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ABSTRACT

The present study characterizes the response of a nourished beach 
at an estuarine site fronting the Virginia Institute of Marine Science 
(VIMS) at Gloucester Point, Virginia, on the York River estuary.

An equilibrium shape has been defined for a typical pre-nourishment 
profile using Dean's (1977) model for equilibrium beach profiles which 
assume the form h — Ax . A least squares approach has been utilized to 
calculate values for A and m for the study site. The lack of jfjig^of the 
pre-nourishment profiles to Dean's theoretical equation h - Ax may
be explained by differences in geomorphology between this estuarine site 
and the open ocean sites analyzed by Dean (1977). Emplacement of a 
relatively thick wedge of sediment during nourishment provided 
unconsolidated material necessary to achieve smoothly concave form 
described by Dean. Post-nourishment profiles more closely approximate 
values of A and m found by Dean (1977).

Results of the definition of an equilibrium beach profile for the 
pre-nourishment site have been utilized to develop fill criteria for 
various grain sizes to achieve a given seaward advancement of the 
shoreline.

Temporal and spatial changes in sediment volume have been 
characterized to better develop renourishment schedules and minimize 
fill losses in the future. Approximately 1,255 m (net) of material 
were lost during the 26-month study, or approximately 16% of the fill 
emplaced in 1983. Material eroded from the sediment-starved northern 
segments has been continuously supplied to downdrift segments of VIMS 
and Gloucester County public beach. Net losses from the public beach 
during the study period were approximately 30% of that lost from VIMS 
beach. Volume change data suggest that survey intervals which included 
seasonal northeasterly and easterly storms were characterized by highest 
net losses of sediment and gross volume changes resulting from sediment 
transport within the system.

xi



SYSTEM RESPONSE OF A NOURISHED BEACH IN A LOW-ENERGY ESTUARINE 

ENVIRONMENT, GLOUCESTER POINT, VIRGINIA



1. INTRODUCTION

Increased attention to the rising costs of mitigating shoreline 

erosion in coastal communities has led to greater public awareness of 

the need to develop reliable methods of estimating rates and magnitudes 

of beach erosion over time and during storm events. In addition to the 

natural erosive processes along coastlines, human intervention in the 

form of shoreline development, modification of inlets, construction on 

primary dunes, mining of beach material, and emplacement of shoreline 

structures for protection increases the potential for shoreline erosion. 

Such intervention represents a disturbance in the natural supply and/or 

transport of sand to a beach. The result is sediment starvation and 

increased erosion of the shoreline. In areas of commercial and private 

development, therefore it is desirable to conduct preliminary 

evaluations of alternatives such as the emplacement of coastal 

structures, beach nourishment and implementation of setback laws.

Shoreline erosion will exist as long as sea level continues to 

rise. Assuming that the incident forces remain constant, beach 

nourishment, the emplacement of sand on an eroding shoreline, can be a 

successful technique for mitigating erosion and protecting against 

damaging storm events. Nourishment projects are replacing the 

construction of shoreline structures because they can improve a beach's 

recreational and aesthetic benefits. They may also present less of an 

environmental risk than the rock or bulkhead alternatives. Successful

2



3

nourishment projects result in seaward extension of the shoreline and 

increased elevation of the beach profile. Widening of a beach increases 

dissipation of wave energy and supplies additional material for 

transport in a sediment-starved system. Unsuccessful nourishment, 

while costly, only results in rapid redistribution of sediment until 

existing forces restore the shoreline to equilibrium.

Efforts to control shoreline erosion along the more than 12,900 

kilometers of shoreline of the Chesapeake Bay have been initiated at 

many localities. Beach preservation, however, has not been uniformly 

achieved in all settings. In some areas, a continuous network of groins 

and bulkheads serves as a partial barrier to the natural supply of 

sediment from the eroding fastland to the adjacent shorelines.

1.1 Research Goal

There have been many project summaries of beach nourishment effects 

on open ocean coasts. Little research exists, however, regarding the 

functional behavior of restored beach systems. Even less information 

exists for micro-tidal, estuarine shorelines of limited fetch. These 

are settings in which the mechanism of change are relatively short in 

duration when compared to open coast beaches.

The goal of this study is to characterize the response of a 

nourished beach at a site on the York River. Results will be used to 

assess the effectiveness of the design in achieving an equilibrium beach 

slope. Recommendations will be made to better achieve this goal for 

future beach nourishment projects. Results and design recommendations 

may be applied to analogous situations, determined by assessments of the 

influences of wind, waves, tides and the associated currents,
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geographic setting and natural beach state. The basic goal can be 

separated into defined objectives which are summarized below and 

discussed in detail in the following section.

1.2 Obi ectives

The first objective is to characterize the native beach profile. 

This will involve description of an equilibrium shape for the site based 

on its sediment characteristics. The measured profile will be analyzed 

to assess how well the observed profiles may be represented by Dean's

(1977) model for equilibrium beach profiles which assumes the form
, . mh — A x

where h= water depth

A= scale parameter 

m= shape factor

x« distance seaward of the point of origin 

A least squares approach will be utilized to determine the best fit of A 

and m for a given profile for this beach.

Dean's model was developed from the analysis of open ocean sandy 

beaches along the U.S. Atlantic and Gulf coasts. The present estuarine 

study site is characterized by chronic erosion and lack of a continuous 

sediment supply to the shoreline. In contrast to most ocean beaches, 

this estuarine study site is characterized by relatively large tidal 

influence in comparison to wave heights, two major forces affecting 

profile shape. Calculation of a theoretical profile for the study site 

based on Dean's model will be used to determine if any values found in 

Dean's ocean sites approximate those found in an estuarine site.
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The second objective is to assess the suitability of selected fills 

for nourishment material. Suitability is generally defined as the 

ability to achieve an equilibrium shape with minimal loss of material 

during redistribution. The assessment will be based on the known 

relationship between grain diameter (D) and the scale value (A) which is 

presented in Moore (1982). Volume fill criteria will be determined for 

varying grain sizes to achieve a given seaward advancement of the 

shoreline. In addition, borrow fill material chosen for the 1983 

nourishment project will be compared to native material in terms of 

grain size characteristics.

The third objective is to categorize changes in profile shape and 

sediment volume for the nourished shoreline during storm and non-storm 

periods. It is not expected that the nourishment of the shoreline will 

provide permanent stability but instead will temporarily dissipate wave 

energy and will supply sediment to downdrift segments. Changes in shape 

and sediment volume will be described and the loss of fill material will 

be characterized as long-term gradual losses or episodic in nature. The 

spatial variability in volume change, primarily governed by the presence 

of sediment retaining groin-like structures and piers along this 

shoreline will be characterized. These structures impede the alongshore 

transport of sediment creating relatively stable segments of shoreline.

Changes in beach profile form and sediment volume are influences by 

wind, waves, tides, and the associated currents. Conditions monitored 

during periods of significant change and periods of minimal change will 

be used to describe the relative importance of these conditions in 

altering the study area's shoreline.



1.2.1 Equilibrium beach profiles and beach nourishment projects

The ideal condition of a successfully designed nourishment project 

is one in which the beach is displaced seaward by a defined amount, 

restoring the shoreline to that of a previous time, when the previous 

shape represented an equilibrium condition (Komar, 1983). The concept 

of the equilibrium beach profile represents an ideal condition which 

will exist only under steady conditions of tides, winds, and waves 

(Tanner, 1958).

Bruun (1954) analyzed beach profiles from Mission Bay, California 

and the Danish North Coast. Using rates of erosion at various distance 

offshore, Bruun developed the empirical equation between water depth, h 

and the distance, x, offshore
v A 2/3 h - A x '

Bruun presented two mechanisms to achieve the equilibrium beach profile

1. onshore component of shear stress is uniform, and the onshore 

component of the gradient of transport of wave energy is constant; this

approximates the empirical equation
v a 2/3 h - A x '

2. Losses of wave energy results only from bottom friction, and 

loss per unit area is constant. The profile then takes the form

h - A x 2/3/ T4/9 

Based on the previous work of Bruun (1954, 1962), Dean (1977) 

presented three mechanisms which produced an equilibrium beach profile 

of the form

h - A x

where A depends on the stability characteristics of the bed material, 

and the exponent, m, depends on the type of destructive force
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considered. Dean makes the assumption that both constructive and 

destructive forces exist in the surf zone which transport sediment in 

the onshore and offshore directions. The three destructive forces 

presented by Dean were:

1. Uniform longshore shear stress based on the concept of 

radiation stress (Longuett-Higgins, 1970)

2. Turbulence, considering wave energy dissipation per unit 

surface area to be uniform

3. Turbulence, considering wave energy dissipation per unit volume 

of water to be uniform

Development of the three equilibrium beach profile forms are 

presented in detail in Dean (1977). The form is based on a 

consideration of spilling breaking waves across the surf zone, where no 

gradients in energy dissipation exist across the surf zone. The energy 

dissipation is slope dependent. This implies that a sediment particle 

in the surf zone, which is typified by a steep energy gradient, will be 

transported offshore until the gradient is reduced and an equilibrium 

slope is achieved. Conversely, the particle will be transported 

landward when the gradient of energy is less than the equilibrium energy 

dissipation of that particle. This will increase the slope until the 

equilibrium slope is attained (Moore, 1982).

Dean's application of a least squares procedure to 502 beach 

profiles along the East and Gulf coasts of the United States yielded 

values for m and A for each profile. The histogram of m values revealed 

a dominant value of 0.67, in close agreement with the value of 2/3 

determined by Bruun (1954). Dean's findings indicated that turbulence
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due to uniform wave energy dissipation per unit volume of water was the 

destructive force responsible for the profile form.

Because of the dynamics involved, the equilibrium beach state is a 

condition which may be approximated but is seldom achieved in nature as 

a static state. The concept, however, has value in the evaluation and 

design of nourishment projects. The nourishment of a shoreline 

represents a disturbance in the natural beach system. As the newly 

created profile attempts to achieve a more stable form, there is a 

seaward shift of the profile, and a straightening of the contours. The 

result is a wider, flatter beach.

The present study will attempt to describe the equation for Dean's 

equilibrium model-curve using existing sets of profiles from the VIMS 

shoreline. Derived values of A and m will be utilized to calculate a 

theoretical equilibrium model-curve for this shoreline. The model curve 

will, in turn, be used to develop recommendations for future site design 

criteria for this site. Post-nourishment profiles and the natural curve 

will be used to predict present beach profiles. The predicted and 

measured profiles will be compared and analyzed.

The use of a model curve to evaluate the data set facilitates 

design of nourishment projects with a minimal loss of fill material. 

However, certain assumptions are necessary. The equation 

h = A xm describes a profile representative of uniform wave energy 

dissipation per unit volume of water in the surf zone. It assumes a 

lack of wave energy and transport gradients, so that a condition of no 

net erosion or accretion results. As such, the equation applies only to 

that portion of the profile defined by this condition and does not 

include the upper beach face and berm.
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The relative effects of other process parameters are ignored in the 

conditions which govern the application of this model. Interpretation 

of the fit of the curve is thus constrained. It is most appropriately 

used in conjunction with assessments of volume change and analyses of 

incident conditions.

1.2.2 Sediment characteristics

The success of a nourishment project depends largely on the 

compatibility of native and beach fill material. If the fill material 

has the same or coarser characteristics as the native bed material, the 

equilibrium shape for that beach will be approximated with a minimal 

loss of material during the initial adjustment. An excess of fine 

material will result in the resuspension and offshore and alongshore 

transport of the sediment to a point at which the wave energy is 

sufficiently low to provide a more stable situation. Coarser material 

results in a landward transport to the beach face and berm, but may not 

be distributed across the entire profile. In this situation, waves will 

break closer to shore, resulting in a concentration of energy within a 

narrowed surf zone (Moore, 1982).

Based on the general relationships of grain size and retention 

times, the suitability of fill material will be evaluated with reference 

to the theoretical model for an equilibrium profile. The mean grain 

diameter of the native material will be determined and compared with 

hypothetical material of both larger and smaller mean grain diameters. 

The volume of each material required per unit length of shoreline to 

achieve any given shoreline advancement will be determined. The
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methodology to achieve this objective follows that presented in Dean 

(1983).

The assumption implicit in this analysis is that each data set of 

profile points may be characterized by a single grain diameter value and 

an associated scale value. While grain size along a profile obviously 

varies in relation to the different energy zones, this assumption may be 

accepted for the purpose of describing that portion of the profile 

governed by uniform energy dissipation on a gently sloping surf zone.

The variation of grain sizes associated with any scale value of A would 

likely be included within a given data set, given the logarithmic nature 

of the scale value relationship and grain size, as defined by Moore 

(1982).

1.2.3 Volume change

The emplacement of sand nourishment along a shoreline is a 

perturbation in the system. Consequently, incident conditions rework 

the material to create an equilibrium profile for that beach.

Nourishment material often is eroded more quickly than natural 

sediment until that shoreline approaches the pre-project profile; this 

transport of material occurs as losses from the ends of the project fill 

and losses of the finer fraction through resuspension and transport 

during the initial readjustment of the profile. The process which 

governs the redistribution is expressed by the diffusion equation. The 

alongshore transport of sediment is analogous to the diffusion of heat 

from a warm segment of an insulated bar in that heat flux loss occurs 

only in the direction of the long axis. With a nourishment project,
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this process of fill loss will be accelerated on shorelines where 

project fill length is short relative to the beach width (Dean, 1983).

