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Abstract

Five fishery independent data sets were used to investigate multispecies fish 
recruitment patterns in Chesapeake Bay. Despite differences in sampling gear, 
sampled habitat, collection methods, and sampling sites, the strongest 
multispecies recruitment patterns within each data set (revealed by separate 
principal components analyses) depict a negative relationship between 
recruitment of spring spawning anadromous fishes and fall-winter continental 
shelf spawning species. This pattern was the evident within both low and high 
frequency components of the multispecies data set.

Because these two species groups utilize freshwater and oligohaline reaches 
of the Bay and its tributaries as springtime nursery areas, this Chesapeake Bay 
Anadromous-Shelf Spawner (CBASS) recruitment pattern was compared to 
spring climatic variability in the Mid Atlantic region. Using principal components 
analysis, cluster analysis, and a gridded sea level pressure (SLP) data set an 
objective circulation classification technique identified ten synoptic-scale SLP 
patterns responsible for spring (Mar-May) weather conditions and interannual 
seasonal climate variability (1955-1998).

Classification and regression tree modeling, ordinary least squares, and least 
trimmed squares regression were used to compare covariability between the 
CBASS recruitment pattern and the thirty (3 months X 10 patterns) monthly 
frequency pressure pattern time series. March frequencies of two regional 
pressure patterns, the Azores-Bermuda and Ohio Valley high pressure systems, 
were found to account for a large portion o f the CBASS pattern’s variability.

Spring conditions in March, brought on by an early appearance of the Azores- 
Bermuda High, favor recruitment of shelf spawners while prolonged winter 
conditions, brought on by a relative dominance of the Ohio Valley high, favor 
anadromous spawning success. These observations are supported by an 
analysis of March temperature and precipitation anomaly patterns for the 
continental U.S.

Analyses of hydro-climatic, species specific zooplankton density, and juvenile 
fish abundance variables for three Bay tributaries clearly suggest that the timing o f 
the winter-spring transition differentially influences nursery area habitat suitability 
in a pattern that is consistent with the climate-CBASS recruitment relationships 
described in this study. The climate-recruitment relationships described in this 
study represent a multivariate variant o f Cushing’s Match-Mismatch hypothesis.

x ii
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Chapter One: Multispecies recruitment patterns within the Chesapeake Bay 3

INTRODUCTION

Despite a century of fisheries research, few general statements can be made 

regarding the causes of the strong recruitment variability that occurs in many 

economically and ecologically important fish species. This lack of progress 

continues to hinder both effective fishery management and general progress in 

the field of fisheries science.

Mechanisms driving recruitment variability operate on a wide range of scales. 

For example, micro-scale turbulence, which governs prey encounter rates for 

larva! fishes (Rothschild and Osbom, 1988), may affect growth and therefore, 

size-sensitive survival rates (Ware, 1975; Shepherd and Cushing, 1980). 

Synoptic scale (100's-1000's o f kilometers) climatic variability may also influence 

recruitment levels through its affects on egg and larval transport/advection 

(Sinclair, 1988; Sinclair and lies, 1989), spring bloom dynamics (Cushing, 1969, 

1982), and physiological condition (Heath, 1992). Processes operating on these 

spatial scale extremes are difficult, if not impossible to address experimentally. 

For this reason, and despite critics (Walters and Collie, 1988), historical data 

analysis has been, and continues to be, an important method of investigating the 

role o f environmental forcing in determining fish recruitment rates (Sharp, 1995; 

Francis and Hare, 1994; Myers, 1998).

Traditionally, historical analyses have focused on single species recruitment 

time series and utilized a correlative model building approach in trying to 

understand or forecast recruitment variability (Hollowed et al., 1987). To date, 

these types of studies have yielded little insight into the processes which 

determine recruitment levels and provided few, if any useful predictive models 

(Myers, 1998; Shepherd et af., 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One; Multispecies recruitment patterns within the Chesapeake Bay 4

One problem correlative models may suffer from is the lack of accurate 

recruitment data. Many previous studies have relied upon recruitment time series 

hindcast from commercial catch, or catch-per-unit-effort (CPUE) data. Such time 

series can be strongly influenced by fishery-related factors unrelated to 

recruitment success, such as trends in discards (Myers et al.. 1997a) and shifting 

management regimes.

An alternative approach to traditionally practiced correlative studies involves 

identifying repeating patterns in recruitment that occur across space (Koslow, 

1984; Shepherd etal., 1984; Myers etal., 1997b), across species (Hollowed and 

Wooster, 1992; Zheng, 1996), or across both space and species (Luch-Belda, et 

al., 1989; Hollowed etal., 1987, Hollowed and Wooster, 1995; Spencer and Collie, 

1997). One advantage of this approach is that patterns repeated across multiple 

data sources are likely to provide more reliable response variables in 

investigations of recruitment variability, compared to single stock, single species 

time series (Hollowed et al., 1987; Bakun, 1996; Myers, 1998).

Perhaps more importantly, the existence, scale, and interspecies relationships 

of repeated patterns may yield valuable insight into the nature of the processes 

driving recruitment variability (Koslow, 1984; Koslow, 1987; Cohen etal., 1991; 

Myers et af., 1997). Further, multispecies patterns may provide basic information 

required to devise effective multispecies and ecosystem fishery management 

strategies (Ludwig etal., 1993; Christensen, 1996).

This investigation employs a suite o f fishery independent young-of-the-year 

(YOY) abundance surveys in the Chesapeake Bay (38° N & 76° W) to study the 

multispecies recruitment patterns within the estuary and its tributaries. 

Throughout this work, the term recruitment will refer to the number offish 

surviving to the juvenile life stage. This choice is based upon previous findings 

that at least for the most well researched Chesapeake fish within this study, the
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Chapter One: Multispecies recruitment patterns within the Chesapeake Bay 5

striped bass (Morone saxatilis), annual cohort strength appears to be set by this 

life stage (Goodyear, 1985).

Because of the wide range of collection methods employed by the surveys in 

this study (gear type, sampled habitat, geographical location, and species 

sampled), repeating patterns identified here should reliably characterize the 

temporal and spatial scales of recruitment variability over the last three decades 

within one o f the world's largest and most productive estuaries. This information, 

coupled with the multispecies nature of identified recruitment patterns may prove 

valuable in the search for mechanisms which drive recruitment variability within 

this ecosystem.
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Chapter One: Multispecies recruitment patterns within the Chesapeake Bay 6

METHODS

Data set descriptions

The primary data set

Rve data sets are used in this study (Figure 1.1). Of these, the Maryland 

Department of Natural Resources' (MDNR) juvenile striped bass (Morone 

saxatilis) monitoring survey possesses the longest period of record, employing 

consistent sites and methods since 1966. This annual survey monitors fixed sites 

on a monthly basis from July through September using a 6.4mm bar mesh 

bagfess beach seine 30.5m long and 1.24m high (Maryland Fisheries Service, 

2000).

While designed to monitor the striped bass, this survey effectively monitors 

YOY relative abundance of other estuarine species as well. The fourteen most 

numerically abundant species over the survey’s period of record (1966-1998) 

were used for this analysis. Due to the statistical advantages of longer time 

series, this data set is considered the 'primary' data set for this study. Rve other 

(ancillary) data sets are similarly analyzed in order to corroborate the MDNR seine 

data results and investigate the spatial and temporal persistence of any identified 

patterns.

VIMS seine survey

The MDNR striped bass seine survey has a Virginia compliment Using 

similar gear and methods, the Virginia Institute of Marine Science (VIMS) also 

effectively monitors YOY abundance for many estuarine species while targeting 

striped bass. Rve rounds of sampling are earned out for eighteen fixed sites over 

the months of July-September since 1980. These sites are located between river

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One: Multispecies recruitment panems within the Chesapeake Bay 7

miles 21 and 56 (upstream distance from the river mouths) on the three largest 

Bay tributaries in Virginia, the Rappahannock, York and James Rivers.

As with each ancillary data set in this study, species from this survey were 

included in the analysis only if they matched those fourteen chosen from the 

MDNR survey and had no zero annual catches. This latter criterion was designed 

to ensure that all species included were adequately monitored by their respective 

surveys. Each species excluded due to this zero annual catch criterion featured 

at least five 'no-catch' years during a survey's sampling period.

VIMS trawl survey

Annual recruitment in these same three Virginia tributaries is also monitored 

by the VIMS Juvenile Fish and Blue Crab Trawl Survey on a monthly basis. This 

survey’s sample sites are fixed river channel sites at approximately five mile 

intervals, also within the three primary Virginian Bay tributaries. Initiated in 1955, 

methods and gear and sites have been consistent on all three river systems since 

1979. Due to sampling gear and sampled habitat differences, only four of the 

fourteen MDNR seine survey species chosen are effectively monitored by the 

VIMS river trawl survey. For reasons described later in this paper, a fifth species, 

not included in the MDNR survey, summer flounder (Paralichthys dentatus) was 

also included.
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River Nanticoke River
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FIGURE L I. Sample location map for all study sites.
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Chapter One: Multispecies recruitment patterns within the Chesapeake Bay 9

Patuxent river trawl survey

Another source of data was the Potomac Electric Power Company's (PEPCO) 

Patuxent River trawl survey. Also designed to monitor the abundance of YOY 

striped bass, this survey is similar to the VIMS trawl survey except that it uses a 

smaller (dimensions) bottom trawl, a smaller boat and samples fewer locations 

(Jules Loos, personal communication). Again, because of methodological and 

habitat differences, only six o f the fourteen MDNR seine survey species are 

effectively monitored by this survey.

Calvert Cliffs Nuclear Power Plant (CCNPP) impingement data

To further ensure that identified patterns were not gear- or site-derived 

artifacts and to increase the spatial coverage o f this investigation, data from the 

Calvert Cliffs Nuclear Power Plant (CCNPP) impingement study was also 

acquired. While not designed to monitor YOY abundance, impingement of fishes 

and blue crabs (Callmectes sapidus) on 1 cm2 mesh rotating screens protecting 

flow-through (0.3 m/sec) cooling water intake structures was sampled by the 

Academy o f Natural Science's Estuarine Research Center (ANSERC) for the 

years 1975-1994 (Hixson and Breitburg, 1993). This unique data set provided an 

additional opportunity to examine the affects of gear and geographical location on 

the observed patterns of multispecies recruitment in the Bay. Eight o f the fourteen 

MDNR species were effectively monitored by this ’survey'. Again, for reasons 

described below, summer flounder was included in the CCNPP analysis as a ninth 

species.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One: Multispecies recruitment patterns within the Chesapeake Bay 10

Data processing

The primary data set (MDNR seine survey) includes catches for over one 

hundred different species. A subjective decision was made to include only the 

fourteen most abundant species over the data set’s period of record. Limiting the 

species to fourteen ensured a relatively high case to variable ratio (approximately 

2:1) required for robust statistical results. In all other (ancillary) data sets, a 

subset of available species was used (Table 1). As previously indicated, species’ 

inclusion is based upon occurrence in the primary (MDNR seine) data set and 

also sampling adequacy (no zero annual catches).

TABLE I . l .  Characteristics o f surveys used in this analysts.

Survey Sampling frequency Sampling design YOY distinction
Number

of
species

Period
of

record

MDNR beach 
seine

Monthly
July-October

MD Bay and tributary 
fixed sites

Length-ffequeny
analysis

14 1966-
present

VIMS beach 
seine

Bi-monthly
July-September

Tidal VA tributary fixed 
sites

Length-frequencv
analysis

14 1980-
present

VIMS river 
bottom trawl

Monthly
Year-round

Rappahannock, York &  
James rivers, fixed 

channel sites

Length-frequency
analysis

5 1979-
present

Patuxent 
bottom trawl

Bi-monthly
May-October

Patuxent River fixed 
river sites surrounding 

Chalk Point, MD

Length-frequency
analysis

5 1988-
present

Calvert Cliffs 
Nuclear Power 

Plant 
impingement 

study

Three six-day 
sampling periods per 

month. Two daily 
samples taken 3 

hours apart.

Western shore central 
Bay site. Artificial 

lagoon walled from sur
face to she meters.

0 J  m/sec intake 
flow assumed 
YOY-selective

9 1975-
1994
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Chapter One: Muftispecies recruitment patterns within the Chesapeake Bay t l

An exception to these criteria was made after analyses of the MDNR and 

VIMS data sets. These results demonstrated that spot (Lefostomus xanthurus) 

and Atlantic menhaden (Brevoortia tyrannus) annual recruitment is synchronous. 

Since these species share common life history characteristics, care was taken to 

ensure this possible 'life history group' was adequately represented in each data 

set’s analysis. Because the VIMS river trawl does not adequately sample Atlantic 

menhaden, summer flounder was added to this data sets species assemblage. 

Summer flounder was chosen because it is well monitored by this trawl survey 

and, like spot and menhaden, summer flounder is a Mid-Atlantic fall-wintertime 

coastal spawning estuarine dependant fish relying upon favorable spring 

conditions to transport its larval and postlarval stages into the Chesapeake Bay.

Summer flounder was also included in the CCNPP data se t Since this data 

set adequately samples all three species, this allowed for a direct comparison of 

their annual recruitment patterns and therefore provided a check o f the 

assumption that summer flounder was appropriately included as a coastal 

spawning proxy species for menhaden in the VIMS river trawl analysis.

YOY cohort distinction

Raw data for each data set was processed in order to arrive at the best 

survey-specific estimate of relative annual YOY abundance. Except for the 

CCNPP impingement data set, either all fish are measured, or all fish are counted 

and only a representative subsample is measured. Distinction between YOY and 

+1 year fishes was accomplished through historical length-ffequency analysis (for 

an example, see Figure 1.2). For each species and data set length frequency 

data over the entire time period was plotted for each calendar month. 'Cutoff
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lengths and months were established using these plots in order to include only 

YOY fishes. These plots clearly display 'bell-shaped' Gaussian (or partial curve 

before full recruitment to the gear) fork length distributions for YOY fish which are 

distinct (smaller mean size) from the size distributions of older fishes also caught 

in the gear.

Unfortunately, no fish measurements are associated with the CCNPP 

impingement data. Because flow velocity at the impingement screens is relatively 

low (0.3 m/sec) however, most fishes were caught as YOY (Breitburg, personal 

communication). The exception to this rule may occur during the few years when 

hypoxic or anoxic conditions occurred in the intake lagoon. During these events, 

mass mortality occurred and older fish also became impinged. These events 

were documented in original data reports and were immediately apparent upon 

inspection o f the data. Years featuring such events were excluded from the 

analysis.

Juvenile fish abundance observations during winter months (January-March) 

were not included for any data se t This step was taken in order to exclude 

variability unassociated with YOY population abundance. Such variability may 

result from interannual differences in winter conditions. For example, under 

colder conditions fish can concentrate near the bottom of the channel where 

temperatures are moderated. This would lead to unrepresentatively high catches 

in bottom trawl samples. It is also possible that prolonged or extreme cold could 

affect catchability through reduced gear avoidance responses of fishes.
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FIGURE 12.. Monthly size frequency plot for white perch (M orone Americana) sampled by the VIMS 
seine survey 1980-1997 used for establishing the appropriate see range o f young-of-the- 
year fishes.

Data Analysis

Principal component analysis (PCA) was used to identify and describe 

multivariate patterns in each data set because it has proven to be an effective, 

conceptually simple method of isolating important linear multivariate patterns 

among a set o f intercorrefated variables (Pielou, 1984). Because it can 

simultaneously accomplish both signal isolation and data reduction, PCA has
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been, and continues to be, widely used in the marine sciences (examples include 

Koslow, 1984; Thompson and Hilden, 1987; Bianchi, 1992; Kope and Botsford, 

1990; Mahon et al., 1998, Davidson et al., 1998; Tolimieri et al., 1998; Hare and 

Mantua, in press).

Principal components analysis was used to identify multispecies recruitment 

patterns present in each data se t In each of the five analyses, species' annual 

summed (over sampling sites) YOY catches served as variables. Following log 

transformation (base 10) of the recruitment time series, their distributions were 

approximately normal. Correlation matrices of the log transformed data were 

used as input for each survey data sets PCA. In using the correlation matrix as 

opposed to the variance-covariance matrix, each variable was standardized to 

feature a mean of zero and standard deviation of one prior to analysis. Because 

the catchability o f each species is unknown for each gear, and is likely to differ 

among species, use of the correlation matrix was most appropriate. For this 

reason, this paper identifies multispecies patterns in relative (as opposed to 

absolute) abundance.

To account for all variance within a data set, a PCA always results in the same 

number of principal components (PCs or components) as original variables. 

Principal components are simply new variables formed from linear combinations 

of the original variables. These components are extracted sequentially from 

strongest to weakest in terms of original data set variance captured. Variance 

accounted for by each PC, is in effect 'extracted' after identification so that each 

PC is assured to be independent and uncorrelated with all others. Because the 

first few PC's often collectively account for a large proportion o f the data sets total 

variance, fewer PC's than original variables are typically retained for further 

analysis. Remaining PC's are typically judged as unimportant and ignored.
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Because little is known about multispecies recruitment patterns in the 

Chesapeake Bay, the concern here is to identify and define the 'strong' patterns 

evident in the data sets at hand. In this study, PC importance is evaluated by 

using two criteria. First, using Kaiser's (1960) ‘eigenvalue greater than 1' rule and 

secondly, using Overland and Preisendorfer's (1982) N-rule.

Kaiser's rule simply judges any PC with an eigenvalue greater than one as 

likely to contain useful information. This is because, for any correlation-based 

PCA, the sum of all PC eigenvalues equals the number of original variables 

analyzed. In the context o f PCA, eigenvalues are proportional to the variance of a 

PC's observational scores and therefore are indicative of a PC’s signal strength. 

