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DEFINITION OF SYMBOLS

Symbol Definition
Lower Case

a, wave amplitude, cm

£ Coriolis parameter, 2Qsing, sec™t

g gravitational constant, 980 cm sec™?

h water depth referenced to mean sea level, cm

h average water depth referenced to mean sea
level, cm

k wave number (2T/L), cm~ L

m subscripts in numerical notation indicating
x direction

n subscripts in numerical notation indicating
y direction

n' Manning coefficient

P pressure, gm em™ ! sec2

S real time variation of salinity, s = ps, gm cm’

st salinity deviation from average, gm en™?

t time, sec



Symbol

Definition

v!

velocity in x direction, cm sec"l

velocity deviation from average, x direction,

cm sec™ 1

velocity in y direction, cm sec™1
velocity deviation from average, y direction,

cm sec'l

velocity in z direction, cm sec™1
direction in right-hand coordinate system,
positive to east

direction in right-hand coordinate system,
positive to north

direction in right-hand coordinate system,

positive up

Upper Case

turbulent eddy viscosity (i = x, y, or z),

e sec—1

1/ -1

Chezy coefficient, cm sec

dispersion (i = x or y), en® sec™t
turbulent eddy diffusion (i = x, y, or z),
cm® sec™l

total water depth h + &, cm

xi-



Symbol Definition
H;;, shorthand notation for h + & in finite differ~
ence notation, where j = X oxr vy and it = t,
2t, etc. (See Chapter IV.)
L distance x or y direction, cm
S salinity averaged with respect to depth, gm kg"l
8 real time variation of salinity, gm kg~1
T wave period, sec
U velocity in x direction integrated with respect
to depth, cm sec™1
U average depth integrated velocity in x direc-
tion, cm sec™!
v velocity in y direction integrated with respect
to depth, cm sec™1
7 average depth integrated velocity in y direc-
tion, cm sec™l
Wt wind speed, cm sec™1
Y jet oxr Bay mouth width, cm
Aj Aé constants in recursion edquations, where j = m
B B% or n. (These constants are defined in Chapter
Cj cg IV; computer notation is given in Appendix A.)
D, D:'j
E: E.
.
1
Fj Fj

xii



Definition

AT

At

constants in recursion equations, where j

or n (cont)

Greek

constant in mixing length theory, dimensionless

tidal height, cm

angle, degree of latitude

density, gm cm™>

density deviation from average, gm cm™>

density of air, gm cm

3

density, average, with respect to depth, gm cm

wave angular frequency (En/T), cm sec”

general stress term, gm cm

surface and bottom stress, gm cm”

earth's angular velocity, 0.729211 x 10

grid spacing, cm

1

sec

-2

1

sec

1

-2

-4

whole time step for numerical technique,

half time step for numerical technique

(AT = 2At), sec

xiii

sec™t

sec
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A TWO-DIMENSIONAL TIME-DEPENDENT
NUMERICAL MODEL INVESTIGATION OF THE
COASTAL SEA CIRCULATION AROUND THE
CHESAPEAKE BAY ENTRANCE
ABSTRACT

A computer study was made of the resultant flow field
arising from the discharge of a tidal estuary or river onto
the continental shelf. The approach was to: (1) vertically
integrate the continuity, momentum, and mass balance equa-
tions assuming incompressible flow and using the hydrostatic
assumption and a Boussinesq approximation for density;
(2) numerically model the vertically integrated equations;
and (3) apply the eguations to a simplified coastal geometry
and determine the effects of different physical factors on
the flow field. The numerical equations were written using
a multi-operational computational technigue which was found
to be fast and stable. Velocity and/or tidal heights were
found to be usable on open boundary conditions for the
multi-operational computational scheme.

General conclusions from the study show that the out-~

flow from an estuary can be divided into three types:

dispersive, entraining, or a mixture of the two.

Xiv



Specifically, results of the model study using a steady~-
state or oscillating jet to simulate the Chesapeake Bay
time averaged (non-tidal) or tidal outflow show that for
the cases studied: the longitudinal centerline velocity
for both tidal and non-tidal flows decreases rapidly as a
function of distance from the Bay mouth, the transverse U
velocity profile for the non-tidal case (steady-state jet)
is a hyperbolic secant squared function, the sea surface
slope is important in modeling the flow and should be known
to within 1-2 cm, the Coriolis force was not an important
factor in the turning of the outflow due to the dominance
of bottom friction, and the wind and ambient current were
the most important factors in the turning of the outflow
to the soutﬁ. The model studies also showed the existence
of a northern flow above the Bay entrance and a weak
residual eddy motion above and below the Bay mouth for the

tidal case.

EVERETT MICHAEL STANLEY
THE VIRGINIA INSTITUTE OF MARINE SCIENCE

THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA
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In chief, men marvel Nature renders not
Bigger and bigger the bulk of ocean, since
So vast the down-rush of the waters be,

And every river out of every realm

Cometh thereto; and add the random rains
And flying tempest, which spatter every sea
And every land bedew; add their own springs:
Yet all of these unto the ocean'!s sum

Shall be but as the increase of a drop.

Titus Lucretius Carus

Xvi



A TWO-DIMENSIONAL TIME-DEPENDENT

NUMERICAL MODEL INVESTIGATION OF THE

COASTAL SEA CIRCULATION AROUND THE

CHESAPEAKE BAY ENTRANCE



CHAPTER I

INTRODUCTION AND BACKGROUND

The Middle Atlantic Bight extends from Cape Hatteras,
North Carolina, to Cape Cod, Massachusetts. It can be
broken into two main sections: the New York Bight, extend-
ing from the tip of Long Island, New York, to Cape May, New
Jersey, and the Chesapeake Bight (Figure 1), which covers
the area from Cape May, New Jersey, to Cape Hatteras, North
Carolina. The region of the Chesapeake Bight was first
explored and described by Captain John Smith who called it
the Virginia Sea. One of the chief characteristics of the
314<km coastline of the Chesapeake Bight is the Chesapeake
Bay entrance. The effluence from this Bay, its interaction
with the surrounding shelf waters, and the resultant cir-
culation constitute the primary physical problem investi-
gated in this thesis.

The first general oceanographic descriptions of the
Chesapeake Bight region were given by Parr (1933), Bigelow
(1933), and Bigelow and Sears (1935). The surface flow is

generally southerly (Miller (1952), Howe (1962), Bumpus and
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Lauzier (1965), Harrison, Norcross, Pore, and Stanley (1967),
Bumpus (1969)), but it is influenced by surface winds. The
bottom drift is southerly in deep water and generally toward
the Chesapeake Bay entrance in the shallow in-~shore area
(Bumpus (1965), Harrison et al (1967)), but it can vary
with season, density stratification, and winds. The overall
southerly surface flow is augmented by the discharge from
the Chesapeake Bay and smallexr coastal estuaries and lag-
oons, with the Chesapeake Bay being the largest contributor,
This slow-moving southerly drift turns northward and is
entrained in the Gulf Stream at Cape Hatteras (Ford and
Miller (1952), Stommel (1965), Fisher (1972)). However,
during periods of strong northerly winds, large segments of
water from the Chesapeake Bight can be transported past
Cape Hatteras into Raleigh Bay, and these have been docu-
mented by Harrison et al (1967), Bumpus and Pierce {1955),
and Stefansson et al (1971).

Recently, work by Boicourt (1973) has shown that there
may exist, during the summer, a return shoreward flow at
mid-depths from the edge of the continental shelf. This
return f;ow compensates for the off-shore drift of the
Ekman Jlayer caused by the predominately southerly winds at
this time of year. Also, new current meter data (Boicourt

(1973)) from the Bay mouth show great variability of the
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efflux of the Bay waters onto the continental shelf and the
possibility of this movement of water onto the shelf being
controlled to some extent by the wind.

Thus, while a large amount of field data has been
accumulated since Bigelow's pioneering work in 1933 and a
basic understanding of the movement of the shelf waters has
been outlined, there have been few attempts to understand
the interrelationship between the outflow from the Chesa-
peake Bay and the circulation of the shelf waters. How
this interrxelationship changes and what factors are affect-
ing it are difficult questions to answer.

A logical starting point to eradicate this deficiency
would be to consider the application of the extensive work
on plane submerged jets discharging into an infinite med-
ium. Many papers and several books (Abramovich (1963),
Birkhoff and Zarantonello (1957)) have been written on this
subject. However, when the theory and experimental results
of a plane jet are compared with what occurs when a large
river or estuary empties into a coastal sea, little cor-
relation can be found between the two. The major dis-
crepancy occurs because the plane jet is an entraining one
and its angle of spread is small. An estuary or river
outflow is generally divergent and can be affected by tide,

winds, stratification, ambient currents, and rotation of



the earth. This can be seen when comparing classical jet
theory with the descriptive work of Stefansson and Richards
(1963) and Park (1966) on the Columbia River, Ryther et al
(1967) and Gibbs (1970) on the Amazon, Wright and Coleman
(1971) on the south pass of the Mississippi, and Garvine
(1974) on the Connecticut River. These investigations
describe the circulation and distribution of salinity and
nutrients which result from the discharge of the above
rivers into the surrounding waters and discuss some of the
physical factors affecting the circulation.

Recently, several investigators have tried to either
apply the results of the theory of the classical jet (ref-
erenced above) to the natural environment or take a theo-~
retical approach specifically formulated for the hydro-
dynamics of a river discharging into a larger body of water.

Bates (1953) suggested that the deceleration of river
effluence discharging onto a continental shelf was in
accordance with the theory of turbulent jet diffusion as
described in Chapter VI. This reasoning was applied to the
mouths of the Mississippi River to help understand the for-
mation of deltas.

Iselin (1955) has given a physical description of
factors which should affect the circulation in a coastal

area and has outlined some rules which have been accepted



almost without dquestion.

A more rigorous theoretical approach has been attempted
by Takano (1954a, 1954b, 1955), Borichansky and Midhailov
(1966), and Bondar (1970). They consider variables, such
as bottom and side.friction, geometry of the channel
entrance, bottom slope, Coriolis force, and density differ-
ences, to describe the resultant flow patterns. Their
results will also be discussed in Chapter VI.'

Finally, Gadgil (1971) has determined the effect of a
simple rotating and non-rotating system on the shape and
velocity distribution of a steady jet. She has shown that,
if a simple laboratory jet is rotated strongly, bottom
friction dominates and the jet will be dispersive; while
for a non-~rotating jet, side friction will dominate and the
jet will entrain the surrounding fluid;

The theoretical investigations described above are very
useful in gaining an understanding of the physical factors
affecting the flow field caused by a river ox estuary dis-
charging onto a continental shelf., These results, however,
have been derived from the momentum equations where some
terms have been left out or simplified to render an analy-
tical solution possible. In like manner, the purely des-
criptive studies of jet and shelf circulations have given

a view where individual factors affecting the flow



have been lumped together to give a mean, average, oOr
seasonal pattern of flow, obliterating their individual
contributions.

The intent of this investigation is to examine the
characteristics of flow resulting from a tidal estuary
(Chesapeake Bay) emptying onto a continental shelf using as
many of the terms in the equations of motion and the mass
balance equation as possible. No effort will be made to
reproduce the physical geometry and dynamical situation of
the shelf exactly because the extensive data needed for
input into the model are not available. Instead the
approach will be to vertically integrate the equations of
continuity, momentum, and mass balance, assuming where
applicable: (1) incompressible flow, (2) a Boussinesq-
type approximation, (3) the hydrostatic assumption, and
(4) that only the horizontal components of the rotational
terms are important. The resultant equations will then be
applied to a simplified geometry resembling that of the
continental shelf and Chesapeake Bay entrance. Specifically,
the effect of tidal flow, bottom and side frictions, force
of Coriolis, bottom slope, wind, and ambient currents on
the overall circulation patterns will be considered. Fur-
ther, thrée circulation characteristics observed in field

work of the area will be specifically looked for:



(1) deflection of the Bay effluent, (2) a northern flow
above the Bay entrance, and (3) a clockwise eddy south of

the Bay entrance,



CHAPTER II

DERIVATION OF TWO-DIMENSTIONAL DIFFERENTIAL EQUATIONS

Basic Concepts

A right~hand corrdinate system is assumed with x being
positive to the right or east and z being positive upward.
The velocity components are the usual u, v, and w for the
X, ¥, and z directions, respectively. The basic equations
describing the conservation of mass and momentum in a water
body are: |
continuity equation
3C + & (PU) + 2 (PV) 4o (FPw) = Of 2.1
Je dx 2 93

momentum edquation in the x direction

(F‘f) + l(fl(’) + & ffu/zf').;._ag(/"aw) =

3P, £ ;
ﬁ+ﬁm—+ﬁ&'z+£7’,+%?;3; 2.2

momentum equation in the y direction

i

.3._ (tv) + (/’/W/) -/-_é. (FPrr?) -1—.% (fvw)

10
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momentum eguation in the z direction

2) -
2 (fw').,..}i(fara) + :“}5 {Fw'nr).;.gg (Pw?) =

"—f f9+& ?31*‘3 By v By

o
2.4
mass balance equation of salt
a(va A () =
.gf+.§_;(u0‘)+33( )+33( <)
P .
LEH) L (G38)+ 4 (5%); 2.5

where t, p, p, £, g, s, and E; represent time, density,
pressure, Coriolis parameter, gravitational acceleration,
real time variation of salinity, and turbulent diffusion
coefficient in the i direction. Tij represents the shear
stress, where the subscript i is the direction of the stress

and the plane in which the stress acts is given by the nor-

mal to the plane j.

Integration of Equation of Continuity

As shown in Figure 2, let the depth of water be h
(referenced to mean sea level), & the tidal height, and H

the total water depth (H = h 4 8),
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Figure 2

Coordinate notation

In an incompressible flow field, equation 2.1 may be

simplified to give
SU 4 Ay S = O, 2.6

Integrating with respect to z from -h to & gives

/Jﬁiﬂ«{i +/f;w e% f;JrJQfJ 2.7

o8
Applying Leibnitz's rule, the boundary conditions w = SE
+ u =2 08 + v 2= 05 at the free surface and u = v = w = Q0 at the

3¥x ay
bottom give for 2.7

8 g
—%(5) +31£}i Udg +_}J§fnrdg = 0. 2.8
Lh ~h



15
Since the velocity in a natural environment is seldom con-
stant with respect to depth, we set
U=u@)= U+ul) 2.9
where U is the velocity averaged with respect to depth, and
u'(z) is the variation of the velocity u from the average U.

