Major Environmental Variables Affecting Grain Size Distribution in the Shoaling-Wave Zone Under Storm Conditions at Virginia Beach, Virginia

Dunnie Richard Tuck
College of William and Mary - Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Oceanography Commons

Recommended Citation

Tuck, Dunnie Richard, "Major Environmental Variables Affecting Grain Size Distribution in the ShoalingWave Zone Under Storm Conditions at Virginia Beach, Virginia" (1969). Dissertations, Theses, and Masters Projects. Paper 1539617414.
https://dx.doi.org/doi:10.25773/v5-j7vx-6144

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

PUEBLO OCEANOGRAPMER-Dunnie Richard Tuck, one of two oceanographers a last week by North Korea, gence ship Pueblo cap 1965 when he was a graduate student at is shown during the Marine Science. His research included work on lerosion Mproblems, Virginia Beach. Tuck 30 , is a native of South 8 oston, his c parents 1

Givilian No Spy Raching, Motherneclaresty2g

 Betar tuck one of two Ruqurd tatomathe captured civians aboaza, whimpuct yavymtew he fis not anspy as saidetoday he ts noth workens chamea hy the Northersoreans. Thavekests not a spy We sian oceanographer with-
 mond \qquad Thy this wees che the pidebois
 captame as dadentifying Tuck
 Hariy yredale, was tyesponage
 Mrswhck said her son whe employed, tyo at anhic LaboraNava Qceanographic 10 before tory hu x Washingto

 Sciencew


```
MAJOR ENVIRONMENTAL VARIABLES AFFECTING GRAIN SIZE DISTRIBUTION IN THE SHOALING-WAVE ZONE UNDER STORM CONDITIONS AT VIRGINIA BEACH, VIRGINIA
```

A Thesis
Presented to
Virginia Institute of Marine Science The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of Master of Arts in Marine Science

By
D. Richard Tuck, Jr.

1969

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts in Marine Science

Approved, August 1969

Maynard M. Nichols, Ph.D.

ACKNOWLEDGMENTS

The author wishes to thank professors M. Nichols and W. Harrison for their assistance and guidance throughout the study. Grateful acknowledgments are extended to Dr. W. C. Krumbein, Northwestern University, for his suggestions in analyzing the data; and to Mrs. B. Benson who made the necessary modifications of the "whirlpool" program for data analysis on the IBM 7090 computer at Northwestern University. The author is grateful to the Physics Department at the College of William and Mary for making the IBM 1620 computer available for the initial phase of the data analysis. The study was financed by U.S. Army Corps of Engineers Contract No. DA-49-055-CIV-ENG-65-5.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS iii
LIST OF TABLES V
LIST OF FIGURES vi
ABSTRACT vii
INTRODUCTION 2
AREA OF INVESTIGATION 5
DATA COLLECTION AND COMPILATION 9
METHOD OF ANALYSIS 14
OBSERVED STORM CONDITIONS 17
COMPUTED RESULTS AND COMPARISONS 19
DISCUSSION 29
SUMMARY 37
APPENDIX A 39
APPENDIX B 52
LITERATURE CITED 55
VITA 58

LIST OF TABLES

Table
Page

1. The ten major independent variables examined for their relative influence on the distribution of average mean grain size in the shoaling-wave zone at Virginia Beach 10
2. Percent reduction in average mean grain size sum of squares attributable to ten independent variables, taken individually, for lag periods l-5 (Including both the non-storm and the storm weather conditions)20
3. The three strongest percent reductions in average mean grain size sum of squares attributable to four χ s at a time combinations of the ten independent variables, for lag period l . . . 21
4. The three strongest percent reductions in average mean grain size sum of squares attributable to four χ s at a time combinations of the ten independent variables, for lag period 2. . . 22
5. The three strongest percent reductions in average mean grain size sum of squares attributable to four χ s at a time combinations of the ten independent variables, for lag period 3 . . . 23
6. The three strongest percent reductions in average mean grain size sum of squares attributable to four χ s at a time combinations of the ten independent variables, for lag period 4 . . . 24
7. The three strongest percent reductions in average mean grain size sum of squares attributable to four χ s at a time combinations of the ten independent variables, for lag period 5 . . . 25
8. Variable frequency of occurrence in the three strongest combinations for four X s at a time in all five lag periods under non-storm and storm weather conditions 27
9. Comparison of the observed mean values of the environmental variables during the non-storm and storm weather periods28

LIST OF FIGURES

Figure Page
I. Schematic diagram showing boundaries of the various beach zones 3
2. Maps showing general area of investigation 6
3. Schematic diagram of the l5th Street pier and the general area of sediment sampling . 12
4. Graphic representation of mean bottom slope-average mean grain size relationship during the storm period 30
5. Schematic diagram of beach profiles at l5th Street pier before and after storm 31

ABSTRACT

Temporal variations of ten major environmental variables occurring during a storm were studied in relation to mean grain size distribution in the shoaling-wave zone of an oceanic beach. A similar study had been conducted earlier on the same beach by Harrison and Krumbein (1964) during relatively calm to moderate weather conditions. By augmenting their data with the "stormcondition" data and performing the same type of multiregression analysis, an evaluation could be made of the influence that storm conditions exerted upon the mean grain size distribution on this beach. Environmental variables studied included those related to beach geometry, local water properties, local wind conditions, tidal fluctuations and wave characteristics. The effect of these variables on the beach response was investigated by sequential linear multiregression analysis utilizing high speed computers.

The most influential sets of four-variable combinations, in a least squares sense, were found to suffice in "explaining" the observed variability in mean grain size distribution. Analysis of the effects of combined storm and non-storm values indicated that the "average" mean grain size (referring to the average of several sediment samples collected simultaneously in the study zone) was most dependent upon the variables manifested 4-8 hours prior to measurement of the beach response. The most influential four-variable combination consisted of: sigma-t, still-water depth, tidal-current speed and wind speed offshore. Sigma-t was found to be the most influential single variable when examined in four-variable combinations. The influence of mean bottom slope angle, which was the major influential variable during calm to moderate conditions (Harrison and Krumbein, 1964), became less prominent in the analysis of the combined non-storm and storm data. The recent study suggested that a reversal in the bottom-slope-grain size relationship occurred under the storm conditions. (Generally, mean bottom slope and average mean grain size are inversely related in the shoaling-wave zone.) With the decreased effect of bottom slope angle, wave-drift currents and tidal currents became more influential on average mean grain size distributicn, according to the multiregression analysis.

MAJOR ENVIRONMENTAL VARIABLES AFFECTING GRAIN SIZE DISTRIBUTION IN THE SHOALING-WAVE ZONE UNDER STORM CONDITIONS AT VIRGINIA BEACH, VIRGINIA

INTRODUCTION

On a natural oceanic beach mean grain size varies significantly from one of the several beach zones to another (Fig. i) and periodically within each of the given zonies. This study was concerned with determining what environmental variables, acting during a storm period, are significant in affecting the distribution of average mean grain size (referring to the average of several sediment samples) with respect to time in the shoaling-wave zone of an oceanic beach.

Many variables of the beach-ocean-atmosphere system participate in affecting mean grain size. To elide unnecessary complications in the analysis, ten of the major environmental variables (Table l) were selected for observation of their effects upon average mean grain size distribution.

An approach to the defined problem of average mean grain size distribution entailed three sequential phases. First, field measurements of selected "causal" elements in conjunction with measurements of the related "effect" element had to be obtained during storm conditions. Second, correlations between the environmental causal factors and distribution of average mean grain size were determined by sequential linear multiregression, a least squares search procedure, which will be discussed later. The final phase involved the evaluation of the correlations.

Harrison and Krumbein (1964) conducted a similar study on the

Figure I. --Schematic diagram showing boundaries $^{\text {d }}$ of the various beach zones.

same oceanic beach under calm to moderate weather conditions. Some comparisons between related results of the two projects have been included in this study.

