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ABSTRACT

Temporal variations of ten major environmental variables
occurring during a storm were studied in relation to mean grain
size distribution in the shoaling-wave zone of an oceanic beach.
A similar study had been conducted earlier on the same beach by
Harrison and Krumbein (1964) during relatively calm to moderate
weather conditions. By augmenting their data with the "storm-
condition" data and performing the same type of multiregression
analysis, an evaluation could be made of the influence that
storm conditions exerted upon the mean grain size distribution
on this beach. Environmental variables studied included those
related to beach geometry, local water properties, local wind
conditions, tidal fluctuations and wave characteristics. The
effect of these variables on the beach response was investigated
by sequential linear multiregression analysis utilizing high
speed computers.

The most influential sets of four-variable combinations, in
a least squares sense, were found to suffice in "explaining" the
observed variability in mean grain size distribution. Analysis
of the effects of combined storm and non-storm values indicated
that the "average" mean grain size (referring to the average of
several sediment samples collected simultaneously in the study
zone) was most dependent upon the variables manifested 4-8 hours
prior to measurement of the beach response. The most influential
four-variable combination consisted of: sigma-t, still-water
depth, tidal-current speed and wind speed offshore. Sigma-t was
found to be the most influential single variable when examined
in four-variable combinations. The influence of mean bottom
slope angle, which was the major influential variable during calm
to moderate conditions (Harrison and Krumbein, 1964), became less
prominent in the analysis of the combined non-storm and storm
data. The recent study suggested that a reversal in the bottom-
slope-grain size relationship occurred under the storm conditions.
(Generally, mean bottom slope and average mean grain size are
inversely related in the shoaling-wave zone.) With the decreased
effect of bottom slope angle, wave-drift currents and tidal
currents became more influential on average mean grain size
distributicn, according to the multiregression analysis.
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MAJOR ENVIRONMENTAL VARIABLES AFFECTING
GRAIN SIZE DISTRIBUTION IN THE SHOALING-WAVE ZONE

UNDER STORM CONDITIONS AT VIRGINIA BEACH, VIRGINIA



INTRODUCTION -

On a natural oceanic beach mean'grain size varies significantly
from one of the several beach zones to anofher (Fig. 1) and period-
ically within each of the given zones. This study was concerned
with determining what environmental variables, acting during a
storm period, are significant in affecting the distribution of
average mean grain size (referring to the average of several
sediment samples) with respect to time in the shoaling-wave zone
of an oceanic beach.

Many variables of the béach-ocean—atmosphere system participate
in affecting mean grain size. To elide unnecessary complications
in the analysis, ten of the major environmental variables (Table 1)
were selected for observation of their effects upon average mean
grain size distribution.

An approach to the defined problem of average mean grain size
distribution entailed three sequential phases}‘ First, field
measurements of selected "causal" elements in conjunction with
measurements of the related "effect" element had to be obtained
during storm conditions. Second; correlations between the environ-
mental causal factors and distribution of average mean grain size
were determined by sequential linear'multiregression, a least
'squares search procedure, which will bé discussed later. The
final phase involved the evaluation of the correlations.

Harrison and Krumbein (1964) conducted a similar study on the



Figure l.—--Schematic diagram showing boundaries

of the various beach zones.
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same oceanic beach under calm to moderate weather conditions. Some
comparisons between related results of'the two projects have been

included in this study.



AREA OF INVESTIGATION

The beach selected for this study is located at Virginia
Beach, Virginia, an oceanic beach situated immediately south of
the entrance to Chesapeake Bay (Fig. 2). The area of the shoaling-
wave zone examined was centered along the north side of the 15th
Street pier (Fig. 3) which is about 10 km south of Cape Henry.

The 15th Stfeet pier, from which certain measurements were taken,
extends seaward for a distance of 260 m from.the shoreline and
terminates at approximately the 6-m contour.

The site of investigation in the nearshore shoaling-wave zone
was limited to a 30.5 x 4.6 m area roughly‘between 61.0 and 91.5 m
seaward of the normal breaker zone under calm conditions. Generally,
the area of investigation had an average water depth ranging between
3.3 and 4.3 m. In surveys conducted by the U. S. Army Corps of
Engineers (U. S. Congress, 1953, p. 13), it was found that the
beach slopes, beyond the breaker zone to the 6-m contour, ranged
between 1:50 and 1:60. In the same survey studies, the Corps of
Engineers found that the beach face was experiencing a long-term
net erosion, while a slight accretion of beach material was
- occurring in the region seaward of the breakef zone and extending
to the 6-m contour.

The beach material throughout theiarea is composed of quartz
sand particles that exhibit an average Corey Shape Factor of 0.7

(Harfison and Morales-Alamo, 1964). The Corey Shape Factor for



Pigure 2.--llaps showing general

area of investigation.
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a sand particle is defined by:

S. F. = c -
AN ab
where a, b, and c¢ are the orthogonal long, ihtermediate, and short
axes, respectively. Observations suggested that the average mean
grain sizes in the study area generally range from 0.250 to 0.400
mm. In the shoaling-wave zone, there is a gradual decrease in mean
grain size with increasing water depth.