Theoretically, a data set with no important multivariate patterns (where all 

variables are uncorrelated) would feature a spheroidal data cloud without a major 

axis. In this case, all PC's would be equally (un)important and feature 

eigenvalues of one. Therefore, eigenvalues greater than one theoretically occur 

only for PC's containing meaningful signals.

In reality, even randomly generated data will not be perfectly spheroidal. 

Therefore eigenvalues will always range from greater than 1 to less than 1, even 

when no real information is present. Overland and Preisendorfer's N-rule 

acknowledges this, by using monte-carlo simulation to set variance or eigenvalue 

based standards for each PC. To do this, a large number (1000 in this case) of 

randomly generated data sets are created with the same dimensions as the study 

data set (n observations by p variables). These (1000) random data sets are 

analyzed resulting in p eigenvalues in each case. Typically, the 95th percentile 

eigenvalue (based on an alpha of 0.05), for each of these p PC eigenvalue 

distributions, is used as a threshold in judging the importance (signal to noise 

ratio) for each of the respective study data set PCs. Any study data set's PC
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featuring an eigenvalue greater than its corresponding monte-carlo derived 

threshold, is considered to represent an important multivariate signal.

Perhaps the simplest method of interpreting a PC is through the correlation 

between its observational scores and the time series of the original variables. 

When correlation between a PC and variable (species in this case) is high, that 

variable is an integral part o f the multivariate signal the PC represents.

Because autocorrelation and time series stationarity have been an issues in 

previous multispecies recruitment studies (Koslow, 1984; Cohen, 1986; Koslowet 

al., 1987; Thompson and Page, 1989; Cohen etal., 1991), recruitment time series 

and PC scores will be evaluated for these characteristics. Lowess smoothing 

(Cleveland, W. S., 1979; Chambers, et al., 1983) and first differencing (Cohen et 

al., 1986; Thompson and Page, 1989; Pyperand Peterman, 1998) are used to 

remove autocorrelation and attenuate high frequency variability in the original 

recruitment time series. Resulting processed or 'prewhitened' data sets (both first 

differenced and lowess fit residual series) will be analyzed in the same manner as 

the original recruitment data.
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RESULTS

PC species loadings

The number of PC's meeting both the N-rule and the eigenvalue greater than 

one rule (EV>1) criteria are listed in Table 1.2 (see also Rgures 1.3 and 1.4). As 

expected, the N-rule was the more severe criteria and yielded between zero and 

three important PC's depending upon the data se t Two to five PC's were deemed 

important by the EV>1 rule. Because the objective of this study is to isolate and 

compare the strongest signals within the data sets, only the first two PC's from 

each analysis were retained. These two PC's together accounted for between 

51% and 72% of their respective data set's total variance (Table 1.3).

TABLE 1.2. Number o f important PC’s using N-rule and Eigenvalue > I criteria (alpha = 0.5).

_______________ lVIDNR V IM S seine V IM S  trawl Patuxent trawl CCNPI
N-rule 3 t I 0 2
Eigenvalue > 1 4  5 2 2 3

MDNR seine data PCA eigenvalues

n

o

t  2 3 4 5 6  7  8  9 10 t t  12 13 14

PC number

FIGURE 13 . Scree plot o f MDNR seme data analysis PC eigenvalues.
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MDNR seine N-Rule PC selection curves

Data Egenvalue Curve 
Monte Carlo Curve
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FIGURE 1.4. Results o f the N-rule test o f PC importance for the MDNR seine survey analysis 
(alpha=0.05)

TABLE 1.3. Proportion of total data set variance accounted for by PCI o f log transformed multispecies 
annual abundance across ail data sets.

MDNR VIM S VIM S Patuxent CCNPI
seine seine trawl trawl

PCI 022 026 0.45 0.42 0.42
PC2 0.19 0.17 0322 020 024
Sum 0.51 0.53 0.67 0.72 0.66

Since two PC's were retained for all data sets, PC biplots are the most 

efficient way to display the analyses' results. Biplots simultaneously ordinate 

scores and loadings for any two PC's. Since a PC is merely a linear composite 

variable formed from the original data set variables, they can be defined by the 

importance (a.k.a. weight or loading) o f each variable for each PC. Component
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variable weights or PC loadings are correlations between a PC and the original 

variables, scaled to (divided by) the PC's standard deviation. Annual component 

scores indicate the magnitude and direction of a PC's signal for each observation. 

Biplots o f all five analyses are displayed in Figures 1.5-1.9.
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Patuxent River (Chalk Point) trawl survey PCA biplot
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CCNPP impingement data PCA biplot
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Despite the wide variation in collection methods and locations among the data 

sets, obvious consistencies exist among the biplots. With the exception o f the 

CCNPP data set, anadromous fishes including striped bass, blueback herring 

{Alosa aestivalis), alewife (Alosa pseudoharengus), and white perch (Momne 

americanus) are strongly and negatively weighted on PC1. Conversely, coastal 

spawning, estuarine dependant species (spot, menhaden, and summer flounder) 

are strongly positively weighted on PC1. Because the first PC accounts for a 

sizable proportion of total data set variance, correlations among these strongly 

weighted species should be evident when their annual recruitment series are 

plotted against one another. As Rgure 1.10 demonstrates, this is the case.
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While these two fish groups are negatively related in all other data sets, they 

are individually represented by PC's 1 and 2 of the CCNP analysis. Because PC's 

are orthogonally defined, this implies that the interannual variability o f these two 

species groups is unrelated. The unique results of the CCNP data analysis may 

be due to its unique characteristics. While substantial differences exist between 

the collection methods and locations of each data set in this analysis, the CCNP 

data set is the only ‘survey* utilizing a single sampling site. Further, fishes were 

not sampled using traditional means, instead they were collected from a screened 

intake apparatus where water velocities were approximately 0.3 meters per 

second.

Species groupings defined by PC1 are consistent among all data sets, 

however the same cannot be said of the second PC. This is in part due to the lack 

of equal species representation across data sets. Some of the species strongly 

weighted on PC2 are absent in all but the VIMS and MDNR seine surveys. Even 

in these two cases, where all species are represented, a number of these 

'missing' species are oppositely weighted. Correlation values between each 

species and PC1 (annual score) time series are listed in table 1.4. Both PC1 and 

PC2 values are presented for the CCNPP analysis since coastal spawning and 

anadromous fish groups are represented separately by these two components 

respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter One; Multispecies recruitment patterns within the Chesapeake Bay 26

TABLE 1.4. Correlation between each species variable and each data set's PCI. Both PCI and PC2 of 
the CCNPP data analysis are presented since. in this data set only. anadromous and shelf 
spawning fishes (in bold) are seperately accounted for by the first two PC’s.

Species Variable MDNR
seine
PC1

VIM S
seine
PC1

VIMS
trawl
PC1

Patuxent 
traw l PC1

CCNPP
impingement

PC1

CCNPP
impingement

PC2
Striped Bass -0.74 -0.91 •0.90 -0.72 -0.22 -0.76
White Perch -0.73 -0.81 -0.75 -0.77 0.54 -0.35
Blueback Herring •0.73 -0.21 0.33 -0.75
Alewife -0.62 -0.17
Stnped Killifish -0.50 -0.11
Gizzard Shad 0.37 -0.73
Spottailed Shiner 0.11 -0.72
Inland Silverside 0.41 0.75
Rough Silverside -0.33 0.44
Mummichog -0.08 0.39
Atlantic Silverside -0.64 0.28 0.12 -0.80
Bay Anchovy -0.10 0.75 -0.45 0.09 0.74 0.37
Summer Rounder 0.77 0.67 0.17
Spot 0.76 0.59 0.25 0.83 0.92 0.09
Atlantic Menhaden 0.89 0.69 0.57 0.94 0.13

TABLE t.5. Correlation values among overlapping time periods o f all data sets’ PCI scores. PC2 also 
included for the CCNP analysis (see text for explanation).

MDNR V IM S  V IM S Patuxent CCNPP CCNPP 
seine seine trawl trawl PCI P C2

M DNR
seine

V IM S
seine

V IM S
trawl

Patuxent
trawl

CCNPP
P C I

CCNPP
PC2

0.62 0.60 0.83 0.51 0.11

I 0.66 0.71 0.51 0.28

I 0.74 0.02 0.01

I 0.47 0.15

I 0.00

1
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Annual PC1 variability

The species groups represented by MDNR PC1 have been shown to be 

prominently featured in the strongest multispecies signals within all data sets 

analyzed. Correlations among the PC1 observational scores are also relatively 

high considering the diversity among the survey locations and methods (Table 

1.5).

The time series plot of PC1 annual scores (Rgure 1.11) clearly reveals that 

correlation among the data sets is due to shared low and high frequency 

variability. It is important to evaluate the relative importance of these two 

components of variability, since this information may prove useful in research 

designed to identify the process(es) causing this multispecies recruitment pattern.

MDNRseine*- * - *  VIMS trawl 
VIMS seine ° - o - o  Patuxent trawl

CCNPP impingement a -a -a

to
£ooco
o
Q.

T-

1965 1970 1975 1980 1985 1990 1995

Years

RGURE L .II.T im e seriesplot o f each dataset's PCI (annual) scores. Positive values correspond to 
strong Atlantic menhaden and Spot recruitment and weak recruitment o f anadromous 
fishes. Negative scores correspond to the opposite scenario.
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The relative contribution of low and high frequency variability in the MDNR 

PC1 time series was determined by using lowess smoothing and linear regression 

in combination. The low frequency component was isolated from the PC1 time 

series using a lowess fit featuring a smoothing span o f 0.40. As seen in figure 

1.12. lowess smoothing with this span accurately represents long period variability 

in the PC1 score time series. Residuals from this smoothed cun/e represent the 

high frequency variability component

These two time series components (lowess fit values and residuals) were 

used as independent variables in a linear model o f the (parent) PC1 time series. 

Since these variables are additive components of PC I’s time series, this model 

was perfectly f it  The proportion o f variance accounted for by each variable could 

then be calculated from the regression beta weights (Bxt & Bx2), the standard 

deviations of all variables (Sy, S x t , &  Sx2), and the correlation values between 

each independent variable and the PC1 time series (Ry,X[ & Ry,x2), according to 

the following equation:

R2modeI = { (Bxt *  (Sxt/Sy) *  R y ^ J  + (Bxt *  (Sx2 /  Sy) *  Ry-x2 ] }°-5 (Hays. 1988).

These calculations reveal that 56% and 44% of the MDNR PC1 time series 

variance is accounted for by its low frequency (lowess fit) and high (fit residuals) 

components respectively (Figure 1.12).
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t o

Lowess smoothed scores 
Lowess fit residuals 
ASCS annual scores
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T -

1990 19951965 1975 19851970 1980

Years

FIGURE 1.12. Time series plot o f MDNR seine survey PCI scores (dashed), lowess fit (bold points and 
lines), and lowess residuals (stairsteps). A span of 0.4 was used for lowess smoothing.

Analysis of 'prewhitened* data sets

These results indicate that a majority o f the variance within the PC1 time 

series can be accounted for by low frequency variability. Unfortunately, 

recruitment time series are often autocorrelated (Walters and Collie, 1988; 

Thompson and Page, 1989). The presence of autocorrelation within recruitment 

time series is problematic, since it can suggest important relationships where 

none exist (Cohen et al., 1991), while its removal can eradicate true and important 

relationships (Pyper and Peterman, 1998). One method o f dealing with this 

problem is to suppress autocorrelation within the recruitment time series and 

reanalyze them. If the first PC resulting from this ’prewhitened* data set analysis
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features similar variable loadings as the unfiltered PC1, concerns over 'inflated' 

multispecies correlations can be laid to rest

To evaluate the potential bias inflated correlations may present in this study, 

lowess smoothing and first differencing were used independently to remove 

autocorrelation from MDNR recruitment time series prior to reanalysis. Spans 

were chosen to minimize overall autocorrelation within each recruitment series. 

For striped killifish (Fundufus majatis) and Atlantic silverside (Menfdia menfdia) 

lowess smoothing did not reduce their relatively low (non-significant) 

autocorrelation, therefore their unsmoothed series were used in place of lowess 

residuals.

In this study, lowess residual series featured lower autocorrelation than their 

first differenced counterparts. In fact, nine first differenced series featured 

significant autocorrelation. Typical results obtained by both methods of 

prewhitening are shown for Spot in Rgure 1.13.

Both first differenced and lowess smooth fit residuals of the MDNR log 

transformed (as in the original analysis) recruitment series were analyzed with 

PCA. Biplots and correlation analysis of these detrended and the original MDNR 

data sets are shown in figures 1.14 and 1.15 and table 1.6.

Unfiltered, lowess residual, and first differenced data set PC1 species 

loadings are very similar. First differenced PC1 loadings for blueback herring and 

spot have been reduced however. Because nine o f fourteen first differenced 

series featured significant autocorrelation, more weight should be given to the 

lowess residual analysis. These results demonstrate that the basic pattern 

isolated in PC1 is found in both low and high frequency components of 

multispecies recruitment variability in the Chesapeake Bay.
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FIGURE 1.13. Autocorrelation plots for juvenile spot relative abundance in the MDNR seine survey data 
set, first differenced abundance, and the lowess fit residuals o f the abundance.
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TABLE 1.6. Correlation between MDNR species annual relative abundance and PCI scores resulting 
from analysis o f log transformed species abundance, their lowess residuals, and first 
differenced time series. For reference, bold values indicate significance for an alpha o f 0.01. 
Total data set variance accounted for by each PC is listed in column headings.

M DNR seine Annual Lowess residual First differenced
species variables abundance PC I 

(31%)
PCI (26% ) PCI (25%)

Striped Bass -0.74 -0.69 -0.65
White Perch -0.73 -0.80 -0.80
Blueback Herring -0.73 -0.67 -0.13
Alewife -0.62 -0.53 -0.47
Striped Killifish -0.50 -0.39 -0.44
Gizzard Shad 0.37 0.13 0.15
Spottailed Shiner 0.11 0.19 0.27
Inland Silverside 0.41 0.18 -0.16
Rough Silverside -0.33 -0.49 -0.23
Mummichog -0.08 -0.34 -0.35
Atlantic Silverside -0.64 -0.58 -0.30
Bay Anchovy -0.10 0.10 0.12
Spot 0.76 0.55 0.26
Atlantic Menhaden 0.89 0.74 0.59
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DISCUSSION

Overall, these results have demonstrated that annual abundance of young-of- 

the-year (YOY) anadromous fishes is negatively related to coastal spawning, 

estuarine dependant fishes in Chesapeake Bay. Because it features two species 

groups, each of which is comprised of species with similar spawning strategies, 

this contrasting Chesapeake Bay anadromous-shelf spawning estuarine 

dependant (CBASS, pronounced sea-bass) recruitment pattern is consistent with 

previous multispecies studies that have found positive correlations among 

species or stocks that share similar early life history characteristics and similar 

geographic distributions (Hollowed etal., 1987; Garrod and Colebrook, 1978; 

Koslow, 1984; Shepherd et al., 1984; Cohen et al., 1991; Hare et al., 1999; Hare 

and Mantua, in press).

CBASS species groups' spawning strategies

Recruitment of coastal spawners (spot, menhaden, and summer flounder) to 

the Chesapeake Bay begins with adult spawning November through February in 

shelf waters of the Atfantic, from Massachusetts to North Carolina (Pacheco, 

1962; Kendall and Reintjes, 1975; Bodolus, 1994; Ahrenholz, 1991; Able and 

Kaiser, 1994; Quinlan et al., 1999). Larvae are transported towards and into the 

Bay arriving from late winter to early spring (Massmann et al, 1961, Norcross and 

Wyanski, 1994; Ahrenholz, 1991, Bodolus, 1994). Postiarvae and juveniles of 

spot and menhaden utilize the shallows of upper tributaries to the turbidity 

maximum as nursery areas from March through the summer (Massmann et al., 

1954; Merriner et al, 1979).

While most studies have identified coastal shallows or fringing marshes of 

river mouths, embayments, and the Chesapeake Bay mainstem (Able and Kaiser,
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1994) as summer flounder settlement and nursery areas, analyses of Maryland 

Department of Natural Resources and Virginia Institute of Marine Science seine 

surveys reveal the presence of 46 to 100mm flounder in the upper Bay and rts 

Virginia tributaries more than thirty-five miles upstream of river mouths, 

approaching the turbidity maximum. A recent April 2000 survey targeting summer 

flounder YOY in the York River (Virginia) also found flounder sizes (34-90mm) 

more than 30 miles upstream of the river mouth (W. Reay, Virginia Institute of 

Marine Science, personal communication).

In contrast to the coastal spawners, anadromous and semi-anadromous 

species spawn in upper Bay and tidal freshwater zones o f its tributaries usually 

within the April to June time frame, though spawning has occurred as early as 

March in association with unusually warm conditions (Mansueti, 1961; Mansueti, 

1964; Setzler-Hamilton, et al., 1981; Seccor and Houde, 1995; Jenkins and 

Burkhead, 1994; Kline, 1990). Alewife generally spawn earlier, from March to 

April (Jenkins and Burkhead, 1993). While larvae of these species may be 

displaced downstream immediately after hatching, they remain most abundant 

above the salt front (Ritchie, 1968; Lippson et al., 1979, Setzler-Hamilton, et al., 

1981; Grant and Olney, 1991; Secorand Houde, 1995).

It is generally believed that year class strength is most likely to be established 

in the pre-recruit (egg to postlarval or early juvenile) life stages (Heath, 1992). 