By definition,
J
u'(3) dy =0
~h

and

2.10

§ -
',tf" udg = .U 2.11

—h
or, rearranging,

d
UH= ”43'
L

Doing the same for the velocity v gives
Y
/U'=/v15)=*$f+/v73) 2.12

and

’
\f¥4=.JCvﬁJ5. 5. 1%
~h

Now, substitution of 2.11 and 2.13% into 2.8 gives



14

ad VH = 0.
22 + 2 (UH) +.§§( H) =0 2.14

Integration of Momentum Equations

Now, applying equations 2.1 and 2.6 to 2.2 and 2.3 and
integrating with respect to depth between the limits of -h

and 6 give for the edquation in the x direction

f_%u.{; %(u )A; .J.a_(u/v')dj .;j.a_(uw-)dj = - _La_f {7 +
i § J g
f‘”r&—*ﬁ-f;%ﬂ’: »{}-;‘57;,4’5 -l-f%fﬂf%;
Lh Lh Lh -h 2.15

and for the eguation in the y direction
Y
dIGLﬂfag T)/:l(1hy)<3'jj:l(4ﬂ9‘{5 i}(- Lm1uj{;~-:}:,jfcﬁy-
h

Lh Lh 2,16

Using Leibnitz's rule, the boundary conditions for the sur-
face and bottom (as in the equation of continuity) and equa-

tions 2.11 and 2.13 on 2.15 and 2.16 give for the equation

in the x direction



15

§
.}_(UH)+_a.(v H) +.1(UVH)+.A. (U') JJ +_J_j(u4r’)elj =

J' §
]AfJJ.;. FV'H,J_( Z;ZJJ"“ d ’JJJ
~h 2.17

and the equation in the y direction

&P
!.d

d )
4 LY d :iJ -
&CVH)+§£(UVH)+_§§(V H).q._&i. :U/V‘] 3 -}-53’_ (/V') 3
1 d
/}:Lﬂi? ~FUH . ;}ar #4é'+ ;‘W %a,dg'f)ﬂgié b3 7 -
Lh ~h ~h 2.18

To further simplify the above two equations, several assump-
tions must be made, First is the hydrostatic assumption and

the resultant equation

g5

Second, a Boussinesg-type approximation is assumed in which

2.19

the vertical variation of density P is ignored except in
the gravitational term. Now, considering only the pressure
gradient term in 2.17 for the time being, applying the above

assumptions and Leibnitz's rule gives

2.20
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where p]6 = 0 is the pressure at the free surface or sea=-
air interface. If the same type of convention for the
density variation as a function of depth is used as was for
the velocity, i.e., the density consists of a depth aver-

aged part plus a variation from this average,

b ’
/ocf'f'f, 2.21
To expand 2.20 to a form which can be used, 2.21 is sub-
stituted into equation 2.19 and integrated from the surface

z = 0 to any depth =z

J
ff‘zf”'*f')",f
$

i 3
p= f’sfcf—j)-f-g f{j- 2.22
3

Integrating 2.22 over depth gives

§ _ /¢ d 7L
'f"']j = fg (,f-j)afs +3j( ng)Ja
Lh Lh ~h /3

_ . .
:)’5(!;}1') + 3}([/4/5)63-
Lh %

2.23

Differentiating the above with respect to x yields
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. d > 2 —
fzj'fds = 4EE +3h)+ s L
~h

d 7§
3?4 ([ 45)dy
-g 3

2.24

The term p|_h can be evaluated from 2.22, giving

——

/p/_h = /’j H, 2.25 .

since

JI
[/’Js = Q.
-h

Substituting equations 2.24 and 2.25 into 2.20 and sim-

plifying yields

g .
! - - 237
- 2.26

Likewise, for the y direction without repeating the deriva-

tion, the results using the same approach will be

g :
4P ds = —qH M _ 94"

j?'ay =g - ,‘;1‘&;7 ( f/”ﬁ’)‘lj -

2.27

For homogeneous or weakly stratified water columns, as con-

sidered here, the last term in 2.26 and 2.27 can be dropped
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due to its small value (Appendix A).
The shear stress terms of 2.17 and 2.18 can also be

simplified using the Boussinesq approximation to give

2.28

d C) §
T [ry s oy -
—h

~h -h

p g )
| i
= ;,%ﬁ%é’rﬁjﬁ?}ﬂ:”}

s b 5 b .
where Tx, Tx' Ty, TY are the surface and bottom stresses in

planes of the local surface and bottom in the x and y direc-

=X

2.29

tions, respectively. Substituting 2.26 through 2.29 into

the proper places in 2.17 and 2,18 results in
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& X 4
2 ‘ L -
-h -

§ 4

29 ] d d

-3”.5‘ -}f’iﬁf-rfvﬂ-l-f%‘j}‘h 3+ Vf 3 +
L A

/ 5 ~b
L(5-7")
2.30
and
, { d
%(VH) +)A'J—"-(VU H) +.3y(V H) .;_‘_;aij(llﬂf') JJ + aégj(m' )ZJJ -
-h ~h
2 s d
_3H_Q§ i_ﬁ___%tf_’. 'FUH..;._L_&_j]#JJ +%3%’f?iyd3+
] ~h
L(7%5-%°).
2.31

Further, the turbulent velocity fluctuation and the shear
stress terms in 2.30 can be combined and approximated

(Leendertse et al (1973)) by
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¥ X
h

s
£
AJ(%,_-U )d3 = 33..4‘?,(!1'.«9__ = 4 &LH U%E[ side
- friction 2.32

terms

~uw)d5 = 2 AgHIU = 3 &HVAD.
ﬁ—“- 7oy Iy oy sy
Following the lead of Dronkers (1964), the bottom stress

term can also be approximated by

bottom

b V2
_k =_M?I riction 2.33
7 c*

term
For the y direction the approximations for equation 2.31

give

&
ol = = 2 \'4 .
%J‘Z’%t WG =R = RENVE ) s

friction 2.34

k. -w%)d -.L/? BV = 2 & HVQV terms
f_f‘}* )4 TRPTR T
and

bottom

¥
1A svivinAE Eriction 2.35

term
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In equations 2.32 through 2.35, C is the Chézy coefficient
and A the turbulent eddy viscosity. The Chézy coefficient

can be related (Henderson (1966)) to depth by the equation

C:_.bl/‘:.

mf 2.36
where h is the depth in meters and n' is the Manning coef-
ficient. The turbulent eddy viscosities were simplified by

relating them to the mixing length theory, giving

Ay=£HU 2.37

Ay=x HV 2.38
dJ

where 0 is a constant. Substituting the terms in 2.32
through 2.35 into 2.30 and 2.31 and applying equation 2.13
gives the final momentum edquations of

AU VY + VU = £V - g6 dH a7 mlyteyt]®,
ok L£F Ix He?

7'5 _Ad.H U}_U .;._l..J:.okH‘-"V'q\j

H
77 °d 2,39

and

- b
S VRV VY < FU- g8 - AT avlutsy?]”

ot oY YT HC?
jﬁi-.f- Ly WUV 4 Lla < REVRY .
SH  F | v | H|d Y

2.40
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Integration of Mass Balance Eguation

Lastly, the two-dimensional mass balance equation is
derived by starting with 2.5, integrating with respect to
z between the limits of 6 and -h, and applying Leibnitz's
rule, giving

$ & e
%:j.d.zlj +.}ij(04]¢/3 +§A.H (N’od.)ds- A(.}i.*— L{g_i +nr§?;__w?]4.
- §

Lk

d $
[4.(...8.}3. u_‘,‘;_é ar%? w’)—‘ _'_’Ai Ex-gf‘/ -‘_5_:.‘,. Eg%?dj-l-

-h —h -h
(it (g3t - 5 ) o (5 5 12
f
E. =0
) . 2.41

where [ ]6 and [ ]-h designate the guantities in the brack-

ets being evaluated at z = 6§ and z = -h, respectively.
Again, using the same technique for representing the

variation of s as a function of depth as was done pre-

viously for the velocity and density, i.e..

.4=J'+,4’(5) 2,42
and

J'l
T'fo:' ‘/3 =0 2.43
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gives upon integration of 2.42 with respect to depth

']
] o4l

h
Substitution of 2.44 into 2.41, setting the boundary condi-

tions that the salt flux through the surface and bottom

is 0, and using the results of 2.11 and 2,12 give

d §
DAE(HJ’) +§£(HVJ') +3 (HV.S) :-ﬁj(u.d )el3 —aagj(m');lj +
~h ~h
d ¢ g
L\ £ .
Y3 £&T%E'{r4'qy/f'ﬂ;ﬁ§"%
Zh ~h
2.45
Finally, letting the turbulent diffusion terms be replaced

by a dispersion term D; such that

€
D&Ff%ér:;ikfigén_aﬁaﬂdg

2.46
and
;
Dy“%f =f(z—:.,§§f-mz') o
- 2.47
gives
g.é(Hﬁ')+3}E(HW)+5%(HV.¢)=§%[D,H§ +f§[03”%‘}]- e

Expanding the left-hand side and applying the equation of

continuity (2.14) gives
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dla
J }'H[JJ D:’

m].
3

2l

2,49



CHAPTER III

FORMULATION OF FINITE DIFFERENCE EQUATIONS

Basic Concepts

The final equations in the previous chapter (2,14,
2.39, 2.40, and 2.49) form a set of partial differential
equations which together and without further assumptions
have no known analytical solution. For these equations to
be applied, as outlined in the Introduction, it will be
necessary to use numerical techniques to approximate their
exact solution.

The approach in forming a numerical approximation was:
first, choosing a finite difference technique and computa-
tional scheme for the equations: second, formulating a com-
putational grid for the eguations; third, writing the anal-
ytical equations in finite difference form with the compu-
tational scheme and grid governing the formulation of the
equations; fourth, solving the numerical equations for the
unknown parameters; and fifth, programming the finite dif~
ference solution derived from step four for machine com-
putation of the unknown parameters.

Finite Difference Equations and Computational Scheme -

For the final equations of Chapter II, several computational

25
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schemes were possible, As an example, Gordon and Spaulding
(1974) recently referenced over 160 different numerical
models for tidal rivers, estuaries, and coastal rivers.
Because of the need to include non-linear terms and the
desire to have a fast stable finite difference scheme, the
formulations of Leendertse (1970) were chosen for the
hyperbolic equations of flow and the ADI (Alternating
Direction Implicit) technique of Peaceman and Rachford
(1955) and Douglas and Gunn (1964) was chosen for the par-
abolic egquations of transport.

The computational scheme redquires a set of finite dif-
ference equations (consisting of one each of the continuity,
momentum, and mass balance equations) for both the x and y
directions. The first set of equations are written implic-
itly for the unknowns of 6, U, and S in the x direction for
the first half of the forward time step (details of the time
step will be explained shortly), while &, V, and S (known
from a previous time step) are written explicitly for the
y direction in the same equations. For the second half of
the forward time step, &, V, and S for the y direction are
written implicitly and 6, U, and S for the x direction are
written explicitly. This results in a solution scheme which
has better stability than a purely explicit set of equa-

tions and requires fewer simultaneous equations to solve
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than a straight implicit formulation. This is important
since the computational effort increases as the cube of the
number of simultaneous eduations.

A detailed description of how to solve the finite dif-
ference equations for U, V, &, and S will be given in Chap-
ter IV. However, some idea of the approach to be used in
solving these equations after they are written in finite
difference form will be necessary in order to write them in
their proper format.

In brief, the solution technidue will consist of first
solving simultaneously for the unknowns of tidal height &
and velocity U for the x direction at the first half of the
forward time step. This technidue redquires the simultan-
eous solution of the continuity and momentum equations whose
value of & and U when determined are then used to solve for
S in the mass balance equations for the same time step.
Next, & and V are determined simultaneously in the y direc~
tion for the last half of the forward time step, and their
values are used to calculate S for this half time step.
This procedure eliminates the need of the solution of four
simultaneous equations (for U, V, &, and S) and makes com-
putation easier.

Grid - The grid of points to be used in writing the

equations is similar to that used by Leendertse (1967, 1970)
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and is illustrated in Figure 3, Grid points for tidal
height 6, density P, and salinity S are located at the +
points; while values for mean water depth h, velocity U
and V are located at the points O, ~, and |, respectively.
All like points are separated by a distance 8x or 4y. The
grid points are grouped into squares as shown in Figure 3,
with a +, 0, -, and | forming the corner of each square.

The squares are numbered with integer values of m and
n for the x and y directions. The values of m for the x
direction increase from right to left, and the values of
n increase from top to bottom. The grid is set up so that
the predominantly southern flow of water in the area enters
the grid at the top (i.e., northern edge) and leaves at the
bottom and in the negative y direction. Formulation of the
finite difference equations should present no difficulty
because of this notation and can be handled by a sign
reversal for the first order derivative terms of the y
direction.

Stability - The stability of explicit numerical equa-
tions is a function of the grid size and time step, and
expressions, such as the Courant-Friedrichs~Lewy criterion,
are available to predict the maximum allowable time step for
a specific grid size. For a multi-operational method as

described above, no such formula exists. Leendertse (1970)
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has taken a simplified approach in evaluating the stability
and some of the factors affecting a multi-operational scheme,
He used a linear analysis on a one-dimensional transport
equation to study the effects of grid size and time step.
He found that, for a time centered multi-~operational method,
the disPer;ion of the solution will be independent of the
grid size if a sufficient representation of the concentra-
tion field is present.

In the discussion to come, the Courant-~Friedrichs-~Lewy
criterion will be gquoted to give an indication of how the
time step chosen for the multi-operational technigue com-
pares with that of a pure explicit scheme.

Convention - For the equations to follow, the time step

AT consists of two halves, one each for the X and y direc-
tions such that AT = 24t. The time notations below will be

used to conserve space in writing the numerical equations.

Time x direction, calculation of 6, U, and S

(2k-1)At = t

I

past time

|

2k At 2t = present time

l

(2k+41) &t = 3t = future time
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Time y direction, calculation of 6, V, and S

2kAt = 2t = past time

(2k+1) = 3t = present time

U4t

future time,

li

(2k+2)
where k = l,2,...kmax. The above notation t, 2t, 3t, and
Lt will appear as a superscript of the variables.

The location of the variable in the grid will be given
by subscripts m and n., Wind stress was assumed to be con-
stant over the grid, although it could be made to vary, and
no subscripts were used, Depth below mean sea level h was
not allowed to vary with time; therefore, no time super-
script will be used.

The finite difference equations are to be written so
that they are centered in both space (centered differences
tend to be more stable) and time. The centering in space
(on the grid) is around the local derivative (time deriva-
tive) variable, i.e., either &, U, V, or S of the equation
being written.

Equation of Continuity

The finite difference form of the equation of contin-
uity, upon applying the previously described operations and
conditions for time (2k+1)At (stepping in time f£rom the

present time 2kAt to (2k+1)At), is
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it _ ke )y [ Rt 2t 3
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Likewise, for time (2k+2), stepping from (2k+l)At above to

(2x+2) At, the equation of continuity is

4t 3t it . 3¢
(Sd'n'm - Jm,m)al:‘t * [( ”\tm'mf Lnn,m-l-‘- mel, m + J;n‘m) U,,::. -
3t It 3t A
(L'M-J,m T A'M-i,m-l * J.fm-f,m * J:m,m) UM-I.M] -1y 4 ¥

3¢t 3t 4
[("‘M,m-l +Am-¢,m-l Y J"""” +J )-‘Z”"’H

e it ¥l -
(Anu,m * /)An-z,m +‘£ﬂ,mﬂ +¢£n,m) V:n,m]zbﬂ 0

3.2

Momentum Eduations

Using the same technigues for the momentum egquation

in the x direction yields
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The resultant equation in the y direction is
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Mass Balance Egquation

Remembering that U and & for the x direction at time
(2k+1) At are known before S is calculated, the following

results for the mass balance equation in the x direction

re der-n wved

[ Ao *homgee B *h
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Likewise, the mass balance edquation in the y direction

becomes
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CHAPTER IV

METHOD OF SOLUTION FOR THE UNKNOWNS OF U, V, &, AND S

Basic Concepts

Starting Values -~ Values of velocity, tidal height, and

salinity must be specified at all computational points on
the grid at time t = O (initial conditions). Thereafter,
at the advanced time step the values of U, V, &, and S need
only be specified on the boundaries of the grid when needed
to predict their values in the interior at the same time
step. These boundary values can be specified on either an
open or closed boundary and can be grouped as described
below,

Boundaries - Closed boundaries are the easiest to work

with from a computational standpoint because here velocities
and mass fluxes become zero, requiring no field data, and
the only dynamic variable, tidal height, can be easily
measured with tide gauges or calculated from tables. Open
boundaries present more serious difficulties in the sense
that more detailed data, particularly if time-dependent
models are used, are needed, requiring more complex numer=
ical and computational techniques. Thus, it is desirable to

7
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have all closed boundaries: but, for a coastal situation,
this is impossible, and the physical layout sometimes
reguires as many as three open boundaries.

To show how boundaries are used in this thesis, Fig-
ure 4 was drawn to illustrate a simple coastal situation of
an estuary or river emptying onto a continental shelf,

The closed boundaries are drawn through points that include
the depth data points (0) and always one of the velocity
data points (| or -).

The open boundary can be drawn through points repre-
senting either tidal height (4) or velocity {l or -) so
that one of these variables must be defined on the boundary
in order to calculate tidal heights and velocities in the
interior of the grid (boundary value problem). If salinity
is being calculated, it must be defined on all four boundar-
ies (+) in order to calculate values in the interior of the
grid at the advanced time step. If two open boundaries
in the same direction exist, then a combination of boundary
conditions can be used, i.e., tidal height or velocity on
both boundaries or a combination of each. For the situation
in this thesis, two of the above combinations were tried:
~tidal height at both boundaries and tidal height and

velocity, one on each boundary.
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The reason for this choice was dictated by the avail-
ability of historical data for use with the model at a
future date. The boundary condition chosen on the western
side of the computational area was velocity since data were
available from continuous current meter records at the Bay
entrance and the realization that the investigation was to
study the effect of fresh water runoff from the Bay. The
boundary on the eastern side was chosen to be tidal height,
since it was felt that this could be calculated accurately
(Redfield (1958)). The northern boundary condition was
chosen as either velocity, because of the availability of
data and the weak southern flow, or tidal height., It was
felt in the beginning that, if either of these boundaries
were placed well above the Bay entrance, any error caused by
the data would not affect the overall results and, more
importantly, the boundary conditions would not be affected
by the flux from the Bay mouth (this point will be dis-
cussed in the results), The southern boundary was chosen
as tidal height because of the lack of good velocity data
across the shelf in this region and the ease of estimating
tidal height.

