flooded (Zone VI). Zone VI ecosystems usually are 

not considered wetlands but a transition zone to the uplands (Mitsch 

and Gosselink 1986). The riparian wetlands generally have ample 

nutrients whose availability is modified by flooding conditions. 

Flooding creates a reduced oxidation state in the soils and often is 

accompanied by a shift of pH and mobilization of phosphorus, 

nitrogen, copper, and other soil nutrients and minerals. Regions of 

oxic and anoxic conditions also may develop during flooding and 

denitrification may become more prevalent. These alternating 

conditions also slow down decomposition. The wetting and drying of 

the soils is important in releasing nutrients from leaf litter. The 

major limiting factor in these ecosystems may be the physical stress 

of inadequate oxygen to the root systems during flooding rather than 

inadequate supply of a specific nutrient or mineral (Wharton et al.

1982) .

The overall function of these ecosystems is poorly understood. 

It is recognized that productivity in these wetlands is greater than
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in the adjacent uplands and that these systems are subjected to 

large fluxes of energy and nutrients, usually on a seasonal basis 

(Brinson et al. 1981; Mitsch and Gosselink 1986). Bottomland

hardwood ecosystems have been observed to act as a nutrient sink for 

upland runoff and an important component in the nutrient cycle of 

the entire watershed (Brinson et al. 1981). These systems collect 

and effectively filter nutrients that enter through runoff and 

groundwater. Peterjohn and Correll (1984) estimated that a 50 

meter wide riparian forest in a small agricultural watershed in the 

Rhode River drainage basin in Maryland retained 89 percent of the 

nitrogen inputs and 80 percent of the phosphorus inputs. They 

concluded that an insufficient number of studies have been conducted 

to assess how common these observed effects were.

Brinson et al. (1981) described the nitrogen cycle in a

bottomland hardwood stream-floodplain complex. They noted that 

winter flooding contributed dissolved and particulate nitrogen to 

the system, which was not taken up by the dormant canopy trees, but 

which was taken up by filamentous algae on the forest floor and 

immobilized by detritivores. In the spring the algae were shaded by 

the developing canopy and released nitrogen. As vegetation

continued to grow, nitrogen uptake increased. Lowering water levels 

exposed the soil's surface and ammonification and nitrification 

increased, making nitrogen more available for plant uptake. 

Nitrification produces nitrates which are lost through

denitrification caused by the subsequent flooding and anaerobic 

conditions.
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Nutrient mass balances for parts of the Rhode River estuary of 

the Chesapeake Bay in Maryland were determined for a 13-month period 

(Correll 1981). The intertidal zone of this study was an estuarine- 

headwaters habitat and received large volumes of land drainage in 

addition to having tidal exchanges with the estuary. Land runoff 

was shown to have an important effect on the mass balance of the 

ecosystem, with its large amounts of nutrients and flushing effect 

on buffer zone waters. The importance of precipitation and both 

surface and groundwater inputs was stressed.

Groundwater has been determined to be a major source of 

nutrients in many coastal environments (Correll 1981, Giblin and 

Gaines 1990, and Harvey and Odum 1990). Harvey and Odum (1990) 

studied the influence of tidal marshes on the groundwater discharge 

in two estuaries of the Chesapeake Bay in Virginia. Transects using 

piezometers and pore water samplers were arranged from the base of 

the hillslope across the marsh perpendicular to the marsh-hillslope 

interface. Maximum groundwater discharge occurred close to the base 

of hillslopes and declined with distance away from the slope. This 

is supported by other field observations (Capone and Bautista 1985; 

Valiela et al. 1980). Harvey and Odum (1990) determined that upland 

elevation, slope and soil type were the controlling factors in 

discharge rates of groundwater. The results of their study showed 

that hydraulic head was greater in the underlying aquifer and upward 

hydraulic gradient beneath the marsh was evidence that groundwater 

is being discharged into the marsh from the soil below. Harvey and 

Odum's (1990) results also indicated that where clay or organic muds
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were present, groundwater discharge was small and areas with thin 

clay or organic layers permitted groundwater discharge up to two 

orders of magnitude higher. The study concluded that groundwater 

discharged from the upland aquifer was retained longer and became 

more thoroughly mixed with the pore and surface water in tidal marsh 

soils. The longer soil contact time was thought to be important in 

nutrient immobilization and in modulating biogeochemical reactions. 

The study pointed out that very shallow groundwater flow from near 

the surface, hillslope soils may be an important transport pathway.

The importance of nitrogen inputs from groundwater and runoff 

were evaluated by Giblin and Gaines (1990) in their study focusing 

on a small cove on Cape Cod, Massachussetts. The dominant form of 

inorganic nitrogen in the groundwater samples, wells, seeps, and 

springs around the cove was nitrate, which appeared to be largely 

derived from septic systems. Patterns of nitrate and salinity in 

pore waters indicated a high groundwater flow in sandy areas and 

very low or no groundwater flow in the muddier areas. It was 

concluded that nitrogen loading, when adjusted for the volume of the 

ecosystem, from groundwater and runoff were similar in magnitude to 

river dominated estuaries in urbanized areas of the United States.

Another study in the Rhode River estuary in Maryland 

investigated precipitation and land runoff as sources of nitrogen to 

the estuary (Correll and Ford 1982). The importance of estuarine 

nitrogen loading due to precipitation was assessed by studying the 

temporal pattern of nitrate and ammonium concentrations in the 

estuary. It was determined that nitrate and ammonia loading via
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precipitation was most important in the summer and fall relative to 

surface water concentrations. The relative importance of 

precipitation as a source of estuarine nitrogen was observed to be 

greatest in warm weather when land runoff was low and its associated 

nitrate concentration was also low. The results showed that nitrate 

in bulk precipitation at Rhode River was present at essentially 

double the concentration of ammonium, and has been increasing 

steadily for seven years.

Harvey and Odum (1990) noted that there is a renewed attention 

to the interconnectedness between upland aquifers and fringing tidal 

marshes, and the role of marshes in modifying subsurface fluxes 

between the upland and the estuary. The present study was an 

attempt to begin to understand the standing stocks and sources of 

nutrients in a natural, iunimpacted tidal marsh-upland hardwood 

system of the York River estuary.
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METHODS

Study Site

The Taskinas Creek watershed is located on the western shore of 

the York River Estuary in James City County, Virginia (Figure 1). 

Most of the watershed is located within the boundaries of York River 

State Park and the proposed Taskinas Creek National Estuarine 

Research Reserve. Taskinas Creek is a pristine, tidal creek with 

several feeder streams which drain oak-hickory forests and ravines, 

maple-oak-ash swamps, and freshwater marshes. The lower sections of 

the creek are dominated by brackish water marshes. Bottomland 

hardwood forests fringe feeder streams at the base of the hillslopes 

throughout the watershed. One of the feeder streams is the focus of 

this study.

Upland forests cover the ridges and ravine slopes throughout 

this area of the watershed. The area is rugged and slopes range 

from 6 to 50 percent. The vegetative cover plays an important role 

in soil stabilization and erosion protection. The ravine slopes are 

dominated by chestnut oak (Quercus prinus), northern red oak 

(Quercus rubra), tulip poplar (Liriodendron tulinifera), American 

beech (Fagus grandifolia), American holly (Ilex opaca), and mountain 

laurel (Kalmia latifolia). The same species, as well as sycamore
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Figure 1

Location of the Taskinas Creek watershed in the York River Estuary,
Virginia
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(Platanus occldentalis), Virginia pine (Pinus virginiana), loblolly 

pine (Pinus taeda), red maple (Acer rubrum), white oak (Quercus 

alba), southern red oak (Quercus falcata), and sassafrass 

(Sassafrass albidum) are found on the ridges.

The floodplain is vegetated with freshwater marsh species such 

as rice cutgrass (Leersia orvzoides). lizard's tail (Saururus 

cernuus), and wild anise (Qsmorhiza longistvlis). The observation 

of wild anise is a county record, as this species has not been 

documented in the county before (Perry, personal communication). 

The wood fern (Dryopteris spp.) grows on the base of the upland 

slope.

Berquist (1990) preliminarily mapped the geology of the area. 

The units exposed at the surface in the study area are the Pliocene- 

age Bacons Castle Formation, which is located on the ridge tops, the 

Pliocene-age Yorktown Formation, at the top of the ravines; and the 

Miocene-age Eastover Formation, found in the ravine bottoms along 

with marsh or swamp units.

The soils as defined by the United States Department of 

Agriculture, Soil Conservation Service in the Soil Survey of James 

City County (1980) are a complex arrangement of Emporia soils 

composed of fine sandy loams with a firm sandy clay substratum. 

This soil commonly lies over layers of fossil shells and is found on 

side slopes along rivers, creeks, and drainageways. The water table 

frequently is near the surface in perched water tables, and the 

region is considered to be highly erodable, especially if soil cover 

is removed.



