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ABSTRACT 

Coastal seagrass ecosystems are complex habitats that are increasingly influenced 

by human perturbations. Disturbances that affect the strength of bottom-up (i.e. resource 

availability) and top-down (i.e. consumer) controls may also influence biomass 

distribution between trophic levels, sediment biogeochemistry, and seagrass ecosystem 

metabolism. Here, I experimentally tested how top-down and bottom-up perturbations 

interact with community structure (diversity, food chain length of epibenthic consumers) 

to alter sediment biogeochemistry and ecosystem metabolism in an experimental eelgrass 

(Zostera marina) system. My data indicated that resource availability influenced SOM 

composition and ecosystem metabolism. Light availability tended to be a stronger 

determinant of SOM composition while nutrient enrichment affected secondary 

production of invertebrate grazers more strongly than primary producers or SOM. Top­

down predator effects on SOM composition and ecosystem flux rates tended to be weak. 

However, the strength of the trophic cascade may partly be a function of grazer 

community composition and grazer susceptibility to predation. Finally, my results 

indicated that grazer species identity and community composition strongly influenced 

SOM composition. In addition to the main effects of light, nutrients, predators, and 

grazers there were a variety of interactive effects between resources and food web 

composition. Consequently, the effects of resource availability and food web composition 

on seagrass ecosystem functioning should not be considered in isolation. 



Top-down and bottom-up controls on seagrass ecosystem functioning. 



Chapter 1. Introduction 

Project Summary 

Coastal seagrass ecosystems are complex habitats that are increasingly influenced 

by human perturbations. Disturbances that affect the strength of bottom-up (i.e. resource 

availability) and top-down (i.e. community structure) controls may also influence 

biomass distribution between trophic levels, sediment biogeochemistry, and seagrass 

ecosystem metabolism. Utilizing two mesocosm experiments and one field manipulation, 

I tested how top-down (food chain length) and bottom-up (light and nutrient) 

perturbations interact with benthic community structure (diversity, food chain length) to 

alter sediment biogeochemistry and ecosystem metabolism in an experimental eelgrass 

(Zostera marina) system. I estimated changes in sediment biogeochemistry by analyzing 

sediment organic carbon and nitrogen content as well as fatty acid biomarkers, which are 

functional proxies for organic matter. Ecosystem metabolism was estimated by 

measuring flux rates of dissolved oxygen and dissolved inorganic nitrogen and 

phosphate. Results from this study demonstrate that environmental perturbations are 

interactive and that results from single variable experiments cannot be used to predict the 

outcome of experiments with multiple variables and/or diverse species assemblages. 
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Introduction 

Seagrass ecosystems provide habitat for economically and ecologically important 

organisms, transform nutrients through biogeochemical processes, and buffer 

anthropogenic sediment and nutrient inputs (Kemp et al. 2005; Orth et al. 2006). Despite 

their importance to human economies and populations, seagrass ecosystems are 

increasingly threatened by perturbations such as nutrient runoff, erosion due to land 

development, and over-fishing (Cloem 2001; Kemp et al. 2004; Orth et al. 2006). Alone 

and in combination, such anthropogenic disturbances can affect top-down (i.e. food chain 

length) and bottom-up (i.e. resource availability) controls in seagrass beds. Further, 

interactions between food web structure and abiotic processes have substantial 

consequences for ecosystem dynamics and function (McGrady-Steed et al. 1997; Tilman 

et al. 1997; Heck et al. 2000; Duffy et al. 2003; Hughes et al. 2004; Canuel et al. 2007). 

Thus, a goal of this project was to determine how top-down and bottom-up controls affect 

sediment biogeochemistry and ecosystem metabolism. 

Perturbations that reduce predator abundance in seagrass ecosystems may 

precipitate changes in the biomass and diversity of neighboring trophic levels (Heck et al. 

2000; Duffy et al. 2005; Heck and Valentine 2006; 2007). Eventually~ such changes in 

food web structure and composition may cascade to affect ecosystem productivity and 

sediment biogeochemistry (Duffy et al. 2003; Canuel et al. 2007). For instance, predators 

such as fish and crabs consume grazing invertebrates, which feed on a variety of primary 

producers including epiphytes, macroalgae, benthic microalgae, and eelgrass blades 

(Valentine and Heck 1999; Duffy et al. 2001; Heck and Valentine 2006; Valentine and 

Duffy 2006). By altering primary producer community composition and biomass, grazers 

can affect primary productivity and organic matter (OM) cycling. Shifts in trophic 
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structure and biodiversity that affect OM deposition may also influence nutrient cycling 

since OM quality is a partial determinant of sediment microbial activity and 

remineralization processes (Boschker and Cappenberg 1998) (Fig. 1). While the strength 

of this cascade is unknown, it has potentially important implications for carbon transfer to 

higher trophic levels, organic matter decomposition, nutrient recycling, and carbon 

sequestration in the sediments. 

In addition to fluctuations in top-down controls (i.e. predator presence vs. 

absence), seagrass beds may be subjected to variations in bottom-up forcings (i.e. light 

and nutrient availability). For instance, the availability of excess nutrients in coastal 

waters is linked to increased surface water chlorophyll and sea grass loss (Cloem 2001; 

Kemp et al. 2005; Orth et al. 2006). While studies evaluating the effects of nutrient 

enrichment have focused on changes in water quality, dramatic alterations in sediment 

geochemistry can also occur. For example, in systems that have experienced prolonged 

eutrophication, such as the Chesapeake Bay, sediment organic matter accumulation has 

increased and its composition has been altered (Zimmerman and Canuel 2000; 2002). 

Fatty acids indicative of plankton (polyunsaturated fatty acids) and microbes (branched 

fatty acids) have increased since the early 1900's suggesting changes in microbial 

responses in the water column and sediments (Zimmerman and Canuel2000; 2002). 

Thus, nutrient-mediated shifts in bottom-up forcings hold significant implications for 

ecosystem productivity, OM cycling, and sediment microbial activity. 

Despite the importance of sea grass beds to human economies, health, and 

sustenance, carbon transformations are still ambiguous. A large body of research has 

examined the influence of allochthonous nutrients on water quality and seagrass 
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production and density (Neckles et al. 1993; Moore et al. 1996; Orth et al. 2006; 

McGlathery et al. 2007). Other studies have described the characteristic species and their 

trophic interactions (Jemakoff et al. 1996; Duffy et al. 2001; Alfaro et al. 2006; Heck and 

Valentine 2006). Research emphasis has also been placed on microbial processes and 

decomposition of plant material (Cebrian and Duarte 2001; Holmer et al. 2004; Bouillon 

and Boschker 2006). Despite intensive research in these separate areas, little is 

understood about how biology and geochemistry interact to shape dynamic seagrass 

systems and the services they provide to society. 

Experimental objectives. 

The goal of this dissertation project was to experimentally test the interactive 

effects of eelgrass bed community structure (invertebrate grazer diversity and food chain 

length) and bottom up forcings (nutrient concentrations and light availability) on 

sediment organic matter (SOM) composition and whole ecosystem metabolism. This was 

accomplished using a suite of complementary studies, including two mesocosm 

experiments and one field experiment. The experiments were designed to test the effects 

of common anthropogenic disturbances: fishing-induced food web alteration, nutrient 

loading, and subsequent shading. Food web structure and composition were manipulated 

by varying predator presence and grazer biodiversity (species richness and identity), 

respectively. Bottom-up perturbations were simulated by varying light availability, an 

indirect effect of sediment loading and algal growth due to increased nutrient 

concentrations. 
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Experimental Hypotheses. 

Research for this dissertation was structured around two overarching hypotheses: 

Hypothesis 1: Above-ground benthic community composition (i.e. mesograzer identity 

and composition) and food chain length (i.e. predator presence) will alter the primary 

producer community resulting in changes in gross ecosystem production and sediment 

organic matter (SOM) composition. 

Hypothesis 2: Bottom-up forcings (light availability and nutrient concentrations) will 

increase primary and secondary productivity thereby influencing SOM composition and 

quality. 

Experimental Approach. 

Experiment 1. The first mesocosm experiment examined top-down and bottom-up 

controls on SOM composition in an experimental seagrass ecosystem (Chapter 2). This 

experiment, conducted over 6 weeks in Summer 2003, was a factorial manipulation of 

grazer diversity (df= 2), predator presence (df= 1), and light intensity (df= 1). Grazer 

diversity treatments contained 0, 2, or 4 grazer species; grazers were chosen from a pool 

of six species, including three amphipods ( Gammarns mucronatus, Amp it hoe longimana, 

and Caprella penantis) two isopods (Idotea balthica and Erichsonella attenuate) and a 

gastropod (Bittium varium ). Trophic structure was manipulated by exposing half of the 

grazer treatments to the generalist predator Callinectes sapidus. Light intensity was 

manipulated by shrouding half of the tanks with shade cloths, reducing natural light by 

69%. There were 12 treatments replicated 5 times each. The experiment tested the 

following hypotheses: 
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H-la: High light availability will increase biomass accumulation of above-ground and 

benthic algae, SOM lability, and sediment microbial activity. 

H-lb: More species:rich grazer communities will reduce algal biomass but increase 

seagrass and benthic algal biomass, leading to changes in the composition and quality of 

algal material incorporated in the sediments. 

H -1 c: Predators will increase accumulation of algal biomass through a trophic cascade, 

thereby increasing SOM quantity, quality, and microbial activity. 

Experiment 2. The second experiment was a field manipulation where I tested how 

community composition and nutrient availability alter SOM composition in a seagrass 

bed_( Chapter 3). The field experiment, conducted over 4 weeks in Summer 2005, was a 

factorial manipulation of grazer presence ( df = 1 ), predator presence ( df = 1 ), and nutrient 

concentrations (df= 1). Because field cages were more likely to be contaminated by non­

target grazer species than the mesocosm tanks, I manipulated grazers through the 

presence or absence of a multi-species community. Food chain length was manipulated 

through the presence or absence of blue crabs. Nutrient concentrations were varied over 

two levels: ambient and enriched (approximately 5x's ambient). There were eight 

treatments, replicated five times for a total of forty caged treatments. In addition to the 

caged treatments there were two uncaged treatments (with versus without nutrients). 

Grazer and predator presence were not manipulated in the uncaged treatments since it 

was impractical to maintain those treatments without cages. The two uncaged treatments 

were replicated five times each for a total of ten uncaged plots. The field experiment was 

conducted in the York River Estuary, VA and tested the following hypotheses: 
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H-2a: Nutrient enrichment will increase algal biomass and the deposition of algal-derived 

OM to the sediments. The increased lability of SOM will, in turn, stimulate sediment 

heterotrophic bacterial activity and the deposition of bacterial FA. Algae will indirectly 

decrease eelgrass abundance by increasing competition for light and nutrients. 

H-2b: Grazers will reduce algae, as well as the abundance of the fatty acids characteristic 

of algae in the sedimen~ but will increase eelgrass. 

H-2c: Predators will produce a trophic cascade in which grazer abundance is reduced and 

algal biomass and OM contributions to the sediment are increased. 

Experiment 3. The third experiment was a mesocosm experiment where I tested how 

nutrient availability and food web composition affect ecosystem metabolism and SOM 

composition in an experimental seagrass habitat. (Chapters 4, 5). This experiment, 

conducted over five weeks in Summer 2006, was a factorial manipulation of grazer 

richness ( df = 3), predator presence ( df = 1 ), and nutrient enrichment ( df = 1 ). Grazer 

richness was varied over four levels as treatments contained 0, 1, 3, or 5 species. The 1 

species treatment was a monoculture of G. mucronatus, a perennially abundant 

amphipod. The 5 species treatment contained amphipod grazer species present in the 

York River at the time ofthe experiment: G. mucronatus, Ampithoe valida, Elasmopus 

levis, Melita nitida, and Sympleustes spp. The 3 species treatment contained grazers 

randomly drawn from the 5 grazer pool. Trophic structure was varied over two levels 

through the presence or absence of blue crabs. Water column nutrient availability was 

manipulated by adding fertilizer (5-30 x's ambient concentrations) to half of the tanks. 
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Thus, there were 16 treatments, each replicated 3 times for a total of 48 tanks. The goal 

of this experiment was to test the following hypotheses: 

H-3a: Nutrient additions will increase algal biomass and, consequently, ecosystem 

productivity. Accumulation of algal biomass will, in turn, increase SOM quality,_ 

sediment microbial activity.,. and dissolved inorganic nitrogen (DIN) flux rates. 

H-3b: Grazers will reduce algal biomass and algal contributions to SOM but will 

increase inorganic nitrogen flux by recycling consumed material back into the water 

column via excretion. 

H-3c: Predator presence will initiate a trophic cascade whereby grazing activities are 

reduced but algal biomass, gross ecosystem productivity, and SOM quality are increased. 

DIN flux will be lower due to uptake by above-ground algae. 

The results from the three experiments will be compared in detail in Chapter 6. 

This synthesis chapter will allow for a direct comparison of the effects of resource 

availability and top-down controls on SOM composition and ecosystem metabolism. In 

addition, this chapter will include an assessment of the relative importance of resource 

identity (i.e. nutrients vs. light) to ecosystem properties and functioning. 

Significance:_ 

A recent report by the National Academy of Sciences identified the first and 

second "grand challenges in environmental science" as understanding biogeochemical 

cycles and biological diversity and ecosystem functioning (NAS, 2000). While there are 
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clear challenges in both of these areas, an even greater challenge is to address the 

linkages between them. This challenge was further highlighted in a recent NSF report 

noting the importance of studies identifying the role of functional diversity in 

geochemical transformations (Jumars and Hay 1999). This dissertation addresses gaps in 

our understanding of linkages between ecological and biogeochemical responses to 

human perturbations to coastal ecosystems. It is amongst the first studies to investigate 

the importance of food web composition and resource availability to both sediment 

biogeochemistry and seagrass ecosystem metabolism. 
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Abstract 

Using an experimental mesocosm system, we tested the singular and interactive 

effects of resource availability (light) and community composition (food chain length and 

herbivore species richness) on eelgrass (Zostera marina) ecosystem properties and 

functioning. Food chain length was manipulated through the presence or absence of blue 

crab (Callinectes sapidus) predators, while grazer species richness varied across three 

levels (0, 2, or 4 crustacean species). We found important and interacting effects of 

bottom-up and top-down forcings on sediment organic matter (SOM) composition. Light 

increased eelgrass and algal biomass and sediment organic carbon and nitrogen content. 

Increasing grazer diversity generally decreased algal biomass and ecosystem production 

but interacted with food chain length (i.e., presence of predatory crabs) and light. 

Predators generally increased algal biomass and ecosystem production through a trophic 

cascade, which was stronger at high grazer diversity and under ambient light. SOM 

composition, determined using fatty acid biomarkers, was sensitive to all manipulated 

variables. Increasing grazer species richness often decreased the contributions of fatty 

acids derived from plant and algal sources, while increasing light had the opposite effect. 

Food chain length was generally a less important determinant of SOM composition than 

light, although predators did increase fatty acids representative of heterotrophic bacteria. 

Resource availability and epibenthic community composition strongly influence organic 

matter cycling, SOM composition, and the bacterial community in seagrass-bed 

sediments. 
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Introduction 

Coastal ecosystems are often affected by multiple disturbances that alter both 

resource availability and community composition simultaneously. In the Chesapeake 

Bay, for example, seagrass beds are affected by commercial harvesting of the blue crab, 

Callinectes sapidus (Stephan et al. 2000), and by suspended sediment and nutrient 

loading that can lead to reduced light availability (Kemp et al. 2004). Changes in 

abundance of important predators, like striped bass or the blue crab, may precipitate 

changes in biomass of lower trophic levels (Hairston et al. 1960; Strong 1992; Pace et. al 

1999). These shifting trophic interactions, along with reduced light availability, can affect 

primary producer abundance and productivity (Heck et al. 2000; Hughes et al. 2004; 

Borer et al. 2006) and, in turn, sediment organic matter (SOM) content (Canuel et al. 

2007). Consequently, cascading changes in animal and plant biomass may alter the rates 

and pathways by which organic matter (OM) is cycled in an ecosystem (Schindler et al. 

1997; Dangles and Malmqvist 2004). 

