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ABSTRACT

The monosaccharide constituents of hydrolyzed carbohydrate, 
extracted with trichloroacetic acid from lyophilized Chrysaora 
quinquecirrha mesogloea, were resoved by thin-layer chromatography and 
quantitatively estimated by spectrophotometry. The detection of 
glucosamine, galactosamine, and uronic acids demonstrates the presence 
of acid polysaccharides. An abundance of neutral sugars, high sulfate 
content, and inequalities between the hexosamine and uronic acid 
moieties indicate the simultaneous presence of vertebrate type 
glycosaminoglycans, novel glycosaminoglycans, and sulfated and/or 
neutral polysaccharides. Hypothetical structures are provided. The 
presence of acidic polysaccharides in Chrysaora mesogloea is 
phylogenetically important and favors the proposition that acid poly
saccharides are involved in the stabilization and fibrillogenesis 
of collagen.



THE PRESENCE OF ACID POLYSACCHARIDES IN THE 

MESOGLOEA OF CHRYSAORA QUINQUECIRRHA



INTRODUCTION

The bilateral animal phyla are triploblastic in that during 

ontogenesis all of the tissues which will compose the adult organism 

are derived from three germinal layers: (1) ectoderm, (2) mesoderm,

and (3) entoderm. Accordingly, the various connective tissues of 

these triploblastic phyla, characterized by having a gelatinous, 

fibrous, or hard intercellular matrix secreted by and containing 

scattered or loosely associated cells, are chiefly derived from the 

mesoderm (Balinsky, 1970; Hyman, 1940). In contrast, the three 

most primitive metazoan phyla: Porifera, Cnidaria, and Ctenophora,

have come to be regarded as diploblastic; i.e., lacking a mesoderm. 

However, these phyla are in fact triploblastic, for they indeed pos

sess a cellular stratum between epidermis (ectoderm) and gastrodermis 

(entoderm)(Hyman, 1940). This layer, commonly called mesogloea, 

although variable in its manifestation and composition, is never 

devoid of cellular elements, and, especially as represented among the 

Cnidaria, can be classified as a primitive connective tissue (Chapman, 

1966; Hyman, 1940).

Several invertebrate connective tissues have been found to 

resemble vertebrate connective tissue histologically and chemically 

(e.g., Gross, Sokal and Rougvie, 1956; Maser and Rice, 1963; Nordwig 

and Hayduk, 1969; Nordwig, Rogall, and Hayduk, 1970; Spiro, 1972a). 

Such a histological and chemical correspondence between cnidarian 

mesogloea and vertebrate connective tissue has been established

2
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through histochemical staining techniques, electron microscopy, and 

amino acid analysis (Chapman, 1953, 1959, 1966; Gross, Dumsha, and 

Glazier, 1958; Piez and Gross, 1959). For example, fibers in the meso

gloea of the scyphozoan Pelagia have been shown by electron microscope
O

examination to be axially banded with a periodicity of 660 A, approx-
oimating that for vertebrate collagen (640 to 700A) (Chapman, 1959). 

Similarly, a comparison of the amino acid composition of collagens from 

Calliactis, Aurelia, Cyanea, Chrysaora, rat tendon, and blood albumen 

reveals that the relative amounts of amino acids, especially hydroxy- 

proline, in cnidarian collagen agree exceptionally well with that 

from rat tendon (i.e., vertebrate collagen), but only poorly with 

blood albumen (Chapman, 1953; Kirchenbaum, 1973). However, as the 

chemical nexus between cnidarian and vertebrate connective tissues is 

almost entirely based on collagen, it remains unclear whether or not 

the. more subtle chemical entities and relationships characteristic 

of vertebrate connective tissue, are present in mesogloea. Since 

cnidarian mesogloea is a phylogenetically and histologically primitive 

connective tissue, and therefore may represent the genealogical origin 

of or a primitive archetype of the connective tissues of the higher 

Metazoa, it is important to know to what extent a chemical affinity 

exists between these two tissues, and if cnidarian mesogloea is 

typical of other invertebrate connective tissues.

In the last ten to fifteen years, the chemical architecture 

of vertebrate connective tissue has been intensely studied (Castellani, 

1968; Hoffman, 1968; Lowther, Toole, and Herrington, 1970; Mathews, 

1965, 1968, 1970; Quintarelli and Dellovo, 1970; Serafini-francassini,
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Wells, and Smith, 1970; Toole and Harrington, 1970; White, Handler, 

and Smith, 1973). The outcome of these investigations has been to shift 

some of the importance in determining the connective tissue motif away 

from collagen, placing greater emphasis on other chemical constituents, 

chiefly acid polysaccharides. A considerable body of information has 

emerged which suggests that acid polysaccharides, especially the acid 

mucopolysaccharides [ glycosaminoglycans (GAG) ], are essential for, or 

in some way facilitate the formation and stabilization of collagen 

fibrils in vertebrate connective tissue (Hoffman, 1968; Lowther et 

al., 1970; Mathews, 1968; Weiss, 1962). Moreover, referring to 

studies of normal and abnormal connective tissues, inequalities in 

the relative abundance of certain acid polysaccharides appear to be 

linked with major differences in the fabric of connective tissues 

(Dorfman and Matalon, 1972; Malmgren and Sylven, 1952; Matalon and 

Dorfman, 1970; Meyer, Davidson, Linker, and Hoffman, 1956;

Robertson and Hinds, 1956). Such inequalities in concentraion of acid 

polysaccharides may be related to similar variations in invertebrate 

connective tissue, especially the great differences in flexibility and 

intercellular structure of mesogloea among the Cnidaria (see 

Appendix A). Consequently, the detection of acidic polysaccharides in 

invertebrates may further clarify the relationship between acid poly

saccharides and collagen in vertebrates, as well as delimit the extent 

of the analogy between invertebrate and vertebrate connective tissues. 

This author believes that if cnidarian mesogloea and vertebrate 

connective tissues are chemically analogous, then acid polysac

charides (including acid mucopolysaccharides) should be present in
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mesogloea. Conversely, the absence of acid polysaccharides may 

indicate a disparity of phylogenetic significance and/or a gap in the 

present understanding of connective tissue architecture.

The variability in the manifestation and composition of 

mesogloea among the three cnidarian classes suggests that the detection 

of acid polysaccharides is favored in studies involving scyphozoans 

or anthozoans. It is this writer's opinion that the class Scyphozoa 

provides the most propitious candidates for a search for vertebrate 

connective tissue polysaccharides, since the mesogloea of certain 

scyphozoan medusae is not only close to vertebrate connective 

tissue in character, e.g., highly fibrous and well-ordered, but also 

ample in volume. Moreover, the Scyphozoa have not been adequately 

represented in cnidarian connective tissue studies.

The present investigation for evidence of acid polysaccharides 

in cnidarian mesogloea was conducted with Chrysaora quinquecirrha 

(white variety), a scyphozoan medusa abundant in the Chesapeake Bay 

during the summer months. The mesogloea of Chrysaora (medusa) is 

exceptionally fibrous and sufficient in volume to simplify its 

isolation from the remainder of the animal.

Ideal, unequivocal evidence for vertebrate-type acid poly

saccharides in Chrysaora mesogloea is the isolation, purification, 

and specification of conformation of a specific polysaccharide. But 

this step, in delimiting the extent of a chemical analogy between 

cnidarian mesogloea and vertebrate connective tissue, is a long way 

from the preliminary evidence provided by histochemical staining 

techniques, x-ray diffraction, or amino acid analysis. This study
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attempts to form the necessary bridge between these preliminary data 

and such an elucidation, by determining the identity and relative 

abundance of the monosaccharide constituents of a hydrolysate of the 

carbohydrate of Chrysaora mesogloea. More specifically, the accep

tance or rejection of the hypothesis that acidic polysaccharides are 

present in Chrysaora mesogloea (pending confirmation by the isolation 

of intact polysaccharides with subsequent determination of structure, 

molecular weight, and glycosidic linkages) is dependent upon the 

detection of the monosaccharide constituents essential to the struc

ture of acid polysaccharides (glycosaminoglycans), i.e., hexuronic 

acids and hexosamines. This question is answered in two parts:

(1) qualitatively, by thin-layer chromatography, and (2.) quanti

tatively, by spectrophotometric analysis.

ACID MUCOPOLYSACCHARIDES

Inasmuch as acid mucopolysaccharides, or more precisely, 

glycosaminoglycans, are the major acidic polysaccharides in vertebrate 

connective tissue, it is useful to briefly delineate some of their 

chemical attributes. The acid mucopolysaccharides of chief importance 

in vertebrate connective tissue include hyaluronic acid, heparin, 

chondroitin sulfate A, condroitin sulfate B (dermatan sulfate), and 

chondroitin sulfate C.

The most ubiquitous of these polysaccharides is hyaluronic 

acid, having been isolated from umbilical cords, synovial fluid, 

skin, cockscombs, vitreous and aqutious humors, and a variety of 

tumors (Laurent, 1970; Meyer, 1956). The high viscosity and
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incompressibility of its aqueous solution make hyaluronic acid an 

essential constituent in watery, jelly-like, intercellular matricies 

as in the joints where it serves as a lubricant and shock absorber. 

Hyaluronic acid also has certain adhesive properties, making it an 

effective intercellular cement and therefore an important factor in 

maintaining a barrier against infection. But most important, 

hyaluronic acid forms the basis of the gelatinous, nonstructural 

portion of the ground substance in vertebrate connective tissue, thus 

imparting a flexibility to the entire tissue matrix that is commen

surate with the stability of collagen fibrils and other structural 

elements.

Hyaluronic acid is a linear heteropolysaccharide with a

minimum molecular weight varying from about 0.93 X 10^ in strepto-
£

coccal cultures to 14 X 10 in bovine synovial fluid, consisting of 

alternating residues of D-glucuronic acid and N-acet.yl-D-glucosamine 

(Laurent, 1970). The basic repeating unit of hyaluronic acid is a 

disaccharide composed of the two alternating residues, joined by a 

3(1 3) glycosidic linkage, the repeating disaccharide units being 

joined by £(l->4) linkages (Laurent, 1970) (see Figure 1).

As generally accepted, the structure of the sulfated mucopoly

saccharide, heparin, is essentially similar to that of hyaluronic 

acid. It is a linear heteropolysaccharide made of repeating disac

charide units, each consisting of alternating residues of D-glucuronic 

acid and a hexosamine. However, heparin differs from hyaluronic acid 

in three ways: (1) all cx-D(l->4) glycosidic linkages rather than the

alternating 3-D(l“t3) and 3~D(l-*4) of hyaluronic acid; (2) the
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replacement of N-acetyl -D-glucosamine with an N-sulfated glucosamine; 

and (3) a sulfate ester group at the sixth carbon position of the 

N-sulfated hexosamine, and one at the second carbon position of 

about half of the uronic acid residues (Lindahl, 1970) (see Figure 1).