It is hypothesized that the VIMS nourished beach will experience 

more rapid volume loss than the pre-project shoreline. This will 

continue until the beach profile approaches a shape closely 

approximating the natural form. At that time, the beach will erode at a 

rate similar to that of the pre-project shoreline.

It is anticipated that the loss of volume from this beach will not 

occur uniformly along the project length. This is due to the presence of 

several groin-like structures and piers which trap littoral drift 

material and provide downdrift protection during storms. The northern 

segment of shoreline, remains exposed to direct wave attack during 

storms and lacking of an updrift sediment source, should experience the 

greatest rate of loss for this site.

During pre-project storm events, some resuspended material was 

deposited just offshore as a temporary bar. Other resuspended material 

was transported alongshore, in a narrow zone which terminated at the 

point in the vicinity of the profile 60.

It is expected that material transported from the VIMS beach may 

temporarily nourish the downdrift public beach. It is probable that 

most of this sediment will eventually be transported alongshore and 

deposited into the deeper channel or in the protected segments near the 

boat ramp, where wave agitation is sufficiently low to allow deposition 

of this material.



12

1.3 Process Parameters and Shoreline Changes

The processes of erosion and accretion in estuaries are governed by 

the relative influences of tides, waves, density gradients, 

meteorological effects and river inflow (Davis, 1985). The relative 

contribution of each parameter is site specific, although an 

understanding of the relative importance of these processes for one site 

may be applied to beaches with similar geographic setting and incident 

conditions.

Many studies exist which analyze the relative influence of process 

parameters in the resulting shoreline changes. Studies of beaches along 

southern California (Thompson and Thompson, 1919), (LaFond, 1939) have 

shown that tide-induced changes on the beach profile were more notable 

during the summer months when wave conditions were relatively constant. 

During the fall and winter storms, the wave and wind conditions affected 

the shoreline much more than did the tidal fluctuations.

From studies of the beaches of the Northwest Gulf of California, 

Inman and Filloux (1960) reported fortnightly cycles of erosion and 

accretion which result from the combined effects of the wave and tide 

range cycles. In this area of California, the tide ranges are 

relatively large when compared to wave heights, resulting in beach 

profiles with relatively steep sloping faces which terminate at the base 

into a wide low-tide terrace. As the tide level undergoes maximum 

changes, the available wave energy is rapidly translated across the 

terrace. During the high and low water stillstands, this wave energy 

becomes concentrated at these corresponding still levels. This 

concentration of energy resulted in a difference in slopes between the 

beach face, which generally consists of coarse sediment, and the
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terrace, which was generally rippled, finer-grained material (Komar, 

1976) .

Warnke et a l . (1976) analyzed the processes of shoreline recession 

in a low-energy coastal environment on the western coast of Florida. He 

concluded that shoreline recession is primarily controlled by surges 

which elevate water levels to the back dune ridges, and not by the wave 

heights during these events. Rosen (1976) observed a similar trend in 

the Chesapeake Bay. Rosen reported an inverse relationship between tide 

range and erosion rates in the Chesapeake Bay, indicating a higher tide 

range resulting in lower erosion rates for a given set of conditions.

He suggested that a larger tide range is more effective in creating a 

shoreline buffer from the erosional processes on Chesapeake Bay's 

shoreline. In addition, these areas experience a distribution of wave 

energy over a larger vertical and horizontal area in the course of a 

tide cycle.

The VIMS shoreline is characterized by a relatively steep beach 

face which grades abruptly into a gently sloping low-tide terrace. This 

area has a tide range of 0.7 meter (United States Department of 

Commerce, 1987). When compared to ocean coasts, the range is relatively 

large when compared to the incident wave conditions which result from 

the relatively shallow and protected nature of this estuary. The 

shoreline and offshore bathymmetry typifies the lower Chesapeake Bay, 

and is characterized by broad, flat terraces of coarse to fine sediment, 

which extend from low water to approximately the 3.6 meter contour. A 

break in slope delineates the seaward extent of the terrace, where the 

shore bottom grades into deeper water. Rosen (1976) suggested that this 

feature is primarily a remnant erosional platform. His opinion is based
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on field investigations which showed that terraces often exist as 

erosional cuts into pre-Holocene sediments.

For the study shoreline, the winds which blow from the northeast to 

east, the distance of greatest fetch, have the greatest potential for 

creating profile response and volume changes. During seasonal storms, 

the interraction of high tides and winds which blow steadily from these 

directions create a piling up, or "set-up” of water along the shoreline. 

Because wind wave energy is inversely proportional to water depth, and 

tide energy is directly proportional to depth, the maximum bottom wave 

orbital velocities are decreased during higher water levels, while 

maximum near-bottom tide velocities increase with increasing depths 

(Allen, 1971). Maximum wave amplitudes are further constrained by the 

relatively shallow water depths and short fetches which characterize 

this shoreline. As a result, it is likely that elevated tide levels, 

amplified by a storm surge, and currents associated with these events 

will be more effective processes in resuspending sediment, resulting in 

changes in the profile shape and sediment volumes of this beach.



2. STUDY SETTING

2.1 Geological History of the Area

The evolution of Quaternary estuaries was characterized by periods 

of alternating glacial and interglacial periods and the associated 

climatic changes and eustatic sea level fluctuations (Schubel and 

Hirschberg, 1977). Chesapeake Bay estuary was formed during the most 

recent Pleistocene rise in sea level, which began approximately 15,000- 

18,000 years ago. The estuary developed as a drowned valley of the 

Susquehanna River Valley system as sea level rose into the bay basin 

nearly 10,000 years ago (Schubel et a l ., 1972). The bay retains the 

topographic features of a youthful river valley including a meandering 

outline, triangular cross-section, and a general widening from the head 

to the bay mouth (Dyer, 1979).

Erosion of the shoreline within as well as outside of the 

Chesapeake Bay is a principal source of sediment to the beaches. Chart 

comparisons show a recession of as much as 700 meters on some of the 

headlands within the bay between the 1840's and the 1940's (Meade,

1974). Summarized results from various studies of erosion rates within
g

the bay estimate a net loss of nearly 27,900 acres (1.1 X 10 square 

meters) between 1850 and 1950 (Hobbs et a l ., 1981). Byrne and Anderson
g

(1977) indicated that over 2.1 X 10 cubic meters of material were 

eroded from the Virginia portion of the Chesapeake Bay over this same 

period. The sand derived from this erosion is the primary source of

15
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material for the estuarine beaches, while the channels and flank areas 

receive most of the silt and clay fractions (Hobbs et a l ., 1981).

2.2 Study Location

The study area is an estuarine beach located at the Virginia 

Institute of Marine Science at Gloucester Point, Virginia (Figure 1).

The south-eastward facing shoreline (approximately 400 meters long) is 

adjacent to a deep channel of the York River estuary within Chesapeake 

Bay system. The shoreline is oriented approximately N52°E and has an 

average fetch to the southeast across the York River and Chesapeake Bay 

of approximately 20.24 kilometers. The greatest exposure to the study 

shoreline exists for a vector which runs nearly due east. The fetch and 

offshore bathymmetry dictate the wave climate at the VIMS shoreline.

The offshore bathymmetry along a shore-perpendicular profile shows 

the 2 -meter contour to be approximately 0.18 kilometers offshore, and 

the 5.5-meter contour approximately 0.31 kilometers offshore. At this 

point the depths drop off significantly into the central portion of the 

channel portion of the York River. The mean tidal range at Gloucester 

Point is 0.72 meters and the spring tidal range is 0.88 meters (United 

States Department of Commerce, 1987).

The geology of the bank area along this shoreline is given in 

Figure 2, taken from a 1982 report on test borings. The bank portion is 

composed of fine- medium sand of the Windsor Formation which overlies 

the moderately to highly indurated fossiliferous Yorktown Formation. The 

contact between the Windsor and Yorktown Formations occurs in most 

places just above Mean Low Water (MLW) and serves as an aquaclude to 

downward percolating groundwater. Several springs exist along this
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Figure 1. Site location in the Chesapeake Bay, Gloucester 

Point, Virginia.
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Figure 2. Geology of the bank area at study site, taken 

from boring log.



SCHNABEL ENGINEERING ASSOCIATES TEST BORING LOG BORING NO: B-7
.... CONSULTING ENGINEERS
Project Proposed Marine Science Service Center. VIMS Sheet 1 of 1
Slient Virginia Institute of Marine Science/Gloucester.Va.Job No. Vb2337

Water Level Data Drive Sampler Casing Size 23"
Date Time Depth Caved Tvpe S.S. D a te  Start 8-12-82

Encount.8-12 12:00 35.0' - Dia. 20D Date End 8-12-82
Sasing 8-12 12:40 Drv 20.1 Wt. 140 Driller: Avers

8-13 1:50 Drv 19.8 Fall 30 InsDector: Adams

Depth(Ft.) Elev. Symbol IDENTIFICATION REMARKS

_3.0

4"+ Topsoil 
F ine to Med ium S a n d , 
Some Silt,Moist Brown

Wind sor 
Forma t ion

7.0

20

Fine Sand, Trace Silt, 
Dry-Tan

10

0
34.0

44.0 Q71

F i ne to Medium Sand, 
Some Silty Clay With 
Shell Fragments, Wet- 
Brown

York t own 
Forma t i on

. 50.0

Fine Sandy Clayey Silt, 
With Shell Fragments,
Mo is t , Gray

Boring Terminated at 50.0 Ft. 1
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contact on the bank face. Groundwater from these springs issues through 

and under the existing bulkhead, which along most of its length, sits 

directly on the Yorktown Formation.

Longshore drift within the littoral system along the east shore has 

a net component to the S-SW, toward the point adjacent to the river 

channel. This is evidenced by an accumulation of material on the N-NE 

side of the existing groins between Gloucester Point and Sarah's Creek.

2.3 Recent Shoreline History

Photographic records indicate that V IMS's Eastern shoreline has 

been losing sand at a substantial rate since the late 1960's. This 

gradual but steady loss of material over the years can be attributed to 

the increased number of bulkheads and groins placed updrift of the VIMS 

shoreline. In 1937, no structures existed between VIMS and Sarah's 

Creek; 24 groins or bulkheads were present in 1960; and 105 groins, 

bulkheads or rip-rap projects existed in 1982. The net effect of these 

structures is a restriction of the source material supplied by bank 

erosion to the beach. In addition, existing concrete bulkheads along 

the back beach area reflect incident waves and consequently cause scour 

of material away from the shoreline.

By 1976 erosion of the unprotected shoreline between Clayton House 

and Maury Hall had reached a critical state and led to the completion of 

a continuous bulkhead fronting VIMS in 1977. By 1978 the beach width 

had reduced significantly in the area of Clayton House, resulting in 

direct wave attack on the wall during moderate storm activity and the 

permanent removal of material by reflected waves. During the fall of 

1982, Maury Hall was in danger of structural failure due to the loss of
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material and undermining of the footing of its concrete wall. In 

addition, the entire beach width along the VIMS shore had been reduced 

in response to the reduction of updrift fastland material to the 

shoreline.

The ongoing risks of structural failure and permanent removal of

beach material led to the implementation of an Emergency Seawall Project

in September of 1983. The project included the design and construction

of approximately 402 meters of emplaced granite stone rip-rap fronting

the seawall. Design dimensions varied from a crest elevation of 2.0-2.6

meter (above mean low water) extending to -0.6 meter (below mean low

water) with a 2:1 face slope (Figure 3). Nourishment of the shoreline
3was achieved with the emplacement of approximately 7,600 m of material 

to create a beach with a 12 meter berm. Finished design elevations 

ranged from 1.8-2.1 meter above mean low water. The length of shoreline 

to be nourished was approximately 244 meters, with a design slope for 

the beach face of 10:1. The design and implementation of the structures 

and nourishment were tailored according to existing structures and the 

degree of exposure at each portion of the beach, which was sectioned 

into six discrete cells for design purposes (Figure 4). Detailed 

descriptions and design cross-sections for each segment are provided in 

the Preliminary Shoreline Erosion Control Plan for the Virginia 

Institute of Marine Science (Anderson and Hardaway, 1982).
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Figure 3. Project design profile cross-section, VIMS, 

September 1983.
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Figure 4. Location of profile transects, profile cells 

along VIMS, Gloucester County Public Beach.
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2.4 Study Summary

The present study examines the beach's response following 

completion of the nourishment and emplacement of the stone riprap 

revetment. During the period prior to the construction, preliminary 

baseline data were collected.

Sixty beach profiles were established along the shoreline at 15.2 

meter (50 ft) intervals extending from the southern property line of the 

Gedding lot to the boat ramp located on the Gloucester County Public 

Beach. The location of these profile lines are given in Figure 4.

In addition to the beach profiles, pre-nourishment sediment samples 

were collected along established profiles, as well as from the borrow 

pit chosen as the source of nourishment material. Grain size analysis 

of these samples were compared to determine sediment suitability of the 

borrow material as fill material.