Considering the early life history characteristics o f the CBASS species groups and 

the lack of clear spawner-recruit relationships o f species within both groups 

(Goodyear, 1985; Vaughan and Smith, 1999), it is likely that the CBASS pattern is 

ultimately the result of abiotic factors during the late winter to early spring months. 

Because the two species groups utilize river and upper Bay reaches adjacent to 

and on both sides o f the freshwater interface respectively as nursery areas for 

their early life stages (anadromous upstream and shelf spawners predominantly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Otic: Multispecies recruitment patterns within the Chesapeake Bay 37

downstream), and the spatial-temporal coherence of the CBASS recruitment 

pattern throughout the Bay, it is most likely that large scale climate forces are 

differentially affecting recruitment success of these two groups.

This conclusion is supported by previously identified relationships between 

winter-spring climatic variables and recruitment fo r the most studied species 

comprising the CBASS pattern, including the coastal spawning Atlantic menhaden 

(Quinlan and Crowder, 1999; Quinlan etal., 1999; Checkley et al., 1988; Reish et 

al, 1985; Nelson et al, 1977) and spot (Bodolus, 1994), and the anadromous 

striped bass (Ulanowicz and Polgar, 1980; Goodyear and Christensen, 1984; 

Polgaretal., 1985; Uphoff, 1989; Olneyetal., 1991; Rutherford and Houde, 1995; 

Secorand Houde, 1995).

Climatic forcing of the CBASS recruitment pattern defined in this study would 

also be consistent with many previous findings that climatic variability can have 

profound affects on marine ecosystems and recruitment offish stocks (Russell, 

1973; Heinle et al., 1976; Lasker, 1981; Chelton e ta l., 1982; Cushing, 1982; 

McGowan, 1985; Koslow et al., 1987; Norcross and Austin 1988; Peterman and 

Bradford, 1987; Dickson, etal., 1988; Sharp and McLain, 1993; Myers etal., 

1992; Fromentin and Planque, 1996; Francis e ta l., 1998; Hare, 1999; and 

others). If found to be true in this case, it could be shown that climatic variability is 

capable not only of affecting recruitment success in fishes, but also of dramatically 

altering the relative composition o f ecologically and economically important fish 

species in the Chesapeake Bay, as occurred from the late 1980's through the 

1990's when annual abundance o f menhaden YOY steadily declined, in contrast 

to that o f the anadromous fishes included in this study. Obviously, such a finding 

wourd have to taken into account when formulating multispecies fishery 

management strategies for Chesapeake Bay.
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Variability in spawning stock biomass (SSB)r potentially caused by fishing and 

management activities in commercially important stocks, is another factor capable 

of influencing recruitment over large geographical areas. For this to be important 

in driving the CBASS pattern, a relatively strong SSB-recruitment (density- 

dependent) relationship must exist for the stock(s) of interest Available data for 

the two most commercially important species comprising the CBASS pattern 

(striped bass and Atlantic menhaden) suggest their SSB-recruitment relationships 

are weak, at best

Since 1982, the MDNR has both monitored annual YOY striped bass 

abundance and conducted a fishery independent survey o f SSB (Homick et al., 

2000). Analysis of annual recruitment/SSB ratios derived from these data show 

these ratios to be highly variable (Richards and Rago, 1999). This indicates that 

environmental variability plays a dominant role in determining annual recruitment 

o f striped bass. This conclusion is supported by previous studies (Martin et al., 

1985; Olney et al.,1991) which have found annual juvenile abundance not to 

correspond well with annual densities o f eggs and larvae.

Harvest data from the National Marine Fisheries Service (NMFS) is a longer 

time series with which to investigate the relationship between adult striped bass 

abundance and annual recruitment The time series covered the years 1966- 

1997 excluding 1985-1994 when strong limits were placed on commercial 

harvests (Rago and Richards, 1999). Both series were log transformed to 

ameliorate the effects of (relatively few) dominant year classes.

Analysis by these authors reveal that correlation between log transformed 

annual Atlantic states' striped bass harvest and (log transformed) recruitment is 

relatively low or negative. This is in sharp contrast to correlation values between 

annual harvest and recruitment 2-10 years prior (Table 1.7). While harvest data 

are an imperfect measure of spawning stock abundance, a stronger (positive)
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relationship between recruitment and future harvests than between harvests and 

concurrent or future recruitment suggests that density-independent environmental 

variability is more important than spawning stock biomass in determining annual 

recruitment for the striped bass.

TABLE 1.7. Lag correlation analysis o f striped bass annual MDNR juvenile abundance and NMFS
harvests for Atlantic waters. Data for both series limited to the years 1965-1997 excluding 
1985-1994 when catch restrictions severely limited commercial harvests.

Years listed lagged NMFS harvest data for M DNR seine survey juvenile
(start delayed) Atlantic waters abundance

(log transformed M T) (log transformed)
0 0.19 0.19
I 033 0.06
2 0.59 -0.09
3 0.61 -024
4 0.69 -022
5 0.70 -0.41
6 0.64 -0.54
7 0.44 -0.44
8 035 -0.64
9 0.27 -0.64

The spawner-recruit relationship in another intensively fished species strongly 

weighted in the CBASS pattern, Atlantic menhaden, also appears to be strongly 

influenced by environmental variability. Vaughan and Smith (1999) found that 

recruitment in recent years has been low despite rising SSB, and since 1955 

SSB-recruitment ratios have been highly variable.
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CONCLUSION

In this paper, we have identified a bipolar recruitment pattern among fish 

featuring anadromous and coastal spawning, estuarine dependant spawning 

strategies in the Chesapeake Bay (CBASS). Principal components analysis 

revealed that the CBASS recruitment pattern exists within a number of 

Chesapeake Bay fishery independent data sets despite differences in survey 

methods and collection sites. Further, the strength and sign of this recruitment 

pattern were shown to be synchronous among these data sets and throughout the 

Bay.

Because the two negatively correlated CBASS species groups utilize areas 

adjacent to the tidal freshwater interface in the upper Bay and its tributaries during 

spring months, it is likely that the processes driving the CBASS pattern operate on 

larval and postlarval stage fishes during their transport to, or within that estuarine 

zone. Since the annual sign and magnitude of this pattern is similar in each of 

these areas, its driving mechanism must be capable of acting over a large 

geographical area.

For these reasons, covariability between large-scale atmospheric processes 

and the CBASS pattern is examined in Chapter Two. Progress in this area would 

narrow the search for the specific mechanism(s) which drive the variability 

inherent in a number of ecologically and economically important fishes o f the 

Chesapeake Bay. Regardless of its causes, it is hoped that the species 

composition, geographic extent, and temporal dynamics of the CBASS 

recruitment pattern will prove useful in the future development of multispecies and 

ecosystems fisheries management for the Chesapeake Bay.
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INTRODUCTION

Interannual recruitment variability is perhaps the most important and complex 

problem facing fishery managers (Kendall et al., 1998). Often referred to as ‘the 

recruitment problem’, the search for factors responsible for highly variable 

recruitment in many marine fisheries has focused upon processes affecting 

survival in the early life stages of fishes. This focus can be attributed to Hjort’s 

(1914) conclusions that fluctuations in Northern Europe’s great fisheries were 

primarily due, not to changes in population migration patterns, but the ‘highly 

irregular nature’ of their ‘renewal’.

The importance of Hjorfs landmark work is evident in the persistence of the 

ideas he put forth regarding the potential mechanisms forcing interannual 

recruitment variability. The conceptual beginnings of the most often cited theories 

addressing processes governing recruitment variability, the match-mismatch 

(Cushing, 1974; Cushing, 1990) and member-vagrant (lies and Sinclair, 1982; 

Sinclair and Tremblay, 1984; Sinclair, 1988), can be traced to ideas originally 

proposed by Hjort.

These and other theories, such as Cury and Roy’s (1989) “optimal 

environmental window” and Lasker’s “stable ocean hypothesis” (Lasker, 1981), 

describe processes which are ultimately influenced by interannual variability in 

climatic-hydrographic conditions (Anderson, 1988; Heath, 1992). This emphasis 

on extrinsic, abiotic (density independent) factors rather than intrinsicfactors, 

such as spawning stock biomass, can be attributed to work by Hjort and others 

who have presented evidence suggesting cohort recruitment strength in many 

populations is not strongly influenced by parental stock biomass or egg 

abundance (Walters and Korman, 1999).
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This is not to imply that spawner-recrurtment relationships should be ignored. 

In fact, Myers and Barrowman (1996) recently used non-parametric methods to 

demonstrate that most o f the 364 stocks they studied exhibited some degree of 

spawner-recruit dependence. Still, in many cases these relationships are 

subordinate to. or at least less pronounced than the stochastic variance often 

attributed to abiotic factors.

Because of difficulties associated with direct observations o f the early life 

stages of fishes, correlative analysis of historical data has been the most common 

approach used to investigate recruitment variability and its causes. Despite the 

large number of such studies, few have yielded information which is directly 

applied by fisheries managers (Myers, 1998). This has lead some to question the 

usefulness of this approach (Rose, 1997; Walters, 1989; Walters and Collie, 1988; 

Myers, 1998). Other researchers, while supporting the use of historical 

recruitment data in these types of analyses, have called for the use of new and 

more carefully applied conceptual and statistical approaches (Tyler, 1992; Bakun, 

1996; Sharp, 1995; Myers, 1998).

Given the importance of understanding the forces influencing recruitment 

variability, difficulties o f direct observation in the field, problems associated with 

reproducing realistic conditions in an experimental setting, and a lack of strong 

spawner-recruit relationships in many fisheries, it seems foolish to ignore 

continually accumulating environmental and recruitment data sets.

This paper examines the role of synoptic-scafe (100's to 1000's o f kilometers) 

climatic variability in influencing the abundance of young-of-the-year fishes in 

Chesapeake Bay, while avoiding many of the pitfalls associated with traditional 

correlative environmental-recruitmentinvestigations. Letitbe stated attheoutset, 

as Myers (1998) has urged, that this investigation is exploratory in nature and 

therefore not designed to confirm a specific mechanistic theory describing how
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year class strength is determined. Instead, the goal of Chapter Two is to evaluate 

the hypothesis that climatic variability is ultimately responsible for the multispecies 

recruitment patterns described in Chapter One.
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METHODS 

Data sources

There are a number of methodological, statistical, and data related factors 

that can contribute to the high failure rate of correlation-based historical analyses. 

Perhaps the most basic problem is the lack of accurate recruitment data. 

Because of the difficulties and expense in collecting recruitment data, many 

studies rely upon ‘reconstructed' time series. Most often, reconstructed 

recruitment time series are derived from virtual population analyses (VPA) of 

commercial catch-at-age data, where recruitment is hindcast using catch-at-age 

data. Unfortunately, VPA requires accurate natural mortality values, which are 

extremely difficult to obtain (Quinn and Deriso, 1999). As Lapointe and Peterman 

(1991) have pointed out, incorrectly specified natural mortality estimates can lead 

to incorrect specification of environmental-recruitment relationships due to 

problems associated with spurious correlations.

Regardless of data source, recruitment time series are often short and 

autocorrelated. These characteristics increase the likelihood of identifying 

spurious correlations in historical analyses (Thompson and Page, 1989; Walters 

and Collie, 1988; Cohen eta l., 1991; Pyperand Peterman, 1998). Pyperand 

Peterman (1988) have demonstrated methods capable o f successfully dealing 

with the autocorrelation problem. Pyper and Peterman also point out that caution 

must be exercised in the exorcism of autocorrelation since evidence continues to 

emerge suggesting that climatic patterns featuring low frequency variability 

(trends or oscillations) may be important in determining year class strength 

(Koslow etal., 1987; Francis and Hare, 1994; Mantua etal., 1997; Francis etal., 

1998). Wrth this in mind, Pyperand Peterman (1998) point out that removing
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autocorrelation from recruitment series may mask true climate-recruitment 

relationships (leading to type II errors).

The problem of short recruitment time series is more difficult In some cases, 

the only solution is to wait until more data can be collected. One strategy which 

might be employed as a partial remedy to this problem is the examination of 

multiple species from one locality, or multiple stocks of the same species 

throughout a larger region, when searching or testing for environmental- 

recruitment relationships (Tyler, 1992; Myers, 1998).

Recruitment data

These data related problems are minimized in this work by using the 

Chesapeake Bay anadromous-shelf spawner (CBASS) multispecies recruitment 

pattern, defined in Chapter One, as a response variable. This pattern is ideal for 

an environmental-recruitment investigation for a number of reasons. First, it was 

shown to be the most important multispecies pattern within five fishery 

independent pre-recruit (juvenile) fish abundance data sources, featuring as many 

as fourteen species. This group o f data sources was methodologically diverse, 

featuring a wide variety of sampling protocols, sample sites, and sampling gears. 

Considering these facts, this multispecies pattern is likely to feature a strong 

signal to noise ratio, something which is not often possible to establish in many 

single species recruitment time series (Tyler, 1992; Myers, 1998).

The CBASS pattern is so named because it describes the negative 

relationship between recruitment success (as depicted by the abundance of YOY 

juvenile fishes) of spring spawning anadromous and coastal shelf spawning 

species. Synoptic-scale (hundreds to thousands of kilometers) climatic forcing of 

this pattern is suggested by its the Bay-wide spatial scale o f operation (Koslow, 

1984), and is consistent with the differential affect upon species groups employing
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different spawning strategies and dependant upon similar reaches o f the estuary 

above and adjacent to the freshwater interface (Lippson et ai., 1979).

While the CBASS recruitment pattern was identified as the strongest 

recruitment pattern to exist in each of the five multispecies data sets available, the 

Maryland Department of Natural Resources’ (MDNR) sthped bass (Morone 

saxatilis) seine survey is the data source with the longest period of record. Due to 

the statistical advantages o f long time series, this data set will be used as the 

subject o f this investigation.

The MDNR beach seine survey has maintained consistent sampling protocols 

and sites since 1966. Using a large number of fixed sites in the upper and middle 

portion of the Chesapeake Bay and its tributaries (Figure 2.1) this survey is 

specifically designed to monitor the annual abundance o f YOY striped bass, 

however it effectively monitors the abundance of at least fourteen other fish 

species. Principal components analysis revealed that the CBASS recruitment 

pattern is the dominant multivariate pattern in this fourteen species annual 

abundance data set For more details regarding this data set and analysis see 

Chapter One.
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Climate Data

Synoptic-scale climate variability affecting the Chesapeake Bay estuarine 

system was characterized using a subset of the National Center for 

Environmental Prediction’s (NCEP, formerly the National Meteorological Center, 

NMC) Northern Hemisphere gridded sea level pressure (SLP) data se t This data 

set, obtained from the National Center for Atmospheric Research (NCAR), is 

archived and distributed by the NCAR Data Support Section (DSS), and contains 

twice daily (00:00 and 12:00 UTC) data for a 1977-point octagonal grid. For this 

study the octagonal grid system was converted to a 5° latitude by 5° longitude 

grid. Once daily (12:00 UTC) SLP observations overthe region bounded by 25°N 

to 50°N latitude and 55°W to 90°W longitude (48 grid-nodes) were extracted for 

the months March, April, and May for the years 1957-1998 (3757 total 

observations).

Statistical operations

Other potential problems with correlation studies are statistical in nature. 

Walters and Collie (1988) discuss many of these problems in detail and suggested 

three ‘basic precautions’ which should be taken to reduce the risk of describing 

relationships based upon spuriously correlations. These were: report all data sets 

scanned when searching for potential predictor variables; do not promote 

mechanistic relationships based on correlation studies without support from a 

variety of independent measurements; and report all evidence, especially 

negative, which supports or refutes the existence the defined relationship^) for 

different populations or different species. Care was taken in the planning stages 

of this investigation to address and follow each o f these recommendations.
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A more complex, often unaddressed issue related to spurious correlation is 

that of confounding variables. Freeman (1999) defines confounding variables as 

those which are “associated with the putative cause and with its effect* and “may 

explain part or all of an observed association.” As Freedman demonstrates, even 

when care is taken to avoid all other potential pitfalls possible in correlative 

studies, confounding variables can still lead to erroneous theories regarding 

mechanistic relationships (Freeman, 1999). If correlation between the 

confounding and causal variables should wane, the model eventually fails. Since 

hydrographic, climatological, and weather variables are often strongly 

intercorrelated, strong potential exists for misidentification of environmental- 

recruitment relationships.

In this study, both intercorrelated climate variables, and avoiding a priori 

scanning of potentially influencing abiotic time series are dealt with by treating 

weather and climate in a more realistic sense. As Davis and Kalkstein (1990) 

point out, climatic conditions are, “determined entirely by the cumulative effect of 

the weather systems that have passed through that region. Therefore, a complete 

representation of climate is not merely the long-term record of temperature and 

precipitation, but is determined by the entire ensemble of weather elements 

interacting overtime and space.” These authors provide a case example where, 

“the environmental parameter being studied is not merely related to changes in an 

individual weather element but to the totality of weather or the synoptic situation.” 

Since fish simultaneously experience changes in a variety o f meteorological- 

hydrographic parameters with climatic variability, one might expect that, as Davis 

and Kalkstein found “the application of raw weather efements within a regression 

analysis is often misleading, as the integrative nature of the various elements is 

ignored."
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Consider a hypothetical example. Assume recruitment on a given species 

and location is affected by the oceanic turbulence and low temperatures 

accompanied by coastal storm passage. A researcher might find precipitation is 

significantly correlated with a recruitment time series. If, in the coming years the 

climate changes such that different weather systems bring much of the 

precipitation to the area, ones which do not influence oceanic turbulence or bring 

cold weather, a forecast model based upon the previously established 

precipitation-recruitment relationship would fail. In this way, confounding 

variables may partially explain the failure of correlative-based recruitment forecast 

models soon after their construction (Sharp, 1995).

