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ABSTRACT

Restriction endonuclease analysis of mitochondrial DNA was used to 
examine genetic variation of striped bass, Morone saxati1 i s , within the 
Rappahannock River, Virginia. Ovarian tissue from twenty-three gravid 
females was collected in the spring of 1986. Mitochondrial DNA was 
isolated and digested with 4 restr ic t ion  enzymes: Hind I I I ,  Eco RI, Eco
RV, and Bel I .  Five size polymorphisms ranging from 17.5-17.8 kilobases 
were identi f ied and designated as genotypes A, B, C, D/E, and F. The 
D/E genotype is heteroplasmic and contains 2 d i f ferent  size molecules, 
17.65/17.75 kilobases within the mitochondria.

These data were compared with published and unpublished data to 
determine i f  Rappahannock striped bass are d is t inct  from those in 
regions of the Upper Chesapeake Bay, and whether genotypic frequencies 
within the Rappahannock River remain constant year a f te r  year. 
Comparisons of genotypic frequencies of striped bass from the 
Rappahannock River and the Potomac River, Choptank River, and Worton 
Point in 1984 and 1986 suggest that Rappahannock M. saxati! is  are 
genetically d is t inct  from those in the Potomac River and may be d ist inct  
from those in the Choptank River and Worton Point.

Comparison of genotypic frequencies found in Rappahannock striped 
bass in 1984, 1986, and 1987 produced controversial results which may or 
may not indicate that the distr ibution of genotypes remained f a i r l y  
constant. Based on reported molecular weights alone, a sudden sh i f t  in 
genotypic frequencies is apparent in 1987. Such a sudden change in the 
frequency distribution is d i f f i c u l t  to explain in l igh t  of past tagging 
studies which support homing in female striped bass. However, a f ter  a 
direct  comparison of samples representing the data sets involved, no 
differences in migration distances were observed. This supports the 
conclusion that frequencies remained generally constant between 1984, 
1986, and 1987, and that female striped bass do return to the natal 
r ive r  to spawn. Although these data are preliminary and should not be 
used for management purposes, they provide a basis for additional 
studies already under way to identify  stocks within the Chesapeake Bay.
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INTRODUCTION

Fishery management is defined as the application of sc ien t i f ic  

knowledge to the problems of providing a sustained optimum yie ld  of 

f ishery products for commerical and recreational use (Everhart and 

Youngs 1981). The contemporary objective of f isheries management ac

cording to the Fisheries Conservation and Management Act of 1976 (16 USC 

1802, PL94-265), or FCMA, is to ensure the long-term biological and 

economic success of the f isheries.  Prior to making policy decisions 

concerning the fishery, the present condition of the fish stock(s) 

should be assessed as should the possible results of the actions being 

considered (Gulland 1983).

Stock assessment is concerned with the collection and analysis of 

data on the identi f icat ion,  d is tr ibut ion ,  abundance, recruitment, mor

t a l i t y ,  and hence, the status of fishery stocks. The f i r s t  step in 

these analyses is "to determine to what extent the fish population and 

the f ishery based on i t  can be treated as a unit system" (Gulland 1976). 

Defining the ’ unit system’ or stock is sometimes complex, part icu lar ly  

when this unit stock as defined at one point in time may change due to 

environmental or human influence.

The FCMA defines a stock as "a species, subspecies or geographical 

grouping, or other category of fish capable of management as a unit ."  A

2
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stock is also defined as that portion of a f ish population which is 

considered actually or potentia l ly  exploitable (Ricker 1975), or as a 

unit which can be independently exploited or managed and contains as few 

reproductively isolated units as possible (Royce 1972). Cushing (1968) 

takes a s t r i c t l y  biological approach in defining the ideal unit stock as 

having a single spawning ground to which the adults return year a f ter  

year. A stock, therefore, can be defined as both a biological and/or 

management unit . For the purpose of this thesis, the broader management 

interpretation provided by the FCMA of 1976 w i l l  be used. The bio logi

cal or genetic def in it ion of a stock may or may not coincide with the 

ultimate interpretation of a manageable unit .  Attempting to manage a 

fishery as a single unit,  however, when i t  consists of two or more 

stocks may prove ineffective and unnecessarily expensive.

H is to r ic a l ly , fishery management has focused largely on the manage

ment of total abundance and available harvest. Ecology and population 

dynamics or stock assessment have dominated f isheries research, and 

scant attention has been given to the genetic make-up of the exploited 

populations. Consequently, very l i t t l e  is known and/or understood 

concerning the genetics of the various species (Allendorf, Ryman, and 

Utter 1987). Under such l imitations,  short-term efforts  to restore the 

economic success of a fishery may prove temporarily advantageous, but 

the long-term survival of the species is not so easily ensured. Flarvest 

or restoration of exploitable fish without regard to d i f fe ren t ia l  

reproduction and survival due to d if ferent  genotypes may a l te r  the 

genetic.composition of the stock. This may ult imately result  in the 

economic extinction of the fishery or in a worse case, the biologic
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extinction of the species. Therefore, the genetic structure of an 

exploited stock or species should be determined before implementing 

management strategies (Allendorf et a l .  1987). As early as 1937, 

Merriman (1941) realized the importance of thorough s c ie n t i f ic  research 

in management: "Regulations intended for the conservation of the

striped bass should be based on facts. I f  they are based on inadequate 

knowledge.. .they wil l  be guess-work and in al l  probabil i ty  f u t i l e . "

Allendorf et al_. (1987), -cite several reasons that genetic data 

have been so rarely applied to f isheries management:

1. Marine resources, as opposed to other major food sources, 

are harvested from wild stocks with nebulous mobile bound

aries.

2. Taxonomists, who usually do not make the subtle d is t in c 

tions between individuals and the ir  boundaries, have 

dominated fishery management in matters of systematics, 

and geneticists have been hesitant to become involved in 

the development of management plans.

3. The results from genetic studies sometimes contradict 

those from previous ecological studies or long-standing 

assumptions and conceptions concerning stock separation or 

mixing.

Lack of available or affordable technology may also have been a 

factor in the past. Presently, however, the technology is available and 

reasonably economical, and the genetic data base for several important 

commercial and recreational species is rapidly growing. Genetics are
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becoming c r i t ic a l  in stock identi f icat ion  and assessment, par t icu lar ly  

when the stock and the fishery concerned are depressed.

The striped bass, Morone saxati1i s , also known as s tr iper ,  rock, or 

rockfish, has long been an important commercial and recreational species 

(Merriman 1941; Fay, Neves, and Pardue 1983) from North Carolina to 

Canada (Strand, Norton, and Adriance 1980). Earl iest records for  

striped bass landings date back to 1887 when, according to reports at 

that time, the species was quite abundant (Koo 1970). The stock then 

steadily declined until 1934 when catches for the entire Atlantic  coast 

to ta l led  only 1.1 mill ion pounds. The stock soon rebounded and followed 

an upward trend through 1970 (Koo 1970). Although the dominant year 

class of 1970 produced huge landings in 1973, subsequent Atlantic  coast 

catch records reveal a gradual decline, with periodic upswings, in the 

harvest of striped bass (Boreman and Austin 1985).

This decline may be partitioned into the effects of overfishing, 

environmental stresses, natural f luctuations, or some synergistic com

bination of these factors. Management regulations imposed by the 

cooperating states of the Atlant ic  States Marine Fisheries Commission 

(ASMFC 1981) in 1982 account for most of the decline subsequent to that 

year. Current ESBS (Emergency Striped Bass Study) research is address

ing these problems and attempting to determine the underlying cause of 

the decline. The genetic implications of such reductions are important 

in f isheries management, and the identi f icat ion  of the stock(s) is the 

f i r s t  step in the ir  determination.

Although this f i r s t  step, identi f icat ion of the stock(s), has been 

attempted for the striped bass ( c . f .  Vladykov and Wallace 1952; Raney
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1957; Morgan, Koo, and Krantz 1973; Otto 1975), i t  may be that previous 

c r i t e r ia  were not adequately stringent to delineate reproducing units of 

stocks. Due to the depressed state of the stocks and the f ishery,  

management efforts  have increased dramatically over the last  few years, 

part icu lar ly  a f te r  1982. A fishery management plan (FMP), which ideally  

should be in ef fect  before a fishery is threatened, was belatedly 

developed in 1981 from historic data on population structure.

Subsequent closer analyses suggest that some of the long-term assump

tions upon which these management decisions are made, may be invalid,  

for example, age at maturity and growth rates (Berlinsky, O’ Brien, and 

Specker 1988), and the concept of a single Chesapeake Bay stock (Chapman 

1987). The long-term effectiveness of the FMP is not yet determined, 

but the number of fish does seem to be increasing. This may be due to a 

natural recovery or to the directed efforts to protect the large 1982 

year class which has now entered the fishery, or to a combination of the 

two. Interstate management efforts have recently been hampered by the 

lack of stock identi f icat ion and assessment.

This study examines the genetic structure of striped bass within 

the Rappahannock River over a four year period and compares i t  with fish 

of the upper Chesapeake Bay. Prior to stock iden t i f ica t ion ,  the ap- 

propri ateness of a part icular  technique should be determined. One 

objective of this study is to examine the usefulness of mitochondrial 

DNA analysis in detecting variation and possible genetic markers within 

the Rappahannock River. The two questions to be answered by these and 

comparative data are:
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1. Are the striped bass in the Rappahannock River genetically  

dist inct  from striped bass in the Upper Chesapeake Bay?

2. Do the genotypic frequencies observed in striped bass vary 

from year to year within a part icular  river?

The answers to these questions are c r i t ic a l  i f  mtDNA is to be used in 

identifying stocks for long-term stock assessment and monitoring as 

required by the 1988 Interstate Fisheries Management Plan (ASMFC 1988). 

The spatial and temporal existence of a geographically or genetically  

d is t inc t  stock in the Rappahannock River and other Chesapeake Bay 

t r ibu tar ies  would suggest that the present approach to managing the 

lower Chesapeake Bay as a unit is not appropriate.