Predicting how changing trophic structure affects OM cycling is complicated by 

the fact that predators induce shifts not only in prey biomass but also in prey community 

structure. In seagrass systems, for example, grazing invertebrates can consume epiphytic 

algae, macroalgae, benthic microalgae, and/or vascular plants (Valentine and Duffy 

2006). Thus, shifts in grazer community composition may affect the abundance of 

different primary producers. Since seagrasses, macroalgae, and epiphytes differ in their 

biochemical composition and proportion of structural components, the food preferences 

of grazing invertebrates may, in turn, affect the quantity and lability of organic carbon 

delivered to the sediments and thus, the quantity and quality of sediment organic carbon 
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(Canuel et al. 2007). Such compositional changes need not be dramatic to affect 

ecosystem properties: small shifts in grazer richness and species composition can 

significantly affect plant and algal biomass and influence total sediment organic carbon 

(e.g., Duffy et al. 2003; Canuel et al. 2007). 

Because sediment microbial communities are important mediators of carbon and 

other elemental cycles in coastal environments (Boschker et al. 1999; Holmer et al. 2001, 

2004), changes in above-ground trophic structure and diversity that alter OM delivery to 

seagrass sediments may have important consequences for carbon cycling and storage. In 

terrestrial soils, by analogy, microbial community composition and activity are sensitive 

to changes in above-ground community structure (Setala et al. 1998; Wardle et al. 2005). 

Though studies from marine habitats are fewer, microbial activity in sediments is 

strongly related to OM deposition (Canuel and Martens 1993; Boschker and Cappenberg 

1998; Boschker et al. 2000). The potential cascade from consumer control of above­

ground production to delivery and accumulation of below-ground OM may thus be 

important to carbon remineralization, recycling, and sequestration in the sediments. 

Effective conservation and management of seagrass ecosystems requires a clear 

understanding of relationships between community ecology and biogeochemical cycling. 

A variety of studies have investigated coastal eutrophication (Cloem 2001; Duarte 2002 

and references therein), trophic interactions in seagrass beds (Valentine and Duffy 2006; 

Heck and Valentine 2006 and references therein), and interactions between nutrient 

enrichment and food web ecology (McClelland and Valie1a 1998; Deegan et al. 2002; 

Tewfik et al. 2005), Others have examined sediment nutrient and bacterial processes in 

seagrass beds (Holmer et al. 2001, 2004). Yet few studies have examined the 
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relationships and feed-backs between above-ground ecology and below-ground 

geochemical cycling. Geochemical tools provide a way to detect and quantifY such 

linkages between community structure and organic matter cycling. Specifically, lipid 

biomarkers are compounds reliably produced by a specific group of organisms that are 

sufficiently resistant to degradation to be preserved in sediments (Killops and Killops 

1993). Diagnostic biomarkers often have site-specific methyl groups, double bonds, or 

cyclic side chains useful in tracing the sources of organic matter (Killops and Killops 

1993). Bacteria, for example, synthesize iso- and anteiso- branched fatty acids while 

microalgae contain highly unsaturated long chain fatty acids (or alkanoic acids) 

(Volkman et al. 1998). One class of lipids, the fatty acids, is particularly useful because 

they have high source fidelity and exhibit a range of chemical reactivity (Canuel et al. 

1995; Canuel and Martens 1996). Additionally, a sub-class ofthe fatty acids, the 

phospholipid-linked fatty acids (PLF A), are good indicators of recently viable cells since 

they are mainly derived from membrane lipids, which are rapidly hydrolyzed after cell 

death (White et al. 1979; Killops and Killops 1993). By quantifYing both the total fatty 

acids and the PLF As it is possible to compare OM contributions from detrital and viable 

or recently viable sources. Thus lipid biomarkers, and fatty acids in particular, provide a 

quantifiable link between the above-ground community and sediment geochemistry. 

To assess the effects of changing community structure on carbon fate and storage 

in sea grass beds, we conducted an experimental manipulation of bottom-up forcing (light 

availability), community composition (grazer diversity), and food chain length (predator 

presence) and measured their interacting effects on ecosystem productivity, SOM quality, 

and sediment microbial activity. Specifically, we built on previous studies examining top-
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down effects on the above-ground community (Du:ffY et al. 2003) and on SOM (Canuel et 

al. 2007) to test several hypotheses. First, higher diversity of epibenthic grazers will 

reduce algal biomass but increase seagrass and benthic algal biomass, leading to changes 

in the composition and quality of algal material incorporated in sediments. Secondly, 

predators will increase accumulation of algal biomass through a trophic cascade, thereby 

increasing SOM quantity, quality, and sediment microbial activity. Finally, high light 

availability will increase biomass accumulation of above-ground and benthic algae, SOM 

lability, and sediment microbial activity. 

Methods 

Experimental design 

We conducted a mesocosm experiment to examine the main and interactive 

effects of grazer species richness, food chain length, and light intensity on ecosystem 

properties including production, algal biomass accumulation, and sediment organic 

matter (SOM) content and composition. We established three grazer richness treatments 

containing no grazer species, random combinations of two grazer species, or four grazer 

species. Grazers were chosen from a pool of six species, including three amphipod 

crustacean species (Ampithoe longimana, Gammaros mucronatus, and Caprella 

penantis), two isopods (Idotea baltica and Erichsonella attenuata), and a gastropod 

(Bittium varium ). These invertebrate grazers are common in the York River estuary 

during the spring and summer (DuflY et al. 2001, 2003). Food chain length was 

manipulated by exposing a parallel set of grazer treatments to a generalist predator 

common in the Chesapeake Bay, the blue crab, Callinectes sapidus. Light intensity was 
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manipulated by covering half of the tanks with shade cloths (69% attenuation). There 

were a total of twelve treatments, each replicated five times. Due to extinctions and 

contaminations, however, six replicates were removed from the final analyses. 

Consequently, 54 replicates were used in statistical analyses; the zero grazer treatments 

had five replicates in ambient light and four replicates in low light, the two grazer 

treatments had four replicates, and the four grazer treatments had five replicates. 

Outdoor mesocosm experiments were conducted over six weeks during the 

summer of2003 in an array of 113-liter, translucent fiberglass tanks that were 

continuously supplied with flowing estuarine water from the York River, Virginia (Duffy 

et al. 2003). Water passed first through a sand filter and then through 150 Jlm mesh. This 

eliminated larger invertebrates and minimized invasion by non-target animals while 

permitting passage of invertebrate larvae and algal spores, which often colonized the 

tanks. Water was supplied through "dump buckets" which regularly spilled the filtered 

water into the tanks, providing both turbulence and aeration. Tanks were stocked with 

clean sand to a depth of 10 em; the percent total organic carbon (TOC) was below 

detection. Low OM content sand was used as a substrate in order to reduce initial 

heterogeneity between the tanks and to increase our ability to detect newly-deposited 

SOM (Canuel et al. 2007). Seventy-five pre-weighed eelgrass (Zostera marina) shoots, 

cleaned of grazers and epiphytes, were planted in the sand in each tank. This eelgrass 

density is within the range found in the York River estuary system (Orth and Moore 

1986). One week after the grass was planted, invertebrate grazers were added to each 

grazer mesocosm (45 each for two-species treatments, 15 of each for four-species); these 

densities were near the low end of those found in the York River. Blue crabs (C. sapidus) 
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were added two days after the grazers had acclimated. The six week experimental 

incubation time was chosen to minimize the risks of invasion by non-target grazer species 

and of complete consumption of the eelgrass, which increase at longer time intervals. 

This time period allows for major changes in animal (one to two grazer generations) and 

plant community development and in surface sediment characteristics (see Duffy et al. 

2003, 2005; Canuel et al. 2007). Despite limitations, this experimental infrastructure 

simulates several aspects ofthe biotic and abiotic field situation well (Duffy et al. 2001). 

Results of the experiment for above-ground biomass and composition of sea grass and the 

associated community are reported elsewhere (Duffy et al. unpubl.). Here, we focus on 

patterns of SOM accumulation and composition. 

Gross ecosystem production 

As an estimate of whole-ecosystem metabolism, we measured gross ecosystem 

production (GEP; mmol L-1 0 2 d-1 m·2) one week before the experiment was terminated. 

Due to time constraints and instrument availability these measurements were conducted 

only in ambient light treatments. Clear plastic wrap was placed on the water's surface of 

each tank to minimize oxygen exchange with the atmosphere and the water supply was 

shut off. Dissolved oxygen (DO) measurements were taken three to four times during 

each oftwo 4-hour incubations (10:00 -14:00 hand 22:00-02:00 h) using a YSI Data 

Sonde to capture net daytime production and total respiration respectively (assuming that 

little to no production occurs at night). Tank water was stirred prior to each reading to 

disrupt any temperature or DO stratification that may have formed, while maintaining a 

closed system. If DO fell to hypoxic levels (2 mg L-1
) measurements ceased on that tank 
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and the plastic cover was removed. We calculated the slope of changes in DO 

concentration versus the time elapsed and divided this by the area of the tank to obtain 

flux in 0 2 mmol L-1 d-1 m·2• Hourly light and dark rates were scaled to 14 hours of 

daylight and I 0 hours of darkness to estimate net daily summer time GEP. 

Bulk sediment organic matter 

At the end of the experiment, three sediment cores (2.6 em diameter) were 

collected from each mesocosm; and the upper 1 em from each core was removed. Sub­

samples from each core were combined into a composite sample in a pre-com busted ( 450 

oq jar. The sediment sample was homogenized and aliquots were removed to pre-

com busted glass scintillation vials for analyses ofbenthic chlorophyll a (Chi a; a measure 

ofmicroalgal biomass) and sediment TOC and total nitrogen (TN). All samples were 

stored at -20°C until analysis. Samples of benthic Chi a were analyzed within 6 weeks of 

collection according to Neubauer et al. (2000). Concentrations ofTOC and TN were 

analyzed by standard methods using a Fisons CHN analyzer (Model EA1108) after 

removing inorganic carbon (Hedges and Stem 1984); acetanilide was used as the 

standard. 

Lipid biomarker analyses 

Lipid biomarker compounds were analyzed using a modified Bligh and Dyer 

(1959) method (Canuel and Martens 1993; Canuel et al. 2007). Briefly, sediment samples 

were extracted with methylene chloride:methanol (2:1, v:v) using an accelerated solvent 

extraction system (Dionex ASE 200). Following extraction, the samples were partitioned 
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and the organic phase removed. Hexane was added to the aqueous phase and the samples 

were partitioned a second time; after which the hexane layer was added to the original 

organic phase. The combined organic phases sat over anhydrous Na2S04 overnight to 

remove traces of water and were concentrated to 1 mL using turbo-evaporation (Zymark 

Turbo Yap 500). The total lipid extracts were separated into non-polar (Fl/2) and polar 

(F3) fractions by eluting solvents of increasing polarity through silica gel columns 

(Guckert et al. 1985). Fl/2 (neutral and glyco-Iipids) and F3 (phospholipids) were each 

saponified, using procedures described in Canuel et al. (2007). Following saponification, 

the residue was extracted under basic (saponified-neutral; SAP-N) and acidic pH 

(saponified-acids; SAP-A). The SAP-A fractions were methylated using BF3-CH30H and 

purified using silica gel chromatography. Just before GC injection, samples were 

evaporated to dryness under N2 and a small volume of hexane (30 f.lL for the polar 

fraction and 100 f.lL for the non-polar) was added. The fatty acids (as methyl esters) were 

analyzed by gas chromatography following previously-published procedures (Canuel et 

al. 2007 and references therein). Peaks were quantified relative to an internal standard, 

methyl heneicosanoate, added just prior to GC analysis. Peak identities were verified 

using reference standards and by combined gas chromatography-mass spectrometry (GC­

MS) using a Hewlett-Packard 6890 GC interfaced with a mass selective detector (MSD) 

operated in electron impact (EI) mode. Fatty acids are designated as A:BroC, where A is 

the total numb~r of carbon atoms, B is the number of double bonds, and C is the position 

of the first double bond from the aliphatic "ro" end ofthe molecule. The prefixes "i" and 

"a" refer to iso and anteiso methyl branched fatty acids (see Canuel et al. 1995 and 

references therein). Results for two classes of fatty acids are presented: phospholipid-
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linked fatty acids (PLF A) which represent viable or recently viable biomass and total 

fatty acids which represent neutral, glyco-, and phospholipids and include the sum of the 

viable and detrital contributions. 

Statistical analyses 

The experiment was analyzed as a fully factorial3-way analysis ofvariance 

(ANOVA), with grazer treatment (df=2), food chain length (i.e., predator presence or 

absence, df=l), and light availability (df=I) as fixed variables, using SAS version 9.0 for 

Windows. Analyses of fatty acid data were conducted on percent abundance. GEP data 

were subjected to a 2-way ANOV A since data were only available for ambient light 

treatments. From the ANOV As we calculated the magnitude of main and interactive 

effects (ffi2
, percentage of the variance explained). Due to contaminations and extinctions, 

two control and four 2-species mesocosms were removed from all statistical analyses; 

results presented here use the type III sum of squares (SS) from the ANOV A model. 

Included in the statistical analyses were five replicates in ambient light and four in low 

light of the zero grazer treatments, four replicates of the two grazer treatments, and five 

replicates of the four grazer treatments. There were two criteria for elimination: (1) grazer 

contamination totaled more than 500 mg AFDM and (2) failure of two grazer species 

(Caprella and Bittium) to establish necessitated elimination ofmesocosms where this pair 

of species was initially stocked. To separate effects of grazer presence versus grazer 

species richness, we conducted a priori contrasts that partitioned the grazer SS from the 

ANOVA into two orthogonal components (see DuffY et al. 2005). The first contrast 

compared the two- and four-species treatments against the zero-species treatment (species 
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presence contrast) and the second compared the two- vs. four-species treatments (species 

richness contrast). 

To aid in interpreting the fatty acid data, we performed multiple regression 

analyses modeling the fatty acid groups as a function ofbiomass of the major primary 

producers, eelgrass, total algae, and benthic Chi a. The partial r2 was calculated by 

dividing the type III SS for each response variable by the total SS. The analyses were 

performed on % TOC, individual fatty acids, and groups of fatty acids normalized to the 

sum of all fatty acids (%total FA or %PLF A). Additionally, we conducted principal 

components analysis (PCA; using Minitab 14) to better elucidate relationships between 

manipulated and response variables. We only performed PCA on SOM variables as these 

responded to primary producer abundance determined by grazers and crab predators. 

PCA loadings describe the relationships between the SOM response variables and the 

dominant principal components. PCA scores illustrate relationships between the 

observations and the dominant principal components. PCA loadings were also regressed 

against the major primary producer groups (Z. marina, total algal biomass, and benthic 

Chi a) to help interpret the non-dimensional results. 

Results 

Primary producer biomass and gross ecosystem production (GEP) 

In general, primary producer biomass was enhanced by light and predator 

presence and decreased by grazers. Above-ground, light increased biomass of both Z. 

marina and algae (Table 1, Fig. 1A, B). Cascading predator effects resulted in grazers 

reducing primary producer biomass only in the absence of predators (grazer x predator 

interaction, Table 1). For example, grazer presence and richness decreased Z. marina 
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biomass in the absence of predators (p=0.002, m2=0.28). Further, total algal biomass was 

reduced by grazer presence and richness, but increased when predators were present. 

Several other interactions between grazers, predators, and light were also significant 

(Table 1 ). In the sediments, benthic Chi a was increased by ambient light (p=0.023, 

m2=0.06, Fig. 1C), decreased by grazer presence (p=0.004, m2=0.01), and unaffected by 

crab predators. 

Gross ecosystem production (GEP) in the ambient-light mesocosms was 

influenced by the interaction of predators and grazers (p=0.002, m2=0.19, Table 1, Fig. 

2). Overall, blue crab predators increased GEP (p<0.001, m2=0.29), but only in the 

presence of grazers, reflecting a trophic cascade. Increasing grazer species richness 

reduced GEP, but only in the absence of predators (p=0.001, m2=0.39). Thus, grazer 

presence, richness, and predator presence are all important interacting determinants of 

GEP (Table 1 ). 

Bulk sediment organic matter (SOM) 

Over the course of the six-week experiment, measurable levels ofTOC and TN 

accumulated in surface sediments (Table 1, Fig. 3). Sediment %TOC and %TN content 

were higher in ambient light than in shaded treatments (p=0.004, m2=0.12 and p<0.001, 

m2=0.18 respectively). Neither grazers nor predators significantly affected %TOC or 

%TN. Thus, bottom-up forcing had a stronger effect on TOC and TN accumulation than 

top-down processes. 

