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DISSERTATION ABSTRACT 

Human development has eroded Chesapeake Bay's health, resulting in an increase in the 
extent and severity of hypoxia (:S2 mg 0 2 r1

). The Bay's hypoxic zones have an adverse affect 
on community function and secondary production of macrobenthos. The production of 
macrobenthos is important as these fauna link energy transfer from primary consumers to 
epibenthic predators and demersal fish, and serve as the foremost pathway that carbon is 
recycled out of the sediment. Additionally, bioturbation, an essential macrobenthic function that 
causes the displacement and mixing of sediment particles, increases the quality of marine 
sediments. In the marine environment bioturbation is primarily mediated by macrofauna which 
are susceptible to perturbations in their surrounding environment due to their sedentary life 
history traits. 

The effect of hypoxia on macro benthic production was assessed in Chesapeake Bay and 
three of its tributaries (Potomac, Rappahannock, andY ork rivers) from 1996 to 2004. Each year, 
25 random samples were collected from each system and macrobenthic production estimated 
using Edgar's allometric equation. Efforts were then focused on the Rappahannock River, a sub­
estuary of Chesapeake Bay known to experience seasonal hypoxia, to assess changes in 
macrobenthic production and function. During the spring, summer, fall, and following spring of 
2007 and 2008, samples were collected each season in each year, and DO concentrations were 
measured continuously at two sites in 2007 and two in 2008. A benthic observing system 
(Wormcam) was also deployed in 2009 from early spring to late fall to assess the impact of 
hypoxia on bioturbation. Wormcam transmitted a time series of in situ images and water quality 
data in near real-time. Results from the previous projects was used to develop a continuous­
time, biomass-based model, including phytoplankton, zooplankton, and macrobenthic state 
variables. The primary focus aimed at predicting the effect of hypoxia on macrobenthic biomass. 
Z ', a sigmoid relationship between macro benthic biomass and DO concentration, was derived 
from macrobenthic data collected from the 2007 and 2008 field experiments. 

Annual fluctuations in macrobenthic production were significantly correlated with DO. 
Hypoxia led to a 90% reduction in daily macrobenthic production relative to normoxia, and 
production at hypoxic sites was composed primarily of smaller, disturbance-related annelids. The 
reduced production resulted in an annual biomass loss of approximately 7320 to 13,200 metric 
tons C, which equated to a 6 to 12% annual displacement of the Bay's total macrobenthic 
productivity due to hypoxia. Macrobenthic production differed across seasons, and sediment 
reworking rates were significantly higher during normoxia, indicating a change in the functional 
role of the macrobenthic community. Hypoxia was found to significantly reduce bioturbation 
through reductions in burrow lengths, burrow rates, and burrowing depth. Although infaunal 
activity was greatly reduced during hypoxic and near anoxic conditions, some individuals 
remained active. 

The biomass-based model was successfully calibrated and verified, using independent 
data, to accurately predict B annually. Simulation analysis of the DO formulation showed B 
strongly linked to DO concentration, with fluctuations in biomass significantly correlated with 
the duration and severity of hypoxia. 
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DISSERTATION INTRODUCTION 

In the past few decades, a major focus for coastal science has centered on the influence of 

anthropogenic disturbance in coastal systems. Human activity adversely affects land 

topography, chemistry of the Earth's atmosphere and water, rates and balance ofbiogeochemical 

processes, and biodiversity (Vitousek et al. 1997). The human population in Chesapeake Bay 

watershed has grown exponentially since colonial times, with a 3-fold increase over the last 100 

years (Kemp et al., 2005). Eutrophication, an increase in the supply and accumulation of organic 

matter to a system (Nixon, 1995; Rabalais, 2004), is pervasive and anthropogenic eutrophication 

of coastal systems coincides with the introduction of industrially fixed nitrogen in the 1960s 

(Boesch et al., 2001). Nutrients in fertilizer are designed to enhance terrestrial production, 

however, when those excess nutrients are leaked to coastal systems, aquatic production is also 

enhanced and more biomass is produced; when coastal systems become saturated with organic 

matter, hypoxia develops and biomass is reduced (Boesch 2000; 2001). 

This dissertation attempts to elucidate the effects that eutrophication-induced hypoxia has on 

macrobenthic production and function through historical assessment, seasonal and continuous 

monitoring, and finally using collected data to construct a predictive ecological model. Our main 

study site was the upper mesohaline of the lower Rappahannock River, a major tributary in lower 

Chesapeake Bay, with hydrography that allows for seasonal hypoxia (Kuo and Neilson, 1987; 

Park et al., 1996). A major accomplishment of this project was quantifying the affect of hypoxia 

on macrobenthic bioturbation, a key biological function in regulating sediment quality, using an 

innovative camera system, Wormcam. Wormcam is an in situ benthic observing system that is a 
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combination of a sediment profile camera and water quality datasonde, which can collect a time­

lapse series of images and data, transmitting information in near real-time. Results from this 

dissertation revealed that a significant relationship between hypoxia and macrobenthic 

production and function exists, with lower production and inhibited function during hypoxia 

when compared with normoxia. 

The dissertation is divided into four chapters, and each chapter is presented in standard 

manuscript format for the journal of submission. Chapter 1 on the "Relationship between 

hypoxia and macrobenthic secondary production in Chesapeake Bay" for Marine Biology, 

chapter 2 on the "Effects of seasonal hypoxia on macro benthic production and community 

function in the Rappahannock River, VA, USA" for the Journal of Experimental Marine Biology 

and Ecology, chapter 3 on "Bioturbation in a declining oxygen environment, in situ 

observations" for the Proceedings of the National Academy of Sciences, and chapter 4 "Modeling 

the effect of hypoxia on macrobenthic production in the lower Rappahannock River, Chesapeake 

Bay, USA" for Marine Ecology Progress Series. The scientific context and content of each 

chapter is described next. 

1.1 Historical Hypoxia 

Hypoxia, dissolved oxygen concentrations :::; 2.0 mg 0 2 r1
, is an emerging threat to coastal 

marine systems worldwide (Diaz and Rosenberg, 2008) and has been documented to have 

deleterious effects on marine fauna (Diaz and Rosenberg, 1995; Levin, 2003; Vaquer-Sunyer and 

Duarte, 2008). Hypoxia can be a natural phenomenon determined primarily by physical factors, 
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such as water mass movements, temperature, and salinity gradients (Kruse and Rasmussen, 

1995; Grantham et al., 2004). There has been a substantial increase in hypoxic/anoxic water in 

Chesapeake Bay: from approximately 3 km3 in the 1950s, to approximately 10 km3 in the 1990s, 

primarily attributed to anthropogenic eutrophication (Hagy et al., 2004). Areas oflow DO 

adversely affect the inhabitants of the system; the ecological consequences of periodic hypoxia 

vary and are hypothesized as a mechanism for regulating benthic populations (Dauer et al., 1992; 

Llans6, 1992). 

In chapter 1, we present a historical account of the relationship between hypoxia and 

macrobenthic production in mainstem Chesapeake Bay and its three major tributaries (Potomac, 

Rappahannock and York Rivers), from 1996-2004. We address the disparity in macrobenthic 

production between normoxic and hypoxic sites, as well as the variability in macrobenthic 

production both spatially and temporally in relation to hypoxic severity. Analyses of production 

inputs at a species level are taken into account and inferences on impacts for higher trophic 

levels are made. 

1.2 Seasonal Hypoxia 

There is a general understanding of hypoxia's effects on community structure, where a series of 

predictable and graded responses occur, ranging from no obvious change in mild hypoxic 

regions, to mass mortality ofbottom fauna in severe hypoxic areas (Rabalais et al., 2001). There 

is less of an understanding, at the functional level, of how low DO concentrations interact with 

macro benthic secondary production, and the subsequent trophic transfer of production (Baird et 
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al., 2004). One of the first people to consider the overall flow and balance of matter in an 

energetic sense was Lindeman (1942). He realized that if all the components of an ecosystem 

could be expressed in common units of energy, then the functioning of the system could be more 

easily understood. Thermodynamics is then the common denominator defining the manner of 

energy transformation and ecological usefulness ofvarying energy forms (Benke et al., 1988; 

Wiegert, 1988). 

In chapter 2 we assessed macrobenthic production temporally across seasons, sampling the same 

sites in the spring, summer, fall, and again the following spring to assess recovery. The data were 

used to determine if a relationship between DO concentration and macrobenthic production 

existed, and if so, how DO influenced the variation in production between normoxic and hypoxic 

sites. Taxonomic and functional associations between macrobenthic production and hypoxia 

were also assessed. 

1.3 Bioturbation and Hypoxia 

Bioturbation, the biological reworking of sediments by flora, fauna, or microbial activity 

(Meysman et al. 2006), is a vital function provided to coastal marine systems. Macrofauna! 

bioturbation is the foremost pathway that carbon is recycled out of the sediment and eventually 

out of the Chesapeake Bay system (Diaz and Schaffner, 1990), and it plays an important role in 

regulating the geochemical and physical properties of marine sediments (Aller, 1978; Rhoads 

and Boyer, 1982). Additionally, bioturbation of macrofauna distributes DO much deeper into the 
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sediment (Aller, 1982); under normal conditions DO penetrates sediments by physical diffusion 

to a depth of only a few millimeters (Revsbech et al., 1980). 

In chapter 3 we quantify the relationship between bioturbation and DO concentration, in situ, 

through the deployment of W ormcam, a novel adaptation of a sediment profile camera and water 

quality datasonde. We related burrow depth, burrow rate, and burrow lengths to DO 

concentration and made inferences on how changes in these structures and processes during 

hypoxia affected overall macrobenthic bioturbation. 

1.4 Modeling Hypoxia 

Finally in chapter 4 we used information from the proceeding chapters to develop a continuous­

time biomass-based model for the lower Rappahannock River, based on the benthic sub-model in 

the 2002 Chesapeake Bay Eutrophication Model. The primary focus was aimed at accurately 

modeling the effect of hypoxia on macrobenthic biomass, and a sigmoid relationship was 

determined from macrobenthic data collected in the Rappahannock River during earlier field 

experiments. The equation from the sigmoid curve related macrobenthic biomass to DO 

concentration and was plugged into our overall model, and inferences about hypoxic duration 

and severity on the benthic ecosystem were made. Results from this chapter have broad reaching 

implications on modeling the affect of hypoxia on the benthic environment, confirming that 

quantitative assessments on the relationship between DO and benthos can and should be derived 

for application in ecosystem-scale models. 
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CHAPTER! 

Hypoxia and macrobenthic secondary 

production in Chesapeake Bay 

Manuscript citation: Sturdivant SK, Diaz, RJ, Dauer DM, Llans6 R (submitted). Relationship 
between hypoxia and macrobenthic secondary production in Chesapeake Bay. Mar Biol 
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ABSTRACT 

Over the years, human development has eroded Chesapeake Bay's health, resulting in an 

increase in the extent and severity of hypoxia (:S2 mg 0 2 r 1
). The Bay's hypoxic zones have an 

adverse affect on both community structure and secondary production of macrobenthos. The 

effect of hypoxia on macro benthic production was assessed in Chesapeake Bay and three of its 

tributaries (Potomac, Rappahannock, andY ork rivers) for the years 1996 to 2004. Each year, 25 

random samples were collected from each system and macrobenthic production estimated using 

Edgar's allometric equation. Annual fluctuations in macrobenthic production were significantly 

correlated with dissolved oxygen. Hypoxia led to a 90% reduction in daily macrobenthic 

production relative to normoxia. This resulted in an annual biomass loss of approximately 7320 

to 13,200 metric tons C, which equated to a 6 to 12% annual displacement of the Bay's total 

macrobenthic productivity due to hypoxia. While higher consumers may benefit from easy 

access to stressed prey in some areas, the large spatial and temporal extent of seasonal hypoxia 

likely limits higher-trophic-level transfer via the inhibition ofmacrobenthic production. The loss 

ofmacrobenthic production may be detrimental to the overall health of the Bay, as it comes at a 

time when epibenthic and demersal predators have high energy demands. 
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1. INTRODUCTION 

Eutrophication, an increase in the supply and accumulation of organic matter to a system (Nixon, 

1995; Rabalais, 2004), of estuarine and marine ecosystems is pervasive and has led to a series of 

counter acting benthic community impacts (Rosenberg, 1985; Nixon, 1995). Reductions in 

benthic species richness and increases in abundance and biomass are the most obvious and have 

been documented in many systems (Pearson and Rosenberg, 1978; Rosenberg, 1985). In 

addition, dissolved oxygen (DO), which is essential in microbial and metazoan metabolism, has 

declined in many systems experiencing eutrophication and given rise to hypoxia and anoxia 

(Diaz and Rosenberg, 2008). We define normoxia as DO concentrations >2.8 mg r 1
, mild 

hypoxia 2.8-2.1 mg r 1
, and hypoxia as DO concentrations ::::;2 mg r 1 (Tyson and Pearson, 1991). 

Seasonal hypoxia occurs throughout Chesapeake Bay and some of its tributaries during the 

summer months, and was present with the first DO measurements by Newcombe et al. (1939) in 

the early 1930s for the mainstem of Chesapeake Bay and by Sale and Skinner ( 1917) in the 

Potomac in the 1910s. The most severe low oxygen events occur in the mainstem (Officer et al., 

1984) creating what was termed an "oxygen desert," and low oxygen conditions in the Bay last 

approximately 120 days. From the 1950s through the 1990s, there has been a substantial 

increase in hypoxic/anoxic water in Chesapeake Bay: from approximately 3 km3 in the 1950s, to 

approximately 10 km3 in the 1990s (Hagy et al., 2004). The increase of hypoxia in the Bay is 

troubling, as hypoxic areas have been well documented to have negative impacts on estuarine 

benthos (J0rgensen 1980; Rosenberg et al., 1992; Llans6, 1990; Dauer et al., 1992; Rabalais et 

al., 2001; Tallqvist, 2001 ). The ecological consequences of periodic and seasonal hypoxia vary 

10 



and are hypothesized as a mechanism for regulating benthic populations (Dauer et al., 1992; 

Llans6, 1992). 

At the community structure level, hypoxic systems exhibit a predictable and graded series of 

responses to oxygen depletion, ranging from no obvious change, to mass mortality of bottom 

fauna (Diaz and Rosenberg, 1995). At the initial onset of hypoxia organisms increase respiration 

(Petersen and Petersen, 1988), and mobile fauna migrate from the area (Pihl et al., 1991). As DO 

further declines sessile fauna cease feeding and decrease activities not related to respiration 

(Warren, 1984). Infauna migrate closer to the sediment surface as reduced compounds 

accumulate, and are observed on or extending above the sediment surface in a moribund 

condition (J0rgensen, 1980; Tyson and Pearson, 1991). Finally, if the duration ofhypoxia is 

sustained, mass mortality occurs in all but the most tolerant of species (Llans6, 1992; Diaz and 

Rosenberg, 1995). At the functional level, however, there is less of an understanding of how low 

DO concentrations interact with macrobenthic secondary production, and subsequent trophic 

transfer of the production (Baird et al., 2004). Productivity provides an index of community 

processes proportional to total community respiration and consumption, and integrates the 

influence of biotic variables and environmental conditions affecting individual growth and 

population mortality (Edgar and Barrett, 2002; Cusson and Bourget, 2005). Benthic abundance 

and biomass can supply basic information on potential energy available to higher consumers, but 

estimates of secondary production provide crucial information on trophic dynamics, and 

quantitative approximations of energy available to higher trophic levels (Wilber and Clarke, 

1998). The derived quantitative production measurements can then be used to make inferences 

about trophic transfer of energy. 
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Secondary production, or the heterotrophic production of organic matter, is viewed as an 

estimate of estuarine health (Diaz and Schaffner, 1990; Dolbeth et al., 2005). The production of 

benthic invertebrates is important as these fauna serve as a link in the energy transfer from 

primary consumers to higher trophic levels (Nilsen et al., 2006), and is the foremost pathway that 

carbon is recycled out of the sediment and eventually out of Chesapeake Bay system (Diaz and 

Schaffner, 1990). It is estimated that approximately 20-50% ofbenthic secondary production 

within the bay is carried over from year to year as standing stock biomass (Baird and Milne, 

1981; Holland et al., 1988), and approximately 21,400-27,500 metric tons C (MT C) ofbenthic 

organisms are needed to support the Bay's demersal fishery yields (Diaz and Schaffner, 1990). 

While direct calculations of macro benthic production are costly and time consuming (Wilbur and 

Clarke, 1998), methods have been proposed for the indirect calculation of macro benthic 

production based on biotic and abiotic variables (Edgar, 1990; Sprung, 1993; Brey et al., 1996). 

The increment summation method, the removal summation method, the instantaneous growth 

method, and a production estimate by the Allen curve are all indirect methods of calculating 

macrobenthic production that yield similar result (Gillespie and Benke, 1979). However, these 

methods are based on body weight and cohort abundance sampled at regular time intervals 

(Sprung, 1993). Our data set has a number of individuals, which cannot be associated with a 

cohort, making production estimates using these methods non-viable. Further, estimates of 

production by body size have been related to the quotient of annual production to mean annual 

biomass, to the body weight at first sexual maturity (Banse and Mosher, 1980) and mean annual 

body weight (Schwinghamer and Hargrave, 1986). Determining body weight at sexual maturity 
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would be difficult to obtain for species whose life history is poorly understood, making this 

estimate of macrobenthic production impractical, and our point method of sampling eliminates 

production estimates relying on mean annual body weight. For our purposes, we used the Edgar 

method, which incorporates individual body weight and water temperature (Edgar, 1990). The 

theoretical bases for Edgar's equation is grounded in the metabolic theory of ecology that shows, 

among other things, that a constant fraction of metabolism tends to be allocated to production 

across taxa (Brown et al., 2004). 

Using production theory and empirical models developed to quantify macrobenthic production 

without the requirement of intense sampling, we attempted to relate patterns of macrobenthic 

production in Chesapeake Bay and its tributaries to DO concentration. Specific objectives of our 

study were to 1) describe patterns ofmacrobenthic production spatially (across habitat) and 

temporally (by year) and assess the relationship with DO concentration; 2) determine taxonomic 

associations between macrobenthic production and DO concentration; and 3) infer how 

macrobenthic production losses due to hypoxia impact epibenthic predators and demersal fish. 

2. METHODS 

2.1. Sampling Design 

The Chesapeake Bay Long-Term Benthic Monitoring Program started annual random sampling 

of Chesapeake Bay and its tributaries in both Maryland and Virginia in 1996 (Fig. 1 ). The Bay 

was divided into 10 sampling strata with each having 25 random sampling sites per year. Sites 

were sampled from late July to early September, with a new set of random sites selected each 
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year (Dauer and Llans6, 2003). Within the monitoring framework, we included stations from all 

habitats within the mesohaline and polyhaline Chesapeake Bay Mainstem, Potomac River, 

Rappahannock River, andY ork River from 1996 to 2004. These are the main areas within the 

Chesapeake system that experience hypoxia (Kuo and Neilson, 1987; Hagy et al., 2004). It 

should be noted that the deep trough (depths greater than 12 km) in the Maryland portion of the 

mainstem was not sampled. Previous assessments by the Bay program found the 676 km2 deep 

trough in Maryland mainstem (roughly 5.8% of the total bay) to be anoxic and azoic during the 

summer, and it was therefore excluded from the sampling regimen. The Mainstem, Potomac 

River, and Rappahannock River all experience sustained seasonal hypoxia (Sale and Skinner, 

1917; Officer et al., 1984; Kuo and Neilson, 1987), with periodic hypoxia documented in the 

York River (Kuo and Neilson, 1987). 

