Primary Production and Plant Community Structure in a Tidal Freshwater Marsh

Damon G. Doumlele
College of William and Mary - Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Ecology and Evolutionary Biology Commons

Recommended Citation

Doumlele, Damon G., "Primary Production and Plant Community Structure in a Tidal Freshwater Marsh" (1976). Dissertations, Theses, and Masters Projects. Paper 1539617471.
https://dx.doi.org/doi:10.25773/v5-g8w0-xt58

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

PRIMARY PRODUCTION AND PLANT COMMUNITY

 STRUCTURE IN A TIDAL FRESHWATER MARSHA Thesis
Presented to

The Faculty of the School of Marine Science The College of William and Mary in Virginia

Jn Partial Fulfillment
Of the Requirements for the Degree of Master of Arts

\qquad
by
Damon George Doumlele 1976

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Arts

Approved, May 1976

Michael E. Bender, Pho.
Kenneth I were
Kenneth L. Webb, Ph.D.

ACKNOWLEDGMENTS

I express sincere thanks to my advisor, Dr. Gene M. Silberhorn, for his invaluable guidance and field assistance during the course of this study. I am also indebted to him for his help in identifying many of the less common plant species.

Thanks also go to: Drs. Wass, Bender, Webb and Neilson for critically reviewing the manuscript, the VIMS art department for constructing the figures, and Linda Jenkins for typing the final manuscript.

Finally, I am grateful to my parents for their support, and to my wife, Carol, for her patience and encouragement.

This project was funded by the Commonwealth of Virginia, Wetlands Research.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS iij.
LTST OF TABLES V
LIST OF FIGURES vi
ABSTRACT. vii
INTRODUCTION. 1
REVIEW OF LITERATURE. 2
Productivity of Marshes. 2
Salt and Brackish Marshes 2
Freshwater Marshes. 3
Species Distribution and Community Structure of Marshes 4
Marshes in General 4
Salt and Brackish Marshes 5
Freshwater Marshes. 5
MATERIALS AND METHODS 7
Selection of the Study Area. 7
Sampling Procedures. 10
Determination of Standing Crop and Net Primary production 11
Determination of Species Diversity 11
Index of Sociability 12
Index of Similarity and Clustering Methods 13
RESULTS ANU DISCUSSION. 14
General Observations 14
Productivity Analysis. 16
Community Structure. 26
Dominance and Density 26
Frequency 28
Sociability 30
Diversity 34
Plant Associations. 41
Competition and Changes in Community Composition 43
SUMMARY 46
APPERDIX. 48
LITERATURE CITED 54
VITA. 59

LIS'T OF TABLES

Table Page

1. Standing crops and production rates for the period May-October, 1974 17
2. Species frequency, density and dominance for the 10 most commonly sampled species 2.7
3. Average index of sociability for all species sampled 31
4. Index of sociability for the 10 most commonly sampled species 32
5. Relative frequency, density and dominance for the 10 most commonly sampled species 35
6. Species importance values and importance probabilities for the 10 most commonly sampled species 36
7. Species richness, evenness and diversity based on the 40 quadrats sampled 38

LIST OF FIGURES

Figure Page

1. Map of eastern Virginia showing location of SweetHall Marsh .82. Map of study area showing marsh, swamp andtransect locations9
2. Comparison of changes in standing crop biomassamong Leersia oryzoides. Peltandra virginicaand the total plant community. 19
3. Comparison of changes in standing crop biomass among the seven most productive species, excluding Peltandra virginica. 20
4. Comparison of changes in daily production rate among Leersia oryzoides, Peltandra virginica and the total plant community.21
5. Comparison of changes in daily production rate among the seven most productive species, excluding Peltandra virginica 22
6. Comparison of frequency-class percentages for each sampling. 29
7. Comparison of changes in the index of sociability for five common marsh species. 33
8. Index of diversity for quadrats of Transect 3 foreach monthly sampling.40
9. Dendrogram of the 10 most common species in August based on similarity indices 42

ABSTRACT

Annual net primary production and indices of community structure for Sweet Hall Marsh, a tidal freshwater marsh in Virginia, were determined. The total marsh community sampled produced approximately $755.16 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$, with Peltandra virginica accounting for over half the amount. Other major producers were leersia uryzoides, Polgacnum punctatim, Pontederia condata and Aneilema keisak.

Species diversity was highest in August. Both diversity and the species distribution pattern were strongly influenced by elevation and the effects of the presence of shrubs and trees.

The community was found to be largely dominated by Peltandra from spring through midsumner, but consequent die-back of this species allowed other species, namely Leersia, to increase in importance toward the end of the growing season.

INTRODUCTION

Investigations of primary productivity and community structure in tidal marshes have increased in number in recent years, mainly as a result of the discovery of their importance in estuarine production (Odum, 1961). The abundance of extensive salt and brackjsh marshes on the Atlantic and Gulf coasts of the U.S. made them primary study areas, particularly in regard to productivity, nutrient cycling and species distribution.

Studies of freshwater marshes in general are extensive, but most have been done on inland, non-tidal marshes. Research in tidal freshwater maxshes along the Atlantic coast is almost nonexistent, due to their scarcity in comparison with salt and brackish marshes, their commonly small size and their soft substrates which hemper field activities.

Most of the few studies of tidal freshwater marshes deal with maxsh classification. Studies in productivity and communty structure are few; hence this investigation was undertaken. The objectives were to: 1) delineate plant communties within the marsh, 2) determine net primary productivity of the most common marsh species, 3) detemine species diversity with respect to time of growing season and location within the marsh, and 4) determine interspecific relationships.

REVIEW OF LITERATURE

Productivity of marshes

Salt and brackish marshes
Odum (1961) reported Spartina alterniflora production in a Georgia salt marsh to be approximately $2242 \mathrm{~g} / \mathrm{m}^{2}$, and this high source of nutrients (the salt marsh) has since become the object of numerous productivity studies (Keefe, 1972; Hatcher and Mann, 1975). Most of the work has dealt with primary productivity of higher plants, although some authors have included macrophytic algae and phytopiankton (Udell et al, 1969) and faunal relationships (Day et al, 1973). Spartina alterniflora, because of its relatively high abundance, has been the most intensively studied marsh plant, but considerable attention has been given to other species. In irreg-ularly-flooded salt marshes of North Carolina, annual net productivity of Iuncus roemerianus has been determined by Waits (1967) and Foster (1968). Standing crop values have also been reported for Spartina patens (Waits, 1567; Wass and Wright, 1969) and Distichlis spicata (Wass and Wright, 1969).

Primary productivity studies in brackish marshes have been conducted mainly for comparisons with results of salt marsh investigations. In Virginia, Mendelssohn (1973) compared three marshes-two brackish and one salt--in terms of productivity and soil and tissue nutrient concentrations, and Wass and Wright (1969) reported
standing crop values for various salt, brackish, and freshwater marsh species. Odum and Faning (1.973) compared productivity of Spartina cignosuroides in a Georgia brackish marsh with that of Spartina alterniflora in a salt marsin and found that the latter equaled or exceeded the former. The authors hypothesized that even though S. cynosuroides spends less energy in osmoregulation, neither does it have the benefit of as much water-flow energy.

Mreshwater Marshes
Productivity studies on freshwater marsh plants have focused primarily on Phragmites australis ($=P$. communis) and Typha latifolia. Considerable work has been done in Britain, where standing crop and productivity values were obtained for Phragmites and Typha by Buttery and Lambert (1965), Pearsall and Gorham (1956) and Gorham and Pearsall (1956). Westlake (1963) compared fertile reed swanps with other terrestrial communities worldwide and concluded that they are apparently the most productive temperate communities, producing 30-45 metric tons per hectare per year.