Total fatty acids (total FA) 
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While bulk indicators of SOM were sensitive only to light availability, fatty acid 

composition was strongly influenced by both bottom-up and top-down forcing. On 

average, total fatty acid (total FA) abundance normalized to TOC (J.lg mg-1) was 

significantly reduced by light but was unaffected by predators and grazers (Fig. 4A). For 

further analysis, both the total and phospholipid-linked fatty acids were categorized into 

sub-classes based on chain length, number of double bonds, and carbon branching 

patterns representing different sources of OM (Fig. 5). 

Total FA composition was dominated (29 - 4 7% total FA) by even-numbered 

saturated compounds (C12:o- C1 8 o), representing algal and bacterial sources. The relative 

abundance of short-chain fatty acids (SCF A; %(Cl2:o+C14:o)) was highest in ambient light 

in the presence of predators (Table I, Fig. 5A). Grazer presence, however, decreased 

SCF A. SCF A were also positively related to benthic Chi a (Table 2). The contributions of 

%C16:o and %C1s:o fatty acids were unaffected by any of the treatments and were 

unrelated to either eelgrass or benthic Chi a abundance (Table 1 ). The long-chain fatty 

acid C24:o, comprising 3-16% oftotal FA, was increased by ambient light on average 

(Table 1, Fig. 5B), and decreased by grazers, but more so in ambient light and predator 

treatments. C24:o was also positively related to benthic Chi a (Table 2). Overall, light 

increased fatty acids that were positively associated with benthic microalgae (Chi a) 

while grazers, the dominant top-down control, generally, had the opposite effect. 

Relative abundance of polyunsaturated fatty acids (C1s4, C2o:4, C2o:s, C22:s, C22:6; 

grouped as polyunsaturated fatty acids, PUF A) was reduced by predators, but only in 

shaded treatments, reflecting an interaction between predators and light (Table 1, Fig. 

5C). %PUF A abundance was not related to either eelgrass biomass or benthic Chi a 
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(Table 2). Linoleic (Cis:2m6) and linolenic (C183m3) acids, were decreased when grazers 

were present (p=0.035, ro2=0.07; Table 1, Fig. 5D) but only in ambient light treatments 

(grazer by light interaction, p=0.007, ro2=0.12). Z. marina was positively related to 

%(C1s:2m6 + %Cis3m3) (Table 2). Overall top-down controls were important determinants 

ofPUFA abundance, with predators decreasing %PUPA and grazers decreasing linoleic 

and linolenic acids. 

Branched fatty acids (iso- and anteiso- C13:o, C1s:o, C!7:o, CI9:o), representative of 

sediment heterotrophic bacteria, were sensitive to all three manipulated variables (Fig. 

5E). Light generally decreased the relative abundance of branched fatty acids, though this 

effect was driven mainly by the two-grazer species treatment and translated into a grazer 

by light interaction effect (Table 1). Relative abundance ofbranched fatty acids was 

consistently higher in predator treatments (p=O.Ol3, ro2=0.07). Branched fatty acids were 

positively related to benthic Chi a (Table 2). These results suggest that sediment 

heterotrophic bacteria are sensitive to both bottom-up and top-down controls. 

Principal component analysis provided a summary of these changes in SOM with 

manipulation of light and epibenthic community composition. Principal components I 

(PC 1) and 2 (PC2) explained 31.7% and 25.9% of the variance in total fatty acid 

composition, respectively (Fig. 6A, B). Percent TOC, %C24:o, and %(C12o + CI4:o) had the 

most positive loadings on PC1 (Table 3) and also responded positively to ambient light 

(Figs. 3, 5). The association between PCl and light is also supported by the positive 

relationship between benthic Chi a and PC1 loadings (r2=0.33;p<0.001). In contrast, 

PC2 separated SOM variables according to crab predator or grazer effects. Variables with 

negative PC2 loadings (%PUF A and %BrF A) were affected by crab predators, albeit in 
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opposite directions, while those with positive PC2 loadings (%(C12:o + Cl4:o), %(C1s:2 + 

C1s:3), and %C24:o (ambient light only)) were decreased by grazers (Table 3). Bottom-up 

forcing interacted with top-down forcing of SOM composition as PC scores were 

influenced by crab predators and grazers differently depending on light availability (Fig. 

6A, B). In ambient light (Fig. 6A), grazer-free treatments had positive PCI and PC2 

scores while the two- and four-grazer treatments were near zero or negative on PC2. In 

contrast, under low light (Fig. 6B), treatments with crabs had more positive PC2 scores 

while no-crab treatments were negative. Under both light regimes, the pattern is most 

evident for the zero- and four-grazer treatments (Fig. 6A, B). Thus, PCA results 

suggested that the dominant top-down control (grazers vs. crab predators) influenced total 

FA composition differently with light availability. 

Phospholipid-linked fatty acids (PLFA) 

Like total fatty acids, PLFA (Jlg PLFA mg-1 TOC; Fig. 48), indicative of viable 

or recently viable OM sources, were also sensitive to top-down and bottom-up influences. 

None ofthe manipulated treatments affected total PLFA, %(CI2:o+CI4:o), %CI6:o, or 

%C 18 0 PLF A (Table 1 ). The relative abundance of C24 :o PLF A and linoleic and linolenic 

PLF A (%C 18:2ro6 and %C18:3ro3) were higher under ambient light but only in the absence of 

grazers, which reduced linoleic and linolenic acid contributions (Fig. 5G, 1). Predators 

increased linoleic and linolenic (C1s:2m6 and Cls:3ro3) PLF A only under ambient light; this 

translated into a predator by light interaction (Table 1 ). Branched PLF A were lower in 

ambient light treatments (p=0.006, ro2=0.08). In addition to main effects, there were a 

variety of interactive effects on PLF A composition and abundance (Table I). Overall, the 
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PLF A results echo those for total FA, showing that community structure and light 

availability alter SOM deposition and probably sediment microbial response. 

PCI and PC2 explained 25.3% and 19.5% ofthe variance, respectively, in PLFA 

composition (Fig. 6C, D). Similar to the results for total FA, PC I separated PLF A 

variables according to light availability. Percent TOC, %C24:o, and %(C1s:2 + C1s:3), which 

were increased by light (Figs. 3, 5) and correlated with primary producer biomass (Table 

2), had more positive PCI loadings (Table 3). PC1 was also positively related to total 

algal biomass, which increased in ambient light (r2=0.1 0; p=O.O 18). In ambient light, PC2 

separated response treatments by grazer presence (near zero) and absence (more 

negative) (Fig. 6C). The association ofPC2 with grazers is supported by the negative 

relationship between PC2 and benthic Chi a (?=0.1 0; p= 0.017). In shaded treatments, 

neither PC1 nor PC2 clearly separated grazer and crab treatments (Fig. 6D). 

Discussion 

A realistic assessment of ecosystem functioning under changing conditions 

requires simultaneous consideration oftop-down and bottom-up effects (Strong 1992; . 
Hughes et al. 2004; Borer et al. 2006). In benthic, sedimentary systems, this should 

include effects on biomass and composition of above-ground primary producers and 

animals (Heck et al. 2000; Hughes et al. 2004; Borer et al. 2006), the below-ground 

community (Wardle et al. 2005), and organic matter composition in sediments (Holmer et 

al. 2004; Canuel et al. 2007). In this study, we showed experimentally that epibenthic 

food web structure and resource (light) availability strongly influenced the abundance 

and composition ofSOM. Specifically, light increased and grazers decreased most 
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measures of primary producer biomass and sediment organic matter. Grazer effects on 

primary producers and SOM composition were generally stronger in ambient light 

treatments, showing that animal communities and resource availability together shaped 

properties of this seagrass ecosystem. Perhaps surprisingly, given the strong effects of 

predators on above-ground algal biomass in this system (Duffy et al. 2005), effects of 

predators (food chain length) on SOM were less pervasive than those oflight availability 

or grazers. Nevertheless, predators increased OM contributions from microbial sources 

generally (%SCF A, total FA), and from sediment heterotrophic bacteria specifically 

(%BrF A, total FA). This suggests that the previously demonstrated cascading effects of 

crab predators on primary producer biomass (Duffy et al. 2005; Canuel et al. 2007) also 

affect the accumulation of labile OM, eliciting a bacterial community response. 

Bottom-up forcing 

Many seagrass ecosystems suffer from suspended sediment and nutrient loading, 

both of which can reduce light availability (Duarte 2002; Kemp et al. 2004). Decreased 

water clarity negatively effects seagrass performance and has cascading effects on 

associated fauna, water quality, and sediment erosion (Orth and Moore 1983; Duarte 

2002). With such wide-ranging effects it is likely that decreased water transparency 

would also affect SOM accumulation and biogeochemical processes in seagrass 

sediments (McGlathery et al. 1998; Holmer et al. 2004). Thus, a primary goal of our 

study was to elucidate how light availability, alone and in concert with changing food 

web structure, influences OM composition. 
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In our experimental system, light strongly increased above-ground plant and algal 

biomass (Table l, Fig. 1 ), confirming that the level of shading we used limited primary 

production and accumulation of producer biomass. In the sediments, light increased 

benthic microalgal biomass and, presumably as a result, TN and TOC as well. These light 

effects translated into changing SOM composition by increasing the abundance of algal 

and microbial fatty acids (%(C12:o + Ct4:o); total FA), %C24:o (total FA, PLF A), and 

linoleic and linolenic acids (PLF A), and by decreasing heterotrophic bacterial fatty acids 

(%BrFA; total FA, PLFA) (Fig. 5). When expressed as a fraction oftotal FA, linoleic and 

linolenic acids were positively correlated with eelgrass biomass while %(C12:o+ Ct4o) 

(total FA), %C24:o (total FA), and branched fatty acids (total FA) were positively 

correlated with benthic microalgal biomass (Chi a). The positive relationship between 

benthic Chi a and heterotrophic bacterial fatty acids suggests that, in our system, 

microalgae served as a primary organic matter source for sediment bacteria. This is 

consistent with recent work showing that microalgae are often a major source of SOM 

and drive microbial degradation processes in seagrass beds (Boschker et al. 2000; 

Bouillon and Boschker 2006). 

Although it is generally accepted that C12:o + C14o derive from aquatic algal and 

microbial sources, the origin ofC24:o is less clear. Vascular plants are typically considered 

the source of long chain fatty acids; however, diatoms have been reported to contribute as 

much as 30% of C24:o in some sediments (Volkman et al. 1980). Other studies have 

reported C240 fatty acid in cyanobacterial mats (Edmunds and Eglinton 1984), diatoms 

(Viso and Marty 1993), and microalgae (Volkman et al. 1998 and references therein). 

These organisms are often associated with the community of organisms composing the 
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microphytobenthos. In addition, %(C12:o+ CI4:o) (aquatic algal and microbial OM) and 

%C24:o had similar PCI and PC2 scores (Table 3). These FA classes responded similarly 

to light and food-web treatments, suggesting that they may share an organic matter source 

in our system. 

Overall, light availability increased the abundance of above-ground primary 

producers, sediment TN and TOC content, and the relative contributions ofF A typically 

considered to derive from aquatic sources such as algae and microbes. These results 

demonstrate that resource availability affects below-ground organic matter storage and 

cycling in this seagrass system in addition to the more obvious accumulation of plant 

biomass above-ground. Consequently, changes in water quality that result in reduced 

light availability may alter carbon cycling and storage in seagrass ecosystem sediments. 

Community structure and top-down forcing 

The community structure of seagrass ecosystems is rapidly changing as a result of 

reduced water quality, fishing pressure, and other human influences (Duarte 2002; Orth et 

al. 2006). The resulting shifts in community composition at multiple trophic levels may 

precipitate changes in ecosystem functioning (Heck et al. 2000; Duffy 2002). For 

example, loss of a top predator can indirectly reduce primary producer biomass via a 

trophic cascade (Hairston et al. 1960; Pace et al. 1999; Shurin et al. 2002). In seagrass 

systems specifically, shifts in species composition at intermediate trophic levels may also 

alter ecosystem properties and/or OM accumulation (Duff)' et al. 2003; Canuel et aL 

2007). A goal of this experiment was to determine how simultaneous changes in food 
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web composition and resource availability influence ecosystem properties and 

functioning. 

Food chain length (predator presence or absence) strongly influenced GEP, total 

algal biomass, and SOM composition (Table 1 ). This effect of crab predators was 

evidently mediated indirectly, as crabs inhibited or consumed grazing invertebrates, 

increasing algal biomass and, consequently, GEP. In the sediments, these effects of 

predators increased algal and microbial organic matter (%(C12:o + C14:o) total FA; Fig. 

5A), presumably through the same trophic cascade mechanism. Interestingly, predators 

decreased the relative contribution of even-numbered polyunsaturated fatty acids 

(%PUF A Total FA; Fig. 5C), which are considered proxies for "fresh" algal material 

(Canuel and Martens 1993). This effect was strongest in shaded treatments where 

primary producer biomass was lower. Importantly, predators also increased OM 

contributions from sediment heterotrophic bacteria (%BrF A total FA; Fig. 5E), 

suggesting that trophic cascades can extend beyond animals and plants to OM and 

biogeochemical cycling. Consequently the removal of top predators may alter not only 

biomass and production of herbivores and plants, but also ecosystem processes mediated 

by sediment or soil communities (Set~ila et al. 1998; Wardle et al. 2005). This has 

implications for seagrass ecosystems in Chesapeake Bay and elsewhere where blue crabs 

and predatory fishes are commercially harvested. 

Overall, grazers strongly decreased ecosystem production, plant and algal 

biomass, and the contributions to the sediments ofF A deriving from these sources (Table 

1, Figs. 1, 2, 5). Above-ground, grazer presence decreased total algal and Z. marina 

biomass, resulting in reduced GEP; but only in the absence of predators, reflecting the 
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strong trophic cascade demonstrated previously in the above-ground portion of this 

system (Duffy et al. 2005). Both grazer presence and richness were strong determinants 

ofGEP, confirming that invertebrate species composition and diversity can influence 

ecosystem-level rate processes (Jonsson and Malmqvist 2003; Dangles and Malmqvist 

2004). In the sediments, grazer presence decreased benthic microalgal biomass (Chi a), 

microbial fatty acids (%(C12:o + CI4:o) total FA), linoleic and linolenic acids (total FA and 

PLFA), and %C24 (ambient light and with predators, total FA) (Fig. 5). Thus, grazing 

reduced the contribution of fatty acids characteristic of eelgrass and algae to SOM. 

Grazer richness only influenced heterotrophic bacterial fatty acid abundance (%BrF A 

total FA and PLF A; Fig. 5E), though this effect was mainly driven by the two species 

treatment. Overall, our results indicate that the presence of grazers is more important than 

the number of species in determining SOM composition and quality. 

Overall, food chain length and grazers strongly affected GEP, primary producer 

biomass, and SOM composition. Predators mediated carbon flow and accumulation 

between lower trophic levels while grazers altered the composition of OM delivered to 

the sediment. Further, our results suggest that above-ground communities may influence 

sediment heterotrophic bacteria. Consequently, human-induced shifts in the abundance or 

composition of above-ground communities can indirectly affect sediment 

biogeochemistry by influencing the pathways (invertebrate grazers vs. bacteria) through 

which OM is cycled. 

Interactions between bottom-up and top-down forcings 
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Since seagrass habitats are perturbed by multiple stressors, developing a 

comprehensive understanding of ecosystem responses is imperative for conservation and 

restoration (Duarte 2002; Orth et al. 2006). However, most studies have investigated the 

effects of human stressors, such as eutrophication (see Cloern 2001) or changing 

biodiversity (see Duffy 2006), on seagrass systems singularly (but see Heck et al. 2000 

and Hughes et al. 2004). Thus a major goal of this work was to investigate how 

interactions between decreased resource (light) availability and altered food web structure 

(grazer community and predator presence) affect ecosystem properties. Interactions 

between the three manipulated variables had pervasive effects on the abundances of 

above-ground eelgrass and algal biomass and SOM composition. While the majority of 

interactions were between grazers and light or predators, there were also several three­

way interactions. 