Samples were collected with a Young grab ( 440 cm2 to a depth of 10 em) and sieved in the field 

through a 0.5-mm screen. Organisms and detritus retained on the screen were transferred into 

labeled jars, preserved in a 10% formaldehyde solution and stained with Rose Bengal. Two 

surface-sediment sub-samples of approximately 120 ml each were collected for silt-clay, organic 

carbon, and nitrogen analysis from an additional grab sample at each site. At each station, DO, 

salinity, and temperature were measured approximately 1m from the bottom using a YSI model 

6600 sonde. Samples were processed to identify and enumerate each species present as 

described in Dauer and Llans6 (2003). Ash-free dry-weight biomass was measured for each 

species by drying to a constant weight at 60°C and ashing in a muffle furnace at 500°C for four 

hours. Sediment samples were wet-sieve analyzed for percent silt-clay content (Folk, 1966). 
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2.2. Secondary Production 

Prior to estimation of production, data from large-bodied epifaunal and infaunal species known 

to be over-dispersed and not adequately sampled by the Young grab were removed. These 

included the bivalves Crassostrea virginica, Mercenaria mercenaria, and Geukensia demissa. 

Given that our focus was on effects of DO on production, we did not include data from stations 

in the tidal freshwater and oligohaline zones, as these habitats were subjected to little or no 

hypoxia. 

Edgar ( 1990) developed a general allometric equation (P = 0.0049 * B0 80T0 89
) that relates daily 

macrobenthic production P (J..Lg· C dai1
) to ash-free dry weight B (J..Lg) and water temperature T 

(°C). The only departure from Edgar's method, which uses the mean AFDW of animals retained 

on a series of sieves of differing mesh size, was the usage of mean AFDW of each species by 

sample. Biomass measurements at the species level allowed us to examine taxonomic and 

functional group associations between production and DO. To ensure the quality of our 

production estimates, Paraprionospio pinnata production estimates were compared with direct 

measurements of P. pinnata production from Hinchey (1996) for the Mainstem Bay and York 

River and found to be approximately comparable. P. pinnata was chosen as it is the most 

numerous of the annelids collected and was ubiquitous across strata and years. These findings 

provide confidence in the macrobenthic production values reported in this manuscript. 
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2.3. Analysis Strategy 

Given the random selection of stations through time and the possibility that there might be a 

serial dependence between DO and habitat with time (year), a mixed-effect longitudinal design 

was used to analyze patterns in the data. Generalized estimating equations (GEE) were applied 

with the normal distribution, identity link, and cross-year correlations within areas assumed to be 

equal (Zeger et al., 1988). Analysis of variance (ANOVA) was also used to test for differences 

between and within areas for quantitative parameters. Normality was checked with the Shapiro­

Wilk test and homogeneity of variance with Bartlett's test. If variance was not homogeneous, 

Welch analysis of variance, which allows standard deviations to be unequal, was used in testing 

for mean differences (Zar, 1999). Tukey's HSD test was used for multiple mean comparisons. 

All statistical tests were conducted using SAS® (SAS Institute, Inc. 1989). 

3. RESULTS 

The total area of Chesapeake Bay and its tributaries is approximately 12,000 km2
. The area of 

the mesohaline and polyhaline Mainstem, Potomac, Rappahannock, and York Rivers covered by 

our sampling is approximately 7720 km2
• Therefore, we estimated summer daily macrobenthic 

production for approximately 65% of Chesapeake Bay. Mean hypoxic volume from the mid-

1980s to 2006 was 10.7 x 109 m·3
; yearly hypoxic volumes for our observation period were 

compared as either being higher or lower than this mean (Hagy et al., 2004). Estimated summer 

daily macrobenthic production in Chesapeake Bay from 1996 to 2004 was significantly variable 

from year to year (Table 1; Fig. 2). Total macrobenthic production was significantly higher from 

1999 to 2001, years with below-average hypoxic volume, and lower in 2003 and 2004, years 
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with above-average hypoxic volume. Production remained relatively constant from 1996-1998 

despite a greater than 2-fold increase in hypoxic volume during that time frame. 

Daily macrobenthic production was significantly related to DO with higher production at sites 

with normoxia as opposed to hypoxia (Table 2, Fig. 3). From 1996 through 2004, normoxic sites 

in Chesapeake Bay averaged 39 mg C m-2 d- 1
, which was significantly higher than the 4 mg C m-

2 d- 1 averaged during hypoxia. The mean daily production ofnormoxic sites was not significantly 

different from the 11 mg C m-2 d- 1 produced by mild hypoxic sites. Overall, hypoxia reduced 

daily macrobenthic production by 90% (Fig. 3). Salinity was also found to have a significant 

effect on macro benthic production with higher production at lower salinities. The effect of grain 

size on macrobenthic production was marginally significant and depth had no effect (Table 2). 

Most of the variability in daily macrobenthic production was associated with DO and salinity. 

Production loss due to hypoxia was analyzed in our study area for years 1998 and 2001; these 

years represent maximum and minimum volumes of hypoxia for our nine-year study, 

respectively (Hagy et al., 2004). In 2001, macrobenthic production averaged approximately 70 

mg C m-2 d- 1 within our study area ofthe Bay, which converts to 0.07 MT C km-2 d- 1
• Hypoxic 

volume in Chesapeake Bay in 2001 was 6 km3
, covering approximately 960 km2 (Hagy et al., 

2004). Using the previous values, production for the area affected by hypoxia should have been 

67 MT C d-1
• Factoring in a 90% reduction for the effect of hypoxia (Fig. 3) approximately 61 

MT C d- 1 of biomass was lost in 2001. A similar calculation was conducted for 1998 when 

macrobenthic production averaged approximately 44 mg C m-2 d- 1
, and this converts to 0.04 MT 
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C km-2 d-1
. Hypoxic volume in 1998 was 18 km3 covering approximately 3000 km2

, thus 

approximately 110 MT C d- 1 ofbiomass was lost in 1998. When 61 and 110 MT C d- 1 are scaled 

by 120 days, the average duration of hypoxia in the Bay (Hagy et al., 2004), the annual loss in 

biomass in hypoxic areas ranged from 7320 to 13,200 MT C. The habitat-weighted estimate of 

macro benthic production for the entire Chesapeake Bay is 17 g C m-2 yr-1 (Diaz and Schaffner, 

1990), which equates to 114,600 MT C annually. Thus, from 6 to 12% ofthe Bay's 

macro benthic productivity is either displaced to periods of normoxia or lost to the system due to 

hypoxia. 

When partitioned by production per unit area, Mainstem Chesapeake Bay was the major 

contributor to summer daily macrobenthic production. Macrobenthic production in the 

Mainstem Bay was significantly higher (ANOVA, df=3, F=14.23, p < 0.0005) than production in 

the Potomac, Rappahannock, andY ork Rivers. N ormoxic sites accounted for the majority of 

Mainstem production; a similar pattern was observed in the tributaries (Table 1 ). Macro benthic 

production trends over time (year) were significantly different for sites that experienced 

normoxia and hypoxia in the Mainstem (Paired T -test, df=8, t=4.92, p = 0.002) and Potomac 

River (Paired T-test, df=8, t=3.28, p = 0.017). Over the observed period, daily macrobenthic 

production in the Rappahannock was not significantly different between normoxia and hypoxia 

(Paired T-test, df=8, t=2.78, p > 0.06). This finding is likely influenced by high daily 

macro benthic production in hypoxia for years 1998 and 1999. In the York River, samples were 

only collected in hypoxic areas in 2001, 2003, and 2004 (Table 1), due to the random sampling 

design and short-term periodic hypoxia in the system (Diaz et al., 1992). Hypoxic production 

was compared between the four systems, and the Mainstem and Potomac rivers had significantly 

18 



lower (ANOV A, df=3, F=9 .67, p = 0.001, Table 1) production during hypoxia than the York 

River; the Rappahannock was not significantly different from any system with relatively 

intermediate macrobenthic production during hypoxia. 

Molluscs, annelids, and arthropods accounted for over 98% of production (Table 3). For all 

oxygen levels, daily molluscan production (35.2 mg C m-2 d-1
) was significantly higher 

(ANOVA, df=8, F=83.70, p < 0.0005) than annelid production (8.6 mg C m-2 d-1
), which was 

significantly higher than arthropod production (3.8 mg C m-2 d- 1
). The production was 

significantly different between normoxic and hypoxic sites for mollusc, annelids, and arthropods. 

Hypoxic sites had 95% lower bivalve and gastropod production; this reduction was only 

significant (p = 0.003) for bivalves due to the high variance in gastropod production. Polychaete 

(p < 0.0005) and oligochate (p = 0.027) production was also significantly lower at hypoxic sites, 

by 70% and 95%, respectively. Amphipods (p = 0.013) and isopods (p < 0.0005) had 

significantly lower production at hypoxic sites, by 95% for amphipods and approximately 99% 

for isopods. 

Over the 9-year observation time, bivalve (df=8, F=2.70 p=0.006), annelid (df=8, F=4.41 

p<0.0005), and arthropod (df=8, F=2.59 p=0.008) production were each analyzed separately and 

found to be significantly different between years. Tukey's multiple mean comparison was used 

to determine significant differences among years, and the maximum and minimum years of 

hypoxic volume were assessed for each group. For the maximum hypoxic year of 1998, 

bivalves, annelids, and arthropods had 90%, 45%, and 50%, less production, respectively, 
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compared to 2001, the minimum hypoxia year during our study. These production differences 

between 1998 and 2001 were significant for molluscs and arthropods and trended in that 

direction for annelids. Spatially, there were significant differences between study areas in 

production by major taxon (Table 4). 

4. DISCUSSION 

We found that daily macrobenthic production in Chesapeake Bay was significantly related to 

DO, with overall macro benthic production at hypoxic sites less than 90% of normoxic values. 

For many major taxonomic groups, production reductions of95% or greater occurred. Such a 

drastic reduction in macrobenthic production could have negative consequences for Chesapeake 

Bay, as benthic invertebrates link energy transfer from primary producers to economically 

important higher consumers (Moller et al., 1985; Brey, 2001). Additionally, an annual loss in 

macrobenthic biomass of7320 to 13,200 MT C was observed during the summer, reducing the 

yearly productive capacity of the Bay benthos by 6 to 12%; energy demands of epibenthos and 

demersal fish, predators of benthic organisms, are at their highest during the summer months 

when these reductions occur. 

Daily macrobenthic production in Chesapeake Bay fluctuated from year to year (Fig.2). When 

production was compared to hypoxic volume for corresponding years (Hagy et al., 2004), there 

was a noticeable trend of lower macrobenthic production during years of above average hypoxic 

volume (2003 and 2004), and higher macrobenthic production during years of below average 

hypoxic volume ( 1999-2001 ). Production remained relatively constant from 1996-1998 during a 
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greater than 2-fold increase in hypoxic volume. This observation could be best explained by 

resource compensation in the presence of a deleterious condition. Concentrations of organic 

matter were not assessed in this study, so the available organic concentrations for macrobenthos 

were unknown. However, hypoxic volumes in coastal systems are correlated with eutrophication 

and the subsequent primary productivity generated (Lohrenz et al., 1990); greater primary 

productivity, greater hypoxic volume to the extent allowable by hydrography (Diaz, 2001). 

Hypoxic volumes from 1996-1998 were some of the highest observed during our observation 

period and could have been correlated with above average primary production. The organic 

content of these blooms would eventually reach the macrobenthos in a relatively shallow system 

such as Chesapeake Bay, and the organic rich environment fostered by the bloom would be of 

benefit to macrobenthos adapted to survive in low DO concentrations. While the increased 

hypoxic volume may have reduced macrobenthic production, the parallel organic rich 

environment may also have increased macrobenthic production, explaining the relative constant 

production over time (year). It is also important to note that the sampling design may have 

affected observed trends. Sediment grabs and DO concentrations were point measurements 

collected during the daytime, every year in the summer. The limitation of point measurements is 

the snap-shot view they provide, with little inference as to what occurs between data collection. 

It is very likely that some sites classified as normoxic when sampled experienced hypoxia at 

some point or multiple times throughout the season. While the sites may not have experienced 

sustained hypoxia, periodic hypoxic events stress benthic organisms, causing direct mortality via 

asphyxiation, indirect mortality through predation, or impede growth (Pihl et al. 1991; Dauer et 

al., 1992; Llans6, 1992). This hypothesis was substantiated from a field experiment conducted 

during the summer of 2007 (Sturdivant, unpublished). A site classified as norm oxic from the 
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random point sample method was monitored throughout the summer of2007 for water quality, 

and was found to experience periodic hypoxia (Sturdivant, unpublished). Another explanation 

for the observed trends in macrobenthic production could be predation pressure. If epibenthic 

predators and demersal fish are displaced from hypoxic zones, their presence in adjacent 

normoxic areas could increase the rate of predation and reduce overall macrobenthic production 

at these sites. This type of hypoxia driven concentration of predators has been documented in 

Chesapeake Bay (Breitburg, 2002) and the northern Gulf of Mexico (Craig and Crowder, 2005). 

While macrobenthic production is linked to DO concentration, the direct role hypoxia plays on 

the subsequent loss or recovery of macro benthic production within the ecosystem is not known. 

The most obvious cause of death from lack of oxygen is asphyxiation (Diaz and Rosenberg, 

1995), although H2S toxicity, which is produced during the reduction of S04 during severe 

hypoxia and anoxia, also contributes to mortality through inhibition of the electron transport 

chain in aerobic respiration (Torrans and Clemens, 1982). It can be surmised that in Chesapeake 

Bay regions experiencing hypoxia and anoxia, both processes contribute to the loss of 

macrobenthic production. Additionally, epibenthic predators and demersal fish can at times 

capitalize on stressed benthos during mild hypoxic events (N estlerode and Diaz, 1998; Seitz et 

al., 2003), although severe hypoxia disrupts the normal energy flow to higher consumers, and 

instead allows for the microbial community to process macrobenthic secondary production 

(Baird et al., 2004) 

Of the four areas examined (Mainstem, Potomac, Rappahannock, andY ork), the York River 

experiences only periodic hypoxia, making this system a likely candidate for hypoxia mediated 
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macrobenthic production transfer to epibenthic/demersal predation. Strong gravitational 

circulation in the York River leads to relatively small spatial coverage and short duration 

hypoxia (Kuo and Neilson, 1987) with no difference between hypoxic and normoxic daily 

macro benthic production. Hypoxia in the York may be enough to stress the benthos, but not 

induce direct mortality or inhibit macrobenthic production. This would allow opportunistic 

epibenthic invertebrates and demersal fish species to take advantage of stressed benthic infauna 

that extend their appendages and bodies into the water column, in an attempt to escape dire 

conditions below the sediment-water interface (Pihl et al. 1992). Areas with periodic hypoxia, 

such as the York, likely facilitate trophic transfer of energy to epibenthic and demersal predators. 

However, the area of the York River assessed in this study accounted for only 1% of the area of 

Chesapeake Bay, and 2% of the observed hypoxic area. 

The Rappahannock experiences both periodic and sustained hypoxia (Kuo et al., 1991) with 

daily macrobenthic production related to the duration and extent of hypoxia. In 1998 and 1999 

macrobenthic production during hypoxia was similar to normoxia, but in 1996 and 2004 hypoxia 

production was significantly less than normoxia (Table 1 ). In areas of the Rappahannock where 

periodic hypoxia occurs, it is expected that daily macrobenthic production could be transferred to 

epibenthic and demersal predators. In the deeper channels of the Rappahannock, where hypoxia 

is sustained throughout the season, daily macrobenthic production is virtually eliminated. The 

Potomac and Mainstem both experience severe seasonal hypoxia with >95% reductions in 

macrobenthic production. Periodic and seasonal hypoxia alters energy flow to epibenthic 

predators and demersal fish, with the latter shifting energy to the microbial community (Baird et 

al., 2004). Many epibenthic and demersal predators of macrobenthos already experience 
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multiple stressors (i.e. HABs, chemical contaminants, disease) given the current health ofthe 

Bay (Boesch, 2000; Breitburg et al., 2003 ). Hypoxia couples these factors with a loss in 

potential prey energy, loss of habitat, and increased energy expenditure searching for suitable 

habitat and food. 

At the taxonomic level, there were significant reductions in macrobenthic production for the 

major phyla. Overall, bivalve production dominated during normoxia, particularly in the 

Mainstem and Potomac River, however, hypoxia significantly reduced bivalve production by 

95%. V aquer-Sonyer and Duarte's (2008) synopsis of species resistant to hypoxia, found that 

bivalves fared better than any other groups based on LC50 (Lethal Concentration to 50% 

mortality) and LT50 (Lethal Time to 50% mortality). The bivalves that overlapped between our 

study and Vaquer-Sonyer and Duarte's (2008) synopsis, Macoma balthica and Mulinia lateralisi, 

had mean LT50 of529 and 159 hours respectively. However, these species accounted for only 

15% of our total bivalve production, and were rarely collected at hypoxic sites. Though some 

bivalves can survive for long periods of hypoxia under laboratory settings, in situ there was a 

trend of less bivalve production during hypoxia. Polychaete production during hypoxia was 

significantly lower by 65% (Table 3), one of the most minimal observed reductions. Tolerances 

and behavioral strategies of polychaetes appeared to allow for more efficient survival and less 

reduction in available production during hypoxia. Capitellids and spionids accounted for 50% of 

polychaete abundance, and these worms have been previously observed to survive long durations 

under low DO concentrations, with LT50 of312 (Rosenberg, 1972) and 43 hrs (Llans6, 1991), 

respectively. Many capitellids and spionids have been observed living in DO conditions around 

1 mg r 1
, although cessation of feeding and burrowing generally occurs (Warren, 1977; Llans6, 
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1991 ). Spionids, such as Paraprionospio pinnata, were observed swimming in the water column 

during low oxygen, and capitellids were seen lying on the sediment surface as strategies to reach 

more oxygenated water above the sediment-water interface (Diaz et al. 1992). The dominance of 

polychaete production during hypoxia appears to be a direct result of their morphology and life 

history strategies, making them more adaptable to changing DO conditions (Vaquer-Sonyer and 

Duarte, 2008). Arthropod production was also significant reduced by 95% during hypoxia, and 

they have been noted to be poor in their adaptation to low DO concentrations (Winn and Knott, 

1992). Hoback and Barnhart (1996) found that Gammarid amphipods experience LC50 at DO 

concentrations of approximately 2.0 mg r1
. Similar studies have shown amphipods from the 

same family experience an LT50 of7-15 hours at DO of2.0 mg r 1 (Theede et al., 1969; Agnew 

and Jones, 1986). Results from our study showed a 95% reduction of available amphipod 

production at this same DO threshold, indicating that while 50% of the amp hi pods may still be 

present at 2.0 mg r1
, their overall available production is drastically diminished, reducing the 

potential transfer of energy. The amount of uniformity in hypoxia's reduction in production by 

class (Table 3) was interesting. Previous work has shown that species perform differently in 

their physiological response to hypoxia (summarized in Vaquer-Sunyer and Duarte, 2008). 

