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ABSTRACT

A historical time series of daily water temperature
measurements for Gloucester Point, Virginia (York River
Estuary) during the period 1954 to 1977 is described by
means of statistical techniques. A basic model which
consists of trend, cyclical, seasonal, and irregular
components is used to approach the nature of the water
temperature variations. A simple sinusoidal curve is
shown to describe the behavior of the annual component
and accounts for more than 95 percent of the total
variance either for an individual year or the 24 year
mean record of water temperature. Consistent amplitude
and phase angle were derived from Fourier analysis for
the seasonal component of the water temperature. The
variance spectrum technique which is based on the frequency
domain is used to express significant "hidden" cyclical
components which may not be apparent in the Fourier
analysis. Four significant cyclical components extracted
from the non-seasonal water temperature readings, with 22
year, 26 month, 14 month and 6 month periods might be
related to solar activity. Two periods with large fluct-
uations of water temperature occurred before and after the
stable years 1962-1970. This also might result from the
intensity of sunspot activity. The lunar period fails to
be a significant factor. The trend component is not
obvious because most of the long term variation during
this study period is contributed by the 22 year cycle.

The first order autoregressive process gives the best
fit for the daily residual data after the fundamental
harmonic and the record mean are removed. This predictive
model, which consists of a deterministic portion (annual
cycle) and a stochastic portion (non-seasonal component),
can forecast the daily water temperature 12 days ahead
theoretically.

There was no direct relationship between monthly mean
water temperatures and monthly condition index values for
oysters in the York River Estuary. Other features of these
two time series appear to be correlated, perhaps because
water temperature is a dominant factor during parts of

the year and other factors control during the remaining
seasons.
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VARIATION AND PREDICTION OF WATER TEMPERATURE
IN THE YORK RIVER ESTUARY

AT GLOUCESTER POINT, VIRGINIA



INTRODUCTION

The increasing concern for our living environment
makes it necessary to understand the characteristics of
water quality, especially its effect for our people. One
of the most significant parameters is water temperature
because it can affect the growth and health of the biota.
Therefore, the analysis of water temperature variations
can provide worthwhile information for us concerning the
nature of an estuary.

Beaven (1960) calculated the daily temperature and
salinity values of surface waters of the Patuxent River
estuary at Solomons, Maryland, and presented tables of
average values for the twenty yvear period, as well as the
daily fluctuations shown graphicaily with monthly means
and ranges. Ritchie and Genys (1976) extended Beaven's
information to the next ten years, and also established
a fourth degree polvnominal regression equation which can
be used to predict the water temperature for any given day.
Ward (1963) demonstrated that an empirical sine curve
equation closely fits the annual variation of temperature
of a stream, and that the nature of the sine curve does not

change much from year to year.



Others have examined the characteristic of the
residual that results when the seasonal variation is sub-
tracted from the actual time series record. The infor-
mation gained from the analysis can be used to deveibp
models to predict water temperatures.

For this study we have used as the basic model, the
concept that there is a dominant annual cycle. Super-
imposed on this annual cycle can be a long term trend,
other cyclic variations and random or irregular components.
If all four independent components were put back together,
the result would vary much like an actual water temperature

time series.

W=A+T+ C + 1

where W = the variation of water temperature from
some mean value

A = annual cycle

T = long term trend

C = cyclical variations

1 = irregular or random component
and all of the terms are functions of time.

The purpose of this study is to use a 24 year record
of water temperature in the York River Estuary to determine
the nature of each of these components. The location of
the sampling station, data processing methods and the
basic statistical results (means, ranges, etc.) are pre-

sented in Chapter I.



Chapter II includes harmonic analysis of the data to
determine the characteristics of the annual cycle. The
importance of higher order harmonics also was considered.

In Chapter III, the variance spectrum was calcﬁiated
and used to investigate the cyclical components of the time
series. The Box-Jenkins technique to develop a predictive
model was examined in Chapter IV. This technique needs
only three simple parameters to determine the stochastic
or irregular portion of the record, once the deterministic,
annual cycle has been removed.

The information gained from these analyses can be
applied to many fields. When values are missing from
historical records these techniques are useful to supply
the missing data, and also to provide more accuracy and
limit errors in predicting future values. Above all, it
can provide good information for scientists studying the
variation of biological growth with temperature changes.
This knowledge of water temperature variations should be
useful for aquaculture too. The application of the water
temperature analysis to oyster condition index trgnds is
given in Chapter V. —

And finally, a discussion of the study's findings and

conclusions are presented in Chapter VI and Chapter VII.



CHAPTER I

DESCRIPTION OF THE DATA

The York River is one of six major tributaries which
enters Chesapeake Bay along its western shore (Fig. 1).
The drainage area of the York River is about 6900 square
kilometre§ (kmz) (Virginia Division of Water Resources,
1974) and lies entirely within the Commonwealth of Virginia.
The York is formed at the town of West Point at the con-
fluence of the Mattaponi and Pamunkey rivers. Tidal
influences are observed over the entire length of the York
River and extend about 96 ki%ometres (km) up the Mattaponi
and 60 km up the Pamunkey. Its length from West Point to
Chesapeake Bay is about 56 km. The average width of the
York is about 3 km and the averagé depth about 6 metres (m),
but depths range to over 26 m.

The Virginia Institute of Marine Science (VIMS) and
The School of Marine Science, College of William and Mary
is located at Gloucester Point on the north shore of the
York River about 9.6 km from Chesapeake Bay at a narrow
portion of the river channel. Water temperatures were
monitored by VIMS at the end of a pier which extends about

116 m from the shoreline. The river width from the pier to
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the Yorktown monument on the opposite side is about 3.2
km. The exact location of this station is latitude of
37°14.8' N and longitude of 76°30.1'W (Fig. 2).

Water temperature readings have been made at this
location since 1947. A mercury maximum and minimum ther-
mometer was used to measure the daily extreme temperatures.
Since 1972, an Interocean Model 513 CSTD probe has been
used. This instrument was designed to accommodate a
variety of situations which arise in oceanographic and
estuarine studies. It incorporates sensors to provide
in situ measurement of conductivity, salinity, temperature,
and depth. The sensors are located 2.2 m below mean low
water; the river bottom is 4.2 m below mean low water.
Temperatures were read to the nearest 0.1 of a degree
centigrade (C). 1In order that the surface water tempera-
ture may be more accurately estimated, the probe is checked
once a week for agreement with a mercury thermometer which
is placed at the same level of water as the instrument.

The mercury thermometers have a rated accuracy + 0.25 C.
It is estimated that the total error does not exceed + 0.5 C.

There have been only a few instances when the instrument
was inoperative; the missing data was supplied by an inter-
polation method. If the temperature data were abnormal,
data from another instrument, a Foxboro Temperature Recorder,
were used. For more lengthy periods with missing values,
the data gap was left in the record. Data gaps are greatest

for the years 1964, 1968, and 1972.



Although instantaneous readings were made prior to
1972, only the daily extremes were recorded. Since 1972,
the average temperatures for each of 12 two-hour periods
during that day are recorded as well. The daily efoemes
since 1954 and the two-hour average temperatures since
1972 are stored on punched computer cards at the VIMS
Instrument Shop. Daily averages used in this study were
the mean values for the daily extremes. The mean values
for the 12 two~hour temperatures for the last six years
also were calculated. Both were transferred to computer
cards and stored in the William and Mary Computer Center
library.

The daily average temperatures for the twenty-four
yvears of record are given in tabular form in Appendix A.
Statistics for each particular day of the year are given
in tabular form in Appendix B. ©Normally, data for February
29 were ignored to simplify calculations. The twenty four
year mean temperature for each day along with one standard
deviation limits have been plotted (Fig. 3). Additionally,
daily temperatures have been calculated using 7-day and 10-
day moving averages of the twenty-four year means, and the
10-day moving average has been plotted (Fig. 4). The
maximum and minimum daily temperatures, along with the year
in which these occurred, have been listed in Appendix B.

The particular daily means of temperature ranged from

3.22 C to 26.92 C. Temperatures average around 3 C for
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about 25 days from January 15 to February 1l0. The coldest
water temperatures occur during the middle or later part
of January, and after six and one half months the warmest
temperatures occur at the beginning of August.

The standard deviation of the daily water temperature
varied from 0.84 C to 2.58 C. Generally speaking, higher
deviations occur during cold days and lower deviations occur
during warm days (Fig. 3). However, highest value for the
standard deviation occurred in the middle of September,
although most days during that month have medium values.

The observed extreme daily average water temperatures
ranged from a low value of -1.4 C on January 31 to a high
value of 30.0 C on July 15 and 16 (Fig. 5). The days with
highest extreme temperatures do not coincide with the days
of the highest average temperature. The days with lowest
temperature were a half month apart. From the middle of
January through the middle of Febfuary, it is not uncommon
. for water temperatures to go below the freezing point. A
few especially cold years, like 1977, produced many of the
minimum values.

Sets of daily average temperatures were selected for
each of the four seasons so that the probability distri-
butions of values for the twenty-four years could be ob-

served (Fig. 6). Generally, the data appear to be normally
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distributed but there may be a few outlying points.
Because the sample size (N equals 24) is not large,
the distributions cannot be described in detail.

Both the time series for individual years and the
twenty-four year mean record were used in the analysis

which is described in the following chapters.



CHAPTER II

HARMONIC ANALYSIS AND THE ANNUAL CYCLE

The techniques called time series analysis may be
applied to sets of observations if these sets are dependent
statistically. If a time series exhibits a strong character-
istic for a civen frequency, or even a set of-frequenciés,
one style of analysis which can emphasize this periodicity
is called harmonic analysis or Fourier analysis. It can
separate the time series data into a set of sine wave
signals, each having a given period and amplitude. As
frequently used for water quality data, harmonic analysis
shows the physically meaningful harmonics, which then can
be subtracted from the original s?ries. It is not necessary
to include each harmonic and all harmonics need not be
consecutive.

The seasonal or annual component refers to the
identical or nearly identical pattern which a time series
appears to follow during successive years. In other words,
this seasonal behavior is the pattern observed within each
year. The trend component indicates the evolutionary
change that occurs in a time series over long time intervals.

Tt is revealed primarily as a changing mean level around

16
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which the remaining components fluctuate with different
degrees of regularity. The cyclical component describes
successive advances and declines, and may include more
than one cycle, 1In this chapter, the significance of
these three components is investigated by harmonic analysis.
The daily mean water temperature for each individual year
is tested for the seasonal component. The twenty-four
year daily mean series is examined to see if cyclical
and trend components exist.

Kothandaraman (1971) reported that a single harmonic
with a period of a year normally accounts for about 95%
for the total variance of a water temperature record.
Harmonic analysis can separate such cyclic variations from
the observed record. If this is done, it is possible to
investigate the nature of the non-cyclic variations, and
it may be possible to construct a model which illustrates
these non-cyclic variations. Thomann (1967) applied the
general theory of Fourier and spectral analysis and pre-
sented the results of time variation for temperature and
dissolved oxygen in the Delaware Estuary. The first
harmonic included most of the total variance; the amplitude
and phase angle were very similar for different transects
through the whole estuary. Low-frequency phenomena dominated
the residual spectra, especially for water temperature,
with peaks in the area of 30 days. Long (1976) also did

water temperature forecasting and estimation using Fourier
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Series and Communication Theory techniques for a river with
a constant thermal input from a power plant. He suggested
that by using significant Fourier components he could make’
a meaningful prediction of daily average water temperature
for up to 60 days ahead.