Overall, most interactive effects of the treatments on SOM largely stemmed from 

light or predators mediating grazer effects on primary producer biomass and organic 

matter. Generally, grazer effects were stronger in ambient light while predator controls 

were more prevalent in shaded treatments (Table 1 ), suggesting that the strength of 

trophic cascades may depend on the availability of light or other resources, as in some 

freshwater systems (Chase 2003). The results of the PCA analyses best summarize the 

interactive effects oflight, grazers, and predators on SOM (Table 3, Fig. 6), suggesting 

that grazers can strongly determine SOM composition, that their effects are damped by 

predators, and that changing light intensity affects the relative strength of this trophic 

cascade. 
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Our results largely confirm our original hypotheses. Grazers decreased total algal 

biomass and altered SOM composition. Predator inclusion resulted in a trophic cascade 

whereby total algal biomass, algal and microbial organic matter (%(C 12:o+C14:o) Total 

FA), and bacterial fatty acid abundance (%BrF A of Total FA) in the sediments were 

increased. Ambient light increased above-ground and sediment primary producer 

abundance, sediment total nitrogen and organic carbon, and algal and microbial organic 

matter (%(C12:o+CI4:o) total FA, %C24:o total FA and PLFA). Contrary to our predictions, 

grazers decreased Z. marina biomass, benthic Chi a, and fatty acids derived from algal 

and microbial organic matter (%(C12:0+C140) total FA) while reduced light availability 

increased bacterial organic matter (%BrFA total FA). This latter result was largely driven 

by the treatment with two grazer species. The complex interactive effects among 

resources, predators, and grazers suggest that above-ground and sediment properties are 

unlikely to respond in simple, predictive ways to multiple disturbances. Further, our 

results demonstrated that resource availability and food web structure strongly influence 

ecosystem properties and that synergism between bottom-up and top-down controls may 

affect sediment carbon composition and storage in natural seagrass beds. This 

underscores the need for additional multi-factorial experimental and field approaches to 

understanding the cycling of organic matter in estuarine systems. Realistic mesocosm 

experiments are initially helpful in identifYing subtle changes in SOM and focusing 

research questions and methods. However, field experiments will clearly be necessary to 

explore how linkages between above-ground processes and SOM are related in the more 

complex natural environment. Combined, results from both approaches should be useful 
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in designing more effective management strategies for the preservation of productive 

seagrass ecosystems. 

42 



References 

Bligh, E.G., and W.J. Dyer. 1959. A rapid method oftotallipid extraction and 

purification. Can. J. Biochem. Physiol. 37: 911-917. 

Borer, E.T., B.S. Halpern, and E.W. Seabloom. 2006. Asymmetry in community 

regulation: effects of predators and productivity. Ecology 87: 2813-2820. 

Boschker, H.T.S., and T.E. Cappenberg. 1998. Patterns of extracellular enzyme activities 

in littoral sediments of Lake Gooimeer, The Netherlands. FEMS Microbiology 

Ecology 25: 79-86. 

Boschker, H.T.S., J.F.C. De Brouwer, and T.E. Cappenberg. 1999. The contribution of 

macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: 

Stable carbon isotope analysis of microbial biomarkers. Limnol. Oceanogr. 44: 

309-319. 

Boschker, H.T.S., A. Wielmaker, B.E.M. Schaub, and M. Holmer. 2000. Limited 

coupling of macrophyte production and bacterial carbon cycling in the sediments 

of Zostera spp. Meadows. Mar. Ecol. Prog. Ser. 203: 181-189. 

Bouillon, S., and H.T.S. Boschker. 2006. Bacterial carbon sources in coastal sediments: a 

cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 

3: 175-185. 

Canuel, E.A., and C.S. Martens. 1993. Seasonal variations in the sources and alteration of 

organic matter associated with recently-deposited sediments. Org. Geochem. 20: 

563-577. 

Canuel, E.A., J.E. Cloern, D.B. Ringelberg, J.B. Guckert, and G.H. Rau. 1995. Using 

43 



molecular and isotopic tracers to examine sources of organic matter and its 

incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr. 40: 

67-81. 

Canuel, E.A., and C.S. Martens. 1996. Reactivity of recently deposited organic matter: 

degradation oflipid compounds near the sediment-water interface. Geochim. 

Cosmochim. Acta. 60: 1793-1 806. 

Canuel, E.A., A.C. Spivak, E. J. Waterson, and J.E. Duffy. 2007. Biodiversity and food 

web structure influence short-term accumulation of sediment organic matter in an 

experimental seagrass system. Limnol. Oceanogr. 52: 590-602. 

Chase, J. 2003. Strong and weak trophic cascades along a productivity gradient. Oikos 

101:187-195. 

Cloern, J .E. 2001. Our evolving conceptual model of the coastal eutrophication problem. 

Mar. Ecol. Prog. Ser. 210: 223-253. 

Dangles, 0., and B. Malmqvist. 2004. Species richness-decomposition relationships 

depend on species dominance. Ecol. Lett. 7: 395-402. 

Deegan, L.A., A. Wright, S.G. Ayvazian, J.T. Finn, H. Golden, R.R. Merson, and J. 

Harrison. 2002. Nitrogen loading alters seagrass ecosystem structure and support 

of higher trophic levels. Aquatic Conservation: Marine and Freshwater 

Ecosystems 12: 193-212. 

Duarte, C.M. 2002. The future of seagrass meadows. Environmental Conservation 29: 

192-206. 

Duffy, J.E., K.S. MacDonald, J.M. Rhode, and J.D. Parker. 2001. Grazer diversity, 

44 



functional redundancy, and productivity in seagrass beds: an experimental test. 

Ecology 82: 2417-2434. 

Duffy, J.E. 2002. Biodiversity and ecosystem function: the consumer connection. Oikos. 

99: 201-219. 

Duffy, J.E., J.P. Richardson, and E.A. Canuel. 2003. Grazer diversity effects of 

ecosystem functioning in seagrass beds. Ecol. Lett. 6: 637-645. 

Duffy, J.E., J.P. Richardson, and K.E. France. 2005. Ecosystem consequences of 

diversity depend on food chain length in estuarine vegetation. Ecol. Lett. 8: 301-

309. 

Duffy, J.E. 2006. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. 

Prog. Ser. 311: 233-250. 

Edmunds, K.L.H., and G. Eglinton. 1984. Microbial lipids and carotenoids and their early 

diagenesis in the Solar Lake laminated microbial mat sequence, p. 343-389. In 

R.W. Castenholz, Y. Cohen and H.O. Halvorsen [eds.], Microbial Mats: 

Stromatolites. Alan R. Liss, Inc. 

Guckert, J.B., C.P. Antworth, P.D. Nichols, and D.C. White.l985. Phospholipid, ester­

linked fatty acid profiles as reproducible assays for changes in prokaryotic 

community structure of estuarine sediments. FEMS Microbiology Letters 31: 147-

158. 

Hairston, N.G., F.E. Smith, and L.B. Slobodkin. 1960. Community structure, population 

control, and competition. The American Naturalist 94: 421-425. 

Heck, Jr., K.L., J.R. Pennock, J.F. Valentine, L.D. Coen, and S.A. Sklenar. 2000. Effects 

45 



of nutrient enrichment and small predator density on seagrass ecosystems: An 

experimental assessment. Limnol. Oceanogr. 45: 1041-1057. 

Heck Jr., K.L., and J.F. Valentine. 2006. Plant-herbivore interactions in seagrass 

meadows. J. Exp. Mar. Bioi. Ecol. 330: 420-436. 

Hedges, J .I., and J .H. Stern. 1984. Carbon and nitrogen determinations of carbonate­

containing solids. Limnol. Oceanogr. 29: 657-663. 

Holmer, M., F.O. Andersen, S.L. Nielsen, and H.T.S. Boschker. 2001. The importance of 

mineralization based on sulfate reduction for nutrient regeneration in tropical 

seagrass sediments. Aquat. Bot. 71: 1-17. 

Holmer, M., C.M. Duarte, H.T.S. Boschker, and C. Barron. 2004. Carbon cycling and 

bacterial carbon sources in pristine and impacted Mediterranean seagrass 

sediments. Aquat. Microb. Ecol. 36: 227-237. 

Hughes, A.R., K.J. Bando, L.F. Rodriguez, and S.L. Williams. 2004. Relative effects of 

grazers and nutrients on seagrasses: a meta-analysis approach. Mar. Ecol. Prog. 

Ser. 282: 87-99. 

Jonsson, M., and B. Malmqvist. 2003. Importance of species identity and number for 

process rates within different stream invertebrate functional feeding groups. J. 

Animal. Ecol. 72: 453-459. 

Kemp, W.M., R. Batiuk, R. Bartleson, P. Bergstrom, V. Carter, C.L. Gallegos, W. 

Hunley, L. Karrh, E.W. Koch, J.M. Landwehr, K.A. Moore, L. Murray, M. 

Naylor, N.B. Rybicki, J.C. Stevenson, and D.J. Wilcox. 2004. Habitat 

-requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, 

light regime, and physical-chemical factors. Estuaries 27: 363-377. 

46 



Killops, S.D., and V.J. Killops. 1993. An Introduction to Organic Geochemisty, 

Longman Scientific & Technical. John Wiley & Sons, Inc. 

McClelland, J.W., and I. Valiela. I 998. Changes in food web structure under the 

inflw~nce of increased anthropogenic nitrogen inputs to estuaries. Mar. Ecol. Prog. 

Ser. 168: 259-271. 

McGlathery, K.J., N. Risgaard-Peterson, and P.B. Christensen. 1998. Temporal and 

spatial variation in nitrogen fixation activity in the eelgrass Zostera marina 

rhizosphere. Mar. Ecol. Prog. Ser. 168: 245-258. 

Neubauer, S.C., W.D. Miller, and I.C. Anderson. 2000. Carbon cycling in a tidal 

freshwater marsh ecosystem: a gas flux study. Mar. Ecol. Prog. Ser. 199: 13-30. 

Orth, R.J., and K.A. Moore. 1983. Chesapeake Bay: an unprecedented decline in 

submerged aquatic vegetation. Science 222: 51-53. 

Orth, R.J., and K.A. Moore. 1986. Seasonal and year-to-year variations in the growth of 

Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquat. Bot. 24: 335-

341. 

Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck 

Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. 

Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. 

Bioscience 56: 987-996. 

Pace, M.L., J.J. Cole, S.R. Carpenter, and J.F. Kitchell. 1999. Trophic cascades revealed 

in diverse ecosystems. TREE. 14: 483-488. 

Schindler, D.E., S.R. Carpenter, J.J. Cole, J.F. Kitchell, and M.L. Pace. 1997. Influence 

47 



of food web structure on carbon exchange between lakes and the atmosphere. 

Science 277: 248-251. 

Setala, H. J. Laakso, J. Mikola, and V. Huhta. 1998. Functional diversity of decomposer 

organisms in relation to primary production. Applied Soil Ecology 9: 25-31. 

Shurin, J.B., E.T. Borer, E.W. Seabloom, K. Anderson, C.A. Blanchette, B. Broitman, 

S.D. Cooper, and B.S. Halpern. 2002. A cross-ecosystem comparison ofthe 

strength of trophic cascades. Ecol. Lett. 5: 785-791. 

Stephan, D.C., R.L. Peuser, and M.S. Fonseca. 2000. ASMFC habitat management series 

#5: Evaluating fishing gear impacts to submerged aquatic vegetation and 

determining mitigation strategies. Atlantic States Marine Fisheries Commission. 

Strong, D.R. 1992. Are trophic cascades all wet? Differentiation and donor-control in 

speciose ecosystems. Ecology 73: 747-754. 

Tewfik, A., J.B. Rasmussen, and K.S. McCann. 2005. Anthropogenic enrichment 

alters a marine benthic food web. Ecology 86: 2726-2736. 

Valentine, J., and J.E. Duffy. 2006. The central role of grazing in seagrass ecology, p. 

463-501. In A.W.D., Larkum, R.J. Orth and C.M. Duarte [eds.], Seagrasses: 

biology, ecology, and conservation. Springer. 

Visa, A.-C., and J.-C. Marty. 1993. Fatty acids from 28 marine microalgae. 

Phytochemistry 34: 1521-1533. 

Volkman, J.K., R.B. Johns, F.T. Gillan, G.J. Perry, and J.J. Bavor Jr. 1980. Microbial 

lipids of an intertidal sediment-- I. Fatty acids and hydrocarbons. Geochim. 

Cosmochim. Acta. 44: 1133-1143. 

Volkman, J.K, S.M. Barrett, S.l. Blackburn, M.P. Mansour, E.L. Sikes, and F. Gelin. 

48 



1998. Microalgal biomarkers: a review of recent research developments. Org. 

Geochem. 29: 1163-1179. 

Wardle, D.A., W.M. Williamson, G.W. Yeates, and K.l. Bonner. 2005. Trickle-down 

effects of aboveground trophic cascades on the soil food web. Oikos. 111: 348-

358. 

White, D.C., W.M. Davis, J.S. Nickels, J.D. King, and R.J. Bobbie. 1979. Determination 

of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia. 

40: 51-62. 

49 



Table 1. TesiS of significance. estimated magnitude; of effect tu 2
), and contrasts of grazer richness vs. presence for light availability, food chain length, grazer species richness, and their 

interactions on ecosystem production, plant biomass, sediment total nitrogen, sediment organic carOOn, and sediment fatty acid abuOOance. When an interaction between grazers and light or 

predators was significant, the data set was divided according to the interaction (i.e., low Jight vs. ambient light or no predators vs. predators) and an ANOVA was performed again. For interactive 

effects, G refers to grazers, C to crab predators, and L to hght. For contrast analyses, P indicates where grazer presence affected the resJXlnse variable and R refers to a richne8s effect. Significant 

p values are in bold. 

Response Light Crab predators Grazers Interactioru; Error Contrast 

MS p ro' MS p (I)J MS p (I)~ MS p ro' MS ro' 

Gross ecosystem production NA 23.38 <0.001 0.29 5.42 0.014 0.12 GxC s.:n O.OOl 0.19 1.03 0.40 PR 
No predators 13.26 0.001 0.39 0.59 0.61 PR 
Predatoc> 0.49 0.661 0.00 1.14 1.03 

Z. num'no (AFDW) 80.95 O.Ol7 0.06 28.50 0.180 0.01 37.11 0.101 0.04 GxC 61.94 O.Ol5 0.09 15.31 0.61 
No predators 78.71 0.005 0.17 67.22 o.ool 0.28 7.87 0.57 PR 
Predators 14.84 0.428 O.(X) 31.82 0.269 O.o3 22.75 1.04 

Total algae(log AFDW +0.001) 6.79 0.005 0.04 35.46 <0.001 0.25 16.69 <0.001 0.23 GxC 12.52 <0.001 0.76 0.33 PR 
No predators 0.65 0.473 O.(X) 56.8J <0.001 0.77 1.22 0.25 PR 
Predators 1.46 0.019 0.15 0.35 0.230 0.03 0.23 0.87 

Benthic Chi a (pg cm"2
) 352.73 0.023 0.06 1(X).J2 0.217 0.00 408.49 0.004 0.01 63.60 0.8 

%TOC 0.06 0.004 0.12 0.01 0.669 0.00 0.01 0.398 0.00 0.01 0.90 
%TN 0.01 <0.001 0.18 0.00 0.955 0.00 O.(X) 0.294 0.00 0.00 0.89 

Total fatty acids (TFA)• 

TFA:OC (J.tg mgTo/) 193.25 0.016 0.08 1.18 0.846 0.00 32.46 0.359 0.00 30.87 0.89 

%SCFA (C12-+C14)ofTFA 95.18 <0.001 0.30 20.06 0.014 0.06 15.70 0.010 0.08 3.02 0.59 

o/oC16,0 ofTFA 3.43 0.851 0.00 61.69 0.427 0.00 206.40 0.129 0.04 95.84 1.00 

o/oCts:1, ofTFA 0.44 0.826 0.00 9.25 0.319 0.00 1.01 0.895 0.00 
0/oC~ ofTFA 13.64 0.003 0.11 0.00 0.983 0.00 1.85 0.217 0.01 GxL 6.98 0.011 0.10 1.40 0.72 