LITERATURE REVIEW

Four major stocks of striped bass have been identi f ied  on the 

Atlantic  coast: a Hudson River stock, a Chesapeake Bay stock (Raney and

deSylva 1953; Raney, Woolcott,- and Mehring 1954; Raney 1957; Lewis 1957; 

Lund 1957), a Roanoke River-Albermarle Sound stock (Vladykov and Wallace 

1952, Raney and Woolcott 1955), and a South At lant ic  stock (Raney et al_. 

1954, Raney and Woolcott 1955, Lund 1957). The Chesapeake Bay stock 

contributes the largest percentage to the coastal migratory population, 

up to 90% depending on year class strength (Berggren and Lieberman 

1977).

Morphometries, Meristics, and Tagging

Many attempts have been made to delineate stocks within the 

Chesapeake Bay and i ts  t r ibutar ies .  I n i t i a l l y ,  morphometric (Lund 

1957), meristic (Vladykov and Wallace 1952, Lewis 1957, Raney 1957, 

Murawski 1958), and tagging (Massman and Pacheco 1961, Nichols and 

M il le r  1967) studies identif ied at least four stocks within the Bay: 

the Upper Bay, the James River (Massman and Pacheco 1961), the Potomac 

River (Vladykov and Wallace 1952, Nichols and M i l le r  1967), and a York- 

Rappahannock complex (Lewis 1957, Raney 1957, Murawski 1958). Some of 

this previous research indicates that other iden t i f iab le  stocks may 

exist in the Rappahannock, York (Lund 1957, Massman and Pacheco 1961), 

and Pamunkey rivers (Raney and deSylva 1953).

8
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Questions arose concerning environmental influences on the plastic  

morphometric and meristic characteristics during development and the ir  

role in defining fish stocks (Vladykov 1934, Cushing 1975). Increasing 

evidence suggests that three factors - temperature, space, and sa l in i ty  

- play important roles in the development of morphometric and meristic  

characters. In general, higher than average temperatures, lower 

s a l in i ty ,  or a crowded l iv ing  space are each associated with a low 

number of segments and rel atecf characters. The extent of th e ir  in 

fluence, however, is not c learly  understood (Vladykov 1934), and Cushing 

(1975) states that attempts to define fish stocks using morphometries 

and meristics are useful only when genetic differences not affected by 

the environment cannot be detected.

Protein Analyses

With the development of electrophoresis and improved 

electrophoretic techniques, genetic variat ion, as expressed by variation  

in protein structure, within a population can be determined with r e la 

t ive  ease (Allendorf and Utter 1979). Each gene locus has d if feren t  

a l le les  which may specify part icular  enzymes or proteins that d i f f e r  in 

the ir  net e lectr ical  charge. Electrophoresis allows indirect observa

tion of genetic population structure by direct  observation of these 

enzymes, the f inal product of gene a c t iv i ty .  In gel electrophoresis,  

tissue extracts such as soluble proteins and enzymes are placed on or 

are embedded in a suitable gel and subjected to an e lec tr ica l  f ie ld .  A 

part icu lar  protein w i l l  move through the gel towards the negative or
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positive electrode. The mobility of each protein depends on the poten

t ia l  gradient applied between the electrodes, the net charge of the 

protein, and the size and shape of the protein.

The genetic information available from general protein and isozyme 

analysis fa r  exceeds that obtainable from morphometric and meristic  

studies (Allendorf and Utter 1979). In the f i r s t  electrophoretic study 

of M. saxati1 i s , Morgan, Koo, and Krantz (1973) examined serum proteins 

in juvenile  and spawning individuals from the Potomac, Patuxent, 

Nanticoke, Choptank, and Elk rivers to determine i f  stocks existed in 

the upper Chesapeake Bay. They selected f ive  proteins not related to 

age, sex, or time of collection,, and determined that the Elk River 

striped bass were very d is t inct  from a l l  four locations. The Choptank 

and Nanticoke r iv e r  striped bass were also d is t inct  but to a lesser 

degree. The individuals in the Potomac and Patuxent r ivers were indis

tinguishable from one another.

Otto (1975) collected striped bass from the Hudson River and the 

York, James, Rappahannock, and Potomac rivers of the Chesapeake Bay. He 

examined 28 enzyme loc i ,  but found only three that were polymorphic 

(ce-glycerophosphate dehydrogenase ora-GPDH, isocitrate  dehydrogenase or 

IDH, and l iv e r  esterase). These proved adequate to discriminate between 

the Hudson r ive r  and Chesapeake Bay fish, but inadequate to discriminate 

r ive r  populations within the Bay. A l ik e ly  problem associated with 

these data, however, is the lack of spawning adults in the collection  

(Sidell  et al_. 1978). All of the Chesapeake Bay striped bass were 1-2 

years old while the Hudson River samples were young-of-year.

Grove et al_. (1976) completed a similar study in 1974 and 1975 in 

which 8-15 morphometric and meristic characters and two polymorphic
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l i v e r  enzyme systems (of 52 examined), a-GPDH and IDH, were used as 

stock discriminators. Striped bass were collected from the Roanoke, 

Hudson, Rappahannock, Potomac, Choptank, and Elk r ivers .  Overlap of 

morphometric and meristic character sets and lack of discriminating 

power in the l i v e r  enzymes resulted in the fa i lu re  to distinguish sub

populations within the Chesapeake Bay. Striped bass from the Hudson and 

Roanoke Rivers, however, proved to be d is t inct  from one another as well 

as from the Chesapeake Bay tr ibutar ies (Grove et al_. 1976).

A subsequent study by Si del 1 et al_. (1978, 1980) combined serum 

protein analysis as detailed by Morgan et al_. (1973) and analysis of the 

polymorphic enzymes described by Otto (1975) and Grove et al_. (1976). 

Spawning striped bass were collected from the Potomac, Choptank, 

Sassafras, Bohemia, Elk, and Rappahannock rivers as well as from the 

Chesapeake and Delaware Canal (C & D Canal). Some juveniles were co l

lected in the C & D Canal and Bohemia River following the spawning 

season. Twelve of the 26 protein bands observed proved to be useful as 

stock discriminators. The serum enzymes a-GPDH and IDH, previously 

shown to be polymorphic in l iv e r  tissue of striped bass (Grove et al_. 

1976) were examined, although IDH was excluded from the f inal analysis 

due to inconsistent resolution. No signif icant differences were found 

among striped bass from the Chesapeake Bay t r ibutar ies  which is in 

agreement with the results of Otto (1975) and Grove et al_. (1976) . The 

same lack of heterogeneity was found even a f ter  grouping the fish into 

Mid- and Upper-Bay samples. These results support the conclusions of 

the previous morphometric and meristic studies (Vladykov and Wallace 

1952, Lewis 1957, Raney 1957) in which the Upper Bay striped bass are 

classif ied as a homogenous stock within the Chesapeake Bay.
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The d iss im ilar i ty  between the results of Morgan et al_. (1973) and 

Sidel 1 et al.. (1978, 1980) may be due to differences in sample preserva

tion (Sidell  et al_. 1978, 1980). Blood samples collected during 

Morgan’ s study were centrifuged on the day of collection and then frozen 

at -15°C, while those taken during S id e l l ’ s study were held on ice for  

less than 2 hours before being centrifuged and stored in l iquid  

nitrogen. Although Morgan’ s handling techniques are generally accept

able in such studies, proteins break down easily causing changes in 

th e i r  electrophoretic mobility. Other differences in handling and 

storage of samples and the ir  subsequent analysis may be p a r t ia l ly  

responsible for the d i f fe r ing  conclusions of Morgan et al_. (1973) and 

Sidell et al_. (1978, 1980).

A more recent look (Rogier, Ney, and Turner 1985) at enzyme var ia 

t ion in landlocked striped bass of the Kerr Reservoir in North Carolina 

produced unique results. Spawning striped bass were collected in 1979

and 1980 from the Dan and Roanoke tr ibutar ies  of the Kerr Reservoir.

All sample tissues were stored on ice, centrifuged, and frozen on dry 

ice before storage at -90°C. Although 55 loci (31 enzyme systems) were 

i n i t i a l l y  surveyed, only 3 were polymorphic (creatine kinase 1, CK-1; 

inorganic pyrophosphatase 1, Ipp-1; and inosine triphosphatase, I tp ) .  

Based on this preliminary survey, the percentage of polymorphic loc i ,

5%, and the average heterozygosity estimate, 1.6%, are very low compared 

to other fish species examined (Nevo 1978, Kirpichnikov 1981). In the 

f inal results, a l le le  frequencies of the 3 polymorphic loci were sig

n i f ic a n t ly  d i f ferent  between the rivers in 1979 but not in 1980.

According to Lewontin (1974), only 33% of amino acid substitutions

are detectable by electrophoresis. For many species such as striped
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bass which is characterized by low heterozygosity and heterogeneity, 

electrophoresis of proteins may not adequately reveal the genetic va r ia 

tion present. The study of Rogier et al_. (1985) also indicates that  

sampling should occur over a number of years to determine the year-to-  

year variation in gene frequencies. Although Rogier et a l .  (1985) did 

not col lect  the ir  samples in the Chesapeake Bay, the problems 

encountered in the ir  study of the Kerr Reservoir striped bass can very 

easily  occur in the Bay as weVl. I t  is this type of interannual var ia 

tion that can confound management strategies and has resulted in 

recommendations for annual r ive r -b y -r ive r  genetic (stock) monitoring in 

the rewrite of the 1988 Interstate FMP for striped bass (ASMFC 1988).

Isoelectr ic  focusing is a type of electrophoresis which separates 

tissue proteins on the basis of the ir  isoelectr ic  points, the pH at 

which the protein is e le c t r ic a l ly  neutral. Fabrizio (1987) used this  

technique to separate eye lens proteins of striped bass. She accurately 

distinguished fish from the Hudson River and Chesapeake Bay, which 

contributed to the Rhode Island trap net f ishery. Prevous studies have 

shown that eye lens proteins are part icu lar ly  suited for electrophoretic 

analysis of intraspecif ic  differences (see Smith 1955, 1966, Smith and 

Goldstein 1967, Eckroat and Wright 1969, Peterson and Smith 1969, 

Bloemendal 1977, Fabrizio 1983), however the results may vary with the 

age, and thus the weight and length of the f ish. Nutrit ion, exposure to 

toxins, and other factors may also affect eye lenses and th e ir  proteins 

(Hargis, Roberts, and Zwerner 1984; Hargis and Zwerner 1988).
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Mitochondrial DNA Analysis

A technique only recently developed for ident i f ica t ion  of in 

traspecif ic  differences in fish is restr ic t ion endonuclease analysis of 

mitochondrial DNA (mtDNA) (Avise, Lansman, and Shade 1979a; Brown et al.  