Upon the choice of the boundary conditions as stated
above, the final finite difference equations must be solved

so that the input of the boundary conditions will result
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in their solution giving values of U, V, §, and S,

Recursion Eduations

Grouping of Terms - The first step in solving for the

unknown values of U, V, &, and S in eguations 3.1l through
%.6 is to group the resultant equation around the unknown
values of 6, U, V, and S. 1In order to simplify the results
of this step, the following shorthand notations common to

all eqguations will be used:

—": =( l‘m,m ¥ Ir‘ﬂrﬂ,m-l v }\m-l,n—‘-l ’ l\m-l.ﬂ') /‘-[

ot ot

it
HXF - hzm,m + }"m,m-l * &nﬂ,m ¥ J/!'r',m

it it
H’B hnn-]m +hﬂn—l,m-: +me-l,m mm
it tt it
e ™ it *horams e * G
t ot

it _
HYB - }"tmm * Amp.[lm t (Lu,m +&m,mH
c’c_( :;e » TIEE ) /
M'ﬂ 'm v:m..;,m*l m'H,M lf

et i Fx 3
VL - (.‘Lﬂ,m * Muﬂ,m# * d:',-n-l +\zn.m )/'f)

where it is the general notation for the time t, 2t, 3t,
or Ut,
Using the notation in the continuity equation for the

x direction (equation 3.1) yields the simplified form



Lo

HM(S,:. Bnn mm C U —lm-Dm -'—l-;l

Since all unknowns are at the same time 3t and on the same

row n, these notations can be dropped, giving

H,,.,ém *B,,,.U,;,, "'C,,,,U,;n., = Db, 4,2

where

A =1/t
B = (J/20L) Hye

Com = ~(1/2a0) Hyg

and

[(" )nt 241 ( Hw: fmynet H: %::)]

are constants which can be calculated from known informa-
tion. AL is a general notation devoting grid spacing Ax
and 8y (for this study 8x = Ady).

Using the same procedure for the momentum equation 3.3

vields
3t 3t - 3t _
Em Utm.ﬂ\ ¥ /r::u éawﬂ,m f;;n Snn',” = Ho-n . 4.3

Dropping the time and row notation as before, 4.3 becomes

EmUm +Fm 641-1-1 - Em(s.m = Ham u.u

where

t \2. /72070
_ t et L _M)rl—
Eh-ElEt'+(Uml,m Unn-l.m)znl+ H" L( ,,,,,,,M C:,.,,,

yel*
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F. = (3/2a0)

and

Hon=" {("l/znt) U.:,, * ( U,,:,,,_ , T U,,:M.) V&( lzaL) +

(8o S ) (Fent) +(Fomra -/:’..,,, X 2 s (8lzaL)-

7% U o) (T J L NES ,,,,,,,,) HE)-
H;F (cn:ﬂ m *C.m.n)/ ]L

305 N T S Y SO V) L S

£ (US ot U p U Vi) (R S V&,

U W02 S (Vetary?) - ) (6t 6 ,,:'

TISLY SO /1) L SO0 0 (VeI (8 i
Ui )~ S * S * 8ot bmpmn)4) +hom )

(V2 2, N (T Ukl /2tor¥) §

are constants which can be calculated from known informa-
tion.
Likewise, for the mass balance equation 3.5, simplify-

ing and grouping terms yields
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!

/L;£;h1+ti;:;u4{;":£nﬁ =£xn ) 4.5

where

A =-LCHE U Xwman)+(HEg Die.., Yz
= (ae)( T +6omn) *(Hat Unon™ Hys Unno X 1501) ¥
(H D;:,.,* Hes Ds.. _,‘,,)(I/ 20a0))

d.. = ( Hir 'U;n,,. Xi/uac) ~( H-p: Dx,,.,,,,.)( I/Z(.ALY')

and

{ (’1 Jm,m ,ﬂﬂm(’/ﬂt +[-H\'F m\ml onml A-f:::)—-
e (5 g )[R D) (8 -8 )-
Hya D,f,:, (S ‘-5::”).] ( I/zzoa)z)}

are also constants which can be calculated.
Duplicating the same procedure for the y direction

gives for the continuity equation

Rn.é'm+3,,Vn-.+C,.\L=Dw 4.6

where
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An.= A, = (1/8¢)
Bn=(I/2a) H::

G, =-(1/2aL) Hys

and
D, =~ Z VaeX-6.e )+ Clizat) Hes U2 - HEs UL, )}

are constants as for the y direction. The momentum equa-

tion 3.4 becomes

E,.m*/,f&‘ﬁé;u:/‘/m; h.7

where

2 e)2 1%
E,= (l208) (N, =V ) (1/202) + ;-1[_3(*3;’;) (7’ )u] 7 z
HYG [(C::m + +Cn,m)/£]

Fo= bk, = (9/20L)

and
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S V2t VE XU 2R ) (et Hh

b )70 2 (V28 YO0 v N Clzcany )}

are constants as for the y direction,

Finally, the mass balance equation for the y direc-

tion yields

Ands B8t o8, = DL, 4.8

where

A’ = (Hep e, Xituor) = ( Wy OFE N1z cany)
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Sn) ™~ Hs i, (S SN e}

are constants as for the y direction.

Solution - The solution of the recursion equations 4.2,
4.4, and 4.5 through 4,8 is accomplished in the following
manner: Starting with the continuity and momentum equa-
tions in the x direction (4.2 and 4.4), it can be seen that
a total of four unknowns exist between these two equations,
requiring two boundary conditions in order to be able to
solve this set (Ay, By, Cp, Dy By, Fy, and H are con-
stants which can be calculated from known information).
Recalling the previous discussion on boundary conditions,
solutions of these edquations are derived assuming a solu-

tion of the form
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§n* B U =G +e9
and
Un* Ron Smsy = T, | 4.10

where P» Qm, Ry » and T, are constants to be defined.

Backstepping on 4,10 gives

-Un'n-l t Rfm-l ‘En = 74;”-!

or

Urm-l = -’:n\-l -Rm_; Q(rm . h.o11

Substitution of 4,11 into 4.2 and grouping terms to come up

with an egquation like 4.9 gives the constants

B = S | h.o12

Afm—an Bnn-l
and
@om = Den=Con Tonet_
Hfm-cnn ﬁrm-l h.13

Rearranging 4,9 and substituting into 4.4 for 5 and group-

ing terms to acguire an equation like 4.10 gives the

constants
R = G
m E,,,,HZ.,F,;,. 4,14
and
T = _Hen t Bn Gon
" Bt B b 4.1

Equations 4.12 through 4.15 are the four constants that are

needed for use with 4.9 and 4,10 to calculate & and U. To
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use these new constants at point m, values of the constants
at the previous point m-1 are needed (4.12 and 4.13). Thus,
some starting values are necessary before these equations

can be used., If 4.2 is arranged in the form of 4,9, then

the constants, for m = 2 only, are

Em-'-.%ﬂl:—- 4.16
and

Qm:.am%c”:n.lbni. h.17

Since the boundary conditions are specified with velocity
U (Figure 4) given for all time, 4.16 and 4.17 may be used
to calculate P2 and Q2.

The procedure to calculate U and & is as follows:
Using the boundary conditions given at m = 1 for the
velocity, Q, is calculated by 4.17 and P, by 4,16, Pro-
ceeding across the row (for the first half time step), the
rest of the constants are calculated by 4.12 through 4.15.
At m=m,. -1 calculations are terminated for the constants.
The boundary conditions at the end of the row (6 in our
case here) are used along with the constants at m=m__ -1
and #,10 to calculate U at m = My_.~l. This value of U
is then substituted into 4.9 to calculate 8 at m = Moax—1e

This value of & along with the constants at m = mmax_2 is

used to calculate U at m = mmax-2' ete until U is calculated
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at m= 2. Values of § at m = l.and Uatm=m._ . are then
obtained by extrapolation, if needed, and all values for
the row are completed and the next row is then ready to be
calculated.

After U and b have been calculated for all rows for
time (2k+1)At, the value of S for all rows at the same time
step must be calculated. Recalling the recursion eguation

4.5, a solution of the type
‘ ’
'S:n +5n51m+1 _F”"' 4,18

is desired, Rearranging 4.5 in the form of 4.18 gives the

constants (for m = 2 only)

! l

E,m'—'_g.,nr_ 4,19
and

4., 4 .20

which are the starting values for EA and FA. Since 51 is
given as a boundary condition, backstepping one space in
4.18, substituting in 4.15 for S -1, and grouping terms to

come up with an equation like 4.18 gives the constants

! ]

Elan: _B::“ .%;; E’-I 4.21

It

and

E = DonBower B .
8r - A E. 4,22
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Since salinity is to be specified as a boundary condition
on all four sides, the following procedure is used:
Equations 4,19 and 4.20 are used for m = 2, using the values
of salinity at m = 1 as a starting value, The results of
this step are then used to start caleulating the constants
E% and F$ (4.21 and 4.22) which are then calculated pro-
gressively until m= m__ -1 is reached. Then equation L.,18
is used along with these constants and boundary conditions
to calculate the salinity in the reverse order as was done
for & and U.

The same procedure can be used to derive the recursion
equations in the y direction (for either velocity or tidal
height as a northern boundary condition), but it will not
be repeated here. The results of the derivation of this
type for V, 6 and S are given below. The technique for
calculation of V, 6§ and S with these equations is essen-
tially the same as has been previously described.

Recursion equations for V and 8, y direction, are:

Starting equations for northern boundary

Velocity as a Tidal Height as a
Boundary Condition Boundary Condition
Co _

2 1
D = BnrV Hy - Fq06
= 2 2V1 = -1 1°1

A2 Ep



Constant equations
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Recursion eduations for S, y direction, are:

Starting equations

£ - e
Bl

le

Constant equations

! !
EM‘H - C'm-l-l

[ [ 7
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CHAPTER V

COMPUTER PROGRAM

General

The computer program for the computational scheme
outlined in Chapter IV is called COASTAL MODEL and is
written in Fortran IV for use on the Control Data Corpora-
tion (CDC) Model 6600 or 6700 computer. Both of CDC!'s
scope 3.3 and 3.1 operating systems are compatible with
the program. A core size of 75,000 octal is required, and
a computation time of about 10 min is necessary for a 30
x 50 grid with 156 iterations covering twe 12-hr tidal
cycles. A table oflequivalent notations between that used
in the program and Chapters II through IV is given in
Appendix B, Appendix C is a copy of the basic program
which is not optimized and was used for Case I of the
oscillating jet.

Main and Sub-programs

A general overall flow diagram of the program is given
in Figure 5a with a more detailed illustration given in

Figures 5b and 5c., It consists of a main driver program

and five sub-programs. The main program handles input of

53
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SEE§ CALCULATE,

6c.1|  WRITE!
Vi

v

SEE| CALCULATE,
sc2| WRITE
g!

READ - STOP
BOUNDARY:

CONDITIONS
x DIRECTION'

v

SEE | CALCULATE,
5b.2| WRITE
v ¢

v

SEE | CALCULATE,
sb2l  wRIT
s.

v

READ
BOUNDARY .
CONDITIONS
y DIRECTION!

READ!
INITIAL |
BOUNDARY|

CONDITIONS'

1T =1, ITMAX

Figure ba

Figure 5
Computer flow diagram for program COASTAL MODEL



DO4
K = 2KMAXM

DO 2
J=2, JIMAXM

CALL
INDEX
CONUH

2

END DO 2

DO 3
J= JMAXM, 2

CALCULATE
ud

v

END DO 3

ENDDOC 4

WRITE
u,b

5b.1

Figure 5b

DO 7:
K =2, KMAXM :

DO5 |
J=2, JIMAXM |

CALL.
INDEX !
CONSX '

v

ENDDOS.

DO6
J=JMAXM, 2 -

CALCULATE
S

ENDDO6

END DO 7

5b.2




DO 10
J=2, JMAXM .

pDos
K =2, KMAXM

CALL
INDEX
CONVH

v

ENDDOB .

DOS
K = KMAXM, 2

CALCULATE
\VA

v

END DO S

END DC 10

5¢c.1

Figure 5c

D013
3= 2, JIMAXM
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DO 11
K = 2, KMAXM

CALL
INDEX
CONSY |

( END DO 11 . }___‘

DO 12
K = KMAXM, 2

CALCULATE

S
END DO 13

v

/ WRITE
S
5¢.2
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initial and boundary conditions, print and write statements,
and controls the calculations through the proper seguence.
The sub~-programs and their functions are:

INDEX - calculates common parameters which are used
repeatedly in the other sub-programs,

CONUH - calculates constants which are used to deter-
mine U and & for the advanced time step from 2kAt to
(2k+1)At. Calculations are along x axis.

CONSX - calculates constants which are used to deter-
mine S for the advance time step from 2k&t to (2k+1)At.
Calculations are along x axis.

CONVH - calculates constants which are used to deter-
mine V and & for the advanced time step from (2k+1)4t to
(2k42) At. Calculations are along y axis.

CONSY - calculates constants which are used to deter-
mine § for the advanced time step from (2k+1)At to (2k+2)At.
Calculations are along y axis.

Calculations were initiated by calling up the basic
programs from disk, correcting, and compiling using CDC!s
optimum compiler. In executing the main program, data that
were required but never changed, such as water depth h and
gravitational acceleration g, were stored in the main pro-
gram, Other information needed, such as grid spacing time

step, wind stress, number of grid points in the x and y
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directions, and number of iterations, was read in from
cards. Before starting the calculations of U and 0§, initial
and boundary conditions were either read in or calculated
from the program.

Next, the sub-routines for INDEX and CONUH were called
and executéd, calculating along and m or x axis (J in com-
puter notation) fromm = 2 tom= mmax"l' U and 6 were then
calculated, moving from m = mmax'l tom= 2,

This procedure was used for each row from n = 2 to
nmax"l' Finally, values of U and 0§ were extrapolated
linearly where needed torfill in the grid. Linear extrapo-
lation was used because it was more accurate and provided
less fluctuation at the boundary. The same procedure was
followed for S, where the previocusly determined values of
U and 8 were used to calculate the constants in CONSX.

Calculations of V, 6§, and S were performed in the same
manner as described above, except that the time step was
at (2k+42)At and the constants were calculated along each
column from n = 2 to n__ -1 using CONVH or CONSY., V and 6
were then calculated in decreasing order until n = 2, This
was repeated for each column fromm = 2 tom = Moax~Lle The
salinity calculation was then performed in the same manner

as described above.
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Plot

The data resulting from COASTAL MODEL were stored as a
printed format and on magnetic tape. Since the velocity
data were not a vector but components of a vector, a pro-
gram was devised to read U, V, and 5 from the magnetic
tape, compute a current vector, plot the vector, and con-
tour the tidal height data. This was done by a program
called MODPLOT on the CDC 6600 or 6700 computer. MODPLOT
read the tape data generated by COASTAL MODEL, called up
the proper Calcomp sub-routines, performed the calcula-
tions, and put all information on a separate tape which
was then run on a Calcomp 936 plotted to generate the dis-
plays desired. The program MODPLOT is not in Appendix C.

The vector part of MODPLOT did not plot all the data
available, only those from m = 1 to 15 and n = 15 to 37,
i.e., the area centered around the Bay mouth. The program
read the data desired, plotted a coastline, and calculated
the vector centered at the + point of the computation grid,
The technique of calculation consisted of taking the U and
V components on either side of the + point, averaging to
get a U and V at this point, and then calculating a vector,

Next, the tidal heights desired were read from the
magnetic tape, and an in-house developed algorithm was used
to contour the data. All tidal data points for the grid

were used in this program.



CHAPTER VI

RESULTS AND DISCUSSION

Basic Concepts

Three physical situations were studied. The first was
a tidal or long period wave reflecting from a wall. This
situation was used to verify the accuracy and completeness
of the finite difference formulations previously described
and to correct any program problems.

The steady-state jet was used as an intermediate step
between the wave reflection from a wall and an oscillating
jet., This case was run to better understand the computa-
tional stability problem, determine techniques to handle
open boundary conditions, compute data which could be
directly compared to the steady-state jet data in the
literature, and determine if there would be anything unique
about this case which corresponds to time averaged flow
for a river or estuary emptying onto a continental shelf.

