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ABSTRACT

Variational inverse data assimilation schemes are developed for three types of 
parameter identification problems in transport models: 1) the tracer inverse for the 
Lagrangian mean transport velocity in a long-term advection-diffusion transport model; 
2) determination of inflow salinity open boundary condition in an intra-tidal salinity 
transport model and 3) determination of settling velocity and resuspension rate for a 
cohesive sediment transport model. A limited-memory quasi-Newton conjugate gradient 
algorithm is used in the minimization processes. The gradient of the cost function with 
respect to the control variables is obtained by the adjoint model. A series of twin 
experiments are conducted to test the inverse models for the three types of problems. 
Results show that variational data assimilation can successfully retrieve poorly known 
parameters in transport models.

The first problem is associated with the long-term advective transport, represented 
by the Lagrangian mean transport velocity which can be decomposed into two parts: the 
Eulerian transport velocity and the curl of a 3-D vector potential A. The vector potential 
A  is treated as a poorly known parameter in the long-term transport model and the 
optimal long-term advection transport field is obtained through adjusting the vector 
potential using a variational data assimilation method to best fit the model output to the 
observation data. Experiments are performed in an idealized estuary. Observation data 
are generated at every grid point and assumed to be perfect. Results show that the 
variational data assimilation method can successfully retrieve the effective Lagrangian 
mean transport velocity in a long-term transport model. Results also show that the 
smooth best fit model state can still be retrieved using a penalty method when 
observations are too sparse or contain noisy signals.

A variational inverse model for optimally determining open boundary condition 
is developed and tested in a 3-D intra-tidal salinity transport model. The maximum 
inflow salinity open boundary value and its recovery time from outflow condition are 
treated as control variables. Effects of scaling, preconditioning and penalty are 
investigated. It is shown that proper scaling and preconditioning can greatly speed up the 
convergence rate of the minimization process. The spatial oscillations in the recovery 
time of the inflow boundary condition can be effectively eliminated by an penalty 
technique.

In modeling of cohesive sediment transport problems, one of the major difficulties 
is to determine the settling velocity, resuspension rate and the critical shear stresses for 
erosion and deposition. A variational inverse model is developed to estimate the settling 
velocity and resuspension constant. The settling velocity ws and resuspension constant 
Ma are assumed to be constant in the whole model domain. The inverse model is tested 
in an idealized 3-D estuary and the James River, a tributary of the Chesapeake Bay. 
Experimental results demonstrate that the variational inverse model can be used to 
identify the poorly known parameters in cohesive sediment transport modeling.

xvii
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1. INTRODUCTION

Variational inverse data assimilation is a process which combines information from 

field observations with equations of a dynamical model to yield better estimates of the 

model parameters and simultaneously improve the model state. It is based on the theory 

of optimal control of distributed parameters in partial differential equations. Variational 

inverse data assimilation methods have been widely used in meteorology forecast models 

for many years since Sasaki (1955, 1958, 1970) first introduced the idea to the area of 

meteorology, e.g., Hoffman (1986), Harland and O’Brien (1986), Talagrand and Courtier 

(1987), Derber (1985, 1987), Lewis and Derber (1985), Navon (1986), Navon et al. 

(1992), Le Dimet and Talagrand (1986), Zou et al. (1992a, 1993). The goal of data 

assimilation in meteorology is to obtain the best estimation of the initial condition for the 

weather forecasting models. Although data assimilation has long been used in numerical 

weather forecasting, it has only attracted attention in oceanography in recent years. There 

have been a great number of applications of variational data assimilation methods in 

oceanography coinciding with the development of advanced observation techniques 

(Wunch, 1978; Provost and Salmon, 1986; Tziperman and Thacker, 1989; Yu and 

O’Brien, 1991; Brasseur, 1991; Ezer ad Mellor, 1993; Schlitzer, 1993; Lardner and Das, 

1994). One of the ways that oceanography may differ from weather forecasting is that 

there is less emphasis on ocean forecasting. To a considerable extent, the role of data 

assimilation in the ocean may be more as a means of obtaining information about 

uncertain parameters and the deeper structure of ocean physics.

2
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The earliest sophisticated data assimilation models in oceanography could be found 

in Stommel and Schott’s (1977) beta spiral method for determining the absolute velocity 

field and Wunsch’s (1978) inverse method for determining the north Atlantic mean large- 

scale circulation. Wunsch (1985) demonstrated that the interpretation of the solution to 

an underdetermined problem is possible if inverse procedures are applied. In his study, 

the flow fields and mixing rates from chemical tracer distributions in an ideal rectangular 

channel were determined. McIntosh and Veronis (1993) also showed that mass 

conservation equations can be inverted to determine the large scale steady-state ocean 

flow field from the known tracer distributions by using inverse methods. Brasseur 

(1991) reconstructed the continuous fields of the general circulation using a variational 

inverse model based on the local measurement such as CTD profiles. Horizontal 

distributions of temperature, salinity, nutrients, chlorophyll and other chemical tracers, as 

well as the horizontal transport of water are constructed by using synoptic data. A 

variational data assimilation formalism for fitting dynamic forecast models to data was 

described by Thacker and Long (1988). It showed how surface elevation and wind stress 

observations might be used to recover the model state. Thacker and Long discussed 

whether the meager synoptic observations are sufficient to determine the fit and concluded 

that observational systems must be designed so that every event is sampled somewhere 

in time and such widespread coverage of the oceans requires a data collection system 

which relies heavily on satellites. Hurlburt (1986) used a two-active layer, free surface 

primitive equation model on a |3-plane to investigate the dynamic transfer of surface to 

subsurface information. Perfect altimeter data were simulated by the free surface of the
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two layer model. The results showed that the maximum update interval that provided 

success was about half the shortest major time scale in the model. Provost and Salmon 

(1986) presented a variational technique for estimating the three-dimensional field of 

geostrophic velocity from hydrographic station data (temperature and salinity). They 

determined the smoothest velocity field which is consistent with the data and the selected 

prescribed misfits. These misfits represent errors in the observations and in the 

approximated dynamical constraints. The admission of the errors necessitates the choice 

of weights. By varying the misfits relative to one another in their respective admissible 

ranges, the full envelope of physically plausible estimates of geostrophic flow is explored. 

Smedstad and O’Brien (1991) developed a variational data assimilation and parameter 

estimation method for a reduced gravity model applied to the equatorial Pacific Ocean. 

In their model, the phase speed is used as a controlled parameter and an optimal spatial 

structure giving the best fit of the model prediction to the observation data is determined. 

Marshall (1985) used estimation theory to assimilate simulated data from satellite 

altimetry into an ocean model and improve the geoid. Using altimeter observations of 

the ocean surface, Webb and Moor (1986) investigated projection methods of estimation 

theory to determine the deeper structure of the ocean. The result of their study was that 

the determination of the deeper structure of the ocean was limited by the phase separation 

that develops over each assimilation cycle between modes of the ocean with the same 

horizontal wave number but differing vertical structure. Malanotte-Rizzoli and Holland 

(1986) used a quasi-geostrophic general circulation model to investigate the effect of data 

insertion into a numerical model, and also demonstrated how the dynamics spread the
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inserted information to different regions. Malanotte-Rizzoli and Holland (1988) extended 

their results from the 1986 paper to the transient eddy-resolving case. It is shown that 

in the transient case a single data section is very ineffective to drive the model towards 

the reference ocean over time scales of about 100 days. Derber and Rosati (1989) 

developed a global oceanic data assimilation system for use in initializing coupled ocean- 

atmosphere general circulation models. Data of conventional sea surface temperature 

observations and vertical temperature profiles are inserted into the model continuously by 

updating the model’s temperature solution every timestep. Schroter and Wunsch (1986) 

studied the effect of observational errors in the driving of the models. From their 

algorithm it is possible to calculate the qualitative sensitivity of the objective function to 

change in the data errors and to find an optimization technique capable of dealing with 

data uncertainty. In the paper by Thacker (1988), the process of fitting a model to 

inadequate data is discussed and results show that for the simple three wave model 

(Thacker and Long, 1988), a reasonable fit can be obtained even if the number of 

observations is less than the number of the degrees of freedom of the model. A three- 

dimensional data assimilation scheme is developed and tested using Geosat altimeter data 

and the Princeton Ocean Model (POM) in the Gulf Stream region (Ezer & Mellor, 1993). 

The assimilation scheme is based on an optimal interpolation approach in which data 

along satellite tracks are continuously interpolated into the model grid and assimilated 

with model prognostic fields. Experiments showed that at sea surface, the error of 

temperature anomalies is greatly reduced due to the assimilation of SST (Sea Surface 

Temperature) and deeper than 100 m, the error is reduced due to the assimilation of SSH
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(Sea Surface Height).

Even though numerical general circulation models (GCM) have become quite 

sophisticated in recent years, many parameters for the models are still poorly known, such 

as eddy-mixing coefficients, surface forcing by heat and momentum fluxes, and boundary 

tracer fluxes. Recently, there have been some developments in the variational inverse 

data assimilation in general circulation models which show that inverse methods can 

successfully improve the model state and reduce the errors of the model outputs from the 

observations (Tziperman and Thacker, 1989; Marotzke and Wunsch, 1993; Tziperman, 

et al., 1992a & 1992b). Yu and O’Brien (1991) used the adjoint method to estimate the 

vertical eddy viscosity and wind stress drag coefficient from data in a wind-forced Ekman 

layer. Schroter (1989) developed a simple algorithm (adjoint method) to reduce a chosen 

cost function toward a smaller value that nevertheless might not be a minimum. It was 

shown that the adjoint method could be used to provide sensitivity analysis for 

complicated, time dependent non-linear models. Schlitzer (1993) developed an adjoint 

formalism to obtain the mean, large scale ocean circulation together with coefficients of 

iso- and diapycnal mixing and air-sea heat and freshwater fluxes based on the adjoint 

formalism to assimilate large sets of hydrographic data into the model. In his model, the 

flow fields, air-sea fluxes and mixing coefficients are forced to reproduce the observed 

distribution of temperature and salinity, and also the vertical velocity shear of the 

horizontal flows is required to be close to the vertical shear of the initial geostrophic 

profile. The optimal model solution is obtained iteratively starting with geostrophic 

horizontal flows which are calculated from the initial guess of dynamic heights. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



method is a new approach to the classical problem of determining the reference velocity 

left unknown by pure geostrophic calculations. Moore (1991) applied the adjoint data 

assimilation method in a quasi-geostrophic (QG) open-ocean model of the Gulf Stream 

region to determine the initial condition. It is shown that the adjoint data assimilation 

scheme has the ability to correct for large error in the speed and position of the Gulf 

Stream jet when simulated AXBT and satellite altimeter observations are assimilated into 

the QG model.

In contrast to numerous applications of variational inverse methods in meteorology 

and the problem of re-constructing large scale oceanic mean circulation patterns, there 

are not many applications of inverse methods in estuarine and coastal hydrodynamic 

models. Bennett and McIntosh (1982) used a weighted variational method in the 

investigation of tidal motion. Their results show that the choice of data weights is of 

great importance. Panchang and O’Brien (1988) determined friction factors and water 

depth in tidal channels in hydraulic model using adjoint method. Das and Lardner (1991) 

estimated parameters in a two-dimensional numerical tidal model by assimilation of 

periodic tidal data. The parameters to be estimated are bottom friction coefficient and 

water depth which are assumed to be spatially dependent. It is shown that a satisfactory 

numerical minimization can be completed using a quasi-Newton algorithm or the 

truncated Newton algorithm. Panchang and Richardson (1993) used adjoint inverse 

methods to estimate the vertical eddy viscosity in a three-dimensional coastal circulation 

model. The cost function they constructed consists of two terms: one describes the misfit 

between the model results and available data and the other measures the variance of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



eddy viscosity with depth. The later term is introduced with a view to eliminate the 

instabilities commonly associated with inverse methods. Reviews of variational data 

assimilation in meteorology and oceanography have been presented by Le Dimet and 

Navon (1988), Ghil and Malanotte-Rizzoli (1991) and Bennett (1992).

To date, very few applications have been directed towards to constructing 

Lagrangian mean velocity and many other model parameters in coastal and estuarine 

transport problems. The objective of this study is to develop variational inverse schemes 

for parameter identification for three different types of transport problems: 1) the tracer 

inverse for determining the Lagrangian mean transport velocity in a long-term advection- 

diffusion transport model; 2) determination of inflow salinity open boundary condition in 

an intra-tidal salinity transport model and 3) determination of settling velocity and 

resuspension rate for a cohesive sediment transport problem. The structure of the 

dissertation is arranged as follows. The generic inverse problem for transport models is 

described in Chapter 2. The tracer inverse problem for Lagrangian mean transport 

velocity is presented in Chapter 3. The determination of inflow salinity open boundary 

condition and the parameter estimation in cohesive sediment transport problem are 

investigated in Chapter 4 and Chapter 5, respectively. Summary and future studies are 

given in Chapter 6.
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2. THE GENERIC INVERSE PROBLEM 

FOR TRANSPORT MODELS

In transport problems, the tracer field is constrained to satisfy the transport 

equation and the transport flow field is subject to the mass conservation constraint. The 

intra-tidal biogeochemical transport equation for a conservative tracer C, with settling 

velocity wsi can be described by a Reynold’s averaged advection-diffusion equation (in 

horizontal curvilinear-orthogonal and vertical sigma stretched coordinates):

dt (mHCi ) +dx (myHuCi ) +dy {mxHvCi ) +dz (mwCi )

+dj{M-1D £ zCL)*a:(mKs C1) *m q l

where C, represents the concentration of type i tracer, Q, represents the rate of source or 

sink terms. mx and my are the coordinate scale factors and m=m/ny. H=C,+h is the water 

column depth (£ is the free surface elevation and h is the still water depth), u, v and w 

are three components of the instantaneous Eulerian velocity field. DH and Dv are the 

horizontal and vertical turbulent diffusivities, respectively. The velocity field (u, v, w) 

must satisfy the continuity equation:

dt (mH) +0* (ittyHu) +dy {m jlv) +dz (mw) =0 (2)

The governing equation (1) is also subject to tracer boundary conditions and initial 

conditions if problems are transient.

In order to model transport processes in estuarine and coastal waters correctly, the

9
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following information should be provided: 1) hydrodynamics (i.e., transport flow field); 

2) initial/boundary conditions and 3) model parameters, such as DH, Dv , wsi and Q{. In 

an intra-tidal transport model, the transport flow field («, v , w ) and diffusivities (Dw, Dv) 

generally can be obtained from outputs of a hydrodynamic model and turbulence closure 

model in the same modeling domain. However, the input of boundary conditions and 

model parameters strongly rely on field observations, previous knowledge and laboratory 

experiments. Poorly known parameters may vary over a wide range in real applications 

for different modeling domains. If (u, v, w), DH and Dv are all known, then with the 

information of a single type tracer C, , we can determine the tracer open boundary 

conditions by variational inverse methods with Eq. (1). For cohesive sediment transport 

problems, the poorly known parameters are settling velocity wsi , erosion constant M0, 

critical shear stresses for deposition and for erosion xcr Theoretically, wsi can vary 

in the whole spatial domain, i.e., every grid cell in horizontal and vertical, while M0, xcd 

and Xcr can vary at every horizontal grid cell. In order to determine a unique solution, 

the number of independent observation of tracer C, must be equal to or greater than the 

number of parameters to be estimated (Gill et al., 1981; Thacker, 1988). So if wsi varies 

in every grid cell, then observations of C, at every grid cell are required to determine wsi. 