In the United States, Van Dyke (1972) reported standing crops at different times of the year for. Phragmites and other plants in an Iowa marsh, and McNaughton (1966) investigated changes in Tupha bionass along a transect from North Dakota to Texas. Much research has been done in the South on various marsh and swamp species. Boyd and Hess (1970) recorded Typha standing crop and nutrient levels over a large area of the Southeast, and Wass and Wright (1969) listed standing biomass for Zizania aquatica, Leersia oryzoides, Phragmites australis and Nuphar luteum, as well as for Typha. Other less common plants such as Justicia americand and Alternanthera philoxeroides
(Boyd, 1969) and Eichornia crassipes (Penfound and Earle, 1948) have also been studied.

Although extensive work has been done on single species or monotypic communities, few studies have been carried out in vegetationally diverse freshwater marshes. Jervis (1969), in determining community production in a diverse New Jersey marsh, found that the average ($9.50 \mathrm{~g} / \mathrm{m}^{2} /$ day $)$ and maximum ($20.94 \mathrm{~g} / \mathrm{m}^{2} /$ day) productivities were among the highest reported for natural vegetation. Good and Good (1974), also in New Jersey, obtained aerial and subaerial standing crop values For community types in a tidal freshwater marsh and found a generai agreement with values taken from nearby marshes.

Species Distribution and Commenity Structure of Marshes
Marshes in General
Anong the earliest studies of marshes are those which relate to the delineation of plant communities or species zones (Harshberger, 1909; Johnson and York, 1915). Penfound and Hathaway (1938) described 11 commuity types among 7 Louisiana marsh transects ranging in salinity from salt to fresh and listed presence and relative abundance of each species in each community tpye. Wells (1928), in a comprehensive study of terrestrial plant comunities of the coastal plain of North Caroline, described salt and freshwater communities as well as successional relations. In New Jersey, salt, brackish and freshwater communities of Island Beach State Park were described and mapped by Martin (1959) In Virginia, Wass and Wright (1969) gave floristic descriptions of a variety of aquatic communties, and Kerwin (1966) studied changes in commity structure along a sait-to-freshwater gradient.

Salt and Brackish Marsines
Research related to species distribution in salt marshes has centered on species zonation and the controlling factors. In delineating zones of algae and seed plants in Cold Spring Harbor, New York, Johnson and York (1915) concluded that factors which influence distribution include subtratum, currents, salintiy and water temperature, but primarily tide levels which, in turn, control evaporation, aeration and light supply. The influence of tides and marsh elevation on species zonation has since been well studied in many localities. Yapp et al. (1917) Iooked at zonation and plant associations in a British estuary in relation to altitude, and similar studies have been conducted in the U.S. (Miller and Egler, 1950; Adams, 1963; Kerwin and Pedigo, 1971).

Communty structure studies in brackish marshes are scarce in comparison with other marshes. In Virginia, Mendelssohn (1973) examined communty composition and species dominance in two brackish marshes and a salt marsh, while Flowers (1973) studied zonation and succession in two brackish marshes in Maryland and concluded that marsh elevation exerts the greatest influence.

Freshwater Marshes

As one progresses from salt to freshwater marshes, plant diversity increases dramatically; lateral zonation is correspondingly reduced (Gabriel and de la Cruz, 1974); and variation in species compozition among marshes is thus increased (Martin, 1959). Causes of this variation are apparently numerous and complex, as Martin states that water table depth, ground water pH , ground water salinity
and substrate composition revealed no gradient along which to arrange species variation in different marshes in New Jersey.

Community structure studies in freshwater marshes have not been as concerned with zonation as in salt and brackish marshes, since species zones are not normally as distinct. Van Dyke (1972) calculated species dominance and density values for an Iowa marsh, and Jervis (1963) named and described 10 communities in Troy Meadows, N. J. and listed physiographic, edaphic, climatic and biotic influences on community composition.

MATERIALS AND METHODS

Selection of the Study Area

Sweet Hall Marsh, the area chosen for this study, is located approximately 19 km from the mouth of the Pamunkey River, a tributary of the York River, Virginia (Fig. 1). It is the fourth of the eight major fresh-mesohaline marshes and swamps of the river, which include some of the most extensive tidally-flushed wetlands in the $\mathrm{U} . \mathrm{S}$. Geologically, the area is part of the fluvial depositional system of the coastal plain of Virginia (Onuschak, 1973) and is characterized by such features as marshes, flood plains and meadering streams.

The marsh consists of over 444 ha of undisturbed wetlands, including 29 ha of wooded swamp and 30 ha of water in streams at least 15 m wide. There is also a 7.4 km border with the river, the salinity of which varies from 0 to $5 \mathrm{o} / \mathrm{oo}$, depending on the flow (Marcellus, unpubliched data).

The sampling area (Fig. 2) is located in the northwest sector and consists of four parallel belt transects which extend from a transverse creek to the wooded swamp. Originally, the transects were intended to extend into the upland woods bordering the swamp, but field conditions made this unfeasible.

Figure 1. Map of eastern Virginia showing location of Sweet

Hal1 Marsh.

Figure 2. Map of study area showing marsh, swamp and trensect locations.

Sampling Procedures

After a preliminary reconnaissance in February, 1974, trensects and sampling quadrat markers were established with the aid of U.S.G.S. topographic maps and aerial photographs. Sampling began in late April, when the vegetation was sufficiently high, and continued monthly through October, when most of the plants had died back. During each sampling, a one-meter-square frame was placed on the ground over each of the 40 quadrat markers, and data were taken from the plants Iocated within the frame. Data recorded included species present, number of individuzls of each species or species density, average species height and species coverage. Where certain species existed as tussocks or clumps, such as Peltandra virginica and Carex stricta, the clumps were each counted as one individual. Species coverage was defined as the percentage of the quadrat covered by a species if the shadow of the plants were vertically projected on the groand.

During the season over 80 species were identified, both fron sampling plots and from nearby areas'and are listed in Table Al of the Appendix.

Near each quadrat was chosen a $0.1 \mathrm{~m}^{2}$ plot of similar species composition in which all of the above-ground vegetation was clipped and brought back to the laboratory for determination of species biomass. Samples were separated by species, washed, placed in paper bags and allowed to dry at $120^{\circ} \mathrm{C}$ in an oven. This unusually high temperature was deened necessary in order to dry certain species such as Peltandra and Pontederia, which have a high water content, before they became covered with fungi. The dried samples were weighed by species to the neacest 0.01 g .

The above procedures were followed for each monthly sampling through September. A sampling was attempted on October 31, but too little living vegetation was left to ensure reliable data. Samplings during the late fall and winter months were not made because of the many duck hunters in the marsh.

Detemination of Standing Crop and Net Primary Production

Standing crop of each species was calculated as the dry weight per square meter for a given sampling date. Although 37 plant species occurred among the 200 clip samples taken (40 per month), only standing crop values for those species found in over 10% of the August clip plots were tabulated separately, as the other species were too scarce for dependable results.

Annual net primary production for each species was equal
to the maximom monthly standing crop value, and productivity for the totel comminty was the sum of these values (Odum, 1960; Jervjs, 1969). Daily production rates were obtained by dividing the difference between two consecutive standing crop values by the number of days within the interval. Changes in dead standing crop could not be determined. since most of the species sampled were very fleshy and decayed rapidly after death; also, vigorous tidal flushing tends to remove most of the litter from the marsh.

Determination of Species Diversity

Species frequency was defined as the percentage of the 40 quadrats in which a species occurred. This index, along with species

Index of Sociability

The tendency of a species to have a clumped or contagious distribution is expressed by the index of sociability (Whitford, 1949; Daubenmire, 1968), which is obtained by dividing the species frequency, expressed as a decimal, into the species density. A high index indicates a high degree of aggregation, and a low index indicates a more random or regular distribution. The index of sociability was
calculated for all 37 quadrat species for each sampling date, and averages for the season were taken.

Index of Similarity and Clustering Methods

The index of similarity or Sorenson's index (Kontkarien, 1957) Was used as a measure of the association between two species and is calculated as follows:

$$
Q S=\frac{2 c}{a+b} \times 100
$$

where

QS = Sorenson's index
$a=$ Number of quadrats in which species A occurred
$b=$ Number of quadrats in which species E occurred
$c=$ Mumber of quadrats in which both species occurred
This inder was calculated for all possible cominnations of
the 10 most comnon species during the August sampling. Clustering was then performed using the weighted pair-group method (Sokal and Sneath, 1963), and a dendrogram was constructed.