AREA OF INVESTIGATION

The beach selected for this study is located at Virginia Beach, Virginia, an oceanic beach situated immediately south of the entrance to Chesapeake Bay (Fig. 2). The area of the shoalingwave zone examined was centered along the north side of the 15 th Street pier (Fig. 3) which is about 10 km south of Cape Henry. The l5th Street pier, from which certain measurements were taken, extends seaward for a distance of 260 m from the shoreline and terminates at approximately the $6-\mathrm{m}$ contour.

The site of investigation in the nearshore shoaling-wave zone was limited to a $30.5 \times 4.6 \mathrm{~m}$ area roughly between 61.0 and 91.5 m seaward of the normal breaker zone under calm conditions. Generally, the area of investigation had an average water depth ranging between 3.3 and 4.3 m . In surveys conducted by the U . S. Army Corps of Engineers (.U. S. Congress, 1953, p. 13), it was found that the beach slopes, beyond the breaker zone to the $6-\mathrm{m}$ contour, ranged between 1:50 and 1:60. In the same survey studies, the Corps of Engineers found that the beach face was experiencing a long-term net erosion, while a slight accretion of beach material was occurring in the region seaward of the breaker zone and extending to the $6-\mathrm{m}$ contour.

The beach material throughout the area is composed of quartz sand particles that exhibit an average Corey Shape Factor of 0.7 (Harrison and Morales-Alamo, 1964). The Corey Shape Factor for

Figure 2.-Maps showing general area of investigation.

a sand particle is defined by:

where a, b, and c are the orthogonal long, intermediate, and short axes, respectively. Observations suggested that the average mean grain sizes in the study area generally range from 0.250 to 0.400 mm. In the shoaling-wave zone, there is a gradual decrease in mean grain size with increasing water depth.

A review of wind and swell records (U. S. Congress, 1953, plates 5 and 6) indicates that the higher wind velocities and total wind movements are greater from the northern quadrants and the dominant medium and high swells are from the northeastern quadrant. These high swells and wind velocities occur normally in the fall and winter and tend to erode the beach slightly, regardless of artificial nourishment. During the summer, the low swells approach from the southeast and the prevailing winds are from the southwest. These relatively milder conditions in the summer tend to nourish the beach naturally. More details of beach profile modifications in the area of investigation are presented by Harrison and Wagner (1964).

Surf conditions over a three-year period have been compiled by Helle (1958), as observed at the Virginia Beach Life Boat Station approximately 800 m north of the 15 th Street pier. Results show that the surf is 1.2 m or higher 10% of the year, 0.9 m or higher 50% of the year, and 0.6 m or higher 95% of the year. The surf tends to be highest in the fall and early winter. The average period of the surf tends to be greatest in late spring and early summer (around 6.0 seconds).

Semi-diurnal tides occur at Virginia Beach which have a mean range of 0.9 m . The tidal currents are mainly of the reversing type and are generally parallel to shore. This reversing current is associated with the strong ebb and strong flood tidal currents exhibited at the entrance to Chesapeake Bay.

DATA COLLECTION AND COMPILATION

Field observations of the environmental variables occurring during the storm period were conducted between November 27, 1964 and December 5, 1964, inclusively. This period contained a 3-day storm with strong winds initially out of the northeast and eventually out of the northwest from November 29 to December 1. The methods of data collection performed during the storm period were similar to those used by Harrison and Krumbein (1964) during relatively calm conditions.

Bottom sediment samples were collected twice daily at 0600 and 1800 hours from November 28 through December 4. The causal variable measurements (the independent variables of Table l) were either taken or determined from other data-collecting sources daily at 0200, 0600, 1000, 1400, 1800, and 2200 hours. Because a given beach element does not respond immediately to the operating forces of a given set of causal variables, it was necessary to investigate the time lag in the beach response adjustment. For this reason, measurement of causal variables began one day prior to initial sampling of the bottom sediment.

Four-hour lag periods, extending through the previous 20 hours, were arbitrarily established for the analysis in order to determine how readily the beach element responded to the environmental variables. For example, the beach response element observed at 0600 hours was assigned five lag periods terminating at 0200, 2200, 1800, 1400 and

Table l.--The Ten Major Independent Variables Used in Determining Relative Influence on the Distribution of Average Mean Grain Size [$\left.\left(\bar{M}_{Z}\right) s\right]$ in the Shoaling-Wave Zone at Virginia Beach.

Number	Symbol	Dimensions	Description
1.	\bar{S}_{S}	0	Mean angle of slope in shoaling-wave zone
2.	T	T	Wave period
3.	H	L	Wave height
4.	$\overline{\mathrm{u}}_{\text {on }}$	LT^{-1}	Mean wind speed in an onshore direction
5.	$\overline{\mathrm{u}}_{\text {of }}$	LT^{-1}	Mean wind speed in an offshore direction
6.	\bar{u}_{p}	LT^{-1}	Mean wind speed parallel to shore
7.	α	0	Angle of wave approach
8.	h	L	Still-water depth
9.	σ_{t}	0	Sigma-t
10.	C	LT^{-1}	Speed of tidal current

1000 hours respectively. Similarly, for the beach response element, observed at 1800 hours, the five lag periods terminated at 1400 , l000, 0600, 0200 and 2200 hours respectively.

Sand samples were collected from the surface layer of the sediment bed with a pipe dredge, 4 cm in diameter. Sampling depths ranged from 0.5 to 2 cm below the sediment surface. The dredge was normally drawn along a transect approximately 4.6 m perpendicular to the pier. As mentioned earlier, the length of the study zone (Fig. 3) was 30.5 m , thus making the actual size of the zone $30.5 \times 4.6 \mathrm{~m}$. Samples were taken from four fixed stations (designated by S. T. U. and V., Fig. 3), and the average value of the analyzed mean grain sizes (which is termed "average mean grain size" in this study) of the four stations was employed in the multiregression analysis. Mean grain size of each sample was determined using a Woods Hole Rapid Sand Analyzer (Zeigler, Whitney, and Hayes, 1960), and the procedure outlined in Harrison and MoralesAlamo (1964). The statistic used to estimate the mean nominal diameter was

$$
\bar{M}_{z}=\frac{P_{10}+P_{30}+P_{50}+P_{70}+P_{90}}{5}
$$

where P are percentiles determined in the analysis.
The angle of bottom slope was determined from soundings off the pier at the same four fixed stations where the sand samples were taken and one additional station at each end of the study area (7.6 m between each station). These soundings along with tidal records were used in determining the still-water depth. The angle of wave approach was measured with a pelorus mounted at the end of the pier. Various littoral current speeds and

Figure 3.--Schenatic diagram of the 15 th Street pier and the general area of sediment sampling.

directions (designated as "tidal" currents) one meter above the bottom were measured with a Savonius rotor and vane installed on the pier immediately seaward of the study area. Sigma-t was determined from salinity-temperature observations. Surface water samples for salinity and temperature measurements were taken at four-hour intervals. Temperatures were read directly from a bucket thermometer. Salinities were determined by titration with silver nitrate.

The U. S. Coast and Geodetic Survey Bureau maintains a tide gage near the seaward end of 15 th Street pier, and the U. S. Army Corps of Engineers has a relay-type wave gage unit on the same pier (Fig. 3). Tidal elevations with respect to time and wave data (i.e., wave height and wave period) were acquired from these two agencies. The U. S. Weather Bureau has a regional station at Cape Henry, approximately 10 km miles north of the study area. This agency supplied information on wind direction and wind speed for each hour.

METHOD OF ANALYSIS

The distribution of sand grains of various sizes is controlled by the interaction of many beach process elements. It would be a difficult task to measure all the possible process variables and correlate them with average mean grain size distribution. In this comparative study the process elements were limited, presumably, to the ten most influential variables.