To determine either one of M0, xcd and xcn the number of observations of Cy should be 

equal to or greater than the number of horizontal grid cells. Apparently, if , M0, xcd 

and xcr are all spatially (grid cell) dependent, the problem of estimation of these four 

parameters at the same time will become underdetermined because the number of total 

sediment observations is always less than the number of parameters. However, for
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constant or regionally dependent ws i, M# xcd and xcr, it is possible to determine all of 

the four parameters at the same time with limited sediment observations.

In an intra-tidal transport model (a, v, w), DH and Dv can be provided by a 

hydrodynamic model and turbulent closure model, but in an inter-tidal transport model, 

which has a time scale of several tidal cycles or longer, the effective Lagrangian mean 

transport flow field (un, vm, w j and mean diffusivities <DH> and <DV> are still not well 

known (see Chapter 3). As one considers a long-term transport problem for a neutral 

buoyant tracer C ,, then if the effective Lagrangian mean transport flow field (uw vm, w j  

is known, observations of one tracer C, (i=l) will be sufficient to determine either one 

of <Dh> and <DV>, or observations of two different tracer C, 0=1,2) will determine both 

<Dh> and <DV> at the same time. If <DH> and <DV> are known, then to estimate a 3-D 

effective Lagrangian mean transport flow field, observations of two different tracer are 

required since the three velocity components um, vm and wm must satisfy the continuity 

equation (Eq. (11)), which provides one more dynamic constraint to the inverse problem. 

For a 2-D problem, observations of one tracer are enough to determine the long-term 

mean transport flow field.
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3. THE TRACER INVERSE PROBLEM

3.1 Introduction

In coastal and estuarine zones, the spectrum of flow generally consists of a wide 

range of time scale components, from seconds (high frequency turbulent flow) to days 

(tidal current), and even to months (low frequency flow). Even though all of these 

different time scale processes are present in the coastal and estuarine waters, the long 

term low frequency velocity field or residual current usually plays the most important role 

in the biogeochemical transport processes in coastal and estuarine zones since 

biogeochemical processes generally take place over several tidal cycles or longer. 

However, it is very difficult to qualify residual currents and long-term transport due to 

the fact that the residual variables are the results of nonlinear interaction of tidal variables 

and are not directly measurable. Nearly all field results of residual currents are derived 

from field observations by applying a low pass filter. So numerical modeling of long­

term biogeochemical transport has been attracting the interest of coastal physical 

oceanographers in recent years in response to increasing demands for the optimized 

management of resources in the marine ecosystem. In addition to providing an advective 

transport field for long-term transport modeling, the Lagrangian mean velocity may also 

provides insight into the net transport patterns in the region of interest. In order to drive 

the long-term transport model, the effective long-term transport flow field must be known. 

In recent years, the concept of Lagrangian mean velocity, which is defined as the average 

of the velocity of an identified water particle over a long time span, has been used to

12
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study the long-term transport problems in estuarine and coastal waters (Hamrick, 1990, 

1994; Cheng & Casulli, 1982, 1992 and Feng, et al., 1986a, 1986b). However, the 

difficulty faced is that the model equations are constructed in the Eulerian form and all 

the numerical variables directly solved from the model equations are the Eulerian 

variables. Therefore, a linkage (or transfer formalism) between the Eulerian mean 

velocity and the Lagrangian mean velocity must be established. Many studies have 

attempted to seek the analytical solutions for the Lagrangian mean velocity as a function 

of the Eulerian variables using perturbation methods. The pioneering work on this 

problem was done by Longuet-Higgins (1969). He showed that the Lagrangian mean 

velocity can be expressed as the sum of the Eulerian mean velocity and the Stokes’ drift. 

More detailed analytical extensions to this work have been reported (Zimmerman, 1979; 

Cheng & Casulli, 1982; Feng et al., 1986a). Zimmerman (1979) pointed out that 

analytical solutions may become questionable under moderately nonlinear or strongly 

nonlinear dynamic conditions due to the convergent restriction of the expansion of the 

Taylor series in perturbation approaches. Zimmerman (1979) and Cheng and Casulli 

(1982) also pointed out that the Lagrangian mean velocity is a function of tidal phase. 

Using the perturbation method, Feng et al. (1986a) showed that the first-order truncation 

error of the approximation is a so-called Lagrangian drift term which is dependent on 

phase. Under the weakly nonlinear approximation, Feng et al. (1986b) also showed that 

the first-order tidally-averaged transport equation for a conservative solute is a pure 

convective equation, in which the flow field is the first order Lagrangian mean velocity, 

which is the same as the mass transport velocity given by Longuet-Higgins (1969).
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Apparently, under the weakly nonlinear approximation, the first order Lagrangian mean 

velocity or mean mass transport velocity is independent of tidal phase, and it is the flow 

field which has a direct impact on the long term transport processes.

In moderately nonlinear or strongly nonlinear cases, the Lagrangian mean velocity 

strongly depends on the tidal phase because the time-dependent Lagrangian drift term 

becomes comparably large. In this case the Lagrangian mean velocity becomes 

questionable (Zimmerman, 1979; Cheng & Casulli, 1982, 1986 and Hamrick, 1994). 

Cheng and Casulli (1992) presented a new definition of Lagrangian mean velocity without 

invoking the weakly nonlinear approximation. They derived a general governing inter­

tidal transport equation for conservative solute based on such a definition of Lagrangian 

mean velocity. This governing inter-tidal transport equation is a convection-dispersion 

equation in which the convective velocity is Lagrangian mean velocity and the inter-tidal 

dispersion coefficient is defined by a dispersion patch. The mean Lagrangian velocity and 

the inter-tidal dispersion coefficient are determined numerically. However, in strongly 

nonlinear flows, the dispersion patch can be highly distorted and the proposed Lagrangian 

mean velocity and governing inter-tidal transport equation may also become questionable. 

Hamrick (1994) defined an exact averaged Lagrangian mean velocity which is the average 

of a number of exact Lagrangian mean velocities at different phases over a tidal cycle. 

But such an exact averaged Lagrangian mean velocity may also not satisfy the continuity 

equation. Apparently, a time dependent Lagrangian mean velocity field is not the true 

flow field representing long term transport processes, hence it is not suitable to be used 

to describe the long term transport problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

To date, most of studies on the Lagrangian mean velocity invoke the weakly 

nonlinear approximation, and few publications have been found on moderately nonlinear 

or strongly nonlinear transport problems. The analytical solution for the Lagrangian mean 

velocity under moderately nonlinear or strongly nonlinear conditions does not exists. In 

order to describe the long-term transport process in any dynamical conditions, seeking 

numerical solutions of the Lagrangian mean velocity field without invoking weakly 

nonlinear approximation is highly desirable. In this chapter, a variational inverse 

parameter estimation scheme is developed to determine the Lagrangian mean transport 

field for a long-term transport model without invoking a weakly nonlinear approximation.

3.2 Governing Equation for The Long-Term Transport Problem

Considering the transport process for a single neutral buoyant tracer C (w=0), the 

intra-tidal biogeochemical transport equation (1) then is simplified as:

d„{mHC) +dx (myHuC) +dy (mxHvC) +dz (mwC)
(3)

= dJmH-1DvdzC)+mHQ

Horizontal turbulent diffusion has been omitted from Eq. (3) since it can be shown to be 

an order of magnitude less important than the horizontal advection.

There are two possible ways to get the solutions of inter-tidal transport of a 

conservative solute over a time span of several tidal periods or longer. A straightforward 

approach is the direct integration of the governing intra-tidal transport equation over a 

long period of time, such as several tidal cycles. The tidally-averaged solute 

concentration is derived from time-averaging the time dependent solution, or by applying
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a low pass filter to remove tidal fluctuations. An alternative approach is to apply a time- 

averaging operator (or low pass filter) directly to the intra-tidal governing equation to 

obtain the long-term transport equation. Under the weakly nonlinear approximation, the 

long-term biogeochemical transport equation can be derived from Eq. (3) by a multiple 

time scale perturbation analysis (Hamrick, 1990, 1994):

d t (m<H>< O )  +dx (m <H>um< O )  +d {mx<H>vm< 0 )  +dz {mwm< 0 )
(4)

= dJ(in<H-1><Dv>d2< O )  

where < > is a temporal average operator with an interval of one or several tidal cycles. 

(Mm,v)n,wm) are the components of the Lagrangian mean transport field which can be 

decomposed into the sum of Eulerian mean transport field and the curl of a vector 

potential A:

Itty K.H> Um my <H> Ugj. dyAz-dtAy

mx <H> v m * z=< mx <H> Vpj. d A x -d x A *

mw* mWgr

where (mct , v^-, w^) are the known Eulerian mean transport field defined by Cheng and 

Casulli (1982):

my <H> um, niy(<H><u>+<H'u'>)  '

mx<H>vBT ► =, mx {<H><v> + < H 'v '> ) ( 6 )

m<w>

with (u/, V, W, H') representing the zero mean tidal fluctuations defined by:

( u ' ,  v ' ,  w ' ,  H')  = (u,  v, w, H) -  (<u>, <v>, <w>, <H>) (7)

Given the time scale of salinity response to the fresh water inflow, the Lagrangian mean
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transport field, Eq.(5), and the long-term transport equation, Eq.(4), are valid in the time 

scale of weeks to months. Under the weakly-nonlinear approximation, the effective 

transport velocity (um,vm,w j  in Eq. (5) is equivalent to the mass transport velocity defined 

by Longuet-Higgins (1969) (also see Feng et al., 1986b and Hamrick, 1994) and the 

vector potential A is given by:

Taking a temporal average on Eq. (2), it can be shown that the Eulerian mean transport 

velocity satisfies the continuity equation:

dt (m<H>) +dx (my <H> u ^) +dy  (mx<H> v ^ )  +d2 (mwET) =0 (9)

Due to the nondivergent characteristic of the vector potential A, i.e.:

dx^iAz-dzAy) +dy (dzAx-dxAz) +dz (dxAy -dyAx) =0 ( 1 0 )

it can be easily shown that the Lagrangian mean transport velocity also satisfies the 

continuity equation by summing Eqs. (9) and (10):

dt (m<H>) +dx {my<H> um) +dy  (mx<H> v j  +dz {mwj  =0 (11)

Thus, the optimal Lagrangian mean transport velocity can be obtained by adjusting the 

vector potential A using a variational data assimilation technique. The mass conservation 

constraint is always satisfied during the evolution of the vector potential. The Eulerian 

advection field is considered as a known flow field, which can be calculated from a 

hydrodynamic model based on Eq. (6). It should be pointed out that the Eulerian mean
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transport can be poorly known, such as from field observations, and the total transport 

misfit will be corrected by the vector potential A.

3.3 Adjoint Model and Gradient of The Cost Function

The basic idea of variational inverse analysis is to seek the best fit solution of 

model equations by minimizing the cost function J  which consists of a weighted square 

sum of the differences between the observed data and the model counterparts over the 

entire time and spatial domains (Navon, 1986; Le Dimet and Navon, 1988):

J = \ ! J j - B (C) ”cobalT w lB  ( c) " C ^ d V d t  (12)

in which V represents the three-dimensional model region volume, T represents the total 

time interval, C’bs is the observed data and C is the model counterpart of C°bs, B is the 

observation operator which maps the model counterpart C to observation C°bs and W is 

a symmetric and positive weighing matrix. W generally can be calculated as the inverse 

of the error covariance matrix of observations, which reflects confidence in the quality 

of observed data. If all observations are independent and their errors are uncorrelated, 

then W should be diagonal. The best fit model state is defined by the model parameters, 

or initial and boundary conditions that correspond to a minimum of the cost function J  

measuring the misfit between observations and model counterparts. The minimization of 

the cost function J  (Eq(12)) is subject to a dynamical constraint F(C, V, t)=0, which is 

the dynamical model equation. For long-term steady-state problems, the cost function J  

is constructed in the spatial domain only:
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J= — j j i B (C) (C) - C ^ d v  ( 13 )

The problem of extracting the dynamical state from observations can be identified as the 

mathematical problem of seeking optimal solutions of initial or boundary conditions and 

model parameters (control variables) that minimize the cost function. There are various 

methods to seek the extremum of a function. Apparently, in order to determine the 

minimum of the cost function, it is necessary that the functional relationship of tracer C 

to the control variables be specified and the gradients of the cost function with respect 

to the control variables be given. The fact that the cost function is generally a 

complicated implicit function of control variables complicates the problem of minimizing 

the cost function. Adjoint methods, part of the optimal control of partial differential 

equations theory, which integrate model equations backward in time, are found to be the 

most powerful and efficient tools to obtain the gradients of the cost function with respect 

to the control variables (Schroter, 1989; Thacker, 1990; Yu and O’Brien, 1991; Schlitzer,

1993). The adjoint methods have been widely used in many studies in the fields of 

meteorology and oceanography to obtain the gradients of the cost function. In order to 

avoid repeated application of the chain rule when computing the gradient of the cost 

function, the gradient computation can be greatly simplified by the use of a Lagrange 

function constructed by appending the model equations to the cost function as dynamic 

constraints (Navon and deVilliers, 1983; Thacker, 1987; Ghil and Malanotte-Rizzoli, 

1991):
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L =

d t (m < H > <0)+ dx [ (my < H > u ^ + d y A ^ d ^ )  <C>]

• +d y  [ {wx<H> v Br+ azAJf- a jcA z ) < O  ] . d v k t * )

+ dz [ (m w BT+dxA y - d y A x ) <C>] -d z {m<H-1X D v>dz< O )

The Lagrange function Eq. (14) is a function of all model variables and the Lagrange 

multiplier. The dynamical constraint thus is enforced by introducing the Lagrange 

multipliers. The adjoint technique yields estimates of gradients of the cost function with 

respect to control variables, permitting use of local descent algorithms to seek a minimum 

cost function. Since the stationary point of the Lagrange function coincides with the 

minimum of the cost function, the problem of minimizing the cost function J  subject to 

a dynamic constraint of the model equation is now transformed into a problem of 

minimizing the unconstrained Lagrange function L. The governing equations for the best 

fit solution require that all first partial derivatives of the Lagrange function vanish 

(Thacker, 1987):

(15)

3< 0 L = 0 (16)

(17)

v=o (18)

dA L = 0 (19)

Differentiating L with respect to X, Eq. (15) simply recovers the model equation (3).
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Differentiating L with respect to <C>, Eq. (16) results in the adjoint equation:

-m<H>dtX -  (my<H> Ugr+dyAz-dgAy) dji.

-  {mx<H> vbt+6zAx - 0 xA2) dyk -  (mwBT+dxAy -dyAx) dzX ( 2 0 )

-3r (m<Jr1X.Dv>0xA) = - d c J = W « O 0ba- B « O ) )

Using Eq. (11), Eq. (20) can be further arranged into the following form:

- d t {m<H>X) -dx [ (my <H>uBr+3yA2- 6 zAy) X]

- d y [m x < H >vBT+6zAx-axAz) X] - d z [ {m w BT+dx A y - d y A x ) X] (21)

- d z (m<i/_1>< D ^> dz X ) =F/(< O 0b3~B ( < 0 ) )

From Eq. (20) we can solve for the Lagrange multiplier A, by integrating the equation 

backward in time. Note that the adjoint equation is always linear in the adjoint variables 

(Lagrange multipliers), even when the dynamical model is nonlinear. The signs of 

temporal and advection terms in the adjoint model Eq. (20) are reversed, which indicates 

the Lagrange multipliers serve to collect information from the data and to propagate it 

back to the initial time where it can be used to improve the initial guess of the vector 

potential A  that defines the best fit. On the other hand, the sign of the vertical diffusive 

term is not reversed.