1981; Berg and Ferris 1984; Chapman and Powers 1984). MtDNA is a 

double-stranded, c ircular  molecule of approximately 17,000 base pairs, 

or 17 kilobases (kb) in striped bass. Restriction endonucleases 

(enzymes) recognize 4, 5, or 6 base pair sequences in the molecule and 

cleave the mtDNA at specific sites within these sequences. The resu l t 

ing fragments are then separated by molecular weight through submerged 

gel electrophoresis and observed by staining or autoradiographic tech

niques. The number of restr ic t ion fragments equals the number of 

restr ic t ion  (recognition) sites in the molecule. A single base pair  

substitution may cause the gain or loss of a res tr ic t ion  s i te .

MtDNA has many properties that make i t  a suitable and practical 

source of material for genetic studies. MtDNA is small, unlike nuclear 

DNA, and easily isolated in a su ff ic ien t ly  purif ied form for analysis by 

several methods (Avise et a l .  1979a; Brown 1981; Chapman and Powers 

1984). Nuclear DNA ia at least 25,000 times larger than mtDNA and 

contains introns and numerous repeti t ive  sequences that make charac

ter iza t ion  of the genome d i f f ic u l t  (Brown 1981, 1985). The 

mitochondrial genome of three species: mouse (Mus musculus)(Bibb et

a l . 1981), cow, and human (Anderson et a l .  1981, 1982) has been com

plete ly  sequenced. The re la t ive  simplicity of the mtDNA genome allows 

direct  genotype analysis and comparison between populations or closely 

related species (Berg and Ferris 1984).
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MtDNA is inherited maternally through the egg cytoplasm (Avise et 

al . 1979a; Giles et al_. 1980) thus eliminating the complexities of 

recombination in meiosis (Avise et a l .  1979a, Brown 1985). Phenotypes 

are transmitted intact and al l  sequence changes arise only by mutation 

(Avise et a l .  1979a). Unlike nuclear DNA, mutations fixed in an in 

dividual result  in a new phenotype that can be unambigously linked to 

i ts  progenitor (Avise et a l .  1979a).

Evolution of mtDNA is 5 to 10 times that of single-copy nuclear DNA 

possibly due to the lack of a repair function in mtDNA rep l icat ion ,  a 

high rate of mutation f ixa t ion ,  or as a result of low functional con

stra ints  on the gene products (Brown, George, and Wilson 1979).

Whatever the reason, rapid evolution of mtDNA allows for detection of 

relationships between recently diverged populations or species (Brown et 

a l . 1979). This should help to confirm migration patterns, homing 

tendencies, and degree of mixing of stocks which is v i ta l  to stock 

assessment and management.

Restriction analysis of mtDNA offers several additional advantages 

over the standard protein analysis. All mtDNA within an individual is 

the same regardless of the tissue from which i t  was extracted (Avise et 

al . 1979b, Upholt and Dawid 1977). In contrast to the lack of 

heterogeneity encountered in the serum protein and isozyme analyses, 

mtDNA sequence heterogeneity is high among individuals of a species and 

individuals within a local breeding population (Avise et a l .  1979a,

Brown et aj_. 1982, Chapman and Powers in press).

MtDNA analysis, unlike protein analysis, focuses on the primary DNA 

sequence. Therefore, post translational modification through environ

mental influences such as temperature, space, and sa l in i ty  do not a l te r
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the data base. A single-base substitution within a mtDNA recognition 

sequence can be detected by examining the restr ic t ion  pattern resulting  

from cleavage by restr ic t ion enzymes. As stated previously, protein 

electrophoresis can only detect 33% of possible amino acid substitutions 

(Lewontin 1974). Recent improvements in the technique and a substantial 

reduction in the time and money required for a complete restr ic t ion  

enzyme analysis have resulted in a more convenient and practical tech

nique than in the past (Brown-et a l . 1981, Chapman and Powers 1984). 

MtDNA analysis is no longer so prohibit ively  expensive as to preclude 

i ts  use over isozyme, eye lens protein, or general protein analysis, 

especially when one considers the wealth of additional information that  

becomes accessible. According to Graves and Dizon (1986), endonuclease 

analysis of mtDNA is presently the most powerful and practical tool 

available for studying the genetics underlying population structure.

Examination of striped bass mtDNA within the Chesapeake Bay was 

i n i t i a l l y  conducted by Chapman (1987) who evaluated the genotypic f r e 

quencies of 1982 year class males collected in 1984 and 1986 from the 

Potomac River, the Choptank River, and Worton Point near the mouth of 

the Sassafras River (Figure 1). He also collected 2 year old males in 

1984 from the Rappahannock River (Chapman and Powers, in press;

Figure 1) and compared the ir  genotypic frequencies to those found in the 

Upper Bay in 1984. Within that year, signif icant differences existed 

between the Rappahannock sample and the pooled Upper Bay sample. The 

genotypic frequencies of the fish collected from the 3 locations in the 

Upper Bay, however, shifted between 1984 and 1986 possibly due to migra

tion of fish from other r ivers. The next step was to examine 

Rappahannock fish collected in 1986 (Figure 1) to determine whether the



differences observed in 1984 were s t i l l  present. The results of 

Chapman’ s study provided not only a comparative data base for future 

studies but also established the technical and analytical foundation 

which this study was based.



MATERIALS AND METHODS

Field Collection

T h ir ty - f iv e  gravid striped bass were collected from Naylor’ s Point, 

Blanfield Point, and Carter’ s Wharf in the Rappahannock River, Virginia  

during the spring spawning run of 1986 (Figure 1). The sampled fish  

represent the 1977 to 1985 year classes with approximately 56% repre

senting the 1982 year class. Once collected, the striped bass were 

transported on ice to the Virginia Inst i tu te  of Marine Science (VIMS), 

and within 24 hours al l  fish were measured, weighed, and sampled for  

tissues. Stage of sexual maturity was also recorded and scales were 

removed for subsequent age determination. Fresh ovarian tissue was 

excised from the fish and placed immediately on ice. Within 30 minutes,

a l l  tissues were transferred to a -20°C freezer.  Several months la te r ,
o Ral l  samples were moved to a -72 C freezer (So-Low Chil l ing Machine )

until  they were required for further processing.

Mitochondrial DNA Isolation

The laboratory procedure employed in this study was a modification 

of Chapman and Powers technique (1984) which substantially reduces the 

time and e f fo r t  previously required to isolate mtDNA by t rad it iona l  

methods. Many of the time-consuming steps have been eliminated and 

replaced by more expedient procedures.

18
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The resulting mtDNA is not as pure as with trad it ional  methods, i t  is 

more than adequate for the needs of this study.

Three to 5 grams of frozen ovarian tissue were thawed and 

homogenized in 5 volumes of cold TEK buffer (50mM Tr is ,  lOmM EDTA, 1.5%
D

KC1, pH 7.5) to lyse the ce l ls .  A Yamato low-shear continuous tissue 

homogenizing system was used to ensure that the cells  were not exces

sively homogenized causing destruction of the mtDNA and possible nuclear 

DNA contamination.

The homogenate was transferred to 15 ml polycarbonate centrifuge 

tubes and centrifuged at 1000 x g for 10 minutes. Three layers ty p i 

ca l ly  resulted: a bottom layer containing cell  membranes, a middle

layer of mitochondria, glycogen and proteins in an aqueous solution, and 

an upper layer of f a t .  The mitochondrial layer was drawn o f f ,  avoiding 

the transfer of f a t ,  to another centrifuge tube and TEK buffer was added 

to a f inal  volume of 10-13 ml. Centrifugation at 1000 x g was repeated 

and the mitochondria were then transferred to a high speed centrifuge  

tube. The supernatant was spun for 60 minutes at 18,000 x g which 

resulted in the formation of a dense, clear glycogen pe l le t  overlain by 

a loose mitochondrial pe l le t .  The aqueous phase containing c e l lu la r  

debris was discarded. The pel le t  was resuspended in TEK and centrifuged 

for 30 minutes at 18,000 x g. This second high speed spin further  

purif ied the mitochondria. The aqueous phase was again discarded leav

ing a dense pe l le t  containing glycogen and mitochondria.

To lyse the mitochondria, I added 0.5 ml of 5% Non-idet-P-40 (NP-40 

in TEK) to each sample. NP-40 is a non-ionic detergent capable of  

lysing the mitochondrial membrane. The pe l le t  was resuspended by vor- 

texing and transferred to a s te r i le  1.5 ml microcentrifuge tube. The
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samples were l e f t  at room temperature for 10-15 minutes to allow the NP- 

40 to completely lyse the mitochondria. A test for complete lysis is 

the clearing of the solution shortly a f ter  mixing.

The lysed mitochondria were then centrifuged at 12,000 x g for 15 

minutes. The supernatant containing mtDNA was transferred to another 

microtube leaving the pe l le t  containing the broken membranes behind. 

NP-40 is incapable of lysing nuclear membranes so any nuclear DNA 

material present at this time-is pelleted with the mitochondrial 

membranes. Three hundred microliters of re d is t i l le d  (Chapman and Powers 

1984) and buffered phenol (Maniatis, Fritsch, and Sambrook 1982) was 

added to each sample and thoroughly mixed. The mixture was then 

centrifuged at 12,000 x g for 15 minutes.

Following centri fugation, 3 d is t inct  layers typ ica l ly  resulted: a

bottom layer of phenol, a middle layer of precipitated proteins, and an 

upper aqueous phase containing nucleic acids. This upper layer was 

transferred to a clean microcentrifuge tube and the phenol extraction 

repeated to further purify the mtDNA. The upper aqueous layer was again 

drawn o f f  to another microcentrifuge tube and 0.2 ml of a 24:1 

chioroform:iso-amyl alcohol solution was added and mixed thoroughly to 

remove traces of phenol.