The final situation represented a tidal estuary dis-
charging onto a continental shelf. An oscillating jet was
used to drive the flow and simulate a tide rather than

having a tidal wave progressing shoreward and reacting with

60
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a steady jet. This allowed a simplification of boundary
conditions by eliminating the need to try to deﬁermine the
interrelationship between tidal and jet velocity at the
Bay entrance,

The inputs and boundary conditions for each case are
summarized in Table 1, and Figure 6 gives a physical pién

ture of the computational domain and grid setup.
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EXPERIMENTAL PARAMETERS
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Steady- Oscil-
State lating
Reflection Jet Jet
Number of Grid Points
X-direction 30 30 30
yv-direction 50 50 50
Grid Spacing (4L), cm 179,640 359,280 359,280
Time Step (At), sec 150 300 300
Initial Conditions at =0 U=0 U=0
t=0 =0 V=0 V=0
S=£(x) 8=0 b=£(y),
or O
Boundary Conditions for
Grid
Left Side U=0, U=£(y) U=£(t,y)
S=30.0
Right Side s=£(t), =0 6=0,£(y)
Top V=0, V=0, -4 §=0,5, 10
5=50.0
Bottom =£(x,t), 6=0 6=0
5=30.0
Ché% Coefficient, 0 4oo hoo
cm/© sec™1
Turbulent Eddy Viscosity 0 108 0
Coefficient, cm~ sec”
(horizontal)
Coriolis Parameter (£), 0 8x10™2 8x10™
sec”
Bottom Slope 0 0 1/1354
Wind Stress gT), 0 0 0,1.9
gm em~! sec-
£(x)
Depth, cm 1000 1000 1000
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GRID OUTLINE

n=1 | n=1

n=23%

n=27

n=50 n=50
m=1 m=30 m=1 n=30

Wave Reflection Jet

BOTTOM PROFILES

1000 cm 1000 cm
13,000 cm

Wave Reflection and
Jet Cases

Oscillating Jet
Case III

Figure 6

Grid outline and bottom profiles
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Wave Reflection from a Wall

For this case a 30 x 50 point grid (30 points in the
x direction, 50 points in the y direction) with a spacing
Ax = Ay = 179,640 cm (0.97 nm) and a time step At = 150
sec was chosen. Water depth was 1000 cm, and no bottom
friction, side friction, force of Coriolis, or wind stress
was used. Initial conditions for time t = O were U = V =
0 and 8 = f(x) or & = constant. For the initial boundary
condition 6§, two cases were run: & = 50 cm (6 uniform over

the grid) and 8 = a_ cos kx (tidal height decreasing as

o]

a function of distance from the coast). Results from all
cases were the same, the only difference being the time
required for the solution to reach a steady state. Results

from the case & = a_. cos kx are discussed below. The wall

o

was established on the left or western side of the grid,
and the open sea constituted the northern, southern, and
eastern boundaries, Figure 6. Boundary conditions for the
x direction were velocity at the wall, U = 0, and tidal

height in the open sea, 5 = a, cos Ot cos kx, where

k = 2n/L, 0 = 2u/T, a, = wave amplitude, and x is some

fixed value. For the y direction velocity, V = 0 was used

on the northern edge and tidal height, § = a_. cos 0t cos kx,

o

on the southern edge. Salinity values of 36& were used on

all boundaries. The value of 0.97 nm for the grid spacing
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was chosen so that the width of the Bay mouth (about 9.7
nm) would contain 10 grid points for the x velocity to
be used later. A wave period of 12.42 hours (semi-diurnal
tide) was used which gave a wave length of 4.4 x lO7 cm
for a depth of water of 1000 cm. The grid spacing was
therefore adequate (Leendertse (1970)) to describe the wave
and not generate stability problems. All runs were for a
wave propagating in a direction normal to the wall,

Results of the computation are given in Figures 7, 8,
and 9. Figqure 7 is a plot of tidal height and velocity
versus time for a point in the middle of the grid (m = 15,
n = 25, Figure 6). Data from the calculations were plotted
for only a half tidal cycle in order to amplify the results.
The results of the computation are compared with the clas-
sical solution of a wave reflected from a wall (solid line,
Figure 7) using eguations from Ippen (1966) to calculate
the data at the same point. It can be seen from this fig-
ure that there is good agreement between the theoretical
and computed data.

Figure 8 is a plot of the theoretical and computed
velocity profiles along the center of the computational
grid (in an east-west direction, n = 25, m = 1,2,...,30)
at maximum flood velocity. Agreement here is also good.

Figure 9 is a plot of the theoretical and computed tidal
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height (below MSL) along the same centerline used in Fig-
ure 8. In Figure 9 there is a maximum difference of
slightly more than 1 cm at the wall which decreases to 0
at the open eastern boundary.

Results from the salinity calculations were not plotted
since the values remained constant at all times and at all
points within the flow field.

For stability, the Courant-Friedricks-Lewy criteria
for a two-dimensional explicit scheme At = AL/fESE gives a
value of 128.3 sec for a gird spacing of AL = 179,640 cm.
The Ssolutions were found to be stable with a half time step

of At = 150 sec used here.
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Steady-State Jet

General - For this physical situation a 30 x 50 point
grid was used as before, but the grid spacing was increased
to AL = 359,280 cm (approximately 2 nm). The Courant-
Friedricks-Lewy criteria for this grid spacing gave At =
256 sec. A value of 300 sec for each half time step was
chosen so that a total time step of At = 600 sec, or
10 min, covered a complete iteration. No stability prob-
lems arose with this particular time step and grid spacing.
Salinity was not calculated since it was held constant over
the grid for all cases. Holding the salinity constant
generated a situation in which the density was homogeneous
both vertically and horizontally. Water depth was 1000 cm,

and no wind stress was assumed, Bottom friction was used

1/2 sec'l.

in all cases with a Cheézy coefficient of 400 cm
This Chézy coefficient corresponded to a Manning coeffi-
cient of 0.036 and is similar to those used by Leendertse
(1971) and Dronkers (1964).

Initial conditions were U=V = &6 = 0. A coastline
was established at the left side of the grid, with an open-
ing representing a Bay mouth 17.9 km (~10 nm) wide centered
in the middle of the coast at n = 25, Figure 6. Boundary

conditions for the x direction were velocity at the coast,

U

0, except at the Bay opening or jet where U = £(y) and
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8 = 0 on the eastern boundary. The jet started at U= 0
and built to a maximum in 16 iterations (160 min) and then
remained steady for 10 iterations (100 min). The jet was
given a parabolic profile with a maximum centerline velocity
(velocity integrated with respect to depth) of 25 cm sec"l.
Boundary conditions for the y direction were velocity for
the northern edge of the grid, V = 0, or a linear wvariation
from 0 at the wall to a maximum of -4 cm sec™l and tidal
height 8 = 0 for the southern edge. Using velocity as an
open boundary condition on the top of the grid created no
problems because the boundary was far enough from the Bay
mouth sd no complications arose, If the northern (velocity)
boundary was moved close to the Bay entrance, the boundary
acted as a wall and there was a deflection of the outflow.

Four cases for the steady-state jet with bottom fric-
tion were run: Case I, steady-state jet as described above;
Case II, steady-state jet with side friction; Case III,
steady-state jet with Coriolis force; and Case IV, steady-
state jet with an ambient velocity. Vector plots (velocity
vectors) and tidal height contours are for a time of 260
min after starting when the jet has reached a steady state.

Case I - Figures 10 and 11 show the vector plots and
tidal height contours for the steady-state jet, Four

distinguishing features can be seen in the vector plot:
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Figure 1l - Water level plot, steady-state jet, cm



T4
first, the jet is dispersive (i.e., the velocity vectors
diverge from the jet centerline) and not entraining
(vectors converge toward the jet centerline); second, the
centerline velocity U decreases sharply as a function of
distance along the a#is of the jet; third, there is a
northern current along the coast above the jet and a south-
ern current below it; and fourth, there are no eddies
formed above or below the jet.

The dispersion of the jet is believed to be caused by
a buildup of water (and therefore pressure gradient) around
the Bay entrance and is shown by the plot of tidal height,
Figure ll.l As the height of water above MSL is increased,
a pressure gradient or head is generated in the x and y
directions. This head causes the dispersion, since the
water level at the boundaries, by virtue of the boundary
conditions, does not go above datum (i.e., & = 0). Because
of the above restriction, the water level inside the boundar-

jes is an unknown and is allowed to fluctuate.

lIn the derivations of Chapters II through IV, tidal
height has been the term used to refer to the time-dependent
level of the water above or below datum (MSL). In the
steady-state case since there are no tides, the tidal height
is really a water level (relative to mean sea level) that
generates a pressure gradient and will be referred to as a
water level in the following discussion,
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The cause of the diverging flow in this case is sim-
ilar to that reported by Bondar (1970) and Engelund and
Pedersen (1973). Bondar (1970) reasoned that the river
flow which was fresh and less dense was atop a more dense,
saline wedge. This lens of less dense water created a
hydraulic head, causing divergence or spreading of the flow
of the surface layer. Bondar quotes angles of divexrgence
of 40° or more for rivers emptying into the Black Sea and
develops equations to predict the spread. Engelund and
Pedersen (1973) take the same approach in studying the
divergence of warm water jets emptying into a coolexr body
of water,

If the bottom friction is increased, the velocity in
both the x and y directions decreases, causing the jet to
shrink in size and the water level to increase, with the
maximum increase at the Bay mouth, Figure 12 shows a plot
of the centerline velocity U as a function of distance for
three values of bottom friction. A decrease in C from 400
to 100 (increase in bottom friction) generated a small
change in velocity at the same value of x/y, while a
decrease in C from 100 to 5 caused a sharp change. Figure
12 indicates that bottom friction, while having some effect
on the velocity, would have to be unreasonably large to

cause a drastic change at a given point, Also, it shows
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that changes in C from 400 to 100 can cause the location

1 or less to change

(x/y) of velocities of 5 ecm sec”
rapidly. To try to understand how important friction is

in this case, the jet was allowed to reach maximum velocity
(25 cm sec™l) after 160 min of buildup and was then cut

off and the computations continued for 100 min., Upon
termination of the jet, the remaining fluid that was in
motion moved through the computational area, decreasing in
velocity with time. The maximum positive wvelocity in the
flow field as a function of time (after termination of the
jet) is shown in Figure 13. The velocity decreases from

a maximum of 25 cm sec™! to 1/10 this amount in 100 min.

By extrapolation (dashed line) velocities of 1 cm sec™!
should be reached in about 4 hr. This decrease in velocity
suggests that bottom friction-is dominant over rotation
since the velocity decreases to near 0 in a time less than
the inertial period for this latitude (19.9 hr).

Before comparing further the results of Case I with
the classical plane jet, the results from Case II will be
examined.

Case II - This case consisted of the steady-state jet
used above, but with side as well as bottom friction,

Here, o (equations 2.37 and 2.38) was given a value of

10,000, resulting in an eddy viscosity value of about
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8 1

10° em® sec™l. values in the literature vary from 10° to
108 (sverdrup, et al (1941)). The results for the vector
.plot are shown in Figure 14, Four features are apparent:
the jet is not as dispersive or does not spread laterally
as much as in Case I; there is a decrease in the center-
line velocity as a function of distance along the jet; the
magnitude of velocity vectors adjacent to the coast above
and below the jet, when compared to Case I, has decreased;
and there are no eddies formed.

Figure 15 shows an X,y plot of the location of Uo/2
~ (half the centerline velocity) for Cases I and II. This
figure verifies the decrease in lateral spread caused by
the addition of side friction.

A comparison of the velocity as a function of distance
in the x direction for Cases I and II is shown in Figure 16
by curves a and b (other parts of this figure wiil be dis-
cussed later), The velocity drops from a maximum of
25 cm sec™! to less than 5 cm sec™l in 30 km for both the
bottom and side friction cases.

Bickley (1937) in his expansion of Schlichting's (1933)
work derived the exact solution for the two-dimensional
motion of an incompressible viscous fluid due to a side
friction jet issuing from a long, narrow orifice. Albert-

son, et al (1950), summarized experimental data to determine
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the velocity distribution and character of a side friction
jet and to formulate empirical equations to predict the
velocity distribution of a jet issuing from an orifice or
slot. Albertson'!s (1950) summary of the side friction
plane jet shows an entraining flow and a centerline
velocity which begin to decrease only after a distance of
six jet diameters. This would mean that, if a side fric-
tion plane jet theory were directly applicable to an
estuary like Chesapeake Bay and the Bay flow were not tidal
or deflected by the earth!s rotation or other causes, the
maximum centerline velocity would be detected unchanged up
to a distance of 108 km f£rom shore and the flow would be
entraining.

Recent works by Takano (1954a) and Borichansky and
Midhailov (1966) have attempted to evaluate the velocity
distribution off the mouth of an estuary or river. Takano
(1954a) derives the velocity distribution by not consider-
ing the inertia terms and by using only the side friction
and pressure gradient terms. He assumes a thin layer of
river water which is homogeneous and 1 or 2 meters thick
resting on a more saline ocean wedge. In contrast,
Borichansky and Mikhailov consider the inertia and side and
bottom friction terms only. The results of both these

investigations show a centerline velocity decreasing
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rapidly as a function of distance, Their velocity predic-
tions for selected centerline points for an estuary of the
type used in Case I are plotted as individual points in
Figure 16 along with the prediction for a side friction jet
(curve ¢) given by Albertson (1950). It can be seen that
the centerline velocity results of Cases I and II agree
in trend with the results of Takano (l954a) and Borichansky
and Midhailov (1966) and not with the predictions of
Albertson, et al (1950).

Gadgil (1971) was the first to make an attempt to
look at both bottom (Case II) and side (Case III) frictions
together. ©She used a laminar steady-state jet in a rotat-
ing container which had a rigid top and bottom. The rota-
tion was used to generate an Ekman layer and, thus, bottom
friction. While this is different from the steady-~state
jet considered here, bottom friction can exist without
rotation (Case 1I), the results of her investigation are
interesting to examine for similarities., Her results
showed that if the rotation was strong, bottom friction
dominated, the jet was dispersive, vorticity was decaying
but not diffusing laterally, and momentum decreased with
downstream distance. If there was little or no rotation
and side friction dominated, the jet entrained fluid,

vorticity was conserved but diffused laterally, and the
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momentum f£lux across the jet remained constant. Gadgil
(1971) also was able to predict the distance it would take
the velocity of a side or bottom friction jet to decrease
to zero. In general, the distance required for her jet to
decrease to zero was greater for a side friction case than
for a bottom friction case.

Gadéil also points out that, in cases where bottom
friction dominates, if side friction is considered it will
control the flow pattern near the mouth of the jet and give
way to a bottom friction velocity distribution as the dis-
tance from the jet entrance increases. This could
be an explanation for the flow pattern observed in Fig-
ure 14.

In summary, for the velocity along the centerline it
can be concluded that the distribution for an estuary or
river discharging into a continental sea will decrease
rapidly, in a form similar to that shown in Figure 15, if
the jet is considered a bottom friction type. For this
type of jet the flow will be dispersive (i.e., velocity
vectors diverge away from the jet centerline). If the
jet is dominated by side friction, it will follow a distri-
bution along the centerline similar to that described by
Albertson (1950) and tﬁe flow will be entraining (velocity

vectors converging toward jet centerline). For a case in
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which side and bottom frictions exist, the flow pattern
will be a combination of the two as described by
Gadgil (1971).

Another interesting comparison of the U component of
velocity is in the transverse direction. Bickley (1937)
in his solution found the transverse distribution of the
U component of velocity was a function of the hyperbolic
secant squared (U = f(sechay)). Albertson, et al (1950),
in their work assumed that the transverse distribution of
the compeonent of velocity was Gaussian. The normalized
transverse velocity distribution U/U, (U component of
velocity located at distance y from centerline/centerline
velocity) was plotted against y/b (distance from centerline
of U/distance from centerline of 1/2 U,) for Case I,
Figure 17. It can be seen from this figure that the data
indeed follow a sechey curve,

As mentioned, the velocity wvectors along the shore
above and below the jet have decreased in intensity. It
should be noted that a shoreward movement of water near
the coast both above and below the jet has been generated.

Case IIT ~ This case consisted of the addition of the
Coriolis force for a jet of the type in Case I. The
Coriolis parameter was for a latitude of 37° and was cal-

culated to be 0.00008 sec™t. The computational results
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for the vector plot are shown in Figure 18, and the water
level contours are shown in Figure 190, .The same four
features recognized and described for the vector plot of
Case I are apparent here. Comparing Figure 18 with the
vector plot of Case I, Figure 10, shows no major differ-
ences. There is a slight rotation of the vectors to the
southern half of the plot, but nothing that is very
noticeable. Plots of the centerline velocity for this
case are the same as those of Case I and are not shown.
The plot of water level, Figure 19, when compared with the-
water levels of Case I, Figure 11, zalso shows a slight'
difference, with some water being piled up to the south.
At this point it is helpful to consider two dimen-
sionless quantities, the Ekman and Rossby numbers. The
Ekman number is used to determine the relative importance
of friction and rotation and is defined as AZ/QHE, where
A, is the vertical eddy viscosity. An A, corresponding to

Z
1/2 sec can vary from about

a Chézy coefficient of 400 em”
76.5 to 133.9 ome secl, depending on the type of vertical
velocity profile assumed, (See Appendix D.) These values
of vertical eddy viscosity are in the range of those quoted
by Sverdrup, et al (1942),Neumann and Pierson (1966), and

Dyer (1973). The corresponding Ekman number for the above

range of turbulent eddy viscosity varies from 1.05 to 1.83.
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Figure 19
Water level plot
steady-state jet with Coriolis force, cm
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It can be considered that in this case the flow is fric-
tionally dominated for the higher values of the Ekman
nunber, i.e., >1.