Continuous tidal records are monitored by NOAA tidal gauge on the 

VIMS oyster pier, and the information stored on a computer system. In 

addition, wind speeds and direction are recorded continuously with an 

anemometer located on the roof of Byrd Hall at VIMS. These data have 

been used to characterize typical and storm conditions. Observations of 

wave angle of approach were made with a Brunton compass, and wave height 

and period were estimated from wave staffs attached to stand-off pilings 

in two offshore locations. This information was monitored frequently 

during events of high wind and wave activity and during periods of 

significant sediment entrainment.
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2.5 Physical Considerations During the Study

The study was initiated in August 1983, during which time baseline 

data were collected prior to construction of the Emergency Seawall 

Project. Construction was completed in October 1983; Figure 5 shows 

pre- and post-construction views northward from the oyster pier, located 

between profiles 21 and 22.

During the period of the study (August 1983-November 1985) winds 

ranged from calm to a maximum of 80.5-96.5 km/hr. Wave activity for 

this period ranged from flat to 1.07 meters. General observations for 

the duration of the study indicate that the majority of wave activity 

ranged from 1-2 second wind waves with heights less than 0.15 meter, 

except during storm events. This results from the fact that this 

locality is protected in most directions by a relatively limited fetch. 

Higher wind speeds and wave heights are associated with the longer fetch 

to the east and northeast, and are most capable of erosive damage to 

this shoreline. Winds of 16-24 km/hr which blow steadily from the east 

the northeast for several hours are sufficient to cause entrainment of 

material and transport of sediment along the shoreline.

Fifteen storms occurred during the study of magnitude sufficient to 

create significant erosion of the study shoreline. Of these, five were 

characterized by waves with heights of 1 meter and wind velocities 

greater than 55 km/hr. Storm surges of 0.3-0.6 meter were 

characteristic of these events (observed water level minus the predicted 

tide level).
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Figure 5. Pre- and post- construction photographs, taken 

from VIMS Oyster Pier.





3. DATA COLLECTION AND REDUCTION

3.1 Beach Profiles

Sixty profile lines were established. The location of these 

profiles are given in Figure 4.

The profiles were established at 15.2 meter (50 feet) intervals 

where feasible, although additional lines were surveyed to include areas 

of concern. Survey measurements were conducted with an automatic level 

and stadia rod. Permanent monuments were established at points located 

along the seawall, on driven nails or permanent stakes. These reference 

points were level surveyed to a fixed NOAA National Ocean Survey Tidal 

Bench Mark (BENCH MARK NO 8 1950 RESET 1973). Survey lines proceeded 

seaward approximately perpendicular to the shoreline along established 

azimuths; horizontal control was maintained for each profile line by the 

alignment of two separated range objects. Profile points were taken to 

include the revetment shape, notable breaks in beach slope, and points 

at approximately 15.2 meter intervals seaward of the nearshore zone, to 

within 60-90 meters of the shoreline. Readings are precise to +/- 0.3

cm. in the vertical and +/- 0.3 m. in the horizontal plane. Individual

surveys took ten to fifteen minutes per profile. The 60-profile set was 

conducted over several days to coincide with mean low water. For this 

reason, surveys were staggered to include the entire length of the beach 

in one survey date, in the event a storm occurred during the survey

period. The origin of the coordinate system on which all surveys were

26
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based is the fixed monument location on the horizontal and mean sea 

level in the vertical, as determined from Benchmark No. 8.

Care was taken to maintain alignment of the instrument and the 

position of the rod holder using range markers along pre-determined 

azimuths. Distances were calculated in the field to ensure accuracy of 

the rod readings. Elevations were checked in the field to ensure that 

the stadia elevation (E) - upper stadia (US) — stadia elevation (E) - 

lower stadia (LS), 

that is

US - 2E + LS - - 0

Distance is given as

D - (US - LS) X 100

where

D«= distance in meters

U S ,LS- upper and lower stadia readings

Repetitive surveys of a given profile were conducted and gave acceptable 

repeatability and an accuracy of +/- 3% from volumes calculated for the

15.2 meter profile cell.

3.2 Survey Frequency

Complete surveys of sixty profiles were conducted prior to 

construction and nourishment, immediately following completion, and on a 

monthly basis until July 1984. Surveys were continued on a bi-monthly

basis until January 1985, and a single survey in November 1985.

In addition to the surveys of the sixty-profiles, unscheduled

surveys of selected profiles were made on a daily basis during and after
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storms and periods of unusually high water. A  complete table of survey 

dates and profiles included in each survey is given in Tables 1 and 2.

3.3 Profile Data Reduction

Survey data were recorded in field notebooks and later transferred 

to a Prime 9955 Computer for analysis. Programs for entry of the field 

data enabled one to view the data in plot form to facilitate the 

detection of spurious data points. Programs were developed for later 

use in the analysis of changes in area and volume, as well as spatial 

and temporal analysis with Surface II programs.

Profile lines were reduced to give the following:

1) Changes in individual profile cross-sectional areas above,

or between established vertical tidal datums (mean sea level, mean 

low water, etc.) relative to previous profile surveys or a long

term mean. The cross-sectional area of a single profile 

was calculated within the following lines: a vertical line 

projected from the landwardmost point on a single profile; a 

horizontal line at the chosen datum elevation; the surveyed profile 

lines. The areal changes were determined by subtraction of the 

current profile area from previous surveys, or from the established 

long- term mean cross- sectional area (Figure 6).

2) Volume is determined as a cross-sectional area multiplied by a unit 

width. Programs developed to calculate total area and

volume changes utilize an averaged end-area method which computes 

cross-sectional areas of vertical slices distributed over the 

common survey regions being considered and bounded by the 

established tidal datums for calculations. These volume changes



29

Table 1. Profile surveys for VIMS East beach, Gloucester 

Point, Virginia 1983-1985.
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Table 2. Profile surveys for Gloucester County public 

beach 1983-1985.
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Figure 6. Definition of MSL changes and above MSL volume 

changes.
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are presented in terms of erosion (negative values) and accretion 

(positive values) between chosen datums.

3.4 Sediment Sampling

Sediment samples were collected along selected profiles prior to 

construction and nourishment (May 1983), immediately following 

completion of construction (October 1983) and again in January 1984, 

September 1984, and January 1985. Locations chosen along the profile 

were based on hydrodynamic zones, in order to give the most accurate 

representation of grain size distribution over time. Fixed distance 

sampling does not account for the constant mobility of these zones due 

to tides, waves, and the resultant changes in the profile configuration 

over time. The zones sampled included back beach, berm, beach face, 

intertidal zone (as approximated by the zone of mean high water- mean 

low water), beach step, and points extending offshore.

Samples were collected by two-person crews using a 12 cm long, 5.1 

cm diameter core tube and stopper method. Alignment on the profile line 

was controlled by a third person located on the beach. Distances from 

the stake points were also recorded by the third person, again using the 

stadia rod and level technique.

Sediment was collected from three locations within the borrow pit 

to determine the area most suitable for fill material of the study site. 

All sediment samples were sieved at 1/2 0  intervals using standard 

techniques (Folk, 1968), and the percent sediment in each class 

calculated to obtain frequency weight percent curves. Results of this 

analysis were utilized to compute the phi(0) mean and phi(^0) standard
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deviation. The computational procedure used is the method of first and 

second moments as presented by Folk (1968).

The first moment is given by

where f — frequency (in percent) for each size class 

and m 0 — midpoint of each 0 size class.

The second moment represents the measure of the dispersion about the 

mean and is given as

By definition the first moment equals the sample mean x, so that

x - ^  f m ft

100
and the second moment represents the number value of the standard 

deviation squared, so that the standard deviation ( c r ) is obtained by

first moment -^fm

100

second moment - f  C m  6  - x)

100

100 (Friedman and Sanders,1978).
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Studies were conducted by Stauble et a l . (1983, 1984) to provide an 

assessment of beach sediment characteristics of nourishment projects in 

Florida and New Jersey. The studies provided comparisons of grain size 

distribution curves of borrow versus native material, based on separate 

composites of the intertidal region (MLW- MHW) and a combined composite 

of intertidal and offshore samples. Samples from the present study were 

analyzed to provide the comparisons of borrow to native material. The 

composites were based on the classification developed by Stauble et a l . 

(1983,1984).

3.5 Processes Data

A  permanent tidal station on the oyster pier at VIMS provides a 

continuous tidal record. Tide levels are recorded at six minute 

intervals, and the record is stored continuously on a Prime 9955 

computer. Tidal predictions are also available for the VIMS pier 

allowing a comparison of observed versus predicted tides to assess the 

difference resulting from storm surge.

During a portion of February and March 1984, Marsh- McBirney 2 -axis 

electromagnetic current sensors (3.8 cm sphere) were deployed by Dr. J. 

D. Boon III off the VIMS oyster pier. These current sensors utilize a 

burst- mode sampling technique to determine directional orbital 

velocities. Data were collected at distances of 20 cm. and 70 cm. above 

the bed. The period of deployment included data collected during a 

storm on February 23, 1984. These records were analyzed to relate 

current directions and velocities during a storm in February, 1984 to 

the beach response.
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It is well known that the processes of sediment accretion and 

erosion are controlled primarily by the interaction of the beach 

morphology and the existing surface wave field. Visual observations 

exist for the study area during periods of storm and significant wave 

activity, and were recorded for wave period and height using wave staffs 

in two offshore locations. Wave angle of approach on the VIMS and 

Public Beach shorelines were determined during these events utilizing a 

Brunton compass.



4. RESULTS AND DISCUSSION

4.1 Sediment Suitability

4.1.1 Background

Current literature of post-nourishment monitoring projects is 

lacking in consideration of native and beach fill sediment 

characteristics and the relative compatibility of borrow fill with 

existing material within the project limits. Limited funding, 

economically feasible sources of fill material, and the urgent nature of 

most beach projects rarely allow for comprehensive pre-construction 

sediment analyses, or analyses of post-fill sediment redistribution 

following project completion. Yet the compatibility between native and 

borrow grain size distributions is a critical element in the success of 

beach nourishment projects, as determined by retention time of fill 

material within the limits of the project area.

Retention of fill involves the process of incipient motion and 

transport of sediment. The initial motion for sediment of a given grain 

size depends on the forces of the fluid flow and the resisting forces of 

a particle to that flow. For spherical particles, the forces acting on 

a particle at rest are surface forces of drag and lift and the opposing 

body forces of gravity. In general, for material in the range of fine 

to coarse sands, an increase in grain size requires greater mean 

velocity of the flow to initiate motion of the sediment (Middleton and 

Southard, 1984). In terms of nourishment, then, material equal to or
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greater in grain size than the native material would result in increased 

retention time. Material which contains a high fraction of silts and 

clays may act as cohesive sediments with increased resistance to initial 

motion, but will remain suspended for long periods of time once 

resuspended in the water column, and may be transported permanently out 

of the system.

Stauble et a l . (1984), pointed out that fill criterion presently is 

based on theoretical models such as those developed by Krumbein and 

James (1965) , Dean (1974), James (1975), and Hobson (1977), and that 

field testing of such models has been conducted only on a limited basis. 

They argued that present methods of selecting beach fill are erroneous 

in several areas. When developing fill criteria, these theoretical 

models do not consider CaCO^ shell material or other statistically n on

normal grain size distributions found within the project areas; present 

practices often utilize a profile composite sample containing finer 

grained material found seaward of mean low water, which give a grain 

size distribution skewed in the fines from which to develop fill 

criteria.

The question investigated in the 1984 assessment by Stauble et a l . 

was: What is a representative sample of native material for computing

suitable beach fill material? Their study's results indicated that for 

the beach projects examined, sediment collected from the intertidal area 

(where most fill material was placed) was found to be the most 

representative of the native sediment in that zone and most 

closely approximated existing material in beach fill redistribution 

after placement.

The present study utilizes profile composites as developed by
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Stauble et a l . (1984), to compare the fill material to native sediment. 

The samples include the intertidal composite, as approximated by the 

Mean High Water- Mean Low Water zone, and the combined composite, which 

includes the intertidal samples and samples collected seaward of Mean 

Low Water in the subtidal zone.

4.1.2 Comparison of Native and Borrow Composites

It is evident from Figure 7 that the borrow material sampled is 

better sorted and coarser than either the intertidal or combined 

composites of the native material. The fill material is dominated by an 

obvious peak in the medium sand range (1.5 ), according to the

classification presented by Wentworth (1922), with very small 

percentages of very coarse sands and gravels and very fine sands and 

silts, and negligible clay.

While both the intertidal and combined samples are poorly sorted, 

it is obvious that the borrow material is more congruent with the 

intertidal sample than with the combined composite. Compared with the 

approximately 25% of material finer than 2 0 (medium-fine sand) in the 

borrow sample, the intertidal sample contains approximately 55% of this 

material, while the combined composite consisted of as much as 85% of 

material finer than 2 0. The intertidal native material contains 

approximately 15% coarse sands and gravels, while the combined sample 

contains less than 5%. Thus, the combined composite sample would depict 

native material as being relatively fine material. The intertidal 

material, which would ultimately be the zone of emplacement and 

reworking for most beach projects, would give a closer approximation of 

the grain size distribution from which to develop the fill criterion.
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Figure 7. Comparison of borrow and native grain size 

distributions for intertidal and combined 

composition.
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In addition, the subtidal portion of the study site may be characterized 

as a flat, low-tide terrace believed to be primarily an erosional 

remnant cut into pre-Holocene sediments.