An acid mucopolysaccharide closely related to heparin is 

heparan sulfate. As the essential difference between the. two 

polysaccharides appears to be quantitative rather than qualitative, 

the structure of heparan sulfate is similar or identical to that of 

heparin (Cifonelli, 1970; Lindahl, 1970). Heparan sulfate is thought 

to have more N-acetylated and fewer N- and O-sulfated substituents 

than heparin (Lindahl, 1970). The molecular weight of heparan sulfate
4and heparin is about 1 X 10 (White et al., 1973).

Although heparin is covalently linked to protein in its 

native state (Lindahl, 1970; Roden, 1968), its relationship with the 

structural elements of connective tissue is unclear. Heparin is a 

major constituent in such tissues as liver, lung, and arterial 

walls (Whistler and Smart, 1953; White et al., 1973). However, its 

presence in these tissues is primarily physiological rather than 

structural since heparin is ari excellent anticoagulant (White et al. , 

1973).
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The chondroitin sulfates A, JB̂  , and C may be described 

collectively. Through a combination of covalent bonding and 

electrostatic interaction, the chondroitin sulfates are intimately 

associated with the structural elements of connective tissue 

(Quintarelli and Dellovo, 1970). Yet, these sulfated mucopolysac

charides do not occur in connective tissue equivalently. For example, 

chondroitin sulfate A or A and C have been found to predominate in 

bond or hard-cartilaginous tissues, chondroitin sulfate C in certain 

soft-cartilaginous tissues (e.g., spinal disks), and B or B and C in 

such elastic tissues as skin, tendons, ligaments, and heart valves 

(Meyer et al. , 1956; White et al. , 1.973). This pattern suggests that 

the association of the various chondroitin sulfates with the structural 

elements of connective tissue differs, and that accordingly, chon

droitin sulfate A in some way influences the tissue matrix to become 

fibrous and inflexible, whereas chondroitin sulfates B and C influence 

the tissue matrix to become less fibrous and more flexible.

The chemical structures of chondroitin sulfates A, B, and C 

also resemble the structure of hyaluronic acid (see Figure 1 and 

Table 1). They have the same interdisaccharide glycosidic linkages 

as has hyaluronic acid, i.e., 3(1_>4). Similarly, the

Due to the degree of structural dissimilarity between 
chondroitin sulfate B and chondroitin (the parent substance of 
chondroitin sulfates A and C), some authors (e.g., White et al., 1973) 
consider the designation chondroitin sulfate B to be a misnomer and 
prefer instead the term dermatan sulfate. The older name is here 
retained for simplicity and to emphasize the continuity of the physio
logical relationship of this compound with chondroitin sulfates A 
and C in the connective tissue matrix.



11

wp9H

cdcoWO
23MP
pHO
w
g
£

x ----s /—\
0) "O’ Hf Ml" <1-
X + f0) P rH 1—1 1—1 rH X

x X ----' V—s •>—' V /
•H CO c a £5 c a c a c a
u a> /
cd go

, a  co
CJ
O 0
cd X
CO >—1 /T*N /T-S o . /—s

X c0 co mi- co CO CO
Q X + + + + +4-1 i—I i—i rH rH X

p Vw' v / >—/ \_/
X c a £5 c a c a c a

a > a> <u
a> 4-J 4J 4J
4-) CO co co
cO CM 4-4 X

<4-4 rH rH X
rH P P p
CJ CO CO CD
CO 1 1 1

* 1 < r Mf vO
<u 4D i 1 1
4-J 1 cu a> cu
cd a> 0 0 0

a) M-J a •H •rH •H
CO P X ■H e 6 &
a) •H 6 cO c0 CO

X & CO CO CO CO CO
*H ai i CO o o o
X CO CM o 4-J 4-J X
cd •> o 1 u o o CJ
x: X u X CJ X CO cO X cd
a X p X rH •rH rH rH X rH
o CJ 1—1 a 60 CJ CO X CO a CO
CO cO GO cO 1 cO 60 X 60 CO 60
CO 1 P 1 a 1 1
o a P a 1 CJ Q CO a o P
p X 1 •H a) X 1 i •H 1
o p rH p 4-> P rH o rH 0 X

s o o cO o PH X PH O pHX X x <4-4 X 4-J p 4J X X
cu p rH CJ CO o a> P CU

a o o CJ CJ U X o a u
P CO p CO CJ co p cO P cd

rH 1 X 1 rH 1 X I i—i 1
GO■ 23■ GO 23 601 23i •H■ 23I 60 2311pI

I
c a P c a

1
P

I
c a

1
P

1
o a Q

1
o a

1
c a

1
c a c a

1
c a

1
c a

<3 pq o
/ m

aj <0 <L> <u
4-J 4-J 4J 4J

a) cd CO cd cO
a> 4-J *4—4 14-4 4-4 4HX X cO i—1 rH rH rH

X X <44 P P P P
X CJ rH CO CO CO COcd cd X CJ
X P CO p P a 0
o CJ aS •H •rH cO •Ha X v—•” p 4-> 4-J 4J 4Jcd P cO •H •rH cd X
CO O P x O o 6 oPh >-4 iH cO U X X x

*—i P X P , X) X a) X
o 1—1 cO CL) 0 0 X 0

P h cd CH na O O '— o
>? a> ,P X XUS ca o o CP



'R
ec
on
st
ru
ct
ed
 

fro
m 

Wh
it
e,
 
Ha
nd
le
r,
 
and

 
Sm
it
h,
 
19
73

12

#1
’X)
•HO •
cd

u i•H i— i
U '— '
n a lrH COK*"**H

X <UH 00o cd<44 M*H#xrH•
txO CU
• TdCU .H• rv CO

co X
cu otJO o
co coCOa *H♦H Tdi—! l
00 <UCO 4-J

CJM *rHClJX) qjM XO 4-J
CU CUg rH
cd •H
co ►CJ
curC A
4-J ,-CO
Pi 1•H rHv^
nd a la)
4-J CO
co ’H

•HrH CU60
0) cdH
cd Pi•HCO i— iCU
rt3 CU
•H Td
U •H
cd f-i
► £ cd
a X
u O
cd aCO cdo CO
pi *Ho rO
S 1
j cd

H4-J
pi

<U
X4-J



13

intradisaccharide linkages of chond.roitin sulfates A and C are 3(l->3),

as in hyaluronic acid. The intradisaccharide linkages in chondroitin
2sulfate B are 0t(l“k3) , but have the same absolute configuration as do 

the intradisaccharide linkages of hyaluronic acid (White et al., 1973).

The chondroitin sulfates differ from hyaluronic acid with 

respect to monosaccharide constituents: N-acetyl-D-galactosamine,

O-sulfated at carbon atom four in chondroitin sulfates A and B, 

and at carbon atom six in chondroitin sulfate C, replaces the 

N-acetyl-D-glucosamine of hyaluronic acid. In chondroitin sulfate 

B, L-iduronic acid is substituted for the D-glucuronic acid of 

chondroitin sulfates A and C (White et al. , 1973).

CARBOHYDRATE-PROTEIN INTERACTIONS 

AND SMALLER CARBOHYDRATE UNITS 

IN CONNECTIVE TISSUE

By delineating the. structures and chief functions of the major 

vertebrate glycosaminoglycans ("classic." acid mucopolysaccharides), 

the previous section represents an attempt to describe the major 

carbohydrate components of vertebrate and advanced invertebrate con

nective tissues. However, the description is oversimplified in that 

a number of smaller carbohydrate units, or oligosaccharides certainly 

play a significant role in effecting and sustaining the super

order of the connective tissue motif. Selected details concerning the

An ot-L glycosidic linkage has the same absolute configura
tion as a (3-D linkage. The intradisaccharide linkage of chondroitin 
sulfate B is a-L(l->3).
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various interactions of these smaller carbohydrate units and the 

glycosaminoglycans with protein are introduced as they may allow a 

better interpretation of the results of this investigation.

A numerically minor but structurally important constituent 

of vertebrate collagen is hydroxylysine (Piez and Gross, 1959, 1970; 

Spiro, 1972a). Hydroxylysine has been shown to be covalently linked 

with carbohydrate (Spiro, 1969a, 1972a; Spiro and Fukushi, 1969).

In vertebrates, the dominant hydroxylysine-linked carbohydrate of 

collagen is in the form of single galactose residues, while that of 

the collagen-like protein of basement membranes is more abundantly in 

the form of a disaccharide containing glucose and galactose (e.g., 

glucosylgalactosylhydroxylysine; Sprio, 1972a). A number of 

invertebrate collagens have been investigated and found to possess 

hydroxylysine, but at a much higher ratio per 1,000 amino acid 

residues than that of vertebrate collagen. Moreover, the carbohydrate 

content of invertebrate collagen is predominantly in the form of 

hyaroxylysine-linked disaccharides identical in structure to that 

found in basement membranes and certain mammalian collagens (Spiro, 

1972a; Spiro and Bhoyroo, 1971). An exception to this is manifest in 

detailed investigations of collagens obtained from Lumbricus (earth

worm) cuticle. Hydroxylysine is absent in this collagen, and there

fore, hydroxylysine-linked carbohydrate is not present. Yet di- and 

tri-saccharides containing galactose were found to be linked to 

serine and threonine residues [ 2-0-a-D-glucopyranosyl-D-galactose and 

O-a-D-galactopyranosyl-(1^2)-O-a-D-galactopyranosyl-(l-*2)-D-galactose; 

Josse and Harrington, 1962; Muir and Lee, 1969; Spiro, 1972a ]. With
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this exception, hydroxylysine-linked mono- and/or di-, and tri

saccharides of galactose (-glucose) appear to be universally found 

in both vertebrate and invertebrate collagen (Kelfalides, 1970; 

Nordwig, Rogall, and Hayduk, 1970; Spiro, 1970a, 1970b, 1972a).