The mtDNA-chloroform:iso-amyl alcohol mixture was centrifuged as 

before at 12,000 x g for 15 minutes. Two clear,  but immiscible layers 

resulted. The upper layer was transferred to a clean microcentrifuge 

tube and 2 volumes of cold 95% ethanol was added to precipitate  the 

mtDNA. MtDNA is soluble is water but not in ethanol. The samples were 

then placed in the freezer at -20°C where they were held for at least 2 

hours.
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The precipitated mtDNA was pelleted by centrifugation at 12,000 x g 

for 15 minutes at 4°C. The ethanol was decanted and the samples were 

dried at 37°C. The dried pellets were rehydrated with 100 microliters  

(jul) s te r i le  water and immediately digested with restr ic t ion  enzymes or 

stored at -20°C until  needed.

Mitochondrial DNA Digestion

The mitochondrial DNA was i n i t i a l l y  digested (cut) with 16 r e s t r ic 

tion enzymes: H in d - I I I ,  Eco-RI, Eco-RV, Bc l- I ,  Bgl- I ,  N c i - I ,  Sma-I,

S s t - I ,  S s t - I I ,  Xba-I, Bam-HI, Ps t - I ,  S a l - I ,  C la - I ,  Pvu-I I ,  and Ava-I 

(Bethesda Research Laboratories). For comparative purposes, I chose 

Hind I I I ,  Eco RI, and Bel I which had been used successfully in an 

e a r l ie r  study of striped bass mtDNA in the Upper Chesapeake Bay (Chapman 

1987). These enzymes produce small molecular weight fragments < 3 . 6  kb 

that occur in a portion of the gel in which small size differences of 

approximately 100 bp are easily detected (Chapman, personal 

communication). Although the smallest fragment produced by Eco RV is 

4.7 kb, detection of size variations was s t i l l  possible. All samples 

were f i r s t  isolated, digested, electrophoresed, and stained for  

analysi s .

Selected samples (see Results) were then reanalyzed using end- 
35labell ing with ATP( S) which enhances visualization of digestion 

fragments. The method used here was a modification of that described by 

Maniatis et al_. (1982) (See Appendix B). The Klenow fragment, cold 

phosphate dGTP, dCTP, dTTP ( i f  required), and ^SdATP were added to the 

digestion reaction and the samples were incubated at 37°C for 3 hours.
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After incubation, the labelled mtDNA was precipitated by adding two 

volumes of cold 95% ethanol to each sample. The soluble unincorporated 

label remained in the ethanol. The resulting solution was well-mixed 

and centrifuged at 12,000 x g for 15 min at 4°C. The ethanol was 

removed by pi pet, and the sample was then dried at 37°C and rehydrated 

in 10 |il TEB (89mM Tris,  2.5mM EDTA, 74mM Boric Acid, pH 8.3) and 2 ul 

STOP solution (0.02% bromophenol blue, 0.50% SDS, 20.0% glycerol) .

After a 3-5 second centrifugat-ion to assure complete mixing, the samples 

were immediately loaded onto a gel or held at -20^C until  needed. For a 

discussion on the problems which may be encountered using this tech

nique, see Appendix A.

Electrophoretic Separation

Agarose gels (agarose in TEB) were prepared during sample digestion 

to allow the gel adequate time (> 1 hr . )  to harden. Agarose concentra

tions were adjusted from 0.8-1.0% to magnify the differences between 

variable bands. An increase in the concentration of the gel slowed the 

separation of the fragments during electrophoresis, but ult imately  

allowed for t igh ter ,  sharper bands. A lower gel concentration allowed 

for more rapid separation of the bands when detection of minor size 

differences was not necessary. Molecular weight determinations were 

possible with the addition of a standard 1 kb ladder (BRL) which can be 

radiolabelled or stained with ethidium bromide (EtBr) (Maniatis et al_. 

1982). For each standard, 2 pi of a 1:90 di lution of the ladder, as 

shipped, was added.

Gels were run overnight (12-15 hrs.) at 25V and <40 milliamps.

Once the run was complete, the gels were removed from the gel unit and
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tray and stained in EtBr for approximately 30 minutes. The gels were 

removed from the EtBr, rinsed b r ie f ly  with TEB, and photographed over a 

165 x 165 mm UV transmitting f i l t e r  (Hoya Optical, U-340) which was 

i l luminated from below by 3 20-watt fluorescent bulbs (Westinghouse, FS- 

series, sunlamps). The UV f i l t e r  allowed only l igh t  of approximately 

310 nm to penetrate to the gel which was placed d irec t ly  on the f i l t e r .  

The photographic system consisted of a Polaroid MP-4 camera equipped 

with a Kodak 23A orange f i l t e r ^  The f i l t e r  further enhances the con

t ras t  between the fluorescent bands and the background by absorbing 

shortwave radiation and transmitting the longer red-orange wavelengths. 

Polaroid Type-55 f ilm was exposed for 10-15 minutes at f4 .5 .  Exposure 

time depended on the intensity of the stain. The f i lm was developed for 

1 minute and the negative was placed in 18% sodium s u l f i te  for  5 

minutes, washed with water overnight, coated with photoflo and a i r -  

dried .

The gels were then transferred back to destain (TEB) for several 

minutes before placing them in 10% Acetic Acid/10% methanol solution for  

5-15 minutes. This acidif ies the gels and thus precipitates and immobl- 

izes the mtDNA in the gel matrix. The reaction was complete when the 

marker dye turned pale yellow. The gels were dried face-down onto 

Whatman 3MM f i l t e r  paper for 1-2 hours at 60°C until  completely f l a t .

In a darkroom, the dried f i l t e r  paper was taped, gel-side up, to a piece 

of cardboard, and Kodak XAR-5 X-ray f ilm was secured with tape over the 

gel. Excess cardboard flaps were folded over the f i lm  and gel and 

clamped securely so that the f ilm lay f l a t  on the gel.  This "set-up" 

was then wrapped ent ire ly  in aluminum fo i l  to ensure that no l igh t
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penetrated to the f i lm. The wrapped gel and f i lm were held in a l i g h t 

t ight  drawer for 1-14 days depending on the incorporation of the label 

by the mtDNA.

The x-rays were developed in the following manner:

1. GBX x-ray developer- no more than 4 minutes

2. Kodak Stop (1% Acetic acid) - 2 minutes

3. Commercial Fix - -5  minutes

4. Wash in water for 10-15 minutes

5. Dry at room temperature

The f inal result  is an x-ray that exactly, and more c learly ,  represents 

the photographic negative of the EtBr-stained gel.

Data Interpretation

Each gel was examined for differences in the restr ic t ion  patterns 

among individual samples. Migration distances were estimated by ruler  

to the nearest tenth of a mil limeter from the gel, photographic nega

t ive ,  and/or x-ray for each restr ict ion fragment (represented as bands 

on the gel) of each individual sample. Pattern differences, i . e .  gain 

or loss of fragments or d i f ferent  size fragments, were noted for each 

enzyme. Molecular weight determinations for each fragment were based on

the migration distances of the molecular weight standard. A best f i t

regression function using Lotus 1-2-3 was formulated for each gel and 

i ts  standard. The molecular weight for the sample restr ic t ion  fragments 

on that gel were computed from this function. Total molecule weight was 

determined by addition of the various fragments.
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Each sample produced a fragment pattern, as determined by the 

number and molecular weight of the restr ic t ion fragments produced by 

digestion with an enzyme. For each enzyme, the pattern was classif ied  

as a part icular  genotype labelled A, B, C, etc. In this and e a r l ie r  

experiments, ’ A’ represents the smaller molecules while B, C, etc. 

represent larger molecules. The frequency of occurrence of each 

genotype was recorded and compared to those found by Chapman (1987), 

Chapman and Powers (in press),- and Meehan and Banford (unpublished) to 

determine i f  differences existed between geographic locations within the 

Chesapeake Bay and between sampling years within the Rappahannock.

The G -s ta t is t ic  was used to test for Goodness-of-Fit (Sokal and 

Rohlf 1981) to an expected genotypic frequency d istr ibution generated 

from the total observed frequencies. As G-values were neither summed or 

partit ioned, the William’ s Correction was incorporated to lessen the 

Type I error, thus producing a more conservative tes t .  Although the G- 

test is usually accepted as the stronger test  in most cases (Conahan 

1970, Sokal and Rohlf 1981), these results were compared to those ob

tained using the more conservative Chi-square Goodness-of-Fit test .  

Larntz (1978) states that at a significance level of 5%, and expected 

frequencies between 1.5 and 4, G rejects the null hypothesis too often 

and was not a close approximation to the Chi-square d istr ibution when 

the observed frequencies were 0 or 1. Larntz’ study, however, did not 

consider the Will iam’ s Correction. With the exception of a few cases,
p

the results obtained with the X s ta t is t ic  differed only in the level of 

significance from those generated with the G -s ta t is t ic .  In the excep

tional cases, the result  was considered non-significant in agreement
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o
with the Chi-square tes t ,  as the X value generated by the G-test was 

usually of marginal significance.



RESULTS

Of the fish sampled, 23 produced acceptable results. Many of the 

tissue samples were depleted prior to end-labelling in attempts to 

obtain interpretable data. Some individual material which was very 

l imited in quantity was held until digestion and end-labelling tech

niques could be perfected. The -70°C freezer in which the samples were 

held was inoperable for 5 days due to an e lec tr ica l  storm. All remain

ing samples, including some that had not been analyzed, thawed 

completely and no mtDNA was recoverable a f te r  that time.

Although 10 enzymes cleave the mtDNA consistently (Hind I I I ,  Eco 

RI, Eco RV, Bel I ,  Bgl I ,  Ava I ,  Nci I ,  Sst I ,  Sst I I ,  Pvu I I ) ,  4 en

zymes were most useful in revealing differences among striped bass 

individuals: Hind I I I ,  Eco RI, Eco RV, Bel I .  Table 1 l i s ts  the

specif ic sequence recognized by each of these enzymes and the respective 

cleavage sites.