The Taskinas Creek watershed in York River State Park is 

undeveloped, but the surrounding region is of mixed, low-density 

residential and agriculture, forestry, and rural residential zoning 

areas as identified by the James City County Comprehensive Plan. 

The study site is located in an area of the park where public access 

is discouraged and subject only to natural processes.

The study site is located in the humid subtropical marine 

climatic region and has no well defined dry season although periods 

of minimum rainfall generally occur in the mid and late summer. The 

warmest air temperatures occur in July and August and the 

temperature record for 1970-1981 reveals that water temperature 

follows air temperature with maximum temperature reaching 

approximately 26 degrees C in August (Brooks 1983). Mean annual 

precipitation for the region is 116 cm, calculated from a thirty- 

year record (National Climatic Data Center, 1989). Rainfall 

varies greatly from year to year.

Sampling Methodology

Sampling stations were established on a small, pristine 

headwater stream in the Taskinas Creek watershed and downstream on 

the tidal reaches of Taskinas Creek itself (Figure 2). The station 

on the feeder stream consisted of a water sample collection site, 

two groundwater wells and surface water collectors. The canoe- 

launching dock downstream provided a water sample collection site on 

Taskinas Creek. Water samples were collected during the spring
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Figure 2

Location of sampling stations in the Taskinas Creek watershed, 
York River Estuary, Virginia.

Source map: Gressitt 7.5 minute series quadrangle.
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hydroperiod, characterized by greater precipitation and runoff, and 

during the summer hydroperiod, typically low in precipitation and 

runoff.

The spring sampling schedule was determined by the occurrence 

of rain events. Beginning on March 26, 1990 and ending June 4, 1990 

seven sets of samples were collected during or directly following 

rain events. Precipitation was collected for analyses on March 26, 

1990 and April 2, 1990. The summer sampling schedule was determined 

by tide stage at the Taskinas Creek sampling site. Six sets of 

samples were collected weekly from July 18, 1990 through August 29, 

1990 at ebbing tide.

The groundwater wells were constructed of polyvinylchloride 

slotted pipe (ASTM accepted), capped at both ends. Two wells (72 

and 93 cm deep respectively) were placed one meter apart in hand- 

augered holes at the base of the hillslope. A bentonite seal was 

used to prevent contamination. Samples were collected with a 

Nalgene hand pump into dedicated Erlenmeyer flasks. Wells were 

purged and allowed to recharge before samples were removed. The 

sample location on the stream was marked by a small flag and 

represented an area where the water was deepest, approximately 5 cm. 

Bottles were submerged and filled at this location each time. 

Precipitation was collected in an open area across the marsh from 

the sample site. Samples were composites of a collector built to 

trap precipitation. The collector held six acid-washed Nalgene 

bottles covered with plastic mesh screening to keep out leaves and 

large debris. The precipitation collector was placed in the open
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area approximately 12 - 15 hours prior to sampling. Following

removal of each sample, the collector was acid-washed and covered 

until the next rain event. Taskinas Creek was sampled by submerging 

a bottle from the same corner of the dock each time.

All samples were stored in ice and transported directly to the 

laboratory for analysis. pH was determined by the use of an Orion 

digital pH meter and salinity was determined by the use of a 

Rechert-Jung temperature compensated hand-held refractometer. Each 

sample was filtered through a precombusted GF-F filter with a vacuum 

pump, retaining 250 ml of each sample. Total suspended solids were 

determined by filtering a known volume of sample through a pre- 

weighed, combusted GF-F filter and placing it in a drying oven at 50 

degrees C. After completely dry the filters were weighed again to 

determine total suspended solids concentration. Ammonium samples 

were treated in an alkaline citrate medium with sodium hypochlorite 

and phenol in the presence of sodium nitroprusside. The blue 

indophenol color formed with ammonia was measured

spectrophotometrically (Parsons et al. 1984).

Nitrate was reduced to nitrite quantitatively by running the 

sample through a column containing cadmium filings coated with 

metallic copper. The nitrite produced was determined by diazotizing 

with sulfanilamide and coupling with N-(1-naphthyl)-ethylenediamine 

to form a highly colored azo dye which was measured

spectrophotometrically (Parsons et al. 1984). Nitrite was allowed 

to react with sulfanilamide in an acid solution. The resulting

compound was reacted with N-(1-naphthyl)-ethylenediamine to form an
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azo dye, which was read spectrophotometrically (Parsons et al. 

1984). Orthophosphate was analyzed by the ascorbic acid method and 

read colorimetrically (APHA method 4500-PE 1989) .

Statistical Methods

The data were analyzed by using a two sample t-test to test for 

a difference in mean concentrations. Triplicate concentration 

values for each sampling date were used. The comparisons were made 

between groundwater and stream, stream and Taskinas Creek, and 

groundwater and Taskinas Creek. Probabilities were analyzed with a 

95% confidence interval for significance using a probability value 

of 0.1, and t statistics provided the direction of change. Pooled 

values were determined using all data of each constitutent for the 

particular hydroperiod.
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RESULTS

Precipitation

Precipitation was greater during the spring hydroperiod varying 

from 0 to 3.92 cm daily, with monthly totals of 9.08 cm in March, 

5.69 cm in April, and 12.21 cm in May. Summer precipitation varied 

from 0 to 0.95 cm daily, with monthly totals of 3.03 cm in July and 

2.26 cm in August. Precipitation data are presented in Figure 3A 

and 3B. Precipitation was measured at the Virginia Institute of 

Marine Science, 38 km downstream from the Taskinas Creek watershed. 

Surface runoff was zero in both hydroperiods, with no runoff 

collected or observed. Precipitation samples were composites from a 

collector containing six bottles. Only twice during the spring 

hydroperiod was precipitation sufficient to collect an analyzable 

quantity. Samples were collected on March 26 and April 2, 1990.

Environmental Conditions

Environmental conditions during each sampling period are 

presented in Table 1. Air and stream water temperatures generally 

tracked each other and are typical for the region and time of year.
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Figure 3

Precipitation recorded at the Virginia Institute 
of Marine Science.

(A: Precipitation in cm measured during
the spring 1990 hydroperiod)

(B: Precipitation in cm measured during
the summer 1990 hydroperiod)
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Table 1: Environmental conditions observed during the 1990 spring

and summer hydroperiod sampling

Date Time Weather Temperature Tide stage
(degrees C) (Taskinas Crei
Air Stream

March 26 10: 16 AM Overcast, drizzle 10. 3 10. 9 high/ebb
April 2 10: 27 AM Overcast, drizzle 12 . 0 13 . 0 low/wk. flood
April 9 08: 57 AM Sunny, clear 10.0 11.0 low/slack
April 18 11: 36 AM Sunny, clear 20.0 14.0 low/slack
Apr i 1 27 08: 48 AM Sunny, clear 22 . 0 17.0 low/wk. flood
May 9 10: 15 AM Sunny, clear 23 . 0 17 . 0 high/slack
June 4 09 : 18 AM Pt. cloudy, humid 22 . 5 19.0 high/ebb

July 18 09:21 AM Sunny, clear 23.0 21.0 high/ebb
July 25 07:45 AM Clear, sunny 21.0 21. 0 low/ebb
August 8 08:12 AM Overcast, humid 21.0 21.0 low/ebb
August 15 08:20 AM Pt. cloudy, hot 23.5 22 . 0 low/ebb
August 21 08:50 AM Overcast, drizzle 20. 0 19 . 5 high/wk. flood
August 29 08:25 AM P t . cloudy, hot 24.0 23 . 0 high/ebb
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Tidal height in Taskinas Creek at the time of sample collection 

varied during the spring hydroperiod, but was generally ebbing 

during the summer hydroperiod sampling. Groundwater pH ranged from 

4.59 to 5.86 during the spring hydroperiod and 5.34 to 5.97 during 

the summer hydroperiod. Stream pH values were higher during the 

summer hydroperiod, ranging from 5.97 to 6.30, while the spring pH 

ranged from 5.66 to 6.10. pH in Taskinas Creek was relatively 

constant during both hydroperiods, ranging from 6.13 to 6.86. pH 

data are presented graphically in Figures 4A and 4B. Salinity was 

measured at the stream and Taskinas Creek sampling stations. Stream 

salinity remained near zero parts per thousand (ppt) throughout the 

spring and measured 1 to 3 ppt in the summer. Salinity at the 

Taskinas Creek station varied due to tidal stage and ranged from 1 

to 9.5 ppt in the spring hydroperiod and from 2 to 14 ppt during the 

summer hydroperiod. Salinity data are presented in Figures 5A and 

5B. Groundwater well water levels were measured from the top of the 

well to the water level surface prior to sampling during each visit. 