The Rossby number, R, = U/(L, is used to determine
the relative importance of the inertial terms to those of
rotation, For a characteristic length L = 359,280 cm
(one-grid spacing) and velocity change of 25 cm sec~1
over this distance, the Rossby number is 0.9. This is a
maximum vaiue. While not one, it is much larger than the
Rossby numbers usually found in laboratory experiments
where rotation is considered dominant and shows that the
inertial terms have increased in importance but are still
not controlling., Takano (1955), when investigating the
effect of the seaward flow off a river mouth, concluded
that for his analytical eduations, the Coriolis term could
be insignificant if the inertial terms were large (i.e.,
large Rossby number) .

Thus, for this case the friction terms can dominate
those of rotation, while the inertial terms might not.
This should help to explain the lack of a significant
deflection of the outflow due to rotation and verifies the
results of the jet decay experiment in Case I,

Case IV - This case consists of the addition of a

southward flowing velocity to the situation of Case I.
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Surface velocities in the Chesapeake Bight region are
highly variable and depend on distance from shore and on
season. Values in the literature range from 1.2 cm sec™t
to 32.4 cm sec™l (Harrison, et al (1967)). A value of
4 cm sec™l to the south was chosen and varied linearly
from 0 at the coast to a maximum of -4 cm sec~l at the
right side of the computational grid. The results of the
computation are shown as a vector plot in Figure 20. Here
the northern flow along the coast decreased, and the jet
was deflected and turned south as a wide band of flow.
Again, there are no visible eddies. This case suggests
that, for a frictionally dominant flow, an ambient southern
velocity is more important in the turning of the Bay
effluent to the south than the Coriolis force,

The northern f£low along the coast above the Bay mouth
still persists, as seen in Figure 19. Bumpus (1969) has
described reversals or northern flow in the surface waters
in the Mid-Atlantic Bight. His results are derived from
surface drifters, and the reversals described exist at
several locations on the coast and mainly during the sum~
mer. These reversals occur during a season of light winds

go that the flow patterns established by a layer of lighter

water on a more dense saline wedge, along with an imposed
ambient current, could cause the time averaged surface

flow described by Bumpus and shown by Figure 20,
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Oscillating Jet

General - For this physical situation, grid size,
time step, grid spacing, Bay entrance, coastline, and bot-
tom friction were the same as those for the steady-state
jet. The Courant-Friedricks-Lewy stability criterion was
also the same, and no problems were encountered in using
an oscillating jet as a boundary condition. Salinity was
not calculated, as for the steady-state jet, since it was
held constant over the grid for all cases,

The initial conditions for the grid were the same as
for a steady jet, but the boundary conditions wére changed.
In the east-west direction, velocity and tidal height were
the boundary conditions as before, with the only change
being at the Bay mouth. Here, the jet was made to oscillate
sinusoidally with a period of 12,42 hr (semi-diurnal tide)
and a maximum centerline velocity (integrated with respect
to depth) of 25 cm sec~l, The velocity profile across the
Bay mouth remained parabolic. Boundary conditions in the
north-south direction were changed, due to the problem of
reflection from the northern boundary, so that tidal height
was used on both boundaries., For all cases, except that
of an ambient southward flowing velocity, the tidal height

on the northern and southern boundaries remained zero.
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Six different cases for an oscillating jet with bottom
friction were run: Case I, oscillating jet; Case II,
oscillating jet with Coriolis force; Case IIXI, oscillating
jet with sloping bottom; Case IV, oscillating jet with wind
from east; Case V, oscillating jet with wind from noxth;
and Case VI, oscillating jet with ambient velocity from
the north.

In computing data for all the above cases, the program
was run through two complete tidal cycles, with data for
the vector plots and water level contours taken from the
last tidal cycle. The term water level is used here as in
the steady-state case because, althoudgh the velocity varies
with a period equal to that of a semi-diurnal tide, the
tidal height on the open boundaries is not fluctuating
with time,.

Case I - Figure 21 shows a plot of the water level and
velocity as a function of time through both tidal cycles for
two points on the grid (m= 1, n= 25 and m= 6, n = 25).
In one tidal cycle the velocity and water level adjust so
that they are out of phase by about 90° and remain this way
throughout the second tidal cycle. The velocity and water
level can be seen to decrease as a function of distance
from the Bay mouth, when like curves in Figure 21 are come-

pared. This figure suggests that the data -taken during
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the second tidal cycle are for a jet which has reached
eduilibrium,

Figures 22 through 26 show the vector and water level
plots for an oscillating jet during the second tidal cycle.
Figures 22 and 25 are the plots of the water level at
slack before ebb and at slack before flood, respectively.
The contours show symmetry around the Bay entrance, as did
Figure 11 for the steady-state jet. The height of the
water is referenced to datum, and the effect of a head or
pressure gradient caused by the height of the water above
and below datum can be seen, The vector plots are given
in Fiqures 23, 24, and 26, Figure 23 is a vector plot of
the flow at maximum ebb, and Figure 24 is a vector plot
for the time when the centerline jet velocity at the Bay
mouth is 12 cm sec™l, Figure 26 shows the vector plot at
maximum flood, The main features of the flow in these fig-
ures are: the flow is dispersive for an ebb tide and con-
vergent toward the Bay en£rance for a flood tide, the
velocity decreases as a function of distance along the
centerline, there is a strong flow along the coast above
and below the jet for both flood and ebb tides, and there
are no eddies in these figures (which are instantaneous
pictures). To further check for eddies, the flow was

averaged over a tidal cycle to remove the tidal component for



Figure 22
Water level plot
oscillating jet at slack before ebb, cm
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Figure 25
Water level plot
‘oscillating jet at slack before flood, cm
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the grid points in the vicinity of the Bay mouth. Only the
southern portion of the Bay entrance was examined since the
flow is symmetrical. The results of this summation are
shown in Figure 27. Here it can be seen that, from an
Euleran point of view, there is a weak residual clockwise
circulation. This corresponds to the results of Harrison,
et al (1962), in their measurement and inference of an eddy
south of the Bay entrance near Virginia Beach, Virginia.

It is believed this net circulation is the result of the
non~linear terms, in the equations of motion, on the tidal
velocity fluctuation.

The dispersion and convergence characteristics of the
oscillating jet are believed to be caused by a pressure
gradient. This gradient is generated by the water level
varying above and below datum, as shown in Figures 22 and
26, and is the same mechanism that causes the dispersion of
the steady-state jet.

The centerline velocity behaves in the same manner as
described for the steady-state jet, in that it decreases as
a function of distance from the Bay mouth., This condition
holds for both flood and ebb and can be seen in Figures 23,
24, and 26; it is shown as velocity versus distance in

Figure 28 for the ebb condition only.
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The strong coastal flow away from the jet above and
below the Bay entrance for the ebb flow reverses itself
during the flood stage. In both cases a strong coastal
current is apparent.

One final interesting aspect can be discussed in this
case. The Amazon River has flow features that are very
similar to this case. These features are: (1) There is no
Coriolis effect since the Amazon is located on the equator;
(2) the Amazon is unique in that it has no salt wedge:; and
(3) it is tidal and the width of the mouth reported by
Gibbs (1970) is between 10 and 20 km, similar to the 17.9
km for the Chesapeake Bay. However, there are some differ-
ences worth noting: (1) The depth at the mouth of the Ama-
zon is 2 to 4.5 times that used here; (2) the tidal range
is 5 times that of the Chesapeake Bay; and (2) the volume
of discharge is 100 times that of the Chesapeake Bay.

I1f Figures 2 and 3 of Gibbs (1970) are examined, with
attention paid to the 20 % isochaline, and compared with
Figures 10 and 11 for the steady-state jet and Figures 22
and 25 for the oscillating jet, the similarities in the
fan-like spread of the Amazon effluent can be seen,.

Case II - This case consisted of the addition of the
Coriolis force to an oscillating jet of the type in Case I.

The same value of the Coriolis parameter, £, applied in
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Case III of the steady-state jet was used. The results of
the calculations are given in the vector plots, Figure 29
for maximum ebb and Figure 30 for maximum £lood. The four
main features seen and described for the vector plots of
the previous case apply here with little difference seen
between Figures 23 and 29 and between Figures 26 and 30.

As fér Case I, the tidal component was averaged out
to observe the eddy effect. This is shown in Figure 31.
Here it can be seen that the Coriolis effect strengthené
the northern and weakens the southern flow of the
eddies,

Case ITII -~ This case is different from any described
thus far. In this run the shape of the bottom was changed
from flat to gently sloping for the Case I oscillating jet.
The bottom varied from 1000 cm in depth (~32 £t) at the
coast to 13,000 cm in depth (~425 ft) 104 km from the coast,
giving a slope of 1/1354. Bottom friction was held constant
and not allowed to vary with depth, and the Coriolis force
was not considered.

Figures 32 and 33 show the vector plots at maximum ebb
and flood for the second tidal cycle. The same four gen-
eral features recognized for the vector plot of Case I of
the oscillating jet are again seen here, However, there are

some differences: First, the gradual sloping of the bottom
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causes the jet to change slightly in shape. This is illus-
trated by the dashed vector lines in Figures 32 and 33.

The dashed lines located near the mouth of the Bay are the
vectors for the Case I oscillating jet at the same grid
point and time. From the comparison of the dashed and solid
vector lines in Figures 32 and 33, it can be concluded that
the sloping bottom causes the jet to be less dispersive
during the ebb and less convergent during the flood in the
vicinity of the Bay entrance. This result for the ebb case
agrees with the laboratory modeling results of Borichansky
and Mikhailov (1966), in their work on the interaction of
river and seawater in the absence of tides. Further, if

the lengths of the vectors are compared for the two cases,
it will be seen that generally the magnitudes of the vectors
for the flat bottom case are larger than those for the slop-
ing bottom, This is illustrated by the centerline velocity
during ebb, Figure 28,

Finally, it is believed that the causes of the disper-
sive and convergent characteristics of the jet are the same
as those described for Case I of the oscillating and Case I
of the steady~state jets,

Cases IV and V ~ These cases are for the effect of

wind stress and are discussed below, The value of the wind

stress T° used was for a wind of 15 knots. The wind stress
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is defined as T5 = 2.6 x 1072 p;(w')% where p_ is the density
of air in gm cem~? and W' is the wind speed in cm sec™1 at
a height of 15 meters above the sea surface. This gave a
value of T° of 1.9 dyne em™2 for a wind speed of 15 knots
(750 cm sec'l). Two cases were run: Case IV, where the
wind was on-~shore, and Case V, for a northerly wind. The
results are shown in Figures 34 through 37.

Case IV -~ Figures 34 and 35 show the vector plots at
maximum ebb and flood, respectively. During maximum ebb,
the outflow along the center of the jet is retarded and the
jet is split and deflected, symmetrically, north and south.
A plot of the centerline velocity as a function of distance
for maximum ebb is shown in Figure 28. This type of situ-
ation creates an area of minimum velocity where the center-
line velocity goes to zero. Also, the jet when split is
driven parallel and close to the shore.

For the maximum flood case the wind stress drives water
toward the Bay and shore, causing two areas of zero velocity
above and below the jet.

These two plots are somewhat representative of the flow
features for an on-shore wind but must be interpreted with
caution. The major difference between the representation
in these figures and that which exists in nature is that

here the jet mass transport does not change with an on-shore
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Figure 35 - Velocity vector plot, oscillating jet
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wind. Stated another way, there is no provision made for
mass movement into the Bay, caused by the wind, using the
velocity as a boundary condition. Therefore, the plots as
shown in Figures 34 and 35 probably have features which
would not be seen in a true coastal situation, The impor-
tant conclusion from studying these two figures is that an
on~-shore wind can be very effective in changing the flow
pattern, and the features given by Figures 34 and 35 are
a very dgeneral representation of what probably takes place
with an on-shore wind.

Case V - Figures 36 and 37 show the results of a north
wind blowing over the shallow continental sea. Here the
flow is deflected south on the ebb and deflected into the
Bay on the flood. There seems to be a point of low velocity
during the flood stage south of the jet and also a deflec-
tion of the vectors toward shore.

Boicourt (1973) and Stommel and Leetmaa (1972), in
their studies of the circulation of the water on the con-
tinental shelf, pointed out the importance of wind in driv-
ing the shelf circulation. Boicourt (1973) and others have
noted that a strong west wind will drive watexr out of the
Bay, while a strong on-shore wind will cause an increase in
water level in the Bay. While the results of Case IV do not

show the mass flux into the Bay by an on-shore wind due to
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the oscillating jet boundary condition, the flow patterns
generated do indicate that, if a mass flow across the
boundary were allowed, there would be a net flow into the
Bay.

The effect of the wind parallel to shore has also been
noted in the literature. Budringer, et al (1964), and Dux~
bury, et al (1966), as quoted by Boicourt (1973), in their
description of the Columbia River outflow, assign the cause
of outflow deflection to the north in the summer and to the
south during the winter to the prevailing winds present
during these seasons.

The results from Case V indeed suggest that the stress
caused by the wind is a much more dominant force than the
Coriolis force and is just as effective as an ambient
velocity in deflecting the outilow.

Finally, it will be noted that eddies were not gen~
erated in either Case IV or Cése V.

Case VI - The final case is one with an ambient veloc-
ity imposed upon the situation of Case I. Because the
north~south boundary conditions for an oscillating jet are
tidal heights, the initial and boundary conditions had to
be changed from those of Cases I through IV. The ambient
velocity was generated by raising the northern boundary

either 5 or 11 cm above datum to give a velocity flowing
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south of approximately 5 and 10 cm sec™!

., respectively,
across the shelf,

This slope is not a unigue condition. Stommel and
Leetmaa (1972) in their model of the shelf circulation
pointed out the importance of the sea surface slope in their
coastal model. Sturges (1974) has discussed the slope of
the sea surface in this region and described the seasonal
variation of sea level at Norfolk, Virginia. Sturges
(1974) estimates the slope of the sea surface in the region
being modeled as 2.0 £ 0.4 cm/degree or 0.023 to 0.04
cm/nm. For the grid used here the slope was 0.052 and
0.104 cm/nm. It is recognized that most reported shelf
velocities for this region are estimated to be 5 cm sec'l
or less; thus, a slope of 0.052 cm/nm approaches a more
realistic situation. The importance of small changes in
water level here and in the previous cases for both the
steady-state and oscillating jets illustrates the need for
a good understanding of the permanent, seasonal, and daily
variations of the sea surface in order to accurately predict
the flow.

Initial conditions for the run were U =V = 0,5 = £(y).
Boundary conditions for the western boundary remained the

same, while for the eastern boundary & = £(y). For the

northern boundary 6 = 5 or 11, and for the southern boundary
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0 = 0. The results of the computations are shown in Fig-
ures 38 through 41 for the maximum ebb and flood of the
second tidal cycle with a northern boundary of 8 = 5 and 11,
respectively.

For Figures 38 and 40 several features can be noted:
a.quidker turning of the jet by the ambient current than
for Case IV of the steady-state jet, a northern velocity
which goes to zero along the coast and above the jet, and
a confinement of the jet closer to shore.

The rapid turning of the flow by the ambient velocity
once it leaves the Bay (Figures 38 and 40) is caused by
three factors. First, the ambient velocity is almost con-
stant across the shelf and, therefore, its value near shore
is not zero as in the case for the steady-state jet. Second,
the magnitudes of the ambient currents used are greater
than the 4 cm sec™! used for the steady-state case. Third,
the jet velocity is not maintained constant at maximum ebb
speed.

Thus, the ambient velocity in these two cases is a
more effective factor for the deflection of the jet than
the Coriolis force.

The northern velocity along the coast above the Bay
entrance has been verified by several observers, Harrison,

et al (1967), Bumpus (1969), and discussed in Case IV of



125

' e S M M Y Y Y VR VY

\
\

B T T O T S

S U N N N U U U W VR VN

r—

AR T T T T T R

Vo

\
\

Y VAR U VO O U VR U O

1
1
1

\
\

\
\

AL W VS VR VAR U U T

A W VR VO G G VR G R

l

Figure 38 - Velocity vector plot, oscillating jet at maximum

ebb and with a southerly ambient velocity of 5 cm sec~l



124

/

l

[
T B R

[ Y A BV A

!

l
/
{

T O Y

[

[ !

[ !

VAV AV AN ARV

Y A A A A A

—_— ——p e ———

{
[ !