In a long-term steady state problem, the gradients of the cost function J  are 

calculated in the spatial domain only. Therefore the gradients of the cost function J  with 

respect to the vector potential field can be derived from Eqs. (17-19):
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K J= [3y ( < o a zA ) - a z ( < o a yA)] ( 2 2 )

[a2( < o a xA) -a jr( < o a 2A)] (23)

9a z j =  idx « 0  dyX) -dy «C> dj . ) ] (24)

and combined into a simple vector form:

VAiJ=Vx ( < 0  VX) (25)

Thus, with solutions for the multiplier X and tracer concentration <C>, the gradients of 

the cost function with respect to A can be calculated by Eqs. (22-24).

Now the variational inverse method for inverting the tracer field to the Lagrangian 

mean velocity field in a conservative tracer long-term transport problem can be stated as: 

given the initial guess of the vector potential A, solve the forward problem Eq. (4); then 

adjust the vector potential A by assimilating the observation data into the transport model 

so as to reduce iteratively the misfit between observation data and the model counterparts 

to a minimum. The procedure for solving this system Eqs. (15, 21-24) includes the 

following steps:

1. Assume an initial guess for the vector potential A;

2. Calculate tracer distribution in the entire spatial domain from the long-term

transport model Eq. (4);

3. Construct the cost function J  and the adjoint model Eq. (21);

4. Integrate the adjoint model Eq. (21) backward in time to compute the Lagrange

multipliers and evaluate the gradients of the cost function by Eqs. (22-24);
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5. Conduct a line search to find the descent optimal step size and get an improved 

guess of the vector potential A;

6. Check whether the solution is convergent under a convergence criterion given 

by:

IIV<Jl /  flVJj £ e (26)

where is the gradient norm of the cost function at the initial iteration and e 

is the convergence criterionr;

7. If the convergence criterion is not satisfied, repeat from step 2 with the newly 

adjusted vector potential until the convergence criterion is reached.

3.4 Descent Algorithm

To find the minimum of the cost function, an optimization method must be applied 

after evaluating the gradients of the cost function. One of the most widely used methods 

for the minimization problem is the conjugate-gradient method (Navon and Legler, 1987; 

Thacker, 1990; Smedstad and O’Brien, 1991). The conjugate-gradient algorithm, which 

was initiated by Hestenes and Stieffel (1952), is an iterative method for unconstrained 

minimization of a function of many variables. During each iteration, a best adjustment 

is made to change each variable in order to produce the maximum reduction in the 

function. The descent direction is found by combining the information of the gradients 

of the function with the information from earlier integrations to generate a new search 

direction. The conjugate-gradient method has been successfully applied in meteorology 

for many years. Navon and Legler (1987) compared four different conjugate-gradient
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methods by applying them to two different meteorological problems and concluded that 

the most consistent and best performing method was the Shanno and Phua (1980) limited- 

memory quasi-Newton (LMQN) conjugate-gradient algorithm (also see Nocedal, 1980; 

Liu and Nocedal, 1989). Zou et al. (1993a) further compared four limited-memory quasi- 

Newton and two truncated Newton methods for a variety tested and real-life problems. 

They concluded that among the tested LMQN methods, the L-BFGS method (Limited 

Broyden-Fletcher-Goldfarb-Shanno method) has the best overall performance (also see 

Navon et al., 1992a, 1992b). It uses the fewest iterations and function calls, and it can 

be greatly improved by a simple scaling or a more accurate line search. The L-BFGS 

implementation will be used in the present study. The basic structure of the LMQN 

method for minimizing J(x) as a function of vector x  can be described as follows (Navon 

and Legler, 1987; Zou et al., 1993a):

1. Choose an initial guess x0 and approximation of inverse Hessian matrix H0 

which is taken as the identity matrix.

2. Compute the gradient of J(x0):

gr0=V<7U0) (27)

and set the descent direction to be:

(28)

3. Set the new vector xk+, for k=0,l,2,...,

x k*l=xk+akdk (29)

where a k is a positive step size.
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4. Check for restart.

5. Update the inverse Hessian matrix Hk. The most popular updating method is 

the BFGS formula:

where p k= xk+, - xk and yk= gk+I - gk . For problems with a large number of variables, it 

is often impossible to store an approximation to the inverse Hessian matrix. Shanno 

(1978a,b) developed an alternative method (limited-memory quasi-Newton method) in 

which Hk is set to be the identity matrix in Eq. (30) and thus the new descent direction 

is defined as:

6. Stop if the convergence criterion is satisfied:

where H | represents the gradient norm and e is the convergence criterion parameter.

3.5 Model Tests in An Idealized Vertical 2-D Estuary

3.5.1 Model Setup

The inverse model is tested in an idealized vertical two-dimensional semi-enclosed 

estuary. The geometry is shown in Fig. 1. The total length of the estuary is 85 km. The 

width and depth of the estuary are 1 km and 10 m, respectively, at the head and linearly

H ty ,P t+PtykH k
T

PkYk
Y k ^ t iPiPk 
PkYk ) PkYk

(30)

YkYk PkSrk+x_ Ykffk+i 
PkYk) PkYk PkYk
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increase to 3 km and 15 m, respectively, 80 km from the head and then become constant. 

There are 85 grid cells longitudinally and 10 layers vertically. In the vertical two- 

dimensional case, if the x-coordinate is chosen in the longitudinal direction and the z- 

coordinate upward, then the x- and z- components (z.e. Ax and Az) of the vector potential 

A  become zero and A  is reduced to a scalar function Ay, which is equivalent to a stream 

function. The Lagrangian mean velocity then can be expressed as:

n y <H>Um my <H> Ugj.

0 ► =  < 0 0

mWm rnWgr
. .

In the present experiment, the vector potential transport (the second term on the right 

hand side of Eq.(33)) is about 20 percent of the Eulerian mean transport (the first term 

on the right hand side of Eq.(33)).

The estuary is subject to the M2 tide forcing at the open boundary (mouth) and a 

constant freshwater discharge (200 m3/s) from the head. Salinity is used as the observed 

tracer. Three experiments are carried out: case I) basic model test for recovering vector 

potential with salinity observation available at every grid cell; case 2) test with reduced 

observation data; case 3) test with noisy observation data.

The Eulerian mean transport velocity (mct , , % )  can be calculated by (5) from

a real time hydrodynamic model. Under the weakly nonlinear approximation, the vector 

potential A can be computed based on Eq. (8). The mean vertical diffusivity <D̂ > can 

be obtained by taking the time average of the intratidal vertical diffusivity. The real time 

hydrodynamic model used in the present study is the three-dimensional Environmental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

Fluid Dynamic Computer Code (EFDC) developed at the Virginia Institute of Marine 

Science (Hamrick, 1992a; Hamrick and Wu, 1996). The model solves the three- 

dimensional primitive equations of motion for turbulent flow in a horizontal curvilinear- 

orthogonal and vertical sigma-stretched coordinate system. A second moment turbulent 

closure model (Mellor and Yamada, 1982; Galperin et a l, 1988) is used to relate the 

turbulent viscosity and diffusivity to the turbulence intensity and length scale. Transport 

equations for turbulence intensity and turbulence length scale as well as for salinity, 

temperature, suspended sediment and a dye tracer are solved. The horizontal momentum 

equations and continuity equations are solved using an external-internal mode splitting.

Before applying the adjoint model in the variational inverse data assimilation 

experiments, the correctness of the adjoint model must be first checked using a Taylor 

expansion (Navon et al., 1992):

J(A+aVJ)  =J(A) +ot (VJ) r (Vt7) +0(a2) (34)

where a  is a small scalar but not too close to machine zero. From (34) we have:

$  (tt) = J (A+aVJ) -J (A )  a l +Q(a ) ( 3 5 j
a ( V J ) r (VJ) 1 1

Therefore, function d>(a) is defined in terms of a, the cost function J  and the gradient of 

the cost function V/. If the gradient of the cost function is calculated correctly, the value 

of <h(a) should linearly approach 1 as a  decreases in a range covering several orders of 

magnitude. Table 1 shows that for a  between 10'8 to 10'15, a unit value of d>(oc) is found. 

Fig. 2 shows the variation of function d>(oc) with decreasing values of a. The residual of 

<I>(a) (i.e., Id>(a)-ll) is shown in Fig. 3. It can be seen that the residual approaches zero
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due to the characteristics of the Taylor expansion. The correctness of the gradient of the 

cost function is therefore verified and the adjoint model can be safely used in the 

variational inverse data assimilation experiments.

3.5.2 Basic Experiment

In the present study, the y-component of vector potential (Av) calculated from the 

hydrodynamic model based on Eq. (8), serves as the true solution. The Eulerian mean 

transport field is calculated by Eq. (6) while the Lagrangian mean transport field is 

calculated by Eq. (5) and is used to generate salinity observations for the twin 

experiments with the long-term transport model Eq. (4). The model was run for 100 

tidal cycles to insure a steady state. Distributions of Ay and the corresponding vector 

potential transport field along the estuary are shown in Figs. 4 and 5 respectively. The 

Eulerian mean transport and the Lagrangian mean transport are plotted in Figs. 6 and 7. 

We can see clearly that a two-layer mean circulation pattern is presented in both the 

Eulerian mean transport field (Fig. 6) and Lagrangian mean transport field (Fig. 7). In 

this experiment, the vector potential transport field (Fig. 5) is about 10 percent and 25 

percent of the Eulerian mean transport in the surface layer and in the bottom layer; 

respectively. The distribution of the observed salinity is given in Fig. 8. All the data are 

assumed to be perfect. The weighing matrix W is set to be unity because the observation 

data used in this study are generated by the same model and assumed to be perfect 

everywhere.

In this experiment, salinity observations are assumed to be available at every grid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

point. Since the locations of observation data and the model counterpart are identical, the 

observation operator B becomes unity. In order to test the capability of the scheme to 

recover the vector potential, we simply set the initial guess of Av equal to zero. The 

initial salinity distribution is shown in Fig. 9. The initial salinity misfit (i.e., the 

difference between Figs. 8 and 9) is shown in Fig. 10. The variations of the relative cost 

function \JttV\J<A (dashed line) and gradient norm 1V/„11/1V/0| (solid line) in terms 

of number of iterations are shown in Fig. 11. Convergence occurs after 30 iterations 

when the convergence criterion is set at 10'3 and about 250 iterations when the 

convergence criterion is 10'5. From Fig. 11 we can see that the minimization process 

converges fast in the first 50 iterations or so and then slows down thereafter. The 

estimated vector potential Ay is shown in Fig. 12. In order to see how accurate the 

estimated solution is, the error of the estimated Ay is calculated by the following formula:

Ej_ k-  — 1,k (36)
m ax [ (Ay ) J, *]

where (Av)£u and (A_v)ru denote the estimated and true solutions of Av at cell (I, k) 

respectively. / and k are the horizontal and vertical grid cell indices. The distribution of 

is given in Fig. 13. This figure shows that E,k is below 5% in the whole region. The 

maximum discrepancy is observed in the river head area. Fig. 14 shows the final salinity 

misfit. We can see that in the area corresponding to the maximum the salinity misfit 

is also a maximum. This feature can be explained by the importance of the advection due 

to the vector potential term on the transport process in this area. Pearlstein and Carpenter 

(1995) pointed out that in general cases when the advection term a-VC vanishes in some
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area, the observed scalar field provides no information about the velocity u. To 

demonstrate this, we calculated the portion of the advective transport contributed from the 

vector potential, i.e. (VxA)-VC. The result is shown in Fig. 15. Apparently, in the area 

close to the river head, (VxA)-VC approaches zero. Hence the observations in that area 

actually provides little information on Ay so that the inverse model does not work 

efficiently in this area. This may also be the reason that the convergence speed of the 

minimization process decreases.

3.5.3 Experiments with Sparse Data

In reality, it is impractical to have observation data available at every model grid 

cell. It is important to test the capability of the inverse scheme to recover the vector 

potential in cases where the number of the observed data values is less than the number 

of control variables to be estimated. The objective of this experiment is to examine 

whether the inverse model can still retrieve a reasonable solution in such a situation.

In this experiment, observation data are sampled at every five grid points in the 

horizontal and at every layer in the vertical. The recovered solution is given in Fig. 16. 

We can see that strong spatial oscillations occur in the solution. This indicates that the 

number of degrees of freedom of the problem is much greater than the number of the 

observations. One way to eliminate the spatial oscillations and recover the model 

dynamics in the case of inadequate data is to use bogus data to enforce the smoothness 

of the solution. The spatial smoothness can be implemented by appending a penalty term 

in the cost function to form a penalized cost function. The idea of the penalty method
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has been used in many applications. Thacker (1988) found that reasonable fits can be 

obtained by using smoothness penalties in a simple three-wave model when the number 

of real data is considerably less than the model degrees of freedom. Provost and Salmon 

(1986) penalized kinetic energy and entropy to insure smoothness in inverting 

hydrographic data. Zou et al. (1992a) showed that the penalty method can efficiently 

control gravity waves in a shallow water equations model. They also showed that the 

inclusion of penalty terms in the cost function can improve the conditioning of the 

Hessian of the cost function in the case of inadequate data by convexifying the cost 

functional, therefore leading to a unique solution. Lardner and Das (1994) pointed out 

a penalty term must be included in the cost function to smooth out the instabilities 

associated with noisy data when estimating the eddy viscosity in a quasi-three- 

dimensional numerical tidal and storm surge model.

In this study, the first order horizontal penalty on the y-component of vector 

potential (Av) is considered and the penalized cost function is constructed as:

Jp = J + - |p ( M y ) 2 0 7 )

where P is the penalty coefficient. The smoothness increases as P becomes larger. The 

gradient of the penalty cost function with respect to Av can be calculated by appending 

an additional term

P dxAy (38)

to the gradient of the nonpenalized cost function (Zou et al., 1993b; Lardner and Das,

1994).
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Experiments with different values of the penalty coefficient p were conducted. 

The final results showed that a satisfactory solution is obtained when P=0.1 (Fig. 17). 

A comparison among the results of estimated Av along the river at mid-level for different 

values of p is given in Fig. 18. We can see that P=0.01 does not provide enough 

smoothness while P=10 produces overly smooth results.

3.5.4 Experiments with Noisy Data

In reality, observations more or less contain noise. The purpose of this experiment 

is to test how well the model can retrieve the true solution with noisy data. The noisy 

data are generated by appending a set of normally distributed random data with zero mean 

and 0.15 standard deviation to the perfect data at every grid point. Results show that the 

recovered solution has strong spatial random oscillation and the main pattern is highly 

distorted (Fig. 19) even though observations are available at every grid point. So the 

vector potential is very sensitive to noise Similar to Section 3.5.3, a penalty term is also 

added to the nonpenalized cost function to smooth noisy oscillations. We found in this 

case, the penalty term has to be larger than that used in Section 3.5.3. The reasonable 

solution is shown in Fig. 20 with a penalty coefficient P=10. Experimental results along 

the river channel with different values of P are shown in Fig. 21. It can be seen that 

stronger penalty (P=10) is required to retrieve a reasonable result compared to the 

experiments for sparse data.