The recent finding by Butler (1970) that there are "holes" 

in the a^chain of rat skin collagen to accomodate disaccharide 

molecules, underscores the suggestion that hydroxylysine- or other 

amino acid-linked oligosaccharides may have a direct and highly 

effective control over the periodicity and fibrillogenesis of col

lagen, in a manner corresponding to or complimenting that proposed 

for the acid mucopolysaccharides. It is possible that a small amount 

of hydroxylysine-linked carbohydrate can be accommodated by the 

polypeptide chain, resulting in a stabilization or "fixing" of 

the periodicity characteristic of vertebrate collagen: 640 A. But

when the amino acid-linked mono- or oligo-saccharides are more 

numerous covalently and sterically speaking than available spaces 

for the normal assembly of the tropocollagen molecules, the organiza

tion of the fibrils is disrupted and a new, often random periodicity, 

or aperiodicity is established. This would explain, in view of the 

abundance of carbohydrate, the considerable variation of axial
o

periodicity observed in invertebrate collagens, e.g., 200 A in
©

Metridium and Physalia, 300-600 A in collagen from Lumbricus body 

wall, and no axial periodicity in Lumbricus cuticle cartilage or 

Ascaris cuticle collagen (Piez and Gross, 1959; Reed and Rudall,

1948; Spiro, 1972a; Watson and Silvester, 1959).

This revelation in no way diminishes the role of the acid
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mucopolysaccharides in the stabilization and fibrillogenesis of 

collagen. Rather, it serves to emphasize the necessity of maintaining 

a broad view of the possible complexity of mechanisms involved in the 

ordering of the connective tissue matrix. In this respect, a 

dichotomous influence of the GAG over the structural elements of 

connective tissue seems to prevail. Ogston (1970) tends to regard 

the role of glycosaminoglycans in connective tissue as passive, i.e., 

they check the proliferation of collagen fibrils in the cellular 

environment by taking up intercellular space (exclusion effects).

In contrast, a number of authors (Meyer, 1956; Quintarelli and 

Dellovo, 1970; and Weiss, 1962) believe that the evidence from studies 

of the interaction of the protein and carbohydrate moieties of con

nective tissue necessitates a more active role for the glycosamino

glycans. Weiss (1962), for example, suggests that electrostatic 

interactions between collagen and GAG might create physio-chemical 

conditions in the groundsubstance of connective tissue which would, 

in effect, stake out acceptor sites for collagen fibers to settle 

upon. However, the most comprehensive explanation of the observed 

effects of the glycosaminoglycans in the connective tissue organization 

recognizes both a passive and active role for the GAG in that steric 

hindrance of protein (exclusion effects) and electrostatic interaction/ 

covalent bonding with protein are involved (Mathews, 1965, 1970; 

Quintarelli and Dellovo, 1970).

That the sulfated glycosaminoglycans are covalently bound to 

protein has been established (Hallen, 1970; Mathews, 1970; White et 

al., 1970). For example, in cartilage, chondroitin sulfate A is
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bound to protein via the trisaccharide galactosylgalactosylxylose 

(linked to a serine or threonine residue of the polypeptide chain by 

a xylosidic bond), while in corneal tissue, keratin sulfate is 

linked by an N-glycosidic bond of the N-acetylglucosamine to 

asparagine (White et al., 1973). However, it remains unclear whether 

or not these glycosaminoglycans are covalently linked to collagen, 

although covalent bonding between chondroitin sulfate and collagen 

(in bovine nasal cartilage) is strongly suggested (Hoffman and 

Mashburn, 1970).

It will be recalled from the description of specific verte

brate acid polysaccharides that the relative abundance of the acid 

mucop'olysaccharides in a connective tissue correlates with the overall 

character of the tissue; e.g., hyaluronic acid and/or chondroitin 

sulfate B predominate in the more flexible tissues, while chondroitin 

sulfate A predominates in cartilage and bone. A causal*link or 

dependency between the structural (and functional) features of a 

connective tissue and its glycosaminoglycan composition is further 

evidence of a more than passive participation for acid mucopoly

saccharides in the fibrillogenesis and stabilization of collagen and 

thereby, in the ordering of the tissue matrix. The existence of 

such a causal or dependent relationship is made more apparent by 

diseases (mucopolysaccharidoses) in which major defects in a con

nective tissue can be directly tied to an imbalance in the glycosam

inoglycan constituents of the tissue (Dorfman and Matalon, 1972; 

Matalon and Dorfman, 1970; Spiro, 1969b; White et al., 1973).

In addition to the galactose and glucose of oligosaccharides
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linked to hydroxylysine and/or other amino acid residues, a variety 

of sugars has been found intimately associated with invertebrate 

collagen: mannose, fucose, glucosamine, galactosamine, hexuronic

acid, xylose, and arabinose (Katzman and Jeanloz, 1970a, 1970b;

Spiro, 1970b, 1972a). It is possible that large polysaccharides other 

than the glycosaminoglycans, are involved in the stabilization and 

fibrillogenesis of invertebrate collagen. These monosaccharides may 

either be (1) components of oligosaccharides that provide a link 

between unknown larger polysaccharides and the polypeptide chain in 

a manner analogous to that of galactosylgalactosylxylose with chon

droitin sulfate A in cartilage; or (2) may be residual fragments of 

a large polysaccharide. The presence of most of these sugars in the 

nprotein-free" carbohydrate moiety of invertebrate connective tissues 

favors the latter suggestion. The possibility of substitutes for 

GAG is further suggested by the recent finding of a glucuronic acid- 

mannose dissacharide (in addition to the mono-, di-, and tri-saccha

rides of galactose) associated with Nereis (clamworm) cuticle 

collagen (Spiro and Bhoyroo, 1971). This also suggests that unfamiliar 

associations of uronic acid with other monosaccharide units (e.g., the 

hexosamines) may occur and that accordingly, glycosaminoglycans which 

differ structurally and chemically from vertebrate-type GAG may exist. 

In any event, the occurrance of a novel, uronic acid containing 

disaccharide unit, demonstrates that by itself, the detection of 

uronic acids in invertebrate connective tissue is insufficient 

evidence for the presence of the classic acid mucopolysaccharides 

such as hyaluronic acid, heparin, or the chondroitin sulfates.



METHODS AND MATERIALS

Isolation of Mesogloea

Chrysaora quinquecirrha (order Semaeostomae, family Pelagidae) 

manifests a typical life cycle consisting of planula, scyphistoma, 

strobila, ephrya, and cysts. The tissue structure of the medusa 

of Chrysaora is typical for the Semaeostomae and can be divided into 

three layers: (1) an ectoderm, (2) the mesogloea ("mesoderm"), and 

(3) an entoderm or gastroderm. The semispherical umbrella or bell 

consists largely of mesogloea, delimited at its outer convex surface 

by a very thin epithelium (ectoderm). An equally thin endodermal 

layer sharply separates the bottom or subumbrella side of the meso

gloea from the gastrovascular cavity, from which a number of radial 

canals extend to connect with the sense organs (rhopalia) and 

tentacles located at the bell margin. The remaining anatomy of the 

organism consists of four horseshoe-shaped gonads, seated in the 

floor of the gastrovascular cavity; the manubrium, which is a pendulum' 

like extension of the mouth; and four frilled oral arms, descending 

from the manubrium (see figures 2, 3, and 4).

Mature Chrysaora (having a bell diameter of between 13 and 

20 cm) were collected from the York River at the Virginia Institute of 

Marine Science (VIMS), Gloucester Point, Virginia. As the mesogloea 

in the tissue structure of the adult Chrysaora medusa is sharply 

delimited from the gastrodermal tissues, a surgical isolation is 

facilitated. Hence, as illustrated by Figures 3 and 6 (A through F),

19
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Figure 2. Chrysaora quinquecirrha, with oral arms extended.
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Figure 3 Chrysaora quinquecirrha, showing underside--mouth, opening 
into gastrovascular cavity.
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Figure 4. Chrysaora quinquecirrha, illustrating mesogloea in intact 
organism.
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Figure 5 Manubrium, gastrovascular cavity, gonads, oral arms prior 
to surgical isolation of mesogloea.
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Figure 6. Surgical isolation of mesogloea.
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the mesogloea was obtained by the removal of the gastrovascular system 

(manubrium, gastrovascular cavity, gonads, oral arms), tentacles and 

approximately ten millimeters of the bell margin. The resulting 

patties of gelatin were washed in cold, distilled water, blotted 

dry, weighed, and lyophilized. The percent composition for total 

solids was found to be 1.834 i0.0027>, i.e., 98.1667o water.

To correlate the amount of mesogloea obtained from a single

organism with the size of the organism, as determined by the bell

diameter, a brief survey was conducted. The bell diameters of

thirty randomly selected Chrysaora medusae were measured upon a flat

surface, the mesogloea surgically removed as before, and its weight

determined. From these data, the mean weight of mesogloea, 119.34

grams, was found to correspond to a mean bell diameter of 15.39

centimeters. A graph of the weight of mesogloea versus bell diameter

was plotted, and a regression line for the weight of mesogloea

versus bell diameter cubed (see Figure 7) constructed. The slope

of the regression line is approximately 1/6TT. Hence supported by a flat
16

surface, the umbrella contains a volume of mesogloea approximately equi-
3

valent to 1/16 of that of a sphere having the same diameter: V = 1 /6Trd .
16

Isolation and Hydrolysis 
of Carbohydrate .

Weighed portions of freeze-dried mesogloea (ten grams each, 

dried to constant weight) were suspended with ultrasonic agitation in 

57o trichloroacetic acid and centrifuged (repeated five times for each 

sample). Two volumes of 957> ethanol were added to the supernate
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(acid soluble carbohydrate fraction) and the mixture refrigerated 

(0°C) for seventy-two hours. The carbohydrate precipitate was recov

ered by centrifugation, washed three times with 95% ethanol, then 

with anhydrous ethyl ether and dried to constant weight. The acid 

insoluble fraction (protein plus trichloroacetic acid insoluble 

carbohydrate) was washed once with 95% ethanol, followed by anhydrous 

ethyl ether (three times) to extract the trichloroacetic acid, and 

dried to constant weight. The percent composition of the mesogloea 

wet weight for the several moieties was determined (also see Table 2):

0.137% Protein plus trichloroacetic acid insoluble
carbohydrate

0.036'% Trichloroacetic acid soluble carbohydrate

1.661% Salts

1. 8347o Total solids

A portion of the carbohydrate moiety (0.2658 grams) was 

hydrolyzed for six hours at 100°C in 4N HC1 (subjected to ultra

sonic agitation after first four hours). The resulting acid mixture 

was taken to dryness under diminished pressure at 25°C over sodium 

hydroxide pellets. The dry hydrolysate residue was redissolved in 

1.0 ml of distilled water and 0.5 ml of 95% ethanol added to prevent 

the growth of microorganisms.