Despite the differences in hypoxia sensitivity by species, we found large reductions in daily 

production across taxa; the similar magnitude in daily production reduction for most benthos 

points to the ubiquity with which hypoxia affects benthic organisms. Reduced daily benthic 

secondary production across taxa, also translates to reduced trophic transfer potential to higher 

consumers that prey upon macrobenthic infauna. 
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5. CONCLUSION 

Hypoxia has been a major feature of Chesapeake Bay since at least the 1950s and has had 

negative effects on ecosystem functions. On average, we found that hypoxia sites had 90% 

lower daily macrobenthic production; this is based on a comparison between hypoxic and 

normoxic stations, assuming that hypoxic stations would otherwise be normoxic in a non­

hypoxic Bay. Given the extent and duration of hypoxia in Chesapeake Bay during the summer, 

this amounts to a 6 to 12% reduction in the total annual secondary production. While higher 

consumers may benefit from easy access to stressed prey in some areas, the large spatial and 

temporal extent of seasonal hypoxia in the Bay negates higher trophic level transfer via the 

inhibition ofbenthic production. The loss ofmacrobenthic production may be detrimental to the 

overall health of the Bay, as it occurs when epibenthic and demersal predators (fish and 

crustaceans) have high energy demands. 
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TABLE CAPTIONS 

Table 1. Daily macrobenthic production (mg C m-2 d-1
) averaged by dissolved oxygen category 

for year and tributary. Periods represent no data. 

Table 2. Effect of salinity, percent silt+clay, depth, and DO on daily macrobenthic production. 

Based on maximum likelihood GEE model with data clustered by year within area (Mainstem, 

Potomac, Rappahannock, andY ork). 

Table 3. Comparison of oxygen condition and mean daily macrobenthic production by A) 

phylum, and B) class (±1 SE). Letter differences denote significance. 

Table 4. Comparison of area and mean daily macrobenthic production by A) phylum and B) 

class (±1 SE). Letter differences denote significance. 
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FIGURE CAPTIONS 

Figure 1. Composite Chesapeake Bay summer DO concentration from 1996 to 2004. Large and 

small circles represent sample sites. Shading and dot color denotes DO concentration as stated in 

Figure key. 

Figure 2. Comparison of summer daily macrobenthic production by varying oxygen condition 

(bars) in Chesapeake Bay from 1996 to 2004. Total macrobenthic production significantly 

different over time (ANOVA, df=8, F=2.43, p=O.Ol3). Hypoxic volume (line) adapted from 

Hagy et al., 2004. Letter differences denote significance. 

Figure 3. Relationship between daily macrobenthic production and dissolved oxygen 

concentration in Chesapeake Bay. Letter differences represent significance (df=26, F=27.97, 

p<0.0005). Normoxic areas have significantly higher daily macrobenthic production than 

hypoxic areas. Error bars represent ±1 SE. 
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Table 1. 

Normoxia Mild Hypoxia Hypoxia 

>2.8 mg/1 2.8-2.0 mg/1 <2.0 mg/1 

Mean SD N Mean SD n Mean SD n 

1996 36.3 73.9 80 4.2 1.3 2.7 21 

Mainstem 45.7 91.2 45 0 1.6 3.0 7 

Rappahannock 21.9 25.9 14 0 1.4 2.3 5 

Potomac 61.5 92.0 4 4.2 1.0 3.0 9 

York 17.5 32.0 17 

1997 34.5 78.8 83 9.5 18.6 16 3.2 1.6 7 

Main stem 49.1 88.8 33 14.0 14.8 12 5.5 0.2 2 

Rappahannock 26.3 73.3 21 4.4 2.7 2 

Potomac 58.7 133.2 8 3.5 3.1 5 2.3 0.1 5 

York 10.7 3.6 21 

1998 34.4 77.8 85 5.3 5.6 6 3.8 5.3 22 

Mainstem 47.9 102.4 41 5.8 8.3 3 4.8 4.9 6 

Rappahannock 17.3 11.2 15 0 10.1 6.1 5 

Potomac 35.7 82.1 11 4.8 3.2 3 0.5 0.4 11 

York 16.9 13.5 18 

1999 55.6 167.1 109 13.5 11.7 2 11.0 

Main stem 107.6 237.3 50 13.5 11.7 2 

Rappahannock 14.7 12.1 19 11.0 

Potomac 7.4 12.4 20 

York 12.8 8.9 20 

2000 56.8 142.5 88 35.6 65.9 7 4.1 5.9 5 

Main stem 101.8 206.6 38 70.6 98.2 3 10.3 3.4 2 

Rappahannock 16.6 28.3 18 0.0 0.0 2 
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Potomac 26.6 43.6 16 18.7 5.0 2 0.0 0.1 3 

York 25.5 24.1 16 

2001 55.2 144.1 88 12.8 12.0 7 1.6 4.4 10 

Mainstem 82.7 184.5 51 11.9 1 0.0 

Rappahannock 16.1 7.5 14 9.9 

Potomac 10.5 11.7 6 15.6 20.0 3 0.2 0.4 8 

York 20.6 24.4 17 10.4 3.9 2 14.1 

2002 44.4 93.9 106 4.5 4.5 2 5.1 4.2 2 

Mainstem 79.3 130.3 45 7.7 5.1 4.2 2 

Rappahannock 16.7 19.6 22 

Potomac 20.6 59.2 22 1.3 

York 19.1 10.4 17 

2003 15.7 16.4 76 6.9 7.0 10 5.6 7.0 21 

Main stem 19.0 21.5 33 8.5 7.9 6 11.0 3.8 6 

Rappahannock 8.4 7.9 19 0 

Potomac 10.1 11.9 4 2.2 3.7 3 0.3 0.8 12 

York 19.8 10.1 18 11.0 16.0 5.4 3 

2004 20.3 24.0 60 8.1 6.9 12 2.2 3.0 0 

Main stem 23.6 31.2 27 8.8 8.5 5 1.8 1.9 5 

Rappahannock 26.0 14.5 11 11.2 6.5 2 1.8 1.8 3 

Potomac 2.3 4.3 10 0.0 0.0 2 0.0 0.0 2 

York 22.5 14.8 12 10.4 3 9.9 
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Table 2. 

Chi-

Parameter DF Estimate SE Wald 95%CI Square Pr > ChiSq 

Intercept 1 29.05 17.95 -6.13 64.22 2.6 0.106 

Salinity 1 -3.12 0.71 -4.52 -1.73 19.2 <.001 

Silt+Clay 1 0.19 0.10 0.001 0.38 3.9 0.049 

Depth 1 -0.004 0.83 -1.64 1.63 0.0 0.996 

DO 1 8.92 1.81 5.37 12.47 24.3 <.001 
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Table 3. 

A) 

n Mollusca Annelida Arthropoda 

p = 0.002 p < 0.0005 p < 0.0005 

normoxta 924 40.8 (4.4) a 9.6 (0.4) a 3.2 (0.3) a 

mild hypoxia 64 6.5 (3.1) a,b 3.7 (0.4) b 0.7 (0.2) b 

hypoxia 101 3.0 (2.5) b 2.5 (0.4) b 0.2 (0.1) b 

B) 

n Bivalvia Gastropoda Polychaetea Oligochaetea 

p = 0.003 ns p < 0.0005 p = 0.027 

normox1a 924 39.9 (4.4) a 0.8 (0.3) 7.7 (0.3) a 1.8 (0.3) a 

mild hypoxia 64 6.2(3.1) a,b 0.3 (0.1) 3.4 (0.4) b 0.3 (0.1) a,b 

hypoxia 101 2.9 (2.5) b 0.1 (0.0} 2.4 (0.4) b 0.1 (0.0} b 

Amphipoda Isopoda 

p = 0.013 p < 0.0005 

1.5 (0.2) a 0.5 (0.1) a 

0.5 (0.2) a,b 0.1 (0.0) b 

0.1 (0.0) b 0.0 (0.0) b 
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Table 4. 

A) 

n Mollusca Annelida Arthropoda 

p < 0.0005 p < 0.0005 p < 0.0005 

Main Bay 486 52.1 (6.9) a 9.7 (0.6) a 2.2 (0.2) a 

Potomac 224 51.8 (9.9) a 5.7 (0.8) b 1.8 (0.3) a 

Rappahannock 210 5.1 (1.7) b 7.5 (0.6) a,b 4.1 (0.6) b 

York 169 2.1 (0.2) b 10.3 (0.7) a 4.4 (1.0) b 

B) 

n Bivalvia Gastropoda Polychaetea Oligochaetea 

p < 0.0005 Ns p < 0.0005 ns 

Main 486 46.8 (6.8) a 0.6 (0.2) 8.6 (0.5) a 2.0 (0.4) 

Po to 224 50.1 (9.7) a 1.7 (1.1) 3.0 (0.4) b 2.6 (0.7) 

Rapp 210 4.8 (1.7) b 0.3 (0.0) 6.2 (0.6) c 1.3 (0.2) 

York 169 1.9 (0.6) b 0.2 (0.1) 9.5 (0.7) a 0.8 (0.11 

Amphipoda Isopoda 

p < 0.0005 p = 0.008 

0.7 (0.1) a 0.7 (0.1) a 

0.7 (0.2) a 0.4 (0.1) b 

2.0 (0.3) b 0.3 (0.1) b 

3.1 (0.9) b 0.4 (0.1) b 
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CHAPTER2 

Effects of seasonal hypoxia on macro benthic production and 

community function in the Rappahannock River estuary, VA, USA 

Manuscript citation: Sturdivant SK, Diaz, RJ, Seitz RD (submitted). Effects of seasonal 
hypoxia on macrobenthic production and community function in the Rappahannock River, VA, 
USA. J Exp Mar Biol Ecol 
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ABSTRACT 

Development has eroded Chesapeake Bay's health, resulting in an increase in the extent and 

severity of hypoxia (s 2 mg 0 2 r 1
), adversely affecting community structure and secondary 

production of macrobenthos in the Bay and its tributaries. Changes in macrobenthic secondary 

production were assessed in the lower Rappahannock River, a sub-estuary of Chesapeake Bay in 

an area known to experience seasonal hypoxia. During the spring, summer, and fall of 2007 and 

2008, ten samples were collected each season, and secondary production was estimated using 

Edgar's allometric equation. From early spring to late fall, dissolved oxygen concentrations 

were measured continuously at two of the ten sites in 2007 and 2008, and the macro benthic 

community was assessed through bi-weekly grab samples. Hypoxic sites had up to 85% lower 

macrobenthic production, compared to normoxic sites, and macrobenthic production at hypoxic 

sites was composed primarily of smaller, disturbance-related annelids. Macro benthic production 

differed across seasons, and sediment reworking rates were significantly higher during normoxia, 

indicating that the functional role of the macro benthic community changed during hypoxia. 
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1. INTRODUCTION 

Oxygen, a key element in the metabolic processes of all metazoan organisms, is found in a 

dissolved form in aquatic environments as a result of primary production and atmospheric 

diffusion (Breitburg et al., 2003). Once dissolved into surface waters, the normal condition is for 

dissolved oxygen (DO) to be mixed down into bottom waters by turbulence. When the supply of 

DO to the bottom is stymied, typically due to stratification of the water column, and/or the 

consumption rate exceeds resupply, DO concentrations decline and the system can experience 

hypoxia (Diaz, 2001). Hypoxia is generally defined by DO concentrations of::; 2 mg 0 2 r 1 

(Tyson and Pearson, 1991) 

Hypoxia is closely associated with eutrophication arising from altered coastal nutrient budgets 

that can be linked to increased human population, whether through urbanization in coastal river 

drainages or through expanded agricultural activities (Diaz, 2001 ). Since colonial times, the 

number of humans in Chesapeake Bay watershed has grown exponentially, with a 3-fold increase 

over the last 100 years (Kemp et al., 2005). Though intermittent hypoxia in the Bay may have 

been a natural phenomenon, sediment cores indicate the frequency and extent of hypoxia 

increased with colonization and subsequent land cover changes (Cooper and Brush, 1991; 

Cooper, 1995). Anthropogenic disturbance has resulted from activities that mobilize the 

compounds nitrogen and phosphorous through land clearing, application of fertilizer, discharge 

ofhuman waste, animal production, and combustion of fossil fuels (Cloem, 2001). In 

Chesapeake Bay, runoff from agricultural practices is the main source of nutrient loading. Non­

point sources of nutrient input account for the majority of nutrient loading at approximately 60-
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65% (Boyton et al., 1995). Runoff from agriculture account for approximately 40% of the 

nitrogen and approximately 50% of the phosphorus input into Chesapeake Bay (Magnien et al., 

1995). This increased nutrient input promotes a spring phytoplankton bloom, and the particulate 

organic matter (POM) from this bloom eventually settles to the bottom and is decomposed by 

microbes. The microbial decomposition process results in the consumption of DO, and depletes 

DO in bottom waters (Diaz, 2001). 

Seasonal hypoxia occurs throughout Chesapeake Bay and some of its tributaries during the 

summer months. Seasonal hypoxia was present with the first DO measurements in mainstem 

Chesapeake Bay as observed by Newcombe (1939) in the early 1930s and in the Potomac in the 

191 Os as observed by Sale and Skinner ( 1917). The most severe low oxygen events occur in the 

main stem (Officer et al., 1984; Stow and Scavia, 2008). From the 1950s through the 1990s, 

there has been a substantial increase in hypoxic/anoxic water in Chesapeake Bay, from 

approximately 3 km3 in the 1950s, to approximately 10 km3 in the 1990s (Hagy et al., 2004). 

The increase of hypoxia in the Bay is troubling, as hypoxic areas have been well documented to 

have negative impacts on estuarine benthos (J0rgensen 1980; Llans6, 1990; Dauer et al., 1992; 

Diaz et al., 1992; Tallqvist, 2001; Rosenberg et al., 2002). Additionally, the outer edge of 

Chesapeake Bay main stem hypoxic water may be advected into shallow areas, such as the Bay's 

tributaries, through horizontal transport (Breitburg, 1990). In the Rappahannock River, our area 

of interest, a combination of tidal mixing and proximity to main stem hypoxic waters controls the 

seasonal hypoxia, which lasts throughout most of the summer (Kuo and Neilson, 1987; Kuo et 

al., 1991; Park et al., 1996). 
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There is a general understanding of hypoxia's effects on community structure, where a series of 

predictable and graded responses occur (Rabalais et al., 2001). At the initial onset of hypoxia, 

organisms increase respiration (Petersen and Petersen, 1988), and mobile fauna migrate from the 

area (Pihl et al., 1991). As DO further declines, sessile fauna cease feeding and decrease 

activities not related to respiration (Warren, 1984). Infauna migrate closer to the sediment 

surface as reduced compounds accumulate and have been observed on or extending above the 

sediment surface in a moribund condition (J0rgensen, 1980; Tyson and Pearson, 1991). Finally, 

if the duration of hypoxia is sustained, mass mortality occurs in all but the most tolerant of 

species (Llans6, 1992; Diaz and Rosenberg, 1995). At the functional level, there is less 

understanding of how hypoxia interacts with macrobenthic secondary production and the 

subsequent trophic transfer of energy and production (Baird et al., 2004). 

Productivity is an intriguing component of the energy budget, as it provides an index of 

community processes proportional to total community respiration and consumption, and it 

integrates the influence of numerous biotic and environmental variables affecting individual 

growth and population mortality (Edgar and Barrett, 2002; Cusson and Bourget, 2005). 

Production can be defined as the quantity of matter/energy that is available for the next higher 

trophic level, and a measure or estimate of productivity can be obtained by relating the calculated 

production to the biomass present (Brey, 2001). Secondary production, or the heterotrophic 

production of organic matter, is viewed as an estimate of estuarine health (Diaz and Schaffner, 

1990; Dolbeth et al., 2005). The production ofbenthic invertebrates is important, as these fauna 

serve as a link in the energy transfer from primary consumers to higher trophic levels (Nilsen et 

al., 2006) and they are the foremost pathway by which carbon is recycled out of the sediment and 
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eventually out of Chesapeake Bay system (Diaz and Schaffner, 1990). The production of 

communities is rarely directly measured due to methodological difficulties (Edgar, 1990). While 

direct calculations of macro benthic production are costly and time consuming (Wilbur and 

Clarke, 1998), methods have been proposed for the indirect calculation of macro benthic 

production based on biotic and abiotic variables (Edgar, 1990; Sprung, 1993; Brey et al., 1996). 

Using production theory and empirical models developed to quantify macrobenthic production 

without the requirement of intense sampling, we attempted to relate patterns of macro benthic 

production in the Rappahannock River estuary to DO concentration. Specific objectives of our 

study were to 1) assess the relationship between macro benthic production and the physical 

factors of DO concentration, salinity, and% silt/clay; 2) describe patterns ofmacrobenthic 

production temporally (across weeks and seasons); and 3) determine taxonomic associations 

between macrobenthic production and DO concentration. 

2.METHODS 

2.1 Study Area 

Of the three major tributaries of the lower Chesapeake Bay, the Rappahannock is the only sub­

estuary with physical dynamics to allow sustained seasonal hypoxia (Kuo and Neilson, 1987). In 

the lower Rappahannock River, a combination of tidal mixing and, to a lesser extent, proximity 

to main stem hypoxic waters, control its seasonal hypoxia (Kuo et al., 1991; Park et al., 1996). 

The tidal Rappahannock begins at the fall line in Fredericksburg, VA, a distance of 

approximately 130 km from its mouth. The 1.0 psu isohaline is normally 75-90 km upriver. The 
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mean tidal range and surface salinities at the mouth are 0.4 m and 12-18 psu, respectively (Haas, 

1977). 

2.2 Sampling Design 

The Chesapeake Bay Long-Term Benthic Monitoring Program (LTBMP) started annual random 

sampling of Chesapeake Bay and its tributaries in both Maryland and Virginia in 1996. The 

L TBMP divided the Bay into 10 sampling strata with each having 25 random sampling sites per 

year. Sites were sampled by the LTBMP from late July to early September, with a new set of 

random sites selected each year (Dauer and Llans6, 2003). Within the monitoring framework, 

we included 10 of the 25 sites within the meso- and polyhaline portions of the Rappahannock 

River estuary. The meso- and polyhaline regions of the Rappahannock River were selected due 

to a history of sustained seasonal hypoxia during the summer months (Kuo and Neilson, 1987; 

Park et al., 1996). Of the ten sites selected, five were chosen in areas that had previously 

experienced hypoxia and five in areas with a past history of normoxia. DO measurements from 

the LTBMP were used in site selection. All ten sites were sampled once during the spring, 

summer, fall, and again in the spring of the following year. Sampling occurred during 2007 and 

was repeated in 2008. 

2.3 Field Methods 

At each site, basic water quality parameters of DO concentration, salinity, and temperature were 

measured at the surface of the water column and approximately 0.5-1 m from the bottom using a 

YSI model 6600 sonde. Sediment grabs were collected for benthic community analysis using a 
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Young grab (440 cm2 to a depth of 10 em). Sample volume and penetration depth were 

observed; if the Young grab penetrated less than 7 em into the sediment, the sample was rejected 

and the site re-sampled. Samples were sieved in situ through a 0.5 mm screen using an 

elutriative process. Organisms and detritus retained on the screen were transferred into labeled 

jars and preserved in a 10% formaldehyde solution. They were later stained with Rose Bengal, a 

vital stain that aids in separating organisms from sediments and detritus. Two surface-sediment 

sub-samples of approximately 120 ml each were collected for grain-size analysis from an 

additional grab sample at each site. 

Each year, two ofthe ten sites were selected for continuous DO monitoring; in 2007 sites 18 and 

25 were selected, and in 2008 sites 11 and 12. Site selection was based on DO concentration, 

with one site having a history of normoxia and the other hypoxia; sites 18 and 11 had a history of 

hypoxia, and 25 and 12 a history ofnormoxia. Aside from DO, the two sites chosen each year 

had similar physical parameters. At each of the two locations, a single tripod was deployed with 

a Hach DS500X water quality datasonde. The sondes were positioned approximately 0.25-0.5 m 

above the sediment surface. DO concentration, salinity, and temperature measurements were 

recorded in 20-min increments for a two-week period. Every two weeks, sondes were replaced 

for maintenance and data retrieval, and new datasondes were deployed. Additional grab samples 

were collected at each site with a Young grab during the bi-weekly sonde swap, and water 

quality control measurements were collected approximately 0.5-1 meter from the bottom using a 

YSI model 6600 sonde. The grab methodology described in the previous paragraph was 

implemented in the bi-weekly sampling. 
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2. 4 Lab Methods 

All macrobenthic samples were processed to identify and enumerate each species present and to 

measure species-specific ash-free dry weight biomass. Organisms were sorted from detritus 

under dissecting microscopes, identified to the lowest practical taxonomic unit, and counted. 