A review of wind and swell records (U. S. Congress, 1953,
plates 5 and 6) indicates that the higher wind velocities and total
wind movements are greater from the northern quadrants and the
dominant medium and high swells are from the northeastern quadrant.
These high swells and wind velocities occur normally in the fall
and winter and tend to erode the beach slightly, regardless of
artificial nourishment. During the summer, the low swells approach
from the southeast and the prevailing winds are from the southwest.
These relatively milder conditions in the summer tend to nourish
the beach naturally. More details of beach profile modifications
in the area of investigation are presented by Harrison and Wagner
(1964).

Surf conditions over a three-yeaf period have been compiled
by Helle (1958), as observed at the Virginia Beach Life Boat Station
approximately 800 m north of the 15th Street pier. Results show
that the surf is 1.2 m or higher 10% of the year, 0.9 m or highér
50% of the year, and 0.6 m or higher 95% of the year. The surf
tends to be highest in the fall and early winter. The average
period of the surf tends to be greatest in,late,spring and early

summer (around 6.0 seconds).



Semi-diurnal tides occur at Virginia Beach which have a mean
rangé of 0.9 m. The tidal currents are mainly of the reversing type
and are generally parallel to shore. This reversing current is
associated with the strong ebb andvstrong flood tidal currents

exhibited at the entrance to Chesapeake Bay.



DATA COLLECTION AND COMPILATION

Field observations of the environmental variables occurring
during the storm period were conducted between November 27, 1964
and December 5, 1964, inclusively. This period contained a 3-day
storm with strong winds initially out of the northeast and
eventually out of the northwest from November 29 to December 1.

The methods of data collection performed during the storm period
were Similar to those used by Harrison and Krumbein (1964) during
relatively calm conditions.

Bottom .sediment samples were collected twice daily at 0600
and 1800 hours from November 28 through December 4. The causal
variable measurements (the independent variables of Table 1) were
either taken or determined from other data-collecting sources daily
at 0200, 0600, 1000, 1400, 1800, and 2200 hours. Because a given
beach element does not respond immediately to the operating forces
of a given set of causal variables, it was necessary to investigate
the time lag in the beach response adjustment. For this reason,
measurement of causal variables began one day prior to initial
sampling of the bottom sediment.

Four-hour lag periods, extending'throughAthe previous 20 hours,
.were arbitrarily established for the analysis in order to determine
how readily the beach element responded to the environmental variables.
For example, the beach response element observed at 0600 hours was

assigned five lag periods terminating at 0200, 2200, 1800, 1400 and ‘

9



Table 1.--The Ten Major Independent Variables Used in Determining

Relative Influence on the Distribution of Average Mean Grain Size

L (Méjs 1] in the Shoaling-Wave Zone at Virginia Beach.

Number Symbol Dimensions

Description

1 =N 0

2 T T

3 H L

4 Uon LT—l

> Uof L’I"l

6 U, L1

7 oL 0

8 h L

9 CT% 0
10. C L1

Mean angle of slope in shocaling-wave
zone

Wave period
Wave height

Mean wind speed in an onshore
direction

Mean wind speed in an offshore
direction

Mean wind speed parallel to shore
Angle of wave approach
Still-water depth

Sigma—t

.Speed of tidal current

10



1000 hours respectively. Similarly, for the beach response element,
observed at 1800 hours, the five lag periods terminated at 1400,
1000, 0600, 0200 and 2200 hours respectively.

Sand samples were collected from the surface layer of the
sedimént béd with a pipe'dredge, 4 cm in diameter. .Sampling depths
ranged from 0.5 to 2 cm below the sediment surface. vThe dredge was
normally drawn along a transect approximately 4.6'm perpendicular
to the pier. As mentioned earlier, the lengthrof the study zone
(Fig. 3) was 30.5 m, thus making the actual size of the zone
30.5 x 4.6 m. Samples were taken from four fixed stations
(designated by .S. T. U. and V., Fig. 3), and the average value of
the analyzed mean grain sizes (whigh_is termed "average mean grain
size™ in this study) of the four stations was employed in the
multiregreséibn analysis. Mean grain size of each sample was

determined using a Woods Hole Rapid Sand Analyzer (Zeigler, Whitney,

and Hayes, 1960), and the procedure outlined in Harrison and Morales-

Alamo (1964). The statistic used to estimate the mean-nominal
diameter was

ﬂz = Plo -+ P30 -+ PSO + P70 + P90
5

where P are percentiles determined in-the analysis.