Other research has dealt with water temperature in
the rivers or streams and the association with air tempera-
ture data. Kothandaraman (1971) investigated the nature of
seasonal and non—seasonalhvariations in the daily mean
river water temperature and developed a method to predict
water temperature based on observed meteorological data.
The resulting predictions had a standard error of estimate
of about 1.1 C. Song (1973) postulated a model which in-
cludes variations due to atmospheric temperature fluctuation,
and the seasonal variations of the water temperature as
well as purely random fluctuations. Song and Chien (1977)
analyzed some stochastic characte;istics of the daily
component of water temperature variations with respect to
daily range, air temperature fluctuations, and watershed
area. Linear regression models and autocorrelation and
cross—-correlation models were used.

Since it is already known that the annual water
temperature cycle can be described roughly as a sine curve,
it is reasonable to assume the Fourier analysis will provide

meaningful information about the water temperature record.
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Therefore, a fundamental formulation can be used to estimate

amplitude and phase angle for the different components:

M
T=T+ £ a. sin (b.x + c.) (2-1)
. i i i
i=1
_ M
=T+ ¥ A, sin b.x + B, cos b.x (2-2)
. i i i i
i=1
where A. = a. cos c. B, = a. sin c.
i i i i i i
—_— B.
then a., = /@_2 + B.2 c. = tan_l _*
i i i i Ai

in which T is the average of the record

a; = the amplitude of the ith harmonic
bi = the freguency for the ith harmonic
c;, = the phase angle in radians for the

ith harmonic
M = +the number of harmonics

the phase angle c; can be adjusted as follows:

[ 1By :
tan X— Al>0
i
-1 Bj
tan — 4+ 7 A. <0 B. >0
A. i i =
i
-1 B3
¢, = Jtan -— - T A, <0 B, <0
1 A. 1 1
i
- I A. =0 B, <0
2 i i
-z A, =0 B, >0
2 i 1
arbitrary A, =0 B, =20
L 1 1

The coefficients in Egq. 2-1 can be determined using

the least-squares method which would make the sum of
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deviations a minimum (after the harmonic coefficients Ai
and Bi are calculated). These harmonic coefficients A

and Bi may be given by:

2 N
Ai =X L Tx sin bix (2-3-1)

x=1

5 N
B, == I Tx cos b.x (2-3-2)

i N 1
x=1
where N = Total sample number

Tx = water temperature record at day x
x=1,2,...,365 for yearly data

These two values (Ai'and Bi) can be estimated very accurately
by the least-squares method, which saves some time compared
to calculating the very big inverse matrix required to solve
the set of linear equations if one needs to include higher
frequency terms.

Harmonic analysis will be applied first to the twenty-
four year mean record to show the variation of water temper-
ature over the longer term. The second concern is to
examine the variation of phase angle and amplitude year by
year. Once the mean of the record and the amplitude and
phase angle for each harmonic have been qalculated, we can
determine how many and which harmonics are needed. Tﬁese
can be selected with a useful calculator index, the
variance accounted for by the given harmonic. From eq.

(2-2) it is known that the variance accounted for by each

given harmonic is equal to the half value of the amplitude
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squared (Vari = Aiz/2). From the percentage of total
variance accounted for by that harmonic we can decide
whether it is significant or not. For instance, the mean
record for the twenty-four years has a first harmonic which
accounts for 99.68% of the total variance. The second
harmonic accounted for only 0.21% of the variance and

none of the next 10 harmonics includes a portion greater
than 0.02%. So, for many purposes, the first harmonic is
sufficient to explain the trend of the average data, probably
because many variations have been damped out through the
twenty-four year averaging.

From the result shown above, the mean water temperature
at the VIMS pier roughly can be described by a simple
sinusoidal curve with a 365 day period, a 240° phase lag,
an average temperature of 15.57 C and an amplitude of 11.59 C.
Fourier coefficients were calculated by equation 3-3 for the
first to the thirteenth harmonic. " The principal results
from the Fourier analyses of the temperature time series
are presented year by year in Table 1. The first harmonic
for each year's record has very limited phase angle variation
but this is not true for higher harmonics. The first five
harmonics accounted for most of the variance (Table 2). It
can be noted that the second through fifth harmonics account
for an additional 0.8 to 3.0 percent of the variance. Be-
cause the phase angles are scattered for successive years,

random phenomenon are probably included in the record.
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Table 2. Analysis of variance for water

temperature data.

Year Total lst 2nd to 5th 6th & Higher
Variance Harmonic Harmonic Harmonic

var.* gF* Var.* g*x* var.* g*x*
1954 67.97 65.39 96.20 j1.21 1.79 1.37 2.01
1955 75.93 73.98 97.43 | 0.74 0.95 1.23 1.62
1956 66.00 63.51 96.22 [ 0.73 1.13 1.76 2.65
1957 61.71 58.92 95.48 {1.14 .1.84 1.65 2.68
1958 76.27 74.40 87.55 | 0.52 0.70 1.32 1.75
1959 79.27 77.09 97.25 | 0.99 1.23 1.19 1.52
1960 76.91 74.29 96.59 }1.23 1.60 1.39 1.81
1961 74.07 71.60 96.67 |1.06 1.44 1.39 1.89
1962 72.76 70.85 97.37 10.71 0.99 1.20 1.64
1963 74.84 72.86 97.41 |1.06 1.44 0.88 1.17
1964 63.86 62.42 97.74 10.62 0.97 0.82 1.29
1965 65.35 63.92 97.81 {0.51 0.78 0.92 1.41
1966 65.62 64.01 97.55 ] 0.21 0.30 1.41 2.15
1967 59.03 57.60 97.58 | 0.38 0.64 1.05 1.78
1968 76.82 75.19 97.88 | 0.75 0.97 0.88 1.15
1969 77.26 76.16 98.58 | 0.47 0.61 0.63 0.87
1970 76.09 74.45 97.85 j0.73 0.96 0.91 1.19
1971 71.20 69.20 97.19 (] 0.61 0.85 1.39 1.96
1972 57.65 56.37 97.78 {0.41 0.79 0.87 1.49
1973 67.94 66.40 97.73 | 0.24 0.36 1.30 1.91
1974 51.70 50.10 96.91 | 0.49 0.95 1.11 2.15
1975 62.27 59.95 96.27 |1.26 2.03 1.06 1.70
1976 65.21 62.41 85.29 |1 2.21 3.40 0.86 1.31
1977 88.64 84.32 95.13 | 2.33 2.62 1.99 2.25

*

The variance attributed to the specified harmonic

* %

The portion of the total variance attributed to the

specified harmonic
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It is interesting to see whether the 2-hour data would
produce the same result. In order to better understand the
variations derived from the different samples, one of the
most complete data: sets was chosen. There are measurement
every 2 hours through the entire year 1974 except for July
23 & 24. Harmonic analysis was done for the daily averages
(the mean value of the daily maximum and minimum), the 2-
hour values, and the daily average of the 2-hour values.

The last time series has a smaller portion of the total
variance contributed by the first five harmonics and greater
total variance. It is apparent that more variance is distri-
buted to the higher harmonics (Table 3). Daily averages
calculated in the two different ways showed similar results
for each harmonic. This result gives us confidence that we
needn't be concerned with the method of calculating the

daily average values if we want to observe the long term
tendency.

The harmonic analysis has been applied to the entire
twenty—-four year record. The period, amplitude, phase angle,
variance and percent of total variance for all harmonics
which have a percentage of variance more than 0.05 are
shown in Table 4. Except for the first two, the lower
order harmonics account for small variances. The 24th
harmonic, the annual cycle, includes most of the variance of

the record.
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Table 3. The comparison of harmonic analysis for
different sampling intervals of water
temperature in 1974.

1974 Daily Average *% Daily Average x2 Hr Values
(mean of max. (2 Hr value Avg.) '
and min.)

avg. 16.64 16.60 16.57

total

variance 51.70 51.48 52.23
o amp. 10.01 9.99 10.04
m
o phase
B angle 4.23 4.23 4.24
o
E variance 50.10 49.97 50.41
. amp. 0.53 0.52 0.52
]
8 phase
g angle 0.04 0.09 0.02
o)
9 variance 0.14 0.13 0.13
o amp. 0.48 0.46 0.43
I
o phase
E angle 0.64 0.65 0.59
-
& variance 0.11 0.10 0.09
E amp. 0.37 0.37 0.42
ﬁ phase
g angle 4.43 4.45 4.50
0
o variance 0.07 0.07 0.08
g amp. 0.55 0.53 0.55
m
st
P phase
D angle 5.75 5.78 5.74
Y
5 variance 0.15 0.14 0.15

* %
365 daily averages are calculated by each 2 hr value for that
day

*
There are 365x12=4320 each 2 hr values for that year
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Another way to use harmonic analysis to determine the
relative importance of different periodic components is to
use the corresponding amplitudes. The half value of the
sampling number multiplied by the corresponding amplitude
squared is named the "intensity" for that frequency
I(fi) = % (amplitude)z. When those intensities are plotted
against their corresponding frequencies, the figure is
called a "periodgram", which shows the relative amount
accounted for by a frequency band. This method was applied
to the residual daily water temperature record (original
series minus the annual cycle) to find the important cycles.
In Figure 7, the intensities for the first 50 frequencies are
shown. Some obvious peaks occur in this figure. However,
the very strong fluctuation in this figure makes it hard to
distinguish which ones are important. Many isolated peaks
may or may not show their significance in a practical situation.
Fishman (1969) has pointed out thét this method was inadequate
for estimating the relative importance of periodic components
for a wide variety of phenomena. The two principal reasons
for this inadequacy were first, the departure of the fixed
period from reality. Many phenomena do exhibit recurrent
behavior, but few show any regular periodic appearance. The
second reason the periodgram failed stems from the inordinately
large number of periodic components that are suggested as
being important. It was hardly possible to reconcile all

these peaks with what was actually observed. This implies
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Figure 7.
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(Cycles/24 Years)

Periodgram for the water temper-
ature residual series (mean and
first harmonic removed).
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that if some phenomenon is not an integer harmonic of the
fundamental period, the calculated intensity peak will
disappear. Therefore, the variance spectrum is needed to
make up for these disadvantages.

In surmary, the harmonic analysis has shown that the
annual cycle of water temperature accounts for more than
95 percent of the total variance for either an individual
vear, the twenty-four year record or the twenty-four year
mean. The amplitude and phase angle for the yearly harmonic
were stable from vear to year. The higher order harmonics
(second or higher) show great variation in both amplitude
and phase angle from one year to another. However this
technique fails to explain the importance of phenomena for
which the period is not an integer harmonic of the funda-
mental period of the record. This is especially true when
a band of frequencies, rather than.a single frequency, is

important.



CHAPTER III

THE CYCLICAL AND TREND COMPONENTS OF

WATER TEMPERATURE VARIATIONS

It is desirable to know the importance of the cyclical
and trend components. The trend component indicates the
evolutionary change that occurs in a time series over long
time intervals. It is revealed primarily as a changing mean
level around which the remaining components fluctuate with
different degrees of regularity.

The cyclical component describes successive advances
and declines, and may include more than one cycle. Because
cycles may be superimposed, it is difficult to observe them
by visual inspection of the time series. They may or may
not follow exactly similar patterﬁs after equal intervals
of time.