GxC 6.58 0.014 0.09 
Low light 0.15 0.636 0.00 0.88 0290 0.02 GxC 2.37 0.047 0.15 0.67 0.86 
Ambient light 0.14 0.799 0.00 8.48 0.030 0.16 2.06 0.76 
No predatoJS 4.97 0.045 0.09 0.75 0.516 0.00 1.09 0.80 
Predators 8.95 0.03l 0.10 7.67 O.Ol3 0.16 1.70 0.67 

o/nPUFA ofTFA 0.20 0.927 0.00 104.82 0.042 0.05 9.18 0.682 0.00 GxL 1(X).43 O.Ol1 0.10 2J.77 0.89 
LxC 100.01 0.047 0.05 

Low light 197.48 0.002 0.27 23.42 0.259 0.02 16.21 0.73 

Ambient light O.oJ 0.976 0.00 91.26 0.072 0.13 30.63 0.97 

%(C1s ~ + Cls:3)ofTFA 44.80 0.061 0.04 4.75 0.534 0.00 43.86 0.035 O.Q7 GxL 67.44 0.007 0.12 12.10 0.77 

Low light 5.33 0.398 0.00 2.34 0.725 0.00 7.16 1.09 
Ambirot light 30.67 0.188 0.02 116.77 0.004 0.28 16.59 0.69 

%BrFA (~aC13-C19) ofTFA 47.83 0.023 0.06 57.81 0.013 0.()7 46.15 0.008 0.11 GxL 47.37 0.007 0.11 8.57 0.72 R 



Low light 23.75 0.005 0.24 3.86 0.215 0.03 2.32 0.78 
Ambtent light 34.81 0.132 0.04 89.~7 0.007 0.26 14.25 0.74 R 

Phospholipid hnked fatty acid'! (PLFA)• 

PLFA:OC l}.l.g mgTOc-1) 0.35 0399 0.00 0.39 0.375 0.00 0.45 0.407 0.00 0.485 1.04 

o/.,SCFA (C11+C14) ofPLFA 1.39 0.587 0.00 7.11 0.223 O.Ql 10.19 0.125 0.03 GxCxL 21.20 0.016 0.10 4.66 0.85 

o/uC16,(, ofPLFA 38.88 0.536 0.00 36.72 0.548 0.00 246.27 ().(J97 0.04 GxCxL 469.76 0.014 0.10 99.90 0.84 

o/uC18,1, ofPLFA 148.45 0.188 0.01 162.97 0.168 0.02 105.10 0.291 0.01 82.74 1.00 

o/nC24 ,(l ofPLF A 9.98 <0.001 0.17 0.44 0.425 0.00 0.46 0.516 0.00 0.68 0.76 

o/oPUF A ofPLF A 1939 0.221 0.01 37.30 0.092 O.QJ 56.42 0.017 0.10 12.57 0.83 
o/o(Cts·~ + C18,1)ofPLFA 587.83 0.005 0.08 223.76 0.074 0.02 377.71 0.007 0.09 LxC 303.22 0.039 0.03 66.52 0.57 

GxL 499.44 o.ooz 0.12 
GxCxL 253.48 0.030 0.05 

Low light 2.90 0.319 0.00 434 0.235 O.QJ GxC 10.14 0.045 0.15 2.79 0.82 
Ambient light 544.12 0.048 om 940.86 0.003 0.25 GxC 463.56 0.04 0.11 124.460.58 p 

o/oBrFA (i,a C13 ~C19) ofPLFA 60.24 0.006 0.08 1.68 0.629 0.00 60.19 <0.001 0.15 GxL 51.29 o.ooz 0.12 66.52 0.60 R 
GxCxL 27.38 0.029 0.06 

Low tight 5.29 0.394 0.00 18.22 0.098 0.10 6.97 0.88 p 

Ambient light 18.09 0.126 O.oJ 91.99 <0.001 0.40 7.15 0.51 R 

• Biomarker response variables are expressed cilher as %of total fatty acids or as% of phospholipid--linked fatty acids. Data were analyzed by 3-Cactor Model III ANOV A. p values <0.05 are in bold. 

P and R indicate whether grazer presence or ridmess effects, respectively, were significant as derennined through contrast analysis. 



Table 2. Regression analyses of Z. marina biomass (AFDW, g) and benthic Chi a (Jlg cm"2) against the major fatty acids groups. 

Significant relationships (p <0.05) are noted in bold. 

Response Z. marina 

Coefficient Partial r-
. 

p 

Total fatty acids (TF A) 

%SCFA (C12,0 + C14:o) ofTFA 0.09 0.03 0.171 
%C24,0 ofTFA 0.00 0.00 0.968 
%PUFA ofTFA -0.13 0.01 0.428 

o/o(Ct8:2 + Cts:3) ofTF A 0.26 0.08 0.041 
%BrFA (i,a C13-C19) ofTF A -0.20 0.06 0.066 

Phospholipid linked fatty acids (PLFA) 
%SCFA (C12,0 + C14,0) ofPLFA 0.06 0.02 0.285 

%C24:oofPLFA 0.05 0.07 0.052 
%PUFA ofPLFA -0.07 0.01 0.588 

"/o(Ct8:2 + Cts:3) ofPLFA 0.32 0.04 0.121 

%BrFA (i,a CwC19) ofPLFA -0.16 0.04 0.137 

*Partial r 2 were calculated by dividing the Type III SS by the Total SS. 

Benthic Chi a 

Coefficient Partial r-
. 

0.12 0.22 

0.07 0.22 
0.03 0.00 

0.05 O.Dl 

0.11 0.08 

0.00 0.00 

0.00 0.00 
-0.05 0.01 

0.20 0.08 

-0.03 0.00 

p 

<0.001 

<0.001 
0.718 

0.439 

0.034 

0.897 

0.813 
0.449 

0.037 

0.509 

Total 

Model r 2 

0.25 

0.22 

0.09 

0.14 

0.12 



Table 3. Loadings from principal components analysis of sediment organic matter 

composition and content for total fatty acids (total FA) and phospholipid linked 

fatty acids (PLFA). Polyunsaturated fatty acids (PUFA) are comprised of: C1s:4, 

c2o:4• C2o:s' c22:5• c22:6· 

Total FA PLFA 
Variable PCl PC2 PC1 PC2 

TOC (mg g-1) 0.494 -0.221 0.324 -0.148 

%(C12:o + CI4:o) 0.512 0.169 0.526 0.140 

%CI6:o -0.229 0.527 -0.536 -0.168 

%(C1s:2 + cl8:3) 0.222 0.453 0.137 -0.662 

%C24:o 0.583 0.118 0.216 -0.557 

%PUFA -0.018 -0.632 0.492 0.290 

%BrFA (i,a C!3:o-CI9:o) 0.228 -0.160 -0.152 0.312 



Figure Captions. 

Fig. 1. Effects of grazers, predators, and light availability on above ground primary 

producers (Z. marina and total algae) and benthic Chi a. Light, generally, increased 

primary producer biomass. Grazers decreased Z. marina biomass (in the absence of 

predators) and total algal biomass. Predators decreased both Z. marina and total algal 

biomass but the magnitude of this effect varied with grazer richness, resulting in grazer 

by predator interactive effects. Error bars represent standard error. There were four 

replicates of each zero grazer treatment in low light and five in high light; four replicates 

of each two grazer treatment and five replicates of each four grazer treatment. Statistical 

results are reported in Table 1. 

Fig. 2. Effects of grazers and predatory crabs on summer gross ecosystem production, 

measured as dissolved oxygen (DO) flux. Predators (crabs) mediated a negative grazer 

effect on gross ecosystem production through a trophic mechanism. The magnitude of the 

predator effect increases with grazer richness. Data are only from ambient light 

treatments. Error bars represent standard error. Statistical results are reported in Table I. 

Fig. 3. Effects of light, grazers, and predators on sediment carbon and nitrogen. (A) Light 

increased sediment total nitrogen (%TN) and (B) total organic carbon content (%TOC). 

Neither grazer richness nor food chain length affected %TN or %TOC. Error bars 

represent standard error. Statistical results are reported in Table 1. 
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Fig. 4. (A) Abundance oftotal fatty acids (Total FA) and (B) phospholipid linked fatty 

acids (PLFA) normalized to total sediment organic carbon content (J..Lg mgTOc "1
). Light 

decreased total FA (J..Lg mgToc "1 (A)) but had no effect on PLFA (J..Lg mgToc -1 (B)). Error 

bars represent standard error. Statistical results are reported in Table 1. 

Fig. 5. (A-J) Effects oflight, grazers, and predators on total fatty acids (Total FA) and 

phospholipid linked fatty acids (PLF A) sub-classes. Light, predators, and grazers had 

strong singular and interactive effects on total fatty acids and phospholipid linked fatty 

acids. The polyunsaturated fatty acid (%PUF A) sub-class, representing fresh algal 

material, is comprised of: C1s:4, C2o4, C2o:s, C22:s, C22:6· The branched fatty acid (%BrF A) 

sub-class, representing heterotrophic bacteria, includes iso- and anteiso C13:o, C1so, C17o, 

C19:o- Error bars represent standard error. See text for biomarker sources and Table 1 for 

statistical results. 

Fig. 6. Score plots from principal component analysis for total fatty acids (Total FA) and 

phospholipid linked fatty acids (PLFA) in ambient light and shaded treatments. Error bars 

represent standard error. G denotes grazers and C refers to crab predators. 
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Fig. 1. Spivak et al. 
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Fig. 2. Spivak et al. 
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Fig. 3. Spivak et al. 
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Fig. 4. Spivak et al. 
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Fig. 5. Spivak et al. 
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Fig. 6. Spivak et al. 
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Chapter 3: 

Community composition and nutrient availability alter sediment organic matter 

composition in a seagrass bed: a field experiment. 

Amanda C. Spivak, Elizabeth A. Canuel, J. Emmett Duffy, James G. Douglass, and J. 

Paul Richardson. 
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ABSTRACT 

Eutrophication and fishing are common perturbations in aquatic ecosystems with 

pervasive impacts on community structure, including species diversity and abundance, 

that may cascade to sediment biogeochemistry. While changes in sediment processes in 

response to these stressors are likely important to ecosystem functioning, they are poorly 

understood. To address this issue, we experimentally manipulated water column nutrient 

levels and food web composition (i.e. predator and grazer presence and absence) in a 

factorial design using field enclosures situated in a Zostera marina bed. After 28 days, we 

quantified sediment organic matter (SOM) accumulation and composition using measures 

of total organic carbon and nitrogen as well as fatty acid (FA) biomarkers. Nutrient 

enrichment led to a rapid increase of epiphytes and a decline in Z. marina biomass. 

Responding to the available algae, grazers reduced epiphytes and F As derived from 

microalgae. Predators reduced Z. marina abundance and possibly its ability to trap 

particulate OM, leading to lower sediment organic carbon content and total FA 

abundance. There was evidence of a trophic cascade as FA contributions from epiphytes 

and diatoms were higher in treatments with both grazers and predators than in treatments 

with grazers only. Predators increased labile diatom-derived OM, which likely resulted in 

the higher proportions of bacterial FA measured in predator treatments. Interactions 

between nutrient availability and food web composition indicated that SOM responses 

were complex and not predictable from single variables. Changes in SOM accumulation 

and composition, combined with a rapid heterotrophic bacterial response, suggest that 

resource availability and community structure are important to sediment 

biogeochemistry. 
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INTRODUCTION 

Bottom-up (i.e. resource availability) and top-down (i.e. food chain length) 

controls act in concert across multi-level food webs (Carpenter et al. 1985, Hunter and 

Price 1992, Power 1992, Borer et al. 2006) in freshwater (Elser & Goldman 1991, Brett 

& Goldman 1997, Forrester et al. 1999, Chase 2003) and marine systems (Micheli 1999, 

Hughes et al. 2004, Burkepile & Hay 2006) to affect patterns of biomass distribution and 

biogeochemical cycles. Elevated resource availability and changes in top predator 

abundance may increase plant biomass and the delivery of plant-derived organic matter 

(OM) to the sediments in tri-trophic seagrass systems (Canuel et al. 2007, Spivak et al. 

2007). The quality and rate of OM deposition can have large effects on bacterial 

decomposition and carbon burial in sediments (Hansen & Blackburn 1992, Cebrian & 

Duarte 2001). Consequently, resource availability and community composition may 

synergistically alter sediment biogeochemistry and ecosystem functioning. Here, we 

experimentally tested how food web structure and nutrient enrichment alter sediment 

organic matter (SOM) quality and content in a natural seagrass (Zostera marina) 

ecosystem. 

In vegetated coastal habitats, photosynthetic carbon is channeled through grazers, 

exported to neighboring ecosystems, or buried in the sediments (Pergent et al. 1994, 

Duarte & Cebrian 1996, Cebrian & Duarte 2001, Duarte et al. 2005). Small, invertebrate 

grazers mainly consume nutrient-rich algae and epiphytes, leaving senesced seagrass 

blades as the main source of buried OM (Pergent et al. 1994, Duarte & Cebrian 1996, 

Cebrian 1999, Cebrian & Duarte 2001 ). Eutrophication may alter the proportion of algal 

and epiphytic carbon that is exported or buried by stimulating higher rates of production 

65 



and changing the composition of primary producer assemblages (Cloem 2001, Duarte 

2002). Deposition of higher quality OM derived from labile algae can stimulate bacterial 

decomposition (Hansen & Blackburn 1992, Boschker and Cappenberg 1998) and, hence, 

the depletion of oxygen in the sediments. As anaerobic conditions develop, sulfate 

reduction may become a dominant pathway for OM decomposition. Thus, eutrophication 

may dually impact seagrass by increasing algal-mediated shading (Cloem 2001, Duarte 

2002, Orth et al. 2006) and sediment dissolved sulfide concentrations (Hemminga 1998, 

Calleja et al. 2007, Perez et al. 2007). 

The symptoms of eutrophication may be diminished or exacerbated by food web 

composition and structure (Carpenter et al. 1985, Pace et al.l999). In a two level trophic 

system, strong grazing controls reduced the negative effects of nutrient loading by 

transforming algae into animal biomass (Williams & Ruckelshaus 1993, Hughes et al. 

2004, Burkepile & Hay 2006, Heck & Valentine 2007). Further, grazer species identity 

and feeding preferences may influence the composition of the primary producer 

community (Duffy & Hay 2000, Duffy 2002). In a three-level trophic system, predators 

may exaggerate the effects of nutrient enrichment by inhibiting grazers and releasing 

algae and epiphytes from grazing pressures via a trophic cascade (Oksanen et al. 1981, 

Carpenter et al. 1985, Forrester et al. 1999, Pace et al. 1999). Therefore, the effects of 

nutrient enrichment in seagrass beds may, in part, be determined by trophic structure and 

community composition. 

Despite potentially strong bottom-up and top-down effects on OM deposition and 

the importance of SOM quality to sediment biogeochemistry (Duffy et al. 2003, Canuel 

et al. 2007, Spivak et al. 2007), the synergistic effects of nutrient enrichment and 
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community composition on SOM are poorly understood. This is likely due to the 

difficulty in identifying and manipulating links between above-ground ecology and 

sediment processes under realistic conditions. Lipid biomarkers are a functional proxy for 

linking OM to its potential sources (Canuel et al. 1995, Canuel & Martens 1996), since 

these compounds are reliably produced by specific groups of organisms (Killops & 

Killops 1993). Diagnostic biomarkers often have site-specific methyl groups, double 

bonds, or cyclic side chains useful for tracing sources of OM (Killops & Killops 1993). 

Bacteria, for example, synthesize iso- and anteiso- branched fatty acids while microalgae 

contain highly unsaturated long chain fatty acids (Volkman et al. 1998). In addition, lipid 

biomarkers are sufficiently resistant to degradation to be preserved in sediments, allowing 

for the identification of OM that has been deposited on ecological and historical 

timescales (Meyers 1997, Zimmerman & Canue12002). Here, we used fatty acids, a class 

oflipid biomarkers with high source fidelity and a range of chemical reactivity (Canuel et 

al. 1995, Canuel & Martens 1996), to experimentally quantify links between the above­

ground community and SOM content and composition. 

To assess the effects of changing resource availability and food web structure on 

carbon fate and storage in a natural seagrass bed, we conducted an experimental 

manipulation of bottom-up forcing (water column nutrient availability) and community 

composition (grazer and predator presence) and measured their interacting effects on 

SOM quantity and quality. Specifically, we built on previous mesocosm studies 

examining the effects of community diversity (Canuel et al. 2007) and light availability 

(Spivak et al. 2007) on SOM composition to test several hypotheses in a field experiment. 