The angle of bottom slope was determined from soundings. off
the pier at the same four fixed stations where the sand Samples
were taken and one additional station at each end of the study
‘area (7.6 m between each station). These soundings along with
tidal records were used in determining the still-water depth.
The angle of wave approach was measured with a pelorus mounted

at the end of the pier. Various littoral current speeds and

11



Figure 3.-—Schematic disgram of the 15th Street pier

and the general area of sediment sampling.

12
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13
directions (designated as "tidal" currents) one meter above the '

bottom were measured with a Savonius rotor and vane installed on
the pier immediately seaward of the study area. Sigma-t was
determined from salinity-temperature observations. Surface water
saﬁplés fof salinity and temperature measurements were taken at
four-hour intervals. Temperatures were read directly from a bucket
thermometer. * Salinities were determined by titration with silver
nitrate.

The U. S. Coast and Geodetic Survey Bureau maintains a tide
gage near the seaward end of 15th Street pier, and the U. S. Army
Corps of Engineers has a relay-type wave gage unit on the same
pier (Fig. 3). Tidal elevations with respect to time and wave data
(i.e.,‘wave height and wave period) were acquired from these two
agencies. The U. S. Weather Bureau has a regional station at Cape
Henry, approximately 10 km miles north of the study area. This
agency supplied information on wind direction and wind speed for

each hour.



METHOD OF ANALYSIS

The distribution of sand grains of various sizes is controlled
by the interaction of many beach process elements. It would be a
difficult task to measure all the possible process variables and
correlate them with average mean grain size distribution. In this
comparative study the process elements were limited, presumably,
to the ten most influential variables.

A sequential linear multiregression analysis was selected
for determining the relationship between the ten variables and
aVerage mean grain size. In the first'sgep of the analysis, the
linear relation between average mean grain size and each of the
process variables was determined from regression coefficients
calculated by the least squares method. At this initial stage
thé most influential variables affecting average mean grain size
normally become apparent. Next, the relation between average
mean grain size and all possible pairs of the process variables
were computed. From the most influenfial pair of process
variables, the second most influential single variable could be
identified. Sequential steps of analyzing combinations of three,
four, or more variables-at a time served the two-fold purpose of
ranking the process variables in their mathematical order to
physical significance as well as acquiring the most influential
set of variables in the various multiple combinations. Thus, the

variable combinations are referred to as "strong" or "weak™ in

14
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terms_of the least squares search results.

The multiregression analysis, as reviewed by Krumbein (1959
and 1961), was performed on an IBM 1620 computer for the initial
steps, and for more time-consuming steps, an IBM 7090 computer
was uged. .Data prepared for the multiregression anélysis are
presented in Appendix A.

In the first step, when the process variables are being
considered one at a time, the complete order of importance cannot
accurately be determined by the améunt'in which each variable
reduces the percent sum of squares of the response variable.
Because there are many complex interrelations among the various
process variables, an individual analysis may be misleading as to
their true control when acting in combination. Some of the process
variables may'be redundant because their relation to the response
variable is partially influenced by their interaction with other
process variables. This is shown by the fact that the addition
of the sum of squares reduction valués is greater than 100 percent
when the variables are computed individually. Most pairs and
sequential combinations of the sffonger variables will have a
smaller effect on the sum of squares reduction than the total of
the sum of squares reduction oflall the involved process variables
when computed individually. These progressive combinations tend
to reduce redundancy and possibly approach the true statistical
.relationship between any combination of the process variables and
“the resﬁonse variabie.

In arranging the data for analysis, the distribution of
average mean grain size was considéred as a functionvof bottom

slope angle, local wave period, local wave height, wind speed



onshore, wind speed offshore, wind speed parallel to shbre, angle
of wave approach, still-water depth, sigma-t,Vand‘tidal-current
speed (Table 1) over five 4-hoqr lag periods (t 1-5).
Thus:

(My)s = £ (S5, T, H, Uon, Uof, Up, &, h, O¢, Cltl-5
For consistency, the data in this study were analyzed in the same
way the data in the study of Harrison and Krumbein (1964) were

analyzed. A brief review of the multiregression technique is

present in Appendix B.

16



OBSERVED STORM CONDITIONS

Virginia Beach is subjected to frequent "norfheasterﬁ storms
(referring to wind velocities > 11 m/s) of varying intensity
throughout the winter. For two days before the observed storm
occurred,vthe winds, which were blowing primarily from the north-
east, gradually increased in intensity. As the wind speeds
increased, the direction of approach swung to the north (blowing
parallel to shére), and, after three days, to the northwest (blowing
out to sea). Wind speeds reached a maximum of 18.8 m/s_during the
height of the storm and maintained an average speed slightly over
11 m/s during the storm period. After the storm subsided, the winds
blew mainly from the south (parallel to shore). The angle of wave
approach changed with the shifting wind directions; from the north-
east before and during the storm and from the southeast after the
storm. The salinity of the loéal water was not significantly
affected by the variable winds; however, the local water temperatures
during the storm decreased over 4.5°C below the mean water tempera-
tures observed the day before and the day after the storm.