In this chapter, those significant components will be
described by variance spectrum. In addition, after some
significant components have been found, we will seek to
define the causal relationships with some physical phenomena
such as solar activity. Such a study may lead to an improved
understanding of the different physical processes and their

role in determining the variation of water temperature.

30
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Finally, a table will show the intensity of those components
which contribute to this twenty -four year record.

In the last chapter some relationships between the
various harmonics and water temperature variations w;re
presented. But if there are important frequencies which
are not harmonically related to the length of the series,
then we must find another method to analyze those variations.
An appropriate tool to solve this problem is called power
spectrum or variance spectrum. The power spectrum curve
shows how the variance is distributed with frequency. The
way from the time domain of the variance to the frequency
domain is the Fourier transform of the autocovariance function.
In other words, the variance spectrum is the transformation
from a time-based to a frequency-based distribution through
the autocovariance-function. Low frequency pass filters
or high frequency pass filters can be used to choose the
frequency needed.

In statistical theory, the correlation between neighbors
with different spacing plays an important role and describes
the behavior of a time series. The covariance between 2

t

and 2 the values separated by K intervals of time, is

t+K’

called the autocovariance of lag K and is defined by

N-K (Z, - Z) (% - 7)
+
R(K) = & —E o FHK (4-1)
t=1
where R(K) = autocovariance coefficient at lag K

Z

the mean value of record
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2y

Zt+K = the record wvalue at time t+K

the record value at time t

The autocovariance coefficient ﬁlotted against the corres-
ponding lags is called the autocovariance function. Zero
lag (K=0) indicates the autocovariance coefficient is equal
to the total wvariance (i.e., R{o) = ci). The ratio of auto-
covariance coefficient and total variance is called auto-
correlation coefficient. If both functions are positive,
it means that the physical process described has a degree of
positive tendency. If it has a negative value, it implies
that opposite tendency will follow with a time lag of K
units. If the first autocovariance value is positive
this indicates that high (or low) values of temperature will
tend to persist on the following day. If the autocovariance
is negative, high values of temperature would be followed
by low temperature values one day{later, and vice versa.
Wastler (1963) described the mathematical basis for an
application of spectral analysis. He states that the Fourier

cosine transform is computed as

m-1
Vr = AT(R(o) + 2 I R(g) cos E%E + R(m)cos xrm)
g=1
where r = 0,1,2,...m
_2_ r—_-olm
m
At =
1 l<r<m-1
m — —
where.Vr = the estimated power spectrum

il

R(m) the autocovariance function with m day lags.
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When these estimated values are plotted against the
frequency, it makes apparent the dominant periods for this
time series. The area under this curve equals the total
variance of the record. Actually the estimated function is
not always the best approach of the spectrum. It usually
is transformed by a linear filter to smooth it and focus
on the low frequency or high frequency wvalues which one
needs. The highest frequency of estimate which limits the
events seen by a given sampling frequency is known as the
Nyquist frequency (i.e., fN = % At). In other words, the
highest frequency cannot exceed half the sampling frequency.
Although power spectrum has a characteristic to discover
a hidden significant frequency, it is not able to measure
the phase angle for that frequency.

Figure 8 indicates the autocovariance function of the
twenty four year record after removing the 24th harmonic
and record mean. The 24th harmonic, the annual cycle,
removed 95.84 percent of the total variance. This figure
shows the relationships for the first 720 lags. The first
80 autocovariance coefficients have decreasing positive
values with an exponential decay. After that the auto-
covariance coefficients show approximately a sine wave form
with damped amplitude and with increased lag. Since the
autocovariance function has big positive values every 180

lag number (e.g., 180,360,540,etc.), the record probably

contains a half year cycle. The first 217 autocovariance
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coefficients have positive values which means that temperature
readings will follow the same tendency;for these lags. The
highest values of the later autocovarignce coefficients appear
at 378 day lag (positive) and 268 day lag (negative): This
figure provides useful information to point out the relative
tendency of water temperature residuals series.

With the variance spectrum technique it is possible
to determine weak cyclical components for a particular time
series record. If these cycles express sufficient regularity
in their respective periods of oscillation, one would expect
to observe local peaks and large values of variance in the
vicinity of their corresponding frequencies. The narrower
the peak, the more regular and discernible the cycle will be.
The cyclical component often is so irregular that the corres-
ponding spectrum shows only a concentration of variance over
the entire low frequency range (Fishman, 1969).

In order to determine the significant peaks and periods
with period less than two years, the maximum lag number is
chosen as 365. In other words, the residual wvariance
(annual component removed) will contribute over a frequency
from 0 to 365 for this twenty-four year record. Gunnerson
(1966) stated that significant values at zero frequency are
a measure of the variance associated with secular variations
which are revealed as long term increases or decreases. In

addition, he mentioned that some random of nonrecurring
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phenomena are contained in the zero frequency variance.
Therefore, it is highly significant that variance at zero
frequency is in accord with the presencéior absence of
significant trends. -

The variance spectrum of the residual daily temperature
series for periods less than 2 years is shown in Figure 9.
The dashed line represents the original estimated spectrum
and the solid line indicates the smoothed estimation. Semi-
log paper is used so that the high frequency band can be
exhibited more clearly. Several peaks (182.5, 60-66, and
23.5 davs) are apparent. However, a significance test with
the 95 percent probability limits indicates that only the
semiannual cycle is important. It should be mentioned that
the absence of the peak at a very low frequency (i.e. period
longer than half-year) doesn't mean the absence of a cyclical
phenomenon for that range. To increase the resolution, one
must either increase the maximum lag number (i.e. a wider
range 1is observed) or filter out the high frequencies. The
second approach (Thomann, 1967) was used to compute the
monthly residual mean, which results in a new residual series
of 288 months (24 years).

In order to gain more information from this record, the
variance spectrum of the monthly mean of the residual series
was computed with the maximum lag number equal to 144. 1In
other words, the first value has the period of twenty -four

years. The results (Fig. 10) show only four peaks above
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Variance Spectrum (OC"/Cycles/730 Days)
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Figure 9. The power spectrum of the residual
temperature series (annual cycle and
mean removed) for periods less than

2 years.
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the 95 percent significance level with periods of 24 years,
26 months, 14 months and 6 months. Note that the biggest
peak of this figure has no definite period since the‘second
frequency (i.e. 12 year period) also accounted for a large
portion of the variance.

The trend component is not obvious in this long-term
cycle if it does exist. The variance accounted for by the
zero frequency has a nonsignificant value (less than 0.1
percent of total variance). Therefore, it can be concluded
that most of variance at very low frequency is contributed
by the cycle with an approximate 24 year period. The trend
component almost can be ignored in this record or it can be
regarded as a very slight increase in the mean value.

Another simple and fast method to show this long-term
cycle is to use the 12 month moving average to filter out
short term cycles; the variance spectrum was calculated for the
new series (Fig. 11) and only 2 péaks remained after this
process. In Figure 12 the 12 month moving average and its
smoothed curve are shown. Except for the mid-portion of
the series, strong apparent variations of water temperature
occur. From the end of 1972 to the middle of 1976 is seen
as a relatively hot period. A feature of the period from
1962 to 1970 is a mean temperature about 0.5 C below the

overall record mean of about 15.5 C.
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In summary, the variance spectrum has shown that there
are several important cyclical components of water tempera-
ture and that the trend component is very weak. Those

results are summarized in Table 5.

Factors Controlling the Cyclical Components

Since some important signals have been noted in the
variance spectrum, it is possible to seek some physical
phencmena which might cause this behavior. The sunspot
cycle often is regarded as one of the basic mechanisms which
can affect phenomena such as the air temperature oﬂ earth.
The lunar cycle might be another factor which produces
fluctuations. In this study, we have concentrated on those
"external" factors of recurring nature which may affect the
water temperature record. The stages of investigation which
follow will be: 1) the periodic behavior of sunspot numbers,
2) sunspot and/or solar cycle effgcts on the variability of
water temperature, and 3) fluctuations on lunar cycle expected

to be seen in the water temperature record.

(1) Sunspot Behavior
A sunspot is "A temporary cool region in the solar photo-
sphere that appears dark in contrast to the surrounding hotter
photosphere" (Kaufmann, 1975). Ccunts of the number of sun-
spots visible at any given time have been recorded since the
time of Gallileo (1610). By the mid-1800's, it had become

clear that the number of sunspots varies periodically. The
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Table 5. The total variance of 24 years
water temperature series contributed
by the trend, cyclical, seasonal,
and irregular components.

Component Period Intensity
(year or month) (percentage of
total variance)
trend not obvious less than 0.10
cyclical around 24 years 0.44
26 months 0.21.
13-14 months 0.30
6 months 0.24
around 2 months 0.06
seasonal 12 months 95.84
irregular | = mmm——m—————— 2.81
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sunspot cycle is defined as being from one minimum to
another for the sunspot number. The yearly mean sunspot

number for years 1850 to 1973 is shown in Figure 13. An 11

year period has occurred, and the number reached a record
high value in 1959. However, the occurrence of maxima is
not strictly periodic and there often is a delay in the maxi-
mum (or minimum) based on the distribution of sunspots in
solar latitude and the magnetic field characteristics (Zirin,
1266). Some scientists believe the solar cycle has a 22
year period because the magnetic field reverses each 22
years. Each sunspot cycle may express different activity;
therefore each has been given a number beginning with the
middle 1800's. Recently, the sunspot maxima have occurred
in 1948, 1959 and 1970, and the minimum values in 1954, 1964
and 1976.

The periodicity of sunspots number is of interest to
many researchers. Sugiura (1977) énalyzed the Zurich sun-
spot record for the years 1800-1975 using the power spectrum
method. Several apparent peaks for this record were at
periods of 10.9, 5.1, 3.4, 2.0, 1.8 and 1.3 years. Some
additional minor peaks were noted from monthly data of sun-
spots for years 1954-1977 (Fig. 14) at 2.0, 1.4 (17 months),
1.1 (13 months) and 0.96 (11 months) year periods.

Many investigators have described the solar-terrestrial
relationship using air-temperature records. Shan (1966)

used the power spectrum analysis to show that for the air
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temperature series at three different cities which had monthly
records for over 50 years, the only significant energy in
these spectrum appears at the period of 12 months. No signifi-
cant energy was found corresponding to any known sunspot
periodicity. Currie (1974) found the solar cycle signal in
power spectra surface air temperature data from the North
American continent, and showed that the period of 10.6 + 0.3
years did exist. Gerety (1977) pointed out that cross-
spectral computations, using the time series of Zurich sunspot
numbers and seasonal temperature and precipitation records,
indicate that these series are uncorrelated at individual
stations with short-term records and when grouped together
into latitude bands. Recently researchers have been concerned
that volcanic dust might affect the temperature record
(Schneider 1975, Mass 1977).

After Kalinin (1954) mentioned that a quasi-periodic
geometric variation with a period bf about 2 years, and the
discovery of an oscillation of the zonal wind component in
the equatorial stratosphere of slightly more than 2 years
in length by Reed and Rogers (1962), many researchers began
to reexamine the periodic behavior of sunspot cycle.

Shapiro and Ward (1962) pointed out the possibility of a
spectral peak at the period of 25 months and suggested this
cycle might be attributed to the solar ultraviolet radiation.
Shan and Godson (1966) have shown the existence of the 26

months oscillation in the equatorial stratosphere. Currie
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(1973) interpreted the spectral peak near 2.15 year, as the
ninth and fifth harmonics of the double solar cycle and the
sunspot cycle in the geomagnetic horizontal and vertical
components. Sugiura (1977) demonstrated the existence of
highly correlated quasi-biennial variations in the geo-
magnetic field and in solar activity.