Water levels in groundwater well A remained either 33.5 or 34 cm 

during the spring and ranged from 38 to 41 cm during the summer. 

Groundwater well B water levels ranged from 46 to 48 cm during the 

spring hydroperiod and from 53 to 55 cm during the summer 

hydroperiod. Due to the fact that only two replicates were 

collected from groundwater well B, comparisons throughout this study 

are based upon the information collected from groundwater well A.
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Figure 4

pH observed during both 1990 hydroperiods 

(A: pH during the spring hydroperiod) 

(B: pH during the summer hydroperiod)
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Figure 5

Salinity measurements in parts per thousand during both
1990 hydroperiods.

(A: Salinities observed during the spring hydroperiod)

(B: Salinities observed during the spring hydroperiod)
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Nutrient Standing Stocks

Ammonium, nitrate, nitrite and orthophosphate were measured in 

triplicate at each of the sampling stations in this study. Raw data 

for this study are presented in Appendix A. All nutrient 

concentrations are reported in ug-at/L.

Ammonium

Ammonium concentrations for groundwater ranged from 0.41 to 

4.56 ug-at/L during the spring and from 1.37 to 6.57 ug-at/L during 

the summer. Stream ammonium concentrations in the spring ranged 

from 1.05 to 4.08 ug-at/L and ranged from 2.22 to 3.50 ug-at/L 

during the summer. Ammonium concentrations for Taskinas Creek 

ranged from 0.88 to 13.88 ug-at/L in the spring, with most samples 

in the 2.5 to 3.9 ug-at/L range. Summer concentrations ranged from 

1.63 to 6.44 ug-at/L. For the two precipitation samples ammonium 

concentrations were 6.92 and 6.16 ug-at/L.

Ammonium concentrations observed at the Taskinas Creek sampling 

station were greater during the spring hydroperiod, while the stream 

sampling station exhibited greater ammonium concentrations on 

specific dates during the summer. The groundwater sampling station 

displayed the highest overall concentration of ammonium in the 

spring hydroperiod. Early in the spring only Taskinas Creek 

ammonium concentrations were greater than those observed in the 

groundwater. Comparison of the sampling stations revealed that 

groundwater concentrations of ammonium were greater than the 

adjacent stream during the spring hydroperiod. During the summer,
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significant differences were observed only on specific dates with no 

overall significance, unlike the previous spring. Stream ammonium 

concentrations during the summer were also greater than the Taskinas 

Creek station (Tables 2 and 3). Figure 6A and 6B present these data 

graphically.

Nitrate + Nitrite

Nitrate+Nitrite concentrations in groundwater ranged from 1.46 

to 3.31 ug-at/L in spring and from 1.07 to 2.78 ug-at/L in summer. 

Nitrite concentrations ranged from 0.24 to 0.95 ug-at/L in the 

spring and from 0.16 to 0.76 ug-at/L in the summer. Nitrate+nitrite 

concentrations in the stream ranged from 0.92 to 1.75 ug-at/L in the 

spring and from 1.50 to 2.56 ug-at/L in the summer. Stream nitrite

concentrations ranged from 0.23 to 0.49 ug-at/L in the spring

hydroperiod and from 0.25 to 0.61 ug-at/L during the summer. 

Taskinas Creek nitrate+nitrite concentrations ranged from 0.87 to 

14.90 ug-at/L in the spring and from 0.77 to 5.84 ug-at/L in the

summer hydroperiod. Nitrite ranged from 0.13 to 0.81 ug-at/L in the 

spring to 0.21 to 0.65 ug-at/L during the summer at the Taskinas 

Creek sampling station. Nitrate+nitrite concentrations observed in 

precipitation were 4.78 and 10.96 ug-at/L with nitrite

concentrations of 0.10 and 0.16 ug-at/L respectively. Nitrate+ 

nitrite concentrations in groundwater were greater than those 

observed in the adjacent stream, but lower than those measured in 

Taskinas Creek downstream during the spring hydroperiod (Table 2 and

3).
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Figure 6

Ammonium concentrations measured in ug-at/L.

(A: Ammonium concentrations observed during the spring
hydroperiod)

(B: Ammonium concentrations observed during the summer
hydroperiod)

1990
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Table 2: T-test for significant mean differences in nutrient 
concentrations by site for each sampling date, spring 
hydroperiod

(A= groundwater - stream; B= stream - Taskinas Ck; C= groundwater - Taskinas Ck)

Probabilities*
Date

NH4
A

NOx P04 NH4
B

NOx P04 NH4
C

NOx P04

March 26 0.099 0. 013 ns ns 0.000 0. 007 ns 0. 000 0.010
April 2 ns 0.002 ns 0. 004 0. 017 0.001 0 . 006 0. 039 0. 012
April 9 0.009 0. 033 ns 0.001 0.001 0. 002 ns 0. 000 0.036
April 18 ns 0.052 0.004 0.000 0.000 0. 017 0. 000 0. 000 0.002
April 2 7 0.058 0. 036 0.069 ns ns 0. 003 0.004 0.033 0. 001
May 9 0.061 ns 0. 100 0.007 0.001 0. 000 ns 0.007 0.017
June 4 0.019 0.018 0 . 063 ns 0. 000 0. 000 0. 065 0.000 0.003

Spring 
Pooled 
(All Data) 0.003 0.000 ns 0.014 0.000 0.000 ns 0.000 0.000

T Statistic
Date A B C

NH4 NOx P04 NH4 NOx P04 NH4 NOx P04

March 26 2 . 37 5.28 -77.22 11. 66 -80.99 9.89
April 2 22 . 33 -7 . 90 -7 .51 14. 67 -7 . 04 -4.94 9 . 14
April 9 10. 59 5 . 39 -16.16 -33.46 10. 44 -21.34 5 . 15
April 18 4.23 16. 48 -21.28 -37.61 -4. 83 -30.05 -46.94 10. 84
April 27 2 . 99 5.11 3. 60 17.06 8. 47 5 . 37 11. 68
May 9 3.86 2 . 89 -6.51 -38.98 87 .29 -11.62 7 .51
June 4 4. 65 4.76 3.80 -93.94 36.59 2 . 86 -84.73 18.43

Spring
Pooled
(All Data) 3.23 8.11 -2 . 66 -7.83 6 .41 -6.29 7.11

*ns= not significant (p>0.10)
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Table 3: T-test for significant mean differences in nutrient

concentrations by site for each sampling date, summer 
hydroperiod

(A= groundwater - stream; B= stream - Taskinas Ck; C= groundwater - Taskinas Ck)

Probabilities*
Date A B C

NH4 NOx P04 NH4 NOx P04 NH4 NOx P04

July 18 ns ns 0. 005 ns 0. 000 0.000 ns 0.000 ns
July 25 ns ns 0.021 0.023 0. 001 ns 0.017 0. 019 0.014
Aug 8 0.029 0.090 0.048 0.017 0.025 0. 039 0.011 0. 011 ns
Aug 15 ns ns ns 0. 035 0. 067 0. 061 ns 0. 100 0.068
Aug 21 ns 0.074 0. 026 0. 017 0. 056 0. 000 0.016 ns 0.005
Aug 29 0.008 0.066 0.015 0.064 0.007 0. 003 0. 005 ns 0.006

Summer
Pooled
(All Data) ns ns ns ns ns 0.000 ns ns 0. 001

T Statistic
Date A B C

NH4 NOx P04 NH4 NOx P04 NH4 NOx P04

July 18 -14.07 -84.31 35 . 84 -56.77
July 25 4.45 6. 45 29. 87 7 . 63 7 .24 8.23
Aug 8 -3.96 -3.10 -3.24 -7 .55 -4.18 3. 50 -9. 44 -5.64
Aug 15 5.21 3. 66 3.86 2 . 34 2.80
Aug 21 -3 . 48 6.04 4. 78 4.05 53.26 4. 94 14.36
Aug 29 6. 41 -2.84 8. 09 2.86 6. 68 18. 32 7. 34 12 .46

Summer
Pooled
(All Data) 8.12 3.97

* ns= not significant (p>0.10)
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Groundwater nitrate+nitrite concentrations were greater during 

the spring (Table 4). In comparisons by site, groundwater 

concentrations were greater than the adjacent stream, while Taskinas 

Creek concentrations were greater than both the stream and the 

groundwater during the spring hydroperiod. Stream nitrate+nitrite 

concentrations were greater in the summer hydroperiod than 

concentrations measured in the spring. Also during the summer, on 

several occasions the stream exhibited greater concentrations than 

the groundwater, and nearly all the Taskinas Creek observations as 

well. Taskinas Creek nitrate+nitrite concentrations were greater 

during the spring hydroperiod. Figures 7A and 7B present these data 

graphically.