Species identifications were verified when organisms were transferred for biomass 

measurements. Ash-free dry-weight (AFDW) biomass was measured directly for each species 

by drying organisms to a constant weight at 60°C and ashing (converting an organic compound 

into ash, decomposition, by a burner or in a muffle) in a muffle furnace at 500°C for four hours. 

Sediment samples were wet-sieved for percent silt-clay content (Folk, 1973). 

2.5 Macrobenthic Production 

Edgar (1990) developed a general allometric equation (P = 0.0049 * B0 80T0 89
) that relates daily 

macrobenthic production P (llg· C dai1
) to ash-free dry weight B (!lg) and water temperature T 

(°C). Edgar (1990) also developed specific allometric equations for various animal groups 

(crustaceans, molluscs, and infauna), and these equations were used to estimate production for 

each respective group; the general equation was used for animals that did not fall into one of the 

3 aforementioned groups. Table 1 displays the variation in Edgar's (1990) equations by group. 

The only departure from Edgar's method, which uses the mean AFDW of animals retained on a 

series of sieves of differing mesh size, was the usage of mean AFDW of each species by sample. 

Biomass measurements at the species level allowed us to examine taxonomic and functional 

group associations between production and DO. The theoretical basis for Edgar's equation is 

grounded in the metabolic theory of ecology that shows, among other things, that a constant 
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fraction of metabolism tends to be allocated to production across taxa (Brown et al., 2004). 

Sturdivant et al. (unpublished) verifies the quality of our production estimate (see Chapter 1). 

2. 6 Data Analyses 

To compare the seasonal replicate data for 2007 and 2008, a repeated-measures analysis of 

variance (ANOVA) was conducted to determine the variance in production between 4 seasons 

(spring, summer, fall, and the following spring). A repeated-measures design is one in which 

multiple measurements or observations are taken on the same replicate data (Zar, 1999). Ifthere 

is a lot of variability from one replicate to the next, this technique controls for that source of 

variation. This analysis is needed since the repeated observations on a single replicate are not 

statistically independent of one another, and therefore, the analysis must reflect this structure of 

dependence in the data (Gotelli and Ellison, 2004). The model included year as a factor with the 

randomly selected sites as the repeated measures, and the varying season as the treatment. The 

physical parameters DO concentration, salinity, and% silt/clay were covariates. Normality was 

checked with the Shapiro-Wilk test and homogeneity of variance with Bartlett's test. Data found 

not to be normal was log transformed. Tukey's HSD test was used for multiple mean 

compansons. 

In an information theoretic approach, general linear models (GLM) were posed, using residual 

sums of squares (RSS) estimates to determine Akaike's information criterion (AI C) for our 

seasonal replicate data. AIC is a measure of the explanatory power of a statistical model that 

accounts for the number of parameters in the model. The RSS, derived from the repeated­

measures analysis, of the estimated model parameter (8) was determined given the data (Gotelli 
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and Ellison, 2004), and this approach determines the model that best reflects effects on 

macrobenthic production. When comparing among multiple models for the same phenomenon, 

the model with the lowest AIC value is considered to be the best model. For this study corrected 

AIC (AICc), a second-order bias correction necessary for small samples (Burnham and 

Anderson, 2002), was used to determine model strength. AICc values were then used to 

determine AIC differences (~ 1), relative to the smallest AICc value in the set of tested models. 

Hence, ~1 rescaled AICc values such that the model with the minimum AICc value had a ~ 1 = 0. 

Derived ~1 values were used to determine Akaike weights ( wz). The W 1 sum to 1 and were 

interpreted as the probability that model i is the expected best model for the sampling situation 

considered. If a "best" model could not be determined, model averaging was conducted. Model 

averaging takes the f3 estimates of the parameters and multiplies them by the W 1, and then sums 

the two for all models, providing model-averaged estimates for the measured variables. Instead 

of using only those models with a lot of support, all models were used in model averaging to 

ensure W 1 summed to 1. This is an appropriate method of model averaging as models with little 

or no support essentially get ignored in the calculation, i.e. they are weighted very little 

(Burnham and Anderson, 2002). Sturdivant et al. (unpublished) determined that DO 

concentration, salinity, and grain size had significant relationships with macrobenthic production 

in Chesapeake Bay, thus, the seven models constructed in this paper were based on those 

findings (Table 2). 

For the continuous monitoring data, paired t-tests were used to determine differences in 

macro benthic production between sites for each year and to validate differences (or the lack 

thereof) in the physical parameters at the hypoxic and normoxic sites. Regression and multiple 
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regression analysis were conducted to determine cause/effect relationships between physical 

parameters and macrobenthic production for the continuous monitoring data. In a basic sense, 

regression describes the relationship between a predictor variable and a response variable 

(Gotelli and Ellison, 2004); multiple regression factors in more than one regression. 

Macrobenthic data from 2007 and 2008 were regressed against DO concentration. To assess 

functional group differences between and within sites, ANOV A was run, except for differences 

in sediment reworking rates (SRR), which were determined using a t-test. 

3. RESULTS 

The residual sums of squares (RSS) for each of the seven models (Table 2) were used to generate 

the AICc results (Table 3). Based on the calculated Akaike weights (wz), models g1, g2, and g3 

were equally plausible, however, overwhelming evidence for a single superior model, indicated 

by a W 1 2:0.90 (Burnham and Anderson, 2002), did not exist. To better clarify which variable 

(DO, salinity, or grain size) was most important to our estimated parameters, the wz were 

summed for each model that included a certain variable. Summed W 1 were as follows: DO = 

0.40, salinity= 0.40, and% silt/clay= 0.49, indicating% silt/clay was the most important of the 

three measured variables, but strong evidence existed for the importance of each measured 

variable. Given the strong support for a number of models and parity between each of the 3 

measured variables, model averaging was employed for all models. Based on model-averaged 

results (Table 4), DO concentration and salinity had the most impact on macrobenthic production 

during 2007 and 2008 in the lower Rappahannock River. Per one mg r 1 increase in DO 

concentration, the rate of macro benthic production increased by 14.7 mg C m·2 d-1
, and it 

53 



decreased by 12.4 mg C m-2 d-1 per psu increase of salinity. %Silt/clay had a marginal affect on 

macrobenthic production, increasing the rate of production by 4.7 mg C m-2 d-1 per percentage 

point increase in% silt/clay. 

Macro benthic production differed among seasons (Figure 1 ), with the highest rate of production 

in the spring. Summer macrobenthic production was lower than spring production by ~40% and 

production in the summer was the lowest observed. In the fall, macrobenthic production was 

higher than summer production but did not equal the magnitude of production observed in the 

spring. Macrobenthic production in the following spring (represented in Figure 1 as Nxt Spring) 

was approximately equally to production in the fall and did not parallel macrobenthic production 

in the initial spring. 

DO measurements collected by datasondes at each of the continuously monitored sites from 

2007 (Sites 18 and 25) and 2008 (Sites 11 and 12) were compared to corresponding point 

measurements of DO using a paired t-test to validate the accuracy of sonde readings (Figure 2). 

There was no significant difference between corresponding sonde readings and point DO 

measurements for any of the four sites, providing confidence in our DO concentration data. In 

2007, 55% of the observed DO measurements at hypoxic site 18 were hypoxic, compared to less 

than 20% at normoxic site 25. In 2008, 45% of the observed DO measurements at hypoxic site 

11 were hypoxic with 15% of the observed DO at anoxic levels. Greater than 80% of the 

observed DO measurements at normoxic site 12 were higher than 3.0 mg 0 2 r 1
. Note that in 

2007, the normoxic site was not a true normoxic site as it experienced hypoxia on several 

occasiOns. 
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There was no significant difference in salinity, temperature, or% silt/clay between normoxic and 

hypoxic sites in 2007 or 2008 (Table 5). Depth was significantly different between the normoxic 

and hypoxic sites in 2007 and 2008, however Sturdivant et al. (unpublished) found that depth 

had no significant affect on daily macrobenthic production in Chesapeake Bay (see Chapter 1 ). 

Therefore, with similar physical factors between the normoxic and hypoxic sites for both years, 

macrobenthic production was regressed against only DO concentration (Figure 3). A sigmoid 

relationship was found between daily macrobenthic production and DO concentration; 

macrobenthic production was low in DO concentrations below ~3.0 mg r 1
, rising after ~3.5 mg r 

1
. Macrobenthic production was also more variable at higher DO concentrations; the standard 

error (SE) of mean macro benthic production at DO concentrations > 2.8 mg 0 2 r1 was 2.2 mg C 

m·2 d- 1 compared to a SE of0.5 mg C m-2 d-at DO concentrations:::; 2.8 mg 0 2 r 1
. 

The bi-weekly macrobenthic production between the normoxic and hypoxic sites in 2007 and 

2008 were compared. In 2007, macro benthic production at the normoxic site was significantly 

higher than macrobenthic production at the hypoxic site (Figure 4a); the hypoxic site had on 

average 85% lower production than the normoxic site. Hypoxia-resistant species contributed to 

half of the macrobenthic production at the normoxic site and approximately 85% of the 

macrobenthic production at the hypoxic site. The hypoxia-resistant spionid, Paraprionospio 

pinnata, dominated macro benthic production at the hypoxic site, contributing to 78% of the total 

macrobenthic production. In 2008, macrobenthic production was not significantly different 

between sites, but a trend of higher production at the norm oxic site existed (Figure 4b ). The 

hypoxic site had on average 36% lower production than the normoxic site, but this assessment 
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includes early spring, a time period unaffected by hypoxia and when macrobenthic production 

was approximately equal at both sites. When the difference in production is assessed starting at 

the development ofhypoxia (5/29/08- 11112/08) the production between the two sites was found 

to be significantly different (df= 10, T = 2.25, p = 0.049) with macrobenthic production 50% 

lower at the hypoxic site compared to the normoxic site. Overall P. pinnata contributed to more 

than half of the observed macrobenthic production at the hypoxic site; by comparison P. pinnata 

contributed to only 30% of macro benthic production at the normoxic site. 

In 2007 and 2008, there were no significant differences in macrobenthic production when tested 

by functional groups mobility or feeding types (p > 0.05), due to large variances observed in 

these groups. Using biomass measurements collected in 2007 and 2008, ranges of sediment 

reworking rates (SRR) were determined at each site using values reported in Diaz and Schaffner 

(1990). The maximum estimations ofSRR and minimum estimations ofSRR were compared for 

normoxic and hypoxic sites each year using at-test (Figure 5). In 2007, macrobenthos at the 

normoxic site reworked an average of 18000-21000 mg dry weight sediment individuar1 day-1
, 

which was significantly higher than SRR of 1900-2500 mg dry weight sediment individuar1 day-

1 estimated at the hypoxic site. A similar trend was observed in 2008, the normoxic site had 

significantly higher estimates of SRR at 4300-6100 mg dry weight sediment individuar1 dai1
, 

compared to the estimates of 450-1100 mg dry weight sediment individuar1 day-1 at the hypoxic 

site. 
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4. DISCUSSION 

In 2007 and 2008, we found a positive correlation and sigmoid relationship between 

macrobenthic production and DO concentration in the Rappahannock River estuary. In our 

seasonal study, macrobenthic production increased by 14.7 mg C m-2 d-1 per unit increase in DO 

concentration. This positive relationship was expanded in our continuous study, which showed a 

sigmoid relationship between DO concentration and macrobenthic production. Macrobenthic 

production was low below -3 mg r1 rising after 3.5 mg r1
. Seitz et al. (2009) documented 

similar results, finding sigmoid relationships between macrobenthic biomass and DO 

concentration in varying salinity regimes of Chesapeake Bay, with a threshold around 3 mg r 1 

for polyhaline regions. Further, our data indicated hypoxic DO concentrations offered little 

variability in macrobenthic production, with mean macrobenthic production 3.0 (SE ± 0.5) mg C 

m-2 d- 1 during hypoxia. The negative impacts of hypoxia on macrobenthic community structure 

are well documented (Dauer et al., 1992; Llans6, 1992; Diaz and Rosenberg, 1995; Rabalais et 

al., 2001 ), and our results indicate hypoxia has equally negative effects on macro benthic 

production. It is not known if the observed relationship between DO concentration and 

macrobenthic production is direct or indirect. A lack of DO in bottom waters can cause direct 

mortality via asphyxiation (Diaz and Rosenberg, 1995) and inhibit macrobenthic recruitment and 

growth, hampering production (Nichols, 1977); yet the impact of hypoxia on macrobenthos 

extends further. At the development of hypoxia, sessile organisms such as macrobenthos 

decrease feeding and movement (Riedel et al., 2008) in an attempt to depress their metabolism. 

If the organisms are able to avoid mortality via asphyxiation, such actions during prolonged 

hypoxic events could lead to starvation. Additionally, during severe hypoxia and anoxia S04 is 
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reduced to H2S, a toxic compound documented to contribute to macrobenthic mortality (Main 

and Nelson, 1988; Llans6, 1991; Shumway et al., 1993) through inhibition of the electron 

transport chain in aerobic respiration (Torrans and Clemens, 1982). Predation is another 

scenario possibly contributing to lowered production during hypoxia. In hypoxic environments 

macrobenthos have been known to breach and extend their bodies and appendages above the 

sediment surface, increasing susceptibility to predation (Pihl et al., 1992). 

In 2007 and 2008, macrobenthic production differed between seasons, with spring having the 

highest observed production rate. Macrobenthic production was lower during the summer and 

there was little recovery of production levels in the fall and following spring. Spring is a 

productive time of year in coastal estuaries as nutrient input from spring freshets enriches these 

shallow systems (Boyton et al., 1995; Magnien et al., 1995) and this is also a time when 

recruitment of many benthic organisms occurs (Simon, 1967; Sandifer, 1972). The shallowness 

of Chesapeake Bay fosters tight benthic-pelagic coupling, and there exists a high probability that 

water column productivity reaches the bottom through turbulent mixing and subsequent 

suspension feeding (Cloem, 2001) or direct sedimentation (Davies and Payne, 1984), thus, 

fueling benthic production. Hypoxia is pervasive in Chesapeake Bay and its tributaries during 

the summer months (Kuo et al., 1991; Hagy et al., 2004) and, as was shown in this study, could 

account for the lower production observed during the summer via the direct or indirect 

relationships discussed above. That production only partially recovered in the fall is not 

surprising; it would not be expected that macrobenthic production in the fall would rival spring 

production. A lack of nutrient input that normally fuels spring production (Hagy et al., 2005), 

altered hydrography that mixes plankton below the critical depth (Jackson, 2008), and lower 
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temperatures reducing metabolism (Diaz and Schaffner, 1990) all contribute to less productivity 

in the colder months. However, the lack of recovery of macro benthic production in the 

following spring indicates a possibility of carry-over affects for sites that experienced hypoxia 

the previous year. This was an interesting result as macrobenthic production from normoxic and 

hypoxic sites were analyzed in 2007 and 2008. It may be possible that lost production in 

hypoxic sites impacts overall macrobenthic recruitment. Larval dispersal for macrobenthos 

occurs through planktotrophy and/or lecithotrophy (Thorson, 1950; Kempf and Hadfield, 1986), 

and macrobenthic larval settlement is not purely random but selective (Watzin, 1986). We may 

have observed lower macrobenthic production in the following spring sites due to overall 

recruitment being limited by the lack of production at hypoxic sites, and/or the changes in the 

macrobenthic community (discussed below) may have affected larval recruitment and 

subsequent production. 

This study demonstrated that macrobenthic production was up to 85% lower at hypoxic sites, yet 

the big underlying question is what happened to all the "lost" production? An easy answer is 

simply that it was never produced. Habitats that are exposed to extensive hypoxia and anoxia 

have low annual biomass and production (Rainer, 1982; Levin, 2003, Seitz et al., 2009). 

Macrobenthic production in areas that experience prolonged hypoxia is regulated by the amount 

ofbenthic recruitment and growth that occurs during periods ofnormoxia (Nichols, 1977); the 

production at these sites is limited by productivity during normoxia. The lower production 

observed at hypoxic sites would therefore not be a function of its removal, but of the fact that it 

was never created. Alternatively the "lost" production could have been transferred to higher 

trophic levels, as hypoxia has been documented to enhance predation as predators capitalize on 
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stressed prey (Nestlerode and Diaz, 1998; Seitz et al., 2003; Eggleston et al., 2005); although 

severe hypoxia disrupts the normal energy flow to higher consumers (Baird et al., 2004). Severe 

prolonged hypoxia instead allows for the microbial community, which can utilize other 

compounds (N03·, Mn04, FeOH, soi-, and C02) as electron acceptors when DO is absent, to 

process macrobenthic secondary production (Baird et al., 2004). 

Functionally there were no significant differences in feeding or mobility groups for 

macrobenthos at hypoxic vs. normoxic sites. This was driven by large variances in both groups, 

indicating that hypoxia may affect the production of these functional groups equally. As a whole 

macrobenthos are sessile in nature, so it is not surprising that the relative mobility of 

macrobenthic groups was equally impacted by hypoxia. There was a difference in macrobenthic 

sediment reworking rates (SRR) between normoxic and hypoxic sites in 2007 and 2008; hypoxic 

sites had on average significantly lower SRR compared to normoxic sites. SRR is analogous 

with bioturbation, the biological reworking of sediments by flora, fauna, or microbial activity 

(Meysman et al., 2006), and through this process macrobenthos influence sediment geochemical 

and physical properties (Lohrer et al., 2004 ). The consequences of lowered rates of bioturbation 

include decreases in sediment permeability, remineralization, nutrient flux (Lohrer et al., 2004), 

and a shallower sediment oxic layer (Sloan and Kennedy, 2002). DO penetrates sediments by 

physical diffusion only a few millimeters (Revsbech et al., 1980), but bioturbation can distribute 

DO much deeper in the sediment (Aller, 1982). 

The spionid Paraprionospio pinnata dominated macrobenthic production at hypoxic sites in 

2007 and 2008 contributing to 78% and 50% of the total production, respectively. P. pinnata is 
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an opportunistic species that is morphologically adapted to deal with a low oxygen environment, 

having elongated, proliferated and numerous branchia (Dauer, 1985; Lamont and Gage, 2000). 

In addition to dominating production through its survivability, P. pinnata may have also 

benefited from less competition through reduction of other species during hypoxia (Seitz et al., 

2009). In our study, species richness was reduced by 40% at hypoxic sites potentially decreasing 

competitive pressure and allowing P. pinnata to capitalize on the organic-rich environment that 

generally accompanies eutrophication-induced hypoxic areas. While hypoxic sites were 

dominated by P. pinnata, normoxic sites were characterized by species with high SRR, such as 

Loimia medusa, Acteocina canaliculata, and Heteromastus jiliformis. These species were 

notably absent at hypoxic sites and contributed to the significant difference in SRR between 

normoxic and hypoxic sites. Species with life history traits that require high energy demands, 

such as burrowing to consume food or in search of prey, would be less well adapted to an 

environment where metabolic depression is important to survival. 