A sequential linear multiregression analysis was selected for determining the relationship between the ten variables and average mean grain size. In the first step of the analysis, the linear relation between average mean grain size and each of the process variables was determined from regression coefficients calculated by the least squares method. At this initial stage the most influential variables affecting average mean grain size normally become apparent. Next, the relation between average mean grain size and all possible pairs of the process variables were computed. From the most influential pair of process variables, the second most influential single variable could be identified. Sequential steps of analyzing combinations of three, four, or more variables at a time served the two-fold purpose of ranking the process variables in their mathematical order to physical significance as well as acquiring the most influential set of variables in the various multiple combinations. Thus, the variable combinations are referred to as "strong" or "weak" in
terms of the least squares search results.
The multiregression analysis, as reviewed by Krumbein (1959 and 1961), was performed on an IBM 1620 computer for the initial steps, and for more time-consuming steps, an IBM 7090 computer was used. Data prepared for the multiregression analysis are presented in Appendix A.

In the first step, when the process variables are being considered one at a time, the complete order of importance cannot accurately be determined by the amount in which each variable reduces the percent sum of squares of the response variable. Because there are many complex interrelations among the various process variables, an individual analysis may be misleading as to their true control when acting in combination. Some of the process variables may be redundant because their relation to the response variable is partially influenced by their interaction with other process variables. This is shown by the fact that the addition of the sum of squares reduction values is greater than 100 percent when the variables are computed individually. Most pairs and sequential combinations of the stronger variables will have a smaller effect on the sum of squares reduction than the total of the sum of squares reduction of all the involved process variables when computed individually. These progressive combinations tend to reduce redundancy and possibly approach the true statistical relationship between any combination of the process variables and the response variable.

In arranging the data for analysis, the distribution of average mean grain size was considered as a function of bottom slope angle, local wave period, local wave height, wind speed
onshore, wind speed offshore, wind speed parallel to shore, angle of wave approach, still-water depth, sigma-t, and tidal-current speed (Table I) over five 4-hour lag periods (t l-5).

Thus:

$$
\left(\bar{M}_{z}\right) s=f\left(\bar{S}_{s}, T, H, \bar{U} o n, \bar{u} o f, \bar{u} p, \alpha, h, \sigma_{t}, C\right) t I-5
$$

For consistency, the data in this study were analyzed in the same way the data in the study of Harrison and Krumbein (1964) were analyzed. A brief review of the multiregression technique is present in Appendix B.

Virginia Beach is subjected to frequent "northeaster" storms (referring to wind velocities > $11 \mathrm{~m} / \mathrm{s}$) of varying intensity throughout the winter. For two days before the observed storm occurred, the winds, which were blowing primarily from the northeast, gradually increased in intensity. As the wind speeds increased, the direction of approach swung to the north (blowing parallel to shore), and, after three days, to the northwest (blowing out to sea). Wind speeds reached a maximum of $18.8 \mathrm{~m} / \mathrm{s}$ during the height of the storm and maintained an average speed slightly over $11 \mathrm{~m} / \mathrm{s}$ during the storm period. After the storm subsided, the winds blew mainly from the south (parallel to shore). The angle of wave approach changed with the shifting wind directions; from the northeast before and during the storm and from the southeast after the storm. The salinity of the local water was not significantly affected by the variable winds; however, the local water temperatures during the storm decreased over $4.5^{\circ} \mathrm{C}$ below the mean water temperatures observed the day before and the day after the storm.

The mean local wave height observed before the storm was 0.6 m and the mean wave period averaged 7 seconds. During the storm the local wave height ranged from 1.2 to 3.95 m , which was relatively high considering that most of the waves had broken at least once on storm-built sandbars before reaching the study zone. The wave period in the early stages of the storm averaged between 5 and 6
seconds, and as the disturbance continued, the period and height increased slightly. Immediately after the storm the local wave height and period decreased substantially. Throughout the storm, the mean tidal-current speeds were 1.3 times greater than the speeds observed before and after the storm. Before and during the initial impact of the storm, the shoaling-wave zone mean bottom slope in the sampling area was approximately $1: 50$, containing sand grains ranging between 0.320 and 0.370 mm in average mean grain size. As the storm intensified, the mean slope steadily increased and the sand grains varied between 0.250 and 0.300 mm in average mean grain size. After the storm the mean slope was found to be approximately l: 30, containing sand grains ranging between 0.320 and 0.370 mm in average mean grain size. Deposition, averaging about 0.5 m , occurred within the study zone during the storm. Hence, the still-water depth, which averaged 3.2 m before the storm, was found to be approximately 2.7 m immediately after the storm.

COMPUTED RESULTS AND COMPARISONS

Table 2 contains the results of the sequential linear multiregression analysis of the initial phase in the present study. As shown, the results indicated that the beach-ocean-atmosphere conditions manifested in lag period 2 (4-8 hours prior to beach response sampling) had the greatest influence on average mean grain size distribution. Additional results of the analysis (Tables 3-7, storm data) indicated that the strongest four-variable combination in the most dominant lag period (Table 4B) consisted of wind speed offshore, still-water depth, sigma-t, and tidal-current speed. In considering the three strongest sets of four-variable combinations in all of the five lag periods (Table 8, storm data), the dominant variables are wave height, still-water depth, sigma-t and tidal current speed. The weakest variable was found to be angle of wave approach.

By way of comparison, the earlier study (Harrison and Krumbein, 1964) found that beach-ocean-atmosphere conditions in lag period 3 (Table 2), occurring 8-12 hours prior to sediment sampling, had the most significant influence on beach response. " Results of fourvariable combinations for each of the five lag periods in the earlier work are presented in Tables 3-7, non-storm data: From the earlier work, it was found that the strongest four-variable combination in the most dominant lag period (Table 5A) consisted of bottom slope, wave period, angle of wave approach and tidal-current
Table 2.--Percent Reduction in Average Mean Grain Size (Shoaling-vave Zone) Sum of Squares Attributable

Table 3A.--The Three Strongest Percent Feduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 1.(Excluding Storm Data).

Table 3B.--The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 1 (Including Storm Data).

Table 4A. --The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 2 (Excluding Storm Data).
Independent Variable Combinations \quad Percent

1

$$
\begin{array}{lllll}
& 5 & & 9 & 10 \\
& 5 & 7 & 9 & 10 \\
4 & 5 & & 9 & 10
\end{array}
$$

72.42
71.83
71.25

Table 4B.--The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 2 (Including Storm Data).

Explanation of Variable Numbers

Xl-Slope Angle	X6 - WindVelocity (Parallelto Shore)
X2 - Wave Period	X7 - Angle of Wave Approach
X3-Wave Height	X8 - Still-water Depth
X4-Wind Velocity (Onshore) X9 - Sigma-t	
X5-Wind Velocity (Offshore) X10 - Tidal-current Velocity	

Table 5A.--The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 3 (Excluding storm. Data).
Independent Variable Combinations Percent \quad Reduction in $S S$
12
7
10
10
82.75
$\begin{array}{lll}1 & 2 & 3\end{array}$
82.69
12
8
10
81.24

Table 5B. - The Three Strongest Percent Feduction in Average. Nean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 3 (Including Storm Data).

Table 6A.-TThe Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the ren Independent Variables, for Lag Period 4 (Excluding Storm Data).

Table 6B.-WThe Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 4 (Including Storm Data).

Independent Variable Combination					$\begin{gathered} \text { Percent } \\ \text { Reduction in } \mathrm{SS} \end{gathered}$
2	3		9	10	67.68
1	3		9	10	61.00
	3	6	9	10	60.93

Explanation of Variable Numbers

```
Xl - Slope Angle
X6 - Wind: Velocity (Parallel to Shore)
X2 - Wave Period X7 - Angle of Wave Approach
X3 - Wave Feight X8 - Still-water Depth
X4 - Wind Velocity (onshore) X9 - Sigma-t
X5 - Wind Velocity (Offshore) Xlo- Tidal-current Velocity
```

Table 7A.--The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 5 (Excluding storm Data).