Thin-Layer Chromatography 

The monosaccharide constituents of the mesogloea carbohydrate 

hydrolysate were resolved by thin-layer chromatography; one to three 

pi of the hydrolysate were applied to commercially prepared plates: 

Silica Gel F-254 on A1 (0.25 mm thick; E. Merck, Darmstadt, West
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TABLE 2

FRACTIONATION OF 10.0000 GRAMS OF 
FREEZE-DRIED MESOGLOEA 

(8 Samples)

Sample
number

Grams

Protein3 Carbohydrate^ Salts

1 0.7591 0.1681 9.0728

2 0.7587 0.1692 9.0721

3 0.7586 0.1790 9.0624

4 0.7520 0.1924 9.0556

5 0.7472 0.1953 9.0575

6 0.7446 0.2008 9.0546

7 0.7404 0.2307 9.0289

8 0.7274 0.2328 9.0398

Mean 0.74850 0.19604 9.05546
cs ±0.01107 ±0.02502 ±0.01503

3
Trichloroacetic acid insoluble fraction. 

^Trichloroacetic acid soluble.

Standard deviation.
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Germany). There were four solvents.employed (see Figure 8): (1) ethyl

acetate-pyridine-acetic acid-water (5:5:1:3), (2) ethyl acetate-2-

propanol-water (27:3.5:1), (3) ethyl acetate-l-propanol-water 

(1:5:1), and (4) 1-butanol-pyridine-0.1 N HC1 (5:3:2). The developed 

plates were dried at 120°C for five minutes, or, if the solvent 

contained pyridine, at 100°C for forty minutes. The chromatograms 

were visualized preferentially under ultraviolet light (254 nm,

350 nm) after spraying with 2 1 ,7' dichlorofluroescein. (Plates 

commercially impregnated with a fluorescent indicator were not 

sprayed.) Iodine was also used as a visualization reagent but with 

results inferior to that achieved by ultraviolet illumination.

Spectrophotometry

The relative abundance of the monosaccharide constituents 

represented in the mesogloea carbohydrate moiety was estimated by 

spectre-photometric analysis. A portion of the mesogloea carbohydrate 

(0.2041 g) was hydrolyzed for six hours at 100°C in 4N HC1 and taken 

to dryness as before. The dry hydrolysate was redissolved in 10.0 ml 

of distilled water. The analysis employed four color reactions:

(1) Anthrone-Suifuric acid (hexose), (2) L-Cysteine-Sulfuric acid 

(pentose), (3) Carbazole-Sulfuric acid (uronic acid), and (4) Elson- 

Morgan (modification by Blix) (hexosamine) (Dische, 1962a-e).

Anthrone

Approximately 0.004 g of the hydrolyzed carbohydrate (0.2 ml) 

was dissolved in 10.0 ml of distilled water. To 1.0 ml of this solu

tion, 10.0 ml of. freshly prepared anthrone reagent were added, the
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Figure 8. Solvent System 2: ethyl acetate-2-propanol-water (27:3.5:1)
with Silica Gel F-254 on A1.

A plate, which has been spotted with the mesogloea hydrolysate 
and several known sugars, is placed in a developing tank (foreground) 
saturated with solvent. By removing the plate, the movement of the 
solvent--from the lower to the upper end of the plate--is arrested.
To enhance the reproducibility of the chromatograms, the limit of 
the solvent front has been preselected by scoring a line across the 
upper part of the silica gel layer. From left to right, the sugars 
applied to this plate are: fucose, glucose, the mesogloea carbo
hydrate hydrolysate, hyaluronic acid hydrolysate, chondroitin sulfate 
(mixed isomers A, B, C) hydrolysate, glucuronic acid, galacturonic 
Acid, glucosamine, and galactosamine. Running time for this solvent 
system is approximately two hours.

After the plate is dried, spots are visualized under ultra
violet light with 2', 7 ' dichlorofluorescein spray or without if an 
UV fluorescent indicator has been commercially added to the plate.
The tank at the left-rear of the photograph contains iodine crystals, 
an excellent general visualization reagent but lacking the revsolving 
power of ultraviolet light.
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mixture chilled in a water bath to approximately 15°C. The mixture 

was agitated, warmed to room temperature, placed in a boiling water 

bath for fifteen minutes, and cooled to room temperature. Xylose, 

fucose, and glucose, comprising three sets of serially diluted 

standards, were run.

The approximate concentrations of xylose, fucose, and glucose 

were obtained by solving three simultaneous equations with absorbance 

values taken at 503, 590, and 620 nm (see Appendix C). (A blue color 

with an absorption maximum at approximately 620 nm is produced with 

glucose.) Spectrophotometric measurements were made immediately 

following the completion of the reaction.

L-Cysteine

Approximately 0.002 g (0.1 ml) of the hydrolyzed carbohydrate 

moiety was dissolved in 10.0 ml of distilled water. To 1.0 ml of 

this solution, 4.0 ml of concentrated sulfuric acid was added. The 

mixture was shaken, cooled to room temperature under tap water, and 

allowed to stand for one hour with frequent agitation. To this,

0.1 ml of 3% L-cysteine hydrochloride monohydride solution (3 g/100 ml 

distilled water) were added with shaking. Fucose, xylose, and ara- 

binose, comprising three sets of serially diluted standards, were 

run.

Spectrophotometric measurements were made about twenty minutes 

after the addition of the cysteine solution. The approximate concen

trations of xylose, fucose, and arabinose were determined by the 

method of three simultaneous equations using absorbance values taken
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at 397, 390, and 327 nm. (The absorption maximum for xylose occurs 

at about 390 nm.)

Carbazole

Approximately 0.001 g (0.05 ml) of the hydrolyzed carbo

hydrate was dissolved in 1.0 ml of distilled water, and 6.0 ml of 

concentrated sulfuric acid added. The mixture was heated for twenty 

minutes at 100°C in a water bath and cooled to room temperature under 

tap water. After cooling, 0.2 ml of 0.17> carbazole in ethanol 

(0.1 g/100 ml) was added, the mixture shaken and allowed to stand 

for about two hours. (A purple color appeared with an absorption 

maximum at about 535 nm.) Xylose, fucose, and glucuronic acid, 

comprising three sets of serially diluted standards, were run.

The approximate concentrations of hexuronic acid (glucuronic 

acid plus iduronic acid), xylose, and fucose were determined by the 

method of three simultaneous equations using absorbance values taken 

at 440, 515, and 560 nm.

Elson-Morgan

Approximately 0.001 g (0.05 ml) of the hydrolyzed carbohy

drate was dissolved in 4.0 ml of distilled water, and 2.0 ml of 47> 

acetyl acetone in 1.25 N sodium carbonate (4 ml/100 ml) added. The 

mixture was heated in a water bath at approximately 90°C for one 

hour. After heating, 16.0 ml of ethanol and 2.0 ml of N,N-dimethyl-p- 

aminobenzaldehyde reagent (1.6 g of N,N-dimethyl-p-amino-benzaldehyde: 

30 ml 957o ethanol: 30 ml concentrated HC1) were added with agitation.

(A red color with an absorption maximum at about 530 nm developed
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rapidly.) Glucosamine and galactosamine, comprising two sets of 

serially diluted standards, were run.

Spectrophotometric measurements were made immediately fol

lowing the addition of the N,N-dimethyl-p-aminobenzaldehyde reagent. 

The approximate concentrations of glucosamine and galactosamine were 

obtained by solving two simultaneous equations with absorbance values 

taken at 529 and 539 nm, respectively.



RESULTS

Thin-Layer Chromatography

Analysis of the Chrvsaora mesogloea carbohydrate hydrolysate 

by thin-layer chromatography revealed the presence of hexosamines and 

hexuronic acids, in addition to an abundance of neutral sugars. In 

order of their relative abundance suggested by inference from the size 

and intensity of the spots, the following monosaccharides were 

detected in the hydrolysate: xylose, fucose, glucosamine, galacto

samine, "iduronic acid," glucuronic acid, arabinose, mannose, and 

glucose.

Rf Values

Each monosaccharide has a characteristic Rf value when run 

wTith a given chromatographic system [ = solvent system (i.e., 

solvent + thin-layer support, e.g., silica gel) 4- physiochemical 

conditions in which the chromatography takes place, including chamber 

saturation, ambient humidity, and temperature ]. The Rf value for a 

particular sugar is determined by measuring the distance from the 

center of the visualized spot to the origin, and dividing this value 

by the distance from the origin to the solvent front. A tabulation 

of Rf values (Table 3) precedes the following description of results 

obtained with the employed solvent systems.

Changes in humidity, chamber saturation, and temperature can 

cause substantial variations in Rf values between runs of the same

40
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TABLE 3

VALUES (X 100) Of KONCSACCHARIPES USING THIN-LAYER 
CHROKATOCRAPtnf WITH SILICA Cf.L F-254 OH AL

Solvent .yetcm

1 Ratio 2 Ratio 3 Ratio 4 Ratio

Rthyl acetate S Ethyl acetate 27 Ethyl acetate 1 o-Butanol 5
Pyridine 3 2-Propanol 3.5 n-Propanol 5 Pyridine 3
Acetic acid 1 Water 1 Water 1 0.1M UC1 2
Water 3

Development tine (hours)

5 2 7 10

Reaolutloa

Keutral good retarded good good

Acidic poor excellent good fair

Amine good retarded retarded poor

Reference Cq* Reference Cq HAb csc Reference cq Reference Cq

tironlc aclda

glucuronic 95,86,17 96,85,17 70,81,31 71.81,,31 71 ,62,32 72,,61,32 88,80,76,6 88,80,75 93,89 ,82,13 93,,90,82,12

"lduronlc** _d 90 58 *« 58 - 93

gelacturonlc e:,9 * 19 e * * 69,3 • 83,6 «

Heutral.

fucose 89 69 10 62 62 73 73

*ylest 86 66 5 39 59 70 70

ervabinoce 58 60 6 48 48 39 59

ear, nose 56 56 0 50 50 63 63
glucose 51 51 0 43 43 51 51
galactoac <7 * 0 38 • 43 •

Aelsce

glucosamine 29 30 0 0 7 7
galactoeamlne 25 25 0 0 4 4

Unidentified - 11 - 9

*Cq m hydrolyzed C. quinqucrcf rrha ciceoglca carbohydrate.
|t
HA • hydroly?ed hyaluronic acid.

*CS ■■ hydroly/eJ chor.JroI tin sulfate (mixed isoners A # Bt and C).

■ not applied.

*a m not detected
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solvent system. The illustrations and reported Rf values (hRf =

Rf X 100), supplementing the description of the four solvent systems, 

were taken from chromatograms chosen as being most representative of 

the observed results.