The genotypic frequencies obtained with Hind I I I ,  Eco RI, Eco RV, 

and Bel I are presented in Table 2. There are 5 genotypes represented 

with total  molecular weights ranging from 17.5-17.8 kb. No gain or loss 

of res tr ic t ion  sites caused by substitution, deletion, or addition of 

nucleotides was observed. Variation in the total  molecular weight was 

reflected in the approximately 100 bp change in the size of the variable 

fragment. The restr ic t ion patterns produced by each enzyme are 

presented in Figures 2 and 3.
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The B genotype, represented primarily by 1982 year class females, 

comprises 44% of the fish sampled. The heteroplasmic D/E genotype is 

unusual in revealing 2 d if ferent  size molecules within the same in 

dividual .

In a comparison of the genotypic frequencies observed in samples 

taken in 1986 from the Rappahannock River and the pooled frequencies 

found in Upper Bay samples (Chapman 1987), s ignif icant differences were 

found which were similar to those seen in the same comparison in 1984 

(Chapman 1987 and Chapman and Powers, in press)(Tab!es 3A and 3B). An 

examination of the data from each of the 3 locations in the Upper Bay 

yields a somewhat d i f fe ren t  conclusion when compared to the 1984 

(Chapman and Powers, in press) and 1986 Rappahannock data (Table 4) .  In 

1984 the genotypic frequency distribution in the Choptank was not s ig

n i f ic a n t ly  d i f feren t  from that in the Rappahannock, while the Potomac 

distr ibut ion was by far  the most d is t inct .  The same comparison between 

the 1986 Rappahannock sample and Chapman’ s (1987) Upper Bay samples 

produced similar results for the Potomac River striped bass showing that 

they were genetical ly d is t inct  from the Rappahannock f ish .  The Choptank 

fish were s ign if icant ly  d i f fe ren t ,  while mtDNA samples from Worton 

Point, a true Upper Bay location, did not d i f f e r  s ign i f ican t ly  in 

genotypic frequencies from those in the Rappahannock f ish .  In both 1984 

and 1986, M. saxati1is in the Potomac River, the sampling site  closest 

to the Rappahannock, displayed the least genetic s im i la r i ty  to the 

Rappahannock f ish.

In order to determine whether yearly variation in genotypic f r e 

quencies occurred within a sampling s i te ,  specif ical ly  the Rappahannock 

River, data from 1984 (Chapman and Powers, in press), 1986, and 1987
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(Meehan and Banford, unpublished) were analyzed for deviations from 

expected frequencies. Comparison of the 1986 collection of females 

presented in this study to the 1984 collection of 2 year old males 

(Chapman and Powers, in press) revealed no signif icant differences  

between the corresponding genotypic frequencies (Table 5) . Although 

the ir  1984 sample did not produce any representatives of the C, D/E, and 

F genotypes which account for 26% of the 1986 sample, the predominance 

of the B genotype, 17.6 kb,-was found in both collections.

Further comparison of these 1984 and 1986 samples the 35 females 

collected in the spring of 1987 (Meehan and Banford, unpublished;

(Table 6 ) ,  revealed s tar t l ing  differences, including the presence of a 

new heteroplasmic genotype, C/F (17.7/17.8) (Tables 5 and 6, Figure 4).  

Unlike the 1984 and 1986 data, the C genotype (17.7 kb) is predominant 

comprising 54% of the total sample, and the A genotype is completely 

absent.

Because this analysis compared data generated in two d i f fe ren t  

laboratories (Chapman 1987, at the Chesapeake Bay Ins t i tu te  and Meehan 

and Banford unpublished, at VIMS), I was concerned whether this rapid 

frequency s h i f t  was real or merely an a r t i fa c t  of s l igh t ly  d i f fe ren t  

techniques in e ither data generation or interpretation. Although 

genetically  possible, such a sudden change in frequencies is d i f f i c u l t  

to explain. To determine whether the sh i f t  was real ,  samples from the 

1987 collection were electrophoresed on the same gel with tissues 

provided by Chapman. A discussion of this analysis and my conclusions 

are found on pages 37-41.



DISCUSSION

Geographic Variation

The primary objective of- th is  study was to compare striped bass 

mtDNA genotypes from the Rappahannock with other populations in the 

Chesapeake Bay. The hope was to find a clear genetic marker, such as a 

unique genotype, that would specif ical ly  identify  these fish as 

originating in the Rappahannock River. While no such specif ic marker 

was found, a comparison of genotypic frequencies indicated that  

M. saxat i l is  in the Rappahannock River are d is t inct  from those in 

regions of the Upper Chesapeake Bay.

Evidence provided by a comparison of genotypic frequencies found in 

the Upper Bay striped bass in 1984 and 1986 (Chapman 1987) to those 

found in the Rappahannock in 1984 (Chapman and Powers, in press) and 

1986 indicate that d is t inct  differences exist between fish from these 

two regions of the Chesapeake Bay (Table 3) .  The major contributors to 

the degree of heterogeneity seen in this and other comparisons are 

shifts  in the frequency distributions of common genotypes within a 

r iv e r .  The rare genotypes, such as D/E and F, are interesting in an 

evolutionary sense but may not be diagnostic of stock differences. For 

example, the A genotype, although not predominant, occurs at a r e la 

t iv e ly  high frequency in the 1984 and 1986 Rappahannock samples,
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while only 5 of 109 fish sampled in the Upper Bay displayed the A 

genotype in 1984 and 1986 combined (Table 3) .  Closer examination of the 

frequencies found within the Potomac, Choptank, and Worton Point as they 

compare with the Rappahannock (Table 4) ,  i t  appears that factors other 

than geographic distances may be at work in establishing genotypic 

frequencies. The spawning grounds of the Rappahannock and Potomac River 

are approximately 120 r iver  miles apart, but M. saxati1is are known to 

travel great distances within the Bay. Striped bass are also not as 

bound by s a l in i ty  as is the closely related white perch, Morone 

americana (Bowen 1987), or by other known geographic barriers that would 

prevent mixing of these spawning groups during the remainder of the 

year.

Past tagging (Vladykov and Wallace 1938, 1952; Nichols and M i l le r  

1967), morphometric and meristic studies (Vladykov and Wallace 1952,

Lund 1957) support the existence of a re la t iv e ly  s ta t ic  Potomac River 

stock d is t inc t  from the Lower Chesapeake Bay t r ibu tar ies .  When the 

Potomac was not found to be morphometrically or m erist ica l ly  unique as 

to be c lassif ied as a separate stock from the Maryland portions of the 

Bay, the Potomac was grouped with other Upper Bay samples and tested 

against lower Bay t r ibutar ies  for signif icant heterogeneity (Lewis 1952, 

Raney 1952, Murawski 1958). In each case, the Upper Bay sample proved 

s ign if ican t ly  d i f fe rent  from the Rappahannock, James and York Rivers. 

Subsequent biochemical assays did not support the existence of sub

populations or stocks in the lower Chesapeake Bay. With the exception 

of one serum protein analysis which indicated the presence of Upper Bay 

stocks (Morgan, Koo, and Krantz 1973), no other evidence for the e x is t 

ence of r iver  stocks was found (Otto 1975, Grove et a l . 1976, Sidell et
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al . 1978, 1980), probably due to the lack of heterogeneity typical of 

striped bass enzyme systems.

I t  has been suggested that some level of d i f fe rent ia t ion  exists 

among the Chesapeake Bay t r ibutar ies  based on s a l in i ty .  Morgan et a l . 

(1973) proposed a geologic origin for r iver  stocks. During the 

Wisconsin glaciation almost 35,000 years ago, sea level dropped 200-300 

feet below the present level causing the salt  wedge in the Chesapeake 

Bay to retreat  onto the continental shelf. The Susquehanna became a 

huge r iver  into which a l l  the Chesapeake Bay tr ibu tar ies  drained. As 

sea level began to rise 10,000-12,000 years ago, the salt  wedge,and 

consequently the fresh and brackish waters of the striped bass spawning 

grounds, moved up the Susquehanna. Before the salt  wedge reached the 

mouth of the James River, striped bass could spawn throughout the area. 

On reaching the James River, however, the salt  wedge s p l i t  creating one 

salt  wedge in the James and one in the Susquehanna. This provided two 

hydrographically restr icted areas for the striped bass to spawn. 

According to Morgan et a l . (1973), this process continued for each 

t r ibutary  as the salt  wedge moved with rising sea level up the 

Susquehanna.

Morgan et a l . (1973) also proposed that the time scale involved in 

such a process supported the evidence for c learly  defined stocks in each 

of the James, York, and Rappahannock rivers and a lack of d is t inct  

stocks within the Upper Bay. Clearly, the salt  wedge and spawning 

grounds in the James River were well-established before those of the 

York and Rappahannock rivers and long before those of the Upper Bay. 

Lewis (1957), Lund (1957), Raney (1957), and Murawski (1958) classify
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the James as the most well-defined stock followed by the York- 

Rappahannock system and the Upper Bay.

The theory proposed by Morgan et a l . (1973) may provide an adequate 

explanation for the differences observed in the genotypic frequencies of 

striped bass from the Rappahannock and Potomac r ivers .  As mentioned 

e a r l ie r ,  however, sa l in i ty  defines only the spawning grounds and not 

general tolerances throughout the range of the species. This theory 

would only hold true i f  duringthe development of the spawning grounds 

10,000-12,000 years ago, spawning striped bass developed certain  

responses to specific environmental cues which resulted in subsequent 

generations to return to a specific natal r ive r .  This is a poss ib i l i ty ,  

of course, as female M. saxati1is are thought to exhibit  homing.

Another factor to consider is d i f fe ren t ia l  migration. Massman and 

Pacheco (1961) suggested that York and Rappahannock f ish may migrate 

northward in the Bay, while Mansueti (1961) concluded from tagging 

studies that very few striped bass migrated from Maryland waters into 

Virgin ia  tr ibu tar ies .

Chapman’ s (1987) Upper Bay data indicates that migration of male 

M. saxat i l is  between rivers may indeed exist.  Genotypic frequencies of 

f ish taken from each of the 3 sampled locations, Potomac River, Choptank 

River, and Worton Point, reveal an increase between 1984 and 1986 in the 

number of fish exhibiting the C genotype, from 15% to 49%. Mutation 

alone cannot possibly account for this rapid s h i f t  in overall f r e 

quencies. Migration from other areas of the Upper or Lower Bay must 

therefore be responsible. I t  is impossible to determine the r iver (s )  of



34

origin based on available data, but the genotypic frequencies charac

t e r i s t i c  of the Rappahannock River during that time indicate that the 

Rappahannock is not the source of the C genotype.