The mean local wave height observed before the storm was 0.6 m
and the mean wave period averaged 7 seconds. During the storm the
local wave height ranged from 1.2 to 3.95 m, which was relatively
‘high considering that most of the waveé,had broken at least oﬁce
on storm-built sandbars before reaching the study zone. The wave

period in the early stages of the storm averaged between 5 and 6

17
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seconds, and as the disturbance continued, the period and height

increased‘slightly. Immediately after;the storm the local wave
height and period decreased substantially. Throughout the storm,
the mean tidal-current speeds were 1.3 times greater than the speeds
observed béfore and after the storm. Before and during the initial
impact of the storm, the shoaling-wave zone mean bottom slope in the
sampling area was approximately 1:50, containing sand grains ranging
bet@een 0.320 and 0.370 mm in average mean grain size. As the storm
intensified, the mean slope steadily increased and the sand grains
varied between 0.250 and 0.300 mm in average mean grain size. After
the storm the mean slope was found to be approximately 1: 30, contain-
ing sand grains rangihg between 0.320 and 0.370 mm in average. mean
grain size. Deposition, averaging about 0.5 m, occurred within

the study zone during the storm. Hence,'the still-water depth,
which averaged 3.2 m before the storm, was found to be approximately

2.7 m immediately after the storm.



COMPUTED RESULTS AND COMPARISONS

Table 2 contains the results of the sequential linear multi-
regression analysis of the initial phase in the present study. BAs
shown, thevresuits indicated that the beach-ocean-atmosphere
conditions manifested in lag period 2 (4-8 hours prior to beach
response sampling) had the greatest influence on average mean
grain size distribution. Additional results of the analysis
(Taples 3-7, storm data) indicated that the strongest four-variable
combination in the most dominant lag period (Table 4B) consisted of
wind speed offshore, still-water depth, sigma-t, and tidal-current
speed. In considering the three strongest sets of four-variable
combinations in all of the five lag periods (Table 8, storm data),
the dominant variables are wave height, still-water depth, sigma-t
and tidal current speed. The weakest variable was found to be
angle of wave approach.

By way of comparison, the earlier study (Harrison and Krumbein,
1964) found that beach-ocean-atmosphere conditions in lag period 3
(Table 2), occurring 8-12 hours prior to sediment sampling, had the
most significant influence on beach response. Results of four-
variable combinationS»for.each‘of the five lag>periods in the
earlier work are presented in Tables 3-7, non-storm data: From the
earlier work, it was found that the stréngest four-variable combi-
nation in the most dominant lag period (Table SA) consisted of

bottom slope, wave period, angle of wave approach and tidal-current

19
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Table 3A.--The Three Strongest Percent Heduction in Average
Mean Grain Size Sum of Sguares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period l.(Excludipg Storm Data).

» ’ Percent
Independent Variable Combinations Reduction in S3
1 7 9 10 78.72
1 L g 10 77.61
1 5 9 10 7746

Table 3B.~-The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for lag

Period 1 (Including Storm Data).

Percent
Independent Variable Combinations Reduction in SS
3 5 9 10 69.1L4
2 3 9 10 68.05
3 4 9 10 64,67

Explanétion of Variable Numbers

X1 -‘Slope X6 = Wind Velocity (Parallel to Shore)
X2 - Wave Period X7 - Angle of Wave Approach
X3 - Wave Height X8 =~ Still-water Depth

X4 - Wind Velocity (Onshore) X9 Sigma-t -

X5 - Wind Velocity (Offshore) X10

Tidal-current Velocity
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Table 4A.--The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 2 (Excluding Storm Data).

, Percent
Independent Variable Combinations HReduction in S8
1 5 9 10 72,42

5 7 9 10 71.83
L 5 9 10 71.25

Table 4B.-~The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 2 (Including Storm Data).

. - Percent
Independent Variable Combinations Reduction in SS
5 8 9 10 78.11
1 3 5 8 75.55
' 7 8 9 10 75.30
BExplanation of Variable Numbers
X1 - Slope Angle X6 - WindVelocity (Parallelto Shore)
X2 - Wave Period X7 - Angle of wave Approach
X3 - Wave Height X8 = Still-water Depth

XL - Wind Velocity (Cnshore) X9 - Sigma-t

X5 - Wind Velocity (Offshore) X10 = Tidal-current Velocity
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Table'5A.~-The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variablés, for lLag

Period 3 (Excluding Storm Data).

: Percent
Independent Variable Combinations Reduction in 8S
1 2 7 10 82.75
1 2 3 10 82.69
1 2 ' 8 10 81.24

Table 5B.--The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Sguares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for lLag

Period 3 (Including Storm Data).