RESULTS AND DISCUSSION

General Observations

In Sweet Hall Marsh there exists, in addition to open marsh, an extensive area composed of both herbaceous and woody vegetation, referred to as swamp in this paper. Within the swamp, two, and possibly three communities were recognized. The mature swamp borders the fastlands and is a dense-canopied community in summer, consisting of laxge trees such as Nyssa, Acer and Fraxinus; an understory of Viburnum, Smilax, Myrica and Cornus; and an herbaceous flora similar to that of the open marsh. The substrate of this community is typically a very soft muck and at high tide is usually covered with severa. centimeters of water. A second swamp community borders the open marsh in certain areas and is less densely populated by trees and shrubs than the mature swamp. Mostly small individuals of Acer, Rhus and Viburnum comprise the woody flora of this second swamp type, with the herbaceous vegecation consisting of Osmunda regalis, Impatiens capensis, Polugonum aidioliun, Tupha angustifolia and other open marsh species. The substrate of this community is also very soft but is considerably covered by solid tussocks of Osmunda and interwoven with roots of trees and shrubs. A possible third type of swamp community is the ecotone between the swamp and the open marsh. However, the flora of this region is largely a mixture of the swamp and marsh floras and thus may not be distinctive enough to classify the area as a separate commentit.

The effects of trees and shrubs on herbaceous marsh vegetation are generally unknown, but several obvious influences were observed during the course of this study. In 1974, new shoots of Pedtandra appeared in Sweet Hall Marsh as early as February 13 and averaged 8 cm in height by March 28, with the tallest individuals growing in the swanp and on creek banks. The pattern of tall Pedtandra in the swamp was prevalent throughout the growing season and extended to other species as well. It was observed that neariy all herbs in the swamp sprouted earlier, flowered earlier and appeared greener and more robust than those growing in the open marsh. The reasons for this are not clear, but it is possibly related to shading or increased fertility of the soil from decaying leaves and wood.

Factors affecting vigorous growth of Peltandra on creek banks may be related to those which promote the similar growth of lall Spartina alternfolora in salt marshes (Romig, 1973), the main factor being high anounts of dissolved oxygen in the soil water. Romig hypothesized that creek bank aeration and drainage is due nct only to nearness to the tidal creek, but also to burrowing crabs such as Uca, which are very abundant in Sweet Hall Marsh.

The trees were generally not as tall as those of the nearby uplands, and this difference can be detected from aerial photographs. The deciduous woody plants also lost their leaves earlier in the fall Than did their upland counterparts, and thus the two regions could be easily distinguished from a distance at that time of the year.

pyoductivity Aneysis

Results of the standing crop and productivity determinations are shown in Tabie 1 and Figs. 3, 4, 5 and 6; clip frequencies are Iisted in Table A2 of the Appendix. Productivity and standing crop for Peltandra were so high in relation to other plants that it was necessary to graph Peliandra in separate figures with compressed vertical axes (Figs. 3 and 5) so that the curves of the less productive species could be analyzed. The production rate was assumed to be zero at the initial sampling, although some production, especially in Pedtandra, undoubtedly took place before that date.

It can be seen from Fig. 3 that even though the curve for the standing crop of the total community is a resultant of the 37 spectes sampled, the shape of the curve is largely influenced by peltandra, which accounted for $53 \%\left(395.72 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}\right)$ of the total comminty production. Apparently, the environmental conditions found in Sweet Hall Marsh are very nearly the optimum conditions for Pettandra, as few of the clip samples did not contain at least one indjvidual.

Peltandia, Pontederia cordata and Leersia oryzoides are the only common plants which produced at high rates during May and the early part of June, with most of the others reaching their highest peaks in August (Figs. 5 and 6). A few species such as Leersia, Aneilema keisah and Polygonum arifolium experienced a secondary rise in their production rates during late July and early August after a previous productive perjod in May. Possible causes of these twin peaks axe changes in competition among species during the season, the production of flowers and fruits later in the season, and the ability of cestain species to produce new foliage after the first leaves have

$$
\begin{gathered}
\text { TABLE } \\
\text { STANDINC CROPS (} G / M^{2} \text {) AND PRODUCTJCN RATES (} G / M^{2} / D A Y \text {) FOR THE PERIOO MAY-OCTOBER, } 1974
\end{gathered}
$$

	May 3	June	8	JuIy		Aug		Sept		
Species	Initial. Standing Crop	Standjng Crop	Rate	Standing Crop	Rate	Standing Crop	Rate	Standing Crop	Rate	Annual Net Froduction
Peetandra virginica	279.37	330.45	1.42	396.72.	0.98	379.31	-0.18	91.53	-2.10	396.72
Leersia oryzoides	1.83	13.71	0.33	28.93	0.23	55.76	0.23	57.95	0.02	57.95
Polygonum punctatum	0.04	0.73	0.02	17.96	0.25	31.78	0.14	45.29	0.10	45.29
Pontederia cordata	2.29	18.13	0.44	30.84	0.19	26.94	-0.04	29.10	0.02	30.84
Ancilema keisak		2.95	0.08	8,02	0.08	22.23	0.15	.16.33	-0.04	22.23
Polygonum arifolium	0.04	1.39	0.04	2.32	0.01	8.43	0.06	13.55	0.04	13.55
Impatiens capensis	0.01	0.29	0.01	2.89	0.04	6.62	0.04	6.51		5.62
Eleocharis quadraigulata	0.05	0.25	0.01	3.09	0.04	2.73	-0.01	3,77		3.17

Figure 3. Comparison of changes in standing crop biomase anong leersia oryzoides, Peltandra virginica and the total plant community.

Figure 4. Comparison of changes in standing crop biomass among the seven most productive species, excluding Peltandra virginica.

Figure 5. Comparison of changes in daily production rate among Leersia oruzoides, Peltandra virginica and the total plant conmunity.

Figure 6. Comparison of changes in daily production rate among the seven most productive species, excluding Peltandra virginica.

died (Wass and Wright, 1969). A fourth cause hypothesized by Penfound (1956) may be differential changes in rates of photosynthesis and respiration. During the hot summer, photosynthesis decreases, respiration increases and productivity therefore decreases. In late summer and fall, the trend is reversed, hence a secondary production peak. Similar phenomena have been observed by Waits (1967), Boyd (1970) and Mendelssohn (1973), in which freshwater marsh production has been observed to peak in spring and early sumer. Earlier productivity maxima for Peltandra, Pontederia and Leersia could also possibly be due to initial translocation of material stored underground during the winter to the new aerial shoots, a phenomenon known to occur in Typha (Jervis, 1969). The productivity peaks of these eariy producers and those of the other plants cause the productivity curve to be consequently two-peaked (Fig. 5).

Maximum standing crops, for the most part, occurred in late August and early September, exceptions being Peltandia ani Pontederia, which peaked in July; Aneilema, which peaked in mid-Angust; and Poligonum punctatum, which reached a maximan in late september. Peltandra, as mentioned previously, was one of the first species to produce new growth in the spring; this is evidenced by the fact that as early as May 1 the plant had already produced a standing crop of $279.37 \mathrm{~g} / \mathrm{m}^{2}$ or over 80% of the total communty standing crop at that time. Before reaching its maximum in July, pontederia had a consistently higher standing crop than leersia, which kept producing until

September. Pontederia later reached a secondary peak in September, probably because of decreasing competition with Peltandra, which grows in a similax habitat. The community as a whole produced a maximum
standing crop of $755.16 \mathrm{~g} / \mathrm{m}^{2}$ during the latter half of August, and production then fell sharply, until by later October and early November the remaining living crop was negligible.