/
{

A A A A A N |

PP
— " v S S L L

P
e

/L
/

/

_\*‘“//././/././././
R e A Y Y A

{

{

4——-'\

v

v

~

oscillating jet at maximum

-1

5 om sec

ly ambient velocity of

flood and with a souther

Figure 39 -~ Velocity vector plot,



&&&&&& I e e e T S S s S e N N S
&&&&&& A A A A A A A A o ot o b et bt s
&&&&& R e R A e L NN A
&&&&& A A A A A A A A A o o ot ot b b ey sy
—t e A A B A P I, S s S S S S SN —t b
&&&&& T I e B e B T . G e B e S I
lllll e B B e P P e S o e L i L SN O
lllll e P B P I A A AP S L N
lllll S N Pl ol e P G P e L NN
llllll “ A A S S S e,
lllllll A A/ .\- \.\.\.\\\&n\\&.\\ll\&ll\..l.ll\.iul..\..tll
llllllll A/

—p — —— —p b P d -~ P

— — — —t — — —+

at maximum

M

-1

—

Velocity vector plot,
with a southerly ambient velocity of 10 cm sec

Figure 40
ebb and



126

jjjjjjjjj T TS Ty Ty TS Ty TS Ty TS Ty T Ty Ty Yy Y ™ g

11 ]
jjjjjjjj /J/l/..j,j///fffffffflm
11111111 T T TR T TN TN Ny Ty Ty Ty Ty Ty T T T T T m
1111111 .fJ.,/.,/./‘/_./././;/./_,/././,.j.....,.J.!_.!,.wq
IIIIIII TU TS TS TS S S Y N N Y Y S Yy S lf..i.m_p_.
1111111 fl/./.././././././/././.f.f.f.lllm

x>
jjjjjjjj lr&/l../»///.//-/./-/.lilil&lli.w._
jjjjjjjj I T T N e T T .m
llllllll ././z/‘/.///./.,,..,.,.xx;.f.i...m

IR

|

|

jet at maximum

ng

-t

.- — —p — a—p — —p —— I

+ - - — — — — -

_

flood and with a southerly ambient velocity of 10 cm sec~1

Figure 41



127
the steady-state jet. Figures 38 and 40 show the way this
feature could be limited to an area of coastline just above
the Bay entrance and how it can vary with strength of the
wind and outflow from the Bay.

Figure 42 is a plot of the salinity distribution on
the continental shelf for the month of July 1972. This
figure outlines the direction of flow f£rom the Chesapeake
Bay when it leaves the entrance. The similarity of the
flow pattern of Figure 42 when compared with Figures 38 and
40 is apparent., However, there are some differences which
should be noted.

Boicourt (1973) points out that the ischalines leave
the Bay entrance at an angle. Current meter observations
of Boicourt (1973) and Kuo (Virginia Institute of Marine
Sciences, private communication) indeed show that the cur-
rents at places in the Bay entrance exit in & direction
more southeasterly than due east. This is probably caused
by the main channel which also exits in a southeast direc-
tion. This fact, along with the ambient southern wvelocity,
probably causes the current to be confined along the coast
in a more narrow band than is shown in Figures 38 and 40.
Boicourt (1973) has also pointed out that the salinity
pattern off the Bay entrance will be a function of the wind

and volume of flow out of the Bay. Thus, while the salinity
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pattefn of Figure 42 verifies in a general way the flow
pattern of Figures 38 and 40, the final results will be
functions of many variables, some not considered in the
discussion of this case.

The flow patterns for the flood tide, Figures 39 and
41, also show three prominant characteristiecs: 'a turning
of the southerly flow into the Bay, a point of minimal
velocity south of the Bay entrance where the flow seems to
split, and a weakness of the southerly flow below the Bay
entrance. Figures 39 and 41 compare well with the flow
patterns into the Bay composed by Boicourt {1973) and
described by Harrison, et al (1967).

The flow was averaged over a tidal cycle (for the same
points used in Cases I and II) to see if there was an eddy
present. The southward, 5 cm sec~l, flowing ambient veloc~
ity wiped out the eddy so that no traces of it were found.
From an Eulerian standpoint, the eddy has been destroyed.

Finally, Figure 43 shows a series of vector plots for
selected points and conditions over a complete tidal cycle.
Figure U43a shows for comparison the vectors for Case I at
the point m = 3 and n = 22 (above the Bay mouth). This fig-
ure shows a slight rotary characteristic for the tide.
Figure UZb is for the same point but with an ambient veloc-

1

ity of 5 em sec”~ south, Figure 43¢ is for the point
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Figure 43
Velocity vector roses at two grid points
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m= 3, n= 28 (below the Bay mouth) and with an ambient
current of 5 cm sec'l. Both of these figures show a more

diversive spread of the vectors due to the ambient current.



CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The intent of this investigation was to discern the
resultant flow fields arising from the discharge of a tidal
estuary or river onto the continental shelf using the contin-
uity, momentum, and mass balance equations, The approach
was to numerically model the area, simplify the geometry
and physical situation where possible, and determine the
relative effect of different physical factors on the flow.
The model developed in Chapters II through Vv and the results
of its application given in Chapter VI have accomplished
this. The results, while for much simpler cases than arise
in nature, nevertheless are useful and applicable toward
understanding natural situations.

Conclusions

From the results and discussion of Chapter VI it can be
concluded that the outflow from a tidal or non-tidal estuary
or river onto a continental shelf can be broken into three
types: dispersive, in which the velocity vectors diverge
from the centerline; entraining, in which the velocity

vectors converge toward the centerline; or a combination

of the two. The final type will be governed by the degree

132
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of bottom and side frictions, the bottom slope, and the
level of the water above datum at the Bay entrance.

The centerline velocity of the bottom friction steady-
state jet studied was found to decrease much more rapidly
than the side friction cases reported in the literature.
Cross~stream U velocities for the same bottom friction
case were a function“bf'BEchey, For a steady-state jet
which considers both side and bottom friction, the center-
line velocity profile was found to be a combination of the
pure side and bottom friction cases.

For the model case of the Chesapeake Bay, it was deter-
mined that the outflow is dispersive, with a centerline
velocity decreasing to less than half its maximum velocity
in one jet width. Field observations of estuaries other
than the Chesapeake Bay verify the rapid velocity decrease
along the centerline, but no information was found on the
characteristics of the cross-stream velocity distribution.
The velocity distribution both along the centerline and
laterally will be affected by the wind and ambient currents

in the vicinity of the discharge so that field verifica-

tion of these profiles will be difficult,
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From the results of all the cases studied, the slope
of the sea surface relative to mean sea level is very
important in controlling the movement of the shelf waters,
as previously mentioned., For the area studied (Chesapeake
Bight) the sea surface slope needed to generate an ambient
current, corresponding to currents found by field measure-
ments, agreed with leveling observations by a factor less
than two. Small value of the sea surface slope needed and
the sensitivity of the model to it suggest that in a natural
environment both the permanent sea level height and the
seasonal and tidal variations should be accurately known
in order to model and predict the shelf circulation,
particularly if tidal heights are used as a boundary con~-
dition. For modeling purposes it is estimated that this
water level should be known to within at least 1-2 com.

The Coriolis force has often been considered to be the
most important factor for generating the turning of an
estuary or river (in nature) as it empties onto a shelf.

In contrast, for the cases studied, the Coriolis force

was not found to be a controlling factor in the turning of
the outflow. This turning is believed to be masked by the
effect of bottom friction and is illustrated by the large

values of the Ekman number (21) for the cases used.
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Thus, the cases studied suggest that, if in nature the
bottom friction and the inertial terms are dominant, the
wind and ambient current are more important factors in the
deflection of the outflow than the Coriolis force.

For the steady-state jet no eddies were found in all
four cases investigated. For the oscillating jet eddies
were found for Cases I and II after the tidal component
was averaged out. The effect of the Coriolis force in
Case II was to decrease the strength of the southern flow
of the eddies and increase the strength of the northern
flow. This also confirms the results reported by other
investigators.

This study substantiates the reversal of flow in the
cifculation pattern above the Bay entrance that has been
reported by other investigators both for the Chesapeake
Bay and other areas in the Mid-Atlantic Bight. From the
model studies, the strength of this reversal will be a func-
tion of the sfrength of the ambient current, dispersion of
the outflow from the Bay or river entrance, and wind. The
flow can also be tidal dependent.

Results from the modeling efforts show that tidal
height or velocity can be used for an open boundary condi-
tion. However, if velccity is used, care must be taken to

assure that reflection from the boundary does not occur.
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This problem can be eliminated by the use of tidal heights
for the open boundary conditions,kwhich most investigators
use in a model of this type.
The multi-operational techniques used here have proven
to be stable and fast. The technique is a more economical
way to calculate data than a pufely explicit scheme.

Recommendations

Recommendations for future work in the use of this or
other models in studying the coastal flow in the vicinity of
the Chesapeake Bay entrance can be divided into two general
categories: intermediate and advanced.

For the intermediate step, several features and/or
factors which were not included in this study should be
examined. These are: (1) a more detailed evaluation of the
mass conservation of the numerical scheme to verify Leendertse's
work; (2) incorporation and use of the mass transport equa-
tion to study the effect of simple salinity and density
variations on the flow patterns; (3) altering the Bay's
discharge to the southeast to observe the difference in flow
characteristics above and below the Bay entrance; (4) slop-
ing the bottom to apﬁroach a depth of zero near the coast
and varying the bottom friction terms to more accurately
represent the near shore circulation: (5) development and

use of the side friction terms; and (6) use of a jet (to
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simulate the Bay discharge) interacting with a tidal wave
propagating normal to the coast to more nearly approximate
the true environmental situation in the Chesapeake Bight.

For the advanced category expansion of the hodels to
three dimensions to investigate the layered flow in the
Chesapeake Bight is desirable. However, the cost of devel-
oping and using a model of this type may be prohibitive,
Further, sufficient field data on the tidal and non-tidal
circulation in the coastal zone during a typical summer and
winter condition are needed to calibrate both the two-
and three-dimensional models. The size and cost of a field
program of this nature would depend on the area of interest

and extent of modeling undertaken.
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APPENDIX A

ORDER OF MAGNITUDE ESTIMATE



139

Compare the magnitudes of

gH® 2F
";—:Eﬁﬁ .1

and

R R
—_—— ( fl ) .
f‘”‘jhlss : A.2

By using the first two terms of Taylor series, let

) = £+ (53)
33 3:'5’ A.3

where z_ is the position in the vertical at which the density

o]

equals'E. Now using 2.21 and A.3 and evaluating op/oz at

z = z, gives

f'=p-F .&3.] (3-3.)

Integrating A.4 from z to § yields

§ 2 % |
jfdj v Z?L%g) [(5 3) 'Lj'.ﬁ)]-
. 3 A.5

Integrating A.5 from -h to § and combining terms gives
¢ :
j j Idj) Jj H }_3/; [3‘; (;‘30) "‘-:.li,- (J‘SOKA "‘Jo) - .-:;,- (h i}_ﬁ
-h /3 Jo

A6
Assuming z5 = (-h + §)/2 and substituting into A.,6 gives

$ S
o H3

j (jr%){, o Ik

~h 73

3o A7

ALY
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Now substituting A.7 into A.2 yields A.8, a form of A.2

whose magnitude can be evaluated

(J:L M) L4 of
2 33 F 1z ax A.8

where Ap is the density variation over the water column.

The relative magnitude of A.8 and A,1 is then

_4 HFanr
F IR ¥ _ g & AF = R
- Tt 2P ]
_ 4 HAF £
P £ ax A.9

Equation A.Q is a ratio of A.,2 to A.,1. If this ratio
is <0.1 (A.1 > A.8 by a factor of 10 or more), then eguations
2.39 and 2.40 are valid., Simple examples of density dis-

tributions where term A.2 can be ignored are shown below:

p=constant R = E.a = -
]

= =1
Pl-constant Pe—constant R = £

P17 0o
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o1
fo
~10_0
°3 R=%070
Py
.. ]
pl<°2<03<ol_|_
.0102030 R=‘%%?=O
3K

The general cases where the sur-
faces of constant density are
approximately parallel.

If the density distribution in the water column gives a ratio
R > 0.1, then term A.2 cannot be ignored and equations

2.39 and 2.40 are not valid. The case R > 0.l would imply
the existence of relatively strong vertical stratification
and the simulation by a vertically integrated two-dimensional

model will not be applicable. Therefore, in the framework
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of two~dimensional approximation, it may be assumed that

equations 2.39 and 2.40 are valid.
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Text Computer Text Computer

Notation Notation Notation Notation
£ FC Aj 1/2DT
g G By BX,BY
h H c; CX,CY
h HAVG D5 DX,DY
m J E i EX,EY
n K F 3 G/2L
x X Hy HCX ,HCY
Y b4 Pj PX,PY
c C¥ Q; QX,QvY
D; DX ,DY* Ry RX,RY
H%‘%.H;E HXF ,HYF , HXB , HYB* 7y TX, TY
S S* A:; ARX,AAY
U UlA B:!] BBX, BBY
U U* | c:!| CCx,ccy
v V1A T D} DDX, DDY
v o E} EEX,EEY
o, Al F; FFX,FFY
HI*

P R¥*
S, 18 WSX, WSY

X Y
AL L
At DT

NOTE: Notations with an asterisk may have a 1 or 2 with
them, 'i.e., S1, U2, HXF1l. The variables without a 1 or 2
are the variables at the future time. With a 1 attached
they are the variables at the present time, and with a 2 at

the past time.



APPENDIX C

COMPUTER PROGRAM

145



10

15

20

25

ap

as

&9

“5

50

55

PROGRAN HODEL {INPUT=]12R.0UTPUT=128+TAPE4®]024 ¢ TAPESSINPUT
1TAPEGsOUTPUT)
REAL LsLlsL2vLIolb

DIMENSION
DIHENSION
DIMENSTON
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DINENSION
DIMENSTON
DIMENSION
COMMON

U(30+50)+U1130¢50)+U2{D0+50)
VI(30+50)+V1i{30e50)+V2{30+50)
HL (304503 s HLL 130+50) o HL2{30+50)
HAVG(30+50) +PX LS50 »QX(50) +RX {50+ TX (50}
EEX(S0)+FFX(50)
PY{50)+QY(50)«RY{50}+TY(S0)
EEY(S0) +FFY {50}
5130+50)¢51(30¢50)+H{30¢50)¢52(30:50)
UANI50)
TITLE(B) .

HJMKMsHL I JK e HJKHE s JH] e KHI » JP1 9 KP 1 oy HIK s HJIH 1K o

1BXsChDCX4E1 eE29EIvEXoHCIAIHCLIBoHCIDIHC] ¢ HC2 ¢ HCI ¢ HCL A w HCLB o HCAC e
JHC&4D s HC4 v HCS+HCE v HCTo+HCX 9 GoFCo HeHLYsHL 24Uy U2+¥s
1S1sDXeDYeOX) sDY1sR)2Cl o HXBY sHAFL o HYB) ¢ HYF L o CyHAF s HXBa HAVG s V1A Aw

IF oL oL 2oL 0L o sWSKeAAL v AAZo AA3vAAL s AAA vBB]1 +BB2yBBReCC1eCC29CCIeCChy

1CCX+DD1+D02+¢DDI+00XsC2eHL S22 TXSEEXSFFX4RXsL v JoK

COMMON BY+CYosDCYIEYsHCY s AAY s BBY +CCY o ODY «HYF o HYBowST Ul A
1C1JPsR1JP+DXJH¢DYIKMs CIMy CIKHeCIKPyRIKPyDYKH+DXEJMo CKMe ClJH
EQUIVALENCE (PX+EEX«PYsEEY)

EOUIVALENCE (QX+sFFX+QYsFFY)

EQUIVALENCE (RXsRY)} ¢ (TXsTY)

EQUIVALENCE (U«Ul) o {VsV])

G=9R0.

HAVG(1+1)330.

PX(lix]l,
oxXtl)y=il,
RX(1)=0

TXtli=].

HL(1e1)=.3

S{2+11=30.