In our study, salinity and% silt/clay were documented to affect macrobenthic production to 

varying degrees. Previous data has indicated a relationship between macrobenthic production 

and% silt/clay and salinity in Chesapeake Bay, with the effect of salinity significant and% 

silt/clay only marginally significant (Sturdivant unpublished). Results from our study confirmed 

these findings; macro benthic production increased 4. 7 mg C m-2 d-1 per unit increase in % 

silt/clay, and decreased 12.4 mg C m-2 d-1 per unit increase in salinity. In estuaries worldwide, 

salinity is the major governing factor in organism distribution and diversity (Perkins, 1974; Diaz 

and Schaffner, 1990; Telesh and Khlebovich, 201 0), so it comes as no surprise that salinity was 

observed to have one of the biggest impacts on macrobenthic production in our study. The study 
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was designed to assess changes in macrobenthic production in a defined upper-mesohaline 

salinity range of the lower Rappahannock River. Average salinity of all samples over our study 

period was 14.3 (SD ± 2.6) psu, indicating little variation in salinity. Had our study 

encompassed a larger salinity range, we suspect impacts on macrobenthic production would have 

been greater, given the dominance of salinity in regulating macrobenthic populations (Perkins, 

1974) and documented impacts of salinity on macrobenthic production (Diaz and Schaffner, 

1990). On a total area basis, macrobenthic production is highest in polyhaline habitats and 

lowest in the euhaline habitats, with the majority of the Bay's macro benthic production ( ~ 70%) 

occurring in high mesohaline and polyhaline habitats. At moderate to high salinities, or when 

salinity is constant, patterns of benthic distribution are further correlated with sediment type 

(Dauer et al., 1984; Cooksey and Hyland, 2007). Percent silt/clay had marginal impacts on 

macrobenthic production, and this is also likely due to the small spatial extent in which the study 

took place. Mean % silt/clay across all samples during our study period was 61.2% (SD ± 12.2). 

5. CONCLUSION 

Macrobenthic production was related to DO concentration with macrobenthic production up to 

85% lower at hypoxic sites. The function of macro benthic communities changed relative to DO 

concentration, with hypoxia resistant spionids dominant during hypoxia and species with high 

sediment reworking rates dominant during normoxia. Macrobenthic production differed across 

seasons, and there were indications that summer hypoxia impacted the recovery of macro benthic 

production the following spring. Salinity and grain size were shown to have significant and 

marginally significant affects on macrobenthic production, respectively; but given the spatial 
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extent of the study, DO concentration had the biggest impact on macrobenthic production. The 

observed impacts of hypoxia on macro benthic production are troublesome, as previous studies 

have documented negative cascading affects to higher trophic levels as a result of disturbance to 

macrobenthic communities (Powers et al., 2005). 
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TABLE CITATIONS 

Table 1. Equations relating daily production P (11g· C dai1
) to faunal ash-free dry-weight B (!lg) 

and water temperature T (°C) for different animal groups, where P = x* BY* T'. Data derived from 

Edgar (1990). 

Table 2. Parameters for the general linear models (gx), corresponding to the different hypotheses 

concerning the effects on macrobenthic production (response= macrobenthic production= 8). k 

= number of parameters, including ci as a parameter. 

Table 3. Constructed AIC table displaying results of each model. 

Table 4. Model averaged estimates for the three measured variables of dissolved oxygen 

concentration (DO), salinity (SAL),% Silt/Clay(% SC). /31 denotes the estimator of fJ bases on 

Table 5. Statistical comparison, using a paired t-test, of physical data for A) 2007 sites, hypoxic 

site 18 and normoxic site 25; and B) 2008 sites, hypoxic site 11 and normoxic site 12. Asterisks 

denote significant differences. 
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FIGURE CITATIONS 

Figure 1. Comparison ofthe natural log of mean daily macrobenthic production by season for 

2007 and 2008 sites. Samples were collected during the spring, summer, fall, and following 

spring (represented as Nxt Spring) between spring 2007- spring 2009. Error bars represent 

±lSE. 

Figure 2. DO data for each ofthe four continuously monitored sites (gray line), compared to 

corresponding point DO measurements (black dots). No significant differences between sonde 

readings and corresponding point DO measurements for A) the 2007 norm oxic Site 25 ( df = 6, T 

= -0.97, p = 0.377), B) the 2007 hypoxic Site 18 (df= 6, T = 0.22, p = 0.834), C) the 2008 

normoxic Site 12 (df= 12, T = 0.51, p = 0.62) and D) the 2008 hypoxic Site 11 (df= 12, T = 

0.18, p = 0.89). 

Figure 3. Relationship between DO concentration and daily macrobenthic production for the 

continuously monitored hypoxic and normoxic sites in 2007 and 2008. A sigmoid relationship 

was found between DO and daily macrobenthic production (df= 39, F = 10.31, p = 0.0003). 

Squares represent 2007 data and triangles 2008. Solid symbols indicate the hypoxic sites, and 

hollow symbols the normoxic sites. 

Figure 4. Display of daily macrobenthic production (gray bars, lefty-axis) and corresponding 

DO concentration (black line, right y-axis) for A) hypoxic site 18 and normoxic site 25 in 2007 

and B) hypoxic site 11 and normoxic site 12 in 2008. In 2007 macrobenthic production was 
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significantly different between sites 18 and 25 (df=6, T=-2.87, p=0.029), and in 2008 

macrobenthic production was not significantly different between sites 11 and 12 (df=12, T=-

2.11' p=0.056). 

Figure 5. Display of sediment reworking rates (mg dry weight individuar1 day" 1
) by year and 

site. A) In 2007 normoxic site 25 and hypoxic site 18 had significantly different maximum 

(df=6, T=-3.94, p=0.008) and minimum (df=6, T=-3.70, p=0.010) estimations of sediment 

reworking rates. B) In 2008 normoxic site 12 and hypoxic site 11 had significantly different 

maximum (df=12, T=-3.32, p=0.006) and minimum (df=12, T=-3.77, p=0.003) estimations of 

sediment reworking rates. Error bars represents ± 1 SE. 
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Table 1. 

General 

Infauna 

Crustacea 

Mollusca 

X 

0.0049 

0.0035 

0.0013 

0.0066 

73 

y 

0.8 

0.79 

0.81 

0.87 

z 

0.89 

1.05 

1.32 

0.46 

Egn. 

1 

2 

3 

4 



Table 2. 

Model k 
a XI X2 XJ 

constant DO salinity %silt/clay 

gl 3 a /JI 

g2 3 a /J2 

g3 3 a fh 

g4 3 a /JI /J2 

g5 4 a /JI /JJ 

g6 4 a /J2 /JJ 

g7 4 a /JJ /J2 /JJ 
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Table 3. 

Model k RSS AICc L11 
Evidence 

Wz Ratio 

gl 3 40950168 247.1 0.58 0.22 0.32 

g2 3 40828749 247.0 0.53 0.22 0.31 

g3 3 39611986 246.5 0.00 0.29 0.24 

g4 4 40561010 249.4 2.89 0.07 1.00 

gs 4 39258209 248.8 2.32 0.09 0.75 

g6 4 39349502 248.9 2.36 0.09 0.77 

g7 5 38958470 251.3 4.81 0.03 2.61 
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Table 4. 

Variable 

DO 

SAL 

%SC 

14.7 

-12.4 

4.7 

76 

SE 

23.2 

17.6 

3.1 



Table 5. 

A) 

Parameter Site 18 Site 25 df T p 

Temp (°C) 25.8 26.0 6 -0.6 0.54 

Salinity (psu) 18.6 17.9 6 1.4 0.20 

%Silt/Clay 89.8 90.0 6 -0.4 0.67 

Depth (m) 10.6 9.6 6 11.1 <0.0005 * 

B) 

Parameter Site 11 Site 12 df T p 

Temp (°C) 21.8 22.2 12 -2.1 0.06 

Salinity (psu) 14.5 14.8 12 -0.7 0.48 

%Silt/Clay 98.4 94.2 12 1.8 0.05 

Depth (m) 9.8 7.7 12 10.6 <0.0005 * 
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CHAPTER3 

Bioturbation in a declining oxygen environment, in situ observations 

Manuscript citation: Sturdivant SK, Diaz, RJ, Cutter GR (submitted). Bioturbation in a 
declining oxygen environment, in situ observations. Proc Natl Acad Sci 
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ABSTRACT 

Bioturbation, the displacement and mixing of sediment particles by fauna or flora, is an essential 

process that increases the quality of marine sediments. In the marine environment bioturbation is 

primarily mediated by infaunal organisms. Infauna are susceptible to perturbations in their 

surrounding environment due to their sedentary life history traits. Hypoxia, dissolved oxygen 

(DO) concentrations of :S2 ml r 1
, is a prevalent, persistent issue that affects marine life, including 

pelagic and bottom fauna, and has been increasing in coastal systems worldwide. A benthic 

observing system (Wormcam) consisting of a buoy, telemetering electronics, a sediment profile 

camera, and a water quality datasonde was deployed in the Rappahannock River, VA, USA, in 

an area known to experience seasonal hypoxia from early spring to late fall. Wormcam 

transmitted a time series of in situ images and water quality data a shore-based receiver station 

via wireless internet for 5 months spanning normoxic and hypoxic periods. Hypoxia was found 

to significantly reduce bioturbation through reductions in burrow lengths, burrow rates, and 

burrowing depth. Although infaunal activity was greatly reduced during hypoxic and near 

anoxic conditions, some individuals remained active. Low concentrations of DO in the water 

column limited bioturbation by infaunal burrowers. This study emphasizes the importance of in 

situ observations for understanding how components of an ecosystem respond to hypoxia. 
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1. INTRODUCTION 

Bioturbation describes the biological reworking of sediments by flora, fauna, or microbial 

activity (Meysman et al. 2006). This study focuses on infaunal bioturbation, as it has been 

shown to play a vital role in regulating marine sediment geochemical and physical properties 

(Aller, 1978; Rhoads and Boyer, 1982) as well as affecting ecosystem function (Meysman et al. 

2006). Sediment permeability, chemical gradients in pore water, remineralization, and inorganic 

nutrient efflux are a few of the sediment properties and functions regulated by infauna 

bioturbation (Lohrer et al., 2004). 

The sessile nature of the macrobenthos makes them susceptible to changes in the surrounding 

environment. Consequently, any factors that influence infauna behavior can affect bioturbation. 

One of the most important is hypoxia, an emergent threat to coastal marine systems worldwide 

(Diaz and Rosenberg, 2008). Hypoxia, dissolved oxygen (DO) concentrations of:::; 2 mg r 1 

(Tyson and Pearson, 1991 ), has been shown to influence the behavior of infauna (Diaz and 

Rosenberg, 1995) and eventually lead to death from prolonged exposure (Vaquer-Sonyer and 

Duarte, 2009). Hypoxia also effects sediment geochemistry resulting in more reduced conditions 

and a shallowing of the redox-potential discontinuity (RPD) layer (Jorgensen, 1980). Results 

from laboratory and community field studies suggest that infaunal bioturbation is severely 

reduced, if not stagnant during periods ofhypoxia (Rosenberg et al., 1991; Nilsson and 

Rosenberg, 2000). 
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Laboratory studies are effective in providing insight into unknown processes, but can only 

attempt to recreate the complexities observed in situ (Snelgrove and Butman, 1994). The 

development of sediment profile cameras has enabled in situ observations of organism-sediment 

interactions (Rhoads and Cande, 1971). Diaz and Cutter (2001) and Solan and Kennedy (2002) 

used time-lapse profile cameras to document burrowing and formation of other biogenic 

structures. We developed W ormcam, an in situ benthic observing system that is a combination 

of a sediment profile camera and water quality datasonde, to collect a time-lapse series of images 

and data. Information collected was transmitted in near real-time, every 30 minutes using a 

wireless internet router to our website. The specific objectives of this study were to assess, via in 

situ observations, the impacts ofhypoxia on bioturbation, infaunal behavior, and sediment 

geochemistry. 

2.METHODS 

2.1 Study Area 

This study occurred over a five month period from May to mid-September 2009 in the 

mesohaline portion of the Rappahannock River (Fig. 1 ), a sub-estuary of Chesapeake Bay known 

to experience seasonal hypoxia (Kuo and Neilsen, 1991; Park et al., 1996). Wormcam was 

deployed approximately 2.5 km northeast of La Grange Creek (Middlesex County), Virginia, 

based on DO concentrations collected from previous years. Initially W ormcam was deployed in 

27m at Location 1 (37° 41, 24.8' N, 76° 33, 47.9' W), but halfway through the monitoring 

period, in mid-July, was moved 0.5 km to the east to 32m at Location 2 (37° 41, 25.6' N, 76° 33, 

3 7.8' W) to ensure the capture of a prolonged hypoxic event (Fig. 1 ). 
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2.2 Wormcam 

Wormcam consisted of an IQEye model 705 5-megapixel Ethernet camera, placed in a plastic 

housing that had a 45 degree angle at the bottom, which formed a wedge to penetrate into the 

sediments, and a mirror on the back wall in the wedge acted as a prism to image the vertical 

profile. The field of view was 10 em wide by 15 em long. Lighting was provided by a white 

LED (Lexeon Star model 5C). The camera was set to take a series of 8 to 12 images every half­

hour that were stored on the camera's memory card. Wormcam was affixed to a low-profile 

aluminum frame to minimize flow disturbance and to prevent the camera from fully sinking in 

the sediment (Fig. 2a). Also, the window extended beyond the edges of the prism to divert water 

flow and prevent erosion near the comers. A Hach DS500X water-quality datasonde was 

attached to the frame 20 em above the sediment and collected DO, salinity, temperature, and 

depth measurements at 30-min intervals in conjunction with image capture. A few images and 

water quality data (DO, salinity, temperature, and depth) were transmitted wirelessly to our 

website via a Sierra Wireless AirLink™ Raven X Ethernet modem for near real-time 

observation. This allowed us to keep track of water quality and sediment structure conditions. 

During maintenance trips the memory card was retrieved and images were downloaded for 

analysis of biogenic structures and sediment oxidation state; sediment grabs were collected using 

a Young grab (samples an area of 440 cm2 to a depth of 10 em) and screened through a 0.5 mm 

sieve to assess benthic community composition. The entire system was controlled by a Campbell 

CR1 000 microprocessor and solar powered from a surface buoy connected by cable to 

Wormcam (Fig. 2b ). Wormcam was deployed for a period of 5 months, from May 13 -

September 15, 2009, and divided into three oxygen regimes: the transition from normoxia to 
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hypoxia (May 13- July 21), the prolonged exposure ofhypoxia and anoxia (July 21 -September 

1 ), and the subsequent rebound to normoxia (September 1 - September 15). Maintenance­

recoveries and redeployments occurred every 3-4 weeks as needed. Point DO measurements 

were collected from a surface vessel with a handheld YSI Professional Plus water quality meter 

to verify data from the deployed meter. An additional Hach DS500X datasonde was deployed 

August 7, 2009 until the end of the project to verify DO results. DO concentrations recorded by 

the Wormcam datasonde were not significantly different from the handheld YSI (df=3, T=O.l5, 

p=0.888) and the additional deployed datasonde (df=1790, T=1.29, p=0.197), based on paired t-

tests. 

2.3 Data Analysis 

Photoshop (Adobe Systems Inc.) was used to rotate and scale the images, ImageJ (NIH) was 

used for digital measurements of sediment oxidation state and biogenic structures, and MatLab 

(The Mathworks) code was used to view sequences of images and the corresponding DO 

concentration data. While images were captured every half-hour, a 6-h interval was used for 

detecting the effects of hypoxia on visual features and infaunal activities. Oxidation state of the 

sediment and depth of the apparent -color redox -potential discontinuity ( aRPD) was determined 

by color: reddish-brown sediment was considered oxidized and grayish-black sediment was 

considered reduced (Fenchel, 1969). Centroid and maximum burrow depths were recorded as 

estimates of bioturbation activity. Centroid depth was designated as the geometric center of 

burrowing activity and max depth was the deepest detectable burrow. The relationships between 

DO concentration and aRPD, centroid, and max burrow depths were assessed using linear 

regressiOn. 
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The study record was divided into three periods based on oxygen regime. First was the transition 

from normoxia to hypoxia (May 13 - July 21 ), second was the prolonged exposure of hypoxia 

and anoxia (July 21 - September 1 ), and third the subsequent rebound to normoxia (September 1 

-September 15; Fig. 3). For each of the three oxygen regimes, a random sample of five burrows 

was analyzed hourly to determine the effect of DO concentration on burrow length and duration. 

An hour time-frame was used for burrow length and duration quantification to assess finer scale 

changes in burrow transformation. For a burrow to be measured, it needed a visible connection 

to the sediment surface, be easily discernible in the images, and extend below the aRPD. Natural 

log transformation was used to achieve normality for burrow length data. Animating the series 

of images provided information on burrowing activity and fauna behavior relative to DO 

concentration. 

3. RESULTS 

Over the 5-month study, bottom temperature ranged from 18 to 29 °C and salinity from 12 to 19 

psu. Burrowing activity was detected a few hours post-deployment ofWormcam; small 

capitellid-like worms were observed first during normoxic conditions, and small spionid like 

worms during hypoxia. These were the dominant taxa in corresponding sediment grabs collected 

less than ~ 10 m from Wormcam (Table 1 ). Significant positive relationships were found 

between DO concentration for both centroid and maximum burrow depths (Fig. 4). As DO 

concentrations declined the centroid and maximum depth of infauna burrows became shallower, 

to the point where organisms were seen extending their bodies above the sediment surface during 
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prolonged periods oflow DO (Fig. 5). Over the study period, >90% of the observed maximum 

burrow depths were <5 em below the sediment surface. 

Burrows were generally well formed within one hour after initial observation in the image 

sequence. Over the burrows' life span, initial burrow lengths were 2:70% of the maximum 

length, indicating the majority of burrow formation was completed within an hour, the time 

interval between images. Initial length of some burrows was >90% of the maximum length. A 

significant positive relationship was found between burrow length and DO concentration (Fig. 

6a), as DO increased, burrow length increased. While non-significant, there was a tendency for 

increased burrow longevity at higher DO concentrations. Increases in burrow length were 

primarily attributed to sediment accretion; worms would extend burrows back to the surface 

within the hour during high accretion events but were rarely observed burrowing deeper during 

erosion events. Of the observed burrows, the majority were destroyed or abandoned due to 

erosion or biological disturbance, especially from blue crab ( Callinectes sapidus) and American 

eel (Anguilla rostrata) foraging during normoxia. Crabs and eels were only present during 

normoxic conditions and it is presumed that they were searching for prey (Van Engel, 1958; 

Wenner and Musick, 1975), but neither was observed preying on infauna. During hypoxia 

burrows remained in place but appeared abandoned. 

Over the study period burrow production, defined as the change in total burrow length over time, 

averaged 3 mm h-1 (SD=9). Burrow production during normoxia (>2.8 mg 0 2 r1), 4.3 mm h-

1(SD=11.3 mm), was significantly higher (p=0.001, T= -3.29) than during hypoxia, 1.1 mm h- 1 

(SD=3.4 mm), by approximately 75%. Burrows generally had two distinct sections, the portion 
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ofthe burrow above and below the aRPD. On average, burrows extended 20 mm (SD=15 mm) 

below the aRPD when it was visible. Worms did not appear to favor either side of the aRPD and 

were observed readily moving throughout the vertical extent of their burrows during all 

conditions. During normoxia, the portion of burrows above the aRPD always appeared oxidized 

(reddish-brown in color), and the portion below the RPD became oxidized within an hour to an 

average of 1.0 mm (SD=0.3) from the burrow wall. During hypoxia burrows appeared to remain 

oxidized above the aRPD, but oxidation was not detectable below. The entire lengths of burrows 

appeared completely reduced during periods of anoxia. The affect of hypoxia on sediment 

geochemistry was assessed via the depth ofthe apparent-color RPD (Fig. 6b ). As DO 

concentration decreased the aRPD depth moved closer to the sediment surface and burrow depth 

significantly declined (Fig. 7). When anoxia was reached, the aRPD was not discernible. 