Primary production in freshwater marshes has been investigated by minerous authors (see REVIEW OF LJTERATURE), but comparatively few productivity values of the species listed in Table 1 have been reported. The main reason is probably the fact that in freshwater marshes it is often difficult to obtain monospecific samples, especialiy of the rarer species, in sufficient quantity to arrive at reliable standing crop estimates. Despite the obvious dominance of Peltandra in this study, it accounted for only half of the total comnunity production (Table \mathfrak{i}). The surrounding plant commity greatly influences the productivjty of the species, since $396.72 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ annual production for feltundra would be less than the productivity of the species obtained from a pure Peltandra stand. As an example, Jervis, (1969) reported Tupha annal production valnes ranging from $44 \mathrm{~g} / \mathrm{m}^{2}$ in the sedge-shrub commuty to $1565 \mathrm{~g} / \mathrm{m}^{2}$ in the less competicive cattail comunity.

It is for this reason that productivity values of individual species in heterogeneous freshwater marshes are often only useful when compared with values derived from other marshes of similar community structure. Therefore, it appears more logical to consider total conmunity production of freshwater mixed communities when analyzing the productivity of marshes of this type. This contrasts with salt marshes, where species usually grow in pure stands, the productivities of which can be compared with those of pure stands of the same species elsewhere.

Annual net production of the community studied in Sweet Hall Marsh was $755.16 \mathrm{~g} / \mathrm{m}^{2}$, which falls into the productivity range of 672 to $1121 \mathrm{~g} / \mathrm{m}^{2}$ for freshwater mixed communities in Virginia (Silberhorn et al, 1974). In comparison, Jervis (1969) reported $1491.69 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ for his sedge swale community in New Jersey. Sweet Hall Marsh is located farther south and has a longer growing season but is significantly less productive. The difference in production rates, however, is due to differences in community composition rather than climatic factors. All four of the communities which Jervis examined are dominated by such prodigious producers as Zizania aquatica, Typha spp. and Carex stricta, which are notably less common in Sweet Hall Marsh. When these three dominants are excluded from Jervis's data, the highest pioductivities are $255.15 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ (Echinoclizoa), $239.60 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ (Sparganium) and $230.99 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yx}^{2}$ (Peltandia), all of which are less than the $396.72 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$ produced by Peltandia in Sweet Hall Marsh. Another reason for the difference in productivity of the two marshes is the fact that in Jervis's marsh there is a greater degree of evenness as far as productivity of individual species is concerned, with many species producing over 20 $g / \mathrm{m}^{2} / \mathrm{yr}$. This is not the case in Sweet Hall Marsh, where only five species produced over $20 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$, and these being dominated by peltandra.

The only other figures available for the major producers of Sweet Hall Marsh are those of Wass and Wright (1969) for Leersia oryzoides. Their clippings, however, originated from a pure stand and gave a standing crop biomass of $1545 \mathrm{~g} / \mathrm{m}^{2}$, whereas even though lechsia was found to be the second highest producer in this study, the peak standing crop was only $57.95 \mathrm{~g} / \mathrm{m}^{2}$. This lower value, however, is a result of competition with other species.

In comparison with salt marshes, freshwater marshes appear generally more productive (Mendeissonn, 1973). Studies by Mendelssohn (1973) and Keefe and Boynton (1973) of Virginia salt marshes list peak living standing crops of $353 \mathrm{~g} / \mathrm{m}^{2}$ (Wachapreague) and $553 \mathrm{~g} / \mathrm{m}^{2}$ (Chincoteague Bay) respectively, compared with $775.16 \mathrm{~g} / \mathrm{m}^{2}$ for this study. However, under favorabie conditions standing crops as high as $1725 \mathrm{~g} / \mathrm{m}^{2}$ for tall Spartina afterniflora and $1545 \mathrm{~g} / \mathrm{m}^{2}$ for Leersia oryzoides have been reported (Wass and Wright, 1969).

Community Structure

Dominance and Density
A dominant species in a community is one which largely controls the energy flow and strongly affects the environent of all other species in the commity (Odum, 1971). By this definition, Peltandra vétginica is considered the dominant species of Sweet Hall Marsh, since it contributes most to commity production (see previous section). Although productivity can be uscd as an approximate indicator of dominance, clipping injures the piants to the extent that the same plot cannot be used for repeated samplings. Species coverage, however, can be used repeatedly and provides a good index of dominance for marsh vegetation.

Coverage, density and frequency values for the 10 most common species are listed in Table 2. Poltandra had relatively high coverage values until September, when it was overtaken by Lecrsia. A major ghalse of these high values is the fact that the broad leaves of Peltandra easily shade more area than the narrow leaves and stems of Leensia; this is borne out by the high density values of Leersia in
TABTE 2

SPECTF	FREQUENCY, DENSITY Species Frequency (per cent)					AND DOMINANCE FOR THE 10 Species Densicy (individuals per square				MOST meter)	MONLY SAMPTED SPECIES								
						(frac	Specie tion of	es Cove quadr	rage at co		ered)								
Species	May	Jun	Jui	Aug	Sep					May	Jun	Jul.	Aug	$S \in p$	May	Jun	Jul	Aug	Sep
Peltandra virginica	100	100	98	100	90	8.15	4.88	4.80	5.45	3.50	0.210	0.469	0.367	0.161	0.036				
Polygonum punctatum	40	64	62	75	72	5.00	5.00	5.12	6.58	5.48	0.010	0.020	0.026	0.037	0.02 .1				
Leersia onyzoides	12.	68	78	78	70	12.00	24.00	25.00	25.12	25.00	0.002	0.036	0.058	0.123	0.055				
Pontederia cordata	22	42	45	42	45	0.90	1.60	1.70	1. 52	1.68	0.006	0.022	0.014	0.030	0.007				
Polyganum arifolium	18	42	38	45	30	0.20	0.55	0.85	1.15	0.60	0.002	0.003	0.006	0.009	0.003				
Impatiens capensis	20	32	38	32	28	0.55	1.18	1.95	2.80	1.15	0.011	0.019	0.030	0.037	0.006				
Carex stricta	20	18	18	12	12	0.28	0.30	0.38	0.28	0.20	0.024	0.038	0.209	0.036	0.015				
Eleocharis quadrangulata	3	5	12	22	28	0.05	0.12	0.22	0.82	2.35	---	---	---	-	---				
Ancilema keisak	--	5	20	15	20	-	1. 25	2.78	2.00	1.50	---	0.005	0.138	0.047	0.023				
tibiscus moscheutos	3	8	12	20	15	0.02	0.12	0.25	0.35	0.32	---	0.004	0.004	0.009	0.004				

comparison to those of Peltandra. Peltandia reached its maximum coverage in June, after which competition with other species forced it to decline, although it remained the dominant species until September.

Density values, as noted from Table 2, either remained fairly constant or gradually increased through the season, as a result of germination of seeds during the later months. However, only one species, Eleocharis quadrangulata, attained a maximum density in September, probably because of reduced shading by broad-leaved plants. The general decrease in Peltandra density was largely a result of sampling procedures rather than ecological factors. The mumerous scattered individuals early in the season were probably aggregated into clumps, but these clumps were not readily discernible because of the small sizes of individual plants. As the plants grew, the clumps becane apparent and were therefore each counted as cne individual, thereby reducing the density values.

Frequency

Frequency is a rough indicator of distribution and can often give information on the general structure of a community. Thus, one can look at the high Peltandra frequencies in Table 2 and conclude that the distribution of Peltandra is fairly uniform, as a non-evenly dispersed distribution would result in many individuals being found in a few plots and hence a lower frequency.

The diagrams in Fig. 7 are a result of grouping the frequencies into 10 classes. Roughly three-fourths of the species sampled fell into class A (frequencies between 0 and 10%). This implies that most

Figure 7. Comparison of frequency-class percentages for each sampling.

species in the marsh are present in small numbers andor are far from evenly distributed. The diagrams do not have the characteristic J-shape of the Raunkiaer normal. (Cain and Castro, 1959), since Peltandra is the sole occupant of class J (except in September, when it falls back into class I) and so overwhelms the other species that the curve cannot turn up at the end. As the season progressed and species became more widespread, their frequencies increased, and consequentiy the sizes of the classes toward the right end increased.