Independent Variable Combinations							Percent Feduction in SS
	3			7	9	10	81.12
1	3	5				10	78.90
1		5	6			10	77.79

Table 7B.--The Three Strongest Percent Reduction in Average Mean Grain Size Sum of Squares Attributable to Four Xs at a Time Combinations of the Ten Independent Variables, for Lag Period 5 (Including Storm Data).

speed. However, in compiling the three strongest sets of fourvariable combinations in all of the five lag periods (Table 8, nonstorm data), the results suggested that the dominant variables were bottom slope, wind speed offshore, sigma-t and tidal-current speed. The weakest variable was still-water depth. Table•9 shows a comparison of the range of values of the environmental variables observed during both the earlier and the more recent study.
Table 8.--Variable Frequency of Occurrence in the Three Strongest
Combinations for Four χ s at a Time in All Five Lag Periods Under
Non-storm and Storm Conditions.

Variable	Occurrence Under Non-storm Conditions	Occurrence Under Storm Conditions
Slope Angle	12	6
Wave Period	4	2
Wave Height	4	11
Wind Speed Onshore	3	2
Wind Speed Offshore	9	5
Wind Speed Parallel	1	2
to Shore	4	1
Angle of Wave Approach	1	11
Still-water Depth	7	11
Sigma-t	15	9
Tidal-current Speed		1

Table 9.--Comparative Table of the Observed Range of Values of the Environmental Variables
Under Non-storm and Storm Conditions.

$$
\begin{array}{lll}
\text { Under Non-storm and Storm Conditions. } \\
\hline & \begin{array}{l}
\text { Range of Values Under } \\
\text { Non-storm Conditions }
\end{array} & \begin{array}{c}
\text { Range of Values Under } \\
\text { Storm Conditions }
\end{array} \\
\hline \text { Variable } & 0.234-0.843 \mathrm{~mm} & 0.237-0.384 \mathrm{~mm} \\
\hline \text { Grain Size. } & 0.45-2.22^{\circ} & 0.54-1.75^{\circ} \\
\text { Slope Angle } & 3-13.9 \mathrm{~s} & 3-12 \mathrm{~s} \\
\text { Wave Period } & 0.15-1.95 \mathrm{~m} & 0.3-3.9 \mathrm{~m} \\
\text { Wave Height } & 0-11.9 \mathrm{~m} / \mathrm{s} & 0-16.6 \mathrm{~m} / \mathrm{s} \\
\text { Wind Speed Onshore } & 0-15.2 \mathrm{~m} / \mathrm{s} & 0-17.8 \mathrm{~m} / \mathrm{s} \\
\text { Wind Speed Offshore } & 0-14.8 \mathrm{~m} / \mathrm{s} & 0-18.8 \mathrm{~m} / \mathrm{s} \\
\text { Wind Speed Parallel to Shore } & 20-125^{\circ} & 20-75^{\circ} \\
\text { Angle of Wave Approach } & 2.4-4.9 \mathrm{~m} & 3.3-4.3 \mathrm{~m} \\
\text { Still-water Depth } & 13.6-25.0 & 19.6-24.9 \\
\text { Sigma-t } & 0-21.3 \mathrm{~cm} / \mathrm{s} & 0-35.6 \mathrm{~cm} / \mathrm{s} \\
\text { Tidal-current Speed } &
\end{array}
$$

DISCUSSION

In the earlier study, Harrison and Krumbein (1964, pp. 45-48) found a strong inverse correlation existing between mean bottom slope and average mean grain size in the shoaling-wave zone under non-storm conditions (Fig. 4, inset). Because of this strong "bottom slope-grain size" relationship, bottom slope appeared as the dominant independent variable influencing average mean grain size distribution (Table 2, period 3, data in parentheses) when all the independent variables observed during the non-storm period were analyzed individually. Under storm conditions, the data suggested that a position correlation of bottom-slope-grain size existed in the same area of investigation (Fig. 4). With the increased turbulence along the water-sediment interface, a quasifluidization of the bed surface developed (cf. Shepard, 1963; Scheidegger, 1961), and presumably the bottom slope or lack of a rigid slope greatly modified the influence of the slope angle on the average mean grain size.

Generally, storm waves develop two, three, and sometimes more breaker zones with accompanying "breaker" sandbars and "breaker" troughs. Such was the case in the zone of investigation during and after the storm (Fig. 5). The seaward edge of the study zone (Fig. 3) contained the second breaker bar and trough, and the remaining shoreward portion contained a "pseudo-foreshore". slope. As mentioned earlier, there was a positive relationship between

Figure 4.--Graphic representation of mean bottom slope-average mean grain size relationship during the storm period.

Figure 5.-Wchematic diasram of beach profiles at 15 th $S t r e e t$ pier before and after storm.

bottom slope and grain size, which is the case on a true foreshore (Bascom, 1951). The observed change of the original study zone, from one exhibiting bottom slope-grain size characteristics similar to a near-shore shoaling-wave zone to one having bottom slope-grain size characteristics similar to a foreshore, altered the observed strong inter-relationship between bottom slope angle and average mean grain size distribution exhibited in the earlier analysis.

Waves have two basic methods in initiating movement of sand grains; one involves the orbital movement of water particles, and the other involves the unidirectional flow of water induced by the passing wave front (Arlman, Santema, and Svasek, 1958). Both of these methods are directly related to wave height (Shepard, 1963). As the local wave height increases, within limits, the size of the sand grains which are set in motion increases. However, smaller sand grains were measured in the area during the actual storm; the grains ranged from 0.250 to 0.300 mm . Previous studies (cf. Eagleson, Glenne, and Dracup, 1961, p. 45) have shown that waves with steepness less than 0.025 build up a beach shoreward of the breaker zone and waves with steepness greater than 0.025 erode a beach shoreward of the breaker zone. (Wave steepness is defined as H / L, where H is wave height and L is wave length.) Further observations suggest that the steeper waves not only erode the foreshore slope, but deposit relatively smaller sand grains in the offshore region via significantly strong rip currents that may be induced by a storm. This phenomenon possibly occurred in the study zone since the average mean grain sizes observed during the storm were smaller than the average mean grain sizes observed for the earlier nonstorm period. The newer analysis indicated that the steepness
characteristic of waves during storms has a strong relationship with average mean grain size. Most all of the waves during the storm had a steepness greater than 0.025 , which set up conditions for a seaward movement of sand grains into the near-shore shoalingwave zone.

In reviewing the data (Table 8), the strong winds during the storm were not from the northeast, but were dominantly from the north and northwest. Winds blowing from the latter two directions were parallel to shore and "offshore," respectively. Pore (1964) observed that extratropical storm surges, such as existed during the observed storm, are more dependent on the winds blowing parallel to shore than on the onshore winds. Results suggested that the induced currents generated by the observed northerly winds parallel to shore were refracted toward the shore. The shoreward, windinduced currents may have reinforced the wave-induced currents and thereby caused the wave variables, especially wave height, to become more influential in its effects on average mean grain size distribution. The influence of winds parallel to shore were possibly "masked" by the increased influence of wave height. The winds blowing onshore and offshore may generate currents normal to the wind direction. Such currents will be generally parallel to shore and would become interrelated with the tidal currents in the area. With the strong tidal currents occurring during the peak of the storm, it is believed that whatever effect the onshore and offshore winds exerted on distribution of grain size, such influence was masked by the dominant southerly flowing tidal currents.

The angle of wave approach had relatively minor influence on
grain size distribution in the present analysis. During the storm the waves approached from the northeast, and after the storm the waves approached from the southeast. The basic difference in wave characteristics associated with the two directions of wave approach was wave height, and apparently most all of the influence exerted by the wave conditions was contained in that wave variable.