During periods of anoxia we observed the dynamic nature of bacterial mat formation. As DO 

declined to 0 mg r 1 and anoxic conditions spread to the sediment surface, stringy white sulfur 

bacteria were observed migrating in mass up through the sediment to the surface (Supplemental 

material, Video 1 ). Although no samples were collected, based on morphology the bacteria 

appeared to be Beggiatoa spp. Over a 14 day period of anoxia (Aug 1- 15), bacteria migrated to 

the sediment surface at 1.2 mm h-1 (SD=), climbed up the face plate of the prism, and produced 

copious amounts of organic matter which then settled onto the sediment surface. The original 

sediment surface was quickly covered by this unconsolidated mass of bacteria and sediment. As 

more was produced the older organic material became consolidated beneath the weight of new 

organic material. By the end of the 14 day anoxic period, the sediment surface had risen 

approximately 7 em with 0.5 em of the new sediment height unconsolidated. As DO 
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concentration began to rebound, bacteria migrated in mass back down into the sediment 

(Supplemental material, Video 1 ), and the 0.5 em unconsolidated microbial mat left at the 

sediment surface was eroded by currents within a few hours. A week-long period ofnormoxia 

followed and bioturbation was dominated by nereid and capitellid polychaetes. Towards the end 

of this period, the bacteria started to migrate back to the sediment surface and reformed a 

bacterial mat over the next hypoxic/anoxic period (Aug 23 - September 1 ). 

During conditions when the water column was anoxic, there was a surprising amount of infaunal 

activity (Fig. 8). Prior to the onset of anoxia several spionid polychaetes, Paraprionospio 

pinnata, were observed at the sediment surface with their characteristic palps extended into the 

water column at a DO of 0.1 mg r 1 (Fig. 9). As DO concentration declined further to anoxia it 

appeared that P. pinnata continued to burrow throughout the sediment and flocculent bacterial 

mat. Burrows created during this period remained anaerobic, and worms did not inhabit the 

burrows for longer than an hour. Sediment grabs collected during anoxia only contained P. 

pinnata (Table 1 ). 

Other behavioral observations from Wormcam were worms retracting into burrows upon the 

presence of a predator, a nereid worm preying on another worm, a goby searching for food or 

oxygen during hypoxia, a sea cucumber extending its body and appendages above the sediment­

water interface during hypoxia, and apparently a worm using the burrow of another worm 

(Supplemental material). 
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4. DISCUSSION 

We found hypoxia to interfere with ecosystem function by reducing the rates and depth of 

bioturbation. Burrow depths and lengths were significantly related to DO concentration with 

shallower burrow depths and reduced burrow lengths during lower oxygen. Reductions in 

burrow depths and lengths diminished the area of influence ofbioturbators, limiting the amount 

of sediment reworked. The consequences of inhibiting bioturbation cascade to changes in 

sediment permeability, remineralization, and nutrient flux. The rate at which sediment was 

reworked through burrow production was reduced by 75% during hypoxia. 

DO concentrations were shown to be significantly positively related to the apparent-color RPD 

depth, with shallower aRPD depths at lower DO concentrations. In the anaerobic environment 

below the RPD, reduced conditions dominate and H2S can be present (Theede, 1973). It is 

difficult to separate the combined effects of low DO and H2S toxicity on marine organisms 

(Vismann, 1990), so to explain the effect these two physical conditions might have on 

bioturbation, a multiple regression was performed, and a significant positive relationship was 

found. The interaction of DO concentration and aRPD depth influenced macrobenthos, limiting 

their bioturbation effectiveness through a reduction in organism activity and burrowing depth. 

Reductions in bioturbation further reduced DO concentration below the sediment surface 

affecting sediment geochemistry via reduced oxygen diffusion across burrow walls. During 

normoxic conditions, oxygen appeared to diffuse an average of 1.0 mm (SD=0.3) from burrow 

walls below the aRPD. This oxic layer was not discernible around burrow walls below the aRPD 

during hypoxia. Diaz and Cutter (200 1) observed worm activity to correspond with increased 
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oxygen diffusion across burrow walls below the aRPD during normoxia. Hypoxia then leads to a 

reduction in the passive and active diffusion of DO to subsurface sediments. 

Analysis of in situ Wormcam images quantified the relationship between DO concentration and 

infaunal bioturbation and revealed the dynamic nature of the benthic environment. Over a 14-

day period of anoxia (Aug 1 - 15) filamentous bacteria were observed migrating through the 

sediment and producing a flocculent mat on the W ormcam faceplate and the sediment surface. 

Microbial migration and formation of microbial mats has been documented (J0rgensen, 1980; 

Bagarinao, 1992, Graco et al. 2001 ), however, the observation of this process and the subsequent 

burrowing of worms throughout the sediment and bacterial mat are new. We found some portion 

of the infauna to remain active during hypoxia and even anoxia. Infaunal activity was observed 

during anoxia and in the presence of sulfur-oxidizing bacteria (Nelson et al., 1986) from the 

sediment surface to 5 em below the surface. Other in situ observation of surface fauna behavior 

during hypoxia also found infauna to surface (Riedel et al., 2008). However, laboratory 

experimental data would predict mortality and no infaunal activity during anoxia (Vaquer­

Sonyer and Duarte, 2008). Although active worm burrowing was observed, the burrows created 

during this period remained anoxic, indicating that bioturbation could also act as a process to aid 

the diffusion of anaerobic compounds out of the sediments and into the water column. 

The plasticity of Paraprionospio pinnata, a worm indentified in images and corresponding 

sediment grabs, is one hypothesis to explain their activity during prolonged hypoxic/anoxic 

events. Skipper et al. (20 1 0) defines plasticity as 'the capacity of organisms or cells to alter their 

phenotype in response to changes in their environment.' Before the onset of anoxia, on multiple 
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occasions the DO concentrations at our site became hypoxic for a short duration. These low DO 

events may have pre-conditioned the infauna physiologically for the subsequent anoxia event. 

Childress and Siebel (1998) discuss 3 methods organisms use to cope with low oxygen: 

increasing oxygen uptake, decreasing metabolic demands, or utilizing anaerobic metabolism. In 

response to the infrequent short-duration low oxygen events, worms not killed would have a 

physiological response to produce more haemoglobin; increasing the capacity of their coelomic 

fluid to uptake oxygen and subsequently the ability to cope with the next low oxygen event 

(Mangum, 1970; Bartolomaeus, 1994). P. pinnata are also morphologically well adapted to deal 

with a low oxygen environment having elongated, proliferated and numerous branchia (Dauer, 

1985; Lamont and Gage, 2000). We could not determine if P. pinnata decreased its metabolic 

demand by viewing images, but P. pinnata observed during anoxia were highly active. Recent 

work by Gonzalez and Quinones (2000) showed that P. pinnata posses all four subsets of 

pyruvate oxidoreductases (LDH, ALPDH, OPPDH, and STRDH), which are enzymatic 

adaptations associated with anaerobic metabolism during low DO. Levin (2003) suggests the 

high numbers and variety of these enzymes may 'confer metabolic plasticity, and could explain 

the success of P. pinnata in hypoxic settings around the world' as well as at our study site. It is 

also possible that the organic rich environment created by the bacteria, offset any respiratory 

deficiencies experienced in a severely oxygen limited environment; even more likely is some 

combination of the two hypotheses. The scavenging amphipod, Orchomene obtusus, has been 

shown to capitalize on abundant food and lack of predation in anoxic bottom waters, but must 

reenter oxygenated waters to recover oxygen debt after sometime (DeRobertis et al., 2001). 
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5. CONCLUSION 

The results from this study quantify infaunal bioturbation during low DO, and find that hypoxia 

significantly affects bioturbation. Hypoxia reduces bioturbation through significant reductions in 

burrow lengths, burrow production, and burrow depth. Although infaunal activity was observed 

during hypoxic and anoxic conditions, the low concentrations of DO limited diffusion into the 

sediment. Although some worms were active during hypoxia via plasticity or perhaps 

capitalizing on the environment enhanced with newly available organic material, the extent to 

which their ability to process sediment was reduced during anoxic conditions is unknown. Thus 

a portion of bioturbation may remain unaffected by low DO and some macrobenthic bioturbation 

may retain their value. 

While the results presented in this paper affirm previously held notions about the affect of 

hypoxia on macrobenthic bioturbation and behavior, observations from Wormcam clearly 

demonstrate the necessity and importance of in situ studies. 
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TABLE CAPTIONS 

Table 1. Abundance of species collected in grabs (0.04 m2) at Wormcam site by date. 
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FIGURE CAPTIONS 

Figure 1. Wormcam study site in the lower Rappahannock River. The gray dot is the initial area 

that Wormcam was deployed (Location 1 ). Half way through the monitoring period, Worm cam 

was moved 0.5 km to the east represented by the black dot (Location 2). 

Figure 2. Image ofthe Wormcam apparatus (A) and a cross-sectional diagram ofWormcam (B). 

Cross-sectional diagram not drawn to scale. 

Figure 3. DO data from May to September (gray line); black dotted lines separate the three DO 

periods. Large black dots represent point DO measurements, and small black dots represent DO 

measurements from the second datasonde. 

Figure 4. Relationship of DO concentrations and centroid (A) and maximum burrow depths (B). 

Significant positive relationships were found for both centroid (p<0.0005, F=254.48) and 

maximum (p<0.0005, F=191.37) burrow depths. 

Figure 5. The holithurm, Leptosynapta tenuis (L), observed extending out of the sediment 

during near anoxic conditions. Scale around image is in em units, and the blue circle on the 

graph shows the DO concentration for the image. Light artifacts from reflection in the prism are 

visible on the edge of the image. 
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Figure 6. Relationship of DO concentration and burrow length (A) and apparent-color RPD 

depth (B). Significant positive relationships were found for burrow length (p<0.0005, F=95.32) 

and RPD depth (p<0.0005, F=399.98). 

Figure 7. Relationship of centroid burrow depth with DO concentration and aRPD depth. A 

significant relationship was found in the interaction between DO and RPD depth (p<O.OOI, 

F=432.35) on burrow depth. 

Figure 8. Sediment profile image showing Nereis spp. worm (W) and worm burrows (Br), 

during severe hypoxic conditions, and bacteria (Be) migrating to the sediment surface and 

producing copious amounts of organic matter. Black tic marks represent 1 em scale marks, and 

the blue circle on the graph shows the DO concentration for the image. Light artifacts from 

reflection in the prism are visible on the edge of the image. 

Figure 9. Sediment profile image showing Paraprionospio pinnata (P) at the surface during the 

onset of a near anoxic event. Black tic marks represent 1 em scale marks, and the blue circle on 

the graph shows the DO concentration for the image. Light artifacts from reflection in the prism 

are visible on the edge of the image. 
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Table 1. 

0'> 0'> 0'> 0'> 0'> 0'> 
0 0 0 0 0 0 
0 0 0 0 0 0 
C\1 C\1 C\1 C\1 C\1 C\1 - - - - - -I'- C\1 0'> ...-- ("') -.;t 

Taxa 
0 0 0 C\1 0 C\1 - - - - - -1.() c.o c.o I'- co co 
0 0 0 0 0 0 

Neanthes succinea 1 0 1 0 1 0 

Paraprionospio pinnata 7 3 7 1 1 3 

Mediomastus ambiseta 5 1 3 0 0 0 

Sigambra tentaculata 1 0 1 0 0 0 

Tubificoidies spp. 7 0 0 0 0 0 

Amphipoda (unknown) 1 0 1 0 0 0 

Leitoscoplos robustus 1 0 0 0 0 0 

Streblospio benedicti 2 2 0 0 0 0 

Eteone heteropoda 0 1 0 0 0 0 

Glycinde solataria 0 0 1 0 0 0 

Acteocina canaliculata 0 0 1 0 0 0 

Sea anemone 0 0 0 0 1 0 

104 



76"360"W 

?9 

" 

3 

2 

Figure 1. 

76.350"W 

" 

o? 

l.j 

s 32 

3L ,. 
b,. 

12 

12 

10 

8 

0 
lJ 

-,::... 

10 

\ h 

~ 10 

N 

76"34'0"W 

3 

lo 

" 
"0 

"" 
9 

5.> 
?J 

?/1 
?• 

•• 
3J 

4' 
10 

12 

105 



A) 

B 

Mean 
Lo\\er 
Lm\ 
Water 
Yaries 
bet\\een 
7 and 9 
Ill 

Figure 2. 

Smalll\Iarl..:r Floal 

• 

\YQ Dala~onde 
"-, 

1 Frame, 0.9 m 
-E--r......-,.) 

SPI Prism 

Data Cabk 36.6 m 

106 



8 

7 

6 

5 -1. • 
b.O 
E 4 -0 
0 

3 

2 

1 

0 I 

5/11/05 

Trans1t1on from normox1a to hypoxia 

• 

5/31/05 6/20/05 7/10/05 7/30/05 8/19/05 9/8/05 



~ .... 
~ 

= ""'l 
~ 

~ . 

I-' 
0 
co 

0 
0 -3 

O'Q 

~ -

0 

N 

.p. 

Cl'l 

co 

I-' 
0 

0 I-' N 

• ••• 
• • • 

• • • 
• 

ttl -
Max Burrow Depth (em) 

,_. 
w .p. V1 Cl'l -...J co \D 0 

----I _ ____j 

• .., 
'" II 

• 0 
!:. 

• N 

• 
• • • 

• •• • • • • • • • • • • • 
• • •• 
• • • • • 

•• • 
.,. ••• • 
• • • •• • • 

• • 

)> -
Centroid Burrow Depth (em} 

0 ,_. N w .p. 
0 V1 ,_. ln N ln w ln .p. ln 

~ \~ .. • 
'~. • .. . 

# • ,, 
I+ +~ • II 

• 0 

~-·· # 
• • VI 

• • • N 

·~ '~· .. • • • • ••• 
• . ~'\ • 

• \ . • • • \ • • •• • • • \• .. • • • • \. • • • • • • • • • 
'· \ • • • • • • • • • • . \ 

' . • 
• • • . :'\ • • • • • • • .... • • • \ • • \ • • • • •• \ • • .. • • • • 

\ • • 
\ 



0 

I 

Figure 5. 

109 



~ CJ )> .... - -~ 

= RPD Depth (em) Burrow Length (em) 
'"'I 
~ 

0'\ 
9 .... N .... I-' .... I-' .... r-.1 

. 
Vl N 1.11 w 0"1 co 0 N ~ 0"1 co 0 0 1.11 .... 0 N ~ 

I'' 
--'-- I 0 

~· • ••• • • "··· ~ . •• ••• • ~ . • • • • . •'').• • • • I .... •• • • • .C• • •• • • • :· : .. . ; .. . . • : .. .. . . • • • • ..... •• t\f .,. ..... • • N . :. il • tl • •• • • • t· ·' ' •• !=" N '· . \ . ·;· .. I-' • 1.0 +\ + +t • .., • ~· . N • • II 
I • ~\ . . 0 • .. . \ . • • ;. ,. 

w 

* 
. .\ •• • 0'1 • • • I • . \ . • • \ 0 . . \·· •• • • I-' I •• I-' 0 • • • •••• 0 - • . . . \ • • 3 .1:> I .. . , ... • .. O'Q i· •• • • • • +\ •• • ' \ ... 

• • • . \ • • • • • • \ \J'I • • • .. • • • I • .: !\ t t • •• • • • : . ... ••• • • . , .. 
~ • • • • • . \ • 0'1 , •• . \ ~ \~ •• • • • •• • ••• 

\ •• • • • • , 
• • • 

--J 

• • 
00 



" I 

I +-~- ~~- I ---
t~o.S1\ 

. -.-.~·~- ---~~~~. -

5 

8 6 4 2 0 

Vigur e '7. 

111 



Figure 8. 

112 



Figure 9. 

113 



CHAPTER4 

Modeling the effect of hypoxia on macro benthic production in the 

lower Rappahannock River, Chesapeake Bay, USA 

Manuscript citation: Sturdivant SK, Brush, MJ, Diaz RJ (submitted). Modeling the effect of 
hypoxia on macrobenthic production in the lower Rappahannock River, Chesapeake Bay, USA. J 
Exp Mar Biol Ecol 
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ABSTRACT 

Hypoxia, DO concentrations of ::S 2 mg 0 2 r', in Chesapeake Bay has substantially increased 

over the past few decades, with detrimental effects on macrobenthic production. The production 

ofbenthic invertebrates is important, as these fauna link energy transfer from primary consumers 

to epibenthic predators and demersal fish. As such, the development of accurate predictive 

models that determine the impact of hypoxia on macrobenthic production are valuable. A 

continuous-time, biomass-based model was developed for the lower Rappahannock River, a 

tributary of Chesapeake Bay prone to seasonal hypoxia, based on the benthic sub-model in the 

2002 Chesapeake Bay Eutrophication Model. Phytoplankton, zooplankton, and macrobenthic 

state variables were modeled, with the primary focus aimed at predicting the effect of hypoxia on 

macrobenthic biomass (B). Z', a sigmoidal relationship that relates macrobenthic biomass and 

DO concentration, was derived from macrobenthic data collected in the Rappahannock River 

during field experiments during the summers of 2007 and 2008, and Z' was applied to the 

macrobenthic state variable. The biomass-based model was then successfully calibrated and 

verified, using independent data, to accurately predict B annually. Simulation analysis of the DO 

formulation showed B strongly linked to DO concentration, with fluctuations in biomass 

significantly correlated with the duration and severity of hypoxia. 
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1. INTRODUCTION 

Macrobenthic organisms (> 500 Jlm) are of great importance to ecological processes in 

Chesapeake Bay ecosystem (Fager, 1964; Aller, 1978; Diaz and Schaffner, 1990). 

Macrobenthos influence sediment geochemical and physical properties (Rhoads and Boyer, 

1982) through bioturbation, the biological reworking of sediments by flora, fauna, or microbial 

activity (Meysman et al., 2006). In the estuarine environment, macrobenthos are the foremost 

pathway that carbon is recycled out of the sediment and eventually out of Chesapeake Bay 

system (Diaz and Schaffner, 1990), and they serve as the energetic link between primary 

producers and demersal fish and epibenthic predators (Nilsen, 2006). However, the sessile 

nature of macrobenthos makes them susceptible to natural and anthropogenic perturbations (Diaz 

and Rosenberg, 1995), a significant concern given the documented importance of macro benthic 

communities in coastal estuaries (Diaz and Schaffner, 1990). 