In this paper, we examine the possibility that synoptic-scale climatic variability 

may influence recruitment in Chesapeake Bay using a spatially explicit 

climatological classification technique similar to that outlined by Davis and 

Kalkstein (1990). Typically, this temporal synoptic classification scheme is used 

to describe long term climatic variability for a particular region by identifying a 

finite series of weather maps that typify seasonal weather patterns. Since each 

date is categorized as one of these weather pattern types, annual frequencies for 

each are generally analyzed. This investigation will use sea level pressure (SLP) 

to describe daily weather patterns in the Mid-Atlantic region. While investigations 

of the links between SLP patterns and fish populations are not unique in the 

literature (see Koslow etal., 1987, for example), this type of synoptic classification 

scheme has never been used in the field of fisheries recruitment

The pool o f predictors used to explore the role o f climatic variability in driving 

multispecies recruitment patterns in Chesapeake Bay will include only the month- 

specrfic (March-May) SLP map pattern annual frequencies. Since synoptic scale 

SLP patterns are expected to produce characteristic weather conditions 

(temperature, precipitation, wind speed, wind direction, etc.) over the Mid-Atlantic,
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their annual frequencies can be compared to recruitment time series. This 

approach is superior to typical climate-recruitment investigations which use 

individual weather variable time series since these SLP patterns realistically 

describe weather conditions that might affect the estuarine system.

Traditional approaches such as stepwise multiple regression and correlative- 

base linear modelling, as well as non-traditional methods such as Classification 

and Regression Tree modelling (Breiman et al., 1984) are used to identify and 

describe the relationships between spring weather and climate variability and the 

multispecies recruitment patterns in Chesapeake Bay.

1. Synoptic SLP Classification procedure

Principal components analysis

Unrotated Principal components analysis (PCA) has been and continues to be 

widely used to investigate multivariate problems in ecological studies. Here PCA 

is used primarily as a data reduction technique at the first stage of this synoptic 

SLP classification procedure. Principal components analysis recharacterizes the 

variance within a multivariate data set by creating new ‘composite’ variables 

(called principal components or PC’s) formed from linear combinations of the 

original variables such that the first PC describes the longest axis (most 

variability) within the data cloud. Subsequent PC’s are similarly isolated with the 

restriction of mutual orthogonality, assuring all PCs are independent and 

uncorrelated.

This results in the same number of PC’s as original variables, with the data 

set variance accounted for by each PC declining in order (first to last). In an ideal 

case, most o f a data set's variance is accounted for by far fewer PC’s than original 

variables. These characteristics facilitate data reduction since only a few PC’s
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(ideally far fewer than original variables) can often account for most of the 

variance within a data se t Generally only these Tew* PCs are retained for further 

analysis. To determine the number principal components to retain in this study, 

results o f Catell’s (1966) scree test, Jollife's (1972) averaged root test, the 

eigenvalue separation test (North et al., 1982), and Overland and Priesenforfer’s 

(1982) ‘Rule N’ were all considered.

Because the original variables are gridded SLP coordinates, their variable 

weights or loadings for each PC can be plotted on a latitude-longitude coordinate 

system to construct SLP pressure pattern maps (again, one for each PC). While 

this step reveals the primary modes of SLP variability over the study period, each 

daily observation typically has non-zero scores for more than one PC. The goal 

here is to describe each daily observation using one of a relatively small number 

of SLP pattern map “types’ which are characteristic of spring climate conditions in 

the Mid-Atlantic region. To accomplish this, daily observations are grouped 

according to the similarity in their (retained) PC scores. Once group membership 

is determined, the generalized SLP pattern, characteristic o f each group, can be 

mapped. A single map representing the observations within each group or cluster 

is formed from a linear combination of each PC map. Mean scores for each PC, 

within each group, are used as linear weights in this process when deriving these 

composite maps.

Cluster analysis

Daily observations were grouped according to the similarity in their retained 

PC scores using a two-step clustering process. Two stages o f clustering are 

required because, while the k-means, non-hierarchical, clustering technique is 

superior to other methods in synoptic climatological classification (Davis and 

Kalkstein, 1990), this method requires initial ‘seed’ values. Average-linkage
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cluster analysis is a hierarchical clustering technique found to be best for this 

purpose (Cunningham and Ogilvie, 1972; Hawkins et al.r 1982; Kalkstein et al., 

1987; Jones, 1998). Group means from the final solution of the average-linkage 

analysis were used for this purpose.

With cluster analysis, as with PCA, a decision must be made as to how many 

clusters the final solution should contain. After Davis and Kalkstein (1990), the 

pseudo-F and pseudo-T2 (SAS, 1988) were examined in conjunction with the 

standardized change in the R2 value (Davis, 1988) in determining which step of 

the clustering process should be accepted as the final solution.

2. Climate-recruitment comparison

CART and linear regression modeling

This classification procedure yielded a series often maps (see Results 

section), each representing a characteristic SLP pattern typically occurring during 

the March to May timer period. Since all days were classified as one of these ten 

patterns, annual time series for each of the three months could be constructed for 

each of the ten SLP patterns. This resulted in thirty annual SLP map pattern time 

series, which could then be compared to recruitment using correlative techniques, 

linear modelling methods, and classification and regression tree (CART) models 

(Breiman et al., 1984).

Correlation and linear modelling techniques are the standard fare of 

recruitment studies, however the use of CART models for fisheries applications is 

relatively new. Recent examples of their use include Norcross et al. (1997), 

Magnuson etaf. (1998), and Norcross et al. (1999). An advantage o f CART 

models is that they are able to account for complex data set structures traditional 

linear techniques cannot. For example, CART models are capable o f
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incorporating complex predictor variable interactions and nonadditive structures, 

without having to specify their multiplicative form as must be done with linear 

regression (Breiman et aL, 1998; Clark and Pregibon, 1997). These models are 

also specifically designed to accept discontinuous or categorical variables as 

those used in this study (weather pattern frequencies).

Since these models predict observational group means rather than the value 

of each observation, it is relatively robust with respect to outliers and 

observational errors. This is advantageous when modeling biological survey data, 

since the response variable(s) can be expected to feature some level o f error or 

‘noise’.

Where linear regression techniques model a response variable using linear 

combinations of the independent (predictor) variables, the CART algorithm is a 

binary recursive partitioning method that splits observations into homogeneous 

groupings. Threshold values derived from any one of some number of potential 

predictor variables, are used to split the data into relatively homogeneous groups 

(Clark and Pregibon, 1997). Results are typically displayed as a dendrogram or 

‘tree’, usually oriented so that the ‘roof is at the top and the ‘leaves' are at the 

bottom.

Using this tree analogy, an alternate explanation of CART modeling is that the 

response variable’s observations are successively split, at branch ‘nodes', in the 

way which maximally distinguishes the response variables' observations (splitting 

high from low values, for example) into new and diverging (left and right) 

branches. A t each splitting stage the stepwise CART algorithm seeks to minimize 

misclassified observations or total deviance o f the model. Miscfassified 

observations are those placed into a group which deviate from the general group 

profile. Deviance is defined as the sum of the squared differences between each 

observation in a group, and the group mean. Therefore, not only does each group
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have a deviance value, but the sum of deviance values over all groups is the 

model’s deviance. When all variables are numeric, as opposed to categorical, 

deviance is the more convenient measure of model ‘fitness’, both will be 

discussed in this case.

Provided with many potential predictors, the CART algorithm will often overfit 

the model. Theoretically, the number of final groups (or ‘leaves’) in the tree can 

equal the number of observations. In this case, model deviance will be zero since 

deviance is a function of the difference between the group mean and each 

observation value, and each group has only one observation. However, an overfit 

model is so specific to the particular observations provided, it is of little use in 

describing ecological relationships and will not prove useful in predicting future 

values (Breiman et al., 1984). In this study, the optimal number of modeled 

groups or tree leaves is determined using cross-validation procedures.

In an effort to avoid overfitting, the CART function (available in the S-PLUS4 

exploratory data analysis software package used in this study) uses minimum 

group membership and minimum group deviance rules to halt splitting. The 

function does not split leaves containing ten or fewer observations or featuring 

deviance values that are less than one percent o f the root node (all observations) 

(Venables and Ripley, 1997). Despite these precautions, overfit models may still 

result

To evaluate the best tree size the S-PLUS (version 4) cross-validation routine 

is implemented. This procedure randomly splits the data into ten equal partitions. 

Nine of these are used as a test data set to construct a model that will be used to 

fit the tenth, unused partition. With ten partitions, this can be done in ten different 

ways. The model deviance at each split is averaged for these ten iterations. 

Because results are dependent upon the initial random partitioning, it is advisable 

to run the cross-validation procedure more than once (Venables and Ripley,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two: Climatic forcing o f a multispecies recruitment pattern in Chesapeake Bay 65

1997). This avoids the possibility that the results are not unduly influenced by an 

unrepresentative random partitioning. Mean deviance for each split was 

determined in this study from the (averaged) results o f twenty cross-validations.

In this study, CART is used to estimate the threshold values of climatic 

variables which appear to influence multispecies recruitment in Chesapeake Bay. 

CART model ‘goodness of f it  is Judged by examining the distribution of the tree’s 

leaves or end points. Specifically, a good fit is Judged as one which minimizes 

observational misclassification.

Linear regression models will also be used to compare SLP pattern 

frequencies to the CBASS recruitment pattern. Standard least squares regression 

will be used along with the more robust least trimmed squares regression 

(Rousseeuw, 1984; Mathsoft, 1997). Least trimmed squares regression is a linear 

method much like least squares regression except that it is robust with respect to 

outliers and outlier ‘clusters'. While least squares regression fits the model that 

minimizes the sum of the squares of all residuals, least trimmed squares fits the 

model that minimizes the sums of square for a subset or ‘trimmed’ portion of the 

residuals. This trimmed portion is often represented as q described in the 

equation: q = (n/2) + ((p+1)/2), where p is the number of predictor variables and n 

is the number of observations (Venables and Ripley, 1997). Least trimmed 

squares regression is helpful in identifying outliers and fits models which are 

relatively unaffected by them. The fit o f both regression models will be evaluated 

by the proportion of response variabfe variance they account for, as indicated by 

their r-squared values.
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RESULTS

Synoptic-Scale Climate-Recruitment Relationships

Temporal synoptic SLP pattern classification

The first five of the forty-eight daily SLP principal components account for 

82% o f the total SLP data set variance and were retained (Figure 2.2). Scores 

from these five PC’s were submitted to average-linkage cluster analysis. Cluster 

solution criteria (see Methods) indicated that the 77-cluster solution was most 

appropriate. Of these 77 clusters, ten accounted for greater than three percent of 

total data set daily observations. These ten clusters are used to seed the k- 

means cluster analysis. Therefore, the final k-means solution also yielded ten 

clusters. Mean PC scores for each of these cluster were used as linear weights to 

construct the ten composite SLP pattern cluster maps (Figures 2.3-2.11).

P ercen t variance accounted for by SLP analysis  
Principal Com ponents

34.2

on

17.8

13.4
o

o
o

0 10 20 4030
PC n u m b e r

FIGURE 2 2 . Scree plot o f SLP principal components analysts. Three PC’s were retained based upon 
this information.
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Cluster one (Figure 2.3) describes a frontal pattern and occurs on 392 

(13.5%) spring days during the study period. The front occurs between a cold 

high pressure air mass over the Great Lakes region and a warmer high pressure 

system in the Atlantic. A low pressure system southeast of the Atlantic Canadian 

maritime provinces and another in the southeastern U.S. is associated with the 

trough extending along the eastern U.S. seaboard. Temperatures over the 

Chesapeake Bay region would vary depending on the juxtaposition of these air 

masses. If the front is to the north of the region conditions are likely to be 

relatively warm due primarily to southerly flow. If located to the south, opposite 

conditions would prevail.

Average Sea Level Pressure C lu s te r  1 (Spring)

FIGURE 23. Spring (March-May) Sea level pressure (SLP) pattern I .  Sea level pressure contours (one 
milibar interval) are drawn (solid lines. Fronts (dasshed lines), high (H ), and low (L) 
pressure systems are also indicated.

Cluster two (Figure 2.4) occurs on 216 days (7.4%) and represents a strong 

and large low pressure system with a center over Nova Scotia, Canada. 

Relatively strong flow from the Great Lakes region would bring cold air into the
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Bay area due to the strong northwest-southeast orientation of the pressure 

gradient

Average Sea Level Pressure C luster2  (Spring)

’tooq-

FIGURE 2.4. Spring SLP pattern 2. Markings explained in figure 2.3.

Cluster three (Figure 2.5)r which often preceeds cluster two, depicts a classic 

‘Hatteras Low*. Occurring for 312 days of the study period (10.7%), this low 

pressure system is not as strong as that of cluster two. This is consistent with 

observations that low pressure systems formed at Hatteras often intensify as they 

track northeasterly (hence the name ‘northeaster") along the Atlantic coast 

Cluster three can bring rain or snow to regions o f the Chesapeake Bay watershed 

depending upon the storm's size and track (Davis et al., 1993; Knappenberger 

and Michaels, 1993; Jones and Davis, 1995). Generally, warm conditions prevail 

in the north and eastern sectors while low temperatures occur in its western and 

southwestern quadrants.
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Average Sec Level Pressure C luster3  (Spring )

LlCtt-

FIGURE 2.5. Spring SLP pattern 3. Markings explained in figure 2.3.

Average Sea Level Pressure C lus te r  4 (S p r in g )

-icon,

FIGURE 2.6. Spring SLP pattern 4. Markings explained in figure 2J3.
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Cluster three also often preceedes cluster four (Figure 2.6). The dominant 

feature of cluster four is also a low pressure system near the Canadian maritime 

provinces. This system is much weaker and further inland than that o f cluster two. 

The west-northwesterly flow would again bring cool to cold air into the region. 

Cluster four occurs on 316 days, equating to 12.6% of the study period's 

observations.

Cluster five (Figure 2.7) occurs for 215 days (7.4%) and features a very strong 

east-west pressure gradient This gradient is formed at the intersection between 

a large strong high pressure system centered over the Great lakes that extends to 

the Gulf of Mexico and a similarly large low pressure system centered to the 

northeast of the Canadian Maritimes. The resulting strong northerly flow 

undoubtedly results in cold and perhaps windy conditions over the Bay region.

Average Sea Level Pressure C luster  5 (S p r in g )

mis.

FIGURE 2.7. Spring SLP pattern 5. Markings explained in figure 2J.
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Cluster six (315 days or 10.5% of observations) features relatively warm 

conditions as a result o f southwesterly flow (Figure 2.8). This flow is the result of 

a large low pressure system, again centered overthe Great Lakes region, and the 

seasonal encroachment of the Mid-Atlantic subtropical anticyclone often referred 

to as the ‘Bermuda High’. It is not unusual for cluster six to precede cluster seven.

Average Sea Level Pressure Cluster 6 (Spring)

FIGURE 2.8. Spring SLP pattern 6. Markings explained in figure 2.3.

Cluster map seven (330 days or 11.4%) features even stronger south- 

southwesterly flow than six (Rgure 2.9). This cluster (Figure 2.8) features an 

intensified and more westerly positioned high pressure system influencing much 

o f the western Mid-Atlantic Ocean and the eastern half o f North America. Due to 

the subsidence and atmospheric circulation associated with this pattern, warm 

conditions and low precipitation prevail under rts influence.
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Average Sea Level Pressure C luster 7 (S p r in g )

:ims'

•1024-

FIGURE 2.9. Spring SLP pattern 7. Markings explained in figure 2.3.

Average Sea Level Pressure C luster 8 (S p r in g )

Tow

TOM.

IOIO*

FIGURE 2.10. Spring SLP pattern 8. Markings explained in figure 2 3 .
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Cluster eight (Figure 2.10) occurs only 5.85% of the time or on 167 days 

during the study period and is similar to cluster five. Cluster eight like five, 

features a large low pressure system in the Atlantic, a large high pressure system 

on the continent and a resulting strong northerly flow. Important differences lie 

primarily in the more northerly position o f the high pressure system of cluster eight 

relative to five and the more southerly position of the low pressure in cluster eight 

As a result the flow is north-northeasterly in eight as opposed to the northward 

flow in five. Cursory examination of the daily data indicated that cluster eight often 

precedes cluster five and the eight to five sequence sometimes precedes cluster 

nine.

Average Sea Level P res su re  C lu s te r  9 (S p r in g )

[tCttt

FIGURE 2.11. Spring SLP pattern 9. Markings explained in figure 2J .

This ninth cluster (Figure 2.11) appears in 311 days of the study period 

(10.7%). The arctic high pressure system seen in cluster eight moves eastward, 

and perhaps a bit southward in cluster five until, in cluster nine its movement 

appears to be impeded by the Appalachian mountain chain. This scenario is often
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referred to as ‘cold air damming' since the anticyclonic circulation of cold air is 

laterally compressed as it encounters these mountains. It appears from cluster 

nine that this lateral compression extends the central pressure region much 

further south. This 1021 mb isobar reaches the upper Chesapeake Bay region. 

Low temperatures would be expected over the entire eastern seaboard under 

these conditions.

Warming as it moves, the cold high pressure system seen in cluster ten 

(Figure 2.12) may precede cluster seven. While climatologically related in 

sequence, these two clusters can bring very different weather to the Mid-Atlantic 

U.S. This is because clusterten high pressure systems arrive from the northwest 

When they arrive these continental polar systems feature low temperatures which 

can become more moderate the longer they reside over the southeastern states. 