UAN(1}=0
FC=0

€ INPUT OF INITIAL CONDITIONS

READ{G+&4)TITLE

& FORHAT(BAL0)
READ(Se5) JHAKsKNAX

S FORNAT(144+14)
WRITE(6+50) JHAX ¢ KMHAX

S0 FORMAT (21 INPUT DATAZ/%2 JHAX =214/ KMAX =#]4)
READ{S+5)DTHL

6 FORMAT{2F7.0)
WRITE(6+60)0T ol

60 FORMAT (#

DY ufF7.0/¢ L =#F7.0}

READ{S+7) ITMAX

7 FORMAT(14)

WRITE(6eT0) ITHAX
TO FORMAT(# ITMAX=#14)
READ{S+B)WSKeWSY
B8 FORMAT (2FB8.2)
80 FORMATI(#® WSX =#FB8,2/# WSY =#F8.2)
WRITE(6sBO}WSXWSY
€ TAPE MRITING STATEMENTS
WRITE (&) TITLE
WRITE(L) JHAX+KHAXsDT oL v JTMAXSWSX s WSY

V2450

HODEL
HODEL
HODEL
KODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
HODEL
HODEL
HODEL
MODEL
HODEL
MODEL
MODEL
MODEL
HODEL
HODEL
HODEL
MODEL
HODEL
MODEL
MODEL
MODEL
HMODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
MODEL
MODEL
HODEL
MODEL
MODEL
HODEL
HODEL

146

oy STWN



&0

65

0

15

a0

85

90

95

100

105

3300
400

100
200

C INPUT OF BOUNORY CONDITIONS

3000
C JEY

3001

C CALCULATION OF CONSTAN?S FOR UsHL

T00

DO 3400 KuloKHAX
DO 3300 Ju=]+JHAX
V1{deK)=0

V2 (JeKI =D

Ul (JeK) =D

U2 tJeK)=U] {JeK)
HL) {JeK) =0
HLZ(JeKI=HLI (JeK)
HEJeK)=1000,0

53 (JeK}=I0,00
S2 (JeK) 230,00
CONTINUE
CONTINUE
JHARRAJIHAR =)
KHAXMaKMAX=]
L381./12.'lL!l2))
L4 = 1./(8,90)
L2 = L& + L&

Ll = L2 « L2
A%]./DT

F = G/(2.%L)
DO 200 K=2.KHAX
DO 100 J=2yJHAX

HAVGLJoK) = (HUJsK) o HEJsK=1) ¢ HiJ=]14Ke]) o H{J=1sKID/4,

CONTINUE
CONTINUE
DO 300 IT=leI1THAX

LT=1T
DO 3000 K=1eKMAX
HL (JMAX+K} =0
UaeK) =0
S(1+K)=30,00
SUJIMAR +K) 830,00
CONTINUE

START UP

00 3001 K=23,25

U)eKIE259(1=((({Le2,5)=1IL/2) ¢ (K~
1SIN(.0001405*DT e ((24LT)=1)) 23,.Ll,..2”‘(L.E-S)..a"’.

UL eSO=K)SlH]on}
CONTINUE

00 600 K=2.KMAXN
DO 700 J=2J4AXM
CALL [INDEX

CALL CONuH
Rxil}=0
TX{t)=UlleK)

PXLJ)=BR/ A=CXORA LUM1) )
OX LS ®{DCR=CX#TX (M) ) ) 7 {A=CXORK(JH]}}
RXCSIBFALEX PR L) *F)

TXlJ!-(F'Oxtdionc;)/qzxopltJ)’FJ

CONTINUE

C CALCULATION OF UeHL

140

110 UCJeK}I=TX{d)=RX (J1#HL {Je ) oK)
HLEJK)I=UX (S} =PX {J) *U{SeK)

JeJHAXM
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HODEL
MODEL
HODEL
KODEL
HODEL

. MODEL

MODEL
MODEL
HODEL
HODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
HODEL
HODEL
MODEL
ES575001
HODEL
NODEL
HODEL
HODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
MODEL
MODEL
HODEL
ES75001
£575001
£575001
E575001
MODEL
HOBEL,
HODEL
HODEL
MOBEL
MODEL
HODEL
HODEL
MODEL
MODEL
MODEL
KODEL
HODEL
MODEL
MODEL
MODEL
MODEL

123



115

120°

128

120

135

140

145

150

155

160

165

170

JuJ=]
IF1J=2) 12041104110
120 CONTINUE
600 CONTINUE
C EXTRAPQLATION OF UsHL
DO 801 Ke2,KHAX
UlJHAX oK) =l {JHAXHK)
801 CONYINVE
DO 800 K=23.27
HLE) oK)= {HL {24K)=HL{J4K) ) sHL (29K}
BO0 CONTINUE
DO Q00 J=mlysJHAXMN
JPIxJel
HL{J41)=0
UtJPle1)=D
HL{JP}) s KMAX ) =0
ULJP] +KHAXK) =0
900 CONTINUE
€ PRINT STATEMENTS
c VELOCITY IN THE XA DIRECTION
THX={ (2#]17~1)*DT)/60,
IFIMOD(ITe3)4NED) GO TO 4100
WRITE(6+9)) THX
91 FORMAT (#1 TIME(MIN.) FOR HALF TIME STEP X=DIRECTION= #F6.l)
WRITE(6+51) 3707
51 FORMAT(# COMPUTED FROM 17T,0T=2£1I5+F10.5}
WRITE (6+95) )
95 FORMAT{/s # VELOCITY IN X DJRECTION#)
00 902 IKx]eKMAX
WRITE(G6e92) (ULIJeIK}elym) e JHAX )
902 CONTINUE
92 FORMAT( # ¥430F4&.0)
LT=17
c TIDAL HEIGHT FOR THE X DIRECTION.
WRITE(6+96)
96 FORHAT(/» # TIDAL HEIGHT IN X DIRECTIONZ2)
DD 903 IKE]sKHAX
WRITE{(6¢92) (HL{IJe1K) 9Tl u] ,UMAX }
903 CONTINUE
4100 CONTINUE
€ TAPE WRITING STATEMENTS
1DIR=}HX
WRITE{4)IDIRsTHX
WRITE(4) ((ULJrK) 0J=1 sdMAX) JK=] s KHAK)
WRITE(4) ((HL S oK) sJ2) v HAX) s KE] o KHAX)
GO TD 4200
C CALCULATION OF CONSTANTS FOR §,x-DIRECTION
DO 1000 K=2+KMAXH
DO 1100 J=2sJMAXM
CALL INDEX
CALL CONSX
EEX(1)=0
FFX{1)=5(14K)
EEX(J)=CCX/ {BBX=~AAXSEEL{IN]Y])
FEX{S) = (DDX~AAXSFFR{JIML) ) / (RBX=AAXSEEX {JN]1))
1100 COMTINUE
€ CALCULATION OF S+X-DIRECTION

148

MODEL
HODEL
MODEL
HODEL
MODEL
MODEL
ES75001
MODEL
ES75001
HODEL
MODEL
HODEL
MODEL
ES75001
E575001
MODEL
ESTS001
MODEL
MODEL
MODEL
MODEL
ESTS001
MODEL
HODEL
HODEL
MODEL
HODEL
HODEL
HODEL
MODEL
HMODEL
HUDEL
HODEL
HODEL
HODEL
KODEL
MODEL
MODEL
MODEL
KODEL
MODEL
MODEL
MODEL
MODEL
MODEL
ESTS001
HODEL
MODEL
NODEL
HODEL
MODEL
HODEL
HMODEL.
MODEL
MODEL
MODEL
MODEL

124
125
126
127
128
129

131

7
133
134

135
136

139

141
142
143
144

11
145
146
147
148
149
150
151
152
153
154
155
156
157
is8
159
160
161
162
163
164
165
1.1}
167

168
169
170
171
172
173
174
175
176
1717
178



175

tao

185

190

195

200

205

210

215

220

225

180
150

160
1000

J2IHAXH
SUJKIZFFX I =EEX{J) *SSe)eK)
JuJa]

IFtJ=2) 16041504150

CONTINUE

CONTINUE

C EXTRAPOLATION OF S

00

DO 400 J=1+JHAX
S(Jy1)=30.00
S(JvKMAXI=30,00
CONTINUE

€ PRINT STATEMENTS

c

98

904
4200

SALINITY FOR THE X DIRECTION
IF(MODC(IT+D).NELO) GO TO 4200
WRITE(6+98)

FORMAT (#1 SALINITY FOR X~DIRECTION#)
DO 904 1KE]leKHAX

WRITE(69%2) {S(IJvIK)#1Jm]leJMAK )
CONTINVE

CONT INUE

C TAPE WRITING STATEMENTS

4250

1300
1200

GO TO 4250 _
WRITE(S) ({S{JeK)rJ=) e JHNAX) sK=1 9 KHAK)
CONT THUE

DO 1200 J=1+JMAX

DO 1300 K=1+KMAX

S(JeK)BIOW0

S2tJeK)a5] (JeK)

S1 KIS (JeK]}
HL2{J+K) 3HL] {JeK)

HL1 (JsK) aHL {JeK)
V2{JeK)}=VI1JeK)

CONT INUE

CONTINUE

C INPUT OF BOUNDRY CONDITICNS

4000
4050

LT=IT

00 4000 J=1yJHAX
50Jr1)1=30.00
S5(JeKMAX)}=30,00
HLtJs1ls 12 =0

HL (Je1sKHAX) =0
HL (JoKHAX) =0
CONTINUE

CONT INUE

C CALCULATION OF CONSTANTS FOR VeHL

DO 1400 J=2yJHARM

K=l

CALL INDEX

CALL CONVH

El=A/2« {L1R28 (V2 (JWKI=V2{JsKP1}})
E2=((IV2{JrK) ) u82) 4 (. 062G)® ({(UlA}®92) ) 080 .5
EI={HYBL1#( (CLKP+Cl)/2)0e2)
EY={(E2/E3)%6)+E]

PY{l)=g

RY{})==(F/(EY=PY{1)*F})

TY {1 )= (HCY=F*H_ (Je2}) S {EY~PY (1) *F)
00 1500 Km2eXHAXM
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HODEL
MODEL
HODEL
MODEL
MODEL
MOODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
HODEL
ESTS001
MODEL
HODEL
HMODEL
HODEL
HODEL
HODEL
MODEL
E575001
MODEL
ES7500)
MODEL
MODEL
ES75001
HMODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MQDEL
MODEL
MODEL
HODEL
HODEL
E575001
ES75001
MODEL
HODEL
MODEL
HODEL
HODEL
ES75001
ES75001
EST75001
E575001
€575001
ESTS001
E575001
ES75001]
EST5001
ES75001
MODEL

179
180
181
182
183
184
185
186
187
188
189
190
191

13
192
193
194
195
196
197
198

14
199

200
201

202
203
204
205
206
2n7
2n8
209
210
211
212
213

18
215
216
217
218
219

19

20

22
23
2h
a5
26
27
28
220



230

235

240

245

250

25%

260

265

270

275

280

285

1500

CALL INDEX

CALL CONVH

PYIK)eCY/{A=BY®*RY (KH1))

OY{K)= (DCY-BY#TY(KM1))/{A«BY®*RY (KM1})
RY{(K)==(F/(EY=-PY (K)*F))

TY (K) s {(HCY=F2OY (K} )/ (EY-PY (K)*F)
CONTINUE

€ CALCULATION OF VsHL

240
210

220
1400

K=KMAXM

CONTINUE

KP]sKe]
VIJeK}aTY(K)=RY (K)*HL {JsKP1)
HL (JaK}=QY (K} =PY (K} #V (Jo K}
KEK=]

IF(K=2} 22042104210
ViJed1=TY{1)=RY (1) ®HL (Js2)
CONTINUE

CONTINUE

C EXTRAPOLATION OF VaHL

2100

2200

2200

DO 2100 JE=2.JMAXKM
HL{Je1) =D
ViJel)avide2)
VIJoKHAX I =V {JsKHAXH)
CONTINUE

DO 2200 K=]XHAXM
KPlaKel

HL (1K) =0

VIl«K}=0
HL(JMAX sK) =0
VIJeKMAX) 8V (UNAXY])
CONTINUE

DO. 2300 K=23,27
HLLTsKI={HLAZ4K) =HL {3 4K) ) +HL (29K)
Vil«K)=0

CONT INUE

€ PRINT STATEMENTS

[

93

101

905

103 FORMAT(/+# TIDAL HEIGH IN Y DIRECTION#)

906
4300

THY= (IT*DT#2) /604
IF{MOD(1T+3).NE,0) GO TO 4300
WRITE (6+93}) TMY

FORHAT(#1 TIME(MIN.) FOR HALF TIME STEF Y=-DIRECTION= #4Fé6al)

WRITE(6+51)17»DT

VELOCITY V IN THE Y DIRECTION
FORMAT{/+ 2 VELOCITY Y ODIRECTIONZ)
WRITE(6+101)

DO 905 IK=1.KMAX

WRITE(6+92) (VIIJeIK} o IJ=1sJHAK }
CONTINUE

TIOAL HEIGHT FOR THE ¥ DIRECTION

WRITE{6+103)

DO 906 1r=]KHAX

WRITE{(6+92) (HLIIJeIK) o lJdxlodMAX )
CONTINUE

CONTINUE

C TAPE WRITING STATEHENTS

IDIR=]HY
WRITE (4} IDIRsTHY

150

MODEL
MODEL
HODEL
HODEL
MODEL
MODEL
MODEL
MODEL
HODEL
HODEL
HMODEL
HODEL
HODEL
HODEL
HODEL
ES75001
MODEL
HODEL
HODEL
HMODEL
EST5001
E£57500)
ES75001
MODEL
HMODEL
MODEL
MODEL
MODEL
HODEL
ESTS001
MODEL
ES75001
HODEL
HODEL
MODEL
HODEL
HODEL
E£575001
HODEL
MODEL
MODEL
HODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
HODEL
HODEL
MODEL
HODEL
MODEL
HODEL

221
222
225
226
227
228
229
2310
231
232
213
234
235
236
237

29
238
231%
240
24

k]

3l

246
245
246
247
248
249

251

36
252
2564
255
256
257

a5
258
259
260
261
262
262
264
265
266
267
268
269
270
271
212
273
274
275
276



290

295

a00

oS

310

31s

320

325

330

335

40

WRITE(L) ((V{JeKIaJElaJMAR) JKE] o XHAK)
WRITE(&) ((HLEJoK) s a1 o JHAX) ¢ Km] o IKHAX)
GO TO 4400

€ CALCULATION OF CONSTANTS FOR S+Y-~DIRECYION

2000

DO 1900 J=24JHAKMH

DO 2000 K=2.KHAXM

CALL INDEX

CALL CONSY

EEY(1})=0

FFY{1)25{Js1)

EEY{K}=CCY/(BBY~AAYYEEY {KM1))
FFY(K)={DDY=AAY®FFY (KK1) )}/ (RBY~AAY®EEY (KN1)}
CONTINUE

¢ CALCULATION OF S»Y=DIRECTION

280
250

260
1900

KEXHAXK

CONTINUE
StJeKIFFY{K)=EEY(KI%45(JeKe])
Kax=]1 .

IFIK=2) 260,250,250

CONTINUE

CONTINUE

C EXTRAPOLATION OF S

500

DO 500 K=1,KMAX
S(1.K}=30.00
S{JMAX+K)=30,00
CONTINUE

€ PRINT STATEMENTS

[

105

907
4400

SALINITY FOR THE Y DIRECTION
IF(MOD{ITe3) W NE.O} GO TO 4400

WRITE {6+105)

FORMAT{#] SALINITY FOR vY-pIlRECTIONZ}
DO 90T IK=)l.KMAX

WRITE{6+92) (S(1JeIK}elux] e HAKX )
CONTINUE

CONTINUE

€ TAPE WRITING STATEHENTS

4450

2600
2500

90
oo

7852

GO TO 4450

WRITE (4) 1(SCJeK) eJal e JHAX) K] s KMAX)
CONT INUE

00 2500 Ks].KHAX

00 2600 Je=lyJHAX

StJsK}=30.0

HLZ2{JeK)mHLL {JsK)

HLT (JeK)BHL {JsK}

S2(JeKI=S1 (UK}

51 {JeX1=54{JeK)

U2(JsK)sU1{J9K)

CONTINUE

CONT INUE

WRITE(6+20) IT

FORMATL # CYCLES COMPLETED= #+14)
CONTINUE

WRITE(6+7852)

FOWMAT (# THIS IS THE END#)

C TAPE WRITING STATEMENTS

I1=10HTHIS IS TH
12=10HE END

151

HODEL '
MODEL
ES7500)
HODEL
HODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
MODEL
MODEL
HODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
MODEL
HODEL
MODEL
HODEL
MODEL
MODEL
MODEL
MODEL
ESTS5001
MODEL
HODEL
MODEL
MODEL
HODEL
HODEL
MODEL
ES75001
MODEL
ES75001
MODEL
MODEL
ES75001
MODEL
MODEL

" MODEL

MODEL
HODEL
MODEL
MODEL
HODEL
HODEL
HODEL
MODEL,
HODEL
MODEL
HMODEL
HODEL

2717
2718

6
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

30

Jol
o2
ao03

a7
304&
305
306
307
Jos8
309
310

8
a1l

39
312
312

40
N&
s
Nne
Nz
318
319
320
321
22
323
324
325
326
327
as8

ALY LRI
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WRITE{2)11s12
ENOFTLE&S
REWIND&

sTap

END

MODEL
HODEL
MODEL
MODEL
MODEL
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SUHROUTINE CONUH

RFAL LoLlsL2+L3sL0

DIMENSION U{30+50)sUL{30+50)+U2¢30450)

DINENSION V{J0+50)¢VI(30:50)eV2(30+50)

DIMENSION HL{30+50)+HLY (30+50)1HL2{30+50)
DIMENSION HAVG{30+50) ¢PX(50) +0X{S0)4RX{50)+TX(50)
DIMENSION EEX(50)+FFX(50)

DIMENSION PY{S0)+QY(50) «RY{50)+TY(50)

DIMENSION EEY(SO)}eFFY(50)

OIMENSION S5(30050) 951 430+50)+HI30450)+52(30.50)