3.6 Some Discussions on the 3-D Problem
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Now let us look at the 3-D problem of inverting a tracer field into the Lagrangian 

mean transport velocity. In order to determine a unique 3-D Lagrangian mean transport 

field, as Pearlstein and Carpenter (1995) pointed out, one continuity equation and two 

transport equations for two different tracers are required. However, when decomposing 

the 3-D Lagrangian mean transport field by Eq. (5) and transforming the inverse problem 

into seeking the vector potential A, we lose the continuity constraint but still have three 

unknowns (Ax, Av, Az). This indicates that (A  ̂Av, Az) are actually not solely independent 

but related. Therefore, the problem for solving the 3-D vector potential A with two tracer 

transport equations becomes underdetermined. Another way to seek an unconstrained 

solution for the Lagrangian mean transport velocity is to consider an alternative form of 

the Helmholtz decomposition for the Lagrangian mean transport velocity involving the 

Eulerian mean transport field and two scalar functions Xf and x  (Aris, 1989):

my <H> um my <H> Ugj. dytydzx - d zy d yx

mx<H>vm ► = <mx<H>vKr >+< dz^dxx ~ d j f d zx

mw* mwzr d j f d yx~dy^dxx

It can be shown that the second term on the right hand side of Eq. (39) always satisfies 

the continuity equation:

dx (dy^ d zx~dz^dyx) +dy (dztydxx~dz\\fdzx) + dz {dxtydyx~dytydxx)  = 0  ( 4 0 )

Thus, the inverse problem for seeking the Lagrangian mean transport velocity subject to 

continuity constraint is transformed into seeking two unconstrained scalar functions \|/ and 

% with two transport equations:
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d t {m<H><Ci >) +dx [ (wy<H>u^+dytydzX~dztydyx) < Q > ]  

+dy [(mx<H> v ^ + d ^ x  ~ d j fd zx ) <C;>]“y l v"*x • et uz

+d2 \.{mwBr+dxydyx-dytydxx) <^>]  

= 3 Z (m <  J r x > <£>v> 0 2 < )

(41)

i=l, 2

The Lagrange function is constructed by introducing two sets of lagrange multipliers X, 

0= 1,2):

-azon<irl><.Dv>az<ci>) 
+ax [ {my <H> Usr+dylfdzX -azi|rayx) < cp ] 
+ayt (/nx<H> vCT+aẑ axx -a^djc) <cp] 
+ az [ (njwOT+axilrayx-ayT|rdxx) <Ci>]

d v d t
(42)

where the cost function 7 is defined as:

J = ± f  £  [B i (< C i > ) - < C f '> ] V i [B i « C i > ) -< C f" > ]d v  (43)
" ^2=1

The adjoint equations for \|/ and % can be obtained by substituting Eq. (42) into Eq. (16) 

and further rearranging using the relationship of Eq. (40):

-ax ( (tny< ^ u Br+ayilrazx -a zi|rayx) AJ 

-ay( (mx<H> vCT+aziiraxx - ^ a 2x) aj
-az( (w^a^a^-a^a^) â j 
■ (̂jiK ^x^a^i) =fyi (<cfs>-Bi (<ci>))

(44)

The gradients of the cost function J  with respect to \jr and % then can be derived in a 

similar way to (Ax, Ay, Az):
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[-3zx3y (<Ci > d J .L) +dy%dz « C i > d j .£)

-^ x 3 z (<Ci > dyX£) +dz%dx « C i > dyX£) (45>

-dy%dx « C i > dzX£) +dxxdy « C £> 8 J .J  ]

and

ax<7=T  [-ayi|fdz « c £> d^kj) +dzy ay(<ci> a^)
.1*1

(46)
- a zTjrax (< C i > 0 ^ )  +d3# d y « C i > dyX£)

-a^ay«ci> a^i) +aytax(<ci> a^) ]
Even though Eq. (41) provides a system for solving \j/ and % and thus gives the 

solution of the Lagrangian mean transport velocity by Eq. (39), the form of Eq. (41) 

indicates that \|/ and x are nonlinearly coupled, which might lead to an ill-conditioned 

problem and slow down the convergence rate in the minimization process. Another 

shortcoming of this approach is that if the two scalar gradients are parallel or one of the 

gradients vanishes in a region (i.e., VC,xVC2=0), the scalar measurements do not provide 

sufficient information to determine the transport velocity (Pearlstein and Carpenter, 1995). 

In other words, the distributions of two tracers should not be similar or homogeneous in 

order to provide sufficient information to retrieve the transport velocity. Unfortunately 

in estuarine systems, the gradient of candidates for the second tracer field, such as 

temperature and suspended sediment, in addition to having vertical boundary fluxes are 

generally parallel to that of salinity in a similar spatial manner. The major dissimilarity 

of the gradients of temperature or suspended sediment and salinity is in the very surface 

or the bottom layer due to the vertical boudnary conditions.
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3.7 Conclusions

In this Chapter, a variational data assimilation formalism for retrieving the 

effective transport flow field is developed with a long-term transport model. The 

variational inverse method is tested in a idealized vertical two-dimensional estuary in a 

series of twin experiments. A vector potential, which can be considered as the 

compensation of the Eulerian transport flow to the Lagrangian transport flow is introduced 

and chosen as the control variable in the inverse model. The long-term tracer distribution 

is used as observation data. We have demonstrated that the proposed inverse formalism 

can successfully retrieve the true solution for vector potential and well reproduce the 

tracer distribution. We also found that the inverse model works most efficiently wherever 

the advection transport is important in the tracer data distribution. In the area where 

advective transport is not important, the accuracy of the recovered solution will be 

decreased and the minimization convergence speed may strongly be affected.

Experiments with sparse data showed that the inverse model has the capability to 

retrieve very satisfactory solutions when a penalty term is introduced to smooth out the 

spatial oscillations. The impact of different values of the penalty coefficient on the 

retrieved solution is investigated. Experiments with sparse data are important because in 

reality we need to decide the data density required for the inverse model to work 

effectively. Experiments with noisy data showed that the inverse model is very sensitive 

to the accuracy of the data. However, reasonable solutions still can be retrieved when a 

stronger penalty term is considered. It is noteworthy that in reality, the choice of the 

penalty coefficient has to be made in a careful manner since in real applications, the true
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solution is actually unknown. Difficulties could be encountered in determining the best 

penalty coefficient in applications using field data.

For the 3-D problem, measurements of two different tracers are required to provide 

sufficient information to retrieve the Lagrangian mean transport velocity. However, the 

decomposition form (4) for the Lagrangian mean transport velocity leads to the inverse 

problem being underdetermined because there are three unknowns (A„ Ay, A.) but only 

two transport constraints. When an alternative Helmholtz decomposition (37) is 

considered, two scalars \jf and % are introduced to define a unique solution system. With 

this approach, which merits further investigation, difficulties may arise in the 

minimization process due to the fact that \|f and % are nonlinearly coupled in (39) and the 

distributions of two tracers are required to be different (VC,xVC2̂ 0).
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Table 1 Verification of the gradient 

of the cost function

a <fr(a)

[O'6 1.4794832852

lO'7 1.0482399890

I O'8 1.0050569468

io-9 1.0007380842

io-.° 1.0003061296

IO’11 1.0002623018

io-12 1.0002515838

IO’13 1.0001872050

IO'14 .9995498386

10-15 .9931691676

10-16 .9296191924

10-17 .2893962624
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Fig. 1 Schematic of the geometry of an idealized estuary
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Fig. 7 Distribution of the Lagrangian mean transport field (m/s)
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Fig. 8 Distribution of ’observed’ salinity (ppt)
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Fig. 9 Distribution of initial salinity (ppt)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

- 4

- 1.0

- 4 .5  
- 5 .8  
- 5 .5  
- 6 .0  
- 6 .5  
- 7 .0  
- 7 .5  
- 8 .0  
- 8 .5  
- 9 .0  
- 9 .5  ■ 
1 8 .0  ■ 
1 0 .5  ■

- .8 -Z
- 1.0

- 12 .0
-1 2 .5-13.0
-13 .5
■14.0
•14.5
1 5 .0
1 5 .5

0.8

Fig. 10 Initial salinity misfit (ppt) for basic model test (case 1)

— 10

TJ

500100 200
number of Iteration

400300

Fig. 11 Variations of and |V/yV70| in terms of number of iterations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

85.®

ited A, for case I

0

**  , * for case1
(E \ of esw°ate A’

,•  m bU tion o f cTt0t



46

0 . 0

o
•4.5,
•5.0l
•5.51
•6 .0
•6.5
•7.0

o-9 .0
-9.51

- 1 0 .0 o
- 1 2 .0
-12.5
-13.0
-13.5

-15.5
8 5 .04 2 .500

Fig. 14 Final salinity misfit (ppt) for case 1

.0000
.0000

Sgogfe.oooote-..00001
00003
.00002 00007

00004
.00002-r^ rrr??^ .00001

00004 -.00004-.00001 -.00003
.00005 .00001 -

-.00005
^-.0000

-.00004
■^-.00004

.00002- 1 0 .0
.00003

-.00004

.00003

0 .0 4 2 .5 0 5 .0

Fig. 15 Distribution of the advection term due to Ay

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rrr\\ss'0(1-



48

0.07

0.06

to 0.04

o 0.03
Q .

0.01

30 40 50 60
distance from river head (km)

Fig. 18 Comparisons of the final estimated Ay along the river at mid-level for case 2 
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4 DETERMINATION OF THE TRACER OPEN BOUNDARY CONDITION

4.1 Introduction

One of the critical factors affecting open-ocean or coastal and estuarine modeling 

is the specification of open boundary conditions. Improper specifications of open 

boundary conditions can result in ill-posed problems and such problems are notorious for 

primitive-equation models (Bennett, 1992). There have been some studies to seek better 

specifications of open boundary conditions by using a data assimilation approaches to 

improve model outputs. For example, Bennett and McIntyre (1982) applied a weighted 

variational formulation to retrieve the optimal boundary conditions in a open-ocean tidal 

model. Shulman and Lewis (1995) used a data assimilation approach to prescribe the 

open boundary conditions for barotropic models. In their studies, minimization is based 

on the change of flux of energy through the open boundary. Evensen (1993) used the 

extended Kalman filter to assimilate data in the quasi-geostrophic Ocean Model to achieve 

a well-posed boundary value problem, in which the stream function must be specified at 

all boundaries and the vorticity must be specified at the inflow boundaries. Seiler (1993) 

estimated the stream function and the relative vorticity at four open boundaries in a quasi- 

geostrophic ocean model for a mid-latitude jet by assimilating the Geosat data with the 

adjoint method. Lardner (1993) presented a variational inverse method to retrieve the 

optimal open boundary conditions for a numerical tidal model. Ten Brummerlhuis et al. 

(1993) applied data assimilation techniques to identify the open boundary conditions in 

shallow sea models. Zou et al., (1995) provided an efficient scheme for free boundary

51
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conditions for an ocean model. Spitz (1995) assimilated tide gauge data into a two- 

dimensional model of the Chesapeake Bay to optimally estimate the bottom drag 

coefficient, wind stress and surface elevation at the open boundary. Even though there 

are some studies on determining the optimal open boundary conditions by data 

assimilation approaches in oceanography, no studies have been performed on determining 

the tracer open boundary conditions in transport models. In this Chapter, a variational 

data assimilation scheme is developed to determine the open boundary conditions for 

salinity transport problem in tidal environment.

In an intra-tidal salinity transport model, the traditional treatment of the inflow 

salinity open boundary condition is to specify a maximum salinity boundary value Cbmax 

and a recovery time tR within which the salinity open boundary value recovers from a 

minimum value at slack water after ebb to its maximum value Cbmax (see Fig. 22). When 

observations at the open boundary are not available, estimations for Cbmax and tR must be 

made based on some previous knowledge or observations at other locations. The fine 

tuning of such open boundary conditions is generally made manually by using a trial-and- 

error approach through the comparison of field observations and model counterparts and 

could be very time consuming. In many cases such a rough estimation would not assure 

satisfactory model outputs. The objective of this Chapter is to develop a variational data 

assimilation scheme to estimate optimally the maximum salinity open boundary value 

Cbmax and the recovery time tR, so that the model best fits observations. Control of open 

conditions increases the dimension of the control variable by adding at every time step 

all the boundary grid-values of the variable. Thus the condition number of the Hessian
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of the cost function with respect to control variables increases considerably.

4.2 Model Description

The governing equation used here for the salinity transport process is the same as 

Eq. (3) with the source/sink Q equal to zero:

dt {mHC) +dx {iriyHuC) +d [mJIvC] +dz (mwC)
(47)

= dJjnH~1DvdzC)

For intra-tidal salinity transport problems, the inflow salinity open boundary condition can 

be specified as:

( Chmax CB)
t R (48)

cE+— E ( c - t B) tg* t £  t B+ t R

Cbmax tE+ tR^

where tE is the time at slackwater after ebb and CE is the boundary salinity at tE, tF is the 

time at slackwater after flood. During ebb (outflow), the boundary salinity value is 

determined by the advection of upstream salinity, i.e., the time varying term is balanced 

by the horizontal advection terms:

dt {mHC) +dx (myHuC) +dy {mJIvC) =0 (49)

Choosing the coordinate system such that the x-direction is towards the east and the y- 

direction is towards the north and assuming the transverse velocity at the open boundary 

is equal to zero, then for eastern or western open boundaries, the outflow salinity at the 

open boundary salinity is determined by:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

d t  (mHC) = - d x {myHuC) ( 5 0 )

Similarly, for northern or southern open boundaries, the outflow salinity is determined by:

d t {mHC) = - d y (mxHvC) ( 5 1 )

4.3 Adjoint Model And Gradient of The Cost Function

For the salinity open boundary condition problem, the cost function is defined in 

the spatial and temporal domains as shown in Eq. (12). The Lagrange function L function 

is defined by appending the model equation (Eq. (45)) to the cost function as a dynamic 

constraint:

L ( C , \ , P ) = J + f J X  ■
dt {mHC) +dx (myHuC) +dy {mxHvC) 

+dz (mwC) -d z {mH~xD j) z C)
dV dT  <5 2 >

where P represents the control variables to be estimated (Cbmax and tR). The adjoint model 

can be obtained by simply setting the derivative with respect to the model variable C 

equal to zero:

-d t {mHX) -dx {m^IuX) -d Am^HvX) -dz {mwX)
( 5 3 )

- d z (mH~xD j5zX) =W{ Cobs-C)

The Lagrange multiplier X can be solved by integrating the adjoint model Eq. (51)

backward in time. With the information for C and X we can calculate the gradient of the

cost function by setting dP L=0:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

d^ - - ^ L L x
dt {mHC) +dx {mJluC) +dy {mxHvC) ]

\d V d T  <5 4 > 
+dz (mwC) -dz (mH~1DvdzC) J

Since the inflow open boundary condition Eq. (48) enters the governing equation only 

from the advection terms, Eq. (54) can be simplified as:

dpJ= - d p f j  * [ dx (wyHuC) + dy {mJIvC) ] dV dT ; P= Cbaax, t ( 5 5 )
R

In numerical modeling, all the formulations are in discrete forms instead of 

continuous forms. In order to derive the formula for the gradients of the cost function 

with respect to Cbmax and tR, it is necessary to re-write Eq. (55) in a discrete form. In the 

present study, Cbmax and tR are allowed to vary at all grid cells across the open boundary 

but remain uniform vertically. We will use the eastern boundary as an example in the 

following discussion. Derivations of formulations for western, northern and southern 

open boundaries are similar. Assume there are NE grid cells across the eastern boundary 

and let LBE(i) (i=I,...,NE) denote the horizontal cell index of the eastern boundary. In 

an up-wind scheme, the discrete form for the advection in x-direction at interior grid cells 

next to the eastern open boundary grid cells during the period of flood ( <  0) is:

[ d x ( m y H C )  ] ^ g ( i )  _ l r k  = ( i t t y H u )  2 s B ( i )  , k  ( C b ) l b b u )  , k

- 0  . 5 y . ^ { m y H u )  L B E ( i ) - \ , k  + I (MyHu)  1b e U) -1, Jt[] pLSS(i)-2,*

+ [ ( n i y H u )  L B E { i ) -l,k - I ( i t t y H u )  ZBEU ) ^ L B E d )  -1,*} / i=l, . . . ,  NE

where Cb is defined by Eq. (48), k is the vertical grid index, and n is the nth time step. 