Clusterten occurs in 290 or 10% of the daily observations.

Average Sea Level Pressure C lu s te r  10 (Spring )

FIGURE 2.12. Spring SLP pattern 10. Markings explained in figure 2 J
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CART

Monthly annual frequencies for each SLP pattern cluster were calculated for 

each year o f the study period (1966-1997). These thirty time series were used as 

input variables to the CART procedure used to explore climate-recruitment 

relationships. Annual CBASS recruitment scores for the MDNR seine survey 

served as the response variable. The initial model resulting from this analysis 

featured six tree ‘leaves’ or observational groupings, each described by a different 

combination of SLP pattern frequency threshold values (Figure 2.13).

Initial CART model of SLP pattems-CBASS relationships

SI P rtiwSTI T  m a r< 4 5

SI PrtinSrih martt S 

2.1330 1.0920

SIPrtiwSTtffmanctS

1.3480
0.2527

FIGURE 2.13. Initial regression tree resulting from CART analysis o f annual MDNR CBASS
recruitment pattern scores. Annual frequency o f each SLP pattern (I-IO ) for each month 
(March-May) were used as potential predictors. Predictors used were March SLP patterns 
seven, ten, and one, and May SLP pattern 4. Observational classification rules are labled 
at each node. Observations described by each rule follow the right branch o f each node 
while those do not follow that rule follow the left branch. Mean CBASS pattern scores for 
the observations within each terminal node are also provided.

This model features March cluster seven (twice), March cfusterten, March 

cluster one, and May cluster four. Deviance for this model is a decreasing 

exponential function of tree size (Rgure 2.14). Evaluation of the results from
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twenty cross-validation procedures revealed that the most robust tree size was 

that which featured four leaves. The initial model was pruned accordingly (Rgure 

2.15).

CART model deviance by tree size (leaves)
35.0 33.0 tao 4.3 2.7 -in f

o i
2 ! !I i

,*l  1------ !
i i !° - !

FIGURE 2.14. Step plot o f the initial CART model's deviance fay tree size (numfaer o f "leaves’ or 
observational groupings).

CART cross validation results (20 runs)

Si

se1
5e«
3

52 3 ST
M ax

FIGURE 2.15. Cross-validation results o f the CART model. The four leaf tree was chosen as the best 
model based upon these results. See text for further explanation.
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Surprisingly, o f the thirty monthly SLP pattern time series available, the final 

model features only two, both for the month of March. These results indicate that, 

while the ‘extra’ variables included in the initial model slightly reduced the model’s 

overall deviance, they proved to be unreliable predictors. The frequency plots of 

Rgure 2.16 reveal the distribution of CBASS index values included in each group 

while the barplots indicate the individual scores for each annual observation 

included in each group.

SLP.dus$CL7.mar<4.5
________ I

SLP.dus$CL10.mar<5.5

SLP.dus$CL7.mar<1.5

1.3480 
leaf 4

er 2c
S t 
S'<£r 0 V
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FIGURE 2.16. Final CART model ofM DRN CBASS recruitment scores (1966-1996). The tree diagram 
is descibes m figure 2.13. Frequency histograms o f observation values and individual 
(annual) scores plots are also provided for each tree Ieafl
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The dearest result of this model is that the years featuring greater than four 

cluster seven days during March consistently yield positive CBASS recruitment 

pattern scores. These years, featuring strong shelf spawner and poor 

anadromous fish recruitment are contained in leaf 1 of the model. Leaf two 

contains mostly strong negative CBASS pattern scores. The observations 

grouped in this leaf occur in years featuring fewer than four cluster seven days 

and greater than five clusterten days, again in March.

Years not falling under the conditions describing leaves one and two fall into 

leaves three or four depending once again on the number of cluster seven days in 

March. Leaf three days occur when March features between 4.5 and 1.5 cluster 

seven days and less than 5 clusterten days and are nearly normally distributed 

around the leaf mean value o f-0.4013. The final leaf, leaf four, contains mostly 

strong positive scores occurring in the early and mid 1980’s and one negative 

score for 1971. It is interesting to note that leaves three and four occur during 

years which are not strongly affected by clusterten or seven SLP patterns during 

March. While cluster four appears to group primarily strong positive values, these 

all occur during the early to mid 1980’s when striped bass spawning stock and 

egg production were severely depressed (Richards and Rago, 1999; Maryland 

Fisheries Service, 2000).

Consideration must be given to the possibility that while splitting the data to 

create leaves three and four decreases overall model deviance, this split is o f no 

ecological importance. Since both leaves three and four occur when neither 

cluster seven nor cluster ten occur often in March, it is important to note that if  not 

split, the subset o f data not included in either (eaves one or two would feature a 

nearly Gaussian distribution with a mean value near zero. In other words with 

neither climate feature dominant, the CBASS index values are randomly 

distributed around zero.
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Graphical representation of the final CART model's goodness-of-fit are 

presented in Figures 2.17 and 2.18 in the scatterplot and time series comparisons 

of model fit values versus actual CBASS recruitment index scores. Because the 

CART model featured four leaves, fit values can take on only four (leaf mean) 

values.

CBASS recruitment index scores vs. CART model fitted scores

CBASS ta o u tm ent index; 
CART model fitted  scores

2 - / ' • le a f t 
Leaf 4

(A
9

3
Leaf 3

1965 1970 1985 19951975 1990

Yean

FIGURE 2.17. Time series plot o f annual CBASS index scores and the CART model’s fitted scores.
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CBASS scores versus final CART model fit values

* 93
n

•2 -I 0 1 2
CART modal fitted values

FIGURE 2.18. Scatterplot o f annual CBASS index scores and fitted scores provided by the CART 
model.

Linear models

For comparison, a least squares linear model of CBASS scores was 

constructed using the two predictor variables indicated by the CART model 

(March clusters seven and ten). Thirty-seven percent of the CBASS score 

variance (r-square of 0.37) is accounted for by the resulting least squares model. 

Each of the predictors, as well as the model itself, were significant using an alpha 

of 0.05. Figures 2.19 and 2.20 compare the least squares model fitted values to 

the actual CBASS index scores. This model also appears to model most years 

well. The exception are the years 1981,1983,1984,and 1987.

The more robust least trimmed squares (LTS) regression also produced a welt 

fit model using the predictive variables identified in the CART model (cluster 

seven and ten annual March frequencies). Scatterplots and time series of annual 

CBASS index scores and the LTS model fitted values show tha t as in the CART 

and least squares models, both low frequency decadal scale trends and high 

frequency interannual variability are well modeled (Rgures 2.21-2.22).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two: Climatic forcing o f a multispecies recruitment pattern in Chesapeake Bay SI

As expected, the years 1981,1983,1984, and 1987, which were not well 

described by the least squares model were treated as outliers by the more robust 

LTS model. Ignoring these years improves the r-squared value from 0.38 

(ordinary least squares fit) to 0.52.

CBASS recruitment index scores vs. least squares model fitted scores

f*«|
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1975T970 t99Q T995

FIGURE 2.19. Time series plot o f annual CBASS index scores and the least squares linear model’s 
fitted scores.

Least squares linear model fit values vs. CBASS scores
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FIGURE 2.20. Scatterplot o f annual CBASS index scores and fitted scores provided by the least squares 
linear model
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CBASS recruitment index scores vs. 
least trimmed squares model fitted scores
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FIGURE 2J2L Time series plot o f annual CBASS index scores and the least trimmed squares linear 
model’s fitted scores

Least trimmed squares model fit values vs. CBASS scores

Q 2*Z 4
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FIGURE 2.22. Time series plot o f annual CBASS index scores and fitted scores provided by the least 
trimmed squares linear model.
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DISCUSSION

Influential climate patterns

Results of the synoptic climate classification analysis used in this paper 

proved effective in describing the temporal and spatial variability in spring climate 

over the Chesapeake Bay region. A wide variety of synoptic conditions were 

identified, many of which are capable of influencing physical variables important to 

the biotic components of the Bay ecosystem. Examples of potentially influential 

systems identified by this classification include those related to cyclogenesis and 

precipitation such as cluster map patterns one, two and three, as well as those 

capable of strongly influencing springtime temperatures such as clusters two, five, 

seven and ten.

A surprising result o f this investigation is that while thirty weather pattern time 

series (ten clusters for each of the three spring months, March-May) were 

available to the CART algorithm, the only two included in the CBASS pattem- 

climate model were clusters seven and ten for March. Both the CART model and 

linear regression models using these same predictors were able to fit both the low 

frequency decadal scale trends and high frequency interannual variability within 

the CBASS recruitment index time series quite well. Least trimmed squares 

clearly demonstrated that the years 1981,1983,1984, and 1987 were not well 

using a linear combination of clusters seven and ten. It is likely that these years 

may have registered near zero, or perhaps had negative CBASS index scores 

(favoring anadromous fishes) if striped bass spawning stock had not been 

severely depressed during this period. Least trimmed squares de-emphasized 

these years when fitting the model and its explained variance increased to 52%.

These results indicate that the negative relationship between spring shelf 

spawning and anadromous species (the CBASS recruitment pattern) is influenced
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by the number of March days characterized as SLP clusters ten and seven. 

Specifically, a large number of cluster seven days in March (more than 5) has 

been indicative of poor anadromous and strong shelf spawning recruitment 

(positive CBASS scores) since 1966. The reverse recruitment situation (negative 

index values) prevails when both few cluster seven, but a relatively large number 

(more than 5) of clusterten days occur in March.

A recent investigation of the seasonal and interannual dynamics of the North 

Atlantic Subtropical Anticyclone by Davis et al. (1997) revealed that this migratory 

semi-permanent circulation feature has two primary modes. The winter mode is 

dominated by persistent continental high pressure systems over the eastern U.S. 

(a.k.a. the semi-permanent Ohio Valley High) and western Europe. During the 

summer, a single western Atlantic high pressure center exists, generally migrating 

from the eastern to western Atlantic from January to June and back again from 

August to January. This summer feature is often referred to as the Azores- 

Bermuda High. This migratory behavior is not a smooth progression, but can 

feature rather erratic behavior featuring distant relocations of the central high 

pressure. For example, Davis et at. found that the Azores-Bermuda high, “moves 

as far west over a two-month period from early January to early March as it moves 

east over the six months from July to January."

Davis et al.’s (1997) North Atlantic Subtropical Anticyclone climatology 

provides some insight into both SLP cluster patterns seven and ten and their 

contrasting effects upon Chesapeake Bay recruitment Clusterten represents the 

wintertime Ohio Valley High pattern which, in the absence of cluster seven or the 

spring-summer Azores-Bermuda high pattern during March, positively influences 

anadromous recruitment while inhibiting recruitment of the shelf spawners. 

January is the peak month o f influence for the Ohio Valley High while July is its 

summertime counterpart the Azores-Bermuda. According to Davis e ta l. (1997),
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“March marks a winter minimum of anticyclonic activity" and is situated between 

the demise o f the Ohio Valley High, occurring in early February, and the transition 

to the summer Bermuda High pattern, which occurs in April and May.

Interestingly, Davis et al., also performed PCA on their anticyclone data set 

which is derived from the sea level pressure data set used in this study. Semi

monthly frequencies of sea level pressure greater than 1020mb, at 5 by 5 degree 

latitude-longitude grid nodes were used as variables in their analysis. The study 

area included the area within and surrounding the northern hemisphere Atlantic 

Ocean basin and spanned the years 1899-1989.

The fourth principal component of their analysis features two blocking high 

pressures, one over western Europe and the other over the western Atlantic. The 

western Atlantic anticyclone depicted in this PC represents the Azores-Bermuda 

High pattern represented in cluster seven of our study, and peaks from March to 

June. An area of low pressure is located on the continental U.S. to the east o f this 

blocking pattern. The PC score annual time series of this pattern shows a strong 

and significant declining trend since 1899. More importantly, the period from 1966 

to 1989 mimics the annual March time series of the seventh cluster pattern map of 

this study during the overlapping years 1966-1989. Annual scores are negative 

from 1966 (indicating Ohio Valley High dominance) and rise to strong positive 

(dominant Azores-Bermuda High) values in the mid-70's. They fait again and are 

negative through the early 80’s only to rise sharply and feature strong positive 

values in both 1985 and 1989.

Knappenberger and Michaels' (1993) investigation of the relationship 

between cyclone tracks and winter climate in the Mid-Atlantic U.S are also 

relevant to this study. These authors used canonical correlation analysis to define 

the primary patterns of variability among late winter (January-February) 

precipitation, snowfall, temperature, and cyclone frequency data sets for the Mid-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Two: Climatic forcing o f a multispecies recruitment pattern in Chesapeake Bay 86

Atlantic. Their primary pattern depicts two primary cyclone tracks. The first 

begins over the north central Gulf o f Mexico and tracks through the Ohio Valley. 

Storms following this path generally pass to the northwest of the Mid-Atlantic 

region. Storms following the second track originate in the northeastern Gulf of 

Mexico, crossing Florida, and travel north-northeastward, along the coastal U.S.

Knappenberger and michaels (1993) reported, “a strong correlation between 

an abundance of cyclones in the Ohio Valley, and below normal precipitation and 

snowfall amounts, and above normal temperatures across most of the mid- 

Atlantic region" while, “an abundance of storms along the southeastern Atlantic 

coast is associated with above normal precipitation and snowfall amounts, and 

lower than normal temperatures over the region.” As described, these cycfone 

track modes should be inversely related to the Ohio Valley and Azores-Bermuda 

Highs respectively. The coastal storm track, and its associated cold and wet Mid- 

Atlantic weather would occur with a jet stream trough and high pressure over the 

Ohio Valley. Conversely, a relatively strong Azores-Bermuda High pattern would 

result in a westward displacement of the storm track Mid-Atlantic weather under 

these conditions would be relatively warm and dry. This climate pattern is 

associated with a ridge in the je t stream over the eastern U.S.

The results of Davis et al. (1991) Knappenberger and michaels (1993), and 

those of this study all suggest that variability in the relative dominance of the 

Azores-Bermuda and Ohio Valley high pressure systems should be directly 

related to CBASS recruitment index scores. To confirm this, precipitation and 

temperature anomaly maps were produced for the continental U.S. using the 

National Climatic Data Center's climate division dataset web page (http:// 

www.cdc.noaa.gov/USclimate/USclimdivs.html, 2000). These maps were 

generated by plotting the difference between actual precipitation and temperature 

and the long term (1950-1995) mean conditions for each U.S. climate division.
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Annual anomalies were averaged and plotted for two different year groups. 

The first included the years 1976,1977,1988, and the second, the years 1970, 

1993, and 1996. The groups were chosen to represent the three years featuring 

the strongest positive (favoring shelf spawners) and negative (favoring 

anadromous fishes) CBASS index scores respectively. Since the CBASS 

recruitment index is correlated with the Azores-Bermuda and Ohio Valley High 

pressure patterns, these precipitation and temperature anomaly maps (Figure 

2.24) convey the March weather conditions defined when clusters seven and ten 

are dominant, respectively.

Average precipitation anomalies Average temperature anomalies
March 1976,1977, & 1988March 1976,1977, & 1988

Average temperature anomalies 
March 1970,1993, & 1996

Source: NOAA-CIRES/CIImate Diagnostics Center

FIGURE 2.23. Composite precipitation and temperature maps for the three strongest positive (a and b) 
and negative (c and d) CBASS recruitment pattern years. Anomalies are relative to 1950- 
1995 toog term means within each IXS. climate division.
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These maps clearly show that the climatic patterns presented by the 

dominance o f clusters seven and ten have been correctly interpreted from the 

work o f Davis et al. (1991) and Knappenberger and michaels (1993). Years in 

which anadromous fishes recruited strongly, shelf spawners weakly, and the Ohio 

Valley High predominated (1970.1993.1996). are those featuring lower than 

average temperatures over the eastern two-thirds o f the U.S. Further, the 

precipitation anomaly pattern for these negative CBASS recruitment index years 

are above normal along the U.S. east coast from Florida to New England. 

Conversely, the positive CBASS index and dominant Azores-Bermuda High year 

group (1976,1977,1988) depicts dry conditions over much of the Chesapeake 

Bay watershed. The precipitation maps clearly show that this is due, as 

Knappenberger and michaels (1993) suggested, to the westward displacement of 

the dominant wintertime storm track. During these years, temperatures were also 

well above normal over the eastern two-thirds U.S.

Climate-fish connections

This exploration o f the link between climate and the CBASS recruitment 

pattern indicates that extension of cold stormy winter conditions into the month of 

March result in negative CBASS index scores or enhanced anadromous and poor 

wintertime shelf spawning fish recruitment to the Chesapeake Bay. These 

weather conditions occur with a je t stream trough over the eastern U.S. and the 

associated accentuation of the Ohio Valley High. Conversely, positive CBASS 

scores (strong shelf spawning and weak anadromous species spawning) occur 

when March is warmer and drier than normal. This scenario is associated with 

ridging o f the je t over the eastern U.S., earlier than normal presence o f the spring

summertime Azores-Bermuda High climatic pattern, and the associated westward
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displacement of the storm track from the Atlantic coast to the Ohio Valley and 

northern New England.