Solvent System 1:
Ethyl acetate-pyridine-acetic acid-water [ 5:5:1:3 ];
Silica Gel F-254 on A1

To the nearest half-hour, the running time for this solvent 

system was five hours. The resolution attained was very good for 

hexosamines and neutral sugars, but only fair to poor for the uronic 

acids.

When visualized under ultraviolet illumination (using plates 

commercially impregnated with a fluorescent indicator), alternating 

between short wave length (254 nm) [ dark spots against a brightly 

fluorescing background ] and long wave (350 nm) [ brightly fluores

cing spots against a dark background ], the most intense spots in 

hydrolysate are xylose, fucose, glucosamine, galactosamine, and 

glucuronic acid, respectively. A tracing of a typical chromatogram for 

this system is provided in Figure 9 (see Table 3 for the corresponding 

Rf values).

Solvent System 2:
Ethyl acetate-2-propanol-water [ 27:3.5:1 ];
Silica Gel F-254 on A1

The running time for this solvent system was approximately 

two hours. In contrast to a partial or complete retardation of the 

neutral sugars and hexosamines, the resolution of the hexuronic 

acids was extremely good. As a result, two hexuronic acids were
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ETHYL ACETATE-PYRIDINE-ACETIC ACID-WATER 5;5:l:3
SILICA GEL 254 O N  Al 12 JAN 75S O L V E N T  F R O N T

i''-'

Figure 9. Thin-layer chromatogram from Solvent System 1
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detected in the mesogloea carbohydrate hydrolysate.

Examining the tracing of the chromatogram in Figure 10, three

spots (hRf 70, 41, and 31) are manifest by glucuronic acid. (The

multiplicity of spots results from the interaction of the glucuronic

acid with the solvent, rather than from impurities.) The same spots

(hRf 71, 41, and 31) are manifest in the mesogloea carbohydrate

hydrolysate. Moreover, an additional spot (hRf 58) is detected in

the mesogloea hydrolysate which--turning to a tracing of a second

chromatogram (Figure 11)--matches a similar spot in the hydrolysate

of chondroitin sulfate (a mixture of isomers A, B, and C). As

chondroitin sulfate B is a polymer of alternating units of N-acetyl- 
3galactosamine^ and iduronic acid, and chondroitin sulfates A and C, 

of N-acetyl-galactosamine and glucuronic acid, the hRf 58 spot in 

the chondroitin sulfate hydrolysate is most probably iduronic acid.

[ To sustain this tentative identification, a number of other substan

ces, including several uronic acids, were run, but their Rf values 

were much lower than hRf 58 (e.g., mannuronic acid, hRf = 36; 

galacturonic acid, hRf = 19; guluronic acid, hRf = 15). ]

Solvent System 3:
Ethyl ac.etate-N-propanol-water [ 1:5:1 3; 
with Silica Gel F-254 on A1

The running time for this system was approximately seven hours.

The resolution of hexuronic acids and neutral sugars was good, and good

to fair, respectively, with hexosamines completely retarded.

In acid hydrolysis, the N-acetyl group is split from the 
hexosamine.
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ETHYL AC E T AT E-2 - PR OPA NO L-WAT E R 27:3)dT  SILICA GEL F-254 ON Al ] 
S O L V E N T  F R O N T _______________________________________  22 JUNE 74

Figure 10. Thin-layer chromatogram from Solvent System 2*
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ETHYL ACETATE-2 PROPANOL-WATER 27:3.6-1 SILICA GEL F-254 ON Al 
S O L V E N T  F R O N T _________________________________  2 9  JUNE 7 4

0 o

Figure 11. Thin-layer chromatogram from Solvent System 2, showing
separation of monosaccharide constituents of chondroitin 
sulfate (mixed isomers A, B, C) and hyaluronic acid for 
comparison with the Chrysaora mesogloea hydrolysate.



Glucuronic acid manifests three spots (hRf 88, 80, 76; disregarding 

hRf 6) which are clearly detected in the mesogloea carbohydrate 

hydrolysate (hRf 88, 80, 75). An additional spot (hRf 93) is detected 

and tentatively identified as iduronic acid. (Although difficult to 

visualize using this system, a corresponding spot was detected in the 

hydrolysate of chondroitin sulfate, mixed isomers A, B, and C; not 

shown).

Figure 12 is a tracing of a typical chromatogram (see Table 3 

for the Rf values). Alternating between short and long wave ultra

violet light, the most intense spots detected in the hydrolysate are 

xylose, fucose, glucuronic acid, "iduronic acid," glucose, arabinose, 

and mannose, respectively. (Although their Rf values are too low to 

be included, in practice galactosamine and glucosamine can be detected 

with this system.) A photograph of a chromatogram, visualized under 

short wave (254 nm) ultraviolet, is provided in Figure 13.

Solvent System 4:
1 -butanol-pyridine-0.1 N I1C1 [ 5:3:2 j;
Silica Gel F-254 on Al.

The running time for this system was about ten hours. The 

resolution of neutral sugars and hexuronic acids was good and fair, 

respectively; hexosamines, poor or retarded.

Figure 14 is a tracing of a typical chromatogram produced 

with this solvent system (see Table 3 for corresponding Rf values). 

Under short and long wave ultraviolet light, the dominant substances 

detected in the mesogloea hydrolysate are xylose, fucose, glucosamine, 

galactosamine, glucuronic acid, arabinose, mannose, and glucose,
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ETHYL ACETATE-N-PROPANOL-WATER 1=5=1 SiLiCA GEL F-254 ON Al
27 JAN. 75S O L V E N T  F R O N T

V

Figure 12. Thin-layer chromatogram from Solvent System 3.
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Figure 13. Photograph of a chromatogram from Solvent System 3 under 
short wave (254 nm) ultraviolet light.
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-BUTANOL-PYRIDINE-O.IN HCI 5=3=2 SILICA GEL F-254 ON Al
15 JAN 75S O L V E N T  F R O N T

Figure 14. Thin-layer chromatogram from Solvent System 4.
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respectively.

Xylose or Lyxose?

In addition to the sugars identified in the Chrysaora 

mesogloea carbohydrate hydrolysate (plus galacturonic acid and 

galactose), a number of substances were run with the four solvent 

systems (e.g., 2-dexoy-glucose, mannosamine, N-acetyl-mannosamine, 

N-acetyl-glucosaraine, rhamnose, raffinose) ; but these were excluded 

when their Rf values did not correlate with those of the mesogloea 

hydrolysate in one or more solvent systems. The Rf values of one 

substance, however, lyxose, matched those of xylose sufficiently in 

all solvent systems to necessitate further consideration. An exam

ination of the literature regarding neutral sugars commonly associated 

with invertebrates, with lyxose appearing only as a somewhat exotic 

possibility, leads this writer to accept the identification of the 

corresponding spot as xylose. However, reservations should be 

underscored since additional experimentation reveals that xylose and 

lyxose are truly cochromatographic with the four solvent systems 

employed in this investigation. It is emphasized, therefore, that 

while an identification as xylose is made, the possibility of lyxose 

(or xylose and lyxose) being present in the Chrysaora hydrolysate is 

significant.

Spectrophotometry

All spectrophotometric measurements were made with the Cary 

Spectrophotometer, Model 15. The form of Bouguer-Beer1s Law employed 

is A = abc, where absorbance (A) equals the log [ f>Q/T ] (PQ anĉ  P -
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incident and transmitted light, respectively). Absorptivity (a) 

is defined as A/bc, where b is the length in centimeters (in this 

case 1.0 cm) of the path of light transmitted through the absorbing 

medium, and c the concentration of the monosaccharide being measured 

in grams/liter or milligrams/milliliter. The absorptivities for the 

monosaccharide constituents of the Chrysaora mesogloea hydrolysate 

were determined from the slope of the graph of absorbance versus 

concentration for the corresponding serially diluted reference 

sugars. A tabulation of wavelengths of maximum absorbance of the 

reference sugars for the four color reactions is provided in 

Table 4. Similarly, a tabulation of concentration of Chrysaora 

mesogloea carbohydrate hydrolysate (mg/ml), absorbance, absorptivity, 

and concentration (mg/ml) of monosaccharide moieties is provided in 

Table 5. The quantities (micromoles per 100 fig of mesogloea carbo

hydrate) of the monosaccharide constituents of the Chrysaora mesogloea 

hydrolysate are listed in Table 6. These values are treated as 

approximations of the absolute amounts of the respective sugar 

moieties in the hydrolysate. An example of the absorption spectra of 

glucose, fucose, xylose, mannose, arabinose (0.1 mg/ml each), and 

Chrysaora carbohydrate hydrolysate (0.2 mg/ml), between 450 and 720 nm 

for the Antlirone reaction is shown in Figure 15. The method of three 

simultaneous equations employed in determining by the Anthrone reaction 

the concentration of xylose, fucose, and glucose in the mesogloea 

hydrolysate (0.4 mg/ml) is demonstrated in Appendix C.
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Xylose 

Fucose 

Uron.ic acid 

. Arabinose 

Mannose 

Glucose 

Glucosamine 

Galactosamine

TABLE 4

WAVELENGTHS OF MAXIMUM ABSORBANCE

Elson-
Anthrone L-Cysteine Carbazole Morgan

(nm) (nm) (nm) (nm)

640, 503 

620

503, 640 

610, 490 

620, 490

390

327, 397

390, 327

327

327

515

440

535

515

515, 432

529

539
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TABLE 5

SPECTROl’HOTOKCTRIC ANALYSIS OF HYDROLYZED 
MESOGLOEA CAKiWHYDAATE

Chrysflora Wavelength Sugor^
Carbohydrate    composition

(mg/ml) (cm) (nm) (,„) (mg/ml)

Anthrone reaction: 620 590 503

0.40 Absorbance “ 0.477 0.420 0.572

Absorptivity*

Reference sugars

xylose 1.554 0.586 2.801 0.125

fucose 1.527 1.853 1.091 0.129

glucose 5.304 2.879 2.192 0.037

L-Cystelne reaction: 397 390 327

0.20 Absorbance “ 0.651 0.830 0.421

Absorptivity

getetence sugars

xyloee • .737 10.190 0.410 0.062

fucose 3.218 1.865 4.988 0.064

srabliiose 4.009 4.682 4.704 0.016

Carbazole reaction: 560 515 440

1.00 Absorbance * 0.067 0.326 0.394
Absorptivity

Reference sugars

xylose 0.000 0.430 0.380 0.312
fucose 0.000 0.000 0.600 0.323
uronlc ecid 0.630 1.810 0.170 0.1C6

Elson-Blorgan reaction: 539 529

0.25 Absorbance “ 0.085 0.085

Absorptivity

Aeference sugars

glucosamine 3.530 3.752 0.012
galsctosamlne 4.645 4.351 0.009

*Concentrntio is

b A 
* " be'

of monosaccharides in Chrysaora hydrolysatc as determined via simultaneous equations.
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TABLE 6

QUANTIFICATION OF MONOSACCHARIDE 
CONSTITUENTS OF CHRYSAORA 

MESOGLOEA CARBOHYDRATE

Sugar

*“6Micromoles (10 mole) 
per 100 micrograms 

of mesogloea 
carbohydrate

Spectro-
photo-
metric

reaction

Xylose 0.208 Anthrone

L-Cysteine

Fucose 0.196 Anthrone

L-Cysteine

Uronic acid 0.055 Carbazole

Arabinose 0.054 L-Cysteine

Mannose + a

Glucose 0.052 Anthrone

Glucosamine 0.027 Elson-Morgan

Galactosamine 0.020 Elson-Morgan

£
Unable to be quantified satisfactorly with any of the four 

reactions.
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DISCUSSION

ANALYSIS

This investigation reveals the presence of xylose, fucose, 

ara.binose, mannose, glucose, glucosamine, galactosamine, glucuronic 

acid, and "iduronic acid” in the Chrysaora mesogloea hydrolysate. The 

detection of glucosamine, galactosamine, glucuronic acid, and "iduronic 

acid" in the hydrolysate necessitates acceptance of the hypothesis 

that acidic polysaccharides are present in Chrysaora mesogloea.