COMMON -HJHKM s HL 1 UK e HJKMY 2 M) o KH1 0 JP1 s KP 1 s HUK s HUNI K s

1BRsCXoDCXvE)2E2+EI+EXoHCIAsHCIBAHCIDYHCY »HC2 1 HCA9HCLA s HCAB s HE4ACY

1HC4D +HC4 yHCS e HCH s HET o HCX 2 G o F HeHL1 oHL2 Uy U2eVy

V245

1514DX+DYsDX]) ¢+DYisR1+Cl o HXBY o HAF 1 e HYBL ¢ HYF L 9 CoHXF s HXBo HAVGo V1A s Aw

IFoL1eL2oLIeLoonWSHeAA) s AAZ 9 AAD v AALAAX +DB] ¢ BB2+BBX+CCY e CC29CCI1CCHy

1CCXeDD) vOD2+DDI10DX2C2oHL o520 TXEEXSFFXeRXsLu oK
COMMON BY+CYsDCY+EYIHCY s AAY »BBY+CCYDDY +HYF o HYBaWSY UL A,

1CIIPeRIJPyDXJHoDYIKH4 CIMs CIKMICINPRIKPyDYKH o DX1 JMeCKM3 C JH

EQUIVALENCE (PX+EEXsPYSEEY)
EQUIVALENCE (QX+FFX+QYoFFY)
EQUIVALENCE (RX+RY}o(TXeTY)
EQUIVALENCE (UsUl)s{VeV])

Cl=400.0

RI=].004(.007945%5) {JsK})

€lup=C1

R1JUP=1.00¢{, 007965451 {JPLsK))
VIAZ{VI{JPLsK)+VI{UPLeKM]) V1 (JeKRL ) oV] (JeK))
BXsL1%HXF]

Cx==(L1*HXB1)

DCXz={ {{=HLI{JsK) P ®A) & (L1® (HYF1®V] { Sy KHM]1 )} =HYBI*V] {JsK} ) ))
El=(A/2) s {L1®(U2(UPJ+K)=U2{JM1+K} })
E2a( ((U24JsK) ) #02) ¢ (. D625) R (VIASSD)}e80,5
E=(HXFI®{(C1UP+CL) 72) 222)

EXz{ (E2/EI}*G)+E]
HCIA=UZ (JeKH1 )} ~U2{JsKP])
HC1B=HC1A®V]A

HC1C=HC1a*La

HCID=U2{JsK)*{A/2)

HC1==HCID*HC]IC

HC2= ({HL2(JP1 oK) =HL2{J+K) ) #F)+ ((R1JP-
1R1I®HXF1=(1/{R]JP+R1))®F)

HCI=(FC/G. ) oV1A ’

HC4A=28GRU2 (JeK)

HCLBRUZ (JeK) #E2

HCACaHCLYN+ (0.0625 Y (V]A)ee?
HC4D=HC4CH#(,5

HC4zHCALA®HCLD

HCS= (HXF1® L (C1UP+CY ) 72) ma2) »2

HC6 = HCO / HCS

HCT=42WSX/ ({R1JP*R] ) *HXF 1)

HCXz={HCL +HC2=HCI+HCOH~HCT}

RETURN

END
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CONUH
CONUH
CONUH
CONUH
CUNUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
E£57500)
CONUH
€575001
CONUH
CONUH
CONUH
CoNuH
ES75001
ESTS001
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
ES75001
CONUH
CONUH
CONUH
CONLR
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUH
CONUM
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SURROUTINE CONSX

REAL Lallel24L30L 4 .

DIHMENSION U(30450)4U] (30+50)+U2130+50)
DIMENSTION V(J0+50),v) (30+5032V2(30+50}
DIMENSION HL1J0+50) eHL ) (309500 +nl2(30+50)

DIMENSION HAVG(ID450) +PX{S0) «OXIS0) 2RX (S0} TX(S0)

DIMENSION EEX{(50) 4FFR (S0}
NIMENSION PY(S0) 40y (50} sRY(S0)»TY{50)
DIMENSION EEY(50) +FFY (50)

DIMENSION S{30450)¢5) (30+50)+H{30+50)+52(30+50)
COMMON HIHKH s HL 1 JK o HIKH] ¢ JH] ¢ KH1 3 JP1 o KP 1 s HIK e HIHIK o

YEX+CXs0DCKeEL1ER L EIEX s HCIAs HCIBCHC1D o HC ) s HC2 ¢ HCI v HEA A eHCAB s HC4 C o

THCLD e HCL ¢ HES s HEH s HE T s HEX 9 GoFCo

HoHL] +HLZ2 ¢ U

U2¢¥y

V245

153 +0XeDYsDR1+DY  ¢A) o C1 sHRBYsHAF Ly HYHL sHYF L ¢ CoHAF tHEBAHAVGIVI A A

1F oL sL2oL3oLbywSXoaA) ¢AAZ 1 AAJrAAGs AAXyHB) 4 BB2+BBX+CCL2CC24CCI2CChY
1CCX+DD1+0D2+0D2,DUX e C2eHL #S2 9 TXIEEX4FFAsRX oL e JoK

COMMON BYsCY1DCYoEY «HCY « AAY s BUY 4CCY o DDY ¢ HYF o HYH e WSY sUL Ay

1CIJPRIJPDAIMDY JKHe CIHr CEEM+CIKP¢RIKP « DYKM o DX1JHoCKNCL UM

EOUIVALENCE (PXJEEX+PY+EEY)

EQUIVALENCE {(QXsFFx.QY+FFY)

EQUIVALENCE (RA4RY) ¢ (TATY)

ECIIVALENCE (Us)) 4 {VeV])

HXF=HJK ¢ HIKMY + HL (JPL oK) ¢ HLISX)
HABEHJNIK ¢ HIMKH o pHL (JeX) ¢ HLIJHLWK)
CS‘GQl 9

DA= (5. 5I0HIK*U{ 3,K)#3]1.3049)/C

CJIM=49]) .9
DXJHE(S59IPH{IH] Ky #13CIHD oK) #31,3049) /CUM
€c1=491.9 )

DY1={(5.93%HJKay] {JoK}*#32.3049)/C) }
CIKME49]),9

DYIKHE (54939 kM]3 #V] {JeKH1)#2]1,.3049) /CLKM)
AALI=HXB1*U(JH] +K)

AAZ=AAL®LZ

AAI=HXBRDAIN

ARbL=AADSL]

AAXE~ [AA2eANG)
BBI=(A®LHAVG(Jsx) oKL CJeKI ) o LEUHXFIoU oK) )~
1{HXB1%U{IH]14K)}) 0L 2)

BH2= (HXF*OX+HXBeDK M) *L I

pox=BB)+Bb2

CClaHAFI®U LK)

cc2=CcCleL?

CCIA=HXF*DX

CC4=CCI%LI

CCX=CC2=-CCh

DD1ASHAVG(JsK) s HL] (JeK)

pD1B=DDIA®S] (UyK)

NO1=«DDIB*A

NDZ2=C{HYFL® ¥} (JexM) ) PLSLLJaKM1Y+51{JyK}))
1= {HYBL*VIIJsK)® (S} (JeK)#S1{SIKPL} I )} 2
OD3I=( ( (WYF1o0Y KM= {51 (JeKML)=511JsK}})

1= (HYBL®*DY1#(S]{J,K)~S1 {JsKPLDIHIOLT)
DDxX==(0BD1+0D2-DD3)

RETURN

END
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CONSX
CONSX
CONSX
CUNSX
CONSX
CONSA
CONSX
CONS)
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
ESTS5001
EST5001
CONSK
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
CONSX
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SUBROUTINE CONVH
g?ﬂl.ugil-: WL24L34L4
HE OH U(30,50),UL430,50),U243
0,50}
gi:g:zigﬂ V(JU-50).V1(30.50'|V?.(30:5°’
UIHENSIO: ::5:‘:;30);"[.1‘30.50’o“L?‘Jﬂgsﬂ,
g;:g::%g: EEX150) :gF;:;::SUI'QXISGHR!(SUH Txts0)
£ PYL5D) . QYL50)
DIMENSION EE\'(SU:.FF\'(S:’?Yisu'.Tv'sm
DIHENSION S130,50),51430,50),H(30,50)452(30,50)

COHHON
HIMKM ¢ HLLIK s HIKHL o JHL e KH1 3 JPL o KPR o HUK y HIMLK

18X CXeDCX 2 ELyE24E34EX s HCLAGHCLBoHCADyHCLyHE2 y HC Iy HCH AL HCHB4HCAT
’

tHC KD ¢ HCl ¢ HCB o HCE s HET « HEX oG FG o HeHL14HLZ 4, U2.v
e

V245

153 DX oDY o DX14OYL4RE4CL+HXBL s HXFL yHYBL s HYFL s CoHXFa HXBsHAVG VLA A
vhy

IFsL1oL2oL3sLboHSKAAL yAAZ) AAS y AAL,AAX ;DB ,BD2,B8X4CCL,CC24CC3.CCh
]

1CCX,001,002,003,00X%422¢HL,52
s TXEEXFFX4RX
COMMON BY .c\’-DCY.Er'uchAM’.BBY.CGY:DDY:HYEI:l?lgéfusv.uu-

1CLJP g RLJIP ¢ DXJIMDYLKH) CIH s CLKH s CLKPsRIKP s DYKN DX 1IN oCKH,HC 1IN

EQUIVALENCE {PX,EEX4PY,EEY
EQUIVALENCE cax:rr::qv:rgv:
Egg{::té:gs (RXLRY) 4 LTX TY)
(U8

61.500,0 UL .N,VU
cixkp=CL
ULAs (UL EINLK) 2L €S
::;1.gﬂ;t-Uo?gustst':i::n’.u“J'KP“’u“J'K”

p=1.00+(.007 »
R aYFL 0 945351 (J,KPL))
cYs=L1*HYB1
DCY=~ ({T~HLLIJyX) I *A) # {LL* (H .
E1={AaZ2)+(L1" IVZ(J.KM)—VZ(Jf:;::’”"m'-uxa"u"J"hm” '
€224 0IV2ZLJKII®¥2) 4(. 0625V ({ULA)*%2))*20,5 '
EI=(HYDBL*{({CI1KP+C1)/20%%2) *
EYs{ (E2/E3)*G)+EL
HCLA=V2IJPL1K) =¥
uc;a-HCll'uil 2 LML, K}
HCiC=HCLIB*LY
HC10=V2lJyKI*(A/2)
HC1=~HCL1O#HCIC
HC2= C LHL2 (JyX)=HL2{Jy KPL})}*
UH.KP)‘H’YB“‘F‘HI(RU.(POR:.:'I”‘ tIRa=
HE3a(FC/ka)*ULA
HCLAR2*G*Y2(J,X)
HCWB=V2iJ,K}**2
HG&C=HCLB* {0,062 . .
HG&D-HC#B"O:S 5 aruiarEez
HG k= HCLWA® HCLD
MCS= CHYBL®* {(CIKP+CL) 721020 ®
HC6 2 HC% ’ Hcsz’ 2
:Ez.n::gntmxpmu-uvn

2= LHCL+HC2+HCI+ HCG -
e HCE6=-HCT)
£ND

CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
GONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
£575001
£S75001
CONVH
CONVH
CONVH
CONVH
CONVH
ES75001
£575001
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
ES75001
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
CONVH
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SUBROUT INE CONSY

REAL LsLloL2yL39L4

DIMENSION U(30+50),U1(30+50)9U21(30+50)
DIMENSION V(30+50)4V1(30+50)eV2{20+50)
DIMENSION HL (30503 +HLL1 (30¢50) 9HL2(30+50)

DIMENSION HAVG(30+50)sPX(50) 9QX{S0)»HX{50)¢TX(50)

DIHENSION EEX(50) +FFX150)

DIHENSION PY{S0)+0Y(50) sRY{S0}+TY (S0}

DIMENSION EEY(50) +FFY{50)

DIMENSION S{30+50)+51(30+50)9H(30450)+52(30+50)

COMHON HJIMEM g HL1JK g HJKM] s JM] ¢ KH] 2 2P ) 2 KPL yHUK s HUMIK o

18X+CXeOCX+EY+E2+EI4EXyHCIAsHCIBsHCIDPHCL o HC2 4 K39 HCL AW HCAB ¢ HCAC

1HCLD s HCG s HCS s HCE v HCT A HEX 9 G FCo HeHL1vHLZ 4 Us

U2sVe

V24Se

31S1+DXsDY9DX19DY1oR12CL e HABY o HXF 1 o HYB1 s HYF L o Co HXF v HXB+HAVG e V1 Av Ay

IF oL 1ol 2oL 3oL b oWSXsAAL s AAZ s AAD v AAL o AAN v BR] 9BBZ9BBX+CCY9sCC2+CCICCLy
1CCX 9001 9D02¢DDIsDOXeC2oHL 9S2+TXSEERsFFXeRX 2L o JoK

COMMON BYsCY+DCY+EYsHCY s AAY sBBY o CCY o DDY o HYF s HY B e WSY s Ul Ay

IC1JPIRIJPIDXIN e DY IKHe CIMe CIKHoCIKP e RIKP +OYKH o DX1 JHe CKHs C1 UM

EQUIVALENCE (PX+EEX+PY+EEY)

EOQUIVALENCE (QX+FFXeQVsFFY)

EOUIVALENCE [RX+RY) o [TXsTY)

EQUIVALENCE (UsUl} s (VeV]1)
HYF=HJKM] ¢HIMKM e HL UK+ HL (JosKM])
HYBzHJXeHJMIKeHLJIKsHL{J+KP1)

C=49) .9

DY=({5.93HIK*V {JvK}*3],3049)/C)
CKM=49]),9

DYKHZ ({S+93¢H(Jo KM OV (J9XMH13#3]1.3049) /7CKM}
Cl1=491,9
DX1=(5,93%H [JeKI®U]) (JeK) *3)1,.3048)/C)
ClUMz49) .9

DX1JN={5, 9384 (JML +K) ¢UL (JH] + K} ®T1 304593 /CLJIH
AAT=HYF14Y [ JsKMH])

AA2zAAl®L2

AANI=HYFSDYKH

AALzAAD®L]

AAYamAALeAADR

BEI=tAS (HAVG (oK) sHL (JsK} DY o (ECHYF I RY (UsKML ) } =
1¢HYBl®y (oK) ) )I®L2)

BBR2= (HYF*DYKM=HYDB*DY)*L3

BBY=BB) +8B2

CCYs( ((=AYBLI®Y(JeK) IOL2)=({HYB®DY)#L3)}
DO1ASHAVG{JsK) *KL] (JeK)

DM B=001A#5] {J«X)

DD1=-DD1IB*A

DO2={ (HXFIPUT (JeK) 2 (S1 (JPL+K)+51(JsK)))
T={HAB12UL (UML ¢ K} ® (ST (JaK) +5]1 {JH1sK)) ) D OL2
DOI={ ({HXF [*0K]1® {51 (JPLeK)~S18 LK) )]}

1= (HXH1#DALJM® (S] (JeR) =S LUHIsK2 )} oL}
DDY=-(0DD1+D0D2~DD3)

RETURN

END

CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
COUNSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CUNSY
CONSY
CONSY
CONSY
CONSY
CONSY
EST5001
ES75001
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
CONSY
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APPENDIX D
BOTTOM STRESS, VERTICAL EDDY VISCOSITY,

AND CHEZY COEFFICIENT RELATIONSHIPS
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To determine the relationship between values of the

Chézy coefficient and the vertical eddy viscosity, we can

use equation 2.33

V. b
_aululeflt - %

¢? 7 D.1
Using notation from Dyer (1973), we can set

__Eb: ﬁzé—u— .
7 3 D.2

From D.1 and D.2 we now have

/L;%H.:.ﬂll[li&ﬂ[il&.
J c*

D.3
Letting [U2 + Ve]l/2 = U for the purpose of calculation and

re-arranging D.3, we have

,= 80
Cz%'g DU

If C = 400 cmt/2 sec"l, U =25 cm sec™® (an average velocity),

and the velocity has a linear variation with depth, then

U = 90 = 050

33  lovo

and

A, = 180C25)* - 746,
(900)2(.050)

If a vertical distribution of velocity of the form

] ='Tl;11(€3)%

D.5

is used (Dronkers (1964)), then u = U__. at the surface.
' 1

From Dronkers (1964) a value of U = 25 cm sec” ~ gives a
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U ayx = 28.6 cm sec™ . Then 3u/z = (28.6/1000) = 0.0286
and
2
Hiz !?&Q[(EJ) = /33.9.
(400)2(0286)

An alternate check of the bottom stress is given by

= 2 (7. = 2y2 : - -1
the term y = g/C% (T = py“U=) which for g = 980 cm sec
and C = 400 cml/2 sec™ ! gives vy = 6.1 x 10~2. Dronkers

reports values for their coastal work of ¥ = 2.9 x 10-3.
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