Orthophosphate

Orthophosphate concentrations in groundwater ranged from 1.37 

to 6.78 ug-at/L in the spring and from 1.44 to 12.52 ug-at/L in the 

summer. Stream orthophosphate concentrations observed ranged from 

1.14 to 2.91 ug-at/L in the spring to 2.34 to 3.99 ug-at/L in the 

summer. Taskinas Creek orthophosphate concentrations ranged from 

0.17 to 2.28 ug-at/L in the spring and from 0.90 to 1.81 ug-at/L in 

the summer and orthophosphate concentrations in precipitation were 

0.67 and 0.28 ug-at/L.
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Table 4: T-test for significant mean differences in nutrient
concentrations by hydroperiod

A= groundwater(spring) - groundwater(summer) 
B= stream(spring) - stream(summer)
C -  Taskinas Ck(spring) - Taskinas Ck(summer)

C
NOx P04

0.000 0.000

Probabilities*

A B
NH4 NOx P04 NH4 NOx P04 NH4

ns 0.000 0.046 ns 0.000 0.000 0.055

T Statistic

A B C  
NH4 NOx P04 NH4 NOx P04 NH4 NOx P04

4.21 -2.12 -4.32 -4.90 2.00 6.13 -4.08

*ns= not significant (p>0.10)
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Figure 7

Nitrate+Nitrite concentrations measured in ug-at/L.

(A: Nitrate+Nitrite concentrations observed during
the spring 1990 hydroperiod)

(B: Nitrate+Nitrite concentrations observed during
the summer 1990 hydroperiod)
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Orthophosphate concentrations in the groundwater sampling 

station were greater than Taskinas Creek concentrations during the 

spring hydroperiod with no significant difference observed in 

comparison with the adjacent stream (Table 2 and 3). The stream 

also showed greater concentrations of orthophosphate than Taskinas 

Creek during the spring hydroperiod. In comparing the two 

hydroperiods, all sampling stations showed greater orthophosphate 

concentrations during the summer hydroperiod (Table 4). During the 

summer, orthophosphate concentrations were lowest at the Taskinas 

Creek sampling station and generally greatest at the stream station. 

Figures 8A and 8B present these data graphically.

Suspended Solids

Total suspended solids were measured at the stream and Taskinas 

Creek sampling stations. Total suspended solids measured for the 

stream were greater in the summer. Suspended solids in the spring 

ranged from 0.4 to 30 mg/1, while summer values ranged from 9 to 

19.2 mg/1. Total suspended solids in Taskinas Creek in the spring

ranged from 28 to 139 mg/1 and from 42.1 to 87 in the summer. Table 

5 shows the suspended solids measured during both hydroperiods.
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Figure 8

Orthophosphate concentrations measured in ug-at/L.

(A: Orthophosphate concentrations observed during
the spring 1990 hydroperiod)

(B: Orthophosphate concentrations observed during
the summer 1990 hydroperiod)
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Table 5: Total suspended solids measured during the spring and
summer 1990 hydroperiods

Date STREAM TASKINAS

March 26 6.2 28.0
April 2 0.4 83.6
April 9 3.8 139.0
April 18 2.3 89.0
April 27 30.0 60.8
May 9 20.5 60.0
June 4 30.2 18.8

July 18 9.9 42.1
July 25 15.9 44.8
Aug 8 19.2 85.6
Aug 15 29.7 78.0
Aug 21 9.0 87.0
Aug 29 13.0 57 .2
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DISCUSSION

Precipitation has been shown to be an important source of 

nitrogen (Correll and Ford 1982), particularly during warm weather 

when land runoff is low. An assessment of the importance of 

precipitation is not possible in this study due to the lack of data 

and the possibility of contamination of the samples. Limitations in 

the precipitation collection method were discovered. The collector 

appeared too small to provide the amount of sample needed for 

analysis, although it was believed that the precipitation had an 

effect on the system. It appears that even small quantities of 

rainfall, about 1.4 cm, had an effect on the system. Nutrient 

levels appeared to increase after such precipitation events, but 

this effect requires more study. The collector needed larger 

surface area and could have been elevated to eliminate some of the 

insects and debris discovered in the water samples. The thirty year 

precipitation record for the region shows an increase in rainfall 

during the months of July and August (Figure 9), indicating that 

1990 was an unusually dry year, especially so during July and 

August. The 1990 dry period established the fact that the headwater 

stream in this region is present throughout the year and not 

ephemeral.
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Figure 9

Thirty year record mean precipitation - Upper York River Basin
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Many of the physical characteristics of the Taskinas Creek 

watershed are not typical of many coastal plain environments, 

especially those previously reported on in the literature. The 

headwater streams of the watershed have small constricted valley 

floors located between steep-sloped ravines. These features are 

more characteristic of mountain headwater streams than the wide, 

gently sloping features normally associated with the coastal plain. 

Flora at the study site also show a mix of upland and coastal plain 

species. The ridge slopes are dominated by mountain laurel (Kalmia 

latifolia) and American holly (Ilex opaca), while the valley floor 

supports freshwater marsh species and water tolerant trees. The 

soils of the area are deep, and vary greatly in their composition on 

the ridge and hillslope.

Although several attempts were made, no surface water was 

collected during this study. Observations during one rain event 

revealed that no precipitation directly struck the surface. 

Precipitation was deflected by the leaves of the canopy and 

understory trees. At the completion of the study the collectors had 

only small amounts of groundwater in them. Brinson (pers. comm.) 

suggested that, due to the slope of the region, runoff may occur in 

quick events in isolated locations, and that precipitation may be 

completely deflected by canopy cover and reach the surface via 

another route other than direct striking (i.e. stemflow).

Some of the most important properties of bottomland hardwood 

forest soils are soil aeration, organic and clay content, and 

nutrient content (Mitsch and Gosselink 1986). All of these
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characteristics are, in turn, influenced by flooding and drying.

Soil composition differed between the groundwater wells. The soils

at groundwater well A were composed of a thick, organic layer atop a 

thin clay layer and a more porous sand layer, while the soils at

groundwater well B had a very thin organic layer and a deep sand

layer. Groundwater well A was shorter in length than B due to a 

higher water level at this spot. The wells were placed one meter 

apart at the same elevation on the valley floor and the differences 

in soil characteristics indicate a high degree of variability. Both 

wells recharged very quickly, but only two samples could be removed 

from groundwater well B. This is attributed to the deeper, more 

porous sand layer at groundwater well B, where the groundwater flows 

through rather than being retained. The samples collected from each 

groundwater well displayed different characteristics in appearance. 

Samples from groundwater well A were full of organic debris and 

darker in color than those collected from groundwater well B. The 

soils vary greatly along the base of the steep ridges in this area 

and the differences observed are typical for this type of 

topography. Differences in the nutrient concentrations between the 

two groundwater wells are also attributed to the soil composition at 

each spot. This is substantiated by studies of Harvey and Odum 

(1990) and Giblin and Gaines (1990). Brinson et al. (1981) also

noted that clay strata or clay plugs will create a longer time lag 

in movement of groundwater across the gradient due to the lower 

transmissivity of clay sediments and may create changes in nutrient 

content. In order to overcome these changes in soil characteristics
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along the base of the hillslope a series of groundwater wells could 

be used to determine the scale of soil differences observed in this 

s tudy.

Ammonium has been recognized as the primary form of mineralized 

nitrogen in wetland soils (Mitsch and Gosselink 1986). Nitrogen 

mineralization is "the biological transformation of organically 

combined nitrogen to ammonium nitrogen during organic matter 

degradation" (Gambrell and Patrick 1978). Ammonification occurs 

under both aerobic or anaerobic conditions. Under anaerobic 

conditions ammonium is not oxidized further and may build up in the 

soils. During the spring hydroperiod ammonium concentrations were 

greater and significantly different in the groundwater than in the 

adjacent stream (Table 2). This difference suggests that 

groundwater is an ammonium source for stream water and uptake or 

retention of the nutrient by the marsh community. Brinson et al. 

(1984) also found ammonium retention during seasonal flooding of 

wetland forests, primarily due to interactions between the forest 

floor and floodwaters. An aerobic layer is formed when the soils 

are exposed during the dry summer hydroperiod. Oxidation of 

ammonium to nitrate (nitrification) may then occur and vegetation 

may uptake the ion via their root systems. Summer ammonium 

concentrations in the groundwater were nearly equal those observed 

during the spring (Table 4), and showed no significant difference in 

comparison with the adjacent stream. This implies that the source 

of ammonium to the system was not affected by the changes in 

vegetation and precipitation regime. Ammonium concentrations in the
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Rhode River Estuary were observed to be higher in the winter and 

spring and lower in the summer and fall (Correll and Ford 1982), 

similar to the variations observed in this study. Nutrient 

concentrations were monitored at the mouth of the Rhode River 

estuary and were compared with the mouth of the Taskinas Creek 

system. The mean summer concentration of ammonium at the mouth of 

the Rhode River was 36 ug-at/L while the mean ammonium concentration 

for Taskinas Creek during the summer was observed to be only 2.58 

ug-at/L in this study. This lower concentration may be due to the 

overall size of the system being monitored. Taskinas Creek is a 

small unimpacted system, while Rhode River represents a much larger 

and developed system having a correspondingly larger drainage basin 

and nutrient loads from farms and suburban areas.