According to above information, it can be concluded
that the solar activity, such as the double sunspot, sun-
spot and quasi-biennial cycles, might affect terrestrial

features.

(2) The Sunspot Cycle and its Effect on Water Temperature
(a) Double-Sunspot Cycle: 22 years
It has been shown that the water temperature residual

record for years 1954-1977 has a significant component with
period around 24 years. This relation is examined by calcu-
lating the correlation coefficient‘between yvearly mean water
temperature and sunspot number (Fig. 15). The coefficient is
so low (-0.223) that it is concluded that there is no direct
influence from sunspot activity on water temperature. More
precisely, there is no strong linear correlation between
these yearly data, although it is possible that thewggn—linear
effects exist. Perhaps, as Schneider (1975) noted solar
radiation does not have a linear relationship to sunspot
number. He emphasized that solar radiation increases with
sunspot number, but eventually reaches a maximum and subse-

quently decreases.
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In order to define the variation of water temperature at
the same period as the solar cycle (22 years), the variance
spectrum method again is used to examine the signifiqance of
the water temperature oscillation. The variation of water
temperature for years 1954-1975, 1954-1964, and 1964-1975
is shown in Figure 16. Those peaks thought to be significant
in sunspot records exist during all three periods. The size
of the 22 year peak suggests that the solar cycle can effect
water temperatures. In fact the variance accounted for by
the 22 year peak is more than that accounted for by the 24
year peak previously.

Water temperature variations might be related to the
double-sunspot cycle. Chernosky (1966) suggested that the
last half of an even-numbered sunspot cycle is more active
than the first half, and that the converse is true for the
odd-numbered cycles. The years 1962-~1969 had more stable

behavior of water temperature and, perhaps, this might be

attributed to reduced sunspot activity.

(b) Sunspots Cycle: approximately 11 years
In Figures 10 and l6a, the second frequency (period
around 11 years) has high values. With the limited\igngth
of record, though, it is hard to determine whether it con-
tains both long cyclical component or not. However, as an
additional tool in evaluating the reality of the result, the

24 year record was re-analyzed by variance spectrum in 10

and 12 year segments. Those 2 segments of water temperature
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Figure 16. The variance spectrum of water temper-
ature residual series for years (a)
1954-1975, (b) 1954-1964 and (c) 1964-

1975.
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record are chosen to correspond with the sunspot cycles in
1954-1963 and the following 12 years. If in both records

the first frequency accounted for significant variance, it
means that those two sunspots cycles affect the watér
temperature individually. Non-significant variance was
accounted for by the first frequency for the first 10 year
period (Fig. 16) but the first frequency accounted for more
variance during the second segment of the record. Therefore,

apparently there is no significant variation of water temper-

ature corresponding to individual sunspot cycles.

(c) Semiannual Variation: 6 months

The semiannual variation is not explained well by the
spectrum of sunspot numbers. Chernosky (1966) investigated
the effect of double sunspot cycles on terrestrial magnetic
activity during 1884-1963. He stated that the semiannual
maxima in geomagnetic activity may_be due either to the
earth's heliographic latitude or to the sun's geographic
latitude. He suggested that the semiannual variation is very
little in evidence at the odd-even number minimum (such as
occurs between the 19th and 20th sunspot cycles) but is well
developed at the even-odd number minimum. If the water
temperature is affected similarly, this semiannual variation
should be greater during the years 1954 and 1976 than around
the years of 1964-1966. The amplitude of the semiannﬁal
variation of water temperature and the annual sunspot number

for years 1954-1977 are presented in Figure 17. The semiannual
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component was stronger in the years of 1954, 1955, 1976,

and 1977 than the years of 1965 and 1966. But this fails

to explain the variation for rest of years. Chernosky (1966)
also suggested that in general, the odd-number sunspot cycle
has more semiannual variation than even-number sunspot

cycle. Perhaps this provides a partial explanation as to
why the half-year variation of water temperature appears
bigger during the 19th sunspot cycle than during the 20th

sunspot cycle (see Fig. 16).

(3) The Lunar Cycle.

Since the earth's rotation around the sun has a large
impact on the water temperature record, perhaps the lunar
cycle affects the water temperature, too. The lunar month
is defined as the "synodic period which starts at new moon
and ends approximately 29.53 days later at the next moon".
Here, the variance spectrum is aga;n used to examine this
effect (Lund, 1965 . A segment of the variance spectrum
showing the frequency ranging from 30 to 60, with lag number
equal to 720 fails to show any significant peak corresponding

to the lunear period (see Fig. 18). The lunar period again

it

fails to be important when the maximum lag number is chosen
to be 118.
In summary, the cyclical portion of the water temperature

record contains a 22 year cycle, a 26 month 'quasi-biennial'

Cwg
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variation, a 14 month variation and semiannual oscillations.

All of those variations might be attributed to solar activity
which shows similar cyclical variations. However, the daily

water temperature series does not show any significéﬁt

oscillation with the lunar period.



CHAPTER IV

THE IRREGULAR COMPONENT AND A PREDICTIVE MODEL

In Chapter I the ;ong term, average values for each
calendar day were presented. In Chapter II, harmonic
analysis was used to demonstrate that most of the total
variance for yearly series and the mean long term record
is due to the annual cycle (the first harmonic). This
changed slightly from year to year, because the first
harmonic cannot account for random events. Also because
the cyclical components discussed in Chapter III have not
been defined explicitly, one cannot predict the influence
of these components on future water temperature readings.
One solution is to make a mathematicalvmodel which con-
tains as many components as possible. However, the result
can be very complicated and confusing. In this chapter,
a simple formulation of the non-seasonal component (after
the annual component and record mean are removed from the
original series) will be described.

This formulation is based on the Box-Jenkins (1970)
technique and provides a structured stochastic model 'to
simulate the annual trend and the irregular components of

the water temperature variation. This kind of model possesses

57
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a minimum number of parameters, may describe the stochastic
process with maximum simplicity, and can include most of
the total variance. The ability of this simple model to
incorporate the variance of the York River water tempera-
ture time series record will be determined.

Many researchers have used stochastic and/or determin-
istic processes to describe the characteristics of water
quality data sets. Almost all of the methods emphasi:ze
the behavior of past time series. But we also are concerned
about the future readings for time dependent data. The
Fourier series and the power spectrum techniques express the
behavior based on the frequency domain of the time series.
The Box-Jenkins method attempts to fit a model by express-
ing the time series as an output function which has a random
input and consists of several transfer functions. This
model not only can tell us something about the nature of the
system generating the time series But also can be used to
obtain forecasts of the future values.

The autoregressive, integrated, moving average model
(ARIMA) used in the Box-Jenkins method will be explained
in a later section of this chapter. We also will examine
water temperature forecasts for 3 days or longer and evaluate
extending the forecast to one year. The reliability of
the predictions which have specified probability limits

will be discussed.
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Carison and Watts (1970) have illustrated the method of
identifying the appropriate form of the general autoregressive
moving average model (ARMA) by use of the same autocorrelation
function (ACF) used in the Fourier series analysis. In
this technique the values of the parameters for the suggested
model of each series are estimated and the results checked
to suggest further modification of the model. McMichael
and Hunter (1972) developed a model for temperature and flow
in rivers using the Box-Jenkins method. This kind of model
divides each data set into a deterministic and a stochastic
portion. From the viewpoint of numerical analysis, it is
preferable to either a purely stochastic or a purely deter-
ministic model. It is noted that a small number of parameters
in this model can substitute for and contribute a greater
portion of the response than a large number of amplitude and
phase angle parameters in a Fourier series. Albert and Yu
(1976) examined the stochastic structure of some water
quality time series. They found that the ARIMA model could
provide very satisfactory results and that a first order
autoregressive model produces a 99 percent reduction in the
variance of the original data. A mixed first order auto-
regressive and first order moving average model was pre-
ferred for this data set. Huck (1974) used the Box-Jenkins
method to model chloride and dissolved oxygen data. It
was found that the best representation for the chloride
data was an autoregressive model and dissolved oxygen was

best described by a moving average process.
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In this study, the York River water temperature data
have been used to establish a deterministic-stochastic
model using the Box-Jenkins parametric model. The dgter-
ministic portion was decided first; this portion was
assumed to be the fundamental annual harmonic plus the
record mean. It is necessary then to specify the order of
the autoregressive model and the moving average model after
observation of the autocorrelation function values and the
changes in the wvariance of the residual series. The ARIMA
process was used to fit the stochastic process. The three
stage iterative procedure consisted of identification,
estimation and evaluating the accuracy of model (Box and
Jenkins, 1970).

Model identification includes use of the data and infor-
mation on how the series was generated, and evaluating the
appropriateness of the several kinds of parametric models
available. Model estimation inclﬁaes obtaining sets of
coefficients, using different methods to approach the real
data, and making the sums of square errors as. small as
possible.

The last step is to check the adequacy of the model
and determine how it can be improved and corrected if it is
inadequate. Each of these steps is described in detail in
Appendix C.

Four models were selected as ones which can reasonably

simulate the data. The choice was based on 1) highly
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similar coefficients, 2) very close values of the ratio of
the sum of the residual to the initial sum of squares,

3) approximately the same Q value, and 4) inclusion of
about the same amount of total wvariance. The charaégeris—
tics of the four models are summarized in Table 6 and
described in greater detail in Appendix C. Considering

the principle of simplicity, Occan's Razor, the best choice

is the (1,0,0) model.

ARIMA Parameters Fitted Model Percentage of
Type Total Variance
(1,0,0) |$,=0.91875 (1-0.918753)2t 99.4179
= a
t
(2,0,0) |$;=0.91019 (i=0.9lOl%B: 99.4180
$,=0.00919 | 0-00919B%)Z,
= a
t
(1,0,1) |$,=0.9199 (i—o.9199B)Et 99.4179
61=—0.008 =(1+O.008B)at
_ 25 _q_
(0,2,1) }6,=0.99 vz, =(1-0.99)a, 99.4259

Table 6. The Final Estimation for Each Possible Model.

The behavior of the (1,0,0) model can provide some

understanding of the stochastic processes affecting water
temperature. It implies that the deviation from the annual
cycle is dominated by the deviation for antecedent neighbors
and those residuals have decreasing correlation from near to
-far neighbors. In mathematical words, deviations from the

annual cycle will decrease with exponential decay.
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Once the best fit model has been selected, the fore-
cast function can be derived using relations between present

and past observed values. The minimum square error is

expected to explain how accurate this model is.

One of the basic concepts of the forecast model is

~

that the present disturbance value, Zt = Y- §t' might be

expressed as a set of linear functions of weighted present

and previous shocks that is:

Z, = Eo ag t ¥y a ¥, a0, .. (4-1)

The coefficient of agr io' is always regarded as 1.

If Zt+2is the value observed 2 days ahead and Zt(k) is the

forecast value with & day lead time, the purpose of this

exercise 1is to reduce the error between §t+2 and zt(z).
That is:
Zipp = Bpag t Br Bupgy F Uy Ao toeees
= (agygt B agpoy e Pgg8y)
g ag Y ¥y g8 toee)
= et(z) + zt(l) (4-2)

If the series of equation (4-2) is divided into two
portions, that is the part of the shocks that have not
happened yet and those shocks which have happened, then the
disturbance 2 units ahead is composed of the forecast
function corresponding to the lead time &. The forecast

error can be regarded as the output from a set linear filter,
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whose input is a set of white noise with 2 shocks. (See
Appendix C-1 for details).