Assuming the integration of the forward model (Eq. (47)) in time consists of M  tidal
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cycles, then substituting Eq. (56) into Eq. (55) and replacing Cbmax by Eq. (48) we can 

obtain the gradients of J  with respect to Cbmax and tR at open boundary cell LBE(J):

M K
dctmxU)J ,s - 'E  "m=l

tg(m) +fcg(i) ,  . ,

S u v '“)W >4-V nr-
tF(m)
2! {XntyHll) ZBEd)

t=tB(m)

(57)

i= l,...

and

S  S  ( X n i y H l l )  L B E ( i )  {  ~ ~2 ]
m=X k=X C=tc(jn)  ̂ t R ( l )  J

[̂CbmaxU) -CE{m)] i i=l, . . . ,NE
(58)

In numerical modelling, tR actually is a discontinuous step-type variable instead of a 

continuous variable. The value of tR can only change by an interval of one time step M. 

The recovery time for the inflow salinity open boundary conditions in the numerical 

model is specified by the number of time steps which is defined by NR=rs /At. So the 

integer NR will be the control variable in the variational inverse procedure. Unfortunately, 

this causes difficulties in the minimization process because in the minimization algorithm 

all control variables are treated as real numbers. Further discussion on this issue will be 

followed in the next section.

4.4 Model Tests in An Idealized 3-D Estuary

4.4.1 Model Setup

The inverse model for the salinity open boundary problem is tested in an idealized
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3-D semi-enclosed estuary. The horizontal geometry is very similar to that of the 2-D 

estuary in the tracer inverse problem (see Fig. 1). The total length of the estuary is 100 

km. The estuary is 1 km wide at the head and 3 km wide at a distance of 80 km from 

the head and with the width remaining constant to the mouth. The water depth is 

specified such that the depth increases linearly from the head to 80 km from the head and 

then becomes constant. The cross-section profile of the water depth is assumed 

symmetric about the center of the channel and defined by the following exponential 

function:

h ( y ' )  = i2 e x p y ' e [ 0 , B o] ( 5 9 )

where y ' is the relative coordinate originated at the river side and across the channel; B0 

is the surface width of the channel; hc is the water depth at the center of the channel 

(y '=BJ2); hs is the water depth at both sides of the channel (y '=0 and Ba). Values used 

for the test are: h= 3 m and h=5 at the head of the estuary and h=  10 m and h= l5  m at 

the mouth. The x-coordinate origin is at the head of the estuary and directed seaward. 

The depth profiles at the head (x=0 km) and at the mouth (x=100 km) are:

h { y ' )  =5 e x p
"(•!)] '

y ' e [ 0 ,  B-] , x = 0 k m
( 6 0 )

and

h ( y ' )  =15  e x p y ' 6 [ 0 ,  B a] , x=ioo k m( 6 1 )

The profiles of Eqs. (60-61) are shown in Fig. 23(a&b). The depth profiles at any
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location between x=80 km and x=100 km (the mouth) are the same. The depth profiles

The geometry is shown in Fig. 24. There are 100 grid cells longitudinally, 5 cells 

laterally and 5 layers vertically. The horizontal grid is a curvilinear-orthogonal grid 

generated by the Grid Generating Preprocessor Code developed at VIMS. The physical 

horizontal grid map is shown in Fig. 25. A constant freshwater discharge (200 m3/s) is 

specified at the head and a single frequency semi-diurnal tide (M2) with an amplitude of 

0.3 m is applied at the eastern open boundary (mouth). Because the maximum width of 

the estuary is only 3 km, the Coriolis force is neglected in the hydrodynamic model. The 

hydrodynamic model and transport model were ran for 100 tidal cycles to assure that the 

model reaches equilibrium. The velocity field and spatial distribution of vertical 

diffusivity Dv for the last tidal cycle are saved as input for solving the inverse problem. 

The number of time steps for one tidal cycle (M2) is 180. Since the period of M2 tide is 

12.4206 (hour) = 745.236 (min), the time interval of one step is ^*=745.236/180=4.1402 

(min). In all the experiments discussed below, the forward transport model (Eq. (47)) is 

ran for 10 tidal cycles to generate salinity observations with the open boundary inflow 

salinity value set to Cbmax=30 ppt and the recovery time set to f*=82.804 min (NR=20 time 

steps) at all 5 open boundary grid cells. As mentioned in the preceding section, in the

at any location between x=0 km and x=80 km will be linearly interpolated by the profiles

at x=0 and x=80 km (Eqs. (60-61)):
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numerical model, the number of time steps NR (r^N ^r) specified for the recovery of the 

inflow salinity is used instead of the variable tR . Therefore NR will be the control

channel of the estuary and at cross section x=50 km at 4 different phases of the last tidal 

cycle are presented in Figs. 26 and 27. Observation data are sampled at five horizontal 

locations (x=50, 60, 70, 80 and 90 km) along the central axis of the estuary channel at 

the time when slackwater happens at the open boundary. Again, because the observations 

are generated by the same model, the weighting matrix W in this study is set to be unity 

at the sampling grid cells and zero at any other cells:

The total number of parameters to be estimated is 10, i.e., 5 salinity open boundary values 

(C6max) and 5 recovery times (tR) across the open boundary.

4.4.2 Scaling And Preconditioning

One of the main issues in variational data assimilation problems is the 

convergence rate during minimization processes. The rate is related to the Hessian 

matrix, which is defined as the second derivatives of the cost function with respect to the 

control variables. The shape of the cost surface is a function of the eigenvalues and 

eigenvectors of the Hessian matrix and the speed of convergence can be determined by 

the Hessian condition number which is defined as the ratio of its maximum and minimum 

eigenvalues (Thacker 1987; Tziperman and Thacker, 1989; Yang et al., 1995). A

variable in the minimization algorithm. The "observed" salinity distributions along the

1 a t  d a t a  c e l l s  

0 a t  o t h e r  c e l l s
(63)
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condition number equal to or close to unity means the cost function is spherical-shaped 

and the Hessian matrix is well-conditioned. When the Hessian matrix is well-conditioned, 

theoretically only one descent iteration is required to reach the minimum and all control 

variables are equally well-determined. In order for the minimization algorithm to work 

efficiently and converge rapidly, the Hessian matrix must be well-conditioned. 

Conversely, a very large condition number corresponds to the case of highly elliptical 

constant-cost contours and the problem is then ill-conditioned, which would result in an 

extremely slow convergence rate in the minimization process. To speed-up convergence 

in an ill-conditioned problem, preconditioning methods are often used. A simple 

preconditioning method is to transform control variables to a new set of unknowns so that 

the transformed Hessian matrix is better conditioned (Navon and de Villiers, 1983; 

Tziperman and Thacker, 1989; Courtier and Talagrand, 1990; Li et al., 1993, 1994; 

Navon et al., 1992; Zou and Holloway, 1995). However, for complicated problems, 

difficulties may be encountered in choosing proper scaling factors and in some cases even 

a simple scale transformation is not sufficient to improve the Hessian condition. 

Therefore, more sophisticated scaling methods will be needed to find preconditioning 

transformations (Gill et al., 1981; Thacker, 1987). Recent work on preconditioners is 

reviewed by Courtier et al. (1994) and Yang et al. (1996).

In the present problem, it was found that if the control variables and the gradients 

are not properly scaled, the minimization process hardly converges. As Navon et al. 

(1992) pointed out, in the minimization algorithm, the control variables should be scaled 

to similar magnitudes on the order of unity because within the optimization algorithm
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convergence tolerances and other criteria are based on an implicit definition of small and 

large. We choose to scale Chmia and NR by 1/30 and 1/20, respectively. The gradients 

of the cost function with respect to Cbmax and tR at the central cell (G3) are about 5 times 

greater than those at the side cell (G[ and Gs). This can be explained by the forms of 

Eqs. (55-56). The gradients at each cell are proportional to the total volume flux at that 

cell (m fluY um } and also depend on the magnitude of the Lagrange multiplier X. Because 

the volume flux at the center of the channel is the strongest due to the nature of the 

geometry, this also results in the largest X magnitudes when the driven force (W(C°bl-Q) 

in Eq. (53)) is located at the center of the channel. Also, the gradient with respect to 

Cbmax is about 2 orders of magnitude greater than that with respect to tR at all open 

boundary cells. In order to transform the gradients close to the same magnitude, we scale 

the gradient with respect to Cbmax by the scaling vector (0.01, 0.004, 0.002, 0.004, 0.01) 

and scale the gradient with respect to tR by the scaling vector (1, 0.4, 0.2, 0.4, 1) across 

the open boundary cells (G„ G2, G3, G4 and Gs). In all the experiments presented below, 

the scaling factors for control variables and for gradients remain the same.

4.4.3 Test with Initial Guess I

Twin experiments in the idealized 3-D estuary were carried out to test the inverse 

model. In the first experiment, we decrease Cbmax to 25 ppt and increase tR to 124.206 

min (Nr=30) at all 5 boundary grid cells and use these values as initial guesses. The 

initial salinity misfits at the end of the run at all the sampling locations are shown in 

Table 2 where k=i and k=5 represent the bottom layer and surface layer, respectively.
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The normalized cost function and gradient norm are plotted in Fig. 28. The final 

salinity misfits at sampling locations are given in Table 3. As we can see, even though 

the cost function is not reduced to zero, but the misfits are reduced to the order of 10"4 

ppt, which is acceptable. Since the Coriolis force is neglected, the flow field and the 

salinity distribution are symmetric about the central axis of the estuary. For this reason, 

we only plotted the recovering status of the salinity boundary values and recovery time 

at grid cell G„ G2, G3 in Figs. 31(a&b). From Fig. 29a we can see that Cbmax converges 

to the true solution at all open boundary grid cells. However, Fig. 29b shows some 

spatial fluctuations in the recovery time tR even though all the retrieved solutions tend to 

converge to the true solution. The main reason for such spatial fluctuations may be due 

to the way that minimization algorithm handles NR (tR). Every time a new set of Cbmax 

and Nr are estimated by the minimization algorithm, NR is a real number instead of an 

integer. Thus a rounding statement has to be made to convert NR output from the 

minimization algorithm to an integer. Such a treatment actually somewhat distorts the 

minimization process and may cause oscillations.

The spatial oscillations in tR ( N r)  can be eliminated by penalty techniques as was 

demonstrated in Chapter 3. Similar to Eq. (37), consider the following penalized cost 

function:

= J +\  Pi(3y CW )2 + 1  p2(aT t R)2 (64)

where y represents the direction along the open boundary; P, and P2 are penalty 

coefficients for Chmax and tR. respectively. The gradients of the penalized cost function
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with respect to Cbmax and tR. can be calculated by appending an additional term:

to the gradients of the nonpenalized cost function (Eqs. (57-58)). With penalty 

coefficients of pt=50 and p2= 10, the minimization process converges much faster than 

that without penalty (see Fig. 30). The cost function is reduced by 15 orders of 

magnitude which is close to machine zero. Both parameters converge to true values 

accurate to 6 digits within 10 iterations (Fig. 31). For use of penalty in cost functions see 

Zou et al. (1992) and Zou et al. (1993). The salinity final misfits at all sampling 

locations are equal to or less than order 10‘7 (Table 4).

4.4.4 Test with Initial Guess II

In this experiment we start with a different initial guess by increasing Cbmax to 35 

ppt and decreasing tR to 41.402 min (NR=10). The initial salinity misfits at the end of the 

run at all the sampling locations are shown in Table 5. Without penalty, the normalized 

cost function and gradient norm are plotted in Fig. 32 and the final salinity misfits are 

presented in Table 5. Variations of Cbmax and tR are shown in Fig. 33(a&b). Clearly both 

parameters tend to converge to the true values but again spatial oscillations are observed 

with tR and Cbmax over estimated at the center (G3) and under-estimated at the side (G,). 

With the penalty added to the cost function, using Pj=50 and (32=1, the minimization

(65)

and

( 66 )
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process converges much faster than that without the penalty (see Fig. 34) and all control 

variables converge to true values accurate to 6 digits within 15 iterations (Fig. 35). The 

final salinity misfits at all sampling locations are equal to or less than order 10** (Table 

7).

4.5 Conclusions And Future Studies

A variational inverse scheme for the inflow salinity open boundary problem is 

developed in this Chapter. The maximum inflow salinity value at the open boundary and 

the recovery time for the inflow salinity boundary condition are used as control variables 

in the minimization process. The inverse model is tested in an idealized 3-D semi­

enclosed estuary. A series of twin experiments were carried out to test the capability of 

the proposed inverse model for retrieving the optimal salinity open boundary conditions. 

Experimental results show that reasonable solutions can be retrieved when the control 

variables and the gradients of the cost function are properly scaled. However, spatial 

oscillations are observed in the solutions of the recovery time tR. This is likely due to the 

discontinuous characteristic of which distorts the minimization process. Further 

experiments showed that such spatial oscillations can be eliminated by a penalty method. 

As we pointed out in section 3.7, in real situations, the penalty method has to be used 

very carefully due to the fact that we don’t know how smooth the true solution should 

be. In the twin experiments, only the M2 tide is considered. However, since the 

activation of the inflow salinity open boundary condition is controled by the local flow 

directions, such a salinity open boundary condition can be used for multiple tidal
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constituents. The period of the validation of the salinity open boundary condition mainly 

depends on the time scale of the variations of freshwater discharge to the river.

Even though the twin experiments we presented in this Chapter demonstrate that 

the variational inverse method is a good tool to retrieve the optimal tracer open boundary 

conditions, there are still many issues related to this problem to be investigated and 

solved. In particularly, the following issues should be addressed in future studies:

1) Vertical varying inflow open boundary conditions. This is very important because 

stratification is common and significant in estuarine processes, due to the saltier sea water 

intruding landward near the bottom. In the present study, we assume the maximum 

inflow salinity value at the surface layer of the open boundary is the same as that at the 

bottom layer. Such an assumption actually implies that the water column at the open 

boundary is always well-mixed during the late stage of flood (inflow). Therefore, treating 

the salinity inflow open conditions at the surface layer and the bottom layer differently 

would be more realistic.

2) Because the recovery time tR is treated as a discontinuous step-type variable in the 

numerical model, oscillations occur in the minimization process. A smooth and 

continuous treatment for tR should be considered in the future studies.

3) Sensitivity study on data at different locations and different tidal phases. In the 

present study, the observation data are located at the central axis of the estuary at slack 

waters (after both ebb and flood). Experiments are necessary to examine how different 

data locations and tidal phases will affect the retrieved solutions.

4) Sensitivity study on number of data in space and time. More experiments should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

be conducted to determine the minimum number of observations in time and space 

required to retrieve the true solutions.

5) Sensitivity study on noisy data. In reality, the assumption of no noise in 

observations will not be valid. Real field observations always contains noise due to many 

complicated mechanisms in estuarine environments as well as instrument characteristics. 