Ammonium was also measured in shallow groundwater in eastern 

York County by the United States Geological Survey (USGS) during the 

summer of 1990 (Richardson pers. comm.). Sample sites were confined 

to the easternmost portion of the county where soils were generally 

high in iron, low in dissolved oxygen, and dominated by marine 

sediments. Ammonium concentrations ranged from 0.71 to 53.6 ug- 

at/L. Groundwater ammonium concentrations in this study ranged from 

1.37 to 6.57 ug-at/L indicating that the system appears to be on the 

lower end of the range found in this region. Many of the sites 

sampled by the USGS experienced non-natural imputs which implies 

that the system observed in this study may represent values for an 

unimpacted region.
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Nitrate+nitrite concentrations in the groundwater were also 

significantly greater than adjacent stream concentrations during the 

spring. Nitrate is highly soluble and mobile in groundwater and may 

be an important source, particulary during the spring hydroperiod. 

Summer nitrate+nitrite concentrations were less than spring 

concentrations in the groundwater, but the stream showed an increase 

in the nutrients, reflecting an apparent export of the nutrient by 

the marsh community during the dryer summer hydroperiod. Correll 

and Ford (1982) also saw a pronounced shift from high nitrate 

concentrations in the spring and winter to lower concentrations in 

the summer and fall. The mean summer concentration for nitrate at 

the mouth of the Rhode River Estuary was 20 ug-at/L, while the 

summer nitrate mean for the Taskinas Creek site was only 1.59 ug- 

at/L. This difference is probably due to the differences in size, 

types and amounts of loadings (i.e., land use), and topography of 

the two systems being monitored. Johnston et. al. (1990)

statistically evaluated the cumulative effect of wetlands on stream 

water quality and found that under high flow periods nutrients may 

be flushed from the system. During the summer hydroperiod, nutrient 

concentrations generally were higher in the stream, rather than in 

the groundwater, as indicated in Table 6 where pooled information 

consisting of hydroperiod means and standard deviations are 

presented. This suggests a release of nutrients by the wetland 

community present on the floodplain during the summer.



42
Table 6: Pooled data: hydroperiod means and standard deviations

for constituents measured in this study

GW-A GW-A
Constituent Spring Summer

Mean SD Mean SD

Ammonium (ug-at/L) 3.16 0.96 2. 76 0.90
Nitrate+Nitrite (ug-at/L) 2.31 0.42 1. 53 0. 58
Total DIN (ug-at/L) 5.47 0. 62 4.29 1.29
Orthophosphate (ug-at/L) 2.78 1.11 4. 59 3.24
N:P Ratio 1.97 0.93
Total Suspended

Solids (mg/1)
Salinity (ppt) 0.00 1.50 0.76

GW-B GW-B
Constituent Spring Summer

Mean SD Mean SD

Ammonium (ug-at/L) 2 .53 1.85 5.00 1.13
Nitratet Nitrite (ug-at/L) 2.08 1.00 1. 82 0.47
Total DIN (ug-at/L) 4. 60 2 . 39 6.81 1. 54
Orthophosphate (ug-at/L) 4.71 2 .17 9 . 59 3 . 79
N:P Ratio 0.98 0.71
Total Suspended

Solids (mg/1)
Salinity (ppt) 0.00 1. 67 0.94

STREAM STREAM
Constituent Spring Summer

Mean SD Mean SD

Ammonium (ug-at/L) 2 .11 0.95 2.49 0.46
Nitrate+ Nitrite (ug-at/L) 1.22 0. 30 1. 74 0. 38
Total DIN (ug-at/L) 3.33 1.03 4.23 0.82
Orthophosphate (ug-at/L) 2 . 00 0 . 65 3 . 28 0. 64
N:P Ratio 1. 66 1. 29
Total Suspended

Solids (mg/1) 13.34 12 .21 16. 12 6. 99
Salinity (ppt) 0. 07 0. 17 1. 50 0 . 76

TASKINAS TASKINAS
Constituent Spring Summer

Mean SD Mean SD

Ammonium (ug-at/L) 4.57 3 .96 2 . 58 1. 74
Nitratet Nitrite (ug-at/L) 8.74 4 . 53 1.98 1 . 77
Total DIN (ug-at/L) 13 . 30 7 . 79 4.55 2 . 40
Orthophosphate (ug-at/L) 0. 63 0. 69 1. 37 0.36
N :P Ratio 21. 10 3. 32
Total Suspended

Solids (mg/1) 68. 46 37. 53 65. 78 18. 56
Salinity (ppt) 3.83 2.81 8. 33 4.03
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The USGS also sampled nitrate+nitrite during the summer of 1990 

and obtained concentrations around 7.15 ug-at/L throughout the study 

region. Nitrate+nitrite concentrations ranged from 1.07 to 2.78 ug- 

at/L in the groundwater during the summer hydroperiod of this study. 

Again, this suggests that the Taskinas system is on the lower end of 

the concentrations observed for this region and may be indicative of 

the unimpacted nature and the unique topography of the study site.

Orthophosphate concentrations were higher in groundwater than 

the stream on several dates during the spring hydroperiod. In a

pilot study to determine the efficiency of forested buffer strips 

(Hershner 1987), orthophosphate was measured in shallow groundwater 

at a site in the York River basin. Average orthophosphate 

concentrations ranged from 0.11 to 2.55 ug-at/L in the forested 

buffer strip, 0.44 to 1.75 ug-at/L at the marsh/upland boundary and 

3.85 to 7.58 ug-at/L in the marsh. The concentrations for the 

marsh/upland site are similar to the concentrations observed during 

the same hydroperiod in this study, and appear to be indicative of 

the conditions expected at the marsh/upland interface in this 

region.

Phosphorus has a higher affinity for clay particles than it 

does for sand or silt. It may be adsorbed to clay particles which 

may then be released during the exposed conditions of the summer 

hydroperiod. Other studies have shown that a considerable portion 

of the phosphorus transported to riparian wetlands is sorbed to clay 

particles and sedimentation provides sustained supplies (Brinson et 

al. 1981; Mitsch and Gosselink 1986). Summer concentrations for
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both the groundwater and stream were greater than those measured 

during the spring, with groundwater concentrations significantly 

greater than in the stream, indicating a probable groundwater source 

and uptake by the marsh community (Figure 8). Release of phosphorus 

from the exposed clay particles during the dry hydroperiod may 

provide a source for the higher groundwater values exhibited in this 

study. Several studies noted that the bulk of phosphorus input to 

wetland systems is sorbed to fine particles and trapped in 

floodplain systems (Brinson et al. 1984; Johnston et al. 1984;

Whigham et al. 1988). The increase in orthophosphate observed at

both sampling stations in this study during the summer appears to be 

due to a release of the nutrient by the clay particles transported 

to the site during the spring hydroperiod, the decomposition of 

organic material, and changes in the vegetative structure of the 

marsh community, which may serve to uptake a portion of the nutrient 

during the growing season. This increase in orthophosphate during 

the summer warrants more investigation.

Taskinas Creek exhibited wide variations in concentrations due 

to tidal action and mixing with York River waters. Ammonium and 

nitrate+nitrite concentrations were higher during the spring, with 

only orthophosphate higher during the summer. For comparison, these 

data were compared to water quality data available from the Virginia 

Water Control Board (1989) for the year 1987. Ammonium 

concentrations for the York River were 8.57 ug-at/L for the spring, 

while pooled Taskinas Creek mean values for this study were 4.57 ug- 

at/L for the spring hydroperiod. The marsh system downstream may be
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a sink for this constituent in the spring. Spring nitrate+nitrite 

concentrations for the York River were 7.14 ug-at/L, while values 

for this study at Taskinas Creek were 8.74 ug-at/L. Indicating that 

the Taskinas Creek may be a source of nitrate+nitrite in the spring. 

Summer ammonium values were also greater for the York River with 

values remaining at 8.57 ug-at/L, while the Taskinas Creek 

concentrations fell to 2.58 ug-at/L, inferring that uptake continues 

through the summer season. Nitrate + nitrite concentrations were 

6.43 ug-at/L in the York River during the summer and concentrations 

observed during the summer in this study at Taskinas Creek were also 

lower, with a pooled summer mean of 1.97 ug-at/L, showing a shift to 

uptake of the nutrient by the Taskinas Creek system.
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CONC LU SIONS/SUMMARY

Nutrient concentrations in the Taskinas Creek watershed are 

lower than those measured in nearby York County, and may be 

indicative of the unimpacted nature of the region. The results of 

this study also indicate that groundwater presents an important 

nutrient source, particularly during the spring hydroperiod when the 

system appears to respond to precipitation and increased runoff. 