First, we predicted that nutrient enrichment will increase algal biomass and the deposition 
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of algal-derived OM to the sediments. The increased lability of SOM will, in tum, 

stimulate sediment heterotrophic bacterial activity and the deposition of bacterial FA. 

Second, algae will indirectly decrease Zostera marina abundance by increasing 

competition for light and nutrients. The presence of a grazer community will reduce algae 

and the abundance of their characteristic FA in the sediment but will increase Z. marina. 

Finally, the presence of predators will result in a trophic cascade in which grazer 

abundance is reduced and algal biomass and OM contributions to the sediments are 

increased. 

METHODS 

Experimental design 

We conducted a field experiment to examine the main and interactive effects of 

food web structure (i.e. grazer and predator presence) and water column nutrient 

availability on SOM content and composition. Grazer treatments had two levels, either 

zero grazers or an assemblage of three species. Predator presence was manipulated by 

exposing parallel sets of these two grazer treatments to a generalist predator, the blue 

crab, Callinectes sapidus. Nutrient availability was controlled through Osmocote™ 

fertilizer additions to half of the cages. In total, there were eight treatments, each 

replicated five times for a total of forty experimental field cages. To control for caging 

effects, we established no-cage control plots which only received nutrient treatments, 

since it was impractical to maintain grazer and predator treatments without cages. There 

were two no-cage treatments (with nutrients versus without nutrients), each replicated 

five times for a total of ten no-cage control plots. 
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Treatments were applied to caged enclosures (51 cm2 x 81 em) and no-cage 

control plots (51 cm2
) situated in a Zostera marina bed adjacent to Goodwin Islands, an 

archipelago in the York River estuary, VA. The cages were covered with 250 Jlm Nitex 

mesh which permitted water circulation and passage of propagules but prevented predator 

and grazer immigration and emigration. Before experimental treatments were applied, 

caged enclosures and no-cage control plots were defaunated with a liquid insecticide, 

Sevin ™. Douglass et al. (2007) described cage design and the defaunation process in 

greater detail. The experiment ran for 28 days during Summer 2005. This time period was 

chosen to minimize the risk of invasion by non-target grazer species and to permit 

development of the animal and plant community and of surface sediment characteristics. 

During this time temperature and salinity ranged from 23.76 °C- 27.00 °C and 15.67-

19.51 psu, respectively (K.A. Moore unpubl.). 

Four days after defaunation, grazer, predator, and nutrient treatments were applied 

to the caged enclosures. Grazer treatments consisted of an assemblage of three species, 

including an amphipod crustacean ( Gammarus mucronatus, 40 individuals) and two 

isopods (Idotea balthica, 40 individuals, and Erichsonella attenuata, 20 individuals). 

Predator treatments were stocked with two blue crabs ( Callinectes sapidus ), with 

carapace widths of 20 - 40 mm. Grazers and blue crabs were collected from the 

surrounding Zostera marina bed immediately before addition to the cages and were 

stocked in proportions and abundances that reflected those in the field at the time of the 

experiment. Nutrient treatments were applied by suspending two perforated PVC tubes 

containing Osmocote™ slow release fertilizer (N:P = 3:1) above the sediments. We 

added 200 g of Osmocote™ during the first week and 400 g thereafter to achieve the 
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desired and sustained level of enrichment. Weekly, and immediately before the fertilizer 

was refreshed, 25 mL of water from three replicates of each treatment were filtered 

through a pre-combusted (450° C) glass fiber filter. Water samples were initially chilled 

and later frozen (-20 oq until analysis for NH/, N02- + N03-, and P04'
3 concentrations 

by standard methods with a Lac hat auto-analyzer (Smith & Bogren 2001, Knepel & 

Bogren 2002, Liao 2002). 

Bulk sediment organic matter (SOM) 

At the end of the experiment, three sediment cores each of 2.6 em diameter and 

2.1 em diameter were collected from every caged enclosure and no-cage control plot. 

Larger cores were analyzed for sediment total organic carbon (TOC), total nitrogen (TN), 

and fatty acid content (FA) while smaller cores were used to determine benthic 

chlorophyll a concentration (Chi a; a measure ofmicroalgal biomass). The upper 1 em 

from each core was removed; sub-samples from each core were combined into a 

composite sample in a pre-combusted ( 450 °C) jar (bulk SOM and F As) or scintillation 

vial (benthic Chl a). Samples were stored at -80 oc (bulk SOM and FAs) or at ~20 oc 

(benthic Chl a) until analysis. Samples of benthic Chi a were analyzed within six weeks 

of collection according to Neubauer et al. (2000). TOC and TN were analyzed by 

standard methods using a Fisons Flash EA (Model1112) after removing inorganic carbon 

(Hedges & Stem 1984); acetanilide was used as the standard. 

Fatty acid analyses 
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Fatty acids (FA) were analyzed using a Bligh & Dyer (1959) method revised 

according to Macnaughton et al. (1997). Briefly, sediment samples were extracted with 

methanol: chloroform: K2HP04 50 mM buffer (2: 1 :0.8, v:v:v) using an accelerated 

solvent extraction system (Dionex ASE 200). Following extraction, the samples were 

partitioned and the organic phase removed. Anhydrous Na2S04 was added to the sample 

to remove water overnight. The samples were concentrated to 1 mL (Zymark Turbo Vap 

500) and then saponified using procedures described in Arzayus & Canuel (2004). 

Following saponification, the residue was extracted under basic (saponified-neutral) and 

acidic pH (saponified-acid). The saponified acid fraction was methylated using BF3-

CH30H and purified using silica gel chromatography. Before analysis by gas 

chromatography (GC), samples were evaporated to dryness under N2 and a small volume 

of hexane was added. The F As, as methyl esters, were analyzed by gas chromatography 

following previously-published methods (Canuel & Martens 1993, Zimmerman & Canuel 

2001 ). Peaks were quantified relative to an internal standard, methyl heneicosanoate, 

added just prior to GC analysis. Peak identities were verified using reference standards 

and by combined gas chromatography-mass spectrometry using a Hewlett-Packard 6890 

GC interfaced with a mass selective detector operated in electron impact mode. F As are 

designated as A:BcoC, where A is the total number of carbon atoms, B is the number of 

the double bonds, and C is the position of the first double bond from the aliphatic "co" 

end of the molecule. The prefixes "i" and "a" refer to iso and anteiso methyl branched 

FAs (see Canuel et al. 1995 and references therein). 

Statistical analyses 
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The experiment was analyzed as a fully factorial three-way analysis of variance 

(ANOVA), with grazer treatment (df= 1), predator treatment (df= 1), and nutrient 

availability (df= 1) as fixed variables using SAS version 9.1 for Windows. Analyses of 

FA were conducted on percent of total FA abundance. Data were transformed by log or 

arcsine square root functions as necessary to maintain homogeneity of variance as 

determined by the Cochran's C test. From the ANOVAs we calculated the magnitude of 

main and interactive effects (m 2
, percentage of variance explained). Due to failure of 

caged enclosures (e.g., tears or holes in Nitex mesh) seven replicates were removed from 

the fmal statistical analyses. No-cage control plots were also excluded from the fmal 

ANOV A since their inclusion would have resulted in an unbalanced statistical design. 

However, contrasts were performed to determine the effect of cage presence on primary 

producer biomass and sediment organic matter (SOM) content and composition. Thus, 33 

replicates were used in statistical analyses; caged control treatments had four replicates in 

each nutrient condition, grazer treatments had four replicates with nutrients and five 

without, crab treatments had three replicates with nutrients and four without, combined 

grazer and predator treatments had five replicates with nutrients and four without. Results 

presented use the type III sum of squares (SS) from the ANOV A models. 

To interpret the bulk SOM and fatty acid data, we performed multiple regression 

and principal components analyses (PCA; Minitab 14). Multiple regression tests modeled 

% TOC, %TN, and the FA groups as functions of Zostera marina biomass, epiphytic Chl 

a, and benthic Chl a. The partial? was calculated by dividing the type III SS for each 

response variable by the total SS. In the PCA, we included Z. marina biomass, epiphytic 

Chl a, benthic Chl a, %TOC, %TN, and FA groups. PCA yielded loadings and scores, 
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which described correlations between dominant principal components and response 

variables (loadings) and observations (scores). PCA loadings were regressed against Z. 

marina biomass, epiphytic Chl a, and benthic Chl a to help interpret the non-dimensional 

results. 

RESULTS 

Cage effects 

Field cages reduced photosynthetically active radiation by 66% relative to 

ambient, to an average of262 J.!E s·1 m·2, which is within the range of saturating 

irradiance for Zostera marina (see Douglass et al. 2007). Contrast analyses showed that 

field cages reduced Z. marina biomass (p < 0.001), epiphytic Chl a (p = 0.006), benthic 

Chl a (p = 0.013), total FA abundance (p = 0.002), and OM contributions from diatoms 

(C2o:sro3: C22:6m3, p = 0.001) (Figs. 1-3) but increased abundances of%(C22:s + C22:6) (p = 

0.022), %BrFA (p = 0.015), and %10Me17 (p = 0.001) (Figs. 3, 4). Overall, caged 

enclosures reduced primary producer biomass and OM contributions to the sediment but 

increased FA from sediment heterotrophic bacteria. 

Nutrient concentrations 

During the first week of the experiment, nutrient treatments received 200 g of 

Osmocote™ which increased the concentration of(N02- +Non (p < 0.001) but not of 

NH/ or ofP04-
3

. For the remainder of the experiment, Osmocote™ additions were 

increased to 400 g, thereby raising the concentrations of (N02 · + N03 ·), N~ +, and P04 

(all p < 0.001; Table 1). 
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Primary producers 

Nutrients, predators, and grazers altered final above-ground primary producer 

abundances (Fig. 1, Table 2). Nutrients and predators each decreased Zostera marina 

biomass while grazers decreased epiphytes. In contrast, benthic Chl a was insensitive to 

all three treatments. 

Bulk sediment organic matter (SOM) 

Measurable levels of TOC and TN accumulated in the surface sediments during 

the experiment (Fig. 2A, B, Table 2). Predators decreased% TOC while grazers increased 

%TN. Neither % TOC nor %TN was influenced by nutrients nor was either variable 

correlated to the final biomass of any primary producer group (Table 3). 

Total fatty acids (total FA) 

Within caged enclosures, predators decreased total FA abundance (Jlg g-1 

sediment; Fig. 2C, Table 2), whichwas positively correlated to Zostera marina biomass 

(Table 3). Although predators had the only significant effect on total FA concentration, 

all three treatment variables influenced FA composition. To analyze composition, total 

FA was divided into sub-classes based on chain length; degree of saturation, and carbon 

branching patterns as these groups represent different OM sources. 

The proportion of short chain saturated FA (SCF A; %(C12:o + CI4:o)), representing 

algal and microbial sources, in the sediment was decreased by nutrients (Fig. 3A, Table 

2). Grazers increased %(C12:o + CI4:o) in the absence of predators, resulting in a 
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significant interaction between grazer and predator effects (Table 2). Overall, bottom-up 

and top-down controls were both important determinants of algal and microbial 

contributions to the sediment. 

The proportion of long chain saturated FA (LCF A; %(C24:o + C26:o+ C2s:o)), 

comprising 3-7% of total FA, was consistently increased by grazers (Fig. 3B, Table 2). 

Nutrients increased %LCF A in the presence of predators but tended to decrease %LCF A 

in the absence of predators, creating a nutrient by predator interaction effect. %LCF A 

correlated positively with benthic Chl a and negatively with epiphytic Chl a (Table 3), 

suggesting that benthic microalgae became a proportionately greater source of LCF A as 

grazers consumed epiphytes. %LCF A was positively correlated with abundances of two 

grazer species, Gammarns mucronatus, an amp hi pod, and Erichsonella attenuata, an 

isopod (p = 0.004, r 2 
= 0.21 and p = 0.031, r 2 = 0.11, respectively; data not shown). 

Thus, food web composition and nutrient availability interactively altered LCF A 

contributions from epiphytic and benthic algae. 

Polyunsaturated FA (PUF A; %(C2o:4+ C2o:s) and %(C22:s+ C22:6)), indicative of 

labile algal OM, were affected by nutrient and food web manipulations (Fig. 3C, D, Table 

2). Grazers decreased %(C20:4+ C2o:5) but the grazing effect was eliminated in the 

presence of predators, resulting in a grazer by predator interaction. Predators increased 

%(C2o:4+ C2o:s) in non-nutrient treatments only, creating a predator by nutrient 

interaction. %(C2o:4+ C2o:s) was correlated negatively with benthic Chl a and positively to 

epiphytic Ch1 a (Table 3). Biomasses of the grazers Gammarus mucronatus and 

Erichsonella attenuata were negatively correlated with %(C2o:4+ C2o:s) (p = 0.008, J? = 

0.18 and p = 0.012, J? = 0.16, respectively; data not shown). Predators decreased 
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%(C22:5+ C22:6) in the absence of grazers, resulting in a grazer by predator interaction. 

Overall, the main and interactive effects of community composition and resource 

availability were important determinants of labile algal OM deposition and accumulation. 

We used two ratios (CJ6:1ro7 : C16:o and C2o:sro3: C22:6ro3) to determine the relative 

contributions of diatom-derived OM to the sediments (Budge & Parrish 1998, Shin et al. 

2000). Grazers decreased both ratios and hence the abundance of diatom-derived FA 

relative to contributions from other microalgae (Fig. 3E, F, Table 2). Predators increased 

diatom: dinoflagellate FA (C2o:5ro3 : C22:6ro3), but the magnitude was weaker in the presence 

of grazers and resulted in a grazer by predator interaction. Epiphytic Chi a was positively 

correlated to both ratios while benthic Chi a was negatively correlated to C2o:5ro3 : C22:6ro3 

(Table 3). Biomass of the grazing isopod Idotea balthica was positively related to C2o:sro3 

: C22:&o3 (p = 0.019, ~ = 0.12; data not shown). Combined, these data suggest that 

epiphytes were a major source of diatom OM in the sediments and that above-ground 

animal activities altered SOM supply and composition. 

F As representative of sediment microbial and bacterial OM ( 1 0Me17:0, and iso­

and anteiso- C 13:0, C15:o, C17:o, C19:o) comprised 10%- 14% oftotal FA (Fig. 4). Branched 

odd-numbered FAs (o/oBrFA; iso- and anteiso- CB:o, C1s:o, Cn:o, CJ9:o), representative of 

sediment heterotrophic bacteria (Volkman & Johns 1977, Perry et al. 1979), were 

increased by predators (Fig. 4A, Table 2) and negatively correlated to Zostera marina 

biomass and to epiphytic Chi a (Table 3). 10Me17:0, indicative of sulfate reducing 

bacteria, comprised 1%-2% of total FA. Nutrients and predators increased %10Me17:0 

(Fig. 4B, Table 2), which was correlated negatively to Z. marina and positively to benthic 

Chi a (Table 3). These data suggest that food web structure, particularly predator 
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presence, and resource availability influenced the sediment heterotrophic bacterial and 

microbial community. 

Using PCA, we evaluated the effects of nutrients, grazers, and predators on 

primary producer abundance, bulk SOM, and FA groups. Principal components 1 (PCl) 

and 2 (PC2) explained 26.0% and 21.8%, respectively, of the variance in the data. PCl 

tended to separate treatments according to grazer effect; variables increased by grazers 

(%TN, %(C12:o + Cl4:o), %(C24:o- C2s:o), and %CI6:o) had negative loadings while those 

decreased by grazers (epiphytic Chl a, %(C2o:4+ C2o:s), and %C16:Jm7) had positive 

loadings (Fig. 5A). PCl was correlated positively to epiphytic Chl a and negatively to 

Zostera marina (Table 4). PC2 tended to separate variables according to predator effect; 

Z. marina biomass, total FA, %TOC, and %(C22:s + C22:6) were decreased by predators 

and had positive PC2loadings while %BrFA and %10mel7:0br were increased by 

predators and had negative PC2 loadings (Fig. 5A). PC2 was positively correlated to Z. 

marina biomass and epiphytic Chl a (Table 4). Similar to PC loading results, PC scores 

separated treatments according to grazer and predator presence (Fig. 5B). Treatments 

with only grazers were generally negative on PCl while those with only predators had 

more positive scores. Along PC2, caged control treatments had positive scores while 

grazer and predator treatments were more negative. The combined grazer and predator 

treatment was near zero on PC 1 and PC2 in the absence of nutrients and negative on PC2 

in the presence of nutrients. Since the scores of the grazer and predator treatment and the 

predator-only treatment were similar in the presence of nutrients it is likely that under 

eutrophic conditions predators were stronger determinants of SOM composition than 

grazers. Combined, our PCA results suggest that food web composition strongly 
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influences FA contributions from primary producers and that nutrient additions tended to 

shift the composition of the primary producer community towards a dominance of 

epiphytes and a loss of Z. marina. 