As noted by Kriete, Merriner, and Austin (1978), the extent of 

striped bass migration is in part dependent on year class size. In 

years of below average or average abundance, f ish tend to remain in the 

natal r ive r  throughout the ir  second year before entering the migratory 

population. However, in years-of higher than average abundance, a 

larger percentage of fish <2 years old join the migratory population.

The studies presented here primarily involve the 1982 and 1983 year 

classes which were smaller than average (Colvocoresses 1984). Now that  

the stock(s) is(are)  rebuilding, migratory habits may be changing in 

response to a larger population size. Mixing of f ish from various 

regions of the Chesapeake Bay may be more extensive.

Whether geologic history, d is t inct  migratory habits, density-  

dependent stock fluctuations, or other unknown factors play a 

signif icant role in establishing genotypic frequencies is unclear from 

the available data. Extensive sampling is necessary to obtain a more 

comprehensive picture of genetic differences among striped bass. The 

presence of genetically d is t inct  stocks within the r ivers of the 

Chesapeake Bay would indicate the presence of biological differences as 

well .  In e ither  case, the future of the Chesapeake striped bass fishery  

may be more vulnerable to overfishing than is presently suggested. The 

elimination of a genotype or genotypes in a part icu lar  r iver  may result  

in the elimination of a population and the fishery i t  supports. The 

genetic composition and varying biological requirements of r ive r  stocks, 

i f  present, should be considered in the management of the species.
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Year-to-Year Variation

When i t  occurs yearly variation in the M. saxati l is  stock composi

tion of a part icu lar  r iver  should be reflected by corresponding shifts  

in the genotypic frequency distr ibution. This is, of course, assuming 

the genotypic frequencies are not homogenous throughout the Chesapeake 

Bay and i ts  t r ibu tar ies .  In the Maryland waters of the Chesapeake Bay, 

year-to-year frequency variation does exist (Chapman 1987) and may be 

explained by d i f ferent  migratory habits (Chapman 1987; Adamkewicz, 

Chapman, and Powers 1987).

In the comparison of 1982 year class males taken in the spring of 

1984 and 1986 from the Potomac River, Choptank River, and Worton Point, 

Chapman found signif icant differences between the three areas in 1984 

but not in 1986 (Table 7) .  As males generally do not migrate out of the 

natal t r ibu tary  until  a f te r  the ir  second year (Massman and Pacheco 1961, 

Mansueti and Holl is 1963), Chapman suggested that the 1984 sample of 2 

year old males represented the matriarchal genotypic frequencies which 

were apparently d is t inct  among the three locations. He postulated that  

during th e ir  th ird  year, the males migrated out of the ir  natal rivers  

and mixed with males from the Upper and Lower Bay, and that the 1986 

sample represented males which reentered the rivers indiscriminantly and 

without regard to the ir  natal r iver .  Therefore, the mtDNA sequences 

found in 1986 include those originating elsewhere in the Bay, possibly 

the Lower Bay. The sh if t  in restr ic t ion  fragment patterns is most 

apparent in Chapman’ s (1987) comparison of genotypes in 1984 and 1986 

within each sampling site (Table 8).

Yearly variation within the Rappahannock River was examined by 

comparing genotypic frequencies in 1984 (Chapman and Powers, in press),
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1986, and 1987 (Meehan and Banford, unpublished; Table 5).  Although the 

1984 sample is composed ent ire ly  of 1982 year class males and the 1986 

and 1987 samples are a l l  females primarily of the 1982 and 1983 year 

class, respectively, the comparison is valid as 2 year old males repre

sent the matriarchal genotypes within the natal r ive r .  The general 

distr ibution of the common mitochondrial genotypes, A, B, C, e tc . ,  

revealed a major sh i f t  towards higher frequencies among the larger  

molecules. One explanation for this sh if t  in genotypic frequencies may 

be interannual changes in year class d istr ibut ion.  The B genotype was 

predominant in both the 1984 and 1986 samples which are composed mostly 

(100% and 56%, respectively) of 1982 year class f ish ,  while the C 

genotype was most common in the 1987 collection which was largely (71%)

1983 year class females (Table 6) . Due to the small sample size of the

1984 and 1986 samples, the sudden increase in the frequency of the C 

genotype is probably not an accurate ref lection of the actual rate of 

increase, but the differences are clear.

Of course, i t  is possible that one or more Rappahannock samples do 

not accurately represent the frequency of mtDNA sequences in

M. saxati l is  during that sampling year or that Chapman (1987) and Meehan

and Banford (unpublished) used s l igh t ly  d i f ferent  techniques to score 

the data. Assuming that the genotypic frequencies found in 1984, 1986, 

and 1987 are representative of true frequencies within the stocks in 

volved, one must also assume that year-to-year genetic variation does 

exist within the Rappahannock River as i t  did in the enzymatic study of

striped bass in the Kerr Reservoir, North Carolina in 1979 and 1980

(Rogier et a l .  1985).
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Although minor shifts in frequencies are expected to occur over 

time due to mutation, selection, or random genetic d r i f t ,  sudden d is 

tr ibutional  changes are not. Variable spawning success or fishing 

pressure may cause major shif ts in genotypic frequencies within a single 

year, but there is no indication that either was a factor in the 

Rappahannock between 1982 and 1987.

The increased frequency of the C genotype in 1987 in this case must 

be due to migration from other- r ive r  systems as mutations would not have 

accumulated to a detectable level within one year. This finding does 

not then support the theory that female striped bass home as suggested 

by previous tagging studies (Mansueti 1961, Massman and Pacheco 1961, 

Nichols and M il le r  1967). I t  is possible that the increase in the 

number of the C-type restr ic t ion  pattern arose from a small proportion 

of breeding females in the early 1980’ s when the stocks were at an al l  

time low and that the less common C/F genotype was s u f f ic ien t ly  rare as 

to remain undetected in the previous samples. However, the complete 

absence of the A genotype is d i f f i c u l t  to explain. One or more of the 

Rappahannock samples may be extremely localized and unique, or other 

unknown factors may play a very important role in determining genotypic 

frequencies.

An important consideration when comparing data generated by d i f 

ferent laboratories is whether sample handling, data generation, 

s ta t is t ic a l  treatment, and interpretation were consistent. The tech

nique used to generate mtDNA restr ic t ion  fragments by me and Meehan and 

Banford were derived d irec t ly  from that developed by Chapman and Powers 

(1984). Therefore, no v a r ia b i l i t y  was caused by sample processing and 

data generation. Scoring of the gels, i . e .  labell ing a restr ic t ion
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fragment pattern as genotype A, B, C, e tc . ,  however, was i n i t i a l l y  a 

problem. Slight variations (~0.5mm) in the measurement of migration 

distances can result in d if ferent  genotypic designations.

In an e f fo r t  to determine i f  gels were scored consistently between 

the two 1aboratories, samples provided by Chapman and Meehan were 

digested and electrophoresed side-by-side. According to the genotypic 

labels given to the samples each provided, Chapman’ s ’A’ was identical  

to Meehan and Banford’ s ’ B’ as determined by migration distances. 

Therefore, for the same fragment pattern, molecular weights as deter

mined by Meehan and Banford were s l igh t ly  higher (-100 bp) than those 

reported by Chapman. My scoring of the gels was consistent with that of 

Chapman’ s which would explain the sh i f t  in reported genotypic f r e 

quencies toward the larger molecules in 1987.

Chapman and Meehan and Banford’ s approach to scoring the gels were 

basically the same, although d if ferent  tools were used to measure migra

tion distances. These distances were used to generate a standard 

regression curve which was then used to determine the molecular weight 

of the unknown sample DNA. Meehan and Banford measured migration d is 

tances of fragments d irect ly  from the gel. Chapman used a d ig i t i z e r  to 

measure migration distances from a photograph of the gel.  An example of 

the regression analysis generated by Meehan and Banford is found in 

Appendix C.

The discrepancy in molecular weight determinations could be a 

result  of error in the measurement of migration distances, rounding 

error,  or inherent in the generation of the regression curve. In most 

mtDNA population studies, an error of 100 bp would not affect  the in te r 

pretation of the f inal results since most species exhibit  res tr ic t ion
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fragment length polymorphisms, or a gain or loss of restr ic t ion  sites.  

Detection of a res tr ic t ion  site  gain or loss in a sample is accomplished 

by simple comparison to a molecule which exhibits the original or unal

tered restr ic t ion  fragment pattern. The molecular weight of each 

fragment is not as important as the actual change in the pattern; the 

total  molecule size usually remains the same. Striped bass are unusual 

in that the only variat ion seen thus far in the mtDNA is variation in 

the total molecule size, not in the gain or loss of res tr ic t ion  sites.  

Therefore, in interpreting the results i t  is important to determine, as 

accurately as possible, the total molecular weight and par t icu lar ly  that  

of the variable bands. An error of 50-100 bp may s ign if icant ly  affect  

the interpretation of the results.

In comparing striped bass data generated at d i f ferent  labs, side- 

by-side electrophoresis of samples previously scored by each lab should 

be emphasized in order to ensure consistency in molecular weight deter

minations. Because the actual weight of the striped bass mtDNA molecule 

can only be determined through sequencing, a long and tedious process, 

consistency between researchers in determining molecular weights is 

necessary to allow meaningful interpretation of the results.

Until the problem is resolved and based on the analyses here, I 

conclude that the general distr ibution of the common mitochondrial 

genotypes, A, B, C, etc. was the same in 1984, 1986, and 1987, and that  

the apparent s h i f t  in genotypic frequencies in 1987 (Meehan and Banford 

unpublished) was due to differences between laboratories in the scoring 

of the data. A stable genotypic distribution in the rivers would sup

port the homing theory for female striped bass as suggested by tagging 

studies. I f  females did not return to the natal r iver  to spawn and
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indiscriminately mixed with females from other r ivers, one would expect 

frequencies in a l l  r ivers to be the same. Again, this is not evident in 

the data presented here.