Spring groundwater is an important source of ammonium and nitrogen 

to the system at sampling station one. Groundwater is an important 

source of orthophosphate during both the spring and summer at 

sampling station one. Variability discovered in soil types and 

nutrient concentrations along the base of the hillslope indicate the 

need for more intense groundwater monitoring. The increase in 

orthophosphate seen during the summer hydroperiod also warrants 

further investigation.

The marsh community on the stream floodplain indicates a 

possible uptake of all nutrients measured during the spring and a 

release of these nutrients during the summer hydroperiod and the 

implications of these findings also need to be investigated.

Sampling station two located on Taskinas Creek showed the 

greatest variation, presumably due to York River influence. The 

marsh system downstream appeared to uptake ammonium during both the
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spring and summer, while a shift was noted in nitrate+nitrite

concentrations. During the spring Taskinas Creek appeared to be a

source of these nutrients but summer concentrations implied a shift

to a sink of these same nutrients.
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APPENDIX A

Raw data tables presenting nutrient concentrations observed during 
both the spring and summer hydroperiods, 1990.
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Table 7: Ammonium concentrations in ug-at/L during the spring
hydroperiod 

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

March 26 4.31 4.84 4.52 4.56 0.22
April 2 1.62 1.69 2.24 1.85 0.28
April 9 3.01 2.87 2.50 2.79 0.22
April 18 2.52 1.62 2.12 2.09 0.37
April 27 2.73 3 .19 2 . 52 2.81 0.28
May 9 4.56 3.92 3.10 3.86 0.60
June 4 4. 62 4.05 3. 73 4.13 0. 37

GW-B 1 GW-B 2 MEAN STD

March 26 0.00 0.00 0.00 0.00
April 2 0.94 0.95 0.95 0.00
April 9 0.42 0.40 0.41 0.01
April 18 3.36 3.43 3.40 0.04
April 27 4.32 4. 75 4. 54 0.22
May 9 3.98 3.57 3 . 78 0.21
June 4 3.37 5.81 4. 59 1.22

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 26 4.30 4.09 3.86 4.08 0.18
April 2 1. 79 1.23 0.96 1.33 0.35
April 9 0.94 1.16 1.04 1.05 0.09
April 18 1. 49 2 .76 1.17 1.81 0. 69
April 27 1. 10 2.29 1.32 1.57 0. 52
May 9 2.05 2.27 2.29 2.20 0.11
June 4 2.43 2.99 2.71 2.71 0.23

TC 1 TC 2 TC 3 MEAN STD

March 2 6 6. 55 3.26 4.43 4.75 1.36
April 2 3.51 4.26 4.02 3.93 0.31
April 9 2.62 2.40 2.49 2 . 50 0.09
April 18 13.41 13.81 14.42 13.88 0.42
April 27 0. 90 1.07 0. 68 0.88 0.16
May 9 3.30 3.34 2.93 3.19 0.18
June 4 3. 54 2.27 2. 69 2 . 83 0. 53

PREC 1 PREC 2 PREC 3 MEAN STD

March 26 20.76 0.00 0.00 6.92 9.79
April 2 5.62 6. 50 6.35 6.16 0.38

1990

APPENDIX A
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Table 8: Ammonium concentrations in ug-at/L during the summer 1990
hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 2.11 1.80 2.09 2.00 0.14
July 25 4.14 4.12 3.47 3.91 0.31
Aug 8 1.08 1.74 1.30 1.37 0.27
Aug 15 2.55 2.23 4.04 2.94 0.79
Aug 21 2.85 2.49 2.41 2.58 0.19
Aug 29 3.92 3.93 3.39 3.75 0.25

GW-B 1 GW-B 2 MEAN STD

July 18 4.06 4.26 4.16 0. 10
July 25 6.41 6. 72 6.57 0.15
Aug 8 5.91 7.02 6.47 0.56
Aug 15 3.43 3.75 3.59 0.16
Aug 21 4. 77 4. 12 4.45 0.32
Aug 29 4. 63 4.86 4.75 0. 11

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 2.31 2.23 2.12 2.22 0. 08
July 25 3.45 3.19 3.87 3.50 0.28
Aug 8 2.76 2.37 2 .14 2.42 0.26
Aug 15 2 .27 2.06 2.37 2.23 0. 13
Aug 21 2.32 2.16 2 .22 2.23 0.07
Aug 29 2.35 2.58 2 .16 2.36 0. 17

TC 1 TC 2 TC 3 MEAN STD

July 18 1.33 2.03 1. 65 1.67 0.29
July 25 2.25 2.03 2.19 2.16 0.09
Aug 8 5 . 54 6.51 7.27 6.44 0.71
Aug 15 1. 79 1. 72 1. 69 1.73 0.04
Aug 21 1.91 1.69 1.89 1.83 0.10
Aug 29 1.42 2.08 1.38 1.63 0.32

APPENDIX A
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Table 9: Nitrate concentrations in ug-at/L during the spring 1990

hydroperiod 
Date Location

GW—A 1 GW-A 2 GW-A 3 MEAN STD

March 26 1.18 1. 17 1.05 1.13 0.06
April 2 1.92 1.81 1. 78 1.84 0.06
April 9 1.51 1.73 2.40 1.88 0.38
April 18 2.72 2.48 2.21 2.47 0.21
April 27 1.80 2 . 65 1. 65 2.03 0.44
May 9 2.05 1. 63 1.36 1.68 0.28
June 4 1.60 1. 62 1. 72 1.65 0.05

GW-B 1 GW-B 2 MEAN STD

March 26 0.00 0.00 0.00 0.00
April 2 2.28 2.45 2.37 0.08
April 9 1.61 2.10 1.86 0.24
April 18 1.71 2.01 1.86 0. 15
April 27 2.03 2.22 2.13 0.10
May 9 1.24 1.28 1.26 0.02
June 4 1. 70 1.93 1.82 0.11

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 26 0. 78 0. 57 0.59 0.65 0.10
April 2 0. 69 0.75 0.62 0. 69 0.05
April 9 0.83 0.76 0.65 0.75 0.07
April 18 0. 93 0.87 1. 75 1.18 0. 40
April 27 0.72 0. 70 0.70 0.71 0.01
May 9 1.04 0.96 0.92 0.97 0.05
June 4 1.21 1.42 1.14 1.26 0. 12

TC 1 TC 2 TC 3 MEAN STD

March 2 6 12.00 12.26 12.44 12 .23 0. 18
April 2 4.42 5.92 6.66 5.67 0.93
April 9 10.87 9.98 10.78 10. 54 0.40
April 18 13. 99 13. 76 14. 53 14.09 0.32
April 27 0. 62 0. 60 1.00 0. 74 0.18
May 9 5 . 02 4.83 4.71 4. 85 0.13
June 4 10.34 10.46 10.27 10. 36 0.08

PREC 1 PREC 2 PREC 3 MEAN STD

March 2 6 14.04 0.00 0.00 4. 68 6. 62
April 2 11.41 10.84 10. 15 10.80 0. 52

APPENDIX A
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Table 10: Nitrate concentrations in ug-at/L during the summer
hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 0.99 1.21 0.88 1.03 0.14
July 25 2.66 1. 70 2.35 2.24 0.40
Aug 8 1.08 1. 10 0. 74 0.97 0.17
Aug 15 1.29 1.27 1.08 1.21 0.09
Aug 21 0.97 1.22 1.27 1.15 0.13
Aug 29 0. 61 0.77 1.03 0.80 0.17

GW-B 1 GW-B 2 MEAN STD

July 18 1.41 1.31 1.36 0.05
July 25 1.41 2.38 1.90 0.48
Aug 8 1.49 1. 69 1.59 0.10
Aug 15 0.88 0. 89 0.89 0.00
Aug 21 0.89 1.05 0.97 0.08
Aug 29 0.74 0.86 0.80 0.06

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 1.12 1.30 1.24 1.22 0.07
July 25 1.98 1.91 1.97 1.95 0.03
Aug 8 1.31 1. 18 1.24 1.24 0.05
Aug 15 1.23 1.19 1.20 1.21 0.02
Aug 21 1.39 1.38 1.26 1.34 0.06
Aug 29 1.16 1.28 1.13 1.19 0.06

TC 1 TC 2 TC 3 MEAN STD

July 18 5.17 5.27 5.13 5. 19 0.06
July 25 0.61 0. 57 0. 60 0. 59 0.02
Aug 8 1.43 1.54 1.48 1.48 0.04
Aug 15 0.61 0. 60 0.84 0. 68 0.11
Aug 21 1.05 1.08 1.05 1.06 0.01
Aug 29 0.68 0.49 0.44 0. 54 0.10