, Percent
Independent Varlable Combinations Reduction in SS
1 3 5 8 52.10
1 3 6 8 L9,06
1 3 4 8 h48.90
Explanation of Variabie Numbers
X1 - Slope Angle X6 - Wind Velocity (Parallel to Shore)
X2 - Wave Period X7 = Angle of Wave Approach
X3 - Wave Height X8 - Still-water Depth

X4 - Wind Velocity (Onshore) X9 -~ Sigma-t

X5 - Wind Velocity (Offshore) X10 - Tidal-current Velocity
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Table 6A.--The Three Strongest Percent Reduction in Average
liean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 4 (Excluding Storm Data).

: _ Percent
Independent Variable Combinations _Reductidn in S8
1 2 5 10 89.53
1 12 5 10 89.47
1 3 5 10 89.46

Table 6B.--The Three Strongest Percent Reduction in Average
lMean Grain Size Sunm of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 4 (Ihcluding Storm Data).

Percent
Independent Variable Combination Reduction in S8
2 3 9 10 67.68
1 . 3 9 10 61.00
3 6 9 10 60.93
Explanation of Variabie Numbers
X1 - Slope Angle X6 - Wind Velocity (Parallel to Shore)
X2 - Wave Period X7 - Angle of Wave Approach
X3 - Wave Height X8 - Still-water Depth

X4 - Wind Velocity (Cnshore) X9 - Sigma-t

X5 - Wind Velocity (Offshore) 10 - Tidal-current Velocity
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Table 7A.--The Three Strongest Percent Reduction in Average
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 5 {Excluding Storm .Data).

: Percent
Independent Variable Combinations Eeduction in S8
3 7 9 10 8l.12
1 3 5 10 78.90
1 5 6 10 7779

Table 7B.~~The Three Strongest Percent Reduction in Average .
Mean Grain Size Sum of Squares Attributable to Four Xs at a
Time Combinations of the Ten Independent Variables, for Lag

Period 5 (Including Storm.Data).

_ Percent
Indevnendent Variable Combinations Reduction in SS
1 8 9 10 67.15

3 8 9 10 66.18

5 8 9 10 66.03
. Explanation of Variabie Numbers

X1 - Slope Angle X6 - Wind Velocity (Parallel to Shore)
X2 - Wave Period X7 = Angle of Wave Approach
X3 - waveVHeight X8 - sStill-waterx Depth
X4 - Wind Velocity (Cnshore) X9 - Sigma-t

X5 - Wind Velocity (Offshore)X10 - Tidal-current Velocity
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speed. However, in compiling the three strongest sets of four-
variable combinations in all of the fi&e lag periods (Table 8, non-
storm data), the results suggested that the dominant variables were
bottom slope,‘wind speed offshore, sigma-t and tidal-current speed.
' The weakest variaﬁlé was still-water depth. Table-9 shows a compar-
ison of the range of values of the environmental variables observed

during both the earlier and the more recent study.



Table 8.--Variable Frequency of Occurrence in the Three Strongest

Combinations for Four Xs at a Time in All Five Lag Periods Under

Non-storm and Storm Conditions.

Occurrence Under

Occurrence Under

Variable Non-storm Conditions Storm Conditions
Slope Angle 12 6
Wave Period 4 2
Wave Height 4 11
Wind Speed Onshore 3 2
Wind Speed Offshore 9 5
Wind Speed Parallel

to Shore 1 2
Angle of Wave Approach 4 1
Still-water Depth 1 9
Sigma-t 7 11
Tidal-current Speed 15 11
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DISCUSSION

In the earlier study, Harrison and Krumbein (1964, pp. 45-48)
found a strong inverse correlation existing betwegn mean bottom
slope and average mean grain size in the shoaling-wave zone under
non-storm conditions (Fig. 4, inset). Because of this strong
"bottom slope-grain size" relationship, bottom slope appeared as
the dominant independent variable influencing average mean grain
size distribution (Table 2, period 3, data in parentheses) when
all the independent variables observed during the non-storm period
were analyzed individually. Under storm conditions, the data
suggested that a position correlation of bottom-slope-grain size
existed in the same area of investigation (Fig. 4). With the
increased turbulence along the water-sediment interface, a quasi-
fluidization of the bed surface developed (cf. Shepard, 1963;
Scheidegger, 1961), and presumably the bottom slope or lack of a
rigid slope greatly modified the influence of the slope angle on
the average mean grain size.

Generally, storm waves develop two, three, and sometimes more
breaker zones with accompanying "breaker™ sandbars and "breaker"
“troughs. Such was the case in the zone of investigation during
-and after the storm-(Pig. 5). The seaward edge of the study zone
(Fig. 3) contained the second breaker bar and trough, and the
remaining shoreward portion contained a "pseudo-foreshore™ slopé.

As mentioned earlier, there was a positive relationship between

29



FPigure 4.--Graphic representation of mean bottom
slope-average mean grain size relstionship

during the storm period.
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Figure 5.--Schematic diagram of beach profiles

at 15th Street pier before and after storm.