The sediment deposited during the maximum intensity of the storm contained sand grains smaller in average mean grain size than the grains found in the study area prior to the storm. This observation may be due, in part, to the transport of fine sand grains by seaward flowing rip currents and/or mid-depth return flows such as that observed by Miller and Zeigler (1958). Upon reaching the study area, where a breaker zone had developed during the storm, these seaward currents possibly dissipated and deposited the relatively finer sand grains upon the sediment bed. After the storm had passed and the oceanic and atmospheric conditions became relatively calm, the observed average mean grain size increased, covering a range larger than that present prior to the storm. This increase could have been expected since the still-water depth had decreased, thus placing the sand grains closer to the acting forces of passing waves. There were no rapid depth changes in the earlier analysis; consequently, little change occurred in average mean grain size due to the still-water depth. In the present study, rapid depth changes and seemingly related average mean grain size distributions occurred. The present analysis indicated that variation in still-water depth, indeed, was a very influential factor on average mean grain size distribution. It is realized that stillwater depth is not an energy term in the environment, but it is
important in mediating the application of energy terms.
Water viscosity has been found to have a significant effect on the dynamic properties of immersed sand grains at Virginia Beach (Harrison and Morales-Alamo, 1964). The water viscosity varies considerabiy over the seasons owing to temperature and salinity variations in the Chesapeake Bay runoff and in the local ocean water. Temperature and salinity fluctuations associated with tidal currents and heating and cooling during the day also affect the water viscosity. Storms, which may alter water temperature and salinity, will consequently have an effect on water viscosity as indicated by the observed sigma-t values in the present study. The net change of the sigma-t values in the study area caused by the observed storm was in the range of ten percent. Winds may indirectly affect water viscosity, especially the winds causing an offshore movement of surface water. Such winds, if sufficiently strong, cause a mild overturn along the coast, resulting in the shoreward movement of colder more-saline water in the summer months and slightly more-saline water in the winter months. Alterations in viscosity may affect fluid stress on the sand grains. With a significant decrease in water temperature and slight increase in salinity, as observed during and immediately following the storm period, water viscosity may increase thereby increasing fluid stress on the sediment surface. An increase in fluid stress entrains more sediment, causing an increase in sand grain distribution. An increase in grain size was observed with diminution of the storm. Results indicated that the increased viscosity of the water after the storm acting in less water depth under similar induced forces was influential in increasing average mean grain size distribution.

In the earlier analysis (Tables 3-7, non-storm data), the influence of viscosity was significant; however, the full effect was apparently suppressed owing to the dominance of the shoaling-wave zone slope variable. In a separate analysis of the earlier data (Harrison and Krumbein, 1964, Tables B52-B56), slope was deleted and water viscosity became highly significant. Under storm conditions, when slope became a less influential variable, water viscosity was observed to be a rather dominant variable in affecting average mean grain size distribution.

As mentioned earlier, the tidal-current speeds during the storm were approximately fifty percent greater than those during the nonstorm period. With currents of this magnitude, some of the smaller sand grains may be held in suspension and transported without the combined action of other environmental forces (Scheidegger, 1961, pp. 213-216). The usual direction of sand transport caused by reversing tidal currents alone would be parallel to the beach. It is reasonable to assume that storm wave-induced currents caused sand to be transported in an offshore direction. This interlocking relationship between wave-drift and tidal currents possibly explains the significant influence that each exerts on the average mean grain size distribution as indicated by the present study. In the earlier study (Tables 3-7, non-storm data) tidal currents also appeared influential. However, the accompanying wave-induced currents were insignificant, apparently caused by the masking effect of the shoaling-wave zone slope variable.

SUMMARY

Results of the present study indicated that sigma-t was the most dominant variable in affecting average mean grain size distribution when the independent variables were ranked individually by a simple regression procedure. This observation is in agreement with the earlier study (Harrison and Krumbein, 1964) in which sigma-t was among the more dominant variables when the independent variables were ranked individually. Other influential variables, when taken individually, observed in the present study were tidal currents, still-water depth, wave height, and wind speed parallel to shore. When the variables were analyzed in combinations of four variables at a time, the results suggested that the four strongest variables, considering all lag periods, were sigma-t, tidal currents, wave height, and still-water depth in that order. Wind speed parallel to shore became less influential in four-variable combinations, apparently due to the masking effect of wave height and tidal currents.

Whereas the most significant four-variable combinations for the non-storm conditions manifested 8-12 hours prior to the time of measurement of average mean grain size distribution; the most significant combinations for the combined weather conditions manifested 4-8 hours prior to the time of measurement of the dependent variable. Thus, the multiregression analyses indicated that average mean grain size distribution responded more readily
to vigorous environmental conditions than to less vigorous environmental conditions; that is, the rate of change in the dependent variable varied directly with the magnitude of the applied forces. Results of the regression analysis suggested that, although the causal variables observed under non-storm conditions maintained considerable influence on average mean grain size distribution for. at least twenty hours (Table 2), those observed under storm conditions exhibited their major influence within 4-8 hours after measurement (Table 2).

The significant interdependence between bottom slope and average mean grain size was reflected in the dominance of slope angle as a determinative variable in the regression analysis under non-storm conditions. Under storm conditions, bottom slope angle became a rather insignificant causal variable, and other forces (i.e., wave-drift currents and tidal currents), which may be strengthened by storms, became more influential in affecting the distribution of average mean grain size, according to the multiregression analyses.

APIENDIX A

A print-out of the data used in this study and explanations of the data fields on the print-out.

APPENDIX A

The following pages contain a "print-out" of the data as prepared and fed into IBM 7090 and IBM 1620 computers used in this study. The system could handle only eighty spaces per line (or card); however, the data associated with one response required more than the available spaces, therefore an additional line (or card) was needed for each set of responses. As shown on the following several pages, each two print-out lines contain the values of the ten environmental variables, occurring at one specific time, as related to the given beach response observed at a specific time. This procedure was conducted through five lag periods.

A key to the code lettering over the individual "fields" is presented below.

KEY

First Line:
A - A field of six spaces containing the project number of the specific analysis.

B - A field of four spaces containing the control number which applies to a specific beach response through the five lag periods.

Y - A field of six spaces containing the beach response data (average mean grain size) in mon with the decimal point between the third and fourth digits in the field.
X_{I} to X_{8} - Each X has a field of six spaces containing the environmental variable data of bottom slope angle (XI) in degrees, wave period (X2) in seconds, wave height ($X 3$) in feet, wind velocity onshore (X4) in mph, wind velocity offshore (X 5) in mph , wind velocity parallel to shore (X 6) in mph , angle of wave approach (X7) in degrees, and still-water depth ($X 8$) in feet. The decimal point for each field is between the fourth and fifth digits.

C, D, and E - The blank fields of six, six, and three spaces respectively are for convenience.

LP - A field of one space containing the lag period numbers. Second Line:
A^{\prime} and B^{\prime} - These fields correspond to A and B respectively in the first line.
X_{9} and X_{10} - Each X has a field of six spaces containing the environmental variable data of the sigma-t anomaly (X9) and tidal-current speed (XIO) in ft/s. In both fields the decimal point is between the fourth and fifth digits.

F and G - The blank fields of six and forty-nine spaces respectively are for convenience.