APPENDIX A
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Table 11: Nitrite concentrations in ug-at/L during the spring 1990

hydroperiod
Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

March 2 6 0.38 0.30 0.31 0.33 0.04
April 2 0.87 0. 74 0.85 0.82 0.06
April 9 0.63 0.47 0.56 0. 55 0.07
April 18 0.36 0.34 0.36 0.35 0.01
April 27 0.53 0.42 0.45 0.47 0.05
May 9 0.45 0.38 0.27 0.37 0.07
June 4 0. 54 0. 79 0.51 0. 61 0. 13

GW-B 1 GW-B 2 MEAN STD

March 2 6 0.00 0.00 0.00 0.00
April 2 0.94 0.95 0.95 0. 00
April 9 0.42 0.40 0.41 0.01
April 18 0.21 0.26 0.24 0.02
April 27 1.02 0.87 0.95 0.07
May 9 0.42 0.49 0.46 0.03
June 4 0.30 0.29 0.30 0.00

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 2 6 0.31 0.27 0.24 0.27 0.03
April 2 0.27 0.23 0.26 0.25 0.02
April 9 0.24 0.23 0.23 0.23 0.00
April 18 0.26 0.27 0.28 0.27 0.01
April 27 0.39 0.38 0.38 0. 38 0.00
May 9 0.43 0.43 0.43 0.43
June 4 0.44 0.47 0.56 0.49 0.05

TC 1 TC 2 TC 3 MEAN STD

March 2 6 0.20 0.24 0.17 0.20 0.03
April 2 0.30 0.37 0.34 0.34 0.03
April 9 0.22 0.20 0.20 0.21 0.01
April 18 0.84 0.82 0. 77 0.81 0.03
April 27 0.12 0.14 0.13 0.13 0.01
May 9 0.29 0.32 0.29 0.30 0.01
June 4 0. 70 0.72 0. 68 0. 70 0.02

PREC 1 PREC 2 PREC 3 MEAN STD

March 26 0.30 0.00 0.00 0.10 0. 14
April 2 0.20 0.17 0.12 0. 16 0.03

APPENDIX A
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Table 12: Nitrite concentrations in ug-at/L during the summer 1990

hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 0.42 0.38 0.50 0.43 0.05
July 25 0.54 0. 57 0.53 0.55 0.02
Aug 8 0.10 0.19 0.19 0.16 0.04
Aug 15 0.16 0.16 0.13 0.15 0.01
Aug 21 0.21 0.22 0.23 0.22 0.01
Aug 29 0.24 0.27 0.29 0.27 0.02

GW-B 1 GW-B 2 MEAN STD

July 18 0. 47 0. 51 0.49 0. 02
July 25 0.74 0.77 0.76 0.02
Aug 8 0.48 0. 66 0.57 0.09
Aug 15 0. 54 0.57 0.56 0. 01
Aug 21 0.54 0.51 0.53 0.02
Aug 29 0.52 0.49 0.51 0.01

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 0.47 0.39 0.40 0.42 0.04
July 25 0.55 0.57 0. 70 0.61 0.07
Aug 8 0.22 0.22 0.32 0.25 0.05
Aug 15 0.29 0.26 0.26 0.27 0.01
Aug 21 0.42 0.40 0.40 0.41 0.01
Aug 29 0. 38 0.35 0.24 0. 32 0.06

TC 1 TC 2 TC 3 MEAN STD

July 18 0. 66 0. 64 0.64 0. 65 0.01
July 25 0.22 0.21 0.21 0.21 0.00
Aug 8 0.28 0.36 0.44 0.36 0.07
Aug 15 0.31 0.30 0.43 0.35 0.06
Aug 21 0.49 0.49 0.52 0.50 0.01
Aug 29 0.25 0.20 0.24 0.23 0.02

APPENDIX A
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Table 13: Nitrate+Nitrite concentrations in ug-at/L during the

spring 1990 hydroperiod
Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

March 2 6 1. 56 1.47 1.36 1.46 0.08
April 2 2.79 2 .55 2.63 2.66 0.10
April 9 2.14 2.20 2.96 2.43 0.37
April 18 3.08 2.82 2.57 2.82 0.21
April 27 2.33 3.07 2.10 2.50 0.41
May 9 2.50 2.01 1.63 2.05 0.36
June 4 2.14 2.41 2.23 2.26 0.11

GW-B 1 GW-B 2 MEAN STD

March 26 0.00 0.00 0.00 0.00
April 2 3.22 3.40 3.31 0.09
April 9 2 .03 2.50 2.27 0.23
April 18 1.92 2.27 2 .10 0.17
April 2 7 3.05 3.09 3.07 0.02
May 9 1.66 1.77 1.72 0.05
June 4 2.00 2.22 2.11 0.11

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 2 6 1.09 0.84 0.83 0.92 0. 12
April 2 0.96 0.98 0.88 0.94 0.04
April 9 1.07 0.99 0.88 0.98 0.08
April 18 1.19 1.14 2.03 1.45 0.41
April 27 1.11 1.08 1.08 1.09 0.01
May 9 1.47 1.39 1.35 1.40 0.05
June 4 1. 65 1.89 1.70 1. 75 0.10

TC 1 TC 2 TC 3 MEAN STD

March 26 12.20 12.50 12.61 12.44 0. 17
April 2 4. 72 6.29 7.00 6.00 0.95
April 9 11.09 10.18 10.98 10. 75 0.41
April 18 14.83 14. 58 15.30 14.90 0. 30
April 27 0. 74 0. 74 1.13 0.87 0.18
May 9 5.31 5 . 15 5 .00 5 . 15 0.13
June 4 11.04 11.18 10.95 11.06 0.09

PREC 1 PREC 2 PREC 3 MEAN STD

March 2 6 14.34 0.00 0.00 4.78 6.76
April 2 11. 61 11.01 10.27 10. 96 0.55

APPENDIX A
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Table 14: Nitrate+Nitrite concentrations in ug-at/L during the

summer 1990 hydroperiod
Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 1.41 1. 59 1.38 1.46 0.09
July 25 3.20 2.27 2.88 2.78 0.39
Aug 8 1.18 1.29 0.93 1.13 0. 15
Aug 15 1.45 1.43 1.21 1.36 0. 11
Aug 21 1.18 1.44 1.50 1.37 0. 14
Aug 29 0.85 1.04 1.32 1.07 0. 19

GW-B 1 GW-B 2 GW-B 3 MEAN STD

July 18 1.88 1.82 1.85 0.03
July 25 2.15 3.15 2.65 0. 50
Aug 8 1.97 2 .35 2.16 0.19
Aug 15 1.42 1.46 1.44 0.02
Aug 21 1.43 1.56 1. 50 0.06
Aug 29 1.26 1. 35 1.31 0.04

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 1.59 1.69 1. 64 1.64 0.04
July 25 2.53 2.48 2.67 2.56 0.08
Aug 8 1.53 1.40 1.56 1.50 0.07
Aug 15 1.52 1.45 1.46 1.48 0.03
Aug 21 1.81 1.78 1. 66 1.75 0.06
Aug 29 1. 54 1. 63 1. 37 1.51 0.11

TC 1 TC 2 TC 3 MEAN STD

July 18 5.83 5.91 5 . 77 5.84 0.06
July 25 0.83 0. 78 0. 81 0.81 0.02
Aug 8 1.71 1.90 1. 92 1.84 0.09
Aug 15 0.92 0.90 1.27 1.03 0.17
Aug 21 1. 54 1. 57 1.57 1. 56 0.01
Aug 29 0.93 0. 69 0. 68 0. 77 0.12
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Table 15: Total DIN concentrations in ug-at/L during the spring
1990 hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

March 2 6 5.87 6.31 5.88 6.02 0.21
April 2 4.41 4.24 4.87 4.51 0.27
April 9 5.15 5.07 5.46 5.23 0.17
April 18 5. 60 4.44 4. 69 4.91 0. 50
April 2 7 5.06 6.26 4.62 5.31 0.69
May 9 7.06 5. 93 4. 73 5.91 0.95
June 4 6.76 6.46 5.96 6.39 0.33

GW-B 1 GW-B 2 MEAN STD

March 26 0.00 0.00 0.00 0.00
April 2 4.16 4.35 4.26 0.09
April 9 2.45 2.90 2 . 68 0.22
April 18 5.28 5. 70 5.49 0.21
April 27 7.37 7.84 7.61 0.23
May 9 5. 64 5.34 5.49 0.15
June 4 5.37 8.03 6.70 1.33