When fish from d i f ferent  geographical locations are to be compared 

for the presence of d is t inct  mtDNA sequences indicating separate stocks, 

an understanding of the year-to-year variation in a part icular  s ite  

becomes most important. Ideally ,  genotypic frequencies representing 

striped bass from d ist inct  geographic locations should only be compared 

within the same sampling year. Until d i f fe ren t ia l  migration between the 

sexes is confirmed or disproven, comparisons should also be l imited to 

those between fish of the same sex. I t  is important to note that males 

< 2 years old, however, re f le c t  the matriarchal genotype and can be 

treated as such in comparisons. When sampling more than one year class, 

careful consideration should be given to the genetic contribution of 

each year class to the total sample. Migration patterns which vary with 

age could have a major impact on the genetic composition of striped bass 

within a r iver .

MtDNA analyses can c learly  detect intraspecific  variation that may 

or may not be apparent through morphometric, meristic, or biochemical 

analyses. Until the extent of mtDNA variation is determined and the 

implications of that variation is understood, i t  may be wise to use the 

information provided by mtDNA analyses in conjunction with that provided 

through other more standard techniques. As with past striped bass stock 

ident i f ica t ion  studies, dependency on one technique alone may not 

provide enough or even accurate data in order to allow population d is

t inctions for well-founded management decisions.
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S ta t is t ica l  Considerations

There are several precautions that need to be considered when 

analyzing these data, the most obvious of which are sample size and 

randomization. The v a l id i ty  of s ta t is t ica l  analyses applied to a sample 

of 11-35 individuals is questionable in most population studies using 

morphometries, meristics, and protein analyses. The majority of pub

lished mtDNA analyses, however, involve less than 18 individuals to 

represent a specif ic location. Many, i f  not most, of these same studies 

compare populations represented by 1 individual (see Lansman et a]_.

1983, Skibinski et al_. 1985, Bermingham and Avise 1986, Saunders et al_. 

1986). Therefore, i t  is possible that the data presented here do not 

accurately represent the sampled population.

Associated with sample size is randomization of the collection in 

time and space. Due to regulations restr ic t ing  the collection of 

striped bass during the spawning season and the constraints of the 

budget and available manpower, random collection of f ish along the r iver  

was not possible. In each of the data sets examined here, striped bass 

were taken in pound nets at discrete locations within a small section of 

the r ivers .  Duplicate sampling over time and along a broader geographic 

range were not attempted for the reasons stated above.

Of the two problems mentioned here, randomization is of greater  

s ta t is t ic a l  importance. Assuming random sampling and a significance 

level of 5%, the possib i l i ty  of committing a Type I error, rejecting a 

true hypothesis, is only 5% regardless of the size of the sample. The 

po ss ib i l i ty  of committing a Type I I  error, accepting a false hypothesis, 

is much greater. Plans for future sampling w il l  hopefully be able to
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avoid the problems associated with these data; however, this can only be 

accomplished with a more extensive and costly sampling scheme.

Another problem associated with data analyses concerns the scope of 

the study. Striped bass mtDNA may be equally heterogenous throughout 

the Chesapeake Bay such that no genetically d is t inct  stocks are iden

t i f i e d .  Should this  be true, mtDNA analyses may be more useful in 

identifying larger more geographically isolated stocks such as those in 

the Hudson River, Chesapeake Bay, and the Albemarle Sound. However, we 

are far  from assessing and understanding total mtDNA variation within 

the Chesapeake Bay and i ts  t r ibutar ies ,  and such determinations cannot 

be attempted until  more extensive sampling is completed. The data and 

conclusions presented here provide a basis for additional studies, some 

of which are already in progress, but they are only preliminary in 

nature and are not an adequate foundation for management decisions.



SUMMARY AND CONCLUSIONS

The striped bass, Morone s a x a t i l is , has long been an important 

commercial and recreational species within the Chesapeake Bay. Concern 

over the management of the species has increased over the last  decade in 

response to the alarming decline in the harvest. Identifying the stocks 

to be managed is one of the f i r s t  steps in developing an effec t ive  

managment plan. Although stock identi f icat ion  within the Chesapeake Bay 

has been attempted using morphometric, meristic, tagging, and protein 

analyses, confusion concerning the existence of r iver  stocks s t i l l  

exi s ts .

Restriction endonuclease analysis of mitochondrial DNA is a tool 

that may help resolve the existence of discrete striped bass stocks 

within the Chesapeake Bay. The data and analyses presented here provide 

a preliminary assessment of mtDNA variation within the Rappahannock 

River, V irginia  and between the Rappahannock River and 3 locations in 

the upper Chesapeake Bay. The results suggest several conclusions:

1. Restriction endonuclease analysis of mitochondrial DNA in d i 

cates the existence of genetic variation that may be diagnostic 

of r iver  stocks within the Chesapeake Bay.

44
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2. No clear genotypic marker was found, but genotypic frequencies 

should provide information adequate to identify  separate r iver

stocks i f ,  and where, they exist.

3. The Rappahannock River striped bass are genetically  d is t inct  

from those in the Potomac River and may be d is t inc t  from those

in other locations in the Upper Chesapeake Bay. This supports

previous tagging, morphometric, and meristic studies.

4. Factors other than geographic distance, such as geologic his

tory, or d is t inct  migratory habits, may be important in 

establishing the genetic differences between striped bass in 

the Rappahannock and Potomac r ivers.

5. Signif icant variation in genotypic frequencies may or may not 

be present in Rappahannock striped bass between 1984, 1986, amd 

1987. Discrepancies between designation of genotypic labels 

and molecular weight determinations must be resolved before i t  

can be determined whether year-to-year variation exists.

6. More extensive and comprehensive sampling is necessary to fu l ly  

resolve genetic variation within the Chesapeake Bay.

7. Should genetically dist inct  stocks be ident i f ied ,  present 

management strategies may not be appropriate to ensure long

term preservation of the species.



SUGGESTED FUTURE RESEARCH

In order to accurately resolve the mtDNA variat ion within the 

Chesapeake Bay striped bass population, current sampling should be 

continued and a more comprehensive sampling strategy must be imple

mented. The ideal sampling strategy should include the following:

1. Equal representation of males and females within the sample.

2. Equal representation of sampled year classes and recognition of 

the individual genetic contribution of each year class.

3. Random sampling throughout the r iver  or sampling area, par

t ic u la r ly  during the spawning season.

4. Seasonal sampling to determine i f  shif ts  in genotypic f r e 

quencies occur within the year due to the anadromous habits of  

the species.

5. Increasing the sample size to 50-100 individuals to more ac

curately represent true genotypic frequencies.
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6. Sampling should be repeated every two years for at least 10 

years.

Although such an ideal sampling scheme is usually impractical, improve

ments in the present approach are necessary to obtain results which are 

trusted to re f le c t  true mtDNA variation.



APPENDIX A

The isolation and digestion procedures for striped bass mtDNA are 

well-established (Chapman and Powers 1984), but several problems may be 

encountered while learning the technique.

Contamination is a constant threat.  Bacterial contamination from 

the a i r ,  hands, or counter-top may cause complete degradation of the 

mtDNA or the res tr ic t ion  enzymes. This results in the presence of 

l i t t l e  or no DNA or whole, uncut DNA. Careful handling of the solutions 

and proper technique reduces the possib i l i ty  of contamination.

Unbuffered phenol stored at room temperature degrades within one to 

two months of preparation and is no longer e f fec t ive  in removing 

proteins. This degradation results in loss of the mtDNA. Buffering the 

phenol according to Maniatis et a l . (1982), division into small 

aliquots, and freezing during storage eliminates the problem.

Without the proper equipment, the amount of mtDNA in a sample is 

not easily determined. Although i t  is not necessary to know exact 

quantit ies, i t  is helpful to know rela t ive  quantit ies.  Starting with an 

equal amount of material,  two dif ferent  ovarian samples may produce very 

dif feren t  quantities of mtDNA depending on the stage or condition of the 

ovary. Pellet  size is also not a good indicator as the presence of 

large quantities of RNA or other impurities sometimes 

produce a large pe l le t  when l i t t l e  mtDNA was present. Over-dilution  

with s te r i le  water renders mtDNA undetectable in EtBr-stained gels,
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while overloading of DNA causes blurring of the bands and reduces the 

accuracy in determining the molecular weight of the fragments.

End-labelling, on the other hand, requires a minimal amount of DNA 

to be detected through autoradiography. For EtBr-stained gels a 

dilu t ion of the samples to only 50-60 jil allows 4-5 digests, while end- 

labe l l ing allows a di lution to 100 jul producing at least 13 digests with 

the same amount of starting tissue. Although a more tedious process, 

end-labell ing is advantageous when the sample material is l imited.

Sample storage is also an important consideration. Although i t  is 

convenient to freeze samples, prolonged storage of striped bass ovarian 

tissue reduces the quantity of intact mtDNA for analyses.

Complete mixing of the DNA, enzyme, buffer, and label ( i f  used) is 

essential to obtain complete digestion , and thus, accurate results.  

Partial digestions, i f  not recognized, can lead to erroneous 

conclusions. Partial digestion is easily recognized by the presence of 

whole, uncut mtDNA at the upper end of the gel. Over-digestion usually 

occurrs when excessive enzyme is used or the reaction is allowed to 

continue beyond 3 hours. The sample appears as a series of many bands 

in excess of the ’ normal* restr ic t ion pattern. During over-digestion, 

fragments re-anneal (rejoin) creating new restr ic t ion sites and new 

fragments of varying molecular weights.

Recognition and interpretation of the results in the presence of 

part ia l  or over-digestions is an important and necessary step in 

understanding the data. Misinterpretation is usually avoided by summing 

the molecular weights of the observed fragments. Partial or over

digestion typ ica l ly  produce total molecular weights inconsistent with 

the known mtDNA molecule size of vertebrates (16-20 kb).



APPENDIX B

End-labelling Reaction Mixture with Klenow Fragment (Chapman)

(quantities per sample)

Klenow 0.2 units ~ 0.04 *il

Reaction buffer 1.00 pi

Restriction enzyme 0.50 pi

Cold phosphate dGCT, 1.00 jul ( i f  required)

dCTP, dTTP

(35S)* label 0.20 - 0.30 jiCi

MtDNA solution 7.00 Ml (of  a 100 pi d i lu t ion)

S te r i le  water to 20 pi total  volume
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APPENDIX C

Distance 
7.90 2.04
8.15 1.95

Variab le  Fragments 
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Corrected kb 
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1.93
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2.25 12246
2.35 11198
2.55 10180
2.70 9162
2.95 8144
3.30 7126
3.70 6108
4.30 5090
5.05 4072
6.17 3054
7.85 2036
8.80 1635

7.85 cm on standard curve = 
2.060 kb which is +0.024. 
Fragment sizes are therefore 
corrected by subtracting 0.02.