31



008
X 3

$961 H38W3030 ¢
WHOLS ¥3L14¥ 3713d0Hd HOv3E

..qoz_qasqm »zu:ouzm.l“;sxsl,f‘;:»"

NV3W
J
i ' 1 1 1 1 L 1 A 1
Ve 003 4 90H TP
961 HIGWIAON 82
WHY0LS 3H0438 37134084 HOV3IE
1334
008 002 009 008 | 00 0og 002 00! 0
L 1 —||~ 1 ] LV h \»}.— - ] ] \P. L Ak, L4 1 »y 1. 3 4 ke ' A S Llw‘ ON'
: 14,.::1:nunu|l»:-:x,.-oz_Jmsqm ==
= [N3N03Y Y
. S0 Ve = e
R = - e -
i = == = == ,,.m
T — S m
=< -
- n ——
. =10 I13A37 VIS NV3IAN
- g+
L | i J d L L 1 Il 1 A L 1 1 1 1 d1 | A 1 1 L i 1 A 11 U i b 1 A 1 J
V8O0G3 3 9HIPX1KWNOGUJIOUYGS LN AMXA ZXVXEXIXIXIXI XD XN Xi X
‘ d3ld 1334LS UiGl ONOIVY SNOILVLS

PO



32

bottom slope and grain size, which is the case on a true foreshore
(Bascom, 1951). The observed change of the original study zone,
from one exhibiting bottom slope-grain size characteristics similar
to a near-shore shoaling-wave zone to one having bottom slope-grain
size charaéteristics similar to a foreshore, altered the observed
strong inter-relationship between bottom slope angle and average
mean grain size distribution exhibited in the earlier analysis.
Waves have two basic methods in initiating movement of sand
grains; one involves the orbital movement of water particles, and‘
the_other'involves the unidirectional flow of water induced by the
passing wave front (Arlman, Santema, and Svasek, 1958). Both of
these methods are directly related to wave height (Shepard, 1963).
As the local wave height increases, within limits, the size of the
sand grains which are set in motion increases. However, smaller
sand grains were measured in the area during the actual storm; the
grains ranged from 0.250 to 0.300 mm. ‘Previous studies (cf. Eagleson,
Glenne, and Dracup, 1961, p. 45) have shown that waves with steeﬁness
less than 0.025 build up a beach shoreward of the breaker zone and
waves with steepness greater than 0.025 erode d beach shoreward of
"the breaker Zone. (Wave steepness is defined as H/L, where H is
wave. height and L is wave length.) Further observations suggest
that the steeper waves not only erode the foreshore slope, but
deposit relatively smaller sand grains in the offshore region via
significantly strong rib currents'that may be induced by a storm.
This phenomenon possibly occurred in the study zone since the
average mean grain sizes observed during the storm were smaller
‘than the average mean grain sizes observed for the earlier non-

storm period. The newer analysis indicated that the steepness
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characteristic of waves during storms has a strong relationship
with average mean grain size. Most all of the waves during the
storm had a steepness greater than 0.025, which set up conditions
for a seaward movement of sand grains into the near-shore shoaling-
wave zone.

In reviewing the data (Table 8), the strong winds during the
storm were not from the northeast, but were dominantly from the
north and northwest. Winds blowing from the latter two directions
were parallel tb shore and "offshofe,ﬁ.respectively. Pore (1964)
observed that extratropical storm surges, such as existed during
the observed storm, are more dependent on the winds blowing parallel
to shore than on the onshore winds. ‘Results suggested that the
-induced currents generated by the observed northerly winds parallel
to shore were.refracted toward the shore. The shoreward, wind-
induced currents may have reinforced the wave-induced currents and
thereby caused the wave variables, especially wave height, to
become more influential in its effects on average mean grain size
distribution. The influence of winds parallel to shore were
possibly "masked™ by the increased influence of wave height. The
winds blowing onshore and offshore may generate currents normal
to the wind direction. Such cufrents will be generally parallel
to shore and would become interrelated with the tidal currents in
the area. With the strong tidal currents occurring during the
peak of the storm, it is believed that whatever effect the onshore
and offshore winds exerted on distribution of grain size, such
influence was masked by the dominant southerly flowing tidal
currents.

The angle of wave approach had relatively minor influence on
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grain size distribution in the present analysis. During the storm
the waves approached from the northeasé, and after the storm the
waves approached from the southeast. The basic difference in wave
characteristics associated with the two direetione of wave approach
was wave height, and apparently most all of the influence exerted
by'the wave conditions was contained in that wave variable.