More specifically, the detection of these monosaccharide moieties 

strongly suggests the presence of vertebrate-type acid mucopoly

saccharides. In this context, the presence of hyaluronic acid and 

chondroitin sulfate B is favored. But the presence of highly 

sulfatcd mucopolysaccharides, such as heparin or heparan sulfate, 

is preferred since the total, amount of sulfate in the Chrysaora 

carbohydrate is very high; i.e., more consistent with the sulfate 

content of heparin or heparan sulfate than with that of chondroitin 

sulfate B. [ A  total sulfate determination was conducted on hyalu

ronic acid, chondroitin sulfate (mixed isomers A, B, and C), and 

dry Chrysaora mesogloea carbohydrate. The total sulfate in the dry 

Crysaora mesogloea carbohydrate was found to 39.1%; for hyalu

ronic acid, 1.2%; and for chondroitin sulfate, 22% weight/weight 

(Zubkoff, Gardner, and Enwright, 1975). ] Moreover, (contrary to the

accepted structure for heparin provided in the Introduction) a

58
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significant amount of iduronic acid, has been detected in heparin 

(Lindahl, 1970).

It may be pointed out that galactose was not detected in the 

Chrysaora mesogloea hydrolysate. In view of the ubiquity of galac

tose in invertebrate and vertebrate connective tissues, the absence of 

galactose in the hydrolysate is surprising, but should not be inter

preted as absolute in Chrysaora mesogloea. Since hydroxylysine has 

been detected in Chrysaora mesogloea collagen (Quensen, 1975), and is 

very likely linked to mono-, di-, and/or tri-saccharides of galactose, 

it may be interpreted that the absence of galactose in the mesogloea 

hydrolysate indicates that carbohydrate containing galactose has 

remained attached to protein after chemical fractionation and that 

the hydrolysate is virtually free of protein, i.e., free of the 

collagen moiety of Chrysaora mesogloea. This conclusion is in agree

ment with the techniques employed to extract the polysaccharide or 

carbohydrate moiety. It was anticipated that a trichloroacetic acid 

extraction would yield: (1) polysaccharides which are not intimately

associated with protein; and (2) polysaccharide fragments broken from 

larger polysaccharides that are covalently attached to protein, but 

not dissacharides or small oligosaccharides so attached. Hence, the 

absence of galactose in the mesogloea hydrolysate indicates that this 

monosaccharide is not represented, other than in the form of galac- 

tosamine, in the "protein-free" carbohydrate moiety of Chrysaora 

mesogloea.

The detection of hexuronic acids and hexosamines characteris

tic of the classic glycosaminoglycans, does not exclude the
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possibility that other, totally unfamiliar, acid polysaccharides may 

be present in Chrysaora mesogloea. Indeed, novel acid polysaccharides, 

perhaps important phylogenetic precursors to vertebrate GAG, may be 

the only glycosaminoglycans present. Hence, there are three possible 

alternatives which fit the results of this investigation:

1. That the classic glycosaminoglycans, such as chondroitin 

sulfate or heparan sulfate, and large neutral and/or sulfated poly

saccharides, but no novel GAG are present.

2. That classic GAG, novel GAG, and neutral and/or sulfated 

polysaccharides are present.

3. That no classic GAG are present, but only novel GAG and 

neutral and/or sulfated polysaccharides.

The second alternative best describes the carbohydrate moiety 

Chrysaora mesogloea, i.e., that classic GAG, novel GAG, and other

neutral and/or sulfated polysaccharides are present. With the

exception of the hexosamines, the results of the spectrophotometric 

analysis (molar quantities) of the mesogloea carbohydrate are in 

agreement with the relative abundance of the monosaccharides detected 

by thin-layer chromatography as inferred from the appearance of the 

chromatogramsi This indicates the presence of a large polysaccharide 

or a large number of oligosaccharides in which xylose and fucose are 

major constituents, with arabinose, mannose, and glucose, respectively, 

as possible minor constituents. Moreover, the excessive amount of 

sulfate in the mesogloea carbohydrate increases the possibility that 

this polysaccharide is sulfated, or that few, "neutral" oligosac

charides are present. This conclusion is further supported by analogy,
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as polyfucose sulfate has been Isolated from the connective tissue of 

the echinoderm Thyone briareus (Katzman and Jeanloz, 1969).

As previously stated, the presence of sulfated classic acid 

mucopolysaccharides (especially heparan sulfate, heparin, and 

perhaps chondroitin sulfate B) in Chrysaora mesogloea is consistent 

with the results of this investigation. Yet, the spectrophotometric 

analysis of the mesogloea hydrolysate reveals a disparity between the 

molar concentrations of total hexosamine and total hexuronic acid 

such that the exclusive presence of these acid polysaccharides is 

contradicted. This disparity —  specifically a surplus of hexuronic 

acid over hexosamine--indicates that: (1) novel GAG, incorporating

some neutral sugar residues, or (2) novel acid polysaccharides lacking 

hexosamine, but incorporating hexuronic acid residues linked with a 

neutral sugar, are present. This conclusion is strengthened if one 

considers that this disparity is opposite to that anticipated from 

the method of hydrolysis, since an acid hydrolysis is often destruc

tive to uronic acids (i.e., the disparity should be even greater in 

unhydrolyzed carbohydrate).

To summarize, this investigation clearly demonstrates the 

presence of acid polysaccharides and/or glycosaminoglycans in the 

acid extractable (trichloroacetic acid) fraction of Chrysaora meso

gloea. Moreover, the interpretation best fitting the analysis by 

thin-layer chromatography and spectrophotometry strongly indicates 

the presence of at least three polysaccharide components: classic

GAG, novel GAG, and sulfated and/or neutral polysaccharides. However, 

in the absence of isolated chemical species, the exact nature of this
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carbohydrate, in terms of specific structures and chemical composition, 

r ema ins unknown.

POLYSACCHARIDES

Hypothetical Structures, Chemical 
Composition, and the 
Literature

The results of this investigation, interpreted with the 

corelative studies of Spiro and Bhoyroo (1971), and Katzman and 

Jeanloz (1969) provide a basis for conceiving specific polysac— 

charides as highly probable components, or at least analogs of such 

components of Chrysaora mesogloea. The structure and chemical 

composition of the substances most likely comprising the first 

polysaccharide component (classic glycosaminoglycans) as inferred 

from the relative abundance of galactosamine (N-acetyl-D-galacto- 

samine) and sulfate, are those of heparan sulfate, heparin, and less 

likely chondroitin sulfate B. With regard to the second component 

(novel glycosaminoglycans), an acid polysaccharide conceived as a 

surrogate for or compliment to vertebrate-type GAG in Chrysaora 

mesogloea is provided in Figure 16. It is a polymer of ct-L-iduronic 

acid, (3-D-mannose, and (3-N-acetyl-D-glucosamine; more specifically:

{ O^L-iduronic acid [ 3(1^3) ] (3-D-mannose [ (3(1"*3) ] a-L-
iduronic acid [ (3(l-*3) ] (3-D-mannose [ 3(1^3) ] (3-N-acetyl-D-
glucosamine [ (3(l-*4) ] }n

The possible existence of such a polysaccharide in Chrysaora meso

gloea is extrapolated from the detection of the mannose-glucuronic

acid disaccharide unit in the clamworm Nereis by Spiro and 

Bhoyroo (1971), and the quantitative disparities among the
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monosaccharide residues in the mesogloea hydrolysate. This poly

saccharide explains, for example, the surplus of uronic acid—  

predominantly iduronic acid— and the abundance of glucosamine in 

the hydrolyzed mesogloea carbohydrate (not accounted for by the 

presence of heparan sulfate, heparin, or chondroitin sulfate B), 

and is not in disagreement with the amount of mannose present as 

interpreted from the results of thin-layer chromatography.

Excluding the glycosaminoglycans, perhaps the remaining 

most significant feature of the Chrysaora mesogloea carbohydrate 

revealed in this study, is the apparent presence of a sulfated or 

neutral polysaccharide. With respect to this third component, a 

sulfated polysaccharide which may be present in Chrysaora 

mesogloea is a form of a (1-^2)-linked polyxylosylfucose sulfate with 

residues of arabinose occurring after every fourth repeating 

disaccharide unit, more specifically (see Figure 17):

{(B-D-xylose-4-sulfate [ Ci(l->2) ] $-L-fucose-3-sulfate
[ a(l-»2)] [ a(l->2) ] 3-L-arabinose}^

The criterion for suggesting the presence of this or a similar 

polysaccharide in Chrysaora mesogloea is derived from the pre

dominance of xylose and fucose in the mesogloea hydrolysate, the 

abundance of sulfate, and the isolation of a (1^2)-linked poly- 

fucose sulfate (sulfated at the third or fourth carbon atoms) from 

the connective tissue of the echinoderm, Thyone briareus by Katzman 

and Jeanloz (1969).

The results of this investigation can be phylogenetically 

compared with the literature. The presence of acid polysaccharides
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or acid mucopolysaccharides in Chrysaora mesogloea is consistent

with their presence in the sponges Spongia graminea (Gross et al.,
41956), and Hippospongia gossypina (Katzman,and Jeanloz, 1970a).