Sociability
The average indices of sociability for each species for the season are listed in descending order in Table 3. As clumping or aggregation of individuals is often dependent upon the mode of repro... duction, this aspect was noted for each species. plants which spread prinarily by vegetative methods, e. g. stolons or rhizomes, tena to produce offspring which are clustered about their parents, as opposed to plants which dissemjnate efficiently, although other environmental ard phytosociological factors affect the distribution patterns of plants. Generally the effectiveness of seed dispersal can be adequately reflected by the sociability index, with high values usually indicating predominance of vegetative reproduction.

Monthly sociability index values for the common species are listed in Table 4 and graphed in Fig. 8. Leersia, Aneilema, Polygonum punctatum and Peltandra, which began the season with high values, showed more homogeneous distributions by September, when clumps had enlarged and integraded. However, some plants such as Impatiens, Eleocharis and Hibisous actually increased in contagion through the

TABLE 3
AVERAGE INDEX OF SOCIABILITY FOR AZL SPECIES SAMPLED

		Reproduction Usually Species	Reproduction Usualiy		
Sampled				\quad	Non-vegetative
:---:	:---:	:---:			

$$
\begin{aligned}
& \text { Species } \\
& \text { Feltandra virginica } \\
& \text { Polyconum punctatum } \\
& \text { Leersia onyzoides } \\
& \text { Pontederia cordati } \\
& \text { Polygonum arifolium } \\
& \text { impariens capensis } \\
& \text { Carex stricta } \\
& \text { Eleocharis quadrangulata } \\
& \text { Aneilema keisak } \\
& \text { Hibiscus moscheutos }
\end{aligned}
$$

$$
\text { TABLE } 4
$$

$$
\begin{array}{cc}
\text { COHNONLY SAMPTED S } \\
\text { JUL } & \text { AUG } \\
4.90 & 5.45 \\
8.27 & 8.77 \\
32.05 & 32.21 \\
3.78 & 3.63 \\
2.2 .4 & 2.56 \\
5.13 & 8.75 \\
2.08 & 2.29 \\
1.88 & 3.75 \\
13.80 & 13.33 \\
2.08 & 1.75
\end{array}
$$

SPECTES
ISON OT Glid Cod AIITIgVIOOS aO XGONI

Figure 8. Comparison of changes in the index of sociability for Five common marsh species.

season, possibly because of : 1) increasing competition for light and nutrients in an axea of a particular species' distribution, causing the species to be aggregated in areas of less competition, and 2) dieback of Peltandra in the middle of the season, providing additional niches.

Diversity

The type of species importance value used in the diversity index calculations (Table 6) is that of Phillips (1959) and is expressed as the sum of the species relative frequency, relative density and relative dominance values listed in Table 5. Table 5 differs from Table 2 only in that each value in Table 5 is a per cent equal to the corresponding value in Table 2 divided by the total of all values for that month. Thus, the total of relative frequency, density or dominance values for amy month of all species sampled is equal to 100 , and the maximum species importance value is 300 .

In obtaining importance values for species in individual quadrats during one monthly sampling, the relative frequency component was not applicable, sinee frequency involves more than one quadrat. Therefore, the importance values for species in individual quadrats are smaller, the maximum being 200. Because the species importance value for 40 quadrats is calculated differently from the importance value for one quadrat, the diversity indices obtained cannot be compared between the two situations. For example, the diversity indices listed in iable 7 canot be compared with those in Fig. 9 because relative frequency was taken into account in the former but not the latter.

As the importance of Peltandra decreased steadily from May onvard (Table 反), it was accompanied by a rise in the importance of
SPECIES IMPORTANCE YALUES AND IMPORTANCE PRORABTLTTIES FOR THE 10 MOST COMMONLY SAMPIED SPECIES SPEGIES Species Peltandra virginica Polygonum punctatum
Leersia oryzoides
Pontederia cordata
Polygonum arifolium Impatiens capensis
carex stricta
Eleocharis quadrangulata Aneilema keisak
Hibiscus
moscheutos

Lecrsia, which overtook Peltandra as early as July. High importance values for Peltandra were attributed to high relative dominance, owing to the broad leaves. On the other hand, the high importance values for leersia were more a result of high relative density, although relative dominance increased significantly toward the end of the season and even overtook Peltandra in September. The only other species with high importance values was Polygonum punctatum, which fluctuated iittie during the season.

Diversity can be broken down into two components: species richness and species evenness or equitability (Lloyd and Ghelardi, 1964). Species richness is the relationship between the number of species and the total number of individuals, and species evenness is the apportionnent of individuals among the species present. Values for these component indices are listed in Table 7, along with values for the diversity index. The diversity formula of Menhinick (1964) and the everness index of Pielou (1966) were used as indicators of richness and evennese, respectively.

Species diversity in Sweet Hall Marsh reached its maximum in August. Although diversity is largely dependent on richness, the effect of evennese is also substantial, since diversity increased from May through July while richness decreased during the same period. Furthermore, the richness value for May is equal to that of August, when diversity was highest, but the low evenness value for May caused the diversity of that month to be the lowest. Thus, it appears that the species diversity of the marsh is influenced more by relative numbers of individuals per species than by fluctuations in numbers of species present.

TABLE 7
SPECIES RICHNESS, EVENNESS AND DIVERSITY
BASED ON THE 40 QUADRATS SAMPLED

	May	June	Ju1y	Aug	Sep
$\begin{gathered} \text { Species Richness } \\ (\mathrm{S} / \sqrt{\mathrm{N}} \end{gathered}$	0.768	0.619	0.614	0.768	0.661
Species Evenness ($\mathrm{H} / \log \mathrm{S}$)	0.615	0.631	0.693	0.676	0.697
Species Diversity	0.870	0.882	0.980	1.035	1.008
$S=$ Number of species sampled					
$N=$ Number of individuals sampled					
$\bar{H}=$ Index of diversity					

The major environmental factors which affect diversity in the marsh appear to be scil elevation (or length of submergence) and the presence of shrubs and trees. This is illustrated in Fig. 9, in which one of the four transects was chosen to show spatial variations in diversity. The environmental conditions of each quadrat in the transect are described qualitatively at the top of the figure, with those plots receiving tidal inundation twice daily designated as low marsh and those receiving inundation less than twice daily designated as high marsh. Noticeable are the low diversities of the plots located on the creek bank and in low marsh areas and the relatively high diversities of plots in the high marsh and imnature swamp. Low diversity in areas of low elevation is understandable, since only a few energent species sampled, namely Peltandra and Pontederia, can withstand the longer and more frequent periods of submergence. The high diversity found in the immature swamp is probably a result of. the additional niches provided by shade, although shading becomes limiting in the mature swamp (not represented in Fig. 9), as fewer species of herbs are found there, and the spacing between individuals is greater.

Odum (1960) states that diversity is a "scructural" feature of a conmunity, while productivity is a "functional" one. His study of primary production in old-field succession refuted beliefs that there exists a simple correlation between productivity and diversity, although a rough relationship does exist (Odum, 1971, p. 150). In studies of marsh vegetation this conclusion is further supported, as vegetationally diverse freshwater marshes are often less productive than monospecific salt marshes.

Figure 9. Index of diversity for quadrats of Transect 3 for each monthly sampling (see Fig. 2 for location of transect).

For the one growing season during which the present study was conducted, diversity and productivity trends were similar. Both increased to a peak in August, but production dropped sharply afterward, while diversity decreased only slightly. The difference in rate of decrease relates back to the "structural-functional" concept just mentioned; i.e., the community "structure" (diversity) changed litcte, while the communty "function" (productivity) fell significantly. This imples that even though several species ceased production after August, they still remained as contributors to the structure and diversity of the comnunity.