.'55 a. 7 2.95 3.3 3.7 4 .3  5.05 6.17 7.85 ;
0 <

degression Analysis - Multiplicative model: Y = aXA b

Dependent variable-* 10180 9162 8144 7126 Independent variable: 2.55 2.7 2.95 3.3

Standard T Prob.
Parameter Esti mate Error Val ue Leve 1

1ntercept* 10.5789 0.0474784 222.816 2.22045E-16
S 1 ope -1.43075 0.0311665 -45.9066 5.60139E-11
* NOTE: Th e Intercept is e«[ual to Log a.

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model 3.5930 1 3.5930 2107.4125 .00000
Error .0136395 ' 8 .0017049

Total (Corr.) 3.6066533 9

Correlation Coefficient = -0.998107 R-s^uared = 99.62 percent.
Stnd. Error of Est. = 0.0412909
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Table 1. Four restr ic t ion  enzymes and th e ir  recognition sequences. 
Arrows indicate restr ic t ion sites.

Hind I I I

Eco RV

5’ Â AGCT T 3* Eco RI 5’ G*AATT C 3 ’

3 ’ T TCGÂ A 5 ’ 3 ’ C TTAÂ G 5’

5’ GAt V tC 3 ’ Bel I 5 ’ T̂ GATC A 3 ’

3 ’ CTÂ TAG 5’ 3 ’ A CTAĜ T 5’
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Table 2. Observed genotypic frequencies in the Rappahannock River in 
1986.

OBSERVED GENOTYPIC FREQUENCIES

GENOTYPE # SAMPLES TOTAL MOLECULAR WEIGHT fkbV

A

B

C

D/E

F

7

10

4

1

1

17.5

17.6

17.7 

17.65/17.75

17.8

Total f ish 23

GENOTYPIC FREQUENCIES BY YEAR CLASS 

GENOTYPE

YEAR CLASS 1 A B C D/E F 1 TOTAL
1

77 | 1 1
i
1 2I

80 | i 1
1
| 1I

81 | 2 1 1
1
1 4i

82 | i 3 6 3 1
1
| 13i1

83 |i 1 1
1
1 2 i1

undet’ d | 
I

1
1
| 1 
1

Total f ish | 7 10 4 1 1 | 23

*  Molecular weights as determined by the methods of Robert W. Chapman of 
the Chesapeake Bay Ins t i tu te ,  Shady Side, Maryland.
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Table 3. Distribution of mtDNA genotypes and G tests for random
distr ibut ion in the Upper Bay and Rappahannock River, 1984 and 
1986. Expected values are in parentheses.

A. 1984

GENOTYPE
Location 1 A B C D/E _ F 1 N 1 G
* 1 

Upper Bay |
i
i

3
(8.0)

31
(28.0)

6
(4.0)

1
| 40
1
1

1
1
| 13.56**  
I

$ 1 ^Rappahannock |
1
1

9
(4.0)

11
(14.0)

0
(2.0)

1
| 20
1
1

| df=2 
1 
1 
1

1
Total |

1
12 42 6

1
| 60 
1

1
1
1

B. 1986

GENOTYPE
Location 1 A B C D/E F 1 N 1 G

*  i 
Upper Bay j

I
1

2
(6.8)

21
(23.3)

34
(28.5)

4
(3.8)

8
(6.8)

1
| 69
1
1

| 16.68**

i
Rappahannock |

i
1

7
(2.3)

10
(7.8)

4
(9.5)

1
(1.3)

1
(2.3)

1
| 23
1
1

| df=4

i
Total j

...... . 1
9 31 38 5 9

1
| 92
I

★
$From Chapman (1987)

From Chapman and Powers (in press)



Table 4. Comparison of genotypic frequencies in the Rappahannock River 
and three locations in the upper Chesapeake Bay in 1984 and 
1986. Expected values are in parentheses.

1984

LOCATION A B
GENOTYPE 

C D/E F N G-VALUE
:k

Rappahannock
$Potomac

9
(5.0)  

0
(4.0)

11
(13.3)

13
(10.7)

0
(1.7)
3

(1.3)

20

16
14.65**
df=2

k
Rappahannock

^Choptank

9
(7.3)

3
(4.7)

11
(10.9)

7
(7.1)

0
(1.8)
3

(1.2)

20

13
5.99
df=2

k
Rappahannock 

^Worton Point

9
(5.8)

0
(3.2)

11
(14.2)
11

(7.8)

20

11
9.18**  
df=l

1986

LOCATION A B
GENOTYPE 

C D/E F N G-VALUE
Rappahannock
^Potomac

(3?2)
0

(3.8)

d?2)
6

... (8.8)

(9?5)
17

(11.5)

(1*4)
2

(1.6)

(1-8)
3

(2.2)

23
28

18.36**
df=4

Rappahannock

^Choptank

7
(4.5)  

0
(2.5)

10
(8.3)

3
(4.7)

4
(6.4)

6
(3.6)

1
(1.9)

2
(1.1)

1
(1.9)

2
(1.1)

23

13
10.54**
df=4

Rappahannock 

^Worton Point

7 10 
(4.1) (9.9)  

2 12 
(4 .9 ) (12 .1 )

4
(6.8)
11

(8.2)

1
(0.5)

0
(0.5)

1
(1.8)

3
(2.2)

23

28
7.15
df=4

k
rt-From Chapman and Powers 

From Chapman (1987)
(in press)
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Table 5. Genotypic frequencies in the Rappahannock River in 1984, 1986, 
and 1987 and G-tests for goodness-of-fit.  Expected values are 
in parentheses.

GENOTYPE
YEAR 1 A B C D C/D D/E F N G VALUE

*1984 1 9 11 0 0 0 20
1 (7.4) (9.8) (1.9) (0.5) (0.5) 6.50

1986 | 7 10 4 1 1 23
1 (8.6) (11-2) ( 2.1) (0.5) (0.5) df=4

*1984 1 9 11 0 0 0 20
<t 1 (3.3) (7.6) (6.9) (1.1) (1.1) 41.32**

1987 1 o 10 19 3 3 35
1(5.7) (13.4) (12 .1 ) (1 .9 ) (1.9) df=4

1986 | 7 10 4 0 0 1 1 23
$ 1 (2.8) (7.9) (9.1) (1.2) (1.2) (0.4) (0.4) 24.85**

1987 1 o 10 19 3 3 0 0 35
J.(4 .2 ) (12 .1 ) (13.9 ) (1 .8 ) ..(1,8). (0.6) JO. 6) .... df=6

*
^From Chapman (1987)
^From Meehan and Banford (unpublished)
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Table 6. Genotypic frequencies in the Rappahannock River, 1987.

GENOTYPE
Year Class 1 A B C D C/D D/E F

1
1980 | 

1
1 1

1
1981 | 

1
1 1

1
1982 | 

1
2 3 1 6

1
1983 | 

1
6 15 1 3 25

1
1984 | 

1
2 2

1
Total |

....  .................. ...I
10 19 3 3 35

(Meehan and Banford, unpublished)
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Table 7. Frequency of mtDNA genotypes and G-tests for random
distr ibut ion between the Potomac River, Choptank River, and 
Worton Point in 1984 and 1986. Expected values are in 
parentheses.

1984
GENOTYPE

Location A B C D/E F ! G value
Potomac River 0 13 3 1

(1.2) (12.4) (2.4) 1
Choptank River 3 7 3 | 10.57**

(1.0) (10.1) (2.0) | p<.05
Worton Point 0 11 0 1

... . (0.8) .18,5) 0 1 . 7 ) ........ J

1986
GENOTYPE

Location A B C D/E F G value
Potomac River 0 6 17 2 3

(0.8) (8.5) (13.8) (1.6) (3.2)
Choptank River 0 3 6 2 2 10.34

(0.4) (4.0) (6.4) (0.8) (1.5) p>.10
Worton Point 2 12 11 0 3

(0,8) _(8.5) (13.8 (1,6) (3.2)__

Derived from Chapman (1987).



65

Table 8. Frequency of mtDNA genotypes and G tests for random
distributions in the Potomac River, Choptank River, and Worton 
Point between 1984 and 1986. Expected values are in 
parentheses.

GENOTYPE
Location Year A B C D/E F G-value

Potomac River 1984

1986

13
(6.9)

6
(12.1)

3
(7.2)
17

(12.7)

0
(0.7)

2
(1.2)

0
(1.1)

3
(1.9)

7.12**
p<.01

Choptank River 1984

1986

3
(1.5)  

0
(1.5)

7
(5.5)  

3
(5.5)

3
(4.0) 

6
(4.0)

0
(1.0)

2
(1.0)

0
(1.0)

2
(1.0)

2.85 
0. l<p<.05

Worton Point 1984

1986

0
(0.5)

2
(1.4)

11
(6.2)

12
(15.8)

0
(3.4)
11

(8.6)

0
(0.8)

3
(2.2)

10.51**
p< .01

Combi ned 1984

1986

3
(1.8)

2
(3.1)

31
(18.7)

21
(32.3)

6
(14.7)
34

(25.3)

0
(1.5)  

4
(2.5)

0
(3.9)

8
(5/1)

26.62**
p<.01

From Chapman (1987). G values generated after  appropriate pooling of 
genotypic classes.
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Figure 1 Location of sampling stations 

River, Choptank River, and at

in the Rappahannock River, Potomac 

Worton Point.
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Figure 2 Restriction fragment patterns of three enzymes, Hind I I I ,  

RI, and Bel I ,  observed in mtDNA of striped bass from the 

Rappahannock River, Virgin ia .  The ladder is a 1 kilobase 

molecular weight standard.
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Figure 3. Three restr ic t ion  fragment patterns observed in striped bass 

from the Rappahannock River, Virginia.
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Figure 4. Percent occurrence of genotypes in Rappahannock River striped 

bass in 1984, 1986, and 1987.
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