DISCUSSION 

Patterns of biomass distribution and accumulation in marine systems are well 

known to be influenced by both top-down and bottom-up forcing (Paine 1980, Menge 

2000 and references therein, Borer et al. 2006). Since carbon storage, export, and 

deposition are related to biomass production (Duarte & Cebrian 1996, Cebrian 1999, 

Cebrian & Duarte 2001 ), top-down and bottom-up controls may extensively influence 

ecosystem properties and biogeochemical cycling. For example, increased deposition of 

plant-derived OM can stimulate sediment bacterial decomposition and, in tum, can affect 

dissolved inorganic nutrient pools and fluxes (Hansen & Blackburn 1992). The 

importance of understanding such feedbacks is necessary for effective conservation and 

management of sensitive coastal habitats (Cloem 2001, Duarte 2002). This experiment is 

one of the first to identify and quantify the effects of epibenthic community structure and 

nutrient availability on SOM composition in a natural seagrass bed. 

Nutrient enrichment and SOM composition 

Eutrophication is a central cause of many coastal ills including algal blooms and 

seagrass decline (C1oem 2001, Duarte 2002, Orth et al. 2006). Nutrient enrichment 

stimulates rapid growth of algae which may, in tum, increase light attenuation and shade 

seagrass (Short et al. 1995, Hughes et al. 2004 and references therein). Increased algal 
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biomass has the potential to translate into higher rates of labile OM deposition to the 

sediments, if grazer controls are not sufficiently strong. Under low nutrient conditions 

most algal and epiphytic carbon is consumed or exported, leaving vascular plant material 

as a main constituent of SOM (Duarte & Cebrian 1996, Cebrian 1999). Since the 

availability of labile OM is an important determinant of decomposition rates, shifts in the 

proportion of algal versus vascular plant OM in the sediments may affect bacterial 

activity and remineralization processes (Hansen & Blackburn 1992, Boschker & 

Cappenberg 1998, Holmer et al. 2004). A goal of this experiment was to determine 

whether water column nutrient enrichment could precipitate changes in SOM 

composition and if these shifts were related to primary producer abundance and species 

composition. 

In our experiment, nutrient enrichment stimulated an early increase in epiphytes 

(p < 0.05, ro 2 = 0.41, Douglass et al. 2007) which likely reduced light availability to 

Zostera marina, leading to a decline in its abundance (Fig. 1A, Table 2). By the end of 

the experiment, there was no evidence of a nutrient effect on epiphytes suggesting that 

grazer population growth and consumption effectively controlled the initial pulse 

(Douglass et al. 2007; Fig. 1B, Table 2). Strong grazing pressure on epiphytes may have 

resulted in a compensatory increase in Z. marina biomass had the experiment lasted more 

than four weeks. An alternative hypothesis, that nutrient enrichment increased the 

palatability of seagrass and, consequently, its susceptibility to grazing (McGlathery 

1995), seems unlikely since we did not detect a statistical interaction between nutrients 

and grazers. 
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In the sediment, nutrient enrichment singularly and interactively affected OM 

contributions from benthic algae, epiphytes, and heterotrophic bacteria. Surprisingly, 

nutrients decreased SCFA (%(C12:o + Ct4:o)), proxies for algal and microbial biomass 

(Fig. 3A, Table 2). OM contributions from benthic algae and epiphytes were influenced 

by interactions between nutrients and predators. Nutrient enrichment increased the 

abundance ofLCF A (%(C24:0- C2s:o)), which correlated positively with benthic Chl a 

(Table 3), when predators were present (Fig. 3B, Table 2). In contrast, when predators 

were absent, nutrients increased %(C2o:4 + C2o:s) (Fig. 3C; Table 2), which was positively 

correlated with epiphytic Chl a (Table 3). Thus, strong nutrient and nutrient by predator 

interactions influenced the relative dominance of primary producer groups and, hence, 

their FA contributions to SOM. 

Changes in OM delivery and composition stimulated responses by two 

functionally distinct groups of heterotrophic bacteria. Nutrient enrichment increased 

%10Mel7:0, a FA in sulfate reducing bacteria (Dowling et al. 1986), but had no effect on 

%BrF A, biomarkers for heterotrophic bacteria (Fig. 4, Table 2). It is curious that 

nutrients did not elicit similar responses in both bacterial FA groups, however, BrF A and 

1 0Mel7:0 may reflect different communities of organisms. For instance, %BrF A was 

negatively related to epiphytic Chl a while% 1 0Mel7:0 correlated positively with benthic 

Chl a (Table 3). This suggests that bacteria represented by BrF A responded to early 

epiphytic OM deposition, which gradually decreased as grazer populations grew. As 

benthic Chl a became a proportionately greater source of labile SOM, sulfate reducing 

bacterial metabolism and production of 10Mel7:0 likely increased. Higher rates of 

heterotrophic bacterial activity may have reduced sediment oxygen availability and 
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increased sulfide production, creating conditions which can be toxic to seagrass 

(Hemminga 1998, Calleja et al. 2007, Perez et al. 2007). This is supported by the 

negative correlations between Zostera marina and both bacterial FA groups (Table 3). 

Consequently, nutrient availability may have indirectly affected sea grass survival by 

altering SOM composition, heterotrophic bacterial activity, and thus sediment oxidizing 

conditions. 

In summary, our data suggest that increased nutrient availability altered the 

composition of above-ground primary producer communities, SOM composition, and 

sediment microbial communities (Canuel et al. 2007, Spivak et al. 2007). The rapid 

sediment heterotrophic community response to OM inputs may have implications for 

nutrient recycling and sea grass survivability. 

Above-ground community structure and SOM composition 

The ongoing depletion of commercially valuable predators from coastal habitats 

has broad implications for ecosystem functioning and nutrient cycling (Jackson et al. 

2001, Scheffer et al. 2005, Halpern et al. 2006)0 Predator loss can lead to increased grazer 

biomass as well as more intense intraspecific competition which could affect grazer 

community composition (Shurin & Allen 200 1, Duffy 2006). Subsequent shifts in grazer 

species richness and, hence, grazer food preferences may then cascade to alter plant 

species abundance and identity (Lubchenco 1978, Schmitz 2004). The deposition of plant 

and algal biomass to the sediments may alter SOM lability, which is a determinant of 

bacterial activity and an important food source for benthic communities (Boschker & 

Cappenberg 1998, Hansen & Blackburn 1992, Danovaro et al. 1999). A goal of this 
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experiment was to determine whether changes in food web structure indirectly affect 

SOM composition by altering primary producer biomass and its deposition to the 

sediments. 

By the end of the experiment, predators decreased Zostera marina biomass, 

sediment TOC, and total FA abundance (Figs. 1, 2, Table 2). Unnatural confinement of 

predators may have contributed to Z. marina decline through crab destruction of the grass 

blades (Douglass et al. 2007). Loss of Z. marina corresponded with lower % TOC and 

total FA abundance, possibly due to lower effectiveness of the grass in trapping fme 

sediment and particulate OM (Fig. 2, Table 2). This is consistent with the positive 

correlation between Z. marina and total FA abundances (Table 3). In addition to 

decreasing Z. marina biomass and bulk SOM content, predators influenced SOM 

composition by decreasing labile OM from algal and microbial sources (%(C12:o + C 14:o) 

and %(C22:s + C22:6)) and %(C24:o- C2s:o) (non-nutrient treatments only; Fig. 3, Table 2). 

This was opposite to previous findings demonstrating the role of blue crabs in reducing 

grazers and increasing algal biomass in similar experiments (Duffy et al. 2005, Canuel et 

al. 2007, Spivak et al. 2007). Benthic microalgae were the likely source of LCF A (C24:o­

C28:0), as suggested by positive correlations with benthic Chl a; LCF A were negatively 

correlated with epiphytic Chl a (Table 3). LCF A are the dominant FA in vascular plants 

but may also occur in microalgae at trace levels and have been identified in benthic 

diatoms (Volkman et al. 1980, Viso & Marty 1993), cyanobacterial mats (Edmunds & 

Eglinton 1984), and microalgae (Volkman et al. 1998 and references therein). Although 

predators decreased F As representing algae and microbes in general, they increased FA 

specifically deriving from diatoms (e.g., higher ratio of C2o:sco3 : C22:6co3; Fig. 3, Table 2) 
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and, perhaps as a result, sediment heterotrophic bacterial F As (%BrFA and %10Mel7:0; 

Fig. 4, Table 2). The positive predator effect on %BrF A is consistent with previous 

seagrass mesocosm experiments (Canuel et al. 2007, Spivak et al. 2007) and suggests that 

the above-ground community's effects on primary producers can penetrate to influence 

sediment bacteria. Thus, food chain length could have important indirect effects on 

sediment bacterial processes such as OM decomposition and remineralization. 

The grazer community influenced primary producer abundance and SOM content 

and composition. Grazers consumed epiphytes, reducing epiphytic Chl a and the 

abundance ofF As positively correlated to epiphytic Chl a (%(C2o:4 + C2o:s), Cl6:lro7 : 

Cl6:o, and C2o:sro3: C22:6ro3) (Fig. 1, 3, Tables 2, 3). "Fresh" algae are generally the source 

of (C2o:4 + C2o:5) (Canuel & Martens 1993) while diatom prevalence, relative to the 

microalgal community, is expressed by ratios ofCI6:lro7: C16:0 and C2o:sro3: C22:6ro3 (Budge 

& Parrish 1998, Shin et al. 2000). Although algal and microbial OM, sources of%(C12:o + 

c,4:o), and benthic algae, a source of%(C24:o- C2s:o) (Table 3), were potential food 

sources, abundances of these FA groups increased in grazer-only treatments. This 

suggests that grazers selectively consumed other food sources, likely epiphytes, allowing 

OM sources of%(C12:o + c,4:o) and %(C24:o- C2s:o) to accumulate. Thus, grazers likely 

reduced the relative contributions of epiphytic F As to the sediments but increased the 

relative OM contributions from the microphytobenthos. The importance of grazers in 

mediating seagrass ecosystem properties is well recognized (reviewed by Valentine & 

Duffy 2006). Our field results confirm previous fmdings from mesocosm experiments 

(Canuel et al. 2007, Spivak et al. 2007) that grazers influence SOM quality and lability 

and that these impacts indirectly influence bacterial community composition and activity. 
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The importance of the above-ground animal community in determining primary 

producer biomass and SOM content and composition is summarized by the PCA results 

(Fig. 5). In the absence of nutrients, PC 1 separated treatments according to predator or 

grazer presence, as treatments with crabs only had positive scores while those with 

grazers only had negative scores (Fig. 5B). Thus, response variables that grazers 

increased (%TN, %(C12:o + CI4:o), and %(C24:o- C2s:o)) and predators decreased (Z. 

marina biomass, total FA, %TOC, %(C22:5 + C22:6)) had negative PC11oadings (Fig. 5A). 

The addition of nutrients shifted grazer, predator, and control treatment scores to more 

positive values for PC 1, which appeared to be related to increased abundance of 

epiphytes as epiphytic Chi a and PC1 were positively correlated (Table 4). 

PC2 separated the scores of caged control treatments from those of grazers and/or 

predators. Consequently variables that were higher in the absence of grazers and 

predators (epiphytic Chi a, total FA, %(C22:s + C22:6), and %(C2o:4 + C2o:s)) had positive 

PC2loadings. PC1 and PC2 regressed positively with epiphytic Chi a (Table 4), 

indicating that epiphytes were most abundant in the absence of animals or when predators 

controlled grazing effects. This is supported by the positive loadings of epiphytic Chi a 

and %(C20:4 + C2o:s) on PCI and PC2 (Fig. 5). Z. marina regressed negatively with PC1 

and positively with PC2, likely because of the strong negative effects of predators on 

plant biomass (Table 4). These results confirm the patterns shown by the individual FA 

classes that the presence and composition of above-ground communities were strong 

determinants of SOM content. 

Interactive effects of nutrients and trophic structure on SOM composition 
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Coastal habitats are often impacted by multiple stressors, including commercial 

fishing and nutrient pollution, that alter seagrass food web structure and nutrient cycling 

(Cloem 2001, Duarte 2002, Orth et al. 2006). Previous studies have addressed top-down 

and bottom-up controls on biomass accumulation and seagrass productivity (Hughes et al. 

2004, reviewed by Valentine and Duffy 2006). Our study is novel in addressing the 

potential impacts of these interactions on sediment biogeochemistry, as detected in SOM 

accumulation and composition. 

Interactions between grazers and predators altered abundances ofF As derived 

from epiphytic and benthic microalgae. In the absence of predators, grazers consumed 

epiphytes and reduced accumulation ofF A from epiphytic diatoms (%(C2o:4 + C2o:5) and 

C2o:sro3: C22:6ro3; Fig. 3, Table 3), while increasing the abundance of%SCFA (%(C12:o + 

C14:o); Fig. 3). Accumulation ofF A from epiphytic diatoms in predator treatments is 

consistent with crabs suppressing or inhibiting grazers, creating a trophic cascade 

(Douglass et al. 2007). In contrast, predators reduced %(C22:s + C22:6); these FA are 

dominant in dinoflagellates and microalgae other than diatoms (Budge & Parrish 1998 

and references therein). Interactions between nutrients and predators also affected OM 

contributions from epiphytes and benthic microalgae. Nutrient enrichment increased F As 

associated with epiphytes (%(C20:4 + C20:5)) in the absence of predators and increased 

FAs from benthic microalgae (%(C24:o- C28:o)) in the presence of predators (Fig. 3, Table 

3). Combined, these data suggest that interactions between grazers, predators, and basal 

resources influenced algae differentially with subsequent effects on SOM composition. 

Largely, our results support the premise that grazer communities benefit seagrass 

by reducing algal biomass and that epiphytes and Zostera marina are equally important in 
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a tri-trophic system. Nutrient enrichment shifted the PC 1 scores indicating that nutrients 

increase epiphytes and decrease Z. marina biomass despite the presence of a grazer 

assemblage (Fig. 5, Table 4). Since the PC scores of the predator only and the combined 

grazer and predator treatments were similar, predators may more strongly influence SOM 

composition than grazers under elevated nutrient conditions and the short timescale of 

our experiments. Overall, our data demonstrate that interactions between grazers, 

predators, and nutrients strongly influence the primary producer community, its 

contributions to the sediments and the sediment microbial responses. 

Inter-experimental comparisons 

Previous experiments in this system have varied food web composition and light 

levels using mesocosms (Canuel et al. 2007, Spivak et al. 2007). The value of results 

from these experiments depends in part on how accurately the system mimics the natural 

environment. Here, we briefly compare the results from this field experiment with the 

mesocosms. In both the present field experiment and a previous mesocosm experiment 

(Canuel et al. 2007), grazer presence and richness, respectively, increased algal and 

microbial contributions to SOM. Predators decreased "fresh" OM, represented by 

polyunsaturated FA (e.g., %(CJs:4 + C2o:4 + C2o:s + C22:s + C22:6) in Spivak et al. (2007) 

and by %(C22:s + C22:6) here). Shading (Spivak et al. 2007) and nutrients (this study) 

. decreased Zostera marina biomass and SOM deriving from algae and microbes (C12:o + 

C 14:0). Finally, in all three experiments, predators increased the abundance of sediment 

heterotrophic bacteria (%BrFA). The general similarities between this and previous 
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experiments are encouraging and suggest that conditions in the mesocosms reflected the 

natural environment in important ways. 

Overall, our results demonstrate that SOM composition reflected changes in the 

abundance and composition of the primary producer community precipitated by shifts in 

trophic structure and resource availability. Nutrients increased epiphytes early in the 

experiment leading to a decline in Zostera marina (Fig. 1 ). Grazer populations responded 

rapidly to the available algae, decreasing epiphytes (Fig. 1) and their contribution of 

representative F As in the sediments (%(C2o:4 + C2o:s), C2o:sro3 : C22:6ro3, C16:1ro7 : C16:o; Fig. 