It must be noted here that the borrow and native materials were 

sampled prior to construction to determine the general suitability of 

material from the designated pit. The reality of construction, however, 

included the use of material from several locations within the pit, some 

of which was taken from areas containing significantly finer material 

than that sampled. This was evidenced by visual inspection during the 

construction stage, and later confirmed in the post-fill analysis of the 

grain size distributions.

4.2 Application of Dean's Equilibrium Model Curve

4.2.1 Model curve fit

Four profiles were utilized from the VIMS data set to develop a 

theoretical model curve for the natural shoreline. Post-nourishment 

curves were also evaluated with the natural curve to determine how 

closely the present beach has approximated the profile calculated prior 

to nourishment.

The profiles chosen to characterize the VIMS shoreline were 

relatively free of groin and pier effects which would alter the natural 

profile shape. Two profiles were selected to represent the conditions 

of the Gloucester County Public Beach for scale and shape factor values. 

All profiles were analyzed by a least squares method to determine values 

of A and m for each profile. Six profile data sets were analyzed from 

August 1983 (pre-nourishment) and January 1985 (approximately fifteen
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months after nourishment). The results of this analysis are presented 

in Table 3.

Results

Scale Parameter A - The scale factor, A, varies with the degree of 

profile magnitude, and exhibits an association with the stability 

characteristics of the sediment (Moore, 1982), The dimensions of A are 

length to some exponent (1-m) so that A varies from profile to profile 

(Dean, 1977). Dean (1977) found a range of values for A from 0.0025- 

6.31, and an average value of 0.36, based on his examination of 502 

beach profiles of the U.S. Atlantic and Gulf coasts. The most comraonmly 

occurring values for the 502 profiles were between 0.00 and 0.30 (Dean, 

1977).

The value of A for the VIMS study site ranged from 0.55 to 0.67 in 

August 1983. The mean value of A for the four profiles was 0.58. In 

January, 1985 the values ranged from 0.06 to 0.10, with a mean value for 

A of 0.08.

The A values for profiles 42 and 51 on the Gloucester County Public 

Beach in August 1983 were 0.07 and 0.10, respectively. The same profile 

values for January 1985 were 0.17 and 0.38.

Shape Factor m - The values of m vary with the incident forces 

affecting a given shoreline and varies from concave upward (m<l) to 

linear (m-=l) to convex upward (m>l) (Figure 8). Dean (1977) found a 

range of m values from 0.52 to 0.82 and an average value for m of 0.66 

for all 502 study profiles. While the inference of geographical trends 

are questionable from the data available, Dean notes initial low values
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Table 3. Characteristics of beach profiles with scale 

value A and shape factor m.
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Figure 8 . Profile shape for a dimensionless beach profile
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on Long Island, rather high values to Ocracoke Inlet, North Carolina, 

then lower than average values to Florida and around the Gulf coast to 

Texas. A generally increasing trend is evident for the last few data 

groups in Texas (Dean, 1977).

The VIMS profiles were characterized in August 1983 by exponent m 

values of 0.16-0.21, with a mean of 0.17. In January 1985, these values 

had increased to 0.62-0.82, with a mean of 0.72.

Profiles 42 and 51 on the Gloucester Public Beach were 

characterized in 1983 by values of 0.68 and 0.70, respectively. The 

values in January 1985 for the same profiles were 0.27 and 0.43.

Goodness of Fit Parameter- The goodness of fit is expressed by Dean 

(1977) as the root-mean-square (RMS) deviation between the average 

profile and the best fit to that profile. The RMS value for the profile 

groups ranged from 0.17 ft (0.05 m) to 1.54 ft (0.47 m ) .

In August 1983, the RMS values for profiles 12, 17, 18, and 27 

ranged from 0.08 ft (0.02 m) to 0.77 ft (0.23 m ) . The mean RMS value 

for the public beach profiles (42, 51) was 0.60 ft (0.18 m ) .

In January 1985, the RMS values for the same VIMS profiles ranged 

from 0.26 ft (0.08 m) to 0.97 ft (0.30 m ) . The mean value for the 

public beach profiles was 0.91 ft (0.28 m ) .

These values indicate a slightly better fit of all profiles in 

August 1983 than in January 1985. The profiles from VIMS and the 

Gloucester County Public Beach showed a slightly lower range of RMS 

values than those found by Dean (1977). All appear to demonstrate a 

reasonably good fit of the average profile.
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Discussion

The predicted curves derived from VIMS and the Gloucester Public 

Beach data sets are presented in Figures 9 and 10. Actual profile sets 

for each date have been plotted and indicate a reasonable fit for the 

nearshore portion of the profile. The calculated curve from August 1983 

indicates a highly concave profile form, with average m values of 0.17. 

Fifteen months after nourishment of the beach, the new calculated 

profile appears steepened, with a mean value of 0.72. While both values 

are less than 1 and therefore concave in profile, the trend over time is 

toward a more uniform slope where m-1 approaches a true linear form 

(Figure 9).

The values of A and m from VIMS and Gloucester County Public Beach 

were compared to Dean's results from the ten geographic data groups. It 

is evident that the pre-nourishment values for VIMS beach are 

significantly less than those found at any of Dean's sites. The average 

m value of 0.17 fall well below the minimum value of 0.52 found by Dean. 

The average calculated values for Gloucester County Public Beach in 

August were 0.69 (m) and 0.13 (A). These values most closely 

approximated the values found by Dean from Virginia Beach, Virginia , to 

Ocracoke Inlet, North Carolina, where m was 0.709, and A was 0.128.

The post-fill values for VIMS in January 1985 showed consistent 

changes in all profiles for values of A and ra. At this time, the 

average values of 0.72 more closely approximated Dean's average of 0.66 

for m. In addition, the average m values (0.72) and A value (0.12) 

closely approximated those values found from Virginia Beach, Virginia, 

to Ocracoke Inlet, North Carolina. This is notable beacuse of the ten 

geographical groups analyzed by Dean, the Virginia Beach, Virginia, to
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Figure 9. Predicted beach profile curve for VIMS data set 

for August 1983 and January 1985.
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Figure 10. Predicted beach profile curve for Gloucester

County Public beach data set for August 1093 and 

January 1985.
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Ocracoke Inlet, North Carolina group is the closest in proximity to the 

VIMS study site.

The apparent lack of fit of the 1983 model curve to Dean's 
2/3predicted h - A x ' may be influenced by lithologic considerations 

of this study site. Whereas Dean's model generally has application 

along unconsolidated sand beaches, the study shoreline has been highly 

eroded and starved of a continuous sediment supply for at least ten 

years due to the updrift stabilization of the shorelines. The natural 

profile along the VIMS shoreline is truncated in some places at 

approximately mean low water (MLW) by the indurated, highly 

fossiliferous Yorktown Formation. As a result, the presence of this 

formation may prohibit the profile from achieving a smooth concave form 

as described by Dean for unconsolidated sandy coast beaches. Following 

emplacement of a thick wedge of nourishment material, the reworked 

profile appears to more closely approximate that of Dean's hypothetical 

form. This may be explained by the approximation of the newly nourished 

beach to the sandy, unconsolidated conditions studied by Dean. It is 

assumed, however, that those areas of the site which remain exposed and 

lacking in a continuous sediment source will continue to erode until the 

impermeable Yorktown Formation is again truncated. At this time, the 

profile will resume the pre-emplacement profile form.

The conditions of the Gloucester County Public Beach indicate less 

chronic erosion and direct exposure to wave attack than the VIMS beach. 

In addition, supply of sediment to this segment has remained relatively 

constant from the erosion of VIMS beach. The beach planform in this 

segment appears more stable over time, and the Yorktown Formation is
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visible only in the northernmost area of the County Beach, which is 

immediately downdrift and in the shadow of the Ferry Pier.

The trend for the two profiles chosen from this segment is toward a 

more shallow, but concave profile (Figure 10). The alterations of this 

profile form were less appreciable than that of the VIMS shoreline, and 

may result from the seasonal fluctuations in incident conditions and 

variability in the profile shape and lack of direct emplacement of 

nourishment.

4.2.2 Fill Volume Criteria

The calculations of a model curve for this study site have been 

presented using Dean's (1977) theoretical profile form developed from 

beach profile data from U.S. Atlantic and Gulf coasts. These results 

can be utilized with the associated scale values for given grain size 

diameters (Moore, 1982) to illustrate the relationship of Dean's 

equilibrium profile model with beach nourishment projects. Dean (1983) 

outlines the methodology used to calculate volume fill requirements to 

achieve a given seaward advancement of the shoreline. The calculations 

of volume fill are presented here for the VIMS shoreline based on the 

analysis presented by Dean (1983).

4.3.1 Results

Sediment samples were taken from the zone of MHW-MLW for this 

analysis. The mean sediment size for the pre-nourishment profile was 

1.85 0, or 0.30 mm. Depth of closure was approximated from scatter 

plots of field data to discern the point at which profile data 

drastically departs from the log plot. These points were then removed
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from the profile set and from further use in the least squares fit to 

calculate values for A and m. For the profiles chosen in this analysis, 

closure depth was determined to be at a depth of 1.2 meters.

The sediment characteristics and the associated factors are 

calculated for VIMS beach as:

Native Material- Dx, - 0.30 mmN
A^ - 0.11 m ^ 3 (Moore, 1982)

Placed Material-

pl- 0.12 mm A x - 0.08 1/3 m '

T3 N> II 0.20 mm A 2 - 0.09 1/3m

0.40 mm A 3 - 0.13 1/3m

V 0.50 mm A, = 0 . 1 5  4
1/3m

Depth of Closure — h c— 1.2 meters 

Assumed berm height - B — 1 meter

If the desired seaward advancement of the VIMS shoreline is given

as A  x — 15 m ( 50 ft) then distances calculated to the 1.2 m depth

for natural and nourishment material profiles are given by

X - (h /A)3/2 c c '

The volume of fill required for each size material is then calculated by

Vpl" B x + £ Pl+'1X Aj, x 2/3 dx - (,Xpl Aplx2/3 dx
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- B x + 3/5 [A^(xp^ + A x ) ^  - A p^ x p ^ ^ ]

Results of the calculations for the VIMS beach for native material

and four alternative sizes of nourishment material are summarized in 

Table 4. Characteristics of the natural beach profile and the four 

profiles composed of different grain diameters are shown in Figure 11. 

The desired shoreline advancement for these profiles was 15 meters (50 

ft).

These results indicate significantly differing volume fill 

requirements for the different grain sizes to achieve the same seaward

extension of the shoreline. When the results are applied over the

length of the nourished beach (approximately 300 m) volume fill
3 3requirements vary from 11,160 m for 0.12 mm material to 6,360 m for

30.5 mm material, or as much as 1,560 m difference in required material 

for 0.12 mm and 0.20 mm material. Shown graphically in Figure 11, the 

profiles composed of 0.50 mm and 0.40 mm material intersect the natural 

profile at a shallower depth than 1.2 meter. Conversely, the profiles 

composed of 0.12 mm and 0.20 mm material intersect the 1.2 meter contour 

a considerable distance seaward of the intersection of the native 

profile and the closure depth of 1.2 meter.

The findings of this calculation suggests some important 

considerations in the practical application of Dean's model curve for 

the calculations of fill for potential nourishment sites. The 

calculations require the assumption of a single grain size to 

approximate an average profile; the results of this analysis, however, 

reveals the extreme sensitivity of the calculated volumes to the grain 

size parameter. Thus, careful sampling and analyses of the sediment
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Table 4. Characteristics of beach fills for native and 

four fill diameters to achieve shoreline 

advancement of fifteen meters.
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Figure 11. Calculated profiles for differing grain 

size diameters.
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samples from the native profile should be conducted to achieve maximum 

benefit and cost-effectiveness of the fill criteria.

It should also be noted that the relationship presented by Moore 

(1982) assumes a theoretical profile form h — Axm where m= 0.67. The 

scale value A has units of length raised to some exponent given by 1-m, 

so that A may vary from profile to profile. The relationship given 

between A and grain diameters in Moore (1982), which is often used to

calculate volume fill requirements, may only be valid for profiles
2/3 1/3approximated by h — Ax ' , where A -= length . When m varies

significantly from D ean’s approximation of 2/3, the relationship should

only be used as an approximation with the stated assumption. An

analysis of the relationship between grain sizes and A values should be

made for profiles of varying m values.

Finally, other site-specific conditions must be considered before 

using the results of this analysis in a project fill design. It is 

obvious that less volume of the 0.4 and 0.5 mm material (medium to 

medium coarse) would be required to achieve a slope which intersects the

1.2 m contour than of the 0.12 or 0.20 mm material. In addition, the 

finer material would be more rapidly resuspended and transported from 

the system than the coarse material under similar incident conditions. 

These are important criteria in choosing suitable fill material.

However, Figure 11 indicates that slopes composed of coarser material 

intersect the natural profile at shallower depths, which would not be 

optimal at the VIMS site due to the presence of the highly indurated 

Yorktown Formation. For this site, it would be of greater advantage to 

design a flatter beach planform with finer material to create a thicker
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wedge of sediment and avoid intersection of the profile with this 

impervious Yorktown Formation in the nearshore zone.

4.3 Sediment Volume Changes

The results of the monitoring program and analysis of volume 

changes and beach profile response data are presented in this section. 