Margalef (1968) related construction of feedback systems to diversity and indicated that increased diversity means longer food chains, more cases of parasitism, symbiosis, etc., the final result being increased stability of the ecosystem or communicy. Applying this principle to marsh vegetation, higher diversity of plants means an increased variety of food sources for consumers and more varied niches for them, in addition to the general characteristics listed above. Thus, a diverse freshwater marsh such as Sweet Hall Marsh should be more stable ecologically than a salt marsh of low diversity and should be better able to adjust to changes in the environment.

Plant Associations

A dendrogram of the 10 most common species sampled in August (Fig. 10) shows two species associations, the members of which possess similarity indices of over 50%. Mendelssohn (1973) delineated similar associations for marshes of different salinities and explained the groupjags on the basis of different tolerances of species to salinity.

Figure 10. Dendrogram of the 10 most common species in August based on similarity indices.

As salinity is not a factor in the plant distribution of Sweet Hall Marsh, other factors must be responsible for the groupings in Fig. 10. The first association consists of Peltandra, Leersia, Pontederia and Polygonum punctatum. All of these species are notably tolerant of submergence, especially Feltandra and Pontederia, although the association between Peltandra and Leersia is stronger. Apparently, the fact that Peltandra is often common in the high marsh, as is Leersia, accounts for this strong association.

The other association consists of Impations, Polygonum arifoliun and Carex stricta, all of which are commoniy high marsh species. The stronger association between Impatiens and Polygonum is probably due to the fact that early in the season both were common in the swamp areas, where Carex does not grow.

Competition and Changes in Community Composition
As noted from the data obtained, the commanity structure of the area studied varied considerabiy through the course of the growing season. Both the productivity and community structure data support the conclusion that the character of the marsh is largely determined by Peltandra, espeically from spring through midsummer. Even though Peptandha is well-adapted to growing in the lower elevations of the maxsh and is often the only species found there, it apparently thrives equally well in all areas of both the open marsh and wooded swamp, although it is limited somewhat in the higher elevations by competition with other species.

As the season progressed, reduction in coverage and standing crop of Peltandra allowed other species, namely Leersia, to increase
in importance, although the decrease in Peltandra was probably accelerated by the increasing competition. Buttery and Lambert (1965) encountered a similar situation in which Glyceria maxima, competing with Phragmites communis, formed dense swards in spring, which prohibited penetration by new shoots of Phragmites. However, where Glyceria showed reduced growth, Phragmites shoots could penetrate and thus intercept available light. Jervis (1969) recognized the control of the dominant Typha canopy over Peltandra production, pointing out that production of Peltandra peaked during spring, after which shading by Tipha caused it to decline. However, in communities where the canopies closed more slowly, the peak production occurred during early summer.

Since the marsh was observed for only one growing season, accurate speculations concerning ecological succession cannot be made. On the surface it would appear that Peltandra is out-competing the other species, but whether it is "winning out" or whether the community has reached a state of equilibrium or climax is not known. Harper (1961) concluded that two species of plants can coexist if they are sensitive to a conmon controlling factor such as light or water at different times. Thus, the fact that Peltandra matures earlier in the season (i.e., is sensitive to light, etc.) than most of the other speices ensures that the subdominant species can coexist successfully, if their existence depended entirely upon the behavior of Peltandra. Among the subdominants themselves, the same principle applies; that is, the proliferation or elimination of a species depends upon the time at which other species are utilizing one or more essential
resources.

Noticeable changes in community composition due to changing environmental conditions are gradually taking place, however. Local residents and hunters have noticed a steady replacement of Spartina cynosuroides, a valuable source of food and shelter for wildife, by the less valuaile Phragmites australis. This replacement is thought to be a result of the rise in sea level relative to the land (Marmer, 1948; Daks, 1965) which until the last thirty years or so had been balanced by marsh buildup from accumulation of estuarine and terrestrial sediments by the watershed (Meade, 1972; Redfield, 1972; Moore, 1974). The rate of rise in sea level now seems to be greater than the sedimentation rate, with the result that erosion-deterring Spaitina is being replaced by species which can tolerate the increased submergence (Wass and Wright, 1969).

Based on available data, large-scale changes in community composition due to man have not taken place in the marsh, but are very possible in the near future. At present, a nuclear power plant is being constructed on the North Anna River, which, together with the South Anna River, forms the Pamunkey. The power plant will use river water for cooling steam condensers, and a cooling water reservoir is being constructed in conjunction with the power plant to store river water during periods of low flow. Such alterations in river flow will undoubtedly affect the salt intrusion of the downstream reaches and thus affect the salinity regimes of the marshes in that area. In light of these possible changes and the others previously mentioned, further research in the downstream freshwater and brackish marshes is necessary in order to assess the progress and extent of changes in plant conmmity composition.

SUMMARY

1. Community types in the marsh and swamp were recognized on the basis of plant composition. All herbs were found to mature earlier and grow larger in the swamp communities.
2. Annual net primary production for the major producers and for the marsh community as a whole was determined. The marsh was found to produce approximately $755.16 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$, which is typical for marshes of this type in Virginia. Maximum standing crop occurred in late August, while the peak daily production rate occurred in early June,
3. Poltandra virginica was found to be the major producer, producing approximately $396.72 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{yr}$, followed by Leersia oryzoides, Polygonum punctatum, Pontederia cordata and Aneilema izeisak.
4. Peltandra was the dominant of the marsh in terms of coverage until September, when it was overtaken by Leersia. Leersia maintained the highest density values throughout the season.
5. Roughly three-fourths of the species sampled had frequencies of less than 10%, implying that most species are present in small numbers and/or are far from being evenly distributed. As the season progressed, they became more wide-spread, and their frequencies generally increased.
6. Species which spread primarily by vegetative methods were found to have a high index of sociability due to clustering of offspring
around their parents. Sociability increased or decreased as the season progressed, depending on the species.
7. Species diversity reached its maximum in August. Diversity in the marsh appears to be influenced more by relative numbers of individuals per species than by fluctuations in numbers of species present. Diversity was highest in the high marsh and swampy areas. Diversity and productivity trends were roughly similar.
8. Distribution of plant species was found to be strongly influenced by soil elevation and the effects of the presence of shrubs and trees.
9. The commanity structure of the marsh in spring is different from that of early fall, with Peltandra dominating the former and Leensia beconing prominent in the latter.

APPENDIX

TABLE AI
PLANT CHECKLIST FOR SWEET HALL MARSH STUDY AREA ${ }^{1}$
Plants Observed Within Sampling Quadrats

Scientific Name

Acor moroum I.
Amaranthus cannabinus (I.) J. D. Sauer Amphicarpa bracteata (L.) Fern.
Aneilema keisak Hassk.
Biders coronata (L.) Britt.
Bidens frondosa L.
Boehneria cylindrica (L.) Sw. carex hyalinokepis steud.
carex stricta Lam.
Cassia fasciculata Michx.
ceematis crispa 1 .
Decodon venticillatus (L.) E11.
Echinochloa walteri (Pursh) Nash
Eleochais quadrangulata (Michx.) R. \& S.
Gecian sp.
Hibiscus moscheutos L.
Hepericum sp.
Trpatiens capensis Meerb.
Juncus ebfusus t.
Leersia oryzoides (L.) Sw.
osmenda regalis i.
parthenocisons quinquefolia (L.) Planch
PePtandra virginica (L.) Kunth.
Phagmites australis (Cav.) Trin. ex Steud.
Poliggonum arifodium L.
Poegoonum punctatum E11.
Porygonum sagittatum I.
Pontederia cordata L.
Rius radicans 1.
Rosa palustris Marsh.
Rumex verticillatus L .
Sagittaria latifolia Willd.
Scirpus anericanus Pers.
Sceipus varidus Vah1.
Sportina alterniflora Loisel.
Spartina cynosuroides (L.) Roth
Strophostyles unibellata (Mun1.) Britt var. paludigena Fern.