Therefore it is necessary to test the capability of the inverse model to recover the optimal 

model state based on noisy observations.
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Table 2. Initial salinity misfit (initial guess I)

67

Index 1=50 1=60 1=70 1=80 1=90

k=l -.2815E-01 -.1970E+00 -.7622E+00 -.1900E+01 -.3471E+01

k=2 -.3545E-01 -.2367E+00 -.8808E+00 -.1948E+01 -.3478E+01

k=3 -.2229E-01 -.1541E+00 -.6432E+00 -.1582E+01 -.3002E+01

k=4 -.6887E-02 -.6242E-01 -.2944E+00 -.8648E+00 -.2022E+01

k=5 -.2075E-02 -.2083E-01 -.1204E+00 -.4300E+00 -.1053E+01

Table 3. Final salinity misfit without penalty (initial guess I)

Index 1=50 1=60 1=70 1=80 1=90

k=l .8767E-06 .2308E-04 .1589E-03 .4583E-03 .3271E-03

k=2 .1553E-05 .3148E-04 .1971E-03 .5001E-03 .3573E-03

k=3 .7379E-06 .1761E-04 .1326E-03 .4132E-03 .9474E-04

k=4 .8906E-07 .5345E-05 .5025E-04 .2096E-03 . 1427E-03

k=5 -.2107E-07 .1020E-05 .1547E-04 .9058E-04 .1645E-03

Table 4. Final salinity misfit with penalty (initial guess I)

Index 1=50 1=60 1=70 1=80 1=90

k=l .7690E-08 -.2657E-07 -.3651E-06 -.1198E-05 .7672E-07

k=2 .7339E-08 -.4640E-07 -.4656E-06 -.1292E-05 -.1688E-07

k=3 .5957E-08 -.1831E-07 -.2996E-06 -.1068E-05 -.8613E-06

k=4 .2737E-08 .6377E-09 -.9809E-07 -.5309E-06 -.1876E-05

k=5 .1191E-08 .4025E-08 -.1986E-07 -.2045E-06 -.8075E-06
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Table 5. Initial salinity misfit (initial guess II)

68

Index 1=50 1=60 1=70 1=80 1=90

k=l .3062E-01 .2121E+00 .8115E+00 .1993E+01 .3588E+01

k=2 .3852E-01 .2547E+00 .9354E+00 .2041E+01 .3595E+01

k=3 .2425E-01 .1662E+00 .6852E+00 .1663E+01 .3117E+01

k=4 .7502E-02 .6754E-01 .3153E+00 .9144E+00 .2117E+01

k=5 .2264E-02 .2262E-01 . 1297E+00 .4580E+00 .1109E+01

Table 6. Final salinity misfit without penalty (initial guess II)

Index 1=50 1=60 1=70 1=80 1=90

k=l .1252E-03 .4300E-03 .2352E-03 -.1069E-02 .1022E-01

k=2 .1445E-03 .4377E-03 .3613E-04 -.1404E-02 .9781E-02

k=3 .9843E-04 .3502E-03 .2466E-03 -.1224E-02 .2899E-02

k=4 .3550E-04 .1864E-03 .3258E-03 -.3796E-03 -.5523E-02

k=5 .1281E-04 .8343E-04 .2441E-03 .1433E-03 -.1679E-02

Table 7. Final salinity misfit with penalty (initial guess II)

Index 1=50 1=60 1=70 1=80 1=90

k=l .2232E-09 .2827E-07 .1943E-06 .5729E-06 .2920E-06

k=2 .1066E-08 .3869E-07 .2384E-06 .6080E-06 .3283E-06

k=3 .2196E-09 .2128E-07 .1612E-06 .4999E-06 .5277E-06

k=4 -.2357E-09 .5959E-08 .6118E-07 .2566E-06 .7759E-06

k=5 -.1959E-09 .7173E-09 .1842E-07 .1089E-06 .3548E-06
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Fig. 22 Specification of salinity open boundary condition
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Fresh Water

Fig. 24 Schematic of a 3-D idealized estuary
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Fig. 26 “Observed” salinity distribution (ppt) at four tidal phases (T/4, T/2, 3T/4 and

T) along the axis of the estuary channel
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Fig. 27 “Observed” salinity distribution (ppt) at four tidal phases (T/4, T/2, 3T/4 and

T) at the cross section 1=50
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at grid cell Gt (dashed), G2 (dotted) and G3 (solid)
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5. PARAMETER ESTIMATION IN A COHESIVE 

SEDIMENT TRANSPORT MODEL

5.1 Introduction

Suspended sediment transport is one of the most important processes in estuarine 

and coastal waters. Suspended sediment is discharged into estuarine and coastal waters 

by river runoff or resuspended to the water column from the bed. Particles greater than 

about 60 pm in diameter are considered to be coarse grained sediment, and less than 60 

pm are referred as fine grained sediment. Particles with grain size less than 2 pm are 

mainly composed of clay minerals. Sediment becomes cohesive when it contains more 

than 10 percent of clay by weight because clay minerals are platelike and have ionic 

charges on their surface which cause the particles to interact electronically and stick 

together. Flocculation happens when the cohesive sediment discharged from the river 

meets the saline water and the effective weight of the particles increases. Flocculation 

is normally related to suspended sediment concentration and shear stresses in the water 

column. Fine grained sediment moves into the water column as a suspended load. The 

transport process of cohesive sediment are affected by many dynamic processes such as 

advection, diffusion, gravitational settling, deposition, erosion, flocculation and 

consolidation. The distribution pattern of suspended sediment is mainly controlled by the 

mean circulation pattern in estuaries.

For many years, scientists have been trying to understand the mechanisms of 

suspended sediment transport and forecast future sedimentation in estuarine environments

83
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through field measurements, laboratory experiments, analytical studies and numerical 

models. For the purpose of sedimentation prediction, numerical modeling is by far the 

most useful tool since it can provide spatial and temporal distributions of suspended 

sediment concentration in the whole model domain. An early mathematical model of 

suspended sediment transport was developed by Odd and Owen (1972). They used a one­

dimensional and two-layer model to simulate the cohesive sediment movement in the 

Thames Estuary. Following Odd and Owen’s (1972) work, Ariathurai and Krone (1976) 

presented a horizontal two-dimensional finite element model for cohesive sediment 

transport and tested the model in a hypothetical harbor. Kuo et al. (1978) studied the 

sediment movement in the turbidity maximum of the Rappahannock River by a vertical 

two-dimensional model. Hayter and Mehta (1986) developed a two-dimensional, depth- 

averaged sediment transport model and verified the model against laboratory experiments 

performed in a recirculating flume. Satisfactory agreement between model prediction and 

laboratory measurement was obtained. The model was also applied to study the 

sedimentation in a harbor in Florida. Other early model studies of cohesive sediment 

transport were conducted by Owen (1977), Festa and Hansen (1978), Onish (1981) and 

Hayter (1983). Three-dimensional numerical modeling of sediment transport has 

developed rapidly in recent years. For example, a comprehensive sediment dispersion 

model which is coupled with a boundary layer model, an erosion model, a deposition 

model and a flocculation model was described by Sheng (1986). Nicholson and 

O’Connor (1986) developed a three-dimensional mathematical model simulating the 

transport of cohesive sediment and applied the model to a harbor siltation problem. The
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effects of deposition, erosion, flocculation and consolidation are incorporated in their 

model. Cancino and Neves (1994) used a 3-D cohesive sediment transport model to 

simulate the suspended sediment distribution in a mesotidal estuary. Their model 

included the effects of flocculation, deposition and erosion processes. A series of model 

experiments were conducted to study the model sensitivity to important model parameters. 

For a recent review of the state of the art in sediment transport modeling, see van Rijn 

(1989).

Difficulties in measuring model parameters for deposition and erosion processes 

from both laboratory experiments and field observations still prevent numerical modeling 

of sediment transport from achieving a high level of predictive ability. In cohesive 

sediment transport modeling, there are four critical parameters strongly affecting 

numerical model results: 1) sediment settling velocity w/, 2) resuspension rate Af0; 3) 

critical shear stress for deposition Tcd and 4) critical shear stress Tcr for erosion. 

Numerous studies have been dedicated to determining these parameters. Early studies 

of transport and shoaling processes under estuarine conditions was conducted by Krone 

(1962) through flume studies. He found that suspended sediment can be deposited only 

at bottom shear stresses less than a critical value of 0.8 dyne/cm2 and the deposition rate 

is very sensitive to the flocculation rate which is enhanced by the suspended sediment 

concentration. Owen (1970) studied the variation of ws using natural mud in saline water. 

His results indicated that as salinity and suspension concentration increase, the settling 

velocity ws also increases due to the increased cohesion and interparticle collision. Hayter 

(1983) investigated the effect of salinity on deposition and erosion using laboratory
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experiments. Results showed that the influence of salinity on ws is significant in the 

range of 0-2 ppt and as salinity increases ws approaches a constant. The critical shear 

stress for erosion could be described as a linear function of salinity when salinity is in the 

range of 0-2 ppt and a constant when salinity is greater than 2 ppt.

According to literature, ws and M„ can vary over the ranges of 10'5 to 10'1 (cm/s) 

and 10'7 to 10‘3 (g/cm2/s) respectively, while the critical stresses Tcd and Tcr are in the 

ranges of 0.06 to 2 and 0.1 to 5 (dyne/cm2) respectively (Krone, 1962; Greenberg and 

Amos, 1983; DeVries, 1985; Gibbs, 1985; Sternberg et al., 1988; Mehta et al., 1989; 

Sheng et al., 1992; Sanford and Halka, 1993). Some comparisons of these four 

parameters used in previous studies are listed in Table 8. We can see that these 

parameters vary over very wide ranges in different studies. Therefore, it is highly 

desirable to find a better way to retrieve these poorly known parameters based on field 

observations so that the optimal model state is found and so the best-fit of model results 

to the observation is produced. To date we have not seen any application of variational 

inverse methods in sediment transport problems. In this Chapter, a data assimilation 

scheme for estimation of the settling velocity and erosion or resuspension rate is described 

and tested in an idealized estuary and the James River, a tributary at the lower 

Chesapeake Bay.

5.2 Sediment Transport Models

The most typical governing equation for sediment transport is the advection and 

diffusion equation with a settling velocity of ws :
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dt (mHC) +dx {WyHuC) +dy (mxHvC) +dz {mwC) 

=dJntir'-D&C} +dz (mwBC)
( 6 7 )

Many different models for sediment transport have been developed and they can be 

classified into three categories: 1) cohesive sediment models; 2) non-cohesive sediment 

models and 3) intermediate sediment models (Sanford and Halka, 1993). The differences 

between these models appear to be the approach to formulating the bottom boundary 

condition and different formulations for the deposition and erosion terms. In cohesive 

sediment models, a mutually exclusive deposition and erosion assumption is made and the 

flux bottom boundary condition for the cohesive model can be written as:

where D and E are the deposition rate and the erosion rate. The deposition rate is 

commonly described by the formula presented by Krone (1962):

where C, is the sediment concentration near the bottom, Tb is the bottom shear stress and 

xcd is the critical shear stress for deposition. As described in Section 5.1, the settling 

velocity is a function of salinity and suspended sediment concentration (Owen, 1970; 

Hayter, 1983; Dyer, 1986). In low sediment concentration, ws can be considered as a 

constant but it changes significantly in high concentration. The transition zone is around 

0.3 g/1 (Krone, 1962). At any particular salinity, the settling velocity can be represented

- w3C-D, z= -h (68)

(69)
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as an exponential function of sediment concentration:

(70)

where Ca is the normalized sediment concentration, and y0 is an empirical constant in the 

range of 1-3 (Dyer, 1986, van Leussen and Comelisse, 1993). The reference settling 

velocity, w„ corresponds to C=Ca. In the present study, the effects of salinity and 

sediment concentration on the settling velocity are not considered, so y  is set to be zero 

and thus w=wa. The erosion rate can be described as (Partheniades, 1962; Ariathurai and 

Arulanandan, 1978; Mehta, 1981; Sheng and Lick, 1979, Lee, 1995):

in which the critical shear stress t ct for erosion is assumed to be depth independent; rj is 

an empirical constant; M„ is the erosion constant which is equivalent to the erosion rate 

when Tb=2'tcr. In many studies, t| is assumed to be zero. In general, xcr depends on 

salinity. Based on laboratory experiments, Hayter (1983) presented the following formula 

to describe the relationship between Tcr and salinity S:

where t°cr is the critical shear stress when salinity equals zero (5=0). From the above 

formula we know that xcr is a constant for most salinity ranges but linearly increases 

when salinity is between 0-2 ppt. For the case where t cr increases with depth of erosion,

(71)

t ° r ( 0 .5 5 + 1 ) 0^5<;2
(72)
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the erosion rate can be described by (Sanford and Halka, 1993):

e o e x p ja i tT ^ -T ^ lz ) ] 0-5} Ttb^ cr
(73 )

where e0 and a, are empirical constants and z is the depth below the bottom surface. The 

most significant difference between the depth independent erosion model (Eq. (71)) and 

depth dependent erosion model (Eq. (73)) is that erosion always occurs in the depth 

dependent model while there is no erosion at all in the depth independent model when 

the bottom stress Tb is less then the critical stress t cr.

In non-cohesive sediment models, erosion and deposition can occur simultaneously 

(Dyer, 1986; Glenn and Grant, 1987) and there is no critical shear stress for deposition, 

which is equivalent to an infinite critical shear stress. Sediments are transported as 

bedload in a layer with thickness a. The concentration bottom boundary condition at the 

top of this bedload layer is applied in non-cohesive transport models (Sanford and Halka, 

1993; Glenn and Grant, 1987):

where Ca is the sediment concentration in the bed and y0 is an empirical constant on the 

order of 1 O'3- 1 O'5 (Sternberg et al., 1988).

Some studies have been conducted for modelling sediment transport using the so- 

called intermediate approach. (Lavelle et al., 1984, Bedford et al., 1987, Sanford and

( 74)

0
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Halka, 1993). In the intermediate model, the flux bottom boundary condition (Eq. (68)) 

is applied but the non-cohesive transport assumption of simultaneous erosion and 

deposition is also made. That is, the critical shear stress for deposition is equal to infinity 

in Eq. (69) while the erosion rate (Eq. (71)) remains of the same form as that in cohesive 

sediment models.

In addition to bottom boundary condition, a no flux surface boundary condition 

is applied to all models:

-W3C-DV| | = 0  ; z=C (75)

In the present study, the cohesive sediment transport model is considered and the 

critical shear stress for erosion is assumed to be depth independent, i.e. Eqs. (67-69) and 

Eq. (71) will be used as bottom boundary conditions. A single class of sediment particles 

with a single set of deposition and erosion parameters is assumed. In principle, the VIMS 

EFDC model can be applied to multiple sediment classes with multiple deposition and 

erosion behaviors.

5.3 Adjoint Model And Gradient of The Cost Function

The derivation of the adjoint model and the gradients of the cost function for 

parameter estimation in sediment transport problems is very similar to that for the salinity 

open boundary condition problem. The cost function is still defined in the spatial and 

time domains as shown in Eq. (12). The Lagrange function L  function is constructed by 

appending the sediment transport model equation (Eq. (67)) to the cost function:
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L(C,X,  P) = J + fJ vX
dt {mHC) +dx {myHuC) +dy (mxHvC)

+dz (mwC) -dz (wH~xD ^ zC) -dz (imrgC)
J (76)

dVdT

where P represents the control variables to be estimated (ws and Ma). Similarly, the 

adjoint model is represented by:

- d t  (mHX) -d x {mJIuX) -d  (m JIvX) - d z (mwX)
(77)

- d z { m H ^ D ^ X ) +dz (mWgX) =W{ C obB-C)

The gradients of the cost function can be obtained by setting dP L=0 (P=ws, Ma). Notice

that when performing the spatial integral in Eq. (76), the bottom boundary condition Eq.

(68) enters the integral. Neglecting all the terms not related to ws and Ma allows one to

obtain the general formula for the gradients of the cost function:

dpJ=dpj J X d z (mw8C) dVdT+dPf J QX (E-D) dQ dT  (78)

where £2 represents the whole bottom boundary region. In the current study, both ws and 

M„ are assumed constant in the whole spatial and time domain. Thus the gradient of the 

cost function with respect to ws can be obtained by substituting Eq. (69) into Eq. (78):

dw J = J  J* Xdz (mC) d V d T - j  J  X c l  1 - - ^ -  dQ dT ;  t iJ<Tcd (79)
^ \  cd)

and the gradient of the cost function with respect to Ma can be obtained by substituting 

Eq. (71) into Eq. (78):

( 8 0 )

Eq. (79) can be further written in a discrete form:
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a j = S  2  S o . s x u ; , * . ^ ; , * )  K m o ; ,w - ( m o s . j
ri”l fc»l 2=1

( 8 1 )

-  s  [ A c f i - ^ i r

where NT is the total number of time steps and IN  is the total number of water cells. 