Coastal spawning/climate relationships

Research regarding the ciimate-recruitment relationship(s) for winter 

spawning coastal shelf spawners indicate that dominance of the Azores-Bermuda 

high would likely lead to enhanced recruitment for these species while dominance 

by the Ohio Valley High would inhibit their recruitment to Chesapeake Bay. The 

prime winter spawning grounds for these species is thought to be off the coast of 

southern North Carolina primarily during December and January (Pacheco, 1962; 

Kendall and Reintjes, 1975; Warlen, 1994). Larvae and postlarvae are thought to 

depend upon wind driven coastal currents to be transported to the mouths of 

coastal embayments including the Chesapeake Bay. Planktonic surveys have 

revealed that these winter-spawned fishes begin to recruit to these embayments 

in late winter and begin to reach their oligohaline-mesohaline riverine nursery 

habitats beginning in March (Massmann etal., 1954; Massmann etal, 1961; 

Pacheco, 1962; Kendall and Reintjes, 1975; Merriner et al., 1979; Olney and 

Boehlert, 1988; Ahrenholz, 1991; Warlen, 1992; Bodolus, 1994; Norcross and 

Wyanski, 1994; Warlen, 1994).

Pressure gradient orientation during years of dominant Azores-Bermuda High 

(cluster seven) days in March dictate that prevailing winds over the southern Mid- 

Atlantic and South Atlantic Bights should be southerly. This has been confirmed 

by studies of both wind and coastal sea level (Bryson and Hare; 1974; Blanton et 

al., 1985; Schwing et al., 1988). These same studies indicate that winter-spring 

climate transition features mixed wind patterns and domination of the Ohio Valley
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High (cluster ten) leads to north-northeasterly winds that would likely advect 

larvae away from the Chesapeake Bay.

These observations suggest that the positive correlation between CBASS 

index scores March Azores-Bermuda High days, and the negative correlation 

between CBASS scores and persistence of the Ohio Valley High into March, are 

the result of either favorable or unfavorable wind regimes over coastal Mid- 

Atlantic Waters. This is borne out in the modeling efforts of Nelson et al. (1977), 

Reish et al. (1985), and Bodolus (1994) which suggest that recruitment o f these 

species is enhanced by southerly or southwesterly winds. Based upon size and 

age distributions of shelf species larvae, Warlen (1992) concluded that their cross 

shelf transport decreases by April. Therefore, if the Azores-Bermuda High spring 

circulation patterns set up earlier, cross shelf transport would likely be enhanced 

along with recruitment to Chesapeake Bay. Likewise, if late winter circulation 

patterns extend into March, recruitment would likely be inhibited.

Wind is not the only weather characteristic which is consistent with the 

climate-recruitment patterns observed in this study. Otolith hfndcast birth dates, 

daily incremental growth, and meteorological conditions during the January-March 

period led Maillet and Checkley (1991) to conclude that coastal storms passage, 

and the accompanying increased wind speed and oceanic heat loss, reduced 

growth in larval Atlantic Menhaden off the North Carolina coast Since growth rate 

appears to be inversely related to mortality (Ware, 1975; Miller etal., 1988; Bailey 

and Houde; 1989; Pepin, 1993), Maillet and Checkley concluded that winter 

coastal storms may reduce annual recruitment. This would be consistent with the 

climate-recruitment patterns described in this paper given the contrasting 

dominant winter-spring storm track patterns associated with the Azores-Bermuda 

and Ohio Valley Highs, as explained above and seen in figure 2.23.
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This climate-recruitment relationship also leads to dry and warm conditions 

during the upriver migration and first weeks of tidal oligohaline nursery habitat 

utilization by shelf spawners. It is reasonable to assume precipitation and cold 

weather in March could reduce the ability of these early life stage fishes to migrate 

upstream and reduce survival, though no direct supporting evidence is currently 

available.

Cold weather and precipitation may also affect the riverine nursery habitat 

suitability and extent for these species through their effects on physical 

parameters likely to impact the prey of larval fishes. Massman et al. (1962) found 

larvae from 18-28mm (fork length) within the mouth o f the Chesapeake from 

December to March. Transformation to the juvenile form occurs in the fishes’ 

riverine nursery area habitats at 38mm (Kendall and Reintjes, 1975). Analysis of 

738 larval and postlarval fish (19mm-55mm) digestive tracts by Jane and Carlson 

(1971) demonstrated that fishes depend upon adult copepods until they reach 

about 40mm (size of transformation) when phytoplankton began to comprise a 

majority o f their diet by volume. This developmental-dietary schedule suggests 

that an earlier spring phytoplankton bloom would provide for enhanced 

zooplankton appropriately timed for the needs of these critical life stages of 

Atfantic menhaden. Since spot and summer flounder also recruit to the Bay in 

March as larvae and postiarvae, an early spring bloom may also increase growth 

and survival during their critical early life stages.

Anadromous fish/climate relationships

The recruitment dynamics o f the striped bass has been the focus o f a large 

number o f studies. This can largely be attributed to the recreational and 

commercial importance of the fishery and the dramatic decline in the Atlantic
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coast population during the 1970's. This study indicates that recruitment is 

strongly influenced by forces other than spawning stock biomass and egg 

abundance (for example, Ulanowiczand Polgar, 1980; Mihursky et al., 1981; 

Polgaretal., 1985; Uphoff, 1998; Richards and Rago, 1999). There is also strong 

observational evidence (Boynton eta l.. 1981: Goodyear. 1985: Uphoff, 1998: 

Olney et al, 1991), confirmed by individual-based modeling (Cowan and Rose, 

1993), suggesting that annual striped bass recruitment strength is set between 

the early larval and early juvenile life stages.

During the last several decades, a number of variables have been proposed 

to explain recruitment variability in the Atlantic striped bass population. A non- 

inclusive list includes toxin and pH related mortality of eggs and larvae (Palawski 

etal., 1985; Mehrle etal., 1987; Hall, 1988; Setzler-Hamilton etal., 1988; Hall, 

1987), nutrient loadings (Price et al.,1985; Lindstrom, 1993; Tsia et al., 1991), 

temperature (Heinle etal., 1976; Merriman, 1941; Ulanowicz et al., 1982; Secor 

and Houde, 1995; Rutherford and Houde, 1995), riverflow-salinity effects 

(Rulifson and Manooch, 1990; Van Den Avyle and Maynard, 1994), and the 

combined effects of both temperature and riverflow (Mihursky etal., 1981; Polgar 

etal., 1985: Uphoff 1992).

Some o f the proposed theories appear contradictory. For example, Price et 

al. (1991) suggested that increased phytoplankton biomass, related to 

eutrophication, was behind the decline of the striped bass stocks. According to 

this theory, increased nutrients leads to increased phytoplankton biomass which, 

in turn, reduced both adult and young-of-the-year habitat through decreased deep 

water oxygen levels and shading of submerged aquatic vegetation, respectively. 

In contrast to this theory, Tsia et al. (1991) proposed that more advanced sewage 

treatment in the Potomac River has reduced spring nutrient levels and led to 

decreased phytoplankton and the zooplankton prey o f striped bass larvae.
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One reason existing evidence supports a wide variety theories is that many of 

the forcing variables identified by various researchers are correlated. For 

example, this study has shown that temperature, precipitation, and therefore 

riverflow are often correlated during the late winter-early spring months. Uphoff 

(1992), in his study of factors affecting egg and larval survival in the Choptank 

River, a tributary of Chesapeake Bay, also found that he could not differentiate 

between the effects of April riverflow, temperature, pH, and conductivity on striped 

bass survival rates.

Temperature is another variable credited with having both positive and 

negative effects upon striped bass cohort strength. The contrasting effect of this 

variable however seems to be directly related to seasonal timing. Cold winter 

conditions are associated with positive recruitment anomalies (Heinle et al., 1976; 

while abrupt cold periods in mid to late spring appear to increase mortality rates 

(Polgaretal., 1976; Rogers and Westin, 1981; Secorand Houde, 1995; 

Rutherford and Houde, 1995).

The majority o f observed temperature and riverflow effects found in the 

literature regarding recruitment variability o f the Atlantic striped bass population^) 

appear to be consistent with the findings of this study. One of the most 

comprehensive studies available is Mihursky et al. (1981). These authors 

observed tha t

a), striped bass young-of-the-year abundance was strongest in years 
featuring anomalously cold winters, strong spring riverflow, and higher 
than average April temperatures,

b). egg density increased in an upriver direction within the spawning area,

c). larval gut fullness increased upstream as well, in accordance with 
ambient zooplankton densities,
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d). larvae fed upon the largest available zooplankton prey they could 
capture,

e). larvae selected for prey species in accordance with their (prey) spatial 
distributions.

Based on this evidence, Mihursky et al. concluded that cold, high flow late 

winter-early spring conditions result in further upstream migration of the spawning 

run and therefore a general upstream displacement of the egg distribution. This 

scenario places developing larvae in a location of peak larval fish prey 

(zooplankton) abundance. Following Heinle's theory, normally high zooplankton 

densities should be enhanced by the larger supply of detritat material provided by 

cold high flow late winter and early spring conditions. They further suggest that 

areas in which ideal larval prey conditions exist are larger and extended further 

downstream under these hydro-climatic conditions.

While not specifically addressed by Mihursky etal., low temperature may also 

act to expand the nursery area in time by prolonging the dominance of the winter- 

early spring zooplankton assemblage striped bass have been shown to utilize as 

prey. This is indicated by seasonal and spatial distribution o f winter-dominant 

zooplankton species important in the diet o f larval striped bass, most notably 

Eurytemora affinis, Bosmina longirostris, and cyclopoid copepods (Merriman, 

1941; Setzler-Hamilton etal., 1981; Martin et al., 1985; Limburg et al., 1997 

Beaven and Mihursky, 1980; Robichaud-LeBlanc et al., 1997). Further, it has 

been shown that the growth rate and productivity o f the summer dominant 

estuarine copepod Acartia tonsa are higher than those of E  affinis as 

temperatures rise from 10 to 15 degrees Celsius (Heinle, 1969).
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CONCLUSION

The negative relationship between recruitment of winter shelf spawning 

species and spring spawning anadromous species in the Chesapeake Bay, 

appears to be dictated by weather-driven hydrographic and biological variability. 

The negative correlation or ‘see-saw' pattern contrasting recruitment of shelf 

spawned with that of anadromous fishes may be related to the combined 

dependence of both species groups on similar river reaches within the estuary 

and the contrasting spawning strategies. These contrasts are most evident in the 

different ways in which the early life stages of these two species groups are 

‘carried’ to these nursery grounds. Anadromous species are spawned in tidal 

freshwater river reaches while shelf spawned pre-metamorphosed (larval and 

postlarval) fishes, without the ability to sustain upstream movement depend upon 

tidal currents and bilayer estuarine countercurrent circulation for their transport to 

these areas.

While most recruitment research pertaining to CBASS species to date has 

focused on winter (December - February) or spring (April - June) months, the 

statistical models used in this study demonstrated the importance of March 

climatic forcing. March can be thought of as the ‘fulcrum’ month upon which the 

bipolar ‘see-saw1 CBASS pattern ‘teeters'. The importance of March over April 

and May makes sound ecological sense since it is during this time that shelf 

spawners are in the final leg of their up-estuary migration to their nursery grounds. 

Further, conditions in March largely determine the physical and chemical 

environment during the initial phases of the annual spring phytoplankton bloom. 

Since the eariy life stages o f both species groups inhabit the upper tidal rivers and 

Bay during the eariy spring, March hydroclimatic variability within these areas 

likely influences the quality, timing, and extent o f suitable nursery habitat
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For example, persistence of the winter Ohio Valley High synoptic scale 

climate pattern would extend cold and fresh conditions into March. This would, in 

turn, increase the spatial and temporal extent o f suitable anadromous fish nursery 

areas, since anadromous fishes feed primarily on mesozooplankton species 

dominating the winter assemblage.

In contrast to this scenario, March dominance by the Azores-Bermuda High 

climatic pattern presents relatively warm and dry conditions within the 

Chesapeake Bay watershed. This early spring scenario likely leads to an early 

spring productivity bloom and an early transition from the winter to the spring 

zooplankton community. Since shelf spawned species arrive in their upper 

estuarine nursery areas as postlarvae as early as March, an early bloom may be 

to their benefit.

In summary, March appears to be the fulcrum' in the interannual ‘see-saw1 

pattern favoring either the recruitment of anadromous or shelf spawned species in 

the Chesapeake Bay. Environmental conditions ‘swing’ to benefit anadromous 

fishes given prolonged cold and fresh conditions within the Mid-Atlantic region, 

through a spatial and temporal extension of suitable nursery area habitat 

Recruitment ‘swings' to benefit shelf spawned species when northwesterly winds, 

dry conditions, and high temperatures exist in March.

These findings are consistent with both leading theories proposed to explain 

the general causes of recruitment variability in marine fishes; Sinclair and lies’ 

(1989) Member-Vagrant and Cushing's (1990) Match-Mismatch. Plausibility of 

the climate-* nursery area-*recruitment relationships suggested in this Chapter 

will be investigated through a detailed simultaneous comparison o f nursery area 

hydrography, zooplankton community structure, and annual juvenile fish 

abundance data sets in Chapter Three.
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INTRODUCTION

Chapters One and Two described the temporally and spatially pervasive 

CBASS muitispecies fish recruitment pattern and attributed its interannual 

variability to the nature and timing of the seasonal climate transition from winter to 

spring. During the course of this study, the striped bass and Atlantic menhaden 

are often used as ‘model’ species for the anadromous and shelf spawning species 

groups respectively, due to the volume of detailed spawning and early life history 

information for these species.

Based upon the life history requirements and strategies of the two negatively 

correlated species groups and the statistical model results in Chapter Two, it was 

hypothesized that persistence of the seasonal Ohio Valley high pressure system 

leads to colder, and perhaps wetter, than normal winters as well as a late winter to 

spring transition. This scenario appears to benefit recruitment of anadromous 

fishes and inhibit recruitment of winter spawning continental shelf (coastal ocean) 

species that recruit to the Bay in early spring. Conversely, relative dominance of 

the Azores-Bermuda high pressure system during the late winter-early spring 

period (specifically March), brings relatively warm and dry conditions and leads to 

an early transition to spring.

Review of the available life history requirements and spawning strategies of 

key CBASS anadromous and shelf spawning species suggested that the 

mechanisms most likely responsible for the bipolar recruitment pattern affect the 

survival of the fishes from the egg to juvenile life stages. For the anadromous 

fishes, these processes must influence spawning conditions, or egg and larval 

survival within the tidal freshwater-oligohaline river reaches that they utilize as 

nursery areas from early April through the summer months. For shelf spawners, 

these processes could operate on their late winter to early spring larval and
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postlarval migration into these same nursery areas, as well as on the March to 

summer period that they too spend in the rivers.

Based on feeding, distribution, and survival research by Heinle et al, (1976), 

Polgar (1976), Ulanowicz and Polgar (1980), Beaven and Mihusky (1981), and 

Setzler-Hamilton etal. (1981), Mihursky et al. (1981) proposed three factors which 

might account for recruitment variability in the best researched species of the 

CBASS pattern, the striped bass. First, among these was that late winter-early 

spring high flow and cold conditions supply and transport more detritus and 

detrital derived nutrients to the striped bass nursery area. As Heinle first 

proposed, this should increase the production of the zooplankton prey of striped 

bass larvae and postiarvae.

The second proposal by Mihursky et al. extended the first, adding that high 

spring flow and higher zooplankton production likely increases the nursery areas 

of the striped bass. The last proposal by these authors was that cold fresh 

conditions in the early spring delay spawning of adult fish until they have migrated 

into the upper end of their spawning habitats. Since these areas were believed to 

be more productive areas than those further downstream, Mihursky et al. 

hypothesized that, ‘emerging larvae have sufficient time to grow through the 

critical feeding stages prior to being transported out of the rich nursery area.’

To examine the likelihood that an upstream displacement of the striped bass 

spawning zone increases survival during the egg to juvenile developmental 

period, egg abundance data and juvenile abundance survey data were used to 

calculate egg-juvenile survival. These survival estimates were then compared to 

spatial distributional characteristics of the eggs. Further, these same data were 

used to determine whether either the Azores-Bermuda (warm and dry) or Ohio 

Valley (cold and wet) high pressure systems were correlated with striped bass 

survival.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three: The effect o f winter-spring seasonal transition dynamics on muitispecies recruitment in Chesapeake Bay_________106

To examine the likelihood that the increased late winter-early spring flow and 

the timing of the winter-spring transition influence the tidal ffesh-oligohaline river 

reaches both CBASS species groups utilize as nursery areas, hydroclimatic and 

zooplankton data sets are examined with relative annual abundance of four key 

CBASS species, the striped bass (Morone saxatiHs), white perch (Morone 

americana), spot (Lefostomus xanthurus), and the Atlantic Menhaden (Brevoortia 

tyrannus).

The prime focus of this chapter will be to determine whether interannual 

hydroclimatic variability, accordant with the synoptic scale climatological features 

defined in Chapter Two, influences the quality and quantity of the habitat in the 

tidal freshwater-oligohaline river zones in ways that are consistent with the 

CBASS recruitment pattern.
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METHODS

The first step in the simultaneous analysis of river-specific nursery area 

conditions and key CBASS species' recruitment is to establish the existence of 

the CBASS pattern on local scales in the three largest Virginia tributaries of 

Chesapeake Bay. Relative annual juvenile fish abundance was calculated for the 

Rappahannock, York, and James river systems by summing annual catches from 

consistently sampled sites for the Virginia Institute of Marine Science’s (VIMS) 

striped bass seine survey in each river.