The sediment deposited during‘the maximum intensity of the
storm contained sand grains smaller in average mean grain size than’
the grains-found in the study area prior to the storm. This obser-
vation may be due, in part, to the transport of fine sand grains
by seaward flowing rip currents and/or mid-depth return flows such
as that observed by Miller and Zeigler (1958). Upon reaching the
study area, where a breaker zone had developed during the storm,
these seaward currents possibly dissipated and deposited the
relatively finer sand grains upon the sediment bed. After the
storm had passed and the oceanic and atmospheric conditions became
relatively calm, the observed average mean grain size increased,
covering a range larger than that present prior to the storm. This
increase could have been expected eince the still-water depth had
decreased, thus placing the sand grains closer to the acting forces
of passing waves. There were no rapid depth changes in the earlier
analysis; consequently, little change occurred in average mean
grain size due to the still-water depth. 1In the present study,
rapid depth changes and seemingly related average mean grain size
~distributions occurred. The present analysis indicated that vari-
ation in still-water depth, indeed, was a very influential factor
on'average mean grain size distribution. It is realized that still-

water depth is not an energy term in the environment, but it is
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important in mediating the application of energy terms.

'Watef viscosity has been found'to;have a significant effect
on the dynamic properties of immersed sand grains at Virginia Beach
(Harrison and Morales—Alaﬁo, ;964). The water viscosity varies
considerabiy over the seasons owing to temperature-and salinity
variations in the Chesapeake Bay runoff and in the local ocean
water. Temperature and salinity‘fluctuations associatedlwith.tidal
currents and heating and cooling during the day also affect the
water viscosity. Storms, which may alter water temperature and
salinity, will consequently have an effect on water viscosity as
indicated by the observed sigma-t values in the present study.

The net change of the sigma-t values in the study area caused by
the observed storm was in the range of ten percent. Winds may
indirectly affect water -viscosity, espeeially the winds causing an
offshore movement of surface water. Such winds, if sufficiently
strong, cause a mild overturn along the coast, resulting in the
shoreward movement of colder more-saline water in the sunmer months
and slightly more-saline water in the winter months. Alterations
in viscosity may.affectffluid stress on the sand grains. With a
significant decrease in water temperature and slight increase in
salinity, as observed during and immediately following the storm
period, water viscosity may increase thereby increasing fluid stress
on the sediment surface. BAn increase in fluid stress entrains more
sediment, causing an increase in sand grain distribution. An in-
crease in grain size was observed with diminution of the storm.
.Results indicated that the increased viscosity -of the water after
the storm acting in less water depth under similar induced forces

was influential in increasing average mean grain size distribution.



In the earlier analysis (Tables 3-7, non-storm data), the influence
of viécosity was signifiéant; however, Ehe full effect was apparent-
ly suppressed owing to the dominance of thefshoaling—Wave'zone slope
variable. ‘In a separate analysis of the earlier data (Harrison and
Krumbein, 1964, Tables B52 - BSS), slope was deleted and water
viscosity became highly significant. Under storm conditions, when
slope became a less influential variable, water viscosity was ob-
served to be a rather dominant variable in affecting average mean
grain size distribution.

As mentioned earlier, the tidal-current speeds during the storm
were approximately fifty percent greater than those during the non-
storm period. With currents of this magnitude, some of the smaller
sand grains may be held in suépension and transported without the
combined actibn of other environmental forces (Scheidegger, 1961,
pp. 213-216). The usual direction of sand transport caused by
reversing tidal currents alone would be parallel to the beach. It
is reasonable to assume that storm wave-induced currents caused
sand to be transported in an offshore direction. This interlocking
relationship between wave-drift and tidal currents possibly explains
the significant influence that each exerts on the average mean
grain size distribution as indicated by the present study. In the
earlier study (Tables 3-7, non-storm data) tidal currents also
appeared influential. However, the,accompanyihg wave- induced .
currents were insignificant, apparently caused by the masking

effect of the shocaling-wave zone slope variable.
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SUMMARY

Results of the present study indicated that sigma-t was the
most dominant variable in affecting average mean grain size
distribution when the independent variables were ranked individually
by a simple regression procedure. This observation is in agreement
with the earliér study (Harrison and Krumbein, 1964) in which
sigma-t was among the more dominant variables when the independent
variables were ranked individﬁally. Other influential variables,
when taken individually, observed in the present study were'tidal
currents, still-water deﬁth, wave'height, and wind speed parallel
to shore. When the variables were analyzed in combinations of four
variables at a time, the results suggested that the four strongest
variables, considering all lag periods, were sigma-t, tidal currents,
wave height, and still-water depth in that order. Wind speed
parallel to shore became less influential in fqur—variable combi-
nations, apparently due to the masking effect of wave height and
tidal currents.

Whereas the most significant four-variable combinations for
the non-storm conditions manifested 8-12 hours prior to the time of
measurement of average mean grain size distribution; the most
significant combinations for the combined weather conditions
manifested 4-8 hours prior to the time of measurement of the
dependent variable. Thus, the multiregression analyses indicated

that average mean grain size distribution responded more readily
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to vigorous environmental conditions than to less vigorous environ-
mental conditions; that is, the rate of change in the dependent
variable varied directly with the magnitude of the applied forces.
Results of the regression analysis suggested that, although the
causal variabies observed under non-storm conditions maintained
considerable influence on average mean grain size distribution for
at least twenty hours (Table 2), those observed under stofm
conditions exhibited their major influence within 4-8 hours after
measurement (Table 2).