Similarly, Eq. (80) can be written as:

S
(t6)“>tcr .

(82)
2 , 1

Since there is no sediment source at the water surface, under a stable conditions the 

vertical gradient of sediment concentration is generally not greater than zero: dz(mC) < 

0. Thus, from Eq. (79) (or Eq. (81)) we can see the gradient of the cost function with 

respect to ws has an opposite sign of Lagrange multiplier A,. Also, Eq. (80) (or Eq. (82)) 

indicates that the gradient of the cost function with respect to Ma has the same sign as A.. 

That means that if A, has the same sign in the whole domain then dJ/dws would always 

have an opposite sign of dJldM0 . This actually shows how ws and Ma affect suspended 

sediment transport from different point of view, i.e., increasing resuspension rate M„ or 

decreasing settling velocity ws will result in more suspended sediment in the water 

column, or vice versa.

One of the important issues in adjoint parameter estimation is the identifiability 

which addresses the question of whether it is possible to obtain unique solutions of the 

inverse problems (Navon, 1996). In reality, inverse problems are often ill-posed and are 

characterized by the nonuniqueness and the instability of the identified parameters of the 

problems. The ill-posedness of a problem causes difficulties to identify the spatially and
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temporally dependent parameters in the inverse problem. It is shown that the 

regularization provides an efficient approach to solve the ill-posed inverse problems. 

Regularization is an approach to solve a well-posed regularized problem which has an 

approximated, but more regular, solution than that of the original problem. Recent work 

on the identifiability of an inverse problem can be seen in Navon (1996).

5.4 Model Tests in An Idealized 3-D Estuary

5.4.1 Forward Problem

The inverse model for the parameter estimation in the cohesive sediment transport 

problem is first tested in an idealized 3-D semi-enclosed estuary. The geometry is the 

same as that in the salinity open boundary problem (Fig. 24). The physical forcing and 

salinity boundary conditions are also the same. At the open boundary, zero sediment 

concentration is specified, i.e., no sediment is transported into the estuary from the 

estuarine mouth. The suspended sediment source is specified at the head of the estuary 

with a constant discharge concentration 50 (mg/1) through the whole water column. The 

initial conditions for the suspended sediment is assumed to be 50 (mg/1) in the whole 

domain and the initial bed sediment per unit area is specified as 1000 (g/m2). The critical 

shear stresses for deposition and resuspension are set to be Tcd=0.25 (dyne/cm2) and 

tct=0.5 (dyne/cm2) respectively. The "observed" suspended sediment distribution is 

generated with a settling velocity vy=5xlO'5 (m/s) and a resuspension constant, Mn=0A 

(g/m2/s). The hydrodynamic model and transport model for salinity and suspended 

sediment were run for 50 M2 tidal cycles. The velocity field, vertical diffusivity and bed
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shear stress in the last tidal cycle were saved to run the forward problem for sediment 

transport. The suspended sediment concentration at the end of the run is also saved and 

used as the initial condition for the forward problem. The forward simulation is made 

for 10 tidal cycles and the "observed" suspended sediment distributions along the channel 

of the estuary at 4 different phases of the last tidal cycle at the end of the run are 

presented in Fig. 36.

The turbidity maximum, one of the most distinguishing feature of estuaries is a 

zone within which the concentration of suspended sediment is higher than concentrations 

both upstream and downstream. The turbidity maximum is located around the limit of 

salt intrusion point and maintained by the mean longitudinal circulation in the estuary. 

Upstream of the turbidity maximum, sediment is transported to the turbidity maximum 

zone by the seaward mean flow and downstream sediment either settles to the bottom 

layer or is transported back to the turbidity maximum zone by the landward mean flow 

in the bottom layer due to the density-driven two-layer circulation. Because the salt 

intrusion and the pattern of the mean circulation are functions of the freshwater discharge, 

the location of the turbidity maximum is altered with changing river discharge. From Fig. 

36 we can see that a suspended sediment turbidity maximum is formed upstream in the 

estuary at the location of the salinity intrusion limit (see Fig. 26). In the turbidity 

maximum zone, the suspended sediment concentration is on the order of 300 (mg/1), while 

downstream, the sediment concentration is lower than 10 (mg/1). The sediment 

distributions across a section of the turbidity maximum are presented in Fig. 37. From 

this figure we can see the sediment concentration at the shallow sides is higher than that
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in the center of the deep channel. This is caused by the mean transverse circulation. Fig. 

38a&b show the distribution patterns of the longitudinal and transverse Lagrangian mean 

velocity across the section of turbidity maximum zone, facing landward. A positive value 

implies that the current direction is seaward in Fig. 38a and to the right in Fig. 38b, while 

a negative value implies that the current direction is landward in Fig. 38a and to the left 

in Fig. 38b. Fig. 38a shows that the net landward flow is confined at the center of the 

channel and a net seaward flow occupies the surface and both shallow side regions. Fig. 

38b indicates that a pair of "ring" type transverse circulation cells are formed in the cross 

section which causes divergence at the bottom layer and convergence at the surface layer. 

Such a transverse circulation pattern may be caused by the baroclinic forcing and 

bathymetry effect, which can be seen clearly in the mean salinity distribution in Fig. 39. 

Similar transverse circulation patterns were observed by Valle-Levinson and Lwiza (1995) 

in the lower Chesapeake Bay, by analysis of ADCP data and by numerical model study. 

A general description of mechanisms for the transverse circulation patterns can be found 

in Dyer (1979). The net divergence flow at the bottom layer thus transports the 

suspended sediment from the central axis to both shallow sides of the estuary.

5.4.2 Inverse Problem

The inverse model for the suspended sediment transport problem is tested by twin 

experiments. Observation data are sampled at 5 horizontal locations (1=10, 20, 30, 40, 

50), covering the region of turbidity maximum along the central axis of the estuary. 

There are 12 samples in each tidal cycle. The first test experiment is started with initial
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guesses of w ^xlO "4 (m/s) and Afo=0.04 (g/m2/s). The suspended sediment distribution 

along the central axis of the estuary after 10 M2 tidal cycles with the aforementioned 

initial guess values is plotted in Fig. 40. Because of increasing of settling velocity ws, 

the suspended sediment discharged from the head of the estuary immediately settles down 

in the very upstream region of the estuary. Also because of decreasing the erosion 

constant Ma, the sediment being resuspended up to the water column from the bed is 

reduced. Thus the combined effect of increasing settling velocity ws and decreasing 

erosion constant Ma is the decrease of the suspended sediment concentration in the water 

column.

Since the magnitudes of ws and Mn are much less than unity, we scale ws and M„ 

by factors of 2xl04 and 30 respectively. The gradients of the cost function with respect 

to Wj and M0 are also scaled to the order of magnitude of unity by factors of 2xl04 and 

25 respectively. The minimization process is shown in Fig. 41. We can see that it only 

takes 11 iterations for both parameters to converge to the true solution. The good 

performance of the minimization may be due to recovering only two parameters and the 

use of sufficient data to construct the cost function such that the problem can be well- 

determined. The cost function and the gradient norm are reduced to the order of 10'14 and 

10'8 respectively. The distributions of the settling velocity and erosion constant versus 

the number of iterations are plotted in Fig. 42a&b.

The inverse model is also tested with a different set of initial guesses: decreasing 

the settling velocity to w=5xl0‘6 (m/s) and increasing the erosion constant to Afo=4.0 

(g/m2/s). The suspended sediment distribution at four different tidal phases along the
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estuary with such a set of initial guesses is plotted in Fig. 43. Now, because the settling 

velocity is decreased and the erosion constant is increased, much more sediment is 

suspended in the water column, even downstream portion of the estuary, compared to the 

"observed" suspended sediment distribution (Fig. 36). Actually, as the settling velocity 

approaches zero, the suspended sediment will become neutrally buoyant and the 

distribution will be more similar to that of salinity. The normalized cost function and the 

gradient norm versus the number of iterations are shown in Fig. 44. Again, we can see 

that the minimization process converges very fast and the cost function and the gradient 

norm are reduced to the order of 10‘19 and 10'8 respectively. The convergence of the 

settling velocity and the erosion constant in terms of the number of iterations are plotted 

in Fig. 45a&b, respectively. Fig. 42a&b and Fig. 45a&b also show that in the two 

identical twin experiments described above, the settling velocity and the erosion constant 

converge to satisfactory estimates of the true solutions within 5 iterations, with the cost 

function reduced by the order of -lO-4.
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Table 8. Parameters for cohesive sediment transport used in literature

References w,

(cm/s)

K

(g/cm2/s)

”̂cd

(dyne/cm2)

*cr

(dyne/cm2)

Sternberg et al. (1988) 0.28 0.49

Gibbs (1985) 0.01-0.1

DeVries (1992) 6.25x10‘7 1.44

Lee (1995) lo M a 4 -1.0

Greenberg & Amos (1983) 0.11 1.9xl0"3 0.84 2.56

Krone (1962) 0.8

Sanford & Halka (1993) 0.08-0.14 1.2X10-6 0.25-0.4 0.4

Sheng (1990) 0.012 5.31xl0‘8 6.4
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Fig. 36 “Observed” suspended sediment distribution (mg/I) at four tidal phases 

(T/4, T/2, 3T/4 and T) along the axis of the estuary channel
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Fig. 37 “Observed” suspended sediment distribution (mg/1) at four tidal phases 

(T/4, T/2, 3T/4 and T) at the cross section 1=25
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Fig. 40 Initial suspended sediment distribution (mg/1) at four tidal phases 

(T/4, T/2, 3T/4 and T) along the axis of the estuary channel (initial guess I)
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Fig. 43 Initial suspended sediment distribution (mg/1) at four tidal phases 

(T/4, T/2, 3T/4 and T) along the axis of the estuary channel (initial guess II)
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5.5 Model Application in The Janies River

5.5.1 Physical Background of The Janies River

The inverse model of cohesive sediment transport is also tested in the James River, 

one of the many drowned river valley tributaries in the Chesapeake Bay (Fig. 46). The 

James River estuary is a classic coastal plain estuary. The length of the estuary is about 

161 km from the mouth to the fall line at Richmond. The average width is 5.1 km and 

the water depth is relatively shallow with average of 5.8 m. The estuary floor is shaped 

into a narrow central channel bordered by submerged shoals. The deepest depth is 29 m 

and located at the northwest of Mulberry Point (MP). Nichols, et al. (1991) classified the 

morphology of the James River into three distinct compartments: I) bay-mouth, 2) estuary 

funnel and 3) meander zone. The bay-mouth zone covers a region from the estuary 

mouth extending 26 km seaward to the ocean, featuring a straight channel bothered by 

wide shallow banks (< 10 m). In the estuary funnel zone extending from Hampton Roads 

(HR) landward to Jordan Point (JP), meanders are broad and the axial channels are 

sinuous. The vertical profile of the estuary flow shows irregularities of depth (Nichols, 

1972). Upstream of Jordan Point is the meander zone which is characterized by the 

pronounced meanders flanked by marshes and tidal flats. The physical and hydrodynamic 

characteristics of the James River estuary are listed in Table 9 (from Nichols, et al., 

1991). The estuary receives about 2.4xl06 tons of sediment load annually, most of it 

during the wet season from January to April.

The James River estuary is a typical partially mixed coastal plain estuary. The 

density-driven two-layer circulation is a distinct feature in the system. Pritchard (1952,
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1954) examined the mean circulation pattern and salt flux in the James River based on 

field data in early 1950’s. Calculation showed that the seaward flow in the upper layer 

can be as large as 9-40 times of the river inflow and thus causes a significant 

compensating landward flow in the bottom layer. The salt intrusion point may shift about 

60 km along the estuary in response to the seasonal changes of river inflow, from 

upstream near Brandon Point to downstream on Burwell Bay (Fig. 46).

5.5.2 Numerical Model Setup

A fully 3-D model for simulation of hydrodynamics and salinity transport in the 

James River estuary is setup and calibrated. Rectangular Cartesian grids are used in the 

whole domain, with grid size equal to 370 m in both the x- and y-directions. There are 

202 grid cells in the x-direction and 150 grid cells in the y-direction and 5 levels in the 

vertical. The number of total horizontal water cells is 4610, only about 15% of total 

horizontal grid cells. A computational grid map is shown in Fig. 47. The model open 

boundary is extended further seaward from the James River mouth to reduce the effect 

of the uncertainty at the open boundary on the interior model domain of interest. There 

are 14 grid cells across the open boundary. In the extension portion of the model domain, 

solid boundaries are assumed in both the northern and southern lateral boundaries so that 

no normal flux boundary condition is applied. Water depth is assumed to be constant in 

the 5 x-direction grid cells adjacent to the open boundary. The tidal amplitudes and 

phases at all grid cells across the open boundary are assumed to be the same and a single 

M2 tidal constituent with amplitude of 0.375 m is specified at the open boundary. In the
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present study, wind forcing is not considered. The number of time steps used in the 

model for one tidal cycle simulation is 288 and thus each time step interval is about 2.6 

min. The salinity open boundary condition is specified with the maximum inflow salinity 

equal to 30 ppt and the recovery time to be 30 time steps (Fig. 22), which is about 77.6 

min. A freshwater discharge of 100 cms at the head of the estuary is specified. The 

model was calibrated with respect to surface elevation, velocity and salinity using field 

data sets existing at VIMS.

5.5.3 Modeling Hydrodynamics and Suspended Sediment Transport

Before simulating the distribution of suspended sediment in the James River, the 

hydrodynamic model should be calibrated first. Instantaneous salinity distributions at four 

different tidal phases at the surface layer and the bottom layer are plotted in Fig. 48 and 

Fig. 49, respectively. The contour plot starts from 0.5 ppt with a interval of 5 ppt in 

order to present the salinity intrusion limit (0.5 ppt) in the estuary. The surface salinity 

is significantly higher on the right-hand side (facing landward) than that on the left-hand 

side, which is caused by the Coriolis effect. The only large scale horizontal distribution 

of observed salinity in the James River was made in the early 1950’s by Pritchard (1952). 

Fig. 50 (from Pritchard, 1952) shows the observed horizontal salinity distributions at high 

tide and low tide in September 3, 1950 in the James River. We can see that the salinity 

on the right-hand side is also higher than that on the left-hand side. Also from Fig. 48 

we can see that the surface salinity at the downstream end of Burwell Bay (BB) varies 

from 10 ppt to almost 15 ppt within a tidal cycle, which is consistent with the
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observations in Fig. 50. The bottom salinity (Fig. 49) shows a slightly different 

distribution pattern. Salinity on the right-hand side is not significantly higher than that 

on the left-hand side in the mid-portion of the estuary. The salinity is more constrained 

to the deep channel in the bottom layer. A vertical profile along the main channel of the 

James River estuary at the phase before flood at the mouth is plotted in Fig. 51. A 

vertical profile of observed salinity distribution along the main channel at slack water run 

before flood is plotted in Fig. 52 (Hepworth and Kuo, 1989). Compared to the field 

observation (Fig. 52), the model produces a similar salinity distribution pattern.