Most of the monosaccharide residues detected in hydrolyzed Chrysaora 

mesogloea carbohydrate, including those which are essential 

constituents of vertebrate-type acid mucopolysaccharides [ e.g., 

galactosamine (N-acetyl-D-galactosamine), glucosamine (N-acetyl-D- 

glucosamine), and hexuronic acid ], were detected in these organ

isms. (Galactose was also detected in Spongia and Hippospongia, 

further suggesting that it will be found in Chrysaora mesogloea in 

carbohydrate-protein conjugates involving hydroxylysine.) These 

monosaccharide residues were also detected by Gross et al. (1958), 

and Piez and Gross (1959) in the float of the hydrozoan coelen- 

terate, Physalia physalis, and in the echinoderm, Thyone. Moreover, 

Katzman and Jeanloz (1969) have reported the isolation of chon- 

droitin sulfate and polyfucose sulfate from Thyone. Similarly, 

chondroitin sulfate has been isolated from the connective tissues 

of the phyla Annelida, Arthropoda (Arachnida), and Mollusca 

(Hunt, 1970). Molluscan connective tissues have also been found 

to contain chondroitin, keratosulfate, heparin, and certain 

glucan sulfates (Hunt, 1970).

Perhaps because very few coelenterates have been examined 

for the chemical constituents of acidic polysaccharides, including

4In addition to uronic acid containing acid polysaccharides in 
H. gossypina, Katzman and Jeanloz (1969, 1970a) report the presence 
of a highly sulfated polysaccharide with a large proportion of arabinose.
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notably the anthozoan Metridium dianthus (Katzman and Jeanloz, 1971), 

the search for acid polysaccharides in the connective tissue of 

coelenterates has not been generally successful. Katzman and 

Jeanloz (1969, 1971) found ribose, fucose, mannose, galactose, 

glucose, and glucosamine but were unable to detect galactosamine, 

hexuronic acid, or any sulfate (or arabinose and xylose) in the 

gelatin of Metridium. They concluded (1971) that acid polysaccharides 

do not have an essential role in the stabilization and fibrillogenesis 

of sea anemone collagen, and, therefore, are not likely involved in 

the stabilization and fibrillogenesis of mammalian collagen. This 

conclusion is contrary to the evidence already presented which 

indicates that acid polysaccharides do play a role, albeit an 

essential one, in the fibrillogenesis and stabilization of collagen 

in most vertebrate connective tissues, and in some invertebrate 

tissues. More specifically, while it is clear that acid polysac- . 

charides cannot have an essential role in the fibril formation and 

stabilization of Metridium collagen, the possibility that they may 

be important to the fibril formation and stabilization of collagen 

in other connective tissues is not precluded. In this respect, this 

author agrees with the contention of Katzman and Jeanloz that, because 

of the structural similarity of Metridium collagen to mammalian 

collagen, the anemone might be useful in studying those processes 

in which acid polysaccharides are ostensibly involved, e.g., wound 

healing and calcification; however, it is suggested that a search 

should be made for nonacidic polysaccharides in Metridium which might 

be able to substitute for glycosaminoglycans or other acidic
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polysaccharides generally implicated in a causal relationship with the 

fibrillogenesis and stabilization of collagen. Similarly, using paper 

chromatography, Bocquet, Pujol, Rolland, Bouillon, and Coppois 

(1972) found xylose, fucose, arabinose, glucose, and glucosamine, but 

were unable to detect galactosamine and hexuronic acids (or galactose 

and mannose) in the (trichloroacetic acid soluble) mesogloea carbo

hydrate of the scyphozoan Rhizostoma pulmo. However, Bocquet et al. 

(1972) were able to detect hexuronic acid in Rhizostoma mesogloea 

carbohydrate by spectrophotometry. Hence, the inability to detect 

these monosaccharides by paper chromatography may be more a reflection 

of the lower resolving power of paper chromatography (compared to 

thin-layer chromatography) than a literal absence of acid poly

saccharides. Yet, the apparent absence of acid polysaccharides in 

Rhizostoma mesogloea may be phylogenetically significant, in that it 

suggests that, at least chemically, the order Rhizostomae may be more 

closely affiliated with the class Anthozoa than with the order 

Semaeostomae of which Chrysaora is a member.

Phylogenetic Interpretation

With reference to the phylogenetic significance of the 

absence of acid polysaccharides in Rhizos toma mesogloea, it should be 

noted that one outcome of the present investigation of cnidarian 

polysaccharides is a possible contribution to the explication of 

the phylogeny and evolution of the Metazoa. As the Porifera are 

less a reflection of metazoan ancestry than a separate protozoan 

offshoot, the phylum Cnidaria is commonly recognized as the most
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primitive of the Metazoa or, more precisely, of the Eumetazoa.

Owing to Haeckel's "Gastraea" theory of metazoan origin, based on 

the premise that a hydromedusan polyp is essentially an elongated 

gastrula (Dodson, 1960), the higher Metazoa were thought of as having 

evolved more or less directly from an ancestral cnidarian polyp.

The Gastraea theory has since been revised by the viewpoint pro

mulgated by Hyman (1940), Hand (1959, 1963), Dodson (1960), and 

Rees (1966) which derives the Eumetazoa from a planuloid descendant 

of the protozoan class Flagellata (see Figure 18). More specifically, 

according to the chief proponent, Hyman (1940), the pre-Cambrian 

ancestral cnidarian--from which the three classes of the Cnidaria 

have risen--evolved from a planula-like, diploblastic precursor to the 

phylum Platyhelminthes (or "primitive acoel flatworms"), the bilater

ally symmetrical gateway to the higher Metazoa. In this account, the 

Hydrozoa are seen to be the most primitive of the Cnidaria, the 

Scyphozoa as medusoid transitions from the Hydrozoa, and the Anthozoa 

as evolutionary adaptions to an increasingly sessile existence via 

the scyphozoan order Rhizostomae. Alternatively, Hadzi (1953, 1963), 

Hanson (1958), Steinbock (1963), deriving the platyhelminthian class 

Tubellaria (order Acoela) from the primitive polynuclear Ciliata or 

"Plasmodial ciliates" (secondarily removed from the Flagellata), have 

proposed that the Anthozoa have evolved from the tubellarians, and 

that the class Anthozoa is the most primitive cnidarian class with 

the classes Scyphozoa and Hydrozoa being derived from it, respectively 

(see Figure 19). Although the first theory, that deriving the 

Cnidaria from a planuloid descendant of the colonial flagellates (with
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Figure 18. Genealogical tree of the animal kingdom after Hyman.
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Figure 19. Genealogical tree of the animal kingdom reconstructed 
from Hadzio
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the class Hydrozoa being the most primitive), seems to be better 

supported by morphological, ontological, and serological evidence (and 

the fossil record) (Hand, 1959, 1963), the relative phylogenetic 

merits of the two contrasting points of view continue to be argued.

In this respect, the results of this investigation and others involving 

the presence of acid polysaccharides among the Cnidaria are more in 

agreement with Hyman's theory of cnidarian evolution than with the 

theory, chiefly promulgated by Hadzi, deriving the Cnidaria from the 

Tubellaria. In addition to being ubiquitous among the higher Metazoa 

(i.e., the deuterostomous and protostomous phyla'), acid polysaccharides 

appear to be very ancient, as they have been detected in bacteria 

[ polyfucose sulfate in Escherichia coli, Barry (1957); hyaluronic 

acid in groups A and C streptococci, Kendall, Heidelberger, and 

Dawson (1937), Stoomiller and Dorfman (1970) J, in Protozoa (Katzman 

and Jeanloz, 1969), and in the phylum Porifera. Hence, the presence 

of acid polysaccharides in the cnidarian class Hydrozoa (Gross, et al., 

1958; Piez and Gross, 1959; and Wineera, 1972), in the scyphozoan 

order Semaeostomae (Chrysaora), but not in the order Rhizostomae 

(Bocquet et al., 1972), favors the interpretation that the class 

Hydrozoa is the most primitive cnidarian class, that the Scyphozoa 

are derived from the Hydrozoa, and that the class Anthozoa--having 

lost the genetic information necessary to produce the enzymes involved 

in the synthesis of acid polysaccharides--is a terminal group.

Moreover, the carbohydrate moiety of Chrysaora mesogloea, as revealed 

by this investigation, most closely resembles that of the sponge 

Spongia (Gross, et al., 1956), further suggesting that the ancestral



73

cnidarian is not far removed phylogenetically from the origins of the 

Porifera, presumably the flagellates. This conclusion is further 

strengthened if one considers that there are major differences 

between the carbohydrate moieties of the PIatyhelminthes and the 

cnidarian class Anthozoa, especially with respect to sialic acid,”* 

which is absent in the Anthozoa and other lower metazoan groups, but 

present in the acoel tubellarians, e.g., Polychoerus carmelensis 

(Warren, 1963).

It has been suggested that the detection of acid polysac

charides in cnidarian mesogloea might further delineate the relation

ship between acid polysaccharides and collagen in vertebrate con

nective tissue, and delimit the extent of the analogy between ver

tebrate and invertebrate connective tissues. Accordingly, this 

investigation and others (e.g., Gross, et al., 1956, 1958; Katzman 

and Jeanloz, 1969, 1970a, 1970b, 1971; Katzman, Lisowska, and 

Jeanloz, 1970; Piez and Gross, 1959; Spiro and Bhoyroo, 1971; Spiro, 

1972a) are consistent in that they reveal significant differences 

between the connective tissue of invertebrates and the established 

vertebrate connective tissue motif. Some of these differences are: (1) 

the greater abundance of carbohydrate associated with the collagen 

moiety of invertebrate tissues relative to that of vertebrates;

(2) the very high sulfate content of most invertebrate tissues;

A nine-carbon monosaccharide found throughout the vertebrata, 
and to a limited extent, among the invertebrata, as glycosidically- 
linked structural units of polysaccharides, glycoproteins, and 
glycolipids (Tuppy and Gottschalk, 1972; Hunt, 1970).



74

(3) the presence of a large variety of novel acidic and neutral 

polysaccharides; and (4) the absence of certain characteristically 

vertebrate glycosaminoglycans, e.g., hyaluronic acid and chondroitin 

sulfate B (Hunt, 1970), in nearly all of the invertebrate phyla. 