PN - A field of three spaces containing process numbers which is merely a way of designating the various lag periods for all beach response observations.

$$
\begin{aligned}
& 1700003000001160
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0 \\
\infty \\
- \\
- \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
0 \\
-1 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& 096000052200008
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c \\
n \\
n \\
o \\
c \\
0 \\
0 \\
c \\
- \\
- \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
C \\
0 \\
0 \\
n \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
C \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& 0009000000000000 \quad 0 \quad 2500001110
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c \\
c \\
a \\
a \\
c \\
c \\
c \\
c \\
c \\
n \\
n \\
0 \\
c \\
0 \\
0 \\
n \\
- \\
n
\end{array} \\
& \begin{array}{ll}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& 00000 \\
& 000 \text { an } \\
& 000 \mathrm{no} \\
& 000 \text { nn } \\
& \begin{array}{ll}
C & c \\
C & c \\
C & C \\
C & C
\end{array}
\end{aligned}
$$ HAAO100NO4 OO2n9nOOnの34 HAAO100005000237000084000500 HAAO100005 002060000025 HAAO100006000307000084000600 HAAO100006 OO2C40000075 HAAO100007000384000087009900 HAAO1DOCNT Oก2OINONON50 HAAO100008000336000130001100 HAAOIOOOOR $0020300 \cap 0008$ HAAO100009000326000145001100 HAAOIODOO9 OO214000ON17 HAAO100011000343000127000350 HAAO100011 OC226000NO17 HAAO100012000333000133001000 HAAOlOOO1？OC224000nOn8 HAAOIONO1200n $3500 \cap 0147000500$ HAAD100O13 02216000COO8 HAAO100014000347000ח7000n700 HAAO100014 OC218000CO17 HAOO1000C400069500005000n800 HAOO100004 OO1810000042 HAOO100CO6000246000233001000 HAOO100006 nN215000nO12 HAOO10000800C414000183001100 HAOO100CO8 OO2490000063

 OOEUOOSLIUOJ69をOUUULUOOIOVZH BOUUVUUヵてくOU UIJOOIUVVH
PROJ OOIO IJ VARIARLFS MFAN SLOPE WV T＇WV HO＇ION＇IOFF UPARALLEL ANG WV APP：WATFR DFP＇RHO＇TID CURR VEL

910				
乙	US6U0000SEOOOUEZ UOUO	OOとOU0		
と 10			8UOUUOULOZUO	$\varepsilon \cup O O O T O \forall \forall H$
2	OL6000000عOOOOOI 00．000	081000	OOOLOO95OOOO6EEOOOEOOOOTO甘VH	
010			80000005U200 2000つ【OVVH	
2	$09600005 L 100000000000052100$	052000	OOSOOOZLUOOU6SEUOOZOOOOIOVFH	
L			LIJUOOUSO200	IOOOOIOVVH
$己$	U9600000SI O O000000000USとIOO	，22000	OU8UOOOSOOOOLOEOOOTOOOOIO甘VH	
$く 巾 G$			LZOUOOOEI2OO	8［00OIOUVH
2	ひとて1000006OOOOOI	050000	O09000とヶโOOUT8と0008［000［OUVH	
6と5			L COOOOOOU500	LIUOOIOUVH
2	07 U1000002000521 00 0	Oと【OOO	UOSUOO6SLOUUOLEUOULIOOOLOOVH	
$9 E 5$			SGUUUOOL6IUO	9 IUCOIOUVH
乙	O7Eโ00005200058I O00 0	051000	OGEUOO8LIOOOLTTUOU91000IOOVH	
$E \varepsilon \zeta$			170000096［00	$5100010 \cup \forall H$
2	OOE100005200002I	n2TOUO	UO700078［000897000STOOOLOUVH	
L2S			ととOUOOUEO2JO	$\varepsilon โ O O O[O U V H$
2	O\＆\＆โOOCOOEOOOOOOOOOO†100000000	050000	OO7000981000L67000\＆TOOOLOOVH	
$7 \angle S$			820000016200	CIOOOIOOVH
2	UStIOUUUOEOUUOOUOOUU IUOUVUOUO	Јを1000		
ICG			6IOU000くくです	L［0JOLUUVH
2		JLIOOO		
815				$\cup 1900[U \cup H$
2	UT9［00000ع00000000UOZIUOUUUOOO	Oと1000	OO6UUUど610UUカLカOOOU1000IOOVH	
$S I S$			UUUUUUべナてU0	60000IUUVH
2	OTGIOOOOOEOOOOOOOOUOLIOOUOUOOO	002000	OOIIOOELIOOOZ5500060000100 ${ }^{\text {OH }}$	
605			OعOUOOO71200	LOOOOLOOVH
2	0671000002000000000000057100	002000	OGEUOOZ2ZOOO9GZOOOLCOOOIOOVH	
$\varepsilon \cup S$			890000076500	5000 ITOUVH
乙	O8EIOOUOOEOOOOZI U0．000	052000	$0090000 L 1000 ヶ$ ¢ $200050000[00 \forall H$	
$\varepsilon 80$			O\＆0000029100	$\varepsilon 0000[00 \forall H$
Z	OSE1000007000000000550000 000	001000	OO8000ع90000ع9LOOO\＆OOOOLOOVH	
070			OGUU00095I00	くUOOOLOOVH
$乙$	UटE［OOU0O\％O 00000000U0008000	051000	$00800018000090900020000 L U 0 \forall H$	
ζ			uUuvu0697luu	LUUJOLOUVH
ζ	UZサIOOUUOEUOUOOOOUUG9 UUU 000	0）1000	$\text { UESUDO9จ00OOE } 78000 I 0000 I 00 \forall H$	

						\sim	～		\sim			V	$\underset{\sim}{i} \sim$
$\stackrel{\sim}{\sim}$	$\stackrel{C}{C}$	$\begin{aligned} & \text { C } \\ & \infty \end{aligned}$	∞	ㅇ	$\stackrel{C}{-}$	8	앙	8	$\stackrel{\circ}{\Gamma}$	c	¢	c	C
$\stackrel{\circ}{c}$	－	\bigcirc	${ }^{\infty}$	${ }^{\infty}$	$\stackrel{1}{8}$								－
c	\bigcirc	－	c	－	c	8	－	－	$\stackrel{\square}{0}$	\bigcirc	c	\bigcirc	－
－	－	－	C	－	－	－	－	－	－	C	c	－	－
C	C	O	C	－	c	C	－	C	－	c	¢	C	c
c	c	－	c	－	c	c	c	c	c	c	c	c	C
O	0	0	－	\cdots	\cdots	－	in	in	O	－	c	n	n
	m	\pm	m	N	m．	in．	m	m	－	m	\sim	\cdots	${ }^{\circ}$
－	O	－	0	O	O	O	O	앙	－	O	O	\bigcirc	8
8	8	8	C	앙	8	－	． 8	앙	8	8	¢	8	8
－	n	－	c	－	c	c	in	\sim	－	C	c	n	n
		－	O	－	m	－		\bigcirc	－	の	C		\sim
		8			\cdots	－	\cdots	\cdots			C	\cdots	\cdots
		8	C	－		，			－		c		
		\bigcirc	\sim	n		c			－				
		ヘ	\cdots	\pm		r			－		\cdots		
		c	－										
		8	C	C		c							
$\stackrel{\circ}{\circ}$	c	－	©	C	c	－	8	8	－	C	c	c	C
		－	¢	－		－			8				
C	－	－	c	－	c		－	C	－	c	8	－	
\bigcirc				\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	0	0		C

000320
000500
000500
000320
000130
000100
000050
000120
000150
000080
000150
000600
000050
000110

[^0]PROJ AOIO 11 VARIARLFS
RUN NO OOOI＇MFAN SIZE 15 ST PIFR VS MEAN SLOPE＇WV TVWV HO＇IION＇IIOFF IIPARALLFL
ANG WV APP：WATFR OFP＇RHO＇TIO CIIRR VFL． LAG PERIOD 3

\section*{$0 \$ 0110$
 000150
 | 0 |
| :--- |
| － |
－
-

\sim
N
C
C 002000
 000170
 000130}

000100
noon50

000100
c
n
0
C
c 052000 O\＆1000
$0 n 0240$
nก0270

ロワ9000ヶ90000をカ800010000100 VH
 HAOO100002 001540000047 HAOO100003000763000060000700 HA00100003 00165000006 ？ HAOO100005000234000154000450 HADO100005 001900000056 HACO1000070002560002227001000 HAOO100007 n02170000065 HAOO100009000552000178001000 HA00100009 002490000043 HACO100010000474000180000900 HAOO100C10：002460000038
 HAOO100011 On221000nO11 HAOO100012000474000183000600 くIUVUUUくくくUU くluOOlUU甘H
 HADO10001？ 002130000000 HAOO10001500046800018300n350 HAOO100015 OO1950000025 HAOO10001600C．417000182000300
 UOサUOOL9IOOUOLEOOULIOOOIOO HH
 $050000086!00 \quad 8!000100 \forall \mathrm{H}$
$009000 L \rightarrow 100018 \varepsilon 00081000100 \mathrm{VH}$ OUSUOUOSUOOOLOEOOOLOOOOLOVVH HAAOIODON1 Nn2n5nOnnn 17