Common Name
Red Maple
Water Hemp
Hog Peanut
Asiatic Dayflower
Begger Ticks
Begger Ticks
False Nettle
Clear-Scale Sedge
Bunch Sedge
Partridge Pea
Blue Jasmine
Water Willow
Walter's Millet
Spikerush
Bedstraw
Rose Mallow
St. John's-wort
Jewalweed
Soft. Rush
Rice Cutgrass
Royal Fern
Virginia Creeper
Arrow Arum
Reedgrass
Halberd-leaved Tearthumb
Water Smartweed
Arrow-leaved Tearthumb
Pickerel Weed
Poison Ivy
Swamp Rose
Water Dock
Arrowhead
Three-square
Great Bulrush
Saltmarsh Cordgrass
Giant Cordgrass
Wild Bean

TABLE A1 (continued)

Scientific Name
Teucriun canadense L.
Thalicttum sp.
Thelyperis palustris schott
Typha angustifolia L .
Vitis sp.
zizania aquatica L.

Common Name
Wood Sage
Meadow Rue
Marsh Fern
Narrow-leaved Cattail
Grape
Wild Rice

Other P1ants Observed Outside Sampling Quadrats

ADnus sp.
Asclepias incamata L.
Aster sp.
Bidens comosa (Gray) Wieg.
Cornus feorida L.
Cuscuta sp.
Cgpenus strigosus L.
Erianthus giganteus (Walt.) Muril.
Ergngith aquaticum L .
Eupatowian perfoliatum L.
Fraximes anericana L.
Fraxinus caroliniana mili.
Hyárocotyle sp.
Ilex laevigata (Pursh) Gray
Iva frutescens L.
Juncus canadensis J. Gay
Itnipous virginiana L.
Kosteletzkya virginica (L.) Presl.
Leucothoe sp.
Lieium superbum L.
Lobelia cardinalis L .
ionicera japonica Thunb.
Murica ceribena l.
Nuphar luteum (L.) Sibthorp \& Smith
Nussa sulvatica L.
Onodea sensibilis L .
Osmunda cininamomea L .
Oxppoles sp.
Phoradiendron serotinum (Raf.) M. C. Johnston Porygonum persicaria L.
Khynchospora machostachya Torr.
Sanhoris cernuus L.
Scurpus agperinus (L.) Kunth.
Scirpus fluviatilis (Torr.) Gray
Smilax motundifolia I.
Smilax sp.

Alder
Swamp Milkweed
Aster
Begger Ticks
Flowering Dogwood
Dodder
Galingale
Plume Grass
Eryngo
Boneset
White Ash
Water Ash
Watex Pennywort
Smooth Winterberry
Marsh-elder
Rush
Red Cedar
Seashore Mallow
Fetter Bush
Turk's-cap-1ily
Cardinal Flower
Japanese Honeysuckle
Wax Myrtle
Yellow Pond Lily
Black Gum
Sensitive Fern
Cinnamon Fern
Hog-fennel
Mistletoe
Lady's Thumb
Beak Rush
Lizard's Tail
Woolgrass
River Bulrush
Common Greenbrier
Greenbrier

TABLE Al (continued)

Scientific Name	Common Name
Taxodium distichum (L.) Richard	Bald Cypress
Vaccinium corymbosum L.	Highbush Blueberry
Vernonia altissima Nutt.	Ironweed
Viburnum dentatum L.	Southern Arrow-wood
Viburnum hecognitum Fern.	Arrow-wood
Viola sp.	Violet
1 Nomenclature following that of Fernald (1950) and Radford et al	
(1968).	

TABLE A2

CLIP FREQUENCIES

(PERCENTAGE OF PLOTS IN WHICH SPECIES OCCURRED)

Species	May	June	July	Aug	Sep
peltandra virginica	95	95	98	93	85
Leersia oryzoides	40	78	83	78	73
Polygonum punctatum	8	15	68	50	60
Pontederia coudata	20	2.5	30	33	30
Ancilena beisak		10	18	18	30
Polygonum arifolium	8	13	18	23	28
Impatiens capensis	3	8	23	18	18
Elachatis quadrangulata	3	5	8	18	18
Scirpus americanus	10	8	10	10	5
Carex stricto	10	10	10	8	8
Polygonum sagittatum		5	8	10	13
Hibiscus moscheutos		10	8	3	8
Osmunda regaeis	8	5	5	3	5
caiex hyalinolepis	8.	8		8	
Phragmios australis	5	8		5	5
Spartina canosuroides	5	3	5	5	3
Scirpus validus	3	5	8	3	3
Tupha angustidolia	3	3	5	3	5
Bedens cononata	3		3	3	5
Thelypteris paiustris		3	3	5	3
Rumex verticillatus	3		5		3
Rhus radicans		3	3	3	
Teucriun canadense	3	3			
Decodon verticillatus		5			
Vitis sp.			3		
Cassia fasciculata			3		
Amphicarpa bracteata			3		
Bidens frondosa			3		
clematis crispa			3		
Sthophostypos umberlata				5	
Hepericum sp.				3	
Zizania aquatica				3	8
Iuncus efousus				3	5
Spartina alterniblora					3
Sagittonia latifolia					3
Gacium sp.					3
Echinshloa walteri					18

TABLE A3

AVERAGE SPECIES HEIGH'S (CM)

PER SAMPLING QUADRAT OF OCCURRENCE

| | Species | May | June | July | Aug |
| :--- | :--- | :--- | :--- | :--- | ---: | Sep

LITERATURE CITED

Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecol. 44: 445-456.

Boyd, C. E. 1.969. Production, mineral nutrient absorption, and biochemical assimilation by Iusticia americana and Alternanthera philoxeroides. Arch. Hydrobiol. 66: 139-160.

Boyd, C. E. 1970. Production, mineral accumulation and pigment concentrations in Typha latibolia and Scirpus americanus. Ecol. 51: 285-290.

Boyd, C. E., ard L. W. Hess. 1970. Factors influencing shoot production and mineral nutrient levels in Typha Latióolia. Ecol. 51: 296-300.

Buttery, B. R., and J. M. Lambert. 1965. Competition between Glyceria maxima and Phragmites communis in the region of Surlingham Broad. I. The comperition Eactor, J. Ecol. 53: 163-182.

Cain, S. A., and G. M. de Oliviera Castro. 1959. Manual of vegetation analysis. Harper and Brothers. New York. 325 p.

Curtis, J. T. and R. P. McIntosh. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecol. 31: 434-455.

Curtis, J. T. and R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecoi. 32: 476-496.

Danbemmire, R. 1968. Plant communities. Harper and Row, New York. 300 p.

Day, J. W., W. A. Smith, P. R. Wagner and W. C. Stowe. 1973. Community structure and carbon budget of a salt marsh and shallow bay estuarine system in Louisiana. Center Wetland Resour., Louisiana State University. 80 p .

Fernald, M. L. 1950. Gray's manual of botany. Eighth edition. American Book Company, New York. 1632 p.

- Fiowers, M. G. 1973. Vegetational zonation in two successional brackish marshes of the Chesapeake Bay. Ches. Sci. 14: 197-200.

Foster, W. A. 1968. Studies on the distribution and growth of Juncus rocmerianus in scutheastern Brunswick County, North Carolina. M. S. thesis, Norih Carolina State Univeristy. 72 p.

Gabriel, B. C., and A. A. de la Cruz. 1974. Species composition, standing stock, and net primary production of a salt marsh comunity in Mississippi. Ches. Sci. 15: 72-77.
--- Golet, F. C. 1972. Classification and evaluation of freshwater wetlands as wildife habitat in the glaciated Northeast. Ph.D. thesis, University of Massachusetts. 180 p .

Good, R. E., and N. F. Good. 1974. Vegetation and production of the Woodbury Creek-Hessian Run freshwater tidal marshes. Bartonia 43: 38-45.

Gorhem, F, and M. H. Pearsall. 1956. Production ecology. TII. Shoot production in Phragmites in relation to habitat. Oikos 7: 206-214.

Harper, J. . . 1961. Approaches to the study of plant competition. In: Mechanisms in biological competition. Sym. Soc. Exp. Eicl. 15: 1-266.

Harshberger: J: W. 1909. The vegetation of the salt marshes and of the salt and freshwatex ponds of northern coastal New Jersey. Proc. Acad. Nat. Sci. Phila. 61: 373-400.