Since principal components analysis was used to initially isolate the CBASS 

pattern, it was used here as well. The number of observations (cases) used in 

this analysis was limited to include years when consistently sampled stations 

were visited (1980 -1998). Since higher case to variable ratios help ensure robust 

PCA results, the annual relative abundance for only four species (variables) were 

used in the analysis. These species, spot (Lefostomus xanthurus), Atlantic 

menhaden (Brevoortia tyrannus), striped bass (Morone saxatilis), and white perch 

{JM. americana) were chosen since they represented the four species most 

consistently and strongly weighted in the CBASS patterns previously isolated in 

Chapter One. Further, the former two species represent the shelf spawner group 

while the latter pair represents the anadromous group.

Striped Bass egg distribution and survival and climate

The first set o f analyses focus on Mihursky et al.'s (1981) theories that fish 

spawned from eggs distributed further upstream have lower mortality rates. In 

addition to exploring the egg distribution-survival relationships, survival o f striped 

bass eggs to the juvenile life stage was compared to the number of March days 

classified as Azores-Bermuda or Ohio Valley High pressure systems. These latter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three; The effect o f winter-spring seasonal transition dynamics on muitispecies recruitment in Chesapeake Bay [08

analyses were designed to test the relationship between synoptic scale climate 

features and the CBASS recruitment pattern defined in Chapter Two.

Unfortunately only six years of detailed annual egg distribution data were 

available. These data were found in a striped bass study o f the Pamunkey river 

published by Olney et al. (1991). These researchers sampled striped bass eggs 

from single randomly chosen stations within each often 4.8 km long river 

segments or strata. Strata were sampled semiweekly to weekly with dual (bongo) 

333 pm plankton nets in a stepped-oblique manner for 2-6 minutes. Egg 

densities were calculated using flow meter derived volume filtered values.

Juvenile striped bass annual abundance was calculated using five bi-weekly 

seine samples taken from stations at river miles 41,45, and 50, in all years except 

1980 and 1988. Year 1980 was dropped from the analysis since only one of these 

three stations was sampled in this year. Two of the three stations sampled in 

1980-1988 were sampled in 1989, as station 41 was permanently moved one mile 

upstream- Data for mile 42 was used in place of 41 for this year. Relative 

survival estimates for five of these years were calculated by dividing the annual 

Juvenile abundance in the Pamunkey River (see below), by the total Pamunkey 

River egg production estimated by Olney eta l. (1991).

To test Mihursky et al.’s theories, annual survival estimates were compared to 

rivermile location of the downstream 50th percentile of eggs. Survival was 

compared to the distance between the lower and upper most Pamunkey river 

transects found to contain eggs, also provided in Olney e ta l. (1991). Finally, 

comparisons were made between annual survival estimates and the number of 

March days o f both high pressure patterns o f interest A least squares linear 

model was also constructed to determine if the climate-CBASS relationships 

defined in Chapter Two could be related to survival striped bass during their early 

life stages in the Pamunkey River.
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River specific climatic-hydrographic-zooplankton-fish recruitment analyses

The synoptic classification methods used in Chapter Two represent a top- 

down’ approach in exploring the link between climate and interannual recruitment 

variability. The term, top-down’ refers to the fact that climatic variability is 

described in its most general form. This is in contrast to studies employing 

methods such as stepwise regression, which choose the ‘besf predictors from a 

pool of very specific (and intercorrelated) individual weather and climate variables.

The synoptic classification approach is a more appropriate first step in 

establishing a climate-recruitment link primarily because it treats climatic 

variability realistically. However, if synoptic-scale climatic variability influences 

recruitment on large scales, it must do so through biological or hydrographical 

processes operating on smaller, river basin scales. Therefore, these processes 

should be evident in major river systems throughout the Bay, as is the CBASS 

recruitment pattern.

Hydrological (salinity), meteorological (heating degree days), biological 

(zooplankton), and recruitment data, are used for the three largest Chesapeake 

Bay tributaries in Virginia. These rivers were used because they provide a degree 

of independence in the analysis since they were not used to establish the climate- 

recruitment relationships described in Chapter Two. These data are examined to 

explore the possibility that nursery area habitat suitability or areal extent for 

CBASS species are differentially affected by the weather and climate conditions 

which result from dominance o f the Azores-Bermuda High over the Ohio Valley 

High, or vice versa during March.

The Virginia Institute of Marine Science (VIMS) conducts a seine survey using 

methods and gears similar to the MDNR survey (see Chapter One for details). 

Also targeting the striped bass this seine survey samples the three largest
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Chesapeake tributaries in Virginia, the Rappahannock, York, and James river 

systems. By summing the number of fishes sampfed at consistently sampled 

stations, river-specific indices were calculated.

While the CBASS recruitment pattern operates on large scales, it could not be 

assumed to be present and strong on the scale of individual river basins.

Principal components analysis is used to examine the primary modes of variance 

among the recruitment time series of four species: striped bass (Morone saxatilfs), 

white perch (M. americana), spot (Leiostomus xanthurus), and Atlantic menhaden 

(Brevoortfa tyrannus). These four ‘indicator* species were chosen because they 

were consistently strongly weighted either positively (shelf spawners-spot and 

menhanden) or negatively (anadromous fishes-striped bass and white perch) in 

the CBASS pattern.

The PCA results described above were used only to confirm the existence of 

the CBASS pattern within each of the Virginia river basins studied here. Annual 

relative pre-recruit abundance time series for each of the four indicator fish 

species are used to examine the possibility that climate-forced interannual 

variation in pre-recruit habitat extent and suitability may be responsible for the 

CBASS recruitment pattern.

Zooplankton

The U.S. Environmental Protection Agency's Chesapeake Bay Program 

(CBP) monitors monthly zooplankton densities throughout the Bay and its major 

tributaries. Since zooplankton are influenced by hydrographic conditions and 

serve as prey for larval fishes, these data w ill serve as indicators o f nursery area 

habitat suitability for the fish species of interest Zooplankton sampling consists of 

oblique five minute tows o f 0.5m dual bongo nets. Net mesh is 202 microns. 

Each net is equipped with a flow meter to determine the sampled water volume.
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Zooplankton are enumerated using a coefficient of variation stabilizing method 

(Aldenetal., 1982).

Data for the three largest Virginia Bay tributaries, the Rappahannock, York, 

and James river systems, were used for this analysis. Available data for the 

spring months included the years 1986-1996, except for 1995 when June 

zooplankton samples were not taken for the York and Rappahannock Rivers. 

Stations used for this study are coded as RET3.1, RET4.3, and RET 5.2 by the 

CBP for the Rappahannock, York, and James rivers respectively by the CBP 

(Rgure 3.1).

These stations were chosen because analysis of CBP hydrographic survey 

data revealed that they are in the general vicinity of the freshwater interface 

during the spring months and were the closest available sites to the nursery areas 

utilized by both CBASS species groups. Furthermore, due to their proximity to the 

freshwater interface, these stations are likely to be more responsive to 

climatologically induced hydrographic variability than those further up or down 

river.

Prior quality control screening of the zooplankton data for the rivers of interest 

indicated that species resolution was variable throughout the study period. For 

example, calenoid copepods are often, but not always, identified to species level 

as adults, but not as nauplii. Barnacle species are not identified to species level 

although a life stage identifier (indicating cypris or nauplius) is provided. These 

inconsistencies have been attributed to changes in the personnel responsible for 

taxonomic identification (Jacqueline Johnson, CBP Living Resources Data 

Manager, personal communication).
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FIGURE 3 .L  Zooplankton (RET) and fish (only the VTMS seine data were used here) sample sites.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three: The effect o f winter-spring seasonal transition dynamics on multispecies recruitment in Chesapeake Bay 113

To overcome this problem, the data were subsetted to include only those 

taxa likely to be important in the diet of larval fish prey for the primary species of 

interest (Lippson etal., 1979; Mihursky et al.r 1981; Setzfer-Hamilton etaL, 1981; 

Martin eta l., 1985; Rutherford and Houde, 1995; Limburg etal., 1997). Within this 

subset, abundance values were summed across related taxa featuring 

inconsistent levels of taxonomic identification. Rarely occurring species were not 

considered. Regardless of taxonomic level, taxa that appeared to be consistently 

identified were never grouped. As a result, taxonomic resolution o f the processed 

data set is as high as species level in some cases, as with the mysid Neomysfs 

americana, and as low as order level as with the cyclopoid copepods.

Local weather data

Heating degree day (HDD) data from the International Airport meteorological 

station in Richmond, Virginia (cooperative weather station 447201) were also 

included in this analysis. This variable, acquired from the National Climatic Data 

Center (NCDC), served as an integrative measure o f springtime warming for the 

region of study. Heating degree days are caclulated by subtracting from 65 

Fahrenheit degrees (18.33 C), the mean daily temperature for each day of the 

month. Monthly HDD are merely the summed postive daily HDD. The Richmond 

airport station was chosen after considering proximity to the tidal freshwater 

reaches of the tributaries of interest, period of record, and likelihood of 

contamination due to the urbanization (known to cause elevations in recorded 

temperature). Spatial variability of heating degree days in the region was also 

considered and it was found that this single station could be used to adequately 

describe conditions for each of the three rivers (Owenby et al.,1993).
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Salinity data

The CBP also conducts hydrographic data cruises in the Bay and its 

tributaries on a semi-monthly basis. Surface salinity for the Virginia tributaries on 

the first cruise of every month was used at this stage. Bottom salinity was also 

available, however it was not used because it would mimic the variability in 

surface salinities except when counter-current bi-layer estuarine circulation is 

important In this case, bottom salinity would not be an appropriate proxy for river 

flow. Neither would it be indicative of pre-recruit (juvenile) fish habitat suitability 

since YOY fishes generally inhabit shallow areas of rivers and creeks during the 

spring and summer months.

A variable indicative of the location of the freshwater interface and turbidity 

maximum zone was derived from the salinity data for each river. Specifically, the 

variable identifies the longitude of the station featuring the smallest recorded 

salinity value greater than zero. Since west longitude values are recorded as 

negative, larger values occur when the freshwater interface and turbidity 

maximum zone displaced further downstream (eastward). Since this variable is 

indicative o f the amount o f freshwater habitat available in the rivers, it is 

abbreviated as ‘FWextenti in figures.

Local scale data analysis methods

Covariance of zooplankton, salinity, and fish recruitment for each of the three 

river systems is explored using PCA. Principal components analysis is conducted 

on the combined, river specific HDD-surface salinity-zoopIankton-CBASS data 

correlation matrices to describe the primary modes o f variance in the nursery area 

habitats of the Rappahannock, York, and James river systems. The correlation 

matrix is used as the input for the PCA since this is appropriate when variables 

are measured in different units.
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While inclusion of so many variables can provide a relatively complete picture 

of climatically forced hydrographic and ecological variability among this set of 

intercorrelated variables, it comes at a price. PCA of a data matrix featuring a low 

case to variable ratio allows for the possibility that the results are biased by 

extreme (and perhaps unrepresentative) data points. This problem is 

compounded in data sets that feature no strong patterns. In geometric terms, 

these data sets feature spherical data clouds. The degree of ‘sphericity* can and 

will be assessed through a scree plot of the PC eigenvalues or percent (or 

proportion) variance accounted for. Non-spherical data sets will feature few PC’s 

accounting for much of the total data set’s variance. Here the problem is also 

mitigated by independently analyzing three regional river systems simultaneously. 

If the data sets are non-spheroidal and results are consistent among these river 

systems, the low case to variable ratio of these analyses will not be considered 

problematic.
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RESULTS

River-specific CBASS patterns

The negative relationship between anadromous and shelf spawning species 

previously described as the CBASS recruitment pattern is evident in each of the 

three Virginia rivers analyzed. Figure 3.2 reveals that this pattern is the primary 

mode o f annual multispecies recruitment variability for the Rappahannock and 

James Rivers accounting for 43% and 49% o f the total data set variability.

For the York River, the CBASS pattern is represented by the second PC. For 

this river the CBASS pattern accounts for 25% of the variability within the four 

species annual abundance data se t The first PC of the York River and second 

PC’s o f the James and Rappahannock systems is a pattern of high or low 

abundance for all species together. Exceptions to these general descriptions 

occur in the James River PC’s where spot, in PC1 and white perch, in PC2 feature 

near zero weights.
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FIGURE 32 . Component loadings for the first two PC's resulting from the principal component 
analyses o f the relative annual abundance o f four key CBASS species within the 
Rappahannock, York, and James Rivers. Also listed are percent o f total data set variance 
accounted for by each PC.

Figure 3.2 clearly shows that the time series of the CBASS patterns for the 

rivers are very similar in trend and interannual variability. These results once 

again support the likelihood that large scale climatic lectors drive these negative 

abundance relationships between anadromous and winter shelf spawning species 

defined in Chapter One as the CBASS pattern.
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Time series o f CBASS recruitment pattern for VA rivers
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FIGURE 3.3. A  comparison o f annual PC scores accounting for the CBASS recruitment pattern for the 
Rappahannock (P C I), York (PC2), and James Rivers (PCI).

Striped bass egg distribution patterns

As described in Chapter Two, Mihursky et al., (1981) theorized that low 

temperatures in March, which were shown in this work to be related to the 

persistence o f the Ohio Valley High, may lead to striped bass spawning further 

upstream and hence, an upstream displacement o f egg distribution patterns. 

This, Mihursky et al. argued, may lead to enhanced survival from egg to juvenile 

fife stages and therefore increased annual recruitment since they believed 

zooplankton prey densities to be higher and overall mortality lower for larvae in 

the upper most regions o f the spawning area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three: The effect o f winter-spring seasonal transition dynamics on multispecies recruitment in Chesapeake Bay 119

Comparing survival estimates in the Pamunkey River to the distribution of 

eggs in that year directly conflict with this theory. Rgure 3.4 suggests that survival 

is strongly related to a downstream displacement of the eggs. Figure 3.5 shows 

that the spread of eggs is also strongly related to survival. Comparing survival to 

the number of March Azores-Bermuda High and Ohio Valley High days revealed 

negative and positive relationships respectively (Figures 3.6 and 3.7). These 

results are consistent with the relationships described in Chapter Two. Most 

convincing is the nearly perfect agreement between survival estimates and 

survival predicted from a least squares linear fit o f survival using the number of 

both High pressure systems in March seen in figure 3.8.

Pamunkey Striped Bass egg distribution versus juvenile survival 
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FIGURE 3.4. Scatterplot of relative striped bass survival from egg to the juvenile life stages versus
location o f the downstream 50th percentile o f the egg distribution for the Pamunkey River.
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Pamunkey Striped Bass egg distribution versus juvenile survival 
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FIGURE 3.5. Scatterplot of relative striped bass survival from egg to the juvenile life stages versus 
distance over which eggs were distributed (from the river mouth).
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FIGURE 3.6. Scatterplot o f relative striped bass survival from egg to the juvenile life stages and annual 
March Azores-Bermuda High frequency (as determined by the results o f the synoptic 
classification scheme used in Chapter Two). Years o f observation are plotted.
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FIGURE 3.7. Scatterplot o f relative striped bass survival from egg to the juvenile life stages and annual 
Ohio Valley High frequency. Years o f observation are plotted.
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FIGURE 3.8. Comparison o f the annual striped bass survival from egg to juvenile life stage for the
Pamunkey River with model fitted survival estimates. Variables in the model are annual 
March frequencies for the Azores-Bermuda High and the Ohio Valley High.
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These results indicate that cold wet conditions during March, brought on by 

the dominance of the Ohio Valley High over the Azores Bermuda High result in an 

expanded spawning area, a downstream displacement of eggs, and increased 

egg to juvenile stage survival for striped bass. These results are consistent with 

theories that striped bass recruitment is enhanced by extension of winter 

conditions into March. Further, it appears these conditions lead to an expanded 

nursery area zone and perhaps enhanced spring productivity with the supply of a 

larger than normal detrital pool. These theories can be put to the test by 

examining the physical and biological conditions within the CBASS species 

groups' nursery areas of the Rappahannock, York, and James rivers.

River nursery area conditions analysis

Since earlier analyses revealed that the CBASS pattern was described by 

either the first or second PC of key CBASS species juvenile abundance in the 

Rappahannock, York, and James river systems, results of the nursery area habitat 

conditions were presented as biplots of the loadings and scores of PC's one and 

two. These biplots (Figures 3.9-3.11) reveal that these two PC's account for 

between approximately 39% to 50% of the multivariate data sets describing 

CBASS species' nursery area conditions. Biplots will be described by river.

Rappahannock River

Figure 3.9 reveals that the primary mode of variance (PC1) within the 

Rappahannock River nursery area multivariate data set is defined by a 

downstream displacement of the freshwater interface (relative to its mean position 

for a given month). These conditions are undoubtedly brought on by higher than 

average flow. High FWextent years (1989,1993,1994, and 1996) also feature
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higher than normal densities o f zooplankton generally found in oligohaiine and 

tidal freshwater, such as Eurytermora affinis and Bosmina spp. The more 

estuarine (downstream) zooplankton taxa, AcarGa spp. and Barnacle nauplii 

occur during dry, negative PC1 score years.

Rappahannock River nursery area habitat PCA biplot
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nursery area conditions.

The second PC differentiates years with colder than average springs from 

warmer years. This component also contrasts years when zooplankton taxa peak:
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earlier rather than later. When springs are warmer than normal taxa peak in April 

while in colder springs their peaks occur in June. This effect is most pronounced 

for Bosminids and E  affinis since they respond both to cold and warm conditions. 

The lack of strong positive loadings for Barnacles and Acartia spp. variables in 

any month indicate that while they tend to bloom later in cold years, warmer 

springs do not affect their timing any more than do springs featuring near normal 

temperatures.