The study results encompass the period from October 1983 to November 

1985. A  total of 15 storms were documented during the 26-month study.

Of these, 5 were considered to be storms of considerable magnitude and 

erosion potential, effecting sediment resuspension and transport of 

material within the system. Notation of minor and major storms are 

presented through September 1984. The documentation of the events after 

this one-year period is limited to 2 major events in 1985. Information 

from these events was added to the data set due to their severity and 

value in determining the VIMS beach response to events of such 

magnitude.

4.3.1 Long-term Sediment Volume Changes

VIMS Beach

Analysis of aerial photographs and profile records confirmed the 

relationship between historical trends of erosion along the VIMS 

shoreline and the construction of a nearly continuous series of 

bulkheads and groins updrift of the project site. Given this, it was 

anticipated that the nourishment of VIMS shoreline would not result in a 

stable equilibrium form with no net erosion or accretion. With no 

natural source of sediment for the beach, it was expected that 

successive patterns of erosion would occur. The beach fill would
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provide a temporary source of protection for the dissipation of wave 

energy. Continued effectiveness would require a schedule of periodic 

renourishment. Knowledge of rates and amounts of change for the 26- 

month study period, and documentation of spatial patterns of gains and 

losses are useful in the design and implementation of a renourishment 

schedule. Volumetric data is presented for the VIMS shoreline in Tables 

5, 6 , and 7.

During the period from September 1983 to November 1985 the 472 m of
3shoreline experienced a net loss of 1,254 m of sediment, calculated to

3MLW datum. The loss calculated to the SLW datum was 1,064 m , which
3indicated deposition of 190 m within the zone of MLW-SLW.

3While the net loss of 1,254 m suggested continuing erosion along 

the VIMS shoreline, gross volume changes were important indicators of 

total transport of sediment within the littoral system. During the 26-

month survey period, total gross volume changes for this system were
3 31,442 m of material lost, and 186 m of material gained, for a total of
31,628 m of material transported within the system at some point, or 

approximately 20% of the amount of beach fill emplaced in 1983. Gross 

volume changes calculated to SLW for this period approximate the amount 

calculated to MLW, suggesting deposition in the region below MLW.

Slope Changes

Changes in slope for profiles 1-35 based on surveys in October 1983 

and November 1985 are shown in Figure 12. The zone of investigation was 

defined as that between MLW and MHW.

Of the thirty-five profiles examined, only eight profiles became 

steeper than the initial state following nourishment. Five of the eight
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Table 5. Sediment volume calculations to Mean Low Water 

datum for VIMS beach.
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Table 6. Sediment volume calculations to Spring Low 

Water datum for VIMS beach.
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Table 7. Sediment volume changes for VIMS beach from 

September 1983 to November 1985.



VOLUME CHANGES (CU.METERS) - VIMS EAST BEACH-
Pl-35 Pl-30 P31-35 P22-30 P12-21 P8-11 Pl-

MEAN LOW WATER

SEP83-OCT83 -224 -218 -6 8 -23 -127 -74
OCT83-NOV83 122 96 26 2 152 -56 -2
NOV83-JAN84 -365 -301 -65 -105 -284 85 3
JAN84-APR84 -108 -87 -21 242 -32 -27 4 -23
APR84-MAY84 -8 -21 13 139 -26 -132 -2
MAY84-JUN84 63 48 15 87 -47 10 -2
JUN84-AUG84 1 14 -13 -6 45 -14 -10
AUG84-JAN85 -22 -14 -8 163 -141 -132 95
JAN85-NOV85 -714 -851 137 150 -652 -223 -127

NET CHANGE -1255 -1334 +79 +681 -1008 -864 -143

SPRING LOW WATER

SEP83-OCT83 -159 -153 -6 12 -14 -122 -29
OCT83-NOV83 114 97 17 -13 193 -45 -37
NOV83-JAN84 -437 -381 -55 -134 -343 79 16
JAN84-APR84 -30 -13 -17 335 18 -336 -30
APR84-MAY84 -31 -52 21 144 -58 -139 1
MAY84-JUN84 115 93 23 94 -47 29 17
JUN84-AUG84 -65 -48 -17 -27 43 -37 -27
AUG84-JAN85 56 57 -1 220 -139 -129 105
JAN85-NOV85 -629 -792 163 190 -624 -217 -140

NET CHANGE -1066 -1192 +126 +821 -971 -918 -125



60

Figure 12 Changes in slope from MLW-MHW zone for profiles 

1-35 of VIMS beach.
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profiles were located in the northern segment, where direct exposure to 

storm waves and proximity to updrift groins resulted in continual 

erosion of this section. Two of the other profiles, 18 and 22 

were located directly downdrift of outfall structures, accounting for 

the relatively steep slope in November 1985. These structures function 

as groins by impeding the downdrift transport of sediment. The result is 

a steeper, eroded profile immediately downdrift of the structure.

Considerable variation existed in slopes recorded during October

1983. It is notable that twenty-seven of the thirty-five profiles fell 

within a relatively narrow range of slope ratio from 0.05 to 0.10 in 

November 1985. The greatest readjustment occurred within the segment 

defined by cell C (profiles 12-21). This segment experienced a 

significant alteration of the slope toward a flatter profile. By 

contrast, the slope change for the shoreline from Cells D and E 

indicated a relatively narrow range of slopes between MLW-MHW. It would 

be of value to investigate the rate of change of the slopes over short

term intervals of hours, days, or weeks, especially just prior to and 

following storm events; the findings of this study, however, further 

support the classification of the study shoreline into cells which 

respond similarly to conditions present during the study period.

Profile Cells

Profile cells were defined by small sections of the shoreline with 

similar orientations, or as segments bounded by groin-like structures 

such as the oyster and ferry piers. These cells were grouped for 

analysis of erosion and accretion along the study shoreline (Figure U ) .
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In analysis of long term trends, the length of beach from profile 1

to profile 21 (approximately 274 m in length) was erosional, losing
3 32,016 m of material, or approximately 7.4 m /m. The segments defined

3 3by cells D and E accreted 760 m (3.7 m /m) for the same period. This is 

not surprising considering the relative orientations of the shoreline, 

the natural longshore drift from northeast to southwest in this area, 

and the constructed barriers to littoral drift within these cells.

In recent years, the northern section, particularly the portion 

defined by profiles 8-11, has received very little sediment from updrift 

sources due to the presence of updrift bulkheads and groins. As a 

result, this segment was not resupplied with material following erosion 

from storm surges associated with seasonal northeasterly and easterly 

winds. Thus, this segment reflected a state of disequilibrium and 

ongoing erosion, and provided a source of sediment for downdrift 

sections of the VIMS shoreline.

Effect of Outfalls

As part of the beach renovation project, six existing outfall pipes 

were stabilized and protected with 330-1100 kg stone armourment and 

gabion basket T-heads. The result of this armourment has been to effect 

a groin-like entrapment of sediment in the areas of emplacement. These 

outfalls are located in the vicinity of profiles 9-10, profiles 16-17, 

profiles 17-18, the oyster and ferry piers, and along profile 25 (Figure 

13). The effect has been most obvious in the area of profile 25, which 

is further protected by the two piers. In addition, the smaller cells 

created by the outfalls have created the typical offset configuration of 

the shoreline due to the accretion of littoral material on the updrift
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Figure 13. Armoured outfall pipes with gabion basket T-head 

structures.
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side. The outfall in the vicinity of profiles 9 and 10, while initially 

successful in capturing nourishment material, has been limited in the 

long-term retention of fill by its relatively low elevation and the 

severity of wave attack in this section of the shoreline.

Volume Comparisons-Vims East Beach/ Gloucester County Public Beach 

Tables 8, 9, and 10 give volumetric data from surveys of the 

Gloucester County Public Beach as calculated to Mean Low Water (MLW) and 

Spring Low Water (SLW) datums. A graphic depiction of the comparison of 

volume changes for the Gloucester County and VIMS beaches, as calculated 

to Mean Low Water and Spring Low Water, is also presented in Figure 14.
3Examination of volume changes shows that VIMS beach lost 1,255 m

3(MLW) and 1,066 m (SLW) for the period from September 1983 to January
31985. For this same period, the losses for the County Beach were 439 m

3(MLW) and 190 m (SLW). In terms of volume change per linear meter of
3shoreline, the loss at VIMS was 2.6 m /m, while Gloucester County lost 

30.92 m /m for this same period, or approximately 30% of the loss at the 

VIMS site.

In closer analysis of the total changes, the segment of the public
3beach shoreline from Profile 36-Profile 54 lost 764 m during the study

3period (MLW) and 570 m in volume calculated to SLW, indicating the
3deposition of approximately 190 m of material within the zone between

MLW-SLW. In addition, the area adjacent to the channel from Profile 55-
3 3Profile 59 experienced a net accretion of 324 m (MLW) and 380 m (SLW).

This confirmed the visual observation that losses of sediment during the

reworking of the beach fill and during storm events were offset by

accretion along this 60 meters of shoreline which terminates at the



65

Table 8. Sediment volumes calculated to Mean Low Water 

datum for Gloucester County public beach.



GLOUCESTER COUNTY PUBLIC BEACH
SEDIMENT VOLUMES (CU. METERS)

PROFILES P36-54 P55-59 P36-59

SURVEY DATE 
September83 14,503 973 15,477

October83 14,175 992 15,169

November83 14,171 944 15,115

January83 14,232 935 15,166

April84 14,372 958 15,331

May 8 4 14,197 954 15,151

June84 14,169 979 15,148

August84 14,227 951 15.179

January85 14,231 1,015 15,246

November85 13,739 1,298 15,037

♦Volumes calculated to MEAN LOW WATER
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Table 9. Sediment volume calculations to Spring Low Water 

datum for Gloucester County public beach.



GLOUCESTER COUNTY PUBLIC BEACH
SEDIMENT VOLUMES (CU.METERS)

PROFILES P36-54 P55-59 P36-59

SURVEY DATE 
September83 16.593 1.150 17.743

October83 16.249 1.177 17.427

November83 16,256 1.119 17,375

January84 16.306 1,108 17.414

April84 16.532 1,143 17.675

May 8 4 16.355 1.141 17.497

June84 16,299 1,162 17.461

August84 16,319 1.135 17.455

January85 16,329 1.206 17.535

November85 16.023 1,530 17.553

♦Volumes calculated to SPRING LOW WATER
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Table 10. Sediment volume changes for Gloucester County 

public beach from September 1983 to November 

1985.



VOLUME CHANGES (CU.METERS)- GLOUCESTER COUNTY PUBLIC BEACH

P36-54 P55-59 P36-5<

MEAN LOW WATER
SEP83-OCT83 -327 19 -308
OCT83-NOV83 -5 -49 -54
NOV83-JAN84 61 -9 52
JAN84-APR84 141 23 164
APR84-MAY84 -175 -4 -180
MAY84-JUN84 -27 25 -2
JUN84-AUG84 58 -27 30
AUG84-JAN85 4 64 68
JAN85-NOV85 -492 283 -209

NET CHANGE -764 +324 -439

SPRING LOW WATER
SEP83-OCT83 -343 27 -316
OCT83-NOV83 6 -58 -52
NOV83-JAN84 50 -11 39
JAN84-APR84 226 35 261
APR84-MAY84 -177 -1 -179
MAY84-JUN84 -56 20 -36
JUN84-AUG84 20 -27 -6
AUG84-JAN85 10 71 80
JAN85-NOV85 -306 324 17

NET CHANGE -570 +380 -190
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Figure 14. Comparison of sediment volume changes of VIMS and 

Gloucester County Public Beach
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public boat ramp. Visual observations were made of the longshore

transport of the resuspended nourishment material along the public beach

shoreline to the vicinity of this cell, and into the adjacent channel as

a plume of fine material. The orientation of this segment provides

protection from the direct wave attack of the northeast storms, and is

exposed directly to winds which blow across a limited fetch from the

southwest and west.

A significant period of deposition along the public beach shoreline

occurred during the January-April 1984 sampling interval, which included
3a storm on February 23. During this time, 164 m of sediment were

3accreted along the public beach shoreline, and 109 m was eroded from the

VIMS shoreline. Notably, the accretion occurred along the length of the

County shoreline and not primarily in the cell from Profile 55-59.

During the following month, the Gloucester County Public Beach lost 
3approximately 182 m , which suggests that the material accreted during 

the February storm was subsequently lost, presumably as longshore drift 

southward into the York River channel. Unlike the VIMS shoreline, much 

of the southern portion of the county beach's offshore bathymetry drops 

off rapidly into the central portion of the York River's channel. 

Following storm events, some of the sediment transported in the zone 

below MLW subsequently returns to the VIMS shoreline as post-storm 

onshore transport. This phenomenon has not been observed to occur along 

the southern portion of the public beach's shoreline, and it is assumed 

that much of the material eroded from this segment during storm events 

is transported offshore and lost to the deep channel.

The most significant change occurred during the period from January 

1985 to November 1985. While several smaller events occurred during
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this period, the magnitude of the November 1-4 storm indicated that the

majority of sediment loss could be attributed to the effects of this
3storm. During this period, VIMS lost approximately 714 m, most of which

eroded from the northern section of the study site. For this same time,
3Gloucester County's public beach lost 492 m from Profile 36-54, and

3 3gained 283 m in the cell from Profile 55-59, for a net loss of 209 m .