From equation (4-1), since each current disturbed value

can be expressed as weight E on a set of shocks.

~

Zy = E(B) a, (4-3)

2

where ¥ (B) = §_ + ¥B + §ZB + ...

Lo

The ARIMA model is:

o(3)ve Z_ = 6(B) a

£ (4-4)

t
If equation (4-3) is substituted into equation (4-4) the

result is:
o (B)VIT(B) = 6(B) (4-5)

For a (1,0,0) model, based on equation (4-5)

vd=1 o(B)=1 .Te $(B) = (1-¢B)

(1-¢B) (1+ §;B + T,B° + ...) =1 (4-6)

Comparison of equations (4-5) and (4-6) shows that the same

power of B has the same coefficients on both sides.

U,-¢=0 T,=0

=P, 6+ ,=0 T,=T, - =0

~U 56 +05=0 =T, =0
Cega=¢d 551



The 2 term ahead for (1,0,0) model is:

~

(1=0B) Zyip = Zag
£t+£ - ¢£t‘+z-1 = Ze4g
when ¢=1  Z_, - ¢it = a1 Zeapm (D) + Et(l)
L gt(l)
ez (1) = of,
when 2=2 £t+2— ¢§t+l = 34 T Et+2— 2t(z) - %agy

= Zpyom Bp(2) = 0(Z q- 9Zy)

. /: ) _ 2 _ ~
. z2,(2) = ¢% 2, = ¢2,(1)
Therefore, it could be concluded that this forecast model

might be expressed in the following form for different lead

time but with the same origin:

7, (1) = ¢z, (4-7)
- o =12
2, (8) = ¢72,.= ¢ "2, (2~1) 2>2 (4-8)

Thus, tomorrow's water temperature can be predicted as:

z, (1) = ¢z,

yt(l) = Yi4q + 0.91875 °_(yt - yt)

= (a1+aosin(w(t+l) + 4.1956)-0.91875

- sin(wt + 4.1956)) + 0.91875 y,_

1.264 + 11.5953 - sin(w(t+l)

+ 4.1956) - 0.91875 - sin

(wt + 4.1956)) + 0.91875 y, (4-9)
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where, Yo = today's temperature reading
§t+l = annual harmonic corresponding value at
day t+1
§t = annual harmonic corresponding value at day t

Because the forecast error is expected to have minimum
mean square, an expected value equal to zero is the best.
The theoretical error for £ lead time is:

—2 -2 —2 — 2 2
V= (g ¥ ¥y P, e Uy 7)) S

where 62: the residual variance after model was fitted

Ej: the coefficients of weight on j, 3j=0, ..., 2-1

Thus the difference between the observed disturbance and
forecast function & days later is bounded within the square
root of V times €, the corresponding value of the normal
distribution (e.g. for the 50 percent probability limit,

£=1.96 etc.)

~ 2 —2 -2 X 2 2%
Zogq = Zp(2) % 8(@-0 Y] F e+ T, )60) (4-10)
8§, = 0.4879  Y,=1 V1= (0.91875)°, ...

The square root of forecast error variance actually can be

indicated as the summation of a geometric series with ¢2

factors.
-2 —2 — 2 _ 2 4 2(2~-1)
wo + wl + ..+ wl—l =14+ ¢~ + ¢ + ... + ¢

(4-11)
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Table 7 includes the first 20 forecast errors for
water temperature data. The forecast error will increase
with forecast lead time. It is found that the rate of
increase approaches zero at about the fifteen days léad
time. Actual temperature data and 1 day, 2 day, 3 day
forecasts for 1976 are compared in Figures 19 to 21.

These figures show that there is little difference be-
tween the forecast series and the actual function.

It is worthwhile to note that with a longer forecast
period, the "shift" phenomenon is more obvious. The
deterministic portion (seasonal component) of this model
is assumed to be a sine curve when the corresponding
value of the sine function is decreasing, the predicted
value is bigger than the actual value, and the contrary
result occurs when the slope of the sine function is
increasing. The reason might be that the water temperature
annual cycle is not perfectly described by a sine curve.
So, we can modify the short term forecasts by this general
rule: from July 20 to January 20, the forecast value should
be reduced a bit to approximate actual values more closely.
During the other half of the year, prediction should be
modified in the other direction. In the summer, the varia-
tion of water temperature is gquite small, thus the predic-
tion then is superior to other seasons.

In Chapter III examination of the autocovariance

function has shown that the water temperature record includes
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the half-year cycle and this phenomena might be explained
by geomagnetic field variation. Perhaps then the deter-
ministic portion ought to contain both the annual and the
semiannual variation. However, from Chapter II, it is
seen (Table 1) that the amplitude and phase angle varies
yearly for semiannual component. In other words, the
semiannual component will change with time. This might
conflict with the purpose of a deterministic function,
which is to define a response function which is easy to
calculate and accurate for any point in the time interval.
Another reason why this shift phenomenon occurred is that
the actual data used to compare with the predictions have a
large fluctuation of semiannual nature. Table 1 indicates
that the year which was used (1976) had the largest semi-
annual fluctuation (amplitude=l.8oc) for the period 1954-
1977.

In order to improve the predictions when the semiannual
fluctuation is strong, the deterministic portion of the model
of water temperature can be modified to contain both the
annual and semiannual cycles. The autocorrelation function
for the residual series when the half-year cycle is elimi-
nated is a function with exponential decay (see Fig. 22).
The best fit model is still the first order autoregressive
process (1,0,0) except the coefficient is changed to

0.91231. That model is:
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~ ~- 2 ~
Ye(R) = ¥eg ¥ 07— ¥y

= . + 0q sin(w(t+2)+ ocz) + a

0 sin(2w(t+24) + a4)

3

+ (0.91231)“(3;t - o - a, sin(wt + a,) -

oy sin (2wt + a4))

where
= the number of ¢ days ahead of prediction
¢ = the coe?ficient of the first order auto-
regressive process
ay = the amplitude of semiannual variation
o, = the phase angle of semiannual variation

The rest of parameters are the same as mentioned
previously.

For this modified model, 1) two more parameters need
to be estimated, 2) the residual variance only changes 0.01
(0.40971 to 0.39984), and 3) the ratio of the variation is
large (480:1). Hence, due to the simplicity and the above
tiny differences, it is suggested that this semiannual
variation can be ignored for most predictions.

The relationship between actual data and the predictive
function are summarized in Table 8. The total variance for
actual data and predictions are very close. The one day
prediction error is bounded by the 50 percent and 68.28
percent probability limits, while the other two predictions
have ‘errors near to one standard error. In addition, al-
though the predictions have greater total difference than

actual data for the entire year, the sums of those predictions
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are almost the same. Therefore, for short term predictions,
the deviation between actual data and the sine curve usually
can be ignored.
Predictions for three arbitrarily selected original
points are shown in Figure 23. None of the values for
the first fifteen days is outside the 95 percent probability
limit and only a few are near the 50 percent probability
limit. The predictions are for winter, spring and summer.
Longer simulations of water temperature data using

one known data point are shown in Figure 24. Because the

forecast error will be constant after about 15 days lead
time, the predictive function will follow the harmonic
curve. The equations (4-8) and (4-9) explain this phenomenon.

"N

Zt(l) = ¢Zt

It

v (1) =y 4 + 0ly, = v) (4-12)
~ _ 2,~
zt(z) = 072, 2>2

L

v (0) = ¥, + " Hy (-D)-3,)

-3 2 ;
= Yiag * Oy - ¥y (4-13)

rom equation (4-13), today's prediction is the
deterministic value plus ¢ times the difference between
yesterdays reading and its harmonic value. With an in-
creasing prediction period, the power of ¢ will increase
too (equation 4-14). But if ¢ is less than 1, somedays

later this exponential term will equal or be very close to
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zero. That means the predicted value is dominated by the
deterministic portion of the model and the influence of the
autoregressive operator disappears. Thus for long term
predictions when the temperature readings are not modified
by future shocks, the predictions will return to the
deterministic routine sooner or later. For higher order
autoregressive operators, the function goes back more
slowly.

In summary, the Box-Jenkins technique can provide a
daily water temperature predictive model. The best fit
for the non-seasonal component of the York River water
temperature record is the first order, autoregressive
process. This model gives good results for short term

predictions up to about 15 days ahead.
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NOTATIONS FOR CHAPTER IV

white noise process at time t (shocks at time t)
backward shift operator

order of differencing operator

normal random deviate

error of estimate of forecast made at time t with
lead time L

lead time for forecast

order of autoregressive process

estimate of statistic

order of moving average process

estimate of autocorrelation coefficients at lag K
normal deviate corresponding to probability level
series of daily mean water temperature at time t
annual harmonic corresponding value for day t's
water temperature

forward shift operator

observed value of series at time t

the deviation from mean of a series (or from a defined
deterministic function) at time t

forecast at time t of Z (L unit forecast ahead from
X t+L
time t)

moving average coefficient
sample variance of a time series

autoregressive coefficient

kth-order partial autocorrelation function

jth weight when autoregressive process is expressed
as weight infinite sum of previous shocks

dth-order backward shift operator
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mean of the entire series

jth weight when moving averace process is expressed
as weighted infinite sum of previous disturbances

polynomials of order g for a moving average process
polynomials of order p for a autoregressive process

: autoregressive integrated moving average process
(a series can be expressed by pth order autore-
gressive process, dth difference operator and gth
order moving average process)

autocorrelation function
partial autocorrelation function

sum of square when a series does exist autore-
gressive process with coefficient ¢ and moving
average process with coefficient 6

the number actually accounted for estimate coefficient
series mean of water temperature

amplitude of water temperature series is fitted to
annual sine curve

phase angle of water temperature series is fitted
to annual sine curve
frequency (in here, w= %%3 of water temperature data

is fitted to a annual sine curve



CHAPTER V

AN APPLICATION: THE RELATIONSHIP BETWEEN

WATER TEMPERATURE AND THE CONDITION INDEX OF OYSTERS

The variability of water temperature plays a very
important role in maintaining the normal existence and the
growth of agquatic biota. Many different impacts have been
documented for changing water temperature (Arnold,-1962).

It is known that temperature requirements are different for
each stage of the growth cycle. In addition, natural
reactions, such as diseases and competition, can become
more important when coupled with water temperature stress.
Because organisms can be affected by the variation of water
temperature in these many ways, i? attracts us to investi-
gate the relationship between these factors and daily-mean
water temperature.

The oyster is one of the most important seafood products
of the York River estuary. If we pay attention to the
quality of the oysters, this will show us the best time for
harvesting. Scientists have designed a method to express
the meat quality of oysters termed the Condition Index (CI).
This relative value can compare changes in yield from time
to time or location to location for oysters. It is defined

as the ratio of dry weight of the oyster meats in grams to
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the size of the shell cavity in cubic centimeters. It is
known that the higher values for condition index indicate
greater amounts and quality of meats for any given bushel
(Haven, 1962). The C.I. of oysters ranges from 3.0 to 12.0
and is classified by three groups based on quality. A
"poor yield" is classified as values between 3.0 to 5.5 and
"good yield", 7.6 and over. Values between those two classes
are regarded as average quality. Meat quality of York River
oysters has been average or below average, if all stations
are considered. The average was 6.2 for the years 1955-1971.