		C -1 0 0 0 0 0 0 1 0 0 0 0 0 0 -1			0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{aligned} & 0 \\ & m \\ & c \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & n \\ & 0 \\ & 0 \\ & C \\ & \underset{\sim}{n} \\ & \underset{n}{2} \end{aligned}$	c o c c c c c n \sim m c c c c n m m	$\begin{aligned} & c \\ & m \\ & c \\ & c \\ & c \\ & 0 \\ & c \\ & 0 \\ & 0 \\ & e \\ & 0 \\ & 0 \\ & 8 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & c \\ & \text { c } \\ & \text { o } \\ & 0 \\ & 0 \\ & C \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{n} \\ & \underset{c}{c} \\ & c \\ & c \\ & 0 \\ & i \\ & C \\ & C \\ & i \\ & 0 \\ & 0 \end{aligned}$				0 \cdots 7 0 ∞
C．	$\stackrel{0}{C}$	$\stackrel{-}{\circ}$	8	－	c	C	$\stackrel{\circ}{c}$	c	c	c		C	c c N	$\begin{aligned} & \text { O} \\ & \text { c } \\ & \hline \end{aligned}$	
ㅇ	C	ㅇ	응	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{c} \end{aligned}$		$\stackrel{\circ}{C}$	$\begin{aligned} & 0 \\ & c \\ & C \end{aligned}$	응	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline \end{aligned}$	$\stackrel{\mathrm{C}}{\mathrm{C}}$			$\begin{aligned} & \text { C} \\ & \text { c } \end{aligned}$	c

000210
000250
000260
000350
000650
000400
000200
000150
000100
000130
000120
000190
000740
000050
HAAO10000300033900OC53001000 HAAO100003 002060000008 HAA 100004000243000076000700 HEAO1000Ci 002100000042 HAAO1000050002370กOC8900n500 HAAO100005 OO2C8000NO17 HAAO1000C．6000307000084000500 HAAO100006 002060000025 HAAO100007 OO2030000117 HAAO100008000336000095000550 HAAC100008 001990000025 HAAO100009000326000155001100 HAAO100nOO 002080000025 HAAO100011000343000152000700 HAAO100011 002240000000 HAAO10001200033300013000n350 HAAO100012 $00227000 \cap \cap 17$ HAAO100013000？50000143000600
 HAAC100014 002140000n34 HAOO1000040006950nOOT5000n850 HACNIOOCO4 $0016650000 \cdot 34$ HACO100006000246000200000500

 HAOO1000：140005160001850C0550 GUUVUULくびくUU カIVOOLUOVH

$\begin{aligned} & \underset{c}{c} \\ & \stackrel{c}{c} \\ & c \end{aligned}$	$$	$\begin{aligned} & c \\ & \underset{\sim}{c} \\ & \stackrel{\rightharpoonup}{c} \\ & c \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \tilde{O} \\ & \text { - } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { C} \\ & \text { N } \\ & \text { C } \\ & \text { C } \end{aligned}$		$\begin{aligned} & c \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & c \\ & c \end{aligned}$	\circ - C.	$\begin{aligned} & c \\ & i \\ & \sim \\ & \sim \\ & \text { c } \\ & \text { c } \end{aligned}$		$\begin{aligned} & c \\ & \underset{C}{c} \\ & c \\ & c \end{aligned}$	0 8 8	$\begin{aligned} & \text { d } \\ & \cdots \\ & \underset{O}{C} \\ & c \end{aligned}$

[^1]\[

$$
\begin{aligned}
& \text { PROJ AOIO } 11 \text { VARIARLFS } \\
& \text { RUN NO OOOI'MFAN SIIFF } 15 \text { ST PIFR VS } \\
& \text { MFAN SLOPE' WV T'WV HOMON.UOFFI UPARALLEL } \\
& \text { ANG WV APP' WATER DEPIRHC: TID CURR VEL. } \\
& \text { LAG PERIOD } 5
\end{aligned}
$$
\]

HA00100001000843000C60000770	000080	000	$0 \ldots 125$	1250003500001400	5
HA00100001 001466000000					2
HACO100002000606000069000700	000120	0007500000000000002000001270			5
HAOO100002 001500000056					037
HAOO100003000763000754000800	000080			550003000001330	5
HAOO100003 001710000033					080
HAO0100005000234000122000400	000250	000000002500000000003000001380			5
HAOO100005 0018200001067					500
HAOO100007000256000216001000	000150	000		900003000001350	5
HACO100007 00.2100000054					506
HAOO100009000552000194000900	000600	000000001600000000002000001590			5
HAO0100009 002400000018					512
HA00100Q10000474000173001100	000200	000000001700000000003000001510			5
HANO100010 002490000000					515
HA00100011000588000193000900	000130	000000001200000000003000001610			5
HAOO100011 OC2360000000					518
HAOO100012000474000190000300	000170	0nononoon 150000000003500001450			5
HAOO100nl? noz22noonolg					521
HAOO10001300049700n18400n600	000130	200000001600000000003000001450			5
HAnnloonl ${ }^{2}$ OC221000no ${ }^{\text {a }}$					524
HACO10001500n46800018300^800	000050	000		1150003500001350	5
HAOO100n15 OO19900nのn54					530
HACO100016000417000184000400	n00170	000		200002500001300	5
HAOnIOOCl6 Col960CCnO41					533
HAOO10001700n370000178000350	000150	000		850002500001340	5
HAOO100017 00197000nO55					536
HAOO1000180003810n0159000500	000130	000	0012	1250002000001240	5
HAOO100018 Onl9n@oonc 27					539
HAAO10000100030700006200n900	000250	0011500000000000 0001500000960			5
HAACIOOnCl Onzo7000nn50					4

000220
000250
000180
000300
000320
000500
000500
000320
000110
000100
000250
000120
000130
000250
000200
000050
000130

[^2]
APPEFDIX B

An explanation of the computer process
in a sequential multiregression analysis.

APPENDIX B

In the linear sequential regression analysis, all possible combinations of the ten major environmental variales were analyzed in determining the effect each variable or group of variables had on the average mean grain size in the area of investigation. As discussed in the text, a combination of four variables would suffice; the single most influential combination was found to be that containing wind velocity (offshore) (X5), still-water depth (X8), sigma-t anomaly ($x 9$), and tidal current speed (XIO). With the dependent variable of average mean grain size represented by Y, then the general linear model would be:

$$
\mathscr{B} 0+\boldsymbol{B} 5 \times 5+\boldsymbol{B} 8 \times 8+\mathscr{B} 9 \times 9+\boldsymbol{B} 10 \times 10=\mathrm{Y}
$$

In a more concise form, the model would be:

$$
\underline{\underline{s}} \underline{\hat{B}}=\underline{g}
$$

Where g is a 5 X 1 vector of Y, S is a $5 X 5$ matrix of squares and cross-products of the Xs , and \hat{B} is a $5 \mathrm{X} I$ vector of the estimated $\boldsymbol{O}_{\mathrm{s}}$. The expended matrix equation would be:

[iv	$\begin{aligned} & \boldsymbol{\Sigma} \times 5 \\ & \boldsymbol{\Sigma} \times 5^{2} \end{aligned}$		EX9 EX5 99	$\Sigma \times 10$	$[80]$		$[E X]$
Ex8	EX5x8	Ex. ${ }^{2}$	Ex8x9	Ex8X10	5	$=$	Σ
Ex9	Ex5x9	889	$\Sigma \mathrm{X} 9^{2}$	Ex9xic	\&		EX
EXIO	Ex5X10	Ex8x10	Ex9x10	Ex10 ${ }^{2}$			[XIOY

The computer inverts the matrix and multiplies by g to obtain the coefricients $(\widehat{\mathscr{B}})$. The proportion of the total sum of squares of Y explained by the four variables is then computed and expressed as a percentage.