The values calculated to SLW, however, show that much of the material

lost from the segment of shoreline between Profile 36-54 was transported

into the zone below MLW, as well as around the point into the cell

terminating at the boat ramp. Total volume changes calculated to SLW
3for this period indicate a period of net accretion of 178 m , resulting 

from material deposited below MLW and between Profile 55-59.

4.3.2 Annual Sediment Volume Changes
3 3The VIMS beach shoreline lost 520 m of material (MLW) and 736 m

(SLW) during the period from September 1983 to August 1984. During this
3period, 836 m of sediment were eroded between Profile 1-21, or 3.04 

3m /m of shoreline. During this same period, the shoreline from cell D
3 3experienced accretion of 411 m (2.82 m / m ) , while cell E lost

3 3approximately 51 m (0.77 m / m ) . Excluding the cell from Profile 8-11,
3which lost an additional 62 m of material within the zone from MLW-SLW, 

calculations of volume change to the SLW datum for the year indicate 

accretion of the shoreline cells within this zone of MLW-SLW.

A comparison of the annual changes for the first year to those of 

the following 14 months suggests that the second year was one of greater 

net losses along the VIMS shoreline, primarily attributable to the storm 

events of September and November 1985. As in the first year, the
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segments defined by the northern 21 profiles were characterized by
3 3erosion (1,179 m ), and the profiles from 22-35 by accretion (444 m ),

as calculated to MLW.

To understand the total volume of material transported within the

system annually, gross volume changes were calculated. For the period

from September 1983 to August 1984, a total of 2,174 m^(MLW) and 2,579 
3m (SLW) were transported within the system. For the period from August

31984 to November 1985, gross volume changes were 1,830 m (MLW) and 1,929 
3m (SLW). This indicates that less total transport of material occurred 

during the second year; however, more net erosion occurred during this 

period than during the first year following completion of nourishment. 

Again, this may be explained by the severity and significant erosion of 

the 2 storm events of 1985.

Approximately 16% of the total gross changes from the first year 

resulted from the transportation of material within the MLW-SLW zone, 

whereas only 9% of the total material transported occurred within this 

zone from August 1984 to November 1985. Due to the duration of high 

winds and tides and subsequent erosion, more material was resuspended 

and transported alongshore and into the vicinity of the York River 

channel during the storms of 1985 (particularly the November 1-4 event). 

Profile cross-sections show that some of this material was deposited in 

the cell defined by Profiles 55-59, however, an offshore•zone of 

resuspended material was visible in the area of the channel, indicating 

that much of this material has been permanently removed from the system 

into the adjacent deep channel in the vicinity of the point.

4.3.3 Short-term Sediment Volume Changes
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A  detailed characterization of volume changes and incident

conditions for each interval from September 1983 to November 1985 is

found in Appendix I .

The initial survey period coincided with the completion of the

stone revetment and the arroourment of the outfall pipes along VIMS 
3beach. 228 m of material were lost during the initial survey period 

from September to October 1983. Of this, 57% was eroded from the 

segment encompassing cells A and B. During this time, relatively small 

volume losses occurred in the sections of cells D and E. Initial 

redistribution and removal of the fine fraction of nourishment material 

accounted for the erosion, some of which provided the source of 

accretion for the downdrift sections of the beach.

The period from October-November was one of overall accretion, 

although the northern segments (cells A and B) continued to erode.

Two relatively brief southeast storms occurred during this interval.

During the next two months, this segment reversed its trend with
3 3accretion of 87 m . Approximately 365 m of sediment was eroded from

cells C, D, and E during this interval from November 1983 to January

1984. Two storms occurred during this period which resulted in the

resuspension of the beach fill. Maximum wave heights for these storms

were 0.4 m.

Minimal net volume change occurred for the VIMS shoreline from 

January-April, although gross changes in volume were notable during this 

period. The first major storm occurred on February 23, 1984, which 

resulted in much sediment transport within the system. Significant 

losses from the northern segments were offset by accretion in the 

protected downdrift sections. In addition, some material deposited below
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MLW during the storm returned to the upper beach face during a post

storm recovery period. It was observed that an offshore ridge formed 

below MLW during storms. These ridges provided temporary storage of 

sediment, which later returned to the shoreline during post-storm 

incident conditions. These short-term storm cycles have been observed 

along many open coast shorelines, and are recognized in the reportings 

of Shepard (1950), Bascom (1959), Kana (1977), and others.

The trend of erosion of the northern section offset by accretion in 

the downdrift shoreline continued through May 1984. Very little net 

volume change occurred during the summer months from June to August, and

during the next 4 months small changes in net volume were noted for the
3VIMS shoreline. During this period, however, approximately 547 m of

material were transported within the beach system, reflecting continuing

erosion of the northern segments offset by accretion in cell D.

The final survey interval from January 1985-November 1985 was one

of heavy net losses from the VIMS shoreline, primarily due to the major

storms which occurred in September and November 1985. Approximately 715
3m was eroded during this time. Again, heaviest losses occurred along

the exposed northern segments of the shoreline, which were offset by
3accretion of 288 m from cells D and E.

Figures 1 through 6 in Appendix II provide a qualitative view of

the short-term system changes for the survey intervals from September 

1983 to November 1985. These graphs are grouped into shoreline cells of 

PI-12, P12-21, and P22-30.

Several trends are apparent from examination of these contour and 

3 -dimensional plots. One observation is the immediate alteration and 

redistribution of material immediately following nourishment of the
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shoreline. A flattening of the upper beach area and the loss of contour 

elevations greater than +1.5 m (5.0 ft) resulted from the reworking and 

redistribution of the material from the artificially created profile. 

Examination of the 2-dimensional plots over time also reveal a gradual 

alignment and straightening of the contours after the initial survey. 

This is particulary evident during the summer months and the November 

1985 survey.

The most active area of change during the study occurred in the 

zone from the -0.6 m (-2.0 ft) to +0.9 m (+3.0 ft) contours. Little 

variation was found in the zone below the -0.7 m contour, or in the 

upper beach area of the +1.2 m (4.0 ft) and +1.5 m (5.0 ft) contours. 

Initially, however, the area was reworked, which resulted in the 

permanent removal of continuous +1.8 m (6.0 ft) and +2.1 m (7.0 ft) 

contours in the upper beach area. The typical offset configuration of

contours is evident from the plots in the vicinity of the groin-like

structures at P17 and P 2 5 , although some variation of the offset is 

revealed from the plots over the survey intervals.

Some seasonal variation can be observed from the two and three- 

dimensional presentation of the contour elevations. The profile shape

observed in January 1984 is one of an elevated upper beach berm, a

steeper beach face, and a low flat terrace below MLW. The profiles 

presented during the May, June, and August surveys indicate less 

localized relief, straighter contours with more parallel alignment, and 

a more gently sloping concave beach profile. The breaks between upper 

beach berm, beach face and nearshore zones are less evident during the 

spring and summer surveys.
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By January 1985, the profile had again become modified into one of 

an upper beach berm, steeper beach face, and low nearshore terrace. The 

final interval from January 1985 to November 1985 primarily depicts the 

system response to the storm events of September and November. Figures 

1-6 in Appendix II reveal the similarity of these plots to those 

generated from the spring and summer intervals. Distinctions between 

the upper beach berm, beach face and nearshore terrace were not 

observed; instead, the profile appears concave and gently sloping, with 

deposition of material in a low, flat terrace below MLW not previously 

observed. The variations observed for the VIMS beach system were less 

evident in the relatively protected segments of cell D. This cell 

remained relatively stable and consistent from January 1984 to November

1985.

4.3.4 Major Storms 1983-1985

Property owners along the east coast of North America are familiar 

with the destructive capabilities of the seasonal storms, or

"northeasters". The northeast winds generally are associated with

extra-tropical cyclones which travel along the east coast over the 

ocean, or from high pressure weather systems which originate over the 

central United States (Kana, 1977).

Five storms occurred during the study period of significant erosion 

potential to warrent a closer examination of the associated processes of 

wind and tides. A brief outline of each event is presented in this 

section; associated wind and tide conditions are presented in Figures 15

and 16. The process parameters associated with each of these events are

summarized and presented in Table 11.
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Figure 15. Wind conditions for VIMS beach during five major 

storms 1984-1985.
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Figure 16. Tide conditions for VIMS beach during five major 

storms 1984-1985.
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Table 11. Storm process measurements for VIMS beach, 

Gloucester Point, Virginia 1984-1985.
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February 22-23, 1984

The February 22-23 event, while largely unpredicted, provided the 

first opportunity for wave attack to rework sediments of the upper beach 

and berm area, following completion of the renovation in the Fall of 

1983.

Northeast winds dominated on February 22, but by late afternoon had 

shifted to south-southeast (Figure 15). Wind speeds remained 16-24 km/h 

for most of February 22. By February 23, winds had again shifted to the 

southeast and then to the southwest as the storm passed from the area.

Wind speeds averaged 32-48 km/h on February 23, with highest gusts 

associated with the northeast winds. Peak wind velocity occurred at 

approximately 1600 on February 23, with gusts of 72 km/h. As winds 

shifted to the south, speeds diminished, but remained constant at 16-24 

k m/h.

A comparison of measured to predicted tide levels for February 22- 

24 is presented in Figure 16. The figure indicates that actual tide 

levels were approximately 12 cm above and 12 cm below predicted values 

for the high and low tides for February 22. The measured high tide at 

1500 on February 23, however, was 0.66 m above the predicted value, and 

the low tide at 2100 by 0.25 m above predicted levels.

The superelevation of the tides at 1500 occurred relatively "in- 

phase" with maximum northeast wind speeds at 1600 on February 23. This 

accentuated the erosion potential by increasing the horizontal area of 

direct wave attack during this event. Two Marsh-McBirney 

electromagnetic current sensors were deployed in the vicinity of the 

oyster pier during this period. Velocity recordings indicated that the 

peak orbital velocities measured at 20 cm and 70 cm off the bed
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coincided with the maximum wind velocity at 1600 on February 23. At 70 

cm, peaks of greater than 80 cm/sec were measured with a north-south 

orientation, and nearly 70 cm/sec for this same orientation at 20 cm off 

the sea bed. The mean average for the 300-second burst recorded during 

this period indicated the southern component of current velocity was the 

greatest intensity during the burst sampling at peak conditions on 

February 23.

Onshore winds and wave attack, accentuated by higher than predicted 

tidal water levels on February 23, resulted in the formation of scarps 

of the recently nourished beach. The northern, more exposed section of 

shoreline experienced cutting of the beach face and permanent removal of 

material during this time, as indicated by comparison of beach profiles 

in Figure 17 for profile 11. Profile changes for profiles 15, 19, and 

23 display characteristic erosion of the upper beach and shoreface with 

the subsequent deposition of material in the zone below MLW. Post-storm 

recovery was observed following this storm as the return of sediment to

the lower beach face from material temporarily stored as an offshore bar

during the event.

February 27-28, 1984

The second event with significant erosion potential occurred on 

February 27-28. East and northeast winds dominated for most of February 

27, but shifted to the southwest as the storm diminished on February 28.

Variable winds from 16-40 km/h prevailed on February 27, with gusts

of up to 72 km/h. Wind speeds diminished to less than 16 km/h late on 

the 27th, but increased to 40-48 km/h for most of the 28th, with gusts 

of up to 64 km/h.
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Figure 17. Beach profile changes for profile 11 from 

January-April 1984.
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High tides at 1900 on February 27 again coincided with the highest 

gusting winds for the day. Superelevation of the tide level was 0.46 m 

at this time (Figure 16). The following low tide achieved its minimum 

approximately 0.3 m above the predicted level, with a lag of nearly two 

hours following the predicted time of low tide.

The measured high tide at 0700 hrs on February 28 continued to show 

an elevation of the actual tide of 0.5 m above predicted levels; 

however, this difference decreased steadily during the 28th, despite the 

sharp increase in speeds during much of the afternoon and evening. This 

decrease can be explained by the concurrent shift in wind direction to 

the southwest during the afternoon on the 28th. Despite the actual 

increase in wind velocity, then, further erosion was minimized by the 

wind switch away from onshore northeast winds and the resultant set-up.

September 11-14, 1984

Hurricane Diana originated as a weak frontal trough, combined with 

an upper level low-pressure system which formed into a tropical storm 

off the Florida coast on September 8. Diana organized into a hurricane 

by September 10, moving north-northeast along the Georgia and South 

Carolina coasts. The hurricane reached its maximum intensity with 139 

km/h winds on September 11 in the vicinity of Wilmington, North 

Carolina.

The potential for destruction within the Chesapeake Bay was 

significant for this event; it was fortunate, however, that the path of 

the storm turned out to sea near Cape Hatteras, North Carolina on 

September 14, 1984. The effects of Hurricane Diana were evident along 

the York River shoreline by September 11, with steady easterly winds for
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the majority of the event. Wind speeds were variable from 8-40 km/h 

during the four-day period.

The associated tidal record (Figure 16) shows some elevation of the 

measured tide over the predicted levels during the first 48- hours 

(approximately 0.15 m ) , gradually diminishing to levels coincident with 

predicted levels by September 13. Maximum wave heights during the four 

days of observation remained less than 0.30 m. These factors accounted 

for the minimal erosion along the study shoreline during this event. 