Since colonial times, the number of humans in Chesapeake Bay watershed has grown 

exponentially, with a 3-fold increase over the last 100 years (Kemp et al., 2005). Human activity 

adversely affects land topography, chemistry of the Earth's atmosphere and water, rates and 

balance of biogeochemical processes, and biodiversity (Vitousek et al., 1997); Chesapeake Bay 

estuary is no different. Anthropogenic disturbance has resulted from activities that mobilize the 

elements nitrogen and phosphorous through land clearing, application of fertilizer, discharge of 

human waste, animal production, and combustion of fossil fuels, leading to eutrophication of the 

Bay (Cloem, 2001). Hypoxia, dissolved oxygen (DO) concentrations:::; 2 mg 0 2 r 1 (Tyson and 

Pearson, 1991 ), is closely associated with eutrophication, an increase in the supply and 
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accumulation of organic matter to a system (Nixon, 1995), typically arising from altered coastal 

nutrient budgets (Diaz, 2001 ). Low DO concentrations have been documented in mainstem 

Chesapeake Bay since the early 1930s (Newcombe et al., 1939) and in the Potomac in the 1910s 

(Sale and Skinner, 1917). Presently, seasonal hypoxia forms in the late spring and lasts 

approximately 120 days, with the most severe low DO events occurring in mainstem Chesapeake 

Bay (Officer et al., 1984). From the 1950s to the present, hypoxic volume has increased 

substantially in Chesapeake Bay, from approximately 3 km3 to 10 km3 (Hagy et al., 2004). This 

increase is of concern given documentation of low DO impairing growth and reproduction and 

stressing living resources, increasing faunal susceptibility to disease and other environmental 

stresses (J0rgensen 1980; Rosenberg and Loo 1988; Llans6, 1992; Dauer et al., 1992; Diaz et al., 

1992; Tallqvist, 2001). Hypoxic water in the mainstem of the bay may be advected into adjacent 

shallow areas, such as Bay tributaries, through horizontal transport (Breitburg, 1990). In the 

Rappahannock River, our area of interest, a combination of tidal mixing and proximity to 

mainstem hypoxic waters controls the seasonal hypoxia, which lasts throughout most of the 

summer (Kuo and Neilson, 1987; Kuo et al., 1991). 

The benthic community structure of coastal systems exhibits a series of predictable and graded 

responses to hypoxia (Diaz and Rosenberg, 1995). Upon initial decreases in DO concentration, 

respiration increases (Petersen and Petersen, 1988) and mobile fauna migrate from the affected 

area (Pihl et al., 1991). Fauna incapable of large-scale mobility cease feeding and activities not 

related to respiration, in an attempt to depress their metabolism (Warren, 1984). As DO 

concentrations continue to decline and reduced compounds accumulate in the sediment, fauna 

migrate to the sediment surface, with some extending respiratory appendages above the 
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sediment-water interface (Jorgensen, 1980; Tyson and Pearson, 1991). With long-lasting and 

particularly severe hypoxia, mass mortality will occur in all but the most tolerant of species 

(Llans6, 1992; Diaz and Rosenberg, 1995). 

As coastal hypoxia continues to increase in the Bay and coastal systems worldwide (Diaz and 

Rosenberg, 2008), the development of accurate predictive models that quantify the impact of 

hypoxia on macrobenthos are valuable. In this study, we developed a continuous-time biomass­

based model, based on the benthic sub-model in the 2002 Chesapeake Bay Eutrophication Model 

(Cerco and Noel, 2004), to model the effect of hypoxia on macrobenthic production in the lower 

Rappahannock River. The specific objectives of this study were to 1) utilize independent data to 

develop a macrobenthic functional response to DO concentration in the lower Rappahannock 

River and to 2) run simulations of varying hypoxic duration and severity to assess and predict 

macrobenthic response. 

2. METHODS 

2.1 Study Area 

Estuaries are dynamic transitional-zones where a confluence of inland freshwater is diluted by 

salt water from the sea (Schubel and Kennedy, 1984). The tidal Rappahannock begins at the fall 

line in Fredericksburg, VA, a distance of approximately 130 km from its mouth. The 1.0 psu 

isohaline is normally 75-90 km upriver. The mean tidal range and surface salinities at the mouth 

are 0.4 m and 12-18 psu respectively (Haas, 1977). In the Rappahannock River, a combination 

of tidal mixing and to a lesser extent, proximity to main stem hypoxic waters, control its seasonal 
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hypoxia which develops in late May and abates in early September (Kuo et al., 1991). The 

Rappahannock is also the only major tributary of the lower Chesapeake Bay with the 

hydrography that allows for sustained seasonal hypoxia (Kuo and Neilson, 1987), making it an 

ideal location for which to develop our model. 

2.2 Field Collection 

Macrobenthic data from a previous study were used to calibrate and verify our benthic model 

(Sturdivant unpublished). From May to October during the summers of 2007 and 2008 two 

random sites were chosen each year in the lower Rappahannock for continuous monitoring. 

Each year a normoxic site and a site known to experience seasonal hypoxia were chosen, based 

on data from the Chesapeake Bay Long-Term Benthic Monitoring Program 

(www.baybenthos.versar.com). For our model construction, we only used data from all four 

sites. At each monitored location, a single tripod attached with a Hach DS 5X Hydrolab 

datasonde was deployed; the datasonde was approximately 0.5 m above the sediment surface. 

DO concentrations were recorded in 20-min increments for two-week periods. At the end of two 

weeks, the datasonde was replaced with another Hydrolab datasonde, and a sediment sample was 

collected with a Young grab ( 440 cm2 to a depth of 10 em) for benthic community analysis. 

Sediment grabs were sieved in the field through a 0.5 mm screen, and organisms and detritus 

retained on the screen were transferred into labeled jars, preserved in a 10% formaldehyde 

solution and stained with Rose Bengal. Samples were processed to identify and enumerate each 

species present as described in Dauer and Llans6 (2003). Ash-free dry weight (AFDW) biomass 

was measured for each species by drying to a constant weight at 60°C and ashing in a muffle 

furnace at 500°C for four hours. 
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2. 3 Model Construction 

A continuous-time, biomass-based model was constructed using STELLA Modeling and 

Simulation Software®. The model was based on the benthic sub-model in the 2002 Chesapeake 

Bay Eutrophication Model (Cerco and Noel, 2004), and contained three governing equations. 

Phytoplankton biomass was modeled as: 

1. :tP=[(G-R-Wa)*P-PR] 

where: 

P =phytoplankton biomass (g C m-3
) 

G =growth rate of phytoplankton (d-1
) 

R =respiration rate of phytoplankton (d-1
) 

Wa =phytoplankton settling velocity (m d-1
) 

PR =predation on phytoplankton (g C m-3 d- 1
) 

Zooplankton were modeled as the combined biomass of micro- and mesozooplankton for 
simplicity as: 

2. 

where: 

8 
-M = (Gz- BMz- Mz) * M- PRz 
8t 

M = zooplankton biomass (g C m-3
) 

Gz =growth rate of zooplankton (d-1
) 

BMz =basal metabolic rate of zooplankton ( d- 1
) 

Mz =mortality (d-1
) 

PRz =predation on zooplankton (g C m-3 d- 1
) 

Macrobenthos were modeled as the combined biomass of deposit and suspension feeders, as: 

3. !.._ B = [a* ( 
10 

9 ) * (POC +PM) * kmnt * s] + Ks- [(r- fi- m) * B] 
8t m 2 *10 

where: 

B = macrobenthic biomass (g C m-2
) 

a = assimilation efficiency for carbon 
10 =ingestion rate of macrobenthos (g C biomass-1 d-1

) 

m2 =sediment solids concentration (kg L-1
) 
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POC = sediment particulate organic carbon concentration (g C m-3
) 

kmni = Michaelis-Menton growth limitation term for carbon 
Ks =recruitment rate of macrobenthos (g C m-2

) 

r = respiration rate of macrobenthos ( d- 1
) 

fJ =predation rate (m2 g C d- 1
) 

m =hypoxia mortality rate (d-1
) 

PM= phytoplankton and zooplankton biomass 

Phytoplankton and zooplankton groups were included in the model given the tight benthic-

pelagic coupling that exist in estuarine and shallow coastal systems (Haven and Morales-Alamo, 

1972; Pryor, 1975; Frithsen and Doering, 1986), and importance ofboth groups as a source of 

food for macrobenthos (Garber, 1987). Our model excluded the state equation for suspension 

feeders in the Chesapeake Bay Eutrophication Model, and it combined macrobenthic suspension 

and deposit feeders into a single state equation. The benthic suspension feeder equation was not 

included in our model because its construction was based on large bivalve suspension feeders 

(Cerco and Noel, 2004) that are generally rare in the lower bay, causing the model to over-

predict suspension feeder biomass (Schaffuer et al., 2002). Further, no oysters or mussels and 

only a few small clams (primarily Macoma spp.) were collected in the field samples used to 

substantiate the benthic model. Suspension feeders are abundant in the lower bay, but the 

primary contributor to their biomass is the polychaete Chaetopterus variopedatus and a variety 

of epifaunal species such as tunicates and hydroids (Schaffner et al., 2002). We did not collect 

any Chaetopterus in our Rappahannock samples and the tunicates and hydroids were excluded 

from our model; these organisms are not macrofauna, and are not adequately sampled with the 

gear used causing their representation in the data to be overdispersed. Additionally, many of the 

samples collected in the summer at the hypoxic site were dominated by macrobenthos that both 

suspension and deposit feed, such as Leptocherius plumulosus, Streblospio benedicti, 

Paraprionospio pinnata, and Macoma spp (Diaz and Schaffner, 1990). Based on the community 

composition of macrobenthos collected during the summer of 2008, a single governing equation 
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for macrobenthos was sufficient to model macrobenthic change relative to DO concentration in 

the lower Rappahannock and maintained our goal of keeping the model as simple as functionally 

possible. 

Water quality data were obtained from daily averages collected by the Chesapeake Bay Water 

Quality Monitoring Program from 1985 to 2001, with the exception of photosynthetically active 

radiation (PAR) and temperature. Daily PAR and temperature were forced functions using 

equations derived by Wetzel and Neckles (1986) for lower Chesapeake Bay. 

2. 4 Adaptations to Original Model 

Some specific changes were made to the original governing equations of the Chesapeake Bay 

Eutrophication Model. The formulation that represented the response of zooplankton mortality 

to hypoxia (Mz) was altered; in our model, if DO concentration was less than 2 mg DO r1 then: 

4. Mz = MZEROz * (1- DOREF) 
DOCR!Tz 

in which: 

Mz =mortality of zooplankton group Z (d-1
) 

MZEROz =mortality at zero dissolved oxygen concentration (d-1
) 

DO REF= dissolved oxygen concentration when DO< DOCR!Tz, otherwise 2 (mg DO r 1
) 

DOCR!Tz =threshold below which dissolved-oxygen-induced mortality occurs, this value equals 2 (mg DO r 1
) 

In the original equation DOCRITz was always 2 mg 0 2 r 1
, and DO REF was the dissolved 

oxygen concentration when DO < DOCRITz, otherwise it was zero. However, this resulted in a 

linear increase in modeled zooplankton population; therefore, the formulation was amended to 

equation 8, where the DO REF was the dissolved oxygen concentration when DO < DOCRITz, 

otherwise it was 2 mg DO r 1
• 

122 



The parent Chesapeake Bay Eutrophication model simulates three fractions of sediment organic 

carbon, a labile, semi-labile, and refractory pool. In the original version of the macrobenthic 

model, the following portion ofEq. 3, [a* ( 10 
9 ) * POC * kmnl * B] , was computed twice, 

m 2 *10 

once for the labile and once for the semi-labile carbon pool. Since our model was not coupled to 

a larger eutrophication model, in the interest of maintaining simplicity we computed this term in 

Eq. 3 once using total sediment POC from field measurements. Additionally, the predation rate 

({3) was originally multiplied by the square of macro benthic biomass (B2
). However, this 

formulation caused too great a loss to overall macrobenthic biomass and was replaced with a 

linear function of B. Finally, during simulations where DO concentrations were less than 2 mg 

0 2 r 1
, the macrobenthic compartment would hit zero due to the hypoxia mortality rate (m): 

5. m = rd * (1- Z) 

where: 

r d = intrinsic mortality rate ( d-1
) 

z· =impact of DO concentration on B (mg r 1
) 

The original Eutrophication model had no term to jump-start B once zero was reached, causing B 

to remain at zero even after hypoxia abated. Therefore, a recruitment parameter (Ks) was created 

which added a minute amount of B (0.00015 g C m·2 d-1
) back to the model at each time step. 

This value was determined by incrementally decreasing the amount of Ks until a value was 

achieved that did not alter the temporal trend of modeled macrobenthos biomass during 

normoxia. This was supported by sensitivity analysis results reported later. 
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2. 5 Rappahannock Function Relating Biomass to Hypoxia 

In the original Eutrophication model, the impact of DO concentration on macro benthic 

respiration (r), ingestion (10), and B was represented by the logistic equation Z, where: 

6. 

where: 

1 z = -----;:=--­
DOqx-DO 

1.1*Cno ~ ) 
1 +e gx-DOqx 

DOgx = DO at which macro benthic function is 50% of maximum 
DOqx =DO at which macrobenthic function is 25% of maximum 

The logistic equation that represents Z was not supported by any data, and our analysis of 

Chesapeake Bay field data and results from Seitz et al. (2009) indicate a different relationship 

between DO and macrobenthic biomass than the one represented by the logistic equation Z. 

Therefore, a sigmoidal function was derived from macrobenthic data collected from the 

Rappahannock River during the summers of2007 and 2008 (Figure 1), and a parameter (Z') was 

created to represent the relationship. The equation Z' was derived from the sigmoidal curve in 

Figure1 , and used to model the impact of DO concentration on B where: 

7. Z' 
0.16 

X 3.35 
1+e( o.15 ) 

In our model, Z is still used to model the impact of DO concentration on rand 10, but Z' is used 

to more accurately model the impact of DO on B, replacing Z in Eq. 5. Equation 7 was 

normalized (0 to 1, dimensionless) by replacing the numerator with 1, such that Equation 8 was 

the equation applied to our model: 

8. Z' = 
1 

( D0-3.35) 
1+e o.15 
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where: 

DO= dissolved oxygen concentration (mg r 1
) 

2.6 Model Verification and Simulation Analysis 

A single model run encompassed a period of 365 days with a time step of one calculation per 

day. The three governing equations were verified using Chesapeake Bay Benthic and Water 

Quality monitoring program data from 1992; this year was chosen at random from years 1985-

2001. Stations LE 3.4 and 3.6 in the lower Rappahannock River were compared to model output 

using a paired t-test. Comparisons found not to be significantly different were generally 

considered valid. Sensitivity analyses were conducted for the phytoplankton, zooplankton, and 

macrobenthic state variables by adjusting selected parameters that directly impacted growth or 

loss (i.e. consumption or predation parameters). Maximum photosynthetic rate (Pm), 

phytoplankton settling velocity (Wa), and predation rate on algae (Phtl) were tested for the 

phytoplankton state variable, predator biomass and clearance rate (PHTlz) for the zooplankton 

state variable, and assimilation efficiency for carbon (a), ingestion limitation (K1) and 

recruitment rate (Ks) for the macro benthic state variable. All parameters tested in sensitivity 

analysis were adjusted at an increment of ±20% and the relative percent difference from the 

standard run was calculated for each. Parameters with percentage errors greater than 1 0% were 

deemed to be sensitive parameters. 

A set of simulations analyses were conducted, adjusting DO concentration to model the affect of 

the severity and duration of hypoxia on the 3 modeled state variables (Table 1 ). To avoid shock 

affects in model, the DO concentrations was gradually adjusted to desired DO levels over a 

period of 3 days before the designated day of hypoxia beginning or ending. The first four 
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simulations focused on the sustained duration of hypoxia with the 4th simulation including 

intermittent hypoxia; hypoxia occurred every 14 days simulating the development of hypoxia 

during neap tidal cycles. Model output verified when DO concentration was normoxic (i.e the 

base model results during normoxia after model calibration, verification and sensitivity analyses) 

was used as a baseline for comparison between the first four model simulations. A paired t-test 

was used to assess differences between the verified model output and each of the 4 hypoxic 

simulations for each of the three state variables. Simulations 5-9 modeled the severity of 

hypoxia from 0-2 mg 0 2 r1
, for a duration of 60 days. Analysis of variance was used to test for 

differences between quantitative simulations 5-9 between 1-365 days and 177-238 days. 

Normality was checked with the Shapiro-Wilk test and homogeneity ofvariance with Bartlett's 

test (Zar, 1999). Tukey's HSD test was used for multiple mean comparisons. All statistical tests 

were conducted using Mini-tab Statistical Software®, with significant differences at an a-level 

of0.05. 

3. RESULTS 

Modeled phytoplankton (P) and macrobenthic (B) biomass were found not to be significantly 

different from biomass data collected in the lower Rappahannock River at site LE 3.6 and 3.4, 

respectively (Figures 2 and 3). The lack of significant difference provides confidence in the 

accuracy of the phytoplankton and macro benthic state equations. Modeled zooplankton biomass 

(M) was compared to data collected in the lower Rappahannock River at site LE 3.6 and found to 

be significantly different (Figure 4). While zooplankton biomass was significantly different, this 

can be attributed to the combination of multiple zooplankton groups (micro- and 
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mesozooplankton) into a single state variable and calibration difficulties well-documented for 

zooplankton in the Eutrophication model (Cerco and Cole, 1993). However, the annual pattern 

of modeled zooplankton biomass was appropriate, and the magnitude accurate, providing us with 

confidence to use the state variable in our model simulations. Sensitivity analyses were 

conducted on model constants for each state variable (Table 2). The model was sensitive to a 

majority of tested parameters, with the phytoplankton state variable sensitive to tested 

parameters. The zooplankton state variable was found to be insensitive to an increase in predator 

biomass and clearance rate but sensitive to a decrease. The macrobenthos state variable was 

sensitive to assimilation efficiency for carbon and insensitive to recruitment rate and ingestion 

limitation. 

Simulations were run assessing the impact of hypoxic duration on phytoplankton, zooplankton, 

and macrobenthos biomass. Macrobenthos biomass began to decrease as Simulation 1 

approached hypoxia. At the start of hypoxia in Simulation 1 the steady decrease acceleratd to an 

immediate crash of macrobenthos biomass that lasted the duration of the hypoxic event, with a 

temporal trend in macrobenthos biomass significantly different from one modeled under 

normoxic conditions (Figure 5A). Macrobenthos biomass began to respond and increase before 

DO concentrations in the model became normoxic. A few days after hypoxia ended in the model, 

macrobenthos biomass had increased to above pre-hypoxia biomass. Similar trends were 

observed in simulations 2 and 3 involving hypoxic durations of 60 and 30 days (Figure 5B and 

C), with the main difference being the length of the crash of macrobenthos biomass. Simulations 

with shorter durations of hypoxia resulted in less time with macrobenthos biomass near 0 g C m· 

2
. In the intermittent hypoxia simulation macrobenthos biomass decreased at the onset of 
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hypoxia and remained near zero for the duration of hypoxia (Figure 6). During the 14-day 

intervals when DO concentration was normoxic, macrobenthos biomass began to increase, 

however once DO concentration dropped down to hypoxic levels, macrobenthos biomass 

decreased back near zero. Macrobenthos biomass fluctuated through this pattern throughout the 

entire hypoxic simulation. A few days after hypoxia abated permanently, macrobenthos biomass 

began to increase to biomass levels greater than those observed pre-hypoxia. 

Modeled phyto- and zooplankton biomass responded oppositely to hypoxic simulations (Figure 

7). As DO concentrations began to decline, phytoplankton biomass initially decreased, however, 

with the onset of modeled hypoxia, phytoplankton biomass increased. The length of increased 

phytoplankton biomass was dependent on the duration of hypoxia, with a longer duration of 

hypoxia resulting in higher overall phytoplankton biomass, and to some extent an even greater 

magnitude of phytoplankton biomass. Hypoxia had the reverse affect on zooplankton biomass. 

As DO concentration decreased to hypoxic levels, zooplankton biomass initially increased and 

then declined to near 0 g C m-3
. The length of time that zooplankton biomass stayed near 0 g C 

m-3 was dependent on the duration of hypoxia; lengthy durations of hypoxia coincided with 

longer durations of reduced zooplankton biomass. Zooplankton biomass did not initially respond 

to an increase in DO concentration, until days to weeks after hypoxia ended in the model. 