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 26 5.39 4.93 4. 69 5.00 0.29
April 2 2 . 75 2.21 1.84 2.27 0.37
April 9 2 . 01 2. 15 1.92 2.03 0.09
April 18 2.68 3.90 3.20 3.26 0. 50
April 27 2.21 3. 37 2.40 2.66 0.51
May 9 3. 52 3. 66 3. 64 3.61 0.06
June 4 4.08 4.88 4.41 4.46 0.33

TC 1 TC 2 TC 3 MEAN STD

March 26 18.75 15. 76 17.04 17. 18 1.22
April 2 8.23 10. 55 11.02 9.93 1.22
April 9 13.71 12. 58 13.47 13.25 0. 49
April 18 28.24 28. 39 29. 72 28. 78 0. 67
April 27 1.64 1.81 1.81 1.75 0.08
May 9 8. 61 8. 49 7.93 8.34 0.30
June 4 14. 58 13.45 13.64 13.89 0.49

PREC 1 PREC 2 PREC 3 MEAN STD

March 2 6 35. 10 0.00 0.00 11. 70 16. 55
April 2 17.23 17. 51 16.62 17.12 0.37
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Table 16: Total DIN concentrations in ug-at/L during the summer

1990 hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 3. 52 3 . 39 3.47 3.46 0.05
July 25 7.34 6.39 6.35 6.69 0.46
Aug 8 2.26 3.03 2.23 2.51 0.37
Aug 15 4.00 3.66 5.25 4.30 0.68
Aug 21 4.03 3.93 3.91 3.96 0.05
Aug 29 4. 77 4.97 4.71 4.82 0. 11

GW-B 1 GW-B 2 GW-B 3 MEAN STD

July 18 5.94 6.08 6.01 0.07
July 25 8. 56 9.87 9.22 0. 65
Aug 8 7.88 9.37 8. 63 0. 74
Aug 15 4.85 5.21 5.03 0.18
Aug 21 6.20 5.68 5.94 0.26
Aug 29 5.89 6.21 6.05 0.16

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 3.90 3.92 3.76 3.86 0.07
July 25 5.98 5 . 67 6.54 6.06 0.36
Aug 8 4.20 3.77 3.70 3.89 0.22
Aug 15 3.79 3.51 3.83 3.71 0. 14
Aug 21 4.13 3.94 3.88 3.98 0.11
Aug 29 3.89 4.21 3.53 3.88 0.28

TC 1 TC 2 TC 3 MEAN STD

July 18 7. 16 7.94 7.42 7.51 0.32
July 25 3.08 2.81 3.00 2.96 0.11
Aug 8 7.25 8.41 9.19 8.28 0.80
Aug 15 2. 71 2.62 2.96 2.76 0.14
Aug 21 3.45 3.26 3.46 3.39 0.09
Aug 29 2.35 2 . 77 2.06 2 .39 0.29
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Table 17: Orthophosphate concentrations in ug-at/L during
spring 1990 hydroperiod

Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

March 26 2.05 1. 66 1.57 1. 76 0.21
April 2 1. 59 1. 67 1.38 1.55 0.12
April 9 0.98 1. 59 1.55 1.37 0.28
April 18 3.49 3.84 3.66 3.66 0.14
April 27 3. 64 3.38 2.87 3.30 0.32
May 9 4.84 4.91 3.22 4.32 0.78
June 4 3.26 3.60 3.83 3.56 0.23

GW-B 1 GW-B 2 MEAN STD

March 26 0.00 0.00 0.00 0.00
April 2 4.84 5 .13 4.99 0.14
April 9 3.63 3.74 3.69 0.05
April 18 5 . 00 4. 67 4.84 0.17
April 27 5. 19 6.90 6.05 0.85
May 9 6.23 7.01 6. 62 0.39
June 4 6.71 6.84 6.78 0.06

STREAM 1 STREAM 2 STREAM 3 MEAN STD

March 26 1.47 1.49 1.81 1.59 0.16
April 2 1.39 1.30 1.29 1. 33 0.04
April 9 1.24 1.08 1.11 1.14 0.07
April 18 1.93 1. 79 1.80 1.84 0.06
April 27 2 . 52 2.47 2 .45 2.48 0.03
May 9 2 . 73 2.72 2.73 2 . 73 0. 00
June 4 2.81 2 . 94 2.97 2.91 0.07

TC 1 TC 2 TC 3 MEAN STD

March 26 0.31 0.31 0.27 0.30 0.02
April 2 0. 73 0.76 0. 67 0. 72 0.04
April 9 0.43 0.27 0.22 0.31 0.09
April 18 2 .35 2.36 2 .12 2.28 0.11
April 27 0.40 0.00 0.37 0.26 0.18
May 9 0.22 0.18 0.12 0.17 0.04
June 4 0.48 0. 34 0.33 0. 38 0.07

PREC 1 PREC 2 PREC 3 MEAN STD

March 26 2 . 01 0.00 0.00 0. 67 0.95
April 2 0.28 0.40 0.17 0.28 0.09

the
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Table 18: Orthophosphate concentrations in ug-at/L during

summer 1990 hydroperiod
Date Location

GW-A 1 GW-A 2 GW-A 3 MEAN STD

July 18 2.12 1. 82 1. 63 1.86 0.20
July 25 11.23 11. 61 8.05 10.30 1. 60
Aug 8 2.01 1. 42 1.26 1. 56 0.32
Aug 15 1.93 1. 67 1.20 1. 60 0.30
Aug 21 5.09 6.03 6.04 5.72 0.45
Aug 29 7.22 6. 30 5.98 6. 50 0.53

GW-B 1 GW-B 2 MEAN STD

July 18 10. 37 10.08 10.23 0.14
July 25 11.48 11.48 11.48
Aug 8 11.78 7.34 9.56 2.22
Aug 15 1.19 1. 68 1.44 0.24
Aug 21 12.48 12.11 12.30 0.18
Aug 29 12.33 12 .71 12. 52 0.19

STREAM 1 STREAM 2 STREAM 3 MEAN STD

July 18 4.00 3.90 4.08 3.99 0.07
July 25 1.63 4.58 4.62 3.61 1.40
Aug 8 2.50 2.17 2. 70 2.46 0.22
Aug 15 2.19 1.82 3.00 2.34 0.49
Aug 21 3.89 3.77 3. 73 3.80 0.07
Aug 29 3.50 3. 53 3.42 3.48 0.05

TC 1 TC 2 TC 3 MEAN STD

July 18 1.86 1.81 1.75 1.81 0.04
July 25 1.06 1.01 0.95 1.01 0.04
Aug 8 1.34 1.97 1.42 1. 58 0.28
Aug 15 0. 67 1. 11 0.93 0.90 0.18
Aug 21 1.21 1.18 1.19 1.19 0.01
Aug 2 9 1. 74 1.89 1. 58 1. 74 0.13

the
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Table 19: pH and salinity measurements for the spring 1990

hydroperiod

PH

Date Location

March 26 
April 2 
April 9 
April 18 
April 27 
May 9 
June 4

GW-A GW-B STREAM TC

4.59 4.92 5.66 6.33
5.86 5.81 5.66 6.51
5.82 5.74 6.21 6.50
5.82 5.79 6.10 6.25

Salinity (ppt) 

Date Location

GW-A GW-B STREAM TC

March 26
April 2 0.00 0.00 0.50 3.00
April 9 0.00 0.00 0.00 2.00
April 18 0.00 0.00 0.00 1.00
April 27 0.00 0.00 0.00 2.50
May 9 0.00 0.00 0.00 9.50
June 4 0.00 0.00 0.00 5.00
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Table 20: pH and salinity measurements for the summer 1990
hydroperiod

pH

Date Location

GW-A GW-B STREAM TC

July 18 5.34 5.68 6.08 6.13
July 25 5.46 5.62 5.97 6.18
Aug 8 5.78 5.82 6.22 6.40
Aug 15 5.72 5.76 6.20 6.32
Aug 21 5.87 5.97 6.30 6.86
Aug 29 5.82 5.86 6.25 6.41

Salinity (ppt) 

Date

GW-A

July 18 1.00
July 25 2.00
Aug 8 0.00
Aug 15 2.00
Aug 21 2.00
Aug 29 2.00

Location

GW-B STREAM TC

1.00 1.00 2.00
2.00 3.00 9.00
0.00 1.00 8.00
3.00 2.00 12.00
2.00 1.00 14.00
2.00 1.00 5.00
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Table 21: Groundwater well water levels in cm for the spring and
summer 1990 hydroperiods

Date

GW-A GW-B

March 26 0.00 0.00
April 2 33.50 46.00
April 9 34.00 47.00
April 18 33.50 47.00
April 27 34.00 47.00
May 9 34.00 48.00
June 4 34.00 47.00

July 18 38.00 55.00
July 25 41.00 53.00
August 8 37.00 43.00
August 15 37.00 52.00
August 21 37.00 52.00
August 29 37.00 52.00
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