Representative profiles are given in Figure 18; minor movement of 

sediment occurred from erosion of the beach face and deposition in the 

zone below MSL. Although the potential was significant for erosion, 

then, no significant scarping and transport of sediment was observed 

during the four day event.

September 26-28, 1985

Hurricane Gloria initiated as a tropical storm near the Cape Verde 

Islands on September 16, and maintained a west-northwest course across 

the tropical Atlantic. Hurricane Gloria reached the coast of Cape 

Hatteras, North Carolina on September 27, crossed over Long Island, New 

York at mid-day, and became an extratropical storm over England late 

on the 27th.

Steady northeasterly winds of 16-24 km/h were recorded at the study 

site for most of September 26; winds shifted to the north at 

approximately 2000 on the 26th as the storm approached the North 

Carolina coast (Figure 15). Maximum storm conditions occurred at 

Gloucester Point at approximately 0500 on September 27, coincident with 

the storm's closest proximity with the southeastern Virginia's coast.
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Winds peaked significantly between 2300 on the 26th and 0500 on the 

27th, with maximum gusts of nearly 96 km/h. As the storm continued 

northward, winds diminished rapidly and shifted to the west.

The measured tidal record reflects the extremely high water levels 

which existed during the passage of Gloria (Figure 16). The last high 

tide of September 26 occurred at 2000 with a 0.15 m elevation of the 

predicted high tide. During maximum storm intensity between 2300-0500 

hrs on September 27, the ebb cycle was sharply abbreviated, falling only

0.24 m below the last high tide, and nearly 0.6 m above the predicted 

low tide levels at 0200. In addition, a second peak occurred at 0400, 

at the time of peak storm conditions and closest proximity of Gloria's 

passage along the coast. It is interesting to note following the 

passage of the storm peak that the following 24 hrs were characterized 

by both high and low tide levels which were lower than the predicted 

values (0.3-0.5 m ) .

The extremely high water levels, accompanied by increased wave 

attack, resulted in significant cutting of the bank and erosion, 

particularly along the northern segments of the VIMS shoreline. Scarps 

on the beach face and upper beach were accompanied by the loss of much 

of the planted and volunteered vegetation which had become established 

in the berm and upper beach zones.

November 1-4, 1987

Heavy erosion along the study shoreline from November 1-4 resulted 

from the presence of a stalled low-pressure cell and storm activity in a 

highly localized path including the study area. Winds maintained an 

east-northeast direction for approximately 90 hrs. Wind speeds averaged
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Figure 18. Beach profile changes during Hurricane Diana, 

September 10-14, 1984.
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24-40 km/h for the event, gusting to 48-96 km/h on November 4 (Figure 

15). Maximum observed wave heights were 0.9 m, with periods of 3.5-4.0 

seconds.

Maximum storm conditions occurred on November 4, following 3 days 

of continuous east-northeast winds causing higher than usual water 

levels at the site. From 1300-1800, winds averaged 40-64 km/h with 

gusts of 96 km/h during the 5 -hour storm peak. The resultant set-up was 

reflected in the recorded tidal levels, which indicated significant 

amplification of the tide during this event. Peaks in the maximum 

observed tidal surge were coincident with peaks in the wind velocity 

record. The previous 72-hour records were characterized by elevations 

of approximately 0.3 m of recorded high tides, while lows averaged 0.5 m 

above predicted values for this time.

On November 4, the predicted high tide (1300) coincided with 

maximum wind speeds of 96 km/h, resulting in a superelevation of the 

tide by 0.6 m (Figure 16). Erosional affects of increased storm 

intensity on November 4 was further amplified by already high water 

levels during the previous 72 hours.

The November 1-4 storm was the most destructive storm to affect the 

study shoreline over the 26-month period. The combination of elevated 

water levels and steady east-northeast winds over the 96 hours resulted 

in erosion along this shoreline of the greatest magnitude of any storm 

during the study.

Heavy cutting of the upper beach and berm occurred within all 

segments of the beach; as in previous storms, however, the erosion of 

the unprotected northern segments was most obvious and significant, some 

of which resupplied downdrift cells with material eroded upstream.
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Undercutting of the rooted vegetation in the upper beach resulted in the 

loss of nearly two-thirds of the vegetation planted in 1984, and much of 

the naturally volunteered vegetation from the upper beach.

Beach profiles were not taken immediately prior to the event, 

however, it was obvious from visual observation that a significant 

portion of the profile change shown in Figure 19 resulted from this 

event. In the northern segments, material was most heavily eroded from 

the upper beach and berm area above MSL. Some of this material was 

deposited in the nearshore zone below MSL, as shown in Profiles 12 and 

20. Most of the sediment, however, was resuspended and transported 

alongshore to downdrift cells and into the main channel of the York 

River. From Profile 16 to Profile 30, scarping and resuspension of 

material was observed in the upper beach areas, however, material was 

also supplied to these area from the updrift eroding cells. More 

sediment was deposited temporarily as shallow offshore bars in these 

protected areas; post-storm observations revealed a fairly rapid (3-4 

days) return of the sediment stored in these bars through onshore 

migration of the bar across the beach face, eventually becoming welded 

onto the existing beach face. As a result of the intensity and duration 

of this event, however, a considerable volume of material was 

transported alongshore and permanently removed from the system into the 

adjacent channel of the York River in the vicinity of the southernmost 

po int.
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Figure 19. Beach profile changes from January 1985 to 

November 1985.
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4.4 Discussion of Sediment Volume Changes
3During the 26-month study, 1,255 m (net) of material was lost from

3the VIMS shoreline (MLW). In terms of gross volume changes, 1,441 m of
3 3material eroded while 186 m accreted, for a total of 1,623 m of

material transported within the system. This is approximately 16.5% of

the fill material emplaced in 1983. With no supplemental nourishment,

the shoreline could resume the pre-nourished state of erosion in

approximately 13 years from the time of project completion.

Losses of fill were highly variable along the shoreline. The

northern, more exposed segments continued to erode rapidly while the

more protected downdrift segments appeared stable over time. In

addition, intervals of heaviest losses in cells A and B were most often

associated with heaviest accretion in the downdrift cells of C and D.

Volume calculations are unavailable from immediately before and

after each of the major storm for the 60-profile set. The results of

the regular surveys, however, suggest that the intervals which include

the seasonal northeast-east storms were associated with periods of

highest gross transport. Conversely, the non-storm periods during the

spring and summer intervals were characterized by minimal gross

transport and net changes in sediment volume. This is particularly

evident in the documentation of the interval from January to November

1985. The two major storms which occurred during this period were

associated with northeasterly-easterly winds of some duration and with

significantly higher than predicted water levels. The net loss of
3sediment during this 10-month interval was 714 m , while total net

3losses for the previous 16-months were 541 m .
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The tidal records indicate that maximum storm wave heights were 1.0 

m during the study period. This may be explained by the relatively 

shallow depths throughout this portion of the bay, which limits the

maximum wave heights observed during most storms. Several of the storms

had a potential for significant erosion of the shoreline; the greatest 

losses occurred, however, during periods of steady northeasterly- 

easterly winds which resulted in higher than average water levels. The 

combination of elevated water levels with peak storm conditions and

predicted high tides resulted in the most damaging condition for cutting

and erosion of the backshore area, and transport of sediment to the 

downdrift segments.



5. CONCLUSIONS AND FUTURE RESEARCH CONSIDERATIONS

5.1 Conclusions of Study

The present study was designed to investigate the immediate and

subsequent response of a nourished estuarine shoreline, emphasizing the

small scale systematic analysis of a single reach of shoreline.

It was determined during the 26-month study that the system

experienced continuing losses of fill during periods of wind and high
3water. The 472 meters of shoreline lost 1,255 m (net) of sediment from 

September 1983 to November 1985. This was approximately 16 percent of 

the fill emplaced in 1983. The changes in sediment volume were 

spatially variable. Some individual cells within the system appear to 

have achieved stability after the initial period of redistribution and 

alteration of the shoreline planform. These segments, however, are 

isolated areas which are protected by the positioning of the piers and 

by the groin-like effect of the outfall extensions. In addition, 

material eroded from the updrift segments is constantly resupplied to 

these protected sections during storm events.

The northern sections have remained most affected by the lack of 

updrift supply of sediments due to the presence of adjacent groins and 

bulkheads. This area has continued to be undercut and eroded during 

periods of moderate to high wind and wave activity, which has provided a 

continuous supply of material to downdrift segments of shoreline. The 

present state of this segment has approached the pre-construction

91
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shoreline configuration, although the rip-rap revetment continues to 

function as the primary line of defense against further erosion of the 

fastland. The area from Profile 8 to Profile 12 received new fill 

material during the Spring of 1987. It is not expected that this segment 

will achieve a stable profile, but will require a schedule of 

renourishment, or the emplacement of an offshore structure to dissipate 

wave attack along this exposed region.

Volumetric data from the Gloucester County Public Beach indicated

that this downdrift section experienced accretion as a result of losses

along the VIMS shoreline. Some of this material was later reworked and

eroded from the public beach, although some of the material was

permanently gained in the vicinity of the public boat ramp. A net loss 
3of 439 m of sediment occurred along this shoreline from September 1983 

to November 1985, or approximately 30 percent of the material lost from 

the VIMS shoreline. Hence, the major benefit to the public beach was in 

the form of the recipient of the continuous downdrift supply of the VIMS 

nourishment material during periods of erosion of that shoreline.

Surveys were made during regular intervals to assess long and 

short-term changes in sediment volumes. The results suggest that 

intervals which included seasonal northeasterly and easterly storms were 

the periods of highest gross transport and net losses. Conversely, the 

non-storm periods during the spring and summer months were characterized 

by minimal gross transport and net losses of sediment. An examination 

of major storms which occurred during the study revealed that maximum 

wave heights during the most severe event was 1.0 meter, due to the 

relatively shallow nature of this portion of the bay. For this area, 

which has a relatively narrow mean tide range (0.7 m) the most severe
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erosion and transport of material out of the system occurred during the 

storms associated with northeast and east winds. The coincidence of 

elevated water levels during these events and the occurrence of the 

normal predicted high tide levels resulted in cutting and erosion of the 

berm and backshore areas. These events also resulted in transport of 

sediment into the deep channel adjacent to the southernmost point of the 

public beach.

A theoretical model curve was also developed from survey data for 

the natural shoreline. The calculated curve for the natural profile in 

August 1983 was highly concave, with average m values of 0.17. Fifteen 

months after nourishment of the shoreline, the calculated profile had 

steepened, with a mean value of 0.72. This more closely approximated 

Dean's (1977) predicted value of 0.66. The apparent lack of fit of the 

profile in August 1983 may be explained by the sediment-starved nature 

of the site and the presence of the compacted, fossiliferous Yorktown 

Formation, which truncates the profile near mean low water along much of 

the VIMS shoreline. Emplacement of a relatively thick wedge of sediment 

could have provided the unconsolidated layer of material needed to 

approach the smoothly concave form described by Dean (1977). This may 

explain the close approximation of the hypothetical form found in 

January 1985 for VIMS beach and that calculated by Dean for open coast 

beaches.

The results of the model curve fit were utilized to calculate 

volume fill requirements for alternative grain sizes of beach fill.

These calculations are based on the relationship of grain diameters and 

the associated scale value A (Moore, 1982). Results suggest the extreme 

sensitivity of the calculated volumes to the grain size parameter. This
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indicates the need for highly precise analysis of native sediment 

samples when developing fill criteria. The results of this analysis 

also indicate the need for consideration of site - specific conditions, 

such as the intersection of the Yorktown formation and the natural 

profile in the nearshore zone at VIMS beach, when developing the 

criteria for optimal fill design.

The conclusions of this study should be considered in developing a 

long-range plan of protection of this shoreline. Approximately 16% of 

the fill emplaced in 1983 has been lost from VIMS beach. The rates of 

loss, however, vary along the shoreline. The northern segment 

continues to have the highest rate of sediment loss, and had resumed the 

pre-nourishment state prior to supplemental nourishment in 1987. It is 

anticipated that this material will again supply the downdrift segments 

of VIMS beach and the public beach during periods of high water and 

wave attack.

5.2 Implications for Future Nourishment Projects

With the study conclusions in mind, any supplemental nourishment 

should be concentrated at the northern sections of VIMS beach, allowing 

for maximum retention of the fill along VIMS beach. Material emplaced 

in the more stable, downdrift segments of VIMS beach will be transported 

downstream into the channel and along the public beach during storms. 

Based on the state of the northern segment prior to nourishment in 1987, 

renourishment will likely be necessary on a four to five year cycle, 

depending on severity of storms which occur during that time.

Retention of the nourishment material has been increased by the 

groin-like effects of the outfall structures along VIMS shoreline.

The emplacement of an offshore, shore-parallel structure could result in
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longer retention of the fill material in the exposed northern segments, 

and dissipate wave attack during storms. An additional advantage of a 

shore-parallel structure is to allow for some alongshore transport of 

material to downdrift segments, so that complete starvation of sediment 

does not occur. This structure would be most effective in the northern 

cell to slow the ongoing process of erosion following nourishment of the 

b e ach.