Given these zooplankton and climate patterns, the four CBASS species 

variables ordinate in a manner that is surprisingly consistent with previously 

described observations and theories. Juvenile abundance of shelf spawning spot 

and Atlantic menhaden is higher than normal in the Rappahannock River when 

warm and dry conditions occur in the spring. Striped bass abundance is higher 

than normal during cold springs while white perch are associated with cold and 

wet conditions.

York River

Results for this river are similar to those of the Rappahannock (Figure 3.10), 

though some differences exist. The first PC describes years featuring cold 

conditions in March, slightly warmer than normal in June, and wetter than normal 

conditions March-May. Under these conditions, the oligohaline zooplankton 

species tend to prosper while Acartfa spp. and barnacles appear to be benefitted 

most by a warm March, with the exception o f the May barnacle variable which 

also ordinates with fresher spring conditions.
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FIGURE 3.10. Biplot of the fast two PC’s resulting from the analysis ofYorfc CBASS species nursery 
area conditions.

Taking PC 2 into account, peaks o f the oligohaline Bosminids, Cyciopoid 

copepods, EL afffnis, and the mysid, Neomysfs americana occur in June when 

Marches are coid. White Bosminids and Cyciopoids peak in April following a 

warmer than normal March, E. affin/s peaks are always associated with a cold 

March.

All fish species appearto benefit, as do the majority of zooplankton taxa, from 

wetter than normal conditions. The CBASS recruitment pattern for the York River
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is primarily associated with the difference between cold and warm March 

conditions.

James River

The James River biplot (Figure 3.11) is similar to the York River results. The 

first PC generally describes cold March and April conditions and wet springs in 

general with negative scores and the reverse conditions with positive scores.
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While Barnacles were not identified consistently enough to be included in this 

data set, Acartia spp. tend to occur during moderately warm and dry springs. The 

oligohaline taxa are again favored in wetter springs featuring cold March 

temperatures. As described for the York River, the CBASS fish recruitment 

pattern is most closely associated with March temperature conditions while wetter 

conditions benefit all species, though perhaps benefiting anadromous species 

more than shelf spawners.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter Three; The effect o f winter-spring seasonal transition dynamics on multispecies recruitment in Chesapeake Bay 12S

DISCUSSION

This chapter investigated the link between climatically influenced nursery 

habitat conditions and the CBASS recruitment pattern defined in Chapter One. 

The initial phases of this work confirmed that the negative relationship between 

anadromous and shelf spawning fishes, evident in the analysis of regional 

Chesapeake Bay multispecies juvenile fish survey data sets, also exists on local 

river basin scales.

The second phase of analyses examined the theoretical link, proposed by 

Mihursky et al. (1981), proposing that enhanced recruitment in the striped bass 

during colder than normal Marches is due to an upstream displacement o f the 

spawning grounds. These analyses found evidence suggesting that striped bass 

survival is higher when eggs are distributed further downstream (figure 3.4). It 

should be noted that colder than normal conditions in the fate winter-early spring 

period are often associated with higher than normal flows.

Further, Grant and Olney (1991) demonstrated that eggs are distributed 

further downstream during years of high flow. These results are consistent with 

theories, also proposed by Mihursky et al. (1981), that cold and high flow 

conditions promote successful striped bass recruitment due to expanded nursery 

habitat and enhanced production o f their zooplankton prey through enhanced 

nutrient and detrital pools.

The linear model featuring positively weighted Ohio Valley High and 

negatively weighted Azores-Bermuda High March frequencies provides a nearly 

perfect fit of Pamunkey River striped bass egg to juvenile survival for the five 

years in the 1980s for which reliable data are available. These results strongly 

suggest that annual recruitment is influence by synoptic scale March circulation 

patterns as described in Chapter Two.
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These results are also consistent with the hypothesis, also proposed in 

Chapter Two, that the negative relationship between anadromous and shelf 

spawning species seen in the CBASS recruitment pattern is the result of mutually 

exclusive ideal nursery area habitat requirements for these two CBASS species 

groups. Specifically, favorabfe migration conditions and prey species abundance 

for the shelf spawning species were hypothesized to be associated with the warm 

and dry conditions and prevailing southerly winds associated with the Azores- 

Bermuda High. In contrast when cold and high flow conditions prevailed, 

associated with the a persistant Ohio Valley High, the anadromous fishes 

recruited strongly while shelf species did not To further explore the feasibility that 

this constitutes a multispecies variant of Cushing's Match-Mismatch recruitment 

theory, spring nursery area conditions were analyzed for each o f three major 

Virginian Bay tributaries.

Results of these analyses were remarkably similar among river systems. In 

each case, the negative relationship between anadromous and shelf spawning 

species j'uvenile abundance is related to contrasting March temperature 

conditions, where March temperatures were positively correlated with j'uvenile 

abundance of the shelf spawners, spot and Atlantic menhaden. The relationship 

between the extent of freshwater habitat (the FWextent variable) and the CBASS 

pattern is less clear. FWextent is negatively related to shelf spawning annual 

cohort strength and positively with anadromous juvenile abundance in the 

Rappahannock River. For the other rivers, all species appear to benefit from the 

flow related FWextent variable, though the relationship appears to benefit 

anadromous fishes more than shelf spawners.

The zooplankton-hydroclimatic relationships evident in these analyses are 

remarkably supportive of the multispecies Match-Mismatch hypothesis. First, 

timing of the peaks in ffeshwater-oligohalinezooplankton taxa, upon which striped
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bass and presumably other anadromous fish feed, best match the May-June 

feeding period for larval and postlarval anadromous fishes in years when March is 

colder than normal. When March is warmer than normal, these taxa peak in April 

and are less abundant than normal in May and June.

Normal or higher than normal abundances o f the estuarine calanoid copepod 

genus Acartia (generally comprised primarily o f A. clausi in the early season and 

A. tonsa later in the season), occur in years featuring warm and dry March 

periods. The relative dominance of the warm and dry Azores-Bermuda High and 

accompanying southerly winds present migration conditions, zooplankton 

assemblages, and zooplankton bloom timing that match the needs of winter shelf 

spawning species which utilize the upper tidal reaches of estuarine rivers as 

nursery areas.

The river basin specific hydroclimatic-fish recruitment patterns relationships 

described in this study are remarkably consistent They clearly demonstrate that 

the nursery area conditions presented to larvae and postfarvae of key CBASS 

species are radically altered by winter-spring climatic variability.
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CONCLUSION

Within this study it has been shown that the early life stages of anadromous 

and winter spawning estuarine dependant shelf species may be affected 

differentially by the nature and timing of the annual winter-spring seasonal 

transition. This seasonal transition was shown to be largely dependant upon the 

relative dominance of the Azores-Bermuda or Ohio Valley High synoptic scale 

circulation and weather patterns during March in Chapter Two.

Dominance of the Azores-Bermuda High leads to a warmer and drier March 

and a more rapid winter to spring transition. Analyses conducted in this Chapter 

demonstrate that these conditions promote an early spring (April) peak in the 

winter-spring dominant freshwater-oligohaline zooplankton taxa such as 

Eurytemora affinis, cyclopoid copepods, Neomysis americana, and both 

Bosminids and Daphnia spp. (cladocerans). Conversely, extended persistence of 

the winter dominant Ohio Valley High during March, leads to a June peak in these 

species.

These two climatic patterns were also shown to affect flow conditions during 

the late-winter and early spring period. The seasonal storm track associated with 

the Ohio Valley High occurs along the Mid-Atlantic coast. It is displaced westward 

when the Azores-Bermuda High is dominant so that the Chesapeake Bay 

watershed becomes dryer than normal. The resulting wet versus dry regimes 

have been shown to differentially and dramatically affect the composition of the 

annual spring bloom. The high flow mode, evident in the downstream 

displacement of the freshwater interface, results in a dominance of freshwater- 

oligohaline zooplankton species over the estuarine taxa (Acartia and Barnacles) 

for the upper tidal river reaches studied in this work. Conversely, under drier
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conditions the freshwater interface recedes upriver and the spring zooplankton 

composition is dominated by the estuarine zooplankton species.

These findings are consistent with the theory that late winter-early spring 

synoptic scale climatic variability affects multispecies recruitment patterns 

throughout Chesapeake Bay. The importance of March temperature and 

precipitation conditions suggested by statistical models in Chapter Two were 

confirmed in the nursery area habitat analyses in this Chapter. It appears that 

climatic variability in March is key to determining the timing of the seasonal 

transition from winter to spring. March conditions apparently determine whether 

conditions in the upper tidal rivers within Bay are more conducive for successful 

anadromous or shelf spawning species recruitment success. While direct causal 

connections cannot be determined with the analysis of historical data sets, 

temperature, flow, wind, and zooplankton conditions within these critical nursery 

areas appear to favor shelf spawners with an early spring and anadromous fishes 

with a late spring.
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Summary

As the title of this dissertation indicates, the overall goal of this work was to 

define and describe the role o f synoptic scale climatic variability in forcing 

multispecies fish recruitment patterns within Chesapeake Bay. In Chapter one, a 

single dominant multispecies recruitment pattern was identified. This 

multidecadal pattern, referred to as the CBASS recruitment pattern, depicts a 

negative relationship between the relative annual abundance of Chesapeake Bay 

anadromous and winter shelf spawning fishes utilizing the upper tidal reaches of 

the Bay and its tributaries.

The Bay-wide multidecadal persistence of the CBASS pattern strongly 

suggests a climatic forcing mechanism. This possibility was explored in Chapter 

Two. The investigation relied upon a synoptic scale climate classification 

procedure similar to that described by Davis and Kalkstein (1990). Using this 

procedure, each spring day (March-May) of every year in the study period (1966- 

1997) was classified as one often sea level pressure (SLP) patterns, each 

describing weather features typically occurring in the Mid-Atlantic region during 

this season. Monthly annual frequencies of each SLP pattern were compared to 

the CBASS recruitment index.

This synoptic classification approach, never before used in published fisheries 

recruitment investigations, has two primary advantages. First, since each typical 

spring SLP pattern can be described in terms of its characteristic weather profile, 

SLP pattern time series more realistically describe weather and climate variability 

eacting the ecosystem and its living resources compared to individual weather 

parameters such as temperature, rainfall, and wind speed. Not only is this a more 

realistic characterization o f climatic variability, but it also acknowledges that
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weather variables are often strongly intercorrelated. These two features of the 

synoptic scale climate characterization approach provide both theoretical and 

statistical advantages over traditional correlation approaches which typically use a 

single, or a combination of individual weather variables to model recruitment 

variability.

This approach proved extremely effective in defining the relationships 

between two well known regional climatic features and the CBASS recruitment 

pattern. It was found that the sign and magnitude of the CBASS pattern was 

largely determined by the relative dominance of the Azores-Bermuda or Ohio 

Valley high pressure systems during the month of March. If the former dominated, 

spring arrived earlier and drier than normal. Winter is prolonged with the 

persistence of the latter feature since it extends cold and relatively fresh 

conditions. Years in which spring ‘sprang early1 benefited shelf spawners and 

resulted in depressed populations of juvenile anadromous fishes. Conversely, 

when winter conditions extend into March, the anadromous spawning strategy 

seems superior to that of the winter spawning shelf species which utilize the upper 

Bay and its tributaries as nursery areas.

Anadromous fishes are spawned in April and develop into the juvenile life 

stage within these areas. In contrast, shelf spawners arrive from their winter 

spawning grounds as posttarvae as early as March. The life history similarities 

and contrasts suggest that climate may be influencing the CBASS recruitment 

pattern through processes occurring within these nursery grounds. Based upon 

previous research and the climate relationships described in Chapter Two, it was 

hypothesized that differences in the seasonal transition from winter to spring 

might differentially effect these two species groups immediately prior to (i.e. during 

adult spawning or larval migrations), or during their nursery period. Using 

hydrociimatic and zooplankton data for sites located near the freshwater interface,
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Chapter three evaluated this theory evaluated using data from the 

Rappahannock, York, and James Rivers.

The results of the three multivariate analyses were similar and demonstrated 

that the timing and nature of the winter-spring transition strongly influences 

nursery area conditions. Early springs feature April blooms of the freshwater 

zooplankton upon which the anadromous fishes likely rely. However, this means 

that May and June, important months for the early life stages of these species, 

feature declining and lower than average densities of these zooplankton species. 

Conversely, the estuarine copepods of the genus Acartfa, upon which the early life 

stages o f shelf spawned fishes likely depend, are more abundant in years 

featuring a warm March.

When winter conditions extend into March, the nursery areas appear ideal for 

anadromous fishes. As Heinle e ta l. (1976) and Mihursky et al. (1981) theorized 

with respect to the striped bass, cold and wet late winter-early spring conditions 

appear to extend the suitable nursery area of the anadromous fish group in time 

and space, where suitability is indicated by abundance of preferred prey and 

hydrographical conditions. The preferred prey o f this species (Eurytemora affinis, 

Daphnia, Bosminids, cyclopoid copepods, and Neomysis americana) persist 

throughout the spring, peaking in June when March is colder than normal. 

Further, these species remain the dominant mesozooplankton assemblage in all 

spring months (considered April-June for zooplankton) when fresher conditions 

prevail. The more estuarine Acartia copepods are depressed under these 

conditions.

Lastly, winds during the critical late winter-early spring cross-shelf advective 

transport period for shelf spawned species do not favor recruitment to 

Chesapeake Bay under the Ohio Valley High winter circulation pattern. 

Conversely, wind direction is favorable for their northwestward surface transport
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across the shelf and into the Bay when the spring-summer Azores-Bermuda High 

is dominant.

These findings suggest the interannual recruitment variability for many 

commercially and ecologically important Chesapeake Bay species can be 

accounted for by the seasonal dynamics of the winter-spring transition. While 

more detailed research will be needed to ascertain which specific factors and 

processes affect larval and postlarval survival for the CBASS species groups, the 

research presented here represents a generalized multispecies variant of 

Cushing’s Match-Mismatch hypothesis (1970,1975). As depicted in Figure S-1, 

Cushing focused on the match or mismatch between temperate water marine 

stocks, which he described as having fixed spawning seasons, and their larval 

prey (Cushing, 1969,1982). Since the zooplankton prey of these larval fishes 

were shown to be dependant upon the highly variable timing of the spring 

production bloom (Colebrook, 1965; Colebrook and Robinson, 1965; Robinson, 

1975; Colebrook 1979), annual spring conditions can match or be mismatched for 

larval fish survival.

Figure S-2a and S-2b describe the multispecies variant of the Match- 

Mismatch hypothesis that seems to apply to Chesapeake Bay. Rgure S-2a 

represents spring climate and nursery area conditions that are matched for the 

shelf spawner species group and simultaneously mismatched for the anadromous 

fishes. Figure S-2b describes the opposite scenario. Further work will be 

necessary before it can be determined whether zooplankton assemblages and 

densities directly affect larval fish survival or whether the zooplankton are 

independently responding to the same climatic conditions which influence larval 

fish survival.
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4
Match

Mismatch

Time

FIGURE S -I. Cushing's original Match-Mismatch hypothesis. Originally applied to North Sea stocks, 
Cushing proposed that good recruitment occurs when environmental conditions allow fora spring bloom 
timed such that larval 6sh abundance and their prey overlap (match). Mismatched conditions occur 
when rower temperatures delay the spring bloom until after the period o f peak larval abundance.

Shelf spawning 
Match ^ Anadromv

Mismatch

^  shelf soawnii

March April May June

FIGURE S-2a. Hypothesized scenario for climate-forced nursery area conditions favoring winter shelf 
spawning species over anadromous. This is a match for positive CBASS index conditions.
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Shelf spawning 
Mismatch Anadromv

Match

anadromous juveniles

March April May June

FIGURE S-2b. Hypothesized scenario for climate-forced nursery area conditions favoring anadromous 
species over winter shelf spawning. This is a match for negative CBASS index conditions.

More research will also be needed to determine what role, if any, wind 

direction, as influenced by the Azores-Bermuda and Ohio Valley high pressure 

systems, plays in influencing successful advective transport of shelf spawners to 

their tidal river nursery areas, if  the a wind effect can be demonstrated 

recruitment o f the shelf spawners woufd follow the Member-Vagrant hypothesis 

(Sinclair 1988; Sinclairand lies; 1989). This hypothesis proposes that recruitment 

for many coastal spawning species has evolved to occur in the time and space 

where eggs and larvae would usually be contained and transported to a Juvenile 

nursery area. In this case temperature only delays or speeds development and 

advective transport conditions determine recruitment strength.

As fisheries science begins enters its second century, fisheries management 

appears to be headed towards a multispecies approach. The goal is to begin 

setting realistic harvesting strategies that are no longer primarily based upon the 

'maximum sustainable yield’ o f single species. Instead, managers will seek to 

formulate strategies which acknowledge that fisheries removals have cascading 

ramifications a t the ecosystem level capable o f providing negative feedback to the
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fish populations (NMFS, 1999). This dissertation provides basic information that 

should be considered when formulating future fishery management plans.

For example, if the climate-recrurtment relationships influencing striped bass 

recruitment had been taken into account during the fate 1970’s and early 1980’s, 

the drastic reduction in spawning stock biomass and subsequent population crash 

may have been avoided (Richards and Rago, 1999). While strong management 

actions helped to restore the spawning stock until favorable recruitment conditions 

returned for that species, these same climatic conditions seem to have reduced 

annual recruitment in spot and Atlantic menhaden over the last decade. Fishery 

plans for these species should incorporate the winter-spring climate patterns 

described in this study as ‘trigger variables’. Under unfavorable climatic 

conditions, these ‘triggers' could be used to dictate more conservative annual 

harvests so that adequate spawning stock biomass is preserved in the face of 

poor recruitment
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