The significant interdependence between bottom slope and
average mean grain size was reflected in the dominance of slope
angle as a determinative variable in the regression analysis under
non-storm conditions. Under storm conditions, bottom slope angle
became a rather insignificant causal vériable, and other forces
(i.e., wave-drift currents and tidal currents), which may be
strengthened by storms, became more influential in affecting the
distribution of average mean grain size, according to the multi-

A

regression analyses.



CAPTENDIX A

A print-out of the data used in this study and
explanations of the data fields on the print-out.
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APPENDIX A

The following pages contain a "print-out™ of the data as
prepared and fed into IBM 7090 and IBM 1620 computers used in
this study. The system‘could handle only eighty épaces per line.
(or card); however, the data associated with one response required
more than the available spaces, therefore an additional line (or
card) was needed for each set of responses. As shown on the
following several pages, each two print-out lines contain the
values of the ten environmental variables, occurring at one
specific time, as related to the given beach response observed
at a specific time. This procedure was conducted through five
lag periods.

A key to the code lettering over the individual "fields™" is

pfesented below.
XEY
First Line:

A - A field of six spaces containing the project number of
the specific analysis.

B - A fiéld of four spaces containing the control number which
applies to a specific beach responseithrough the five lag
periods.

Y - A field of six spaces containing the beach response data
(average mean grain size) in mmn with the decimal point

between the third and fourth digits in the field.

40



Xy to X5 - Each X has a field of six spaces containing the

8
environmental variable ‘data of bottom slope angle
(X1) in degrees, wave period (X2) in seconds, wave
height (X3) in feet, wind velocity onshore (X4) in
mph, wind velocity offshore‘éXS)‘ih mph, wind
velocity parallel to shore (X6) in mph, angle of
‘wave approach (X7) in degrees, and still-water
depth (X8) in feet. The decimal point for each
fiéld is between the fourth and fifth digits.

C, D, and E - The blank fields of six, six, and three spaces
| respectively are for convenience.
LP - A field of one space containing the lag period numbers.

Second Line: |

A' and B' - These‘fields correspond to A and B respectively
in the first line.

- EBach X has a field of six spaces containing the

X9 and XlO

environmental variable data of the sigma-t anomaly
(X9) and tidal-current speed (X10) in ft/s. 1In
both fields the decimal point is between the fourth
and fifth digits.

F and G - The blank fields of six and forty-nine spaces
respectively are for convenience.

PN - A field of three spaces containing process numbers which
is merely a way of designating the various lag

periods for all beach response observations.
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An explanation c¢f the computer pProcess
in a sequential rnultiregression analysis.
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In the linear seguential regression analysis, all
Possible coﬁbinations of the ten major envircnmental vari-
ables were analyzed in determining the effect each variable
or group of varilables had on the average nean grain size in
the srea oF investigation. As discussed in the text, &
combingtion of four verisbles would suffices; the single
most influentiel combination was found to be that contain-
iﬁg wind velocity (offshore)(X5), still-water éepth'(xa),
signa-t anomaly (X9), and tidal current speed (X10). with
the derendent varialle of average mean grain size represented

by Y, then the general linear model would be:

Lo +85 X5 +tLg X8 +EFgX9+L10X 10 =17,

In g more concise form, the model would be:
A
S£€ =g

wiere g is a 5 X 1 vecter of ¥, § is a 5 X5 metrix of

——

. : A
squares 2né cross—products of the Xs, and & is a 5 X 1 vector

of the estimatedfs. The exvanded matrix equation would be:
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&x
sx8
X9
yal

The
the
squ

and

the

For

colu
matr
numb

enpl

E X5 X 19 Ex10 7] [®o =Y 7]
5?2 gxsxe  =xsxo  Exsaid |gs & X5Y
Fxsxe Zus? Exexg ZXeX1(elgs | = |Exsv
EX5X9  ZFxex9  Zx9?  Xx91] |49 EX9Y

0 ZFX5X10 Fxex1i0 Zxox10 £x102| |@10] & %107 ]

cemputer inverts the matrix and rultiplies by g to obtain

: A
coefrticients (£ ). The proporition of the totsl sum of

]

ares of Y explained by the four variables is then computed

expressed as a Percentage.
In examining the variebles individuelly, the matrix for

first varigble would simply be:

y o X1 £o
gx1 gx2]| | g X1Y

a pair of wvariables in combination, another row aid

mn of the apprcecprizste X values would be zdded tc the

-

4

ix. From the btase matrix given above, any reascnabdle

m

er of X variables and subsequent combinations could be

oyed in the linear sequential regregsiocon analysis.
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