Monthly C.I. of oysters have been measured since the end
of 1969 to the present for three important estuaries in Vir-
ginia. The seasonal and long term tendency of that index
number can provide information for the harvest of the future.
The Pages Rock sampling station in the York River is near
Gloucester Point and a complete data set exists for this
station. The C.I. of oysters measured at Pages Rock for
yvears 1970-1977 is shown in Figure 25. Two apparent peaks
occur, one in late spring and the second in early fall.
The yearly average increased in the period 1974-1976 but
dropped back to a low level in late 1976. An especially low
average of C.I. of oysters occurred in 1973.

Water temperature might be one factor which affects
growth and mortality of oysters. Hence, in order to know the
relationships between the temperature and C.I. series, the

cross—correlation function was used.
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One can observe (Fig. 25) that the trend of the former
is more regular than the latter. Since both trends are
expressed as annual cycles, the monthly deviation from
particular monthly mean of this period can more cleaily
reveal this relative relation (see Fig. 26). There appears
to be no significant corresponding relationship through the
entire trend. Plots of pairs of corresponding temperature
and index deviations (Fig. 27) show that each section has
almost the same number of pairs. That means that even if a
direct relationship does exist, the coefficient will be
very low. Besides, it is necessary to consider that the
water temperature might affect the C.I. several months
later. Cross correlations for lags of 0 to 3 months are
0.053, 0.114, 0.146 and 0.182 respectively. Even though
there is an increasing tendency, they are all so small that
it is not reasonable to make a regression equation. Values
increased to about 0.33 for lags up to 12 months, although
such long term influences do not appear to be reasonable.

In conclusion, monthly meanh water temperatures are not good
indicators of monthly C.I. of oysters.

Arnold (1962) also has pointed out that aquatic organisms
can acclimate to higher or lower water temperature and the
former is easier than the latter. The sensitivity or toler-
ance of aquatic organisms to temperature changes (or levels)
also varies with age, size and season. Hence, it is possible

to seek some relative variations of water temperature through
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two successive index numbers. Several general rules are:

1. The obvious peak of this index always occurs in
June or July when the monthly mean water temperature is
around 24C. This was true in the years 1970, 1974, 1975
and 1976 for which the index number was over 9 (Fig. 25).
The years 1971, 1973, and 1977 did not have the high peak,
perhaps because of hotter weather in July (average tempera-
ture over 26C). Day to day fluctuations also might affect
the C.I.. The change in condition index of oyster from
March to July versus the number of days when water témpera—
ture was in the range of 21C-25C is shown in Figure 28,

The purpose is to see whether the increase of C.I. during
late spring and early summer is related to the accumulated
reaction of water temperature in a given water temperature
range. The correlation coefficient is moderate (0.561).
Slow acclimatization of the oyster to increased water
temperature might be the reason for this moderate corre-
lation.

2. Some minor peak usually occurs in September or
October when the water temperature has dropped back to the
range around 20C but this increase is slight.

3. Each major peak is very sharp. This might be ex-
plained that the oysters acclimate more easily to increasing
water temperatures. However, the oysters require more

dissolved oxygen at higher water temperatures. This may
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Correlation Coefficient=0.561
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The Day of Water Temperature (21<T<25)
in the Increasing Half-Cycle

Figure 28. The change in C.I. of oyster versus

the number of days the water temper-
ature ranged from 21C to 25C for
the months March to July.
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control the upper temperature which can be tolerated by
oysters and explain why there is a marked drop of the C.I.
in late summer.

4. The C.I. during the winter does not always'éeCrease
after the oysters have acclimated to the lower temperatures.
The C.I. value may increase slightly, e.g. years 1970, 1971,
1972, 1974, and 1977.

5. The water temperature of around 1l0C is critical for
oysters. If the spring is cold (water temperature less than
10C~-11C through March), the C.I. will decrease. This indi-
cates that for the oyster to be kept in cold water is disad-
vantageous. The relationship between water temperature during
the previous winter and the condition index in March is shown
in Figure 22. If this relationship does exist, one would
expect a warm winter to result in a higher C.I. value in
March. In Figure 22-A the minimum water temperature observed
during the previous winter is plotted versus the March C.I.

A correlation coefficient of 0.735 was calculated. Both the
number of days with temperature below 10C and "degree-days"
for T<10C were examined. The better correlation, r=0.723,
was for the degree-days (Figure 22-B). However the small
number of data points (8 points) does not allow us to define
these relationships as clearly or precisely as we might like.
The correlations are reasonablyv good for both indicators of

the previous winter's coldness.
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In summary, there is no direct relationship between
the monthly variation of water temperature and condition
index of oyster. It might be because those relations be-
tween the acclimatization of the oyster and water tempera-
ture are not linear. Besides, many other factors, such as
dissolved oxygen levels, quantity and quality of food
available, also affect the health and growth of oysters.
However, the ideal conditions to maintain high value of
C.I. seem to follow this rule: warm winter, early spring,
short summer and long autumn. More frequent sampling for
C.I. value is needed to define the relationship with water

temperature precisely.
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CHAPTER VI

DISCUSSION

(a) How to achieve a more satisfactory result using the

basic model.

The four basic components of the water temperature time
series (annual, trend, cyclical and random) have been derived.
However, in order to reach a more satisfactory result for
any given time series, some characteristics of the techniques
used in this study need to be discussed and specified. Note
that all of these four components will not occur for every
time series, depending on the length of the record and the
sampling interval. In this discussion it is assumed that a
time series is long enough to contain all four components.

In general, the presence of a trend in a time series
usually makes it difficult to examine the behavior of the
remaining cyclical, seasonal and irregular component, espe-
cially for economic time series (Fishman 1969). if\ggme
obvious trend can be seen from the plotting of the time
series, this component needs to be extracted first. The
difference operator usually is used to solve this problem.

The effect of this operator is to reduce a process from non-

stationary sequences to a stationary process. The order of
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the difference operator which is required to eliminate the
trend component is related to the degree of the polynomial
equation which best describes this trend behavior. In
general, if the nth differences are zero on the average,
then the trend will follow a polynomial of degree (n-1).
For instance, if a straight line gives the best description,
then the first differences (difference operator used once)
will have a non-zero average, but the second differences
will fluctuate around zero. In this study, a very strong
annual cycle does exist, but the yearly mean doesn't show
any apparent trend, (slope=0.072). Besides, it was found
that the average nearest to zero occurs at the first dif-
ference.

The next step is the choice of an appropriate function
which can present the general behavior of the seasonal and
cyclical components. Fourier analysis usually is suitable
because many periodic functions sﬁare, more or less, the
properties of sinusoids. Another advantage of Fourier
analysis is that the amplitude doesn't change with the
initial point of the sampling interval. The disadvantages
were noted at the end of Chapter II. It appears that if the
Fourier analysis is performed before the variance spectrum
is calculated, more information can be extracted.

More detailed knowledge of the cyclical behavior of a
time series, however, can be reached solely by variance

spectrum. Once an especially strong cyclical component



occurs, it will "block" the rest of the recurring behavior
which may or may not be significant. In order to be certain
of the regularity of a seasonal component or cyclical com-
ponent, an analysis of segments of the time series is re-
guired to show the consistency of each cyclic component.
The broad features of a cyclical component can be seen from
each segment from Fourier analysis or the variance spectrum.
It is not necessary to expect that each cyclical behavior
will be repeated and have the same magnitude. However,
this analysis can tell us if each component changes with
different time intervals. If so, one might seek the cause
of this change. For instance the approximately equal ampli-
tudes and phase angles show the annual component of the
water temperature record to be stable. However the first
12 years of the record behave differently at low.frequency
than the following 12 years of this 24 year record, al-
though both the 24 year period and the 12 year period ex-
press high values in the variance spectrum.

The moving average and seasonally adjusted method also
can be used to eliminate the effect of cyclic behavior in a
time series. But the disadvantages for both is that the
intensity of that cyclical behavior is not always known.
Except for definite recurring phenomena that are known,
the weighted moving averages or filters must be chosen
correctly. Besides, big errors can occur when the time

series is short.
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Even with an increased understanding of a time series,
sometimes it is hard to understand its nature totally.
Another, or a longer, time series might provide an explana-
tion for the behavior of this series. "Multiple tiﬁé
series analysis" seems to be necessary for a very thorough

and complete investigation.

(b) The advantages of a deterministic-stochastic model

over a purely stochastic model

The Box—~-Jenkins technique can provide predictions from
a simple parametric model which is generated by the ARIMA
process and is suitable for many time series. This method
can reduce effectively most of the total variance from a
time series. However, few investigators have discussed the
question of the limits of the predictions and the structure
of the model. In order to explain this, it is necessary to
indicate the advantages of a deterﬁinistic-stochastic model.

Many time series do not have an obvious deterministic
function. Therefore, a predictive model can be made only if
the whole series is regarded as the stochastic process. The
ARIMA process still can provide a satisfactory result. How-
ever, this kind of model might be related more to previous
disturbances than the combined deterministic-stochastic model.
For instance, McMichael and Hunter (1972) derived a stochastic
model using the daily mean water temperature. The character-

istic of their model is that today's disturbance (here, the
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disturbance is the reading subtracted from the mean value
of the series) is related not only to yesterday's disturb-
ance but also with that for the same day last year. In
practice, the disturbance which occurred last year is
unlikely to have any affect this year. The strong yearly
cycle needs to be substituted, otherwise this series will
remain non-stationary. A serious disadvantage of purely
stochastic models is that the forecasting error is related
to the standard deviation of the time series. Especially
for recurring time series, the forecasting error will be
large. The prediction also is limited by different sit-
uations (such as seasonal fluctuations) and affected by too
many terms.

This should be taken as the deterministic function.
Then a model can be selected for the remaining, stochastic
component. The stochastic model will provide information on

the behavior of the time series.



CHAPTER VII

CONCLUSIONS

The basic conceptual model of the water temperature
record which has been used in this study consists of a
trend component, a cyclical component, a seasonal component
and an irregular component each of which has been described.

The important findings are as follows:

(a) Long term trend component:

This component is not strong enough to express its
behavior in this 24 year, daily mean water temperature
series. It is known that the degree of difference operator
and the variance accounted for by the zero frequency in
the variance spectrum show the strength of this trend
component. With a zero order difference operator, the
trend component accounted for less than 0.1 percent of the
total variance. Most of the variance at low frequency is
contributed by a cyclical component with a period of 22

years.

(b) Cyclical components:

Recurring cycles have been found in this daily mean
water temperature record with the major periods being 22
years, 26 months, 14 months and 6 months. All four periods

are characteristic of solar activity. The lunar period
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(29.53 days) was not significant for this series. If these
recurring phenomena are due to solar activity, an interesting
exercise would be to derive a rule which can describe
roughly the behavior of water temperature within a double-
sunspot cycle. It is important to emphasize that the
cyclical components do not always have the same intensity
throughout a long time series period. For example the
greatest semiannual variation of water temperature occurs
around the even-odd sunspot minimum. The activity of
guasi-biennial oscillation is similar. The 14 month
oscillation is stronger during an even-numbered than during
an odd-numbered sunspot cycle. In fact, its intensity
during an even-numbered sunspot cycle is stronger than the
biennial and semiannual variations.

The suggested interaction between sunspots and water
temperature is as follows:

1) Solar activity is greateét during the first and
last five or six years of the 22 year solar cycle. Corre-
spondingly, .the water temperatures will show greater variation
during those periods (e.g. 1954-1959 and 1971-1976 of this
series) than during the rest of the cycle (e.g. 1960-1970).