Nevertheless, there are certain important similarities which strengthen 

the nexus between vertebrate and invertebrate connective tissues. The 

most outstanding of these is the presence of hexosamine and/or uronic 

acid containing oligosaccharides or polysaccharides, i.e., apparent 

homologues of vertebrate glycosaminoglycans, in most of the inverte

brate groups. These substances seem to imitate, in invertebrate con

nective tissue, the attributes of acid mucopolysaccharides in 

vertebrate connective tissue, thereby sustaining the argument that 

they are involved in the stabilization and fibrillogenesis of inver

tebrate collagen and at least partially responsible for the ordering 

of the invertebrate connective tissue motif. Unfortunately, salient 

investigations of invertebrate connective tissues remain too sparse 

to allow one to make definitive statements about the evolution of the 

relationship, in vertebrate connective tissue, between collagen and 

acid polysaccharides or to delimit the nature of this relationship on 

the basis of comparison. However, the considerable variation in the 

carbohydrate composition of invertebrate connective tissues, especially 

with respect to acid polysaccharides, certainly suggests that the 

interaction between acid polysaccharides and collagen in vertebrate 

connective tissue is more complex than currently perceived.
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CRITICAL ASSESSMENT

This investigation transcends those studies which have relied 

on histochemical and cytochemical techniques to detect acid poly

saccharides in the mesogloea of scyphozoans, and establishes--by 

demonstrating the presence of the monosaccharide constituents of 

acidic polysaccharides--a basis for further biochemical research. 

However, the limitations of this study are readily apparent. The 

carbohydrate preparation employed must be characterized as intrin

sically crude. Moreover, the techniques for hydrolysis suffer from 

the possibility of destruction of monosaccharides or rearrangement of 

the polysaccharides, allowing misinterpretation of identity and in 

situ relationship with protein. Other difficulties manifest in this 

investigation arise from the employment of thin-layer chromatography 

and spectrophotometry in the analysis of hydrolyzed carbohydrate.

While thin-layer chromatography is capable of detecting smaller 

quantities of substances than paper chromatography and very useful 

in situations where rapid analysis is advantageous, it is in both 

respects inferior to gas-liquid chromatography. (However, gas-liquid 

and thin-layer chromatography can yield complimentary results, 

achieving a more reliable and efficient system of detection than 

either method alone.) Similarly, the spectrophotometric analysis 

of the Chrysaora carbohydrate is subject to misinterpretation in that 

the respective color reactions are somewhat nonspecific for individual 

monosaccharide species. Further biochemical analysis will ultimately 

center upon the isolation and characterization of specific acid
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polysaccharides in the connective tissue of Chrysaora quinquecirrha. 

It is suggested that a prelude to this step should be a more sophis

ticated analysis of the constituents of the carbohydrate moiety of 

Chrysaora mesogloea by the purification of the carbohydrate via ion- 

exchange resins (or ion-exchange celluloses), followed by a partial 

and complete enzymatic degradation with subsequent analysis by gas- 

liquid chromatography.



SUMMARY

1. Mature Chrysaora quinquecirrha were collected from the York river, the 
mesogloea surgically isolated, weighed, and lyophilized. From wet and 
freeze-dried weights, it was established that the mesogloea is 
98.166% water and 1.8347, solids (=salts, protein, and carbohydrate).

2. The freeze-dried mesogloea was chemically fractionated, in 5% tri
chloroacetic acid and subsequently in 957, ethanol, into (1) acid 
soluble carbohydrate, (2) acid insoluble protein, and (3) salts.
These fractions, comprising the total solids (i.e., 1.8347, of the 
wet mesogloea) individually represent 0.036%, 0.137%, and 1.661%, 
respectively of the mesogloea wet weight.

3. A portion of the acid soluble carbohydrate (0.2658 g) was hydrolyzed
for six hours at 100°C in 4N HC1, taken to dryness under diminished
pressure over sodium hydroxide pellets, and redissolved in 0.1 ml
of distilled water with 0.5 ml of 957, ethanol added to prevent 
microbial contamination.

4. The monosaccharide constituents of the hydrolysate were detected by 
thin-layer chromatography using four solvent systems in order of 
relative abundance: xylose, fucose, glucosamine, galactosamine,
"iduronic acid," glucuronic acid, arabinose, mannose, and glucose.

5. The approximate concentrations of the monosaccharides were determined
by spectrophotometry. A second portion of the acid soluble carbohy
drate (0.2041 g) was hydrolyzed and taken to dryness as before. The 
hydrolysate was redissolved in 10.0 ml of distilled water, aliquots 
of which were subsequently analyzed by four reactions: (1) Anthrone
(hexose), (2) L-cysteine (pentose), (3) Carbazole (uronic acid),
and (4) Elson-Morgan (hexosamine). The number of micromoles per 
100 yg of mesogloea carbohydrate are: xylose, 0.208; fucose, 0.196;
uronic acid, 0.055; arabinose, 0.054; mannose, not determined; 
glucose, 0.052; glucosamine, 0.027; and galactosamine, 0.020.

6. The detection of uronic acid and hexosamine demonstrates the presence
of acidic polysaccharides in Chrysaora mesogloea. The high sulfate 
content, abundance of neutral sugars, and inequalities between uronic 
acid and hexosamine moieties indicate the simultaneous presence of 
three polysaccharide components: (1) "classic" or vertebrate-type
glycosaminoglycans, (2) novel glycosaminoglycans, and (3) sulfated 
and/or neutral polysaccharides.

7. Hypothetical structures are suggested for the novel glycosaminoglycan, 
and sulfated and/or neutral polysaccharide components, respectively:

77
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(a) { a-L-iduronic acid [ 3(1^3) ] B-D-mannose [ 3(1~̂ 3) ] 
Ot-L-iduronic acid [ 3(1^"3) ] 3-D-mannose [ B(l*>3) ] 
3-N-acetyl-D-glucosamine [ 3(1^4) ] and

(b) a(l-̂ 2) -linked polyxylosylfucose sulfate.
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APPENDIX A

VARIATION IN STRUCTURE AND COMPOSITION 

OF MESOGLOEA AMONG THE CNIDARIA

That cnidarian mesogloea is intrinsically variable with 

respect to volume, structure, and composition is illustrated by 

Hyman (1940) who applies several names to it depending on class: 

Hydrozoa, mesogloea; Scyphozoa, collenchyme; Anthozoa, mesenchyme.

[ According to Chapman (1966) the term mesogloea should be used when 

referring to this layer in all three classes, as it appropriately 

satisfies the need to underscore the homologous origin of this 

intermediate cellular stratum among the Cnidaria; i.e., it is formed 

by the inward migration of the ectoderm. ] The variation in structure 

is demonstrated by, at one extreme, the very thin, order-less, almost 

obscure, interstitial stratum of such hydrozoans as Aequorea to the 

relatively thick, well-defined, well-ordered and highly fibrous 

"mesoderm" of scyphozoans like Aurelia, Pelagia, Chrysaora, or 

anthozoans like Calliactis and Metridium. Similar variation is 

reflected in the composition of mesogloea. For example, the quantity 

of organic material in the mesogloea of Metridium and Physalia 

(Gross et al., 1958) versus Chrysaora (Chapman, 1953) differs by a 

factor of about three to one. Variation in volume of mesogloea 

among the three cnidarian classes is as great as or greater than the 

variation in structure and composition. If one compares the volume
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of mesogloea per body-volume of the three classes: Hydrozoa,

Scyphozoa, and Anthozoa, using Chapman's (1966) diagram which 

illustrates the proportional volume of mesogloea in typical cnidarians 

(i.e., a hydra, Pelagia, and Metridium). a ratio of 1:35:12, 

respectively, can be calculated.
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APPENDIX B 

COMMON AND CHEMICAL NAMES FOR SUGARS

COMMON NAME CHEMICAL NAME SOURCE

arabinose D(+)arabinose c- • aSigma A 3256

chondroitin sulfate chondroitin sulfate 
(mixed isomers A,B,C) 
Grade III (from whale 
and shark cartilage)

Sigma C 3254

chondroitin sulfate B chondroitin sulfate, type 
B: sodium salt (from 
pig skin)

Sigma C 4259

fucose L(-)fucose Sigma F 2252

galactosamine D(+)galactosamine HC1 Sigma G 0500

galactose D (+)galactose Sigma G 0750

glucosamine D(+)glucosamine HC1 Sigma G 4875

glucose D(+)glucose Sigma G 5000

glucuronic acid D-glucuronic acid 
(Grade I)

Sigma G 9000

hyaluronic acid hyaluronic acid: Grade I 
(from human umbilical 
cord)

Sigma H 1751

iduronic acid L-iduronic acid°

mannose D (+)mannose Sigma M 4625

xylose D(+)xylose Sigma X 1500

aSigma Chemical Co., P.O. Box 14508, St. Louis, MO 63178 

Sigma product number (1973 catalog)
cThis monosaccharide was obtained by the hydrolysis of chon

droitin sulfate B (dermatan sulfate), Sigma product number C 4259 (and
C. 3254, which contains the B isomer).
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APPENDIX C: Solving for the Concentrations of Xylose (C ),
(C*), and Glucose (C ) [ Anthrone Reaction ] hr

 ̂ g
Method of Three Simultaneous Equations.

I- 1 ‘ A620 = ax620 b °x + af620b cf + ag620b cg

0.4771 = 1.254c + 1.527c, + 3.304c
X  f g

2. A = a cf._b c + arcnr»b C + a ,nnb c 590 x590 x f590 f g590 g

0.4200 = 0.586c + 1.853c. + 2.879cx f g

3. A. = a c + a b c + a c503 x503 x f503 f g503 g

0.5720 = 2.801c + 1.091c. + 2.192cx f g
c = A503 ~ af503Cf ~ ag503 Cg
x ax503

c = 0.20421 - 0.38950c - 0.78258cx f g

II. 1. 0.4771 = 1.254(0.20421-0.38950cf-0.78258cg)+l.527cf+3.

0.22102 = 1.03857c. + 2.32264cf g

2. 0.4200 = 0.586(0.20421-0.38950c -0.78258c ) +  1.853c,f g i

0.30033 = 1.62475c. 4- 2.42041cf g
0.22102 - 2.32264c 

c_ = ---  2
f 1.03857

c = 0.21281 - 2.23638c f g

Fucose 
r the

304c g

+ 2.879c
g



84

III. 0.30033 = 1.62475 ( 0.21281-2.23638c )S
0.04544 ^0-7/  ̂ I i

Cg = 1721315 = °’03746 mg/ml
= 37 yg/ml glucose

c f = 0.21281 - 2.23638 (0,03746)

= 0.12904 mg/ml 

= 129 yg/ml fucose

cx = 0.20421 - 0.38950 (0.12904)

c = 0.20421 - 0.07958x

= 0.12463 mg/ml 

= 125 yg/ml xylose

+ 2.42041c g

= 0.21281 - 0.08377

- 0.78258 (0.03746)
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