The effect of hypoxic severity on macrobenthos biomass was tested by adjusting DO 

concentration between 2.0 and 0.0 mg 0 2 r 1 in increments of0.5 mg 0 2 r 1for a series of5 

simulations (Table 3). Macrobenthos biomass was not significantly different between 

simulations when compared over 365 days. Simulations 5-9 had similar macrobenthos biomass 

during normoxia, as no parameters were changed; macrobenthos biomass did not differ between 
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simulations until DO concentrations became hypoxic. Therefore, simulations 5-9 were analyzed 

starting at the onset of hypoxia on day 177 through the end of hypoxia on day 238. Simulation 5 

had significantly higher macrobenthos biomass than simulations 6-9. Mean biomass in 

simulation 5, which depicted 60 days of hypoxia at 2.0 mg 0 2 r 1
, was greater than 3 times higher 

than simulations 7-9, which modeled hypoxia at DO concentrations of0.0-1.0 mg 0 2 r1
, and 1.5 

times higher than simulation 6. In simulation 6 when the DO was 1.5 mg 0 2 r 1 macrobenthos 

biomass was significantly lower than simulation 5 and greater than 2 times higher than 

simulations 7-9. Simulations 7-9 did not significantly differ in biomass. 

4. DISCUSSION 

The sigmoid relationship (Z') applied to this ecosystem model reflects changes in macrobenthos 

biomass (B) over varying hypoxic scenarios. The duration and severity of hypoxia has been 

previously shown to impact benthic community assemblages (Vaquer-Sunyer and Duarte, 2008). 

In our model, hypoxic duration resulted in prolonged reductions of macrobenthos biomass 

relative to the length of hypoxia, with the model suggesting near defaunation (macrobenthos 

biomass equal to 0 g C m·2
) during the 120, 60, and 30 day hypoxic scenarios (simulations 1, 2, 

and 3) at a DO concentration of0.5 mg 0 2 r 1
). Scenarios of prolonged hypoxia have been 

observed previously in Chesapeake Bay and elsewhere. The deep trough of the mainstem Bay 

experiences sustained seasonal hypoxia year after year (Officer et al., 1984), and has been 

documented by the Chesapeake Bay Program to be devoid of macrofauna during the summer 

months. Further, over extended periods ofhypoxic exposure (~40 days) even the most tolerant 

of species experienced total mortality (Rosenberg et al., 1991 ). After DO levels in our model 
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returned to normoxia, macrobenthos biomass recovered to greater than pre-hypoxic levels. This 

was unexpected as conditions in Chesapeake Bay that fuel ecological production in the pre­

hypoxic spring differ in the post-hypoxic fall (Kemp et al., 2005). Increased nutrient run-off 

from the spring freshet promotes plankton production; the particulate organic matter from these 

blooms eventually settles to the bottom promoting benthic growth (Rabalais, 2004). Large 

plankton blooms seen in the spring are noticeably absent in the fall, and with less primary 

production one would expect the rate of recovery of macrobenthos biomass to be less in the fall 

than in the spring. However, data from the continuously monitored sites used to derived Z' 

indicate macrobenthic production can increase back to pre-hypoxic levels a few weeks post 

hypoxia, suggesting the macrobenthos biomass increases we observed post-hypoxia may not be 

inaccurate. 

Modeled intermittent hypoxia, simulation 4, depicted hypoxia occurring during neap tides and 

abating during spring tides. The model output showed macrobenthos biomass being reduced 

during hypoxia but recovering during normoxia, and cycling in this manner throughout the 

intermittent series of hypoxic events. Given the severity at which DO concentration was set (0.5 

mg 0 2 r\ it is not surprising that macrobenthos biomass decreased to the level that it did. As 

with previous simulations, the recruitment rate of macrobenthos biomass was very rapid when 

normoxia did return. Macrobenthos biomass also began recovering ~2-3 days before hypoxia 

abated, which represents the time frame that DO was increasing from 0.5 to 2.0, indicating a 

sensitivity to hypoxic severity. Once macrobenthos biomass got to a level where it appeared 

sustainable, hypoxia returned and macrobenthos biomass was reduced to near zero biomass. 

This process was then repeated throughout the intermittent hypoxic cycle. 
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Hypoxic severity had a significant impact on macrobenthos biomass with biomass signficiantly 

higher at less severy hypoxic simulations. Studies have shown the severity of hypoxia to affect 

the response of benthic communities; the more severe the hypoxia, the greater the impact on the 

benthos, directly and indirectly (Diaz and Rosenberg, 1995). Directly, benthic species vary in 

their tolerances to low DO concentration (Vaquer-Sunyer and Duarte, 2008) as the severity of 

hypoxia increases towards anoxia, sensitive species die off decreasing the diversity of the 

affected area and overall biomass. Indirectly, DO concentration can positively and negatively 

affect benthic predation. Nestlerode and Diaz (1998) showed that benthos may actually have a 

refuge from predation under mildly hypoxic conditions, and Brante and Hughes (200 1) 

demonstrated that hypoxia reduced the effort of Carcinus maenas predation on mussels. During 

mild hypoxia predators may not effectively prey upon benthos, and hypoxia tolerant benthos 

would survive and maintain their biomass. However, Seitz et al. (2003) and Long and Seitz 

(2008) showed that epibenthic predators and demersal fish can at times capitalize on stressed 

benthos during mild hypoxic events. As oxygen concentrations become lethal, stressed infauna 

extend their appendages and bodies out of the sediment in an attempt to escape dire conditions 

below the sediment and sediment-water interface (Phil et al. 1992). Opportunistic mobile 

predators have been shown to re-enter hypoxic areas and prey on exposed macrofauna during 

mild hypoxia (Phil et al. 1991 ). During model simulations, there was no upswing in 

macrobenthos biomass as DO concentrations declined towards hypoxia. This could indicate that 

our model does not accurately reflect any macro benthic predation release due to lowering of DO, 

or direct hypoxic mortality (Z') has a much greater affect on macrobenthos biomass, dulling any 

affects of predation release; the latter is likely to be correct. In the macro benthic state variable, fJ: 
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9. {3 {3 ' DO 
- DO+Kvo 

in which: 

{3' = the predation rate before considering hypoxic effects 
KDO = predation DO half-saturation 

accounts for the predation rate on macrobenthos and denotes predation rate as a function of 

temperature and DO concentration. Since our predation parameter has factored in the impact of 

DO concentration on predators of the macrobenthos, the results observed in the model output 

indicate that Z' likely nullifies any affects on fJ. 

Zooplankton biomass (M) was negatively impacted by hypoxia directly, causing zooplankton 

biomass to be drastically reduced. Marcus et al. (2004) considered the effect of reduced DO 

concentration on the survival and population dynamics of zooplankton, demonstrating the 

deleterious affect hypoxia has on zooplankton population and community dynamics. As a result 

phytoplankton biomass (P) in our model was indirectly positively influenced by the onset of 

hypoxia, due to the release of phytoplankton biomass from grazing pressure by zooplankton. 

5. CONCLUSION 

Macrobenthic data from the lower Rappahannock River were used to derive Z', a sigmoidal 

relationship, to model the effect of DO concentration on macro benthic biomass (B). Z' was then 

applied to an overall biomass-based ecosystem model of the lower Rappahannock and used to 

assess the impact of hypoxia on B, while including the important interactions that occur through 

benthic-pelagic coupling. Z' is a useful tool in that it can be applied to existing models to 
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accurately simulate the impact of hypoxia on the macrobenthos, and the methods used to derive 

Z' can be applied to other systems to develop site specific Z '. 

From our modeling efforts we found that the duration and severity of hypoxia negatively affected 

macrobenthos biomass; longer durations and greater hypoxic severity resulted in less biomass. 

The ecological and economic importance of macrobenthos to estuarine systems underlies the 

significance in understanding processes that positively and negatively impact this group. An 

improved understanding of the impact of hypoxia, and the ability to accurately model these 

interactions, is a key advancement in benthic ecology. 
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TABLE CAPTIONS 

Table 1. Simulations run in the ecosystem model, with varying hypoxic duration and severity. 

Simulations 1-4 modeled hypoxic duration at a constant concentration of0.5 mg 0 2 r 1
; 

simulation 4 modeled intermittent hypoxia (hypoxia occurring every 14 days on a neap/spring 

tidal cycle). Simulations 5-9 modeled the affect of hypoxic severity at a constant duration of 60 

days. 

Table 2. Results of sensitivity analysis for phytoplankton, zooplankton, and macrobenthic state 

variables. Root mean square deviation (RMS) values over an annual cycle are shown for± 20% 

variation for each state variable by parameter. The model was deemed to be sensitive when % 

difference exceeded 10%. 

Table 3. Comparison of macrobenthos biomass to hypoxic severity over (A) a full year, and (B) 

a partial year, covering the time-frame of simulated hypoxia. Macrobenthic biomass was not 

significantly different between simulations over a full year ( df=364, F= 1.62, p=0.17), but 

significantly different during hypoxia (df=63, F=62.38, p<0.0005). Letter differences denote 

significance. Mean biomass is shown with ±1 SD in parentheses. 
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FIGURE CAPTIONS 

Figure 1. Comparison of macrobenthic biomass and DO concentration. Data collected from two 

sites in 2007 and two sites in 2008 that were monitored bi-weekly throughout the year in the 

1 
Rappahannock River. Trendline is a sigmoidal curve, where equation Z' = x- 3 .35 . 

l+e( o.1s ) 

Figure 2. Verification of the phytoplankton state variable. The black line represents modeled 

phytoplankton biomass, and the gray line phytoplankton biomass collected from site LE 3.6 by 

the Chesapeake Bay Water Quality Monitoring Program in 1992. Modeled phytoplankton 

biomass was not significantly different from observed phytoplankton biomass in 1992 ( df=364, 

t=-0.06, p=l.93). 

Figure 3. Verification of the macrobenthos state variable. The black line represents modeled 

macrobenthos biomass, and the gray line macrobenthic biomass collected from site LE 3.4 by the 

Chesapeake Bay Benthic Monitoring Program in 1992. Modeled macrobenthic biomass was not 

significantly different from observed macro benthic biomass in 1992 ( df=364, t= 1. 70, p=0.09). 

Figure 4. Verification of the zooplankton state variable. The black line represents modeled 

zooplankton biomass, and the gray line zooplankton biomass collected from site LE 3.6 by the 

Chesapeake Bay Water Quality Monitoring Program in 1992. Modeled zooplankton biomass 

was significantly different from observed zooplankton biomass in 1992 (df=364, t=2.17, 

p=0.03). 
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Figure 5. Simulated macrobenthos biomass (B) under hypoxic durations of (A) 120, (B) 60, and 

(C) 30 days. Figure A, B, and Care simulations 1, 2, and 3, respectively, from Table 1. The 

black line in each graph represents hypoxic simulations, and the gray B validated during 

normoxia. The shaded area indicates the time frame hypoxia occurred during the simulation. B 

during normoxia was significantly different from B modeled under 120 ( df=364, t= 11.81, 

p<0.0005), 60 (df=364, t=-3.96, p<0.0005), and 30 (df=364, t=-8.23, p<0.0005) days ofhypoxia. 

Figure 6. Simulated macrobenthic biomass (B) under intermittent hypoxia; hypoxia occurred 

every 14 days simulating the development of hypoxia during neap tidal cycles and its abatement 

during spring tides; represents simulation 4 from Table 1. The shaded area indicates the time 

frame hypoxia occurred during the simulation. B during normoxia (gray line) was significantly 

different from B modeled during intermittent hypoxia (black line; df=364, t=-5.51, p<0.0005). 

Figure 7. Simulated phytoplankton biomass under hypoxic durations of (A) 160, (B) 60, and (C) 

30 day, and zooplankton biomass under hypoxic durations of (D) 160, (E) 60, and (F) 30 days. 

The black line in each graph represents modeled biomass under hypoxia, and the gray line during 

normoxia. The shaded area indicates the time frame hypoxia occurred during the simulation. 

The biomass of phytoplankton and zooplankton responded inversely to hypoxia during model 

simulations. 
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Table 1. 

Simulations Hypoxia Duration (d-1
) Julian Day Ordinal Date DO (mg Oz r 1

) 

1 120 148-267 May 28 - Sept 24 0.5 

2 60 177-238 Jun 26 - Aug 26 0.5 

3 30 192-223 Jul 11 - Aug 11 0.5 

162-176, 190-
Jun 11-25, Ju1 9-23, 0.5 

4 14 d intervals 204,218-232, 
246-260 

Aug 6-20, Sept 3-17 

5 60 177-238 Jun 26 - Aug 26 2.0 

6 60 177-238 Jun 26 - Aug 26 1.5 

7 60 177-238 Jun 26 - Aug 26 1.0 

8 60 177-238 Jun 26 - Aug 26 0.5 

9 60 177-238 Jun 26 - Aug 26 0.0 
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Table 2. 

State variable Parameter -20% +20% 
Average %Diff %Diff 

RMS -20% +20% 

Phytoplankton P'm 0.192 1.267 0.744 74.2* 41.2* 

Wa 0.962 0.383 0.744 22.6* 48.5* 

Phtl 1.432 0.237 0.744 48.0* 68.1 * 

Zooplankton PHTlz 0.110 0.097 0.113 2.7 14.2* 

Macrobenthos a 0.084 0.160 0.121 30.6* 24.4* 

K1 0.120 0.121 0.121 0.8 0.5 

Ks 0.120 0.122 0.121 0.2 1.0 

*Denotes model sensitivity. 
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Table 3. 

A) 

Simulation Hypoxia Duration (d-1
) DO (mg 02 r 1

) Julian Day 11eanBiomass (g) 

5 60 2.0 1-365 0.139 (0.08) A 

6 60 1.5 1-365 0.132 (0.09) A 

7 60 1.0 1-365 0.125 (0.09) A 

8 60 0.5 1-365 0.125 (0.09) A 

9 60 0.0 1-365 0.125 (0.09) A 

B) 

Simulation Hypoxia Duration (d-1
) DO (mg 0 2 r 1

) Julian Day 11ean Biomass (g) 

5 60 2.0 177-238 0.117 (0.02) A 

6 60 1.5 177-238 0.077 (0.03) B 

7 60 1.0 177-238 0.033 (0.05) c 
8 60 0.5 177-238 0.027 (0.05) c 
9 60 0.0 177-238 0.027 (0.05) c 

144 



R2 = 0.36 • 
• 

<;'.--.. 

E 
() 

0> 
~ 0.2 • • •• • .. 
0 
LL 
<t: 0.1 • • • • , 

0.0 
... · ,, 

• • 

0 2 4 6 8 10 

DO (mg r1) 

Figure 1. 

145 



1.6 -

_1.4 
"( 

E 
u 1.2 ~ 

b.O -
~ 1 -
ro 
E 
0 
iii 0.8 
c 
0 
+-' "2 0.6 
ro 
c.. 
.8 0.4 -
> 

.s:::. 
0... 

0.2 -

0 

Figure 2. 

so 100 150 200 

Julian Day 

146 

Observed 

-Model 

·~----~-

250 300 350 400 



0.2S 

-N 

E o.2o ~ 
u 
tiD -Vl 
Vl E o.1s 
0 

c:c 
Vl 
0 
£ 0.10 
c 
Q) 

..0 
0 ,_ 
u 

~ 0. OS ~==:::::::::::::=':T 

0.00 
0 so 

Figure 3. 

/ 

100 1SO 200 

Julian Day 

147 

.,,, __ Observed 

-Model 

2SO 300 3SO 400 



0.20 

-ME 0.16 -

u 

Ill 

~ 0.12 -
E 
0 

c:c 
c 
.8 0.08 -
~ 
c 
ro 
c.. 
0 
~ 0.04 

Figure 4. 

0 

-Observed 

50 100 150 200 250 300 350 400 

Julian Day 

148 



0.40 A) 

0.30 
--Validation 
-Simulation 

0.20 

0.10 -N 
I 

E 
0.00 u 

tlO 
B) -V) 0.40 

V) 
·-Validation ro 

E 0.30 -Simulation 
0 
co 
V) 0.20 
0 

..c 
+"" c 0.10 
(]) 

..c __ _______, 
0 0.00 ~ 

u 
ro 
~ 0.40 C) 

0.30 - Validat1on 

-SimulatiOn 

0.20 

0.10 

0.00 

0 50 100 150 200 250 300 350 400 

Julian Day 

Figure 5. 

149 



-N 
I 

E 
u 

0.40 -

~ 0.30 -
~ Validation 
ro 
E -Simulation 
0 
iii 0.20 -

(,/) 

0 
..c 
........ 
c 
Q) 

..c 0.10 -
0 
!..... 
u 
ro 
~ 

0.00 

Figure 6. 

0 so 100 150 200 250 300 350 400 

Julian Day 

150 



25 04 
-Vahdatron 

D) 
-Vahoil•ron 

20 -Srmulat10n 
03 

15 

02 
10 

r-~~ 
01 05 -- -~ 

00 00 

25 
-Vahdatron 04 - E) - Valrdatron 

m 

E 20 
03 -Srmuhtron 

u 
t).Q 15 

02 
Vl 

10 Vl 
ro 
E 01 
0 05 --~-
co 

00 00 

25 
............... Validation 04 

C) -Srmulatron F) 20 
03 

-Vahdatron 
15 -Srmulatron 

02 
10 

OS 01 
~ ,._ --

00 00 
0 100 200 300 400 0 100 200 300 400 

Julian Day 

Figure 7. 

151 



DISSERTATION CONCLUSION 

We assessed the historical temporal trends between hypoxia and macrobenthic production in 

Chesapeake Bay, and in smaller temporal scales of season and weeks in the lower Rappahannock 

River. We also used W ormcam to assess the impact of hypoxia on the function of macrobenthos 

as bioturbators in the lower Rappahannock. Data collected was used to construct a continuous­

time biomass-based model of the lower Rappahannock to model the relationship between 

hypoxia and macrobenthic biomass. Our findings suggest: 

• There was a significant relationship between macrobenthic production and the physical 

parameters DO concentration, salinity, and grain size (represented as% silt/clay), with 

DO having the biggest impact on macrobenthic production. 

• From 1996-2004, on average hypoxic sites a lower daily macrobenthic production by 

90%; which amounts to a 6 to 12% loss in the total annual secondary production. 

• The function of macro benthic communities changed relative to DO concentration with 

hypoxia resistant spionids dominant during hypoxia and species with high sediment 

reworking rates dominant during normoxia. 

• Macrobenthic production differed across seasons and there were indications that 

summer hypoxia impacted the recovery of macro benthic production the following 

spnng. 

• Hypoxia reduces bioturbation through significant reductions in burrow lengths, burrow 

production, and burrow depth. 
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• 

• 

• 

Although some worms are active during hypoxia via plasticity or perhaps capitalizing on 

the environment enhanced with newly available organic material, the low concentrations 

of DO limited diffusion into the sediment. 

Macro benthic data from the lower Rapphannock River was used to derive Z ', a sigmoid 

relationship to predict the effect of DO concentration on macrobenthic biomass (B). Z' 

was then applied to an overall biomass-based ecosystem model of the lower 

Rappahannock and used to assess the impact of hypoxia on B, while including the 

important interactions that occur through benthic-pelagic coupling. 

Z' is a useful tool in that it can be applied to existing models to accurately simulate the 

impact of hypoxia on the macrobenthos, and the methods used to derive Z' can be 

applied to other systems to develop site specific Z '. 
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