2) At the even-odd minimum in the sunspot cycle both
the biennial and the semiannual variations tend to a maximum
(e.g. years 1954, 1976, 1977).

3) The 14 month oscillation of water temperature has

a stronger behavior during an even-numbered sunspot cycle.
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(c) Seasonal or annual component:

This component is so stable that it shows almost
identical amplitude (11.59 c) and phase angle (240 degree)
year by year. Over 95 percent of the total variance is
accounted for by this component for individual years and
the 24 yvear mean series. The higher order harmonics
(periods less than one year) do not show consistent ampli-
tude or phase angle. For this reason, the annual component
needs to be extracted first; then the more information can be

extracted from the residual water temperature record.

(d) Irregular (random) component: The remaining component
which is left after removing the above three components from
the original series is regarded as the irregular component.
This component has no observable pattern and is regarded as

the purely random phenomena.

(e) Non-seasonal component:

In order to predict the future reading accurately
(especially for the short term future), the non-seasonal
component can be assumed as the stochastic portion. Using
the Box-Jenkins technique a first order autoregressive
process was found to give the best fit predictive model for
this time series. Both portions, deterministic and sto-
chastic, accounted for over 99.5 percent of the total variance
of the original water temperature series. Reasonable predic-
tion can be made for 12 days ahead using this model, if one
standard deviation is taken as the termination point for the

forecasting error.



Appendix A: Daily average water temperature at
VIMS pier for years 1954-1°977.
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Appendix B. Long term water temperature statistics
for each calendar day of the vear at
Gloucester Point.
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Appendix C: The Box-Jenkins Technigue

C-1. The fundamental operators used in the Box-Jenkins
method
C-1-1. The deterministic and stochastic models
One might consider that a model or formulation called
the deterministic model, can be fitted exactly to the
behavior of a phenomenon. For example, we can calculate
the route of a ship navigated in known direction with
known velocity. However, it is hard, almost impossible,
to predict future behavior precisely because there exist
unknown factors which can affect the final result, such as
variable wind velocity and current direction can move a boat
off course. Therefore, it is assumed that no behavior can
be predicted exactly, but that it is possible to look for
the probability limits within which it would be. This kind
of process is said to be a stochastic process. Some
physical phenomena can be decomposed into two portions.
The first component is described by a true response function
which is easy to calculate for any instant of time. The
second portion is the stochastic process which can be

approached only by statistical theory.
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C-1-2. Stationary and non-stationary processes

If a stochastic process is in statistical equilibrium
about a constant mean level over long periods, this is
called a stationary process. On the contrary, a stochastic
process in an uncontrolled situation or one which has
different mean level with time qhanges (such as stock

prices frequently exhibit) exhibits non-stationary behavior.

C-1-3. Backward, forward and backward difference operators
Three operators are introduced to simplify the relation
between data. The first is the backward operator, B, which

is defined by BZ The current value multiplied by

£ = Zg-1-

a factor B is equal to the previous value. Hence BZZt =

= n, _
BZ 1 = 24 9 and furthermore B Zy Z,_n- The second
-1

operator, the inverse order for past operator (F =B ), is

the forward operator which is given by FZ, = Z there-

t t+17

n, _
fore F 2y Zt+n'

of F is to be estimated by the value n intervals in the

The present value times the nth power

future. The third operator is the backward difference

operator "V" which can be written in terms of B; VZt = Zt
-— —_ - 5 1 - 2 4 — -
Zt—l (1-B) Zt (the first difference); V Zt = (1-B)
2
7 = - = -
(“t Zt—l) Zt 2Zt—l + Zt—2 (1-B) Zt (the second
difference); hence VnZt = (l—B)nZt (the nth difference).

In this study, it will be seen that the backward difference
operator is a useful tool to distinguish a non-stationary

process from a stationary process.



C-1-4. The ARMA process and the ARIMA process

Shocks are random drawings from a fixed distribution,
usually assumed normal and having a mean of zero and
variance 62. Such a sequence of random variables agr
g 1+ @c_pr --- is called a white noise process. (Box
& Jenkins, 1970, p. 88). One concept of white noise is that
the next value for this process may not be predicted even
though one knows all of the previous values. One tries to
have the residual autocorrelation function of a time series
exhibit a random process as closely as possible; in this
way the model will be selected.

-~

Each shock, Z (where 2

£ is the deviation from the

t
mean or some other origin) can be estimated by the present

shock plus the weighted sum of either all previous random

shocks or all previous deviations.

~

They are Zt = a, + El a,_q + 22 ay_o + ...
= .
=a, + ¥ VY. a, . (C-1)
EE = e B
Zy Tapg v My Tyt Ty Zp o
=a, + % T. Z _a (C-2)
72 3 e

From equation C-1, if a set of weighted values is given, the
current disturbance it can be expressed by the sum of previous
shocks plus the present shock. This process is said to be

a moving average model.



Hence, the first order of moving average process is

defined by
z, = a, - eat_l = (1-6B) a, (C-3)
The moving average model of order 2 is given by
2, = (1 %B 62B ) a, ap elat—l eZat—Z (Cc-4)
and the moving average model of order g is given by
Z, = at--elat_l--ezat_z--....eqat_q
- - - 2 _ - a _
= (1 elB 62B ceee qu ) a, (C-5)

equation C-5 may be written as

eq(B) is called the moving average operator with order qg.
Similarly, equation C-2 also can be taken with the nuﬁber
of weighted values depending on the practical situation.
This process is called the autoregressive model of order

P-. ¢p(B) is the autoregressive operator with order p. The

first order of autoregressive model is obtained by

~ ~

Ze = 92, 1 + a..
(1 - ¢B) z,_ = a, (c=7)
The pth order of the autoregressive model is given by
(1 - ¢,B - ¢ZB2— —¢po) Z, = a, (C-7)
¢,(B) = (L-¢B~.... —¢po)
.. 6. (B) Z_ = a (Cc-8)
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It sometimes will be necessary to include both autore-

gressive and moving average terms in the model.

Thus, 2, = 0%, 1+ 60, ¥ ..o ¥ 02, + Ay
elat_l-....-eqat_q
¢p(B) Zt = eq(B) at (C-9)

is called the mixed autoregressive-moving average process

of order (p,qg) which is sometimes abbreviated to ARMA (p,q).
However, for non-stationary processes, the ARMA model is not
capable of covering the entire series. The complementary
method to be added is the difference operator "V" which is
required to acquire stationarity. (Box & Jenkins, 1970
chapter 4 & 6). Normally, it has a priority over the
autoregressive and moving average processes. Accordingly,

the ARMA model is modified as follows:

da - _
¢p(B) (1-B) ~ Z, = eq(B) ap
a > _ : -
or ¢p(B) v Z, = eq(B) ay (C-10)
C~2. Model identification

C-2-1. The ACF and PACF and their behavior as indicators

of ARMIA processes

To identify the model which should be built up, one
must determine the type of model which might be used and
obtain an initial estimate of the model parameters. In
practice, it is not necessary to know exactly which type

has the greatest probability of describing a given time
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series because there are different ways to investigate model
types. Eventually those different ways produce a set of
very similar coefficients after the model is checked. It
should be mentioned that in preference to a model which has
small residual variance but a high order, we would choose

a lower order model with a somewhat larger residual variance.
For instance, if the difference of residual variance be-
tween (1,0,1) and (2,0,0) models is one percent, the simpler
(1,0,1) model is preferred. This criterion is an important
factor in making the final selection from several similar
models.

The techniques which are used to identify the type of
model utilize the autocorrelation function (ACF) and partial
autocorrelation function (PACF). Before being described by
the ARIMA process, a time series should be modified to
remove the non-stationary situation, thus becoming a sta-
tionary stochastic process. Thosé two techniques can pro-
vide information which indicates which series include non-
stationary process. The characteristic of the ACF for
non-stationary series which is most apparent is that moderate
values continue and are not damped relative to the first
few values of the function. An alternative method is to
construct the first one or two differences of the original
time series and then examine the corresponding ACF until an
obvious stationary process is shown (i.e. the ACF dies out

quickly). Therefore, if the estimated ACF does not die
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out quickly, this will be a signal for a non-stationary
stochastic process. Box & Jenkins (1970) mentioned that
generally it is sufficient to inspect the stationary process
for the 0Oth, 1lst or 2nd order of the difference'opef;tors
used.

The partial autocorrelation function (PACF) is a minor
tool to assist in examining series. For the ARMA model
system the ACF and PACF have symmetric solutions to illus-
trate the same series. For example, the ACF for the first
order autoregressive model can be described as an exponential
decay with increasing lag value and the ACF for the first
order moving average model will tail off after the first
value. (i.e. the PACF for the first order autoregressive
model will tail off after the first value and the PACF for
the first order moving average model can be explained as an
exponential decay with increasing lag value).

If the ACF is expressed by the same formulation as

previously

( N-K _ N _ 2)
Y, =L (2,-7)(2 -7) T (2, -~ %)
K o2y Ot £+K bop E

then the PACF is defined as

Yy = Pg1Yy-o1 t %k2Y5-2 * k3¥y-3 * -

* 0k (k-1)Y5-r+1 T PkrY5-k (C-11-2)

here K=1,2,... j=1,...K
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Y. 1s autocorrelation coefficients
is the partial autocorrelation coefficients

is the jth coefficient in an autoregressive
process of order K

The PACF can be expressed directly as:

Y 2=1
[T
| Yo jil ®9-1,3Y2-3
bog = 7T : 2=2,K (C-11-B)
1 - =z RV
j=1 ¢2—l,j Yj
L .

where ¢2j 3J=1,2,...,%-1

= %p-1,5 7 ®02%0-1,2-5

Some common characteristics for the basic ARIMA model
types and forms of the ACF distributions are represented in
Table C-1. The (1,d,0) model means the current disturbance
Zt egquals a fixed proportion ¢l of the previous disturbance
Zt—l prlus the present shock ay . The autocorrelation function
decays exponentially to zero wheni.(bl is positive, but decays
exponentially to zero and oscillates in sign when ¢l is
negative. Yet the (o,d,l) model indicates the current
disturbance Z, equals the present shock a

t

a fixed proportion 6

£ subtracted from

of the previous shock a The ACF

1 t-1°
for this process has a cutoff after lag 1. In other words,
except for the one neighboring value, no relationship
exists for the first order moving average process. Other

models might be composed of these two basic types. The most

important terms for the (2,d,0) model are the two previous



order behavior the style of dis{ range
decays $.>0 $,<0
(1.4.1) . ||
exponentially ~1<g,<1
. ]
6ivo 0.<o
(0,d,1) only the first 1
a.c.f. non-zero | -1<8,<!
mixture of expo- $i7o dpyol divodgol )¢ $,<1
(2,d,0) -nential or ‘ 4)24.4)'4[
damped sine curve ¢._¢<'
2 (
only the first le'7° 6270 Bi7o oo | —1< g,<!
(0,d,2) a.c.f. non-zero L I| B, +0.<0
l 02—9|<O
@
decays exponen-— T"I"‘""— ' -l(tb‘(l
(1,d4,1) -tially from the
>3 first lag | ’
¢
I \ 4

Table C-1. The teeoretical behavior of the
autocorrelation functions for some
low order ARIMA processes.
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neighbor values etc. In addition, it is easy to see the
neighboring relation between disturbances for an autore-
gressive process is stronger than for a moving average process
at the same order. |

It is useful to know the nature of the ACF for both
simple and mixed models, so that this knowledge will aid in
interpreting real situations. It is necessary to emphasize
that the behavior is for theoretical situations; these dis-
tributions normally will not coincide absolutely with real
data. Box & Jenkins (1970) showed that after the theoretical
ACF has damped out, for real time series moderatively large
estimated autocorrelation coefficients can occur and some
ripples and trends are expected to occur too. It also is
suggested that closely related models need to be included and
identified at the same time because the result of such
comparisons is more accurate.