In examining the variables individualy, the matrix for the first variable would simply be:

$$
\left[\begin{array}{ll}
\mathbb{N} & \Sigma X I \\
\Sigma X I & \Sigma X I^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\mathscr{E} \circ \\
G_{I}
\end{array}\right]=\left[\begin{array}{l}
E Y \\
E X I Y
\end{array}\right]
$$

For a pair of variables in combination, anotiner row and column of the appropriate X values would be added to the matrix. Fron the vase matrix given above, ary reascnable number of X variables and subsequent combinations could be employed in the linear sequential regression analysis.

LITERATURE CITED

Arlman, J. J., P. Santema, and J. N. Svasek. 1958. Movement of bottom sediment in coastal waters by currents and waves; measurements with the help of radioactive tracers in the Netherlands. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. l05:51 p.

Bascom, W. N. 195l. The relationship between sand size and beach face slope. Trans. Amer. Geoph. Union 32: 866-874.

Brunn, P. 1954. Coastal erosion and the development of beach profiles. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. 44:77 p.

Eagleson, P. S., B. Glenne, and J. A. Dracup. 1961. Equilibrium characteristics of sand beaches in the offshore zone. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. 126: 63 p.

Harrison, W., and W. C. Krumbein. 1964. Interactions of the beach-ocean-atmosphere system at Virginia Beach, Virginia. U. S. Army Coastal Engineering Research Center, Tech. Memo. 7: 52 p.

Harrison, W., and R. Morales-Alamo. 1964. Dynamic properties of immersed sand at Virginia Beach, Virginia. U. S. Army Coastal Engineering Research Center, Tech. Memo. 9: 20 p.

Harrison, W., and K. A. Wagner. 1964. Beach changes at Virginia Beach, Virginia. U. S. Army Coastal Engineering Research Center, Misc. Paper 6-64:10 p.

Helle, J. R. 1958. Surf statistics for the coast of the United States. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. I08: 22 p.

Krumbein, W. C. 1959. The sorting out of geological variables illustrated by regression analysis of factors controlling beach firmness. J. Sed. Petrology 29: 575-587.

Krumbein, W. C. 1961. The analysis of observational data from natural beaches. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. 130:50 p.

Krumbein, W. C., B. Benson, and W. B. Hempkins. 1964. Whirlpool, a computer program for sorting out independent. variables by sequential multiple linear regression. ONR Tech. Rept. 14, ONR Task No. 389-135, Contract Nonr-1228 (26) Northwestern University, Dept. of Geology, 49 p.

Miller, R. L., and J. M. Zeigler. 1958. A model relating dynamics and sediment pattern in equilibrium in the region of shoaling waves, breaker zone, and foreshore. J. Geology 66: 417-441.

Pore, N. A. 1964. The relation of wind and pressure to extratropical storm surges at Atlantic City. J. Applied Meteor. 3: 155-163.

Scheidegger, A. E. 1961. Theoretical geomorphology. PrenticeHall Inc., Englewood Cliffs, N. J. 333 p.

Shepard, F. P. 1950. Longshore bars and longshore troughs. U. S. Army, Corps of Engineers, Beach Erosion Board, Tech. Memo. 15: 30 p .

Shepard, F. P. 1963. Submarine geology. Harper and Row, New York. 487 p.

Shepard, F. P., and E. C. La Fond. 1940. Sand movements along the Scripps Institution pier. Amer. J. Sci. 238: 272-285.

Snedecar, G. W. 1956. Statistical methods. Iowa State University Press, Ames, Iowa. 523 p.
U. S. Congress. 1953. Virginia Beach, Virginia, beach erosion control study. 83rd Congress, lst session, House Doc. 186: 45 p.

Zeigler, J. M., G. G. Whitney, and C. R. Hayes. 1960. Woods Hole rapid sediment analyzer. J. Sed. Petrology 30: 490-495.

VITA
D. Richard Tuck

Born in South Boston, Virginia, April 10, 1937. Graduated from Thomas Jefferson High School in Richmond, Virginia, June 1955, B. A. in Biology, Virginia Military Institute, 1959. M. A. in Marine Science, Virginia Institute of Marine Science, 1969.

In February 1966, the author became employed by the U. S. Naval Oceanographic Office as an oceanographer in the Oceanographic Surveys Department, Nearshore Surveys Division.

[^0]: HAAO100005000237000086000500 HAAO100005 000207000 OO50 HAAO1000066000307000082000550 HAAO100006 002060000067 HAAO100007000384000089000800 HAAO100007 002020000067 HAAO100008000336000103001000 HAAO100008 OO1980000067 00600005100092800060000 TO甘甘H HAAO100009 002110000000 HAAO100011000343000140000350 HAAO100011 002250000008 HAAO100012000333000135000350 HAAO100012 002270000008 | 0 |
 | :--- |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | \vdots |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | 0 |
 | | HAAO100013 002180000017 HAAO100014000347000097001000 HAAO100014 002150000000 HA00100004000695000050000900 HADO100004 001740000018 HAOO100006000246000216001000 HA00100006 002070000054 HA001000080000414000194000900 HANO100008 002400000018 HADO100014000516000183000800 HAOO100014 001990000054 HAAO100010000369000145001000

 $$
 \text { HAAO100010 ` } 002260000000
 $$

[^1]: HAnnlonnla HAAO100001OCO2n7000254001000 HAAO100CO?OOC359nOOC54OOR4nO HAAO10000? OO206000~042 HAAO1000030003390C0056000450 HAAO1000C3 On205000nO50 HAAD100004000243000059000600 HAAO100004 002080000025 HAA: 100005000237000116000500 HAAO100005 00209000 O034 HAAO100006000307000084000500 HAACloorng nOzrgnOnCn? 5
 HAAOIOCOO7 OOフ~4000nO75 HAAO100008000336000087000900 HAAO100008 NO2O1n00NO50 HAAO100009000326000130001100 HAAO100009 002030000008 HAAO100011000343000175000300 HAAO100011 002.24000n008 HAAC100012000333nOO12700n350
 HAAO10001? 002760002017 HAAN10001? OO276000n017

 HAAO100014 OO2!6000nOO8

[^2]: HAAO10000?COO359000050000800 HAAO10000? OO2050000017 HAAO100002nOOz39nCOn7200N50C HAAOIOOOOR CODC5000NOOB HAAO100004000243000056001000 HAAOIOOOC 4 n0207000nn08 HAAO100005000237000115000600 HAAO100005 002100000058 HAAO100006000307000086000500 HAAO100006 002070000050 HAAO1000070003840000820005550 HAAO100007 002060000067 HAAO 100008000336000089000800 HAAOIOOOC8 \quad CO2O2000 067 HAAO100009000 326000103001000 HAAOIOONOQ ON1980חOnnG7 HAAD $10001100 C 343000145001000$ HAAO100011 OO226000NOOO HAAO100012000333000140000350 HAAO100012 CC2250000008 OSEUOOSE LOOOOSEVOOE 100010 V HH HAAO100 1^{3} OC277000nOOR HAAC $10001400 C 347000145000600$ HAAN100014 COR1800NON17 HAOO100004000695000C5000n650 HANO!00CO4 OO!57000nOl4 HAOnlonongnon 246 nOnl 170 nnngnn
 HANOIOOOOR ONZ14OONMNAO 00700098 [0009โ5000 $+1000100 \forall \mathrm{H}$ HAON100014 00203000003? HAAD100010000369000150000900
 HAAO100010 OO2110OOOOCO