Hatcher, B. G., and K. H. Mann. 1975. Above-ground production of marsh cordgrass (Spotina aiterniflora) near the northern end of its range. J. Fish. Res. Board Can. 32: 83-87.

Jexvis, R. A. 1963. The vascular plants and plant commonities of Troy Meadows--a freshwater marsh in northern New Jersey. Bull. N. J. Acad. Sci. 3: 1-21.

Jervis, B. A. 1969. Primary production in the freshwater ecosystem of Troy Meadows, New Jersey. Bull. Torrey Bot. Club 96: 209-231.

Johnson. D. S., and H. H. York. 1915. The relation of plants to tide levels. Carnegie Inst. of Washington Pub. 206.

Keefe, C. W. 1972. Marsh production: a summary of the literature. Contr. Mar. Sci. 16: 1.64--1.81.

Keefe, C. W., and W. R. Boynton. 1973. Standing crop of salt marshes surrounding Chincoteague Bay, Maryland-Virginia. Ches. Sci. 14: 117-123.

Kemin, J. A. 1966. Classification and structure of the tidal marshes of the Poropotank River, Virginia. M. A. thesis, the College of Willian and Mary. 63 p .

Kerwin, J. A., and K. A. Pedigo. 1971. Synecology of a Virginia salt marsh. Ches. Sci. 12: 125-130.

Kontkanen, P. 1957. On the delimitation of communities on research on animal biocoधnotics. Cold Spr. Har. Sym. Quant. Biol. 22: 373-378.
L.loyd, M., and R. J. Ghelardi. 1964. A table for calculating the 'equitability' component of species diversity. J. Anim. Ecol. 33: 217-225.

Margaler, R. 1968. Perspectives in ecological theory. Univeristy of Chicago Press, Chicago. 112 p.

Marner. H. A. 1948. Is the Atlantic coast sinking? The evidence from the tide. Geogr. Rev. 33: 652-657.

Martin, W. E. 1959. The vegetation of Island Beach State Park, New Jersey. Ecol. Moncgr. 29: 1-46.

Martin, A. C., N. Hotchkiss, F. M. Uhler and W. S. Bourn. 1953. Classification of wetlands of the United States. U. S. Fish and Wildi. Serv. Spec. Sci. Kept. Wildiffe No. 20.

McNaughton, S. J. 1966. Ecotype function in the Typha community-, type. Ecol. Monogr. 36: 297-325.

Meade, R. H. 1972. Sources and sinks of suspended matter on continental shelves. In: Shelf sediment cransport, Swift, Duane, and Pilkey (eds.): 249-262.

Mendolsschn, I. A. 1973. Angiosperm production of three Virginia marshes in various salinity and soil nutrient regimes. M. A. thesis, the College of William and Maxy. 103 p.

Hemhinick, E. F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecol. 45: 859-86i.

Miller, W. R.: and F. E. Egler. 1950. Vegetation of the WequetequockPawcatuck tidal-marshes, Connecticut. Ecol. Monogr. 20: 143-172.

Moore, K. A. 1974. Carbon transport in two York River, Virginia tidal marshes. M. S. thesis, University of Virginia. 102 p.

Nicholson, W. R., and R. D. vanDeusen. 1954. Maryland marshes. Maryland Game and Inland Fish Comm. Resources Study Rept. No. 6. 10 p .

Oaks, R. Q., Jr. 1965. Post-Miocene stratigraphy and morphology, outer Coastal Plain, southeastern Virginia. Ph.D. dis. sertation, Yale Univeristy. 241 p.

Odum, E. P. 1960. Organic production and turnover in old field succession. Ecol. 41: 34-39.

Odun. E. P. 1961. The role of tidal marshes in estuarine production. Whe iv. Y. State Conservationist 15: 12-15.

Odum, E. P. 1971. Fundamentals of ecology. Third edition. W. B. Saunders Company, Fhiladelphia. 374 p .

Odum, E. P., and M. E. Fanning. 1973. Comparison of the productivity of Spartina afterniflora and Spartina cynosuroides in Georgia coastal marshes. Bull. Ga. Acad. Sci. 31: 1-12.

Onuschak. E. Jx. 1973. Flejstocene-Holocene environmental geology. In: Geologic studies, Coastal Plain of Virginia: Va, Div. Min. Res. Bull. 83 pt. 3: 103-153.

Pearsall, W. H., and E. Gorham. 1956. Production ecology. I. Standing crops of natural vegetation. Dikos 7: 193-201.

Penfound, W. T. 1952. Southern swams and marshes. Bot. Rev. 18: 413-446.

Penfound, W. T. 1956. Primary production of vascular aquatic piants. Limnol. Oceanogr. 1: 92-101.

Penfound, W. T., and T. T. Earle. 1948. The biology of the vater hyacinth. Ecol. Monogr. 18: 447-472.

Penfound, W. T., and E. S. Hathaway. 1938. Plant commities in the marshlands of southeastern Louisiana. Ecol. Monogr. 8: 1-56.

Philips, E. A. 1959. Methods of vegetation study. Holt, New York. 107 p .

Pjelou, E. C. 1965. The measurement of diversity in different types of biological collections. J. Theoret. Biol. 13: 131-144.

Radford. A. E., H. E. Ahles and C. R. Bell. 1968. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill. 1183 p.

Redfield, A. C. 1972. Development of a New England salt marsin. Ecol. Monogr. 42: 201-237.

Romig, R. F. 1973. Growth and reprodaction of Spartina. Ph.D. dism sertation, University of Delaware, 64 p.

Shanon, C. E., and W. Weaver. 1949. The mathenatical theory of commanication. University of Illinois Fress; Urbana. Il? p.

Shaw, S. P., and C. G. Fredine. 1956. Wetlands of the United States. U. S. Fish and Wildl. Serv. Circular 39.

Silberhorn, G. M., G. M. Dawes and T. A. Barnard, Jr. 1974. Coastal wetlands of Virginia. Int. Rep. no. 3. Guidelines for activities affecting Virginia wetlands. Va. Inst. Mar. Sci. Spec. Rept. in App1. Mar. Sci. and Ocean Eng. 46.

Sokal, R. R., and P. H. A. Sneath. 1963. Principles of numerical. taxonomy. W. H. Freeman, San Francisco. 359 p.

Ude11, H. F., J. Zarudsky, T. E. Doheny and P. R. Burkholder. 1969. Productivity and nutrient values of plants growing in the salt marshes of the town of Hempstead, Long Island. Bull. Torrey Bot. Club 96: 42-51.

Van Dyke, G. D. 1972. Aspects relating to emergent vegetation dynamics in a deep marsh, northcentral Iowa. Ph. D. thesis, Iowa State Univeristy. 162 p .

Waits, E. D. 1967. Net primary productivity of an irregularly flooded North Carolina salt marsh. Ph.D. dissertation, North Carolina State University. 113 p.

Wass, M. L., and T. D. Wright. 1969. Coastal wetlands of Virginia. Interim rept. of the Governor and General Assembly. Va. Inst. Max. Sci. Spec. Rep. in Appl. Mar. Sci. and Ocean Eng. 10.

Wells, B. W. 1928. Plant communities of the coastal plains of North Carolina and their successional relations. Ecol. 9: 230-242.

Westlake, D. F. 1963. Comparisons of plant productivity. Biol. Rev. 38: 385-425.

Whitford, P. B. 1949. Distribution of woodiand plants in relation to successjon and clonal growth. Ecol. 30: 199-208.

Yapp, R. H.: D. Johns and O. T. Jones. 1917. The salt marshes of the Dovey estuary. J. Ecol. 5: 65-103.

VITA

Damon George Doumlele

Dorn in Richmond, Virginia, August 25, 1951. Graduated from Manchester High School in that city, June 1969 , B. S., the University of Richmond, 1973.

The author enrolled in the School of Marine Science of the College of William and Mary in 1973 as a graduate assistant, which is his present position.