C~-2-2. Computed ACF's for Z, VZ, and V2

The estimated autocorrelations of 7, VZ and'VZZ for
water temperature residuals after removing the most signifi-
cant harmonic for the yearly cycle and record mean are shown
graphically in Figures C-1 and C-2. From Figure C-1, it is
observed that the values for the first 80 autocorrelations
die out with an exponential decay; then follows what looks
like a sine wave with diminishing amplitude. The mean level

is at approximately 0.05 unit. This stochastic process may
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be fitted by a mixture of exponentials and damped sine
curves, as has been revealed by Box & Jenkins' work. Some
imaginary roots might be included in this process, in which
case they contribute a sine term solution to the ACF for
the characteristic equation ¢p(B)==O and the resulting ACF
will follow a damped sine curve. Of course, the real root
portion for this characteristic equation could be indicated
as a damped exponential.

It should be remembered that the estimated ACF will
differ somewhat from the theoretical values. Considering
this idea, the series can be fitted by the (1,0,0) model or
the (1,0,1) model which only slightly changes the relative
cocefficients of the (2,0,0) model. For Figure C-2, the
first difference operator is used to modify the series and
the new ACF value computed again. Surprisingly, no wvalues
greater than 0.05 function units occur after the first 4
lags. The new series already approaches "white noise". The
first 4 values of ACF are not enough to construct a model.
If we check the second difference series of the ACF, it is
described well by a (0,2,1) model because the first value
is approximately equal to 0.5, and subsequent variations
are all less than 0.04 and around the zero line. It should
be noted that the higher order of the difference series can
make those shocks disappear. But a (0,2,1) model will be

investigated to determine its adequacy.
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The PACF is computed to confirm the nature of this
series. In Figure C-3, one notes that the first function
value is large, but none of the second to fifth wvalues is
over 0.04 function units. That is strong evidence that the
first order autoregressive model is appropriate. 1In
summary, the water temperature series can be represented

by the (1,0,0), (2,0,0), (1,0,1), or the (0,2,1) model.

C-3. Model estimation

‘C-3-1. Estimating parameters for the autoregressive model

The autoregressive model belongs to a linear process,
thus the least square estimate method is available. The

general form of the autoregressive model is:

~ ~ ~

Zt = ¢th_l + ¢2Zt_2-k... ¢pZt_p-+ ay (order=p)

The least square method is expected to reduce the magnitude
of the sum of squares between the observed and estimated

*

values as small as possible.

n . ~
S, b ) = 3 (Z, = ¢22, ~e-un-
1 P t=p+1 t 17t-1
2 ..
—_¢pzt_l) = minimum (C-15)

With differentiations of the sum of sguares, a set of

linear equations can be obtained with respect to ¢l"'”'¢p;

each equation is set equal to zero.
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If the order is 1, eguation C-15 becomes

n ~

~ 2 o
= - 7 =
S(¢l) E (Zt ¢1“t—l) minimum
t=2
and
n
39S = i~ =
~— ==-2 I 2z, (2, -¢,2,__,) =0
8¢l g=2 € 1'7t 17t-1
. n - n . -
L. %, =32 z_-z/z Z, 4 * %,
1,2, "t-1 "t/ 2, Ttml -l
Thus, the autoregressive model of order 1 is fitted to
the water temperature variation model. Its coefficient

is 0.91875.

For (2,0,0) model, the sum of squares ‘is

n

S(¢l:¢2) = t§3 (Et-_¢l£t—l'_¢22t-2)2 = minimum
3B _ 5 3 3 (Z, ~¢42, - =0¢.Z, ) =0

56, eos Ct-1 e T P1%e-1 7 P2%e-2

3 - 3 § %, (G 0,7 0.7 ) =0
39, eo3 £2 T P2 %e-1 T P22

The above equations can be arranged in a matrix form:

™o
*
N
h~s
N
83

s
S
N

™3
N2
N

t=3 t

Then ¢l and ¢2 can be determined by multiplying the inverse
matrix of the 2x2 matrix on the left side by the matrix

on the right side. The result is

¢l = 0.91039 ¢2 = 0.00919
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If only one parameter needs to be estimated, one can
alter the original equation to another form, then insert
the assumed value to find the region which has the minimum
square value of residuals. When this inserted value of
accuracy increases, the result is approached.

For instance, for the first order of autoregressive

model:
Zt = d)Zt_l + aJc
n n
2 ~ ~ 2
ra." = I (Z2_-92,  .)
i=2 J t=2 ° t-1

values can be chosen to determine under which value the
sunmmation of shocks square is minimum. In Figure C-4, ¢
is about 0.919 when the computed region is between 0.91

to 0.93.

C~3-2. Estimating parameters for the moving average model
Since it is hard to express the sum of squares in

explicit form, the moving averagefprocess also needs to

have the type of equation changed. For example, the first

order moving average model is expressed as:

N2
Il
W
|
D
V)

Since the expected value of the residuals a, is equal

t

to zero, therefore ao can be assumed zero.
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ab = 0 al = Zl
a2 = Z2 + eal e e e
an = Zn + ean_l

n 2
S(8) = I (at)

t=1

The sum of squares, can be obtained for different values of
6. For a higher order moving average process, this approach
can be followed but the final value will depend on two or

more corresponding values.

C-3-3. Estimating parameters for mixed models
The equations for the autoregressive-moving average
model also need to be transformed (Carlson 1970). The

first order mixed model is:

Ze = by Zpg tag T 0y a

If a value of el is assumed, .then the data Zl""’Zt

may be converted to a new data set tl’ t2, .oy t

n
t, =2y
t, = 2,
€ =2+ 6.t

This set of tn can be described as an autoregressive

e (C-16)
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From eguation C~16, parameter ¢ can be estimated as
previously mentioned for autoregressive model which normally
uses the least square method. The results are ¢l = 0.919
and ¢2 = ~0.008. The sum of squares computed from a pair

of ¢l and 0., values can be shown on the (¢1, 61) plane.

1
If the contours of constant sum of squares are sketched,

the lowest center can be observed as in Figure C-5. The

ocbserved values are approximately equal to ¢l = 0.9 and

® = 0.00. The parameters for the four possible models are

summarized in Table C-2.

C-4. Checking the adequacy of the models

Four models have been identified, and the parameters
which are used to fit that model also have been estimated.
Coefficients for some of the models are highly similar to
each other, such as the parameters for the (1,0,0) models,
since 6 =0.00. This seems to tell us that both these models
can express the same behavior if both are under the standard
error which is permissible for the estimated autocorrelation
function. However, for each model tested, the most important
step is to determine whether this model is adequate. If it
is not adequate, how can this model be altered to present
the true behavior. Thus, the checking process not only will
move us toward a complete model but also will give us more

confidence in the model chosen.
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36600 - Fe = 7. 6670 = ‘o (1°¢*0)
800°0- = 'g
T%eg000 +7e=T"Y2661670 - 'z 661670 = ¢ (T0"D)
Te = 7Y 6160070 = ¢
6160070137 6101670 -2 6T0T6°0 = ¢ (0°0°2)
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C-4-1. The ACF for residual series

The most common method used to check an assumed model
is to observe the distribution of the residuals using the
statistical behavior. The. probability distribution_ﬁay
produce a straight line such as was used in Chapter II.
The ACF again can play this important role for checking the
residual series. As we know, the theoretical autocorreiation
function is distributed around zero values for each lag
after a model is fitted completely. But due to slight
differences, the estimated ACF may be distributed approxi-
mately normally about zero with variance n_l based on
Baretetts' approximation. That means if the estimated ACF
is within the upper or lower bounds with a standard error
of n_l/2 (one standard deviation) one can still regard this
process as "white noise" behavior. However, at low lags
a reduction of variance can occur and the residual ACF can
be highly correlated. Those relaéions disappear quickly at
high lags (Box & Jenkins, 1970). Therefore, one can use
n_l/2 as the standard error to examine the distribution at
low lags. According to the above assumption, the standard
error is about 0.0213 for the 95 percent (two standard
deviation) confidence limit. In Figure C-6 the individually
computed and fitted models are shown. Apparently, except
for the first couple values at low lags, the estimated ACF
have only about one tenth the values outside the bound.
This result is associated with the length of series and the

choice as to whether a lag value is regarded as moderate

or high.
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*
C-4-2. Q wvalue and the residual variance checking

Usually, the Q=N ;2 ri2 whicﬁhis calculated by summing
the residual ACF multigiied by the number, N=n-d. If the
fitted model is acceptable, then this value, say Q, is
approximately distributed as Chi-square distribution with
degree of freedom (k-p-q), the maximum calculated lag value
subtracted from the order of the autoregressive process
plus the order of the moving average, and will fall between
the corresponding confidence limits for the Chi-square
distribution. Normally the 95 percent limit is to be ex-—
pected as the standard if this model is appropriate. From
Table C-3 the Q value is equal to 475.32 while the 5 percent
point for X2 with 364 degrees of freedom is 407.207. The
question to be considered is whether this sample is so
large that the maximum lag number, 365, is too low. There-
fore, we extend the lag values to 1095, and then calculate
the sum of residual ACF sqguared. bIt was found that even
though the value tripled, the Q value still cannot prove
that this model is adequate, because the Q value tripled
too. In Table C-3 are listed the Q values for each fitted

model. Unfortunately, none of them is less than the 90

percent limit wvalue. It i1s worthwhile to observe whether

*
Q value testing is the method which can check whether a
model is adequate or not from the residual ACF of
distribution.
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the moving Q value converges or not. A (0,2,1) model
residual ACF, which increases constantly, is shown in
Figure C-6d. This phenomenon indicates that high corre-
lations probably will appear for large lags. However,
especially low correlation values occur at low lags.

Now, we must pay attention to one of the most important
processes of this study, which is to find a model that
minimizes the sum of squares and produces a minimum total
variance. The variance of the original data is 70.14 cz.
The ratio of the sum of squares of the residual for each
model to the initial sum of squares is a good indicator of
the best model. Table C-4 presents some of the statistical
results to aid in the final decision. The (1,0,0), (1,0,1)
and (2,0,0) models still have very similar solutions. The
percentage of total variance is reduced to less than 0.06.
The best choice is the (1,0,0) process which has the most
simplicity and lowest order. The 'final question to be
considered is how to modify the model when it is inadequate.
Box & Jenkins (1970) suggested that making another ARIMA
model from the residual series, then combining this model
with the original model.

For example, suppose that bt is the residual from the
model C-17 and this model appears to be nonrandom.

db~

cp'b(B)v zt = eb(B) Bt (C-17)
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Using the ACF of bt' it can be used to build a model

for which the residual is random.

d
a —
¢a(B)V b, = Ga(B) a

£ (C-18)

t

Substituting C-18 into C-17, we have a new model:

dy da .
d>b(B) . ¢a(B)V v 7, = eb(B)-ea(B) a

£ (C-19)

t
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