Estuarine nourishment projects and responses differ from the open- 

ocean coasts in that the mechanism of change within these systems occur 

on comparatively shorter temporal scales. Factors such as individual 

shoreline reaches and effective fetch are much less important in the 

understanding of beach response along ocean coasts. As a result, the 

planning of estuarine projects requires generation of similar but 

specific data bases before and after project implementation.

Many parameters should be considered in any design and monitoring 

of a beach renovation project. These factors may be summarized as 

follows:

1. Detailed analysis of prenourishment conditions to indicate the 

stable profile for a given site. This information can be used 

to determine appropriate fill volumes and grain sizes of 

nourishment material.

2. Monitoring of post-nourishment behavior of beach system to 

indicate: 1) appropriate schedule and design for subsequent 

renourishment projects 2) appropriate design and placement of 

additional defense structures.

One factor not addressed in this study, but of increasing 

importance in the permitting of beach projects, is a standardized
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approach for monitoring the biological impact of beach nearshore 

projects on the biota in the nearshore zone. Guidelines for this type 

of study are presented by Stauble and Nelson (1985). They suggest 

determination of the spatial scales of variability for beach organisms, 

the tolerances for burial of these nearshore organisms, and the impacts 

of existing projects on these nearshore communities.

Finally, any discussion of shoreline erosion and beach protection 

should address the effects of sea-level rise. In the planning and 

development of long-term shoreline stabilization, the economic 

feasibility of beach nourishment versus the alternative of "rock" 

approaches involve projections and speculation of rates of sea-level 

rise. Weggell (1986) presents an interesting analysis of the economics 

of beach nourishment under the various scenarios of rising sea-level.

His paper presents different projections of sea-level rise based on 

leading studies in this area. Included are discussion of global warming 

trends, melting of glaciers, the thermal expansion of the earth's 

oceans, and the resultant widespread increase in erosion along the 

world's coastlines. Weggell's economic analyses suggest two questions 

which must be considered in erosion control projects in both ocean and 

estuarine environments. First, at what rate of sea level rise does the 

alternative of artificial nourishment become an uneconomic alternative 

for erosion control? Second, at what point does this rate of rise 

justify the emplacement of coastal "rock" structures to maximize the 

residence time of the nourishment material? The implication is that at 

some point, the increasing costs of perpetual nourishment projects will 

outweigh the benefits of amelioration of erosion effects.
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These considerations are valid for projects currently being 

considered, as well as for long-term planning and projections. Any 

responsible beach renovation plan must consider both the economic as 

well as the functional success of these projects in the contexts of long 

and short-term scenarios.



APPENDIX I: SHORT-TERM SEDIMENT VOLUME CHANGES 

September 1983- October 1983

The first survey period of the study included the interval from 

late September to late October, coinciding with the completion of the 

revetment construction in the vicinity of Byrd Hall. The armourment of 

the existing outfalls in the vicinity of Profiles 16, 18, 25, and the 

oyster and ferry piers were completed in mid-October and visibly 

functioning as barriers to longshore transport by this time.

The first survey interval included three storms which resulted in 

visible resuspension and alongshore transport of sediment. The events 

of October 10 and 13 were relatively short-term "northeasters" (duration 

less than 8 hours) with maximum winds of 16-24 km/h, maximum wave 

heights of 0.3 m and wave periods of 1-2 seconds.

The October 20-22 storm included periods of northeast winds which 

later shifted to the southeast as the storm passed from the area.

Maximum wave heights of 0.6 m and wave periods of 4.0 seconds were 

recorded on October 21. Erosion of the nourished beach was further 

accelerated by higher than average water levels due to spring tides at 

this time.
3228 m of material was lost from the segment defined by cells A, B, 

and C during the initial post-construction period. Of this, 

approximately 57% was lost from the 46 m segment of cell B.

Concurrently, the shoreline section from cells D and E remained 

relatively unchanged in volume. Calculations of volume change to SLW for
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this month indicated net accretion within every cell in the defined zone
3from MLW to SLW, totaling 65 m , indicating the redistribution of 

material in the zone below MLW.

October 1983- November 1983

During the period from late October to late November, two

relatively short-term events occurred. The event of November 10, while

less than four hours in duration, was intense and erosive. Winds

originated from the east-southeast, and shifted to the southeast as the

storm passed from the area. Maximum wave heights were 0.3 m, with

periods of 2.5-3.0 seconds. Erosional scarps and cuspate features were

evident during this brief, but high energy storm event. Entrainment and

offshore transport of sediment was also observed.

A second event occurred on November 15 with maximum winds of 40

km/h from the east-southeast for a period of approximately 5 hours.

Maximum wave heights were 0.3 m with average periods of 2.0-2.2 seconds.

Again, a zone of resuspended sediment resulted from the cutting of the

berm and extended along the length of the study shoreline.

This period was one of overall accretion along VIMS beach, although
3the segment defined by cells A and B lost approximately 57 m . Cell C 

3accreted 152 m , while no volume change occurred in cell D, with only 

minimal accretion in the area of cell E. The interval was one of small 

net erosion within the zone from MLW-SLW; accretion within this zone 

from profiles 12-30 was offset by greater losses in the area from 

profiles 1-11.
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November 1983-January 1984

Two storms were recorded during the two-month period from late

November through late January. The first event occurred on December 28,

1983. Winds gusting during the morning from the east later shifted to

the southeast and finally to the south as the storm passed over the

area. Maximum winds of 40 km/h were accompanied by wave heights of 0.4

m and wave periods of 1.5-2.0 seconds.

A second event occurred with steady easterly winds and rains on

January 17 and passed out of the area early on January 18. The storm

caused resuspension of sediment in a zone approximately 8-15 m from the

shoreline, accompanied by cutting of the bank in the northern cells

caused by the heavy storm runoff. Wave heights were less than 0.2 m

during this event.

This was a period of net erosion. Typical patterns of erosion and

accretion within sections were reversed during this time. Approximately 
387.4 m of material accreted in the cells from cells A and B, primarily

due to the existence of two low groins on the property adjacent to VIMS

(profiles 1-8), and to the completion of the outfall armourment in the

vicinity of profile 9 in late November. Fill material temporarily

transported into these cells by southeast and south wind conditions was

effectively retained by the structures in this area operating as

barriers to the littoral transport along this shoreline.

Cells C, D, and E all eroded during this time, with a cumulative 
3net loss of 365 m (MLW) for the two-month period. Of this,

3 3approximately 284 m was lost from cell C. 122 m was lost from cell D,
3and 87.4 m was lost from the MLW-SLW zone in cell D.
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January 1984- April 1984

This survey interval extended from late January to early April, and 

included four storms. The first, on February 3, had southeast winds of 

24-40 km/h, a duration of approximately six hours, maximum wave heights 

of 0.75 m and periods of 1.5-2.0 seconds. Entrainment and the transport 

of material northward (opposite the dominant littoral drift) was visible 

in the offshore zone as narrow fingers of resupended sediment in the 

vicinity and northward of profile 1.

The storm of February 23 was considered to be the first major 

northeast storm to affect the VIMS shoreline since the beach renovation 

of 1983. Gusting winds of up to 72 km/h were recorded during this two- 

day event, with erosion compounded by onshore set-up and high tide 

conditions during the storm. This storm was closely followed by a second 

storm on February 27-28, associated with easterly winds which shifted to 

southeast winds on the second day. Wind speeds were highly variable, 

gusting to 64-72 km/h on February 28. A detailed discussion of these 

two events is included in a later section.

Observations during the three weeks following the storms of 

February 22-23 and 27-28 revealed a return of sediment transported 

offshore during the events, and the subsequent developmment of a ridge- 

and-runnel topography which migrated landward during the post-storm 

recovery period. This phenomenon was particularly evident in the 

segment of shoreline between profile 16-30, while the area from profile 

8-16 remained heavily scarped following the storm. The small cells 

created by the groins within the segment from cell A regained sediment 

lost as a result of the February 22-23 storm during subsequent periods 

of southwest winds.
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A fourth event occurred during this period on March 20, 1984.

Easterly winds of 16-24 km/h were associated with wave heights of 0.2 m

and periods of 2.5 seconds. The storm caused resupension of the finer

fraction in an alongshore zone for approximately eight hours.
3Nearly 108 m of material was lost during this period, however, the 
3loss was only 30 m when calculated to the SLW datum. More notable was

the gross volume of sediment transport during this period.
3Approximately 593 m of material was transported within the system

3during this two-month period (737 m calculated to SLW).
3A  closer examination of these findings revealed that 23 m eroded

3 3from cell A, while cell B lost 274 m , or approximately 6.0 m /m.
3Another 70 m eroded from the zone below MLW. While the area from

profile 12-15 visibly lost material, much of the sediment eroded from

cells A and B accumulated along the downdrift section from profile 16-
321. As a result, only 30.4 m of net erosion occurred in this section,

3and a gain of 18 m was calculated for the SLW datum. Downdrift of the
3oyster pier (cell D) accreted by 242 m , or approximately 79% of the 

sediment eroded from the northern segments of the beach. The section 

south of the ferry pier (cell E) lost a small volume of material during 

this time.

April 1984- May 1984

This period encompassed the interval from early April to mid-May.

No storms were recorded during this interval.

A continuing trend of erosion of the northern section was noted
3during this time, with losses of 152 m recorded from profile 1-21.

3Most of this (133 m ) eroded from the cell from cell B. The section of
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3 3shoreline from cell D again accreted by 139 m , and 13 m was gained in 

the cell from cell E.

Comparisons of volume change from MLW to SLW indicated a period of 

net erosion within this zone from April- May, primarily resulting from 

the significant losses across the profile in the northern segments.

June 1984- August 1984

This survey interval extended from late June to late August. One

event was recorded during this time on June 22. Easterly winds averaged

16-24 km/h for approximately four hours, resulting in wave activity and

resuspension of material. Wave action during this time was amplified by

higher tides of this period.

No significant net volume changes were recorded during this

interval, as calculated to the MLW datum. Interestingly, the net 
3erosion of 65 m from the zone from MLW-SLW was evidenced by losses in 

every segment of the shoreline, with the exception of the cell from cell 

C, which experienced minimal accretion for the two-month period.

August 1984- January 1985

This survey interval includes the period from late August to early 

January. One significant storm, Hurricane Diana, was documented from 

September 11-14. Easterly winds continued steadily for the majority of 

the event, averaging 16-32 km/h, and gusting to 40 km/h. Steady 

easterly winds of 16 km/h which persisted for more than several hours 

effected the entrainment of sediment along this shoreline, as was 

confirmed during this event. Further documentation and discussion of 

this storm is included in a later section.
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Volume changes during this period were similar to post- storm
3findings of the February 22-23 event. Losses of approximately 23 m were

calculated to MLW, whereas the net volume change, as calculated to SLW,
3indicated the accretion of 57 m . These findings suggested a

significant deposition of material within all cells below the MLW zone.
3Again, it is notable that approximately 546 m of material was

transported within the system during this four-month period. Losses of
3 395 m from cell A and 273 m from cells B and C were offset by the

3accretion of 220 m from the zone of cell D, or approximately 60% of the 

net loss for this interval. Cell E remained relatively unchanged from 

August 1984 to January 1985.

January, 1985- November, 1985

The final study interval included the period from early January to 

mid November. No documentation exists for this interval of relatively 

short-term events, two significant storms were recorded during this 

eleven-month period. The first storm occurred from September 26-28, and 

resulted from the passage of Hurricane Gloria along this coast. The 

second, largely unpredicted storm event, occurred from November 1-4 and 

was responsible for the greatest damages and losses of sediment of any 

storm recorded during the two year study period. Both storms were 

associated with east and northeast winds during most of the storm 

period, with gusts of 88-100 km/h. Wave conditions during Hurricane 

Gloria were choppy and confused, with maximum heights of 0.75 m.

Maximum wave heights of 0.9 m were recorded for the November 1-4 storm, 

with periods of 3.5-4.0 seconds. Both storms of this period are further 

discussed in the following chapter.
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3Net losses of 714 m (MLW) occurred during this period. This loss 

represents 57% of the total net erosion for the two-year study period.
3The loss of 630 m , calculated to SLW, indicates some transport of

material within the zone of MLW-SLW. Heavy losses occurred along the

northern, exposed segments of VIMS beach. From cells A, B, and C,
3erosion of 1,002 m of material was offset by accretion in cells D and E

3 3of 288 m  , and another 57 m within the zone below MLW.



APPENDIX II: Two- and three- dimensional Surface II plots of profile

cells and changes in profile elevation contours
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Figure 1 of Appendix II. Surface II plots of beach and

nearshore contours for profiles 1-12 from

September 1983-November 1985.
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Figure 2 of Appendix II. Surface II plots of beach and

nearshore contours for profiles 12-21 from

September 1983- November 1985.
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Figure 3 of Appendix II. Surface II plots of beach and

nearshore contours for profiles 22-30 from

September 1983- November 1985.
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Figure 4 of Appendix II. Surface II two-dimensional plots of 

elevation contours for beach and nearshore zones 

for profiles 1-12 from September 1983-November 

1985.
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Figure 5 of Appendix II. Surface II two-dimensional plots of 

elevation contours for beach and nearshore zones 

for profiles 12-21 from September 1983-November 

1985.
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Figure 6 of Appendix II. Surface II two-dimensional plots of 

elevation contours for beach and nearshore zones 

for profiles 22-30 from September 1983-November 

1985.
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