The cohesive sediment transport model for the James River case is the same as 

the one used in the idealized 3-D estuary (see section 5.4). The suspended sediment 

discharge concentration at the head is given as 25 mg/1 (personal communication with 

Nichols). The initial suspended sediment concentration is assumed to be 50 (mg/1) in the 

whole domain and the initial bed sediment per unit area is specified as 2000 (g/m2). The 

settling velocity, erosion constant, critical shear stresses for deposition and erosion are 

first roughly tuned such that suspended sediment distribution is in a reasonable agreement 

with observations reported by Nichols (1972). The final adjusted settling velocity and 

erosion constant are uy=5xl0's (m/s) and Afo=0.03 (g/m2/s) respectively, while the critical 

shear stresses for deposition and erosion are set to be t cd=0.4 (dyne/cm2) and Tcr=0.7 

(dyne/cm2). After 100 tidal cycles, a turbidity maximum is well developed near the 

Jamestown Island. The instantaneous horizontal distribution of surface suspended 

sediment concentration at four phases of a M2 tidal cycle is shown in Fig. 53 in both 

contour and color scales. The contours start at 50 mg/1 with an interval of 50 mg/1. We
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can see clearly that the location of the turbidity maximum is coincided with the salt 

intrusion limit (0.5 ppt isohaline in Fig. 48). The turbidity maximum migrates with tidal 

motion up and down the channel in a distance of approximated 8 km. The maximum 

sediment concentration at the surface is about 180 mg/1. The instantaneous suspended 

sediment concentration in the bottom layer is given in Fig. 54. Comparing this to the 

concentration distribution at the surface, we can see that the concentration is much higher 

than that at the surface. Also, in addition to the turbidity maximum at Jamestown Island, 

there is another high concentration zone in the southern region of Burwell Bay, which is 

not observed at the surface. This phenomena can be explained partially by the mean 

circulation pattern. The Eulerian mean velocity distributions at the surface and bottom 

are shown in Fig. 55 and Fig. 56. From Fig. 55 we can see that a strong and large 

clockwise tidal residual eddy (with maximum velocity about lOcm/s) is formed in lower 

Burwell Bay while a weak anti-clockwise eddy is formed in upper Burwell Bay. In the 

bottom layer, the eddies do not exist due to the complicated topographic feature in 

Burwell Bay. This indicates that suspended sediment is trapped in Burwell Bay and 

settles to the bottom layer. The comparison of depth changes on U.S. Coast and Geodetic 

Survey boat sheets in 70 years from 1873 to 1943 also shows that the greatest 

sedimentation rate occurs in Burwell Bay (Fig. 57, from Nichols, 1972). Based on field 

observations in 1960’s, Nichols (1972) found that the mean turbidity maximum is located 

around Hog Point (Fig. 46), a little downstream of Jamestown Island. Concentration 

magnitudes at the turbidity maximum from the model are about 100 mg/1 at the surface 

and 300 mg/1 at the bottom, which are reasonable compared to historic field
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measurements (Nichols, 1972). The field observations (Nichols, 1972) also showed that 

upstream of Jamestown Island, the suspended sediment concentrations is around 30 mg/1, 

while in the lower portion of the estuary, sediment concentration are generally below 20 

mg/1, which are also shown in the model results.

5.5.4 Inverse Experimental Results

To test the inverse model for the suspended sediment transport problem, twin 

experiments were conducted. The forward model was run for 10 tidal cycles to generate 

"observation" data with the settling velocity ^=5x1 O'5 (m/s) and the erosion constant 

Ma=0.03 (g/m2/s). The "observation" data are sampled at 5 locations around the turbidity 

maximum at the end of each tidal cycle. The initial guesses for ws and M„ are 5x1c4 

(m/s) and 0.003 (g/m2/s), i.e., increasing ws by an order and decreasing Ma by an order. 

The minimization procedure converged very fast and the true solutions are retrieved to 

the accuracy of 4 digits in 7 iterations. The variations of the normalized cost function 

and the gradient norm versus the number of iterations are plotted Fig. 58. We can see 

that the cost function is reduced by an order of 109 and the gradient by an order of 106. 

The recovery processes for the settling velocity and erosion constant are plotted in Fig. 

59. Different initial guesses for vy, and M0 were also tested. The convergence of the 

normalized cost function and gradient norm are shown in Fig. 60 when initial guesses of 

ws and M„ are set to be 5x10‘6 (m/s) and M,= 0.3 (g/m2/s), respectively. Fig. 61 shows 

that the minimization procedure converges to the true solution in 15 iterations.
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5.6 Conclusions and Future Studies

In this chapter, a variational data assimilation scheme for estimation of sediment 

settling velocity ws and erosion constant Ma in a cohesive sediment transport model is 

developed. Some very preliminary tests of the inverse model were performed in an 

idealized 3-D estuary and the James River, a tributary in the lower Chesapeake Bay. 

Experimental results show that the inverse model can successfully recover both 

parameters within 30 iterations when observations are available in the turbidity maximum 

region of the spatial and temporal domains. The successful model tests demonstrate that 

variational data assimilation techniques can be a useful tool to identify poorly determined 

model parameters in cohesive sediment transport model, such as settling velocity and 

resuspension rate.

There are still many related issues which need to be addressed through future 

experiments since only very simple twin experiments were conducted in the present study. 

First, the critical shear stresses for deposition (xcd) and erosion (xcr) are not considered 

in the present inverse model. It may be necessary to include xcd and x^ in the inverse 

model since changes in either *cd or Xn, will actually change the time span as well as the 

magnitude of deposition or erosion. For uniformly distributed xcd and xrd in the whole 

modeling domain, the gradients of the cost function with respect to xcd and xcr can be 

derived from Eq. (76). Noticing that the first term in the right-hand side of Eq. (76) is 

not related to xcd and xcr, we then have:
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a ' - J " " / X * * * £̂ y d a d r f  **<x«  (8 3 >

and

a ’~ J ' - / X iM ° ( ^ 7 ) d Q d T ;  'c‘ > 'c“  ( 8 4 )

Since ws, Ma, C,, Tb, Tcd and Tcr are all positive quantities, the signs of the gradients

Similar to the salinity open boundary problem, sensitivity runs are necessary to 

see how the variational inverse model works when dealing with different types of data 

sets. It should be pointed out that in the twin experiments presented in this Chapter, all 

the data are located near the turbidity maximum region. However, in the real study, the 

observations may not be in that region. It would be interesting to test the inverse model 

using the data sampled downstream or upstream of the turbidity maximum. Another 

important issue is the temporal distribution of the data. In the current study, data are 

sampled at an interval of every tidal cycle. So for a 10 tidal cycle simulation, we have 

10 data sets in time. From a practical point of view, it is not easy to obtain long time 

series of data for suspended sediment concentration. Therefore, more experiments should 

be conducted to test the inverse model for the cases of less data in time or shorter 

simulation periods (e.g., only one tidal cycle instead of 10 tidal cycles). Sensitivity runs 

should also be carried out to study how the total number of observation data in space and 

time will affect the retrieved solutions and to determine the minimum number of data 

required to retrieve satisfactory solutions. Compared to the field measurement of salinity, 

the measurement of suspended sediment concentration would be much less accurate. It
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is particularly important to add noisy signals in the model generated data and to test the 

inverse model.

In the present study, both settling velocity ws and erosion constant Ma are assumed 

constant throughout the modeling domain. However, they are not constant in reality. The 

effects of salinity and sediment concentration (flocculation) on the settling velocity ws 

should be on the agenda of future studies for the forward problem. The erosion constant 

M„ also depends on the surface sediment texture distribution on the bottom, even though 

there is not a general and widely used formula to describe the erosion rate as a function 

of bottom sediment texture. It will be of significance to consider the erosion constant Ma 

as regionally dependent, based on the information of bottom sediment texture. For 

example, the sand and mud ratio along the James River channel is characterized by very 

high ratios (70%) at the mouth and upstream of Jordan Point. In the central part of the 

estuary, the sand and mud ratio is less than 20% (Nichols, et. al., 1991). In this case Ma 

can be assumed to vary upstream, the central and the mouth regions of the estuary.

Another shortcoming of the present study on the modeling of sediment transport 

process is that only a single class of sediment is considered. To describe fully the 

sediment transport more realistically, multi-classes of sediments should be included in the 

numerical model. Thus, for the inverse problem, a set of settling velocities vy, and 

erosion constants M„ will be treated as control variables corresponding to each class of 

sediment.
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Table 9. Physical and hydrodynamic characteristics of the James River estuary
(from Nichols, et al., 1991)

Fluvial and estuarine drainage area 26,360 km2

Surface area 611 km2

Precipitation 1079 mm/yr

Length 161 km

Width (average) 5.1 km

Depth (average) 5.8 m

Depth/width ratio 0.0011

Volumetric capacity (MLW) 2.5 km3

Freshwater inflow (average) 213 m3/s

Low flow 28 m3/s

High flow 322 m3/s

Flood > 1500 m3/s

Tidal prism 0.28xl09 m3

Tide range (average) 70 cm

Flow ratio (average)1 0.10

Low flow 0.03

Mean hydraulic residence time2 219 days

High flow 5 days

Mean fresh water fraction residence time 138 days

Suspended sediment load in turbidity maximum 100-270 mg/1

1 Proportion of freshwater entering during a tidal cycle to the tidal prism.

2 Volumetric capacity divided by average river inflow.
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Fig. 48 Surface salinity distribution (ppt) in the James River 

at four tidal phases (T/4, T/2, 3T/4, T).
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Fig. 49. Bottom salinity distribution (ppt) in the James River 

at four tidal phases (T/4, T/2, 3T/4, T).
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Fig. 50 Surface salinity distribution (ppt) in the Burwell Bay region of James River at 

high water (left panel) and low water (right panel) on 2 September 1950.

(from D. W. Pritchard, 1952)
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Fig. 51. Calculated vertical profile of salinity (ppt) at phase before flood 

at the mouth in the James River.
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Fig. 52. Observed vertical profile of salinity (ppt) at slack water before flood 

in the James River in June 19, 1985 (from Hepworth and Kuo, 1989).



Fig. S3. "Observed" surface suspended sediment distribution (mg/1) 

at four tidal phases (T/4, T/2, 3T/4, T) in the James River.
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Fig. 54 "Observed" bottom suspended sediment distribution (mg/I) 

at four tidal phases (T/4, T/2, 3T/4, T) in the James River.
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Fig. 57 Patterns of deposition and erosion in the James River estuary determined from depth change over a 70-year period

(from M. M. Nichols, 1972)
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6. SUMMARY AND FUTURE STUDIES

In this study, variational inverse models have been developed and tested to identify 

poorly known parameters in transport problems in estuarine and coastal waters. Three 

types of parameter identification problems are studied: 1) the Lagrangian mean transport 

velocity in a long-term transport model; 2) the inflow salinity open boundary condition 

in a salinity transport model and 3) the settling velocity and erosion rate in a sediment 

transport model. The variational inverse models were tested by a series of twin 

experiments using model generated data in an idealized estuary for all three types of 

problems. The inverse model for the sediment transport problem is also tested in a real 

prototype, the James River tributary of the Chesapeake Bay. The transport model used 

in the study is a 3-D advection-diffiision transport equation. The velocity field and 

vertical diffusivity are calculated from a hydrodynamic model. The VIMS 3-D 

hydrodynamic/transport model EFDC was used for all the numerical experiments.

The idea of variational inverse methods is to minimize a cost function which 

measures the error between model predictions and field observations. The optimal values 

of parameters are retrieved when the cost function is minimized. The gradients of the 

cost function with respect to control variables are obtained by the adjoint method and the 

optimization algorithm used in the study is the limited memory quasi-Newton method.

In the long-term advective transport problem, the mean transport flow field is 

assumed to consist of two parts: the Eulerian mean transport and a correction in the form 

of a vector potential term. A rough estimate of the Eulerian mean transport can be

135
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calculated from the hydrodynamic model while the vector potential transport is assumed 

to be unknown and can be identified by the variational inverse model using tracer 

observations within the computational domain. Twin experiments, conducted in a vertical 

2-D idealized estuary, show that the vector potential transport can be retrieved 

successfully using the inverse model. However, it is found that in the three-dimensional 

case information for two different tracers is necessary to retrieve the mean transport 

velocity. Sensitivity studies also show that advective transport is only important in the 

region where the velocity direction is not parallel to the tangential direction of the tracer 

contours. When data are not available at every grid cell or the data contains noise 

signals, reasonable results can still be obtained when a penalty term is appended to the 

cost function. In real applications, the use of penalty terms requires careful consideration 

since true solution is unknown. Sensitivity analysis of the penalty weights is suggested.

For the inflow salinity open boundary problem, the maximum inflow boundary 

value and the recovery time are treated as control variables which are allowed to vary at 

each open boundary grid cell but remain as constant in the vertical. The inverse model 

was tested in an idealized 3-D estuary by twin experiments. Results show that the 

convergence rate for the inverse problem is strongly affected by the scaling of the control 

variables and the gradients of the cost function. Spatial oscillations appear on the tracer 

open boundary condition when a penalty term is not included in the cost function. This 

may be due to the discontinuous characteristic of the recovery time. Such oscillations can 

be eliminated when a penalty term is appended to the cost function.

For the cohesive sediment transport problem, forward simulation shows that the
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sediment transport model can well produce the turbidity maximum zone in estuarine 

systems. A constant settling velocity ws and erosion constant Ma are estimated by using 

a variational inverse method. The inverse model is tested in a idealized 3-D estuary and 

the James River, a tributary of the lower Chesapeake Bay. Identical twin experiments 

indicate that the inverse model can successfully recover both parameters and the 

minimization procedure converges within 20 iterations. Sensitivity studies show that 

when the number of observations is reduced to one, satisfactory results can still be 

obtained. This may be due to the use of only two control variables in the inverse 

problem.

Even though some satisfactory results are obtained in present study, future studies 

should address the following issues. First, in present study all the observations are 

model-generated, so it would be desirable to use real field observations to test the inverse 

models for the three types of transport problems to determine how well the inverse 

models behave in real applications. Scaling of control variables and preconditioning of 

the minimization problem are two important issues in the minimization procedure. More 

sophisticated methods might be considered to determine better scaling and preconditioning 

factors.

Future studies could also address specifics of each of the three problems. For the 

long-term advective transport velocity problem, the variational inverse model was only 

tested in an vertical 2-D idealized estuary. Even though theoretically, distributions of two 

different tracers are required to retrieve a 3-D velocity field, it would be worthwhile to 

investigate that how well the 3-D transport velocity can be recovered using the variational
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inverse model based on single tracer information. It is also important to investigate that 

what kind of tracer besides salinity would be the best candidate to provide additional 

information for recovering the 3-D transport velocity field.

For the salinity open boundary condition problem, the inverse model is tested by 

twin experiments in an 3-D idealized estuary in the present study. It is desirable to test 

the inverse model in a real prototype estuary. As mentioned in Section 4.5, more 

practical vertically-varied salinity open boundary conditions should be considered in the 

future. In the present study, even thought the data are sampled along the estuary at a 

horizontal scale similar to slack water surveys, they are sampled simultaneously. A more 

realistic sampling strategy is to make all the observations at slack water before flood or 

before ebb so that the observations distribute similarly to the real slack water run survey 

both in spatial and temporal domains. Sensitivity studies should be also carried out with 

respect to 1) the locations of the observation; 2) the duration of the forward simulation 

required for information changes in the open boundary condition to propagate to the 

locations of observations; 3) the number of observations required for the inverse model 

to retrieve true or satisfactory solutions.

For the suspended sediment transport problem, we only consider a simple case in 

present study, i.e., a single class of sediment. For more practical purposes, multiple 

classes of sediments should be considered in the forward model. In the present study, the 

settling velocity, the erosion constant and the critical shear stresses for deposition and 

erosion were assumed to be uniformly distributed in the whole model domain. In the 

inverse model, only the settling velocity and the erosion constant are treated as control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

variables. The critical shear stresses for deposition and erosion should be included in the 

variational inverse procedure in future studies. The sediment transport parameters could 

also be allowed to vary slowly in space and time. In the twin experiments, observations 

are obtained from 5 locations near the turbidity maximum simultaneously. However, in 

many realistic cases, we don’t know where the turbidity maximum is before we make 

observations in a large region. So sensitivity tests should be made by subsampling the 

data in different regions and see how the inverse process responds to different sampling 

schemes.
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