3).Grazer control of algae did not increase Z. marina abundance, however, perhaps due to 

the short timeframe of the experiments. Predators reduced Z. marina and evidently its 

ability to trap particulate OM, leading to lower sediment organic carbon content and total 

FA abundance (Figs. 1, 2). There was some evidence of a trophic cascade as FA 

contributions from epiphytes (%(C2o:4 + C2o:s)) and diatoms (C2o:sro3: C22:6ro3) were higher 

in treatments with both grazers and predators than in treatments with grazers only (Fig. 

3). In addition, predators increased diatom derived OM which may have stimulated 

sediment heterotrophic bacteria (%BrF A) in general and sulfate reducing bacteria 

(% 10Me17:0) in particular (Fig. 4). The sensitivity of SOM composition to nutrient 

availability and food web structure suggest that sediment biogeochemistry is strongly 

influenced by both top-down and bottom-up controls. Further, the changes in SOM 

composition demonstrate that episodic shifts in community composition and resource 

availability can rapidly influence sediment processes and ecosystem functioning. 
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Table 1. Average concentration (J.IM) of water column 
nutrients sampled on days 14 and 23 of the experiment 
when Osmocote ™ additions were 400 g per treatment. 
Concentrations were higher in nutrient vs. non-nutrient 
treatments (p < 0.001 ). 

Response 

N02- + N03-

NH4+ 

P04-3 

Nutrients 
Day 14 Day23 

5.55 6.31 

4.98 8.45 

0.27 0.57 

No Nutrients 
Day 14 Day23 

0.11 0.29 

0.69 2.28 

0.01 0.09 



Table 2. Tests of significance and estimated magnitudes of effect (m2
) for nutrient availability, predator presence, grazer presence, and their interactions on plant biomass, 

sediment total nitrogen, sediment organic carbon, and sediment fatty acid abundance. Except where notecL analyses were performed on un-transfonned data. When an 
interaction between nutrients and predators or b'fl!Zers was significant, the data set was divided according to the interaction (i.e., nutrients vs. no nutrients), and an analysis of 
variance was ;eerfonned ~a in. For interactive effects: Ga 1razersa P! gredatorsi N~ nutrients. MS refers to the mean ~uared. Signficant relationshms {g < 0.05} are in bold. 
Response Nutrients Predators Grazers Interactions Error 

MS p m' MS p m' MS p ro' MS p ro' MS ro' 

Zostera marina (AFDM) 3.76 0.001 0.21 1.79 0.017 0.09 0.68 0.128 0,02 0.27 0.65 
In Epiphytic Chi a 0.10 0.468 0.00 0.48 0.119 0.02 5.93 <0.001 0.43 0.18 0.55 
Benthic Chi a 0.06 0.380 0.00 0.17 0.152 O.o3 0.00 0.987 0.00 0.08 1.08 
o/oTN 0.00 0.628 0.00 0.00 0.279 O.oJ 0.00 0.022 0.12 0.00 0.95 

%TOC 0.00 0.875 0.00 0.11 0.032 0.10 0.05 0.152 0.03 0.02 0.94 

Total FA (JJg g·1) 1.62 0.898 0.00 664.03 0.014 0.14 12.91 0.717 0.00 96.10 0.92 

%(CJ2,o+C ,,,o) 1.81 0.014 0.11 1.52 0.024 0.09 1.45 0.026 0.08 G*P 2.38 0.006 0.15 0.26 0.72 

o/oCI6:0 0.03 0.909 0.00 0.74 0.569 0.00 20.81 0.005 0.17 2.22 0.80 

o/oCts:o 1.07 0.164 O.o3 2.45 0.040 0.09 0.42 0.380 0.00 0.52 0.96 

%( C 24,0-C 28,) 1.00 0.454 0.00 3.33 0.177 0.02 14.04 0.009 0.13 N*P 9.76 O.o25 0.09 1.72 0.75 

No Nutrients 12.78 0.014 0.20 12.32 0.015 0.19 1.58 0.56 

Nutrients 0.81 0.523 0.00 3.33 0.207 0.04 1.87 1.02 

%(CI8,2+C,u) 0.01 0.901 0.00 0.04 0.738 0.00 0.49 0.267 0.01 0.68 1.04 

%(C20,,+C,o5l 0.22 0.713 0.00 0.77 0.494 0.00 10.58 0.017 O.o9 N*P 22.14 0.001 0.21 1.60 0.64 

G*P 11.81 0.012 0.10 

No Nutrients 16.27 0.002 0.31 4.70 0.064 O.o? G*P 8.02 0.020 0.14 1.15 0.47 

Nutrients 7.03 0.092 O.o9 5.89 0.120 O.o? 2.10 0.80 

%(C 22,5+c22,6) 0.00 0.970 0.00 2.88 0.010 0.14 0.14 0.542 0.00 G*P 1.90 0.032 0.08 0.37 0.81 

%(CI6,1w7) 3.92 0.608 0.00 0.51 0.852 0.00 126.60 0.007 0.18 14.50 0.91 

Ct6:ho7: C 16:0 o.oz 0.526 0.00 0.01 0.756 0.00 0.65 0.002 0.23 0.05 0.85 

C2o:Sm3: c22:flm3 4.41 0.291 0.00 96.83 <0.001 0.26 78.98 <0.001 0.21 G*P 43.23 0.002 0.11 3.78 0.42 

arcsine (sqrt(%BrFA))' 0.00 0.323 0.01 O.oJ 0.043 0.09 0.00 0.343 0.00 0.00 0.97 

%10me17:0 0.31 0.007 0.17 0.30 0.008 0.16 O.oJ 0.698 0.00 0.04 0.90 

• %BrFA (l: iso-,anteiso- C""' C""' Cn,. C19,ol 



Table 3. Regression analyses ofZostera marina (ash-free dry mass, g), benthic Chi a (Jlg em-\ and epiphytic Chla (Jlg cm-2 blade area) 
a,gainst bulk SOM and the fa~ acid ~ro~s {ex~ressed as% of total FA}. Si~nifcant relationshies !e < 0.05l are in bold. 

Response Zostera marina Benthic Chl a Epiphytic Chi a Total 

Coefficient Partial r 2* ~ Coefficient Partial r 2* E Coefficient Partial r 2* ~ Modell 

%TN 0.01 0.09 0.106 -0.01 0.01 0.691 0.00 0.01 0.515 0.11 
%TOC O.o7 0.08 0.128 0.04 0.00 0.720 O.oi 0.00 0.810 0.08 

Total FA (Jlg g-1) 6.09 0.15 0.027 -1.02 0.00 0.886 4.34 0.06 0.145 0.21 

o/o(Cl2:o+CI4:o) 0.23 0.05 0.209 0.29 0.01 0.552 -0.37 0.10 0.072 0.15 

%CI6:o 0.40 O.o2 0.376 -0.18 0.00 0.879 -0.96 0.11 0.060 0.13 

%C1s:o 0.37 0.09 0.092 0.18 0.00 0.750 0.01 0.00 0.962 0.10 

o/o(Cz4:o-Czs:o) 0.29 0.01 0.444 2.81 0.17 0.010 -1.18 0.18 0.009 0.36 

o/o(Czo:4+Czo:s) -0.29 0.01 0.486 -2.59 0.13 0.027 1.18 0.16 0.015 0.31 

o/o(Czz:s+Czz:6) 0.26 0.06 0.173 -0.18 0.00 0.726 0.14 0.02 0.495 0.08 

arcsine (sqrt(%BrFA))t -0.03 0.22 0.003 0.04 0.05 0.135 -0.04 0.25 0.002 0.52 
%10mel7:0br -0.22 0.40 <0.001 0.28 0.08 0.048 -0.11 O.o7 0.063 0.56 

o/o(Cl6:hu7) -0.43 0.00 0.669 -3.32 O.o4 0.225 3.38 0.24 0.005 0.28 

cl6:lw7 : cl6:0 -0.05 0.02 0.385 -0.15 0.02 0.383 0.22 0.24 0.004 028 

Czo:s., 1 : Czz:oo J -0.44 0.01 0.600 -5.24 0.14 0.025 2.05 0.13 0.032 0.28 

"'Partial r2 values were calculated by dividing the type Ill SS by the total SS. 

t %BrFA ~ iso-, anteiso- Cll:O• Cls:O• Cn:O• Cl9:o) 



Table 4. Regression analyses of Zostera marina (ash-free dry mass, g), benthic Chi a (Jlg em·\ and epiphytic Chi a (Jlg 

cm·2 blade area) against principal components I and 2. Significant values (p < 0.05) are in bold 
Response Zostera marina Benthic Chi a Epiphytic Chi a Total 

Coefficient Partial~· p Coefficient Partial r2* p Coefficient Partial ~* p Model r2 

PC 1 

PC2 
-1.30 
1.65 

0.17 
0.34 

0.004 
<0.001 

-1.38 
-1.67 

0.03 
0.05 

0.225 
0.086 

* Partial ~ values were caculated by dividing the type III SS by the total SS. 

1.49 
1.77 

0.19 0.003 
0.32 <0.001 

0.39 
0.70 



FIGURE CAPTIONS 

Figure 1. Effects of nutrients, predators, and grazers on Zostera marina (A), epiphytic 

Chi a (B), and benthic Chi a (C). The presence of cages reduced the abundances of all 

three primary producers. Nutrients and predators reduced Z. marina abundance while 

grazers reduced epiphytic Chi a. For Figures 1-4, statistical results are reported in Table 

2, error bars represent standard error, and a letter in upper right hand corner designates 

which treatment significantly affected the response variable. 

Figure 2. Effects of nutrients, predators, and grazers on sediment organic carbon (%TOC; 

A), sediment nitrogen (%TN; B), and sediment total fatty acid (FA) abundance (C). 

Predators decreased % TOC and total FA while grazers increased %TN. Nutrient 

enrichment did not affect %TOC, %TN, nor Total FA. 

Figure 3. (A-D) Effects of nutrients, predators, and grazers on fatty acid subclasses 

(expressed as % of total FA) representing algal and microbial sources of organic matter 

(OM). Nutrients, predators, and grazers had strong singular and interactive effects on 

algal and microbial contributions to the sediments. (E-F) The prevalence of OM deriving 

from diatoms, relative to other microalgae, was influenced by grazers and predators only. 

See text for biomarker sources. 

Figure 4. Effects of nutrients, predators, and grazers on the abundance of sediment 

heterotrophic bacterial fatty acids (expressed as % of total FA). The presence of cages 

increased abundances of%BrFA (A; L: (iso-, anteiso- C13:o + Cl5:o + Cl7:o + Cl9:o)) and 
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%10Mel7:0 (B). Both %BrFA and %10Mel7:0 were increased by predators but only 

%10Me17:0 was increased by nutrients. 

Figure. 5. Loadings (A) and score plots (B) from principal component analysis (PCA) for 

primary producers, sediment organic carbon, sediment nitrogen, and sediment fatty acid 

(FA) groups. In (A), the following abbreviations were used: TFA for total FA, E Chl a for 

epiphytic Chl a, and B Chl a for benthic Chl a. In (B), treatments are indicated as 

follows: nutrients by +N, no nutrients by -N, caged control by CC, grazers by G, 

predators by P, and combined grazers and predators by GP. Table 4 lists correlations 

between PC 1, PC2, and the primary producers. Error bars represent standard error. 
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Chapter4: 

Nutrient enrichment and food web composition affect ecosystem metabolism in an 

experimental seagrass habitat. 

Amanda C. Spivak, Elizabeth A. Canuel, J. Emmett Duffy, and J. Paul Richardson 
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Abstract. 

In seagrass habitats, both bottom-up and top-down controls can influence biomass 

accumulation within the food web, sediment biogeochemistry, and ecosystem 

productivity. However it is unclear how changes in above-ground biomass and sediment 

organic matter quality precipitated by such shifts in bottom-up and top-down forcings 

also translate to changes in basic elemental cycles and fluxes. Using an experimental 

seagrass mesocosm system, we manipulated water column nutrient concentrations, food 

chain length (i.e. predator presence vs. absence), and grazer species richness (0, 1, 3, or 5 

species) in a factorial design to address two main questions: (1) how do nutrient_ 

availability and food web composition affect the·biomasses and stoichiometry of primary 

producers and grazers; (2) to what extent does ecosystem metabolism (productivity and 

nutrient fluxes) reflect above-ground plant and animal abundances vs. bulk sediment 

organic matter quality? Surprisingly, by the conclusion of the five week experiment, 

nutrient enrichment strongly increased secondary production but had little effect on 

primary production. Although the biomass of the dominant amphipod grazer, Gammarus 

mucronatus, was higher in nutrient enriched treatments it was not clear whether this 

effect was due to higher food availability or quality. Changes in above-ground primary 

producer biomass mediated by nutrient enrichment and grazer presence showed similar 

patterns to those of gross ecosystem production (mmol 0 2 m-2 d-1
). Conversely, daily 

inorganic nutrient flux rates were unrelated to the biomasses of primary producers or 

grazers, suggesting that microbial processes in the sediments may have contributed to the 

observed fluxes. Combined, our data suggest that complex interactions between bottom­

up and top-down controls governed patterns of nutrient storage and cycling. 
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Introduction. 

Interactions between bottom-up influences of resource availability and top-down 

influences of trophic structure have important impacts on community dynamics and 

ecosystem functioning. For instance, nutrient enrichment of coastal waters often leads to 

higher abundances of algae, reduced water clarity, and, potentially, seagrass loss 

(McGlathery 1995; Cloem 2001; Orth et al. 2006). Conversely, top-down controls in a 

three-level food chain (i.e. predators- grazers-- autotrophs) may moderate the effects of 

nutrient enrichment. For example, in seagrass systems, nutrientimpacts may be 

exacerbated by predator inhibition of grazers or alleviated by strong grazing controls on 

algae (Hughes et al. 2004; Duffy et al. 2005; Heck and Valentine 2006). By extension, 

shifts in the relative importance of bottom-up and top-down forcings that influence the 

standing stocks and elemental content of primary producers and animals may also alter 

nutrient dynamics and, hence, energy availability to the food web (Vanni and Layne 

1997; Elser and Urabe 1999). Here, we tested experimentally whether nutrient 

availability (i.e. bottom-up control) and food web composition (i.e. top-down control) 

interactively influenced plant and animal biomass and stoichiometric ratios and whether 

these changes were reflected by changes in ecosystem metabolism in an experimental 

seagrass habitat. 

In seagrass beds, invertebrate grazers serve as the key intermediate trophic link 

between primary producers and higher levels of the food web (Klumpp et al. 1989). 

Consequently, the abundance and efficacy of invertebrate grazers may be affected by 

changes in either bottom-up or top-down controls. For instance, higher rates of primary 

production and, hence food availability, may lead to increased grazer biomass or grazer-

110 



mediated nutrient recycling. In turn, grazers may fuel primary production by regenerating 

dissolved inorganic nutrients (Urabe 1993; Elser and Urabe 1999; Liess and Hillebrand 

2006; Vanni et al. 2006). Whereas bottom-up controls tend to be strengthened by excess 

nutrients, trophic cascades are weakened by predator removal. For example fishing of 

predators may reduce predation pressure on grazers and increase grazer population 

growth. At high abundances or densities, grazers may be able to control algal growth 

stimulated by bottom-up controls (Hughes et al. 2004; Armitage et al. 2005; Heck and 

Valentine 2007). By reducing algal biomass, grazers can indirectly benefit seagrasses 

which are competitively inferior to fast-growing algae. Thus, interactions between 

changing bottom-up and top-down trophic controls may strongly affect community 

composition and ecosystem properties. 

Resource availability and consumption (bottom-up and top-down controls, 

respectively) not orily affect biomass distribution across trophic levels but also the 

stoichiometry of primary producers and rates of nutrient cycling. For instance, increased 

supply of nitrogen and phosphorous can increase the internal elemental content of 

primary producers, especially algae (Sterner and Elser 2002). When grazers consume the 

nutritionally rich algae they incorporate nutrients needed for growth and metabolism and 

excrete the unused elements (Elser and Urabe 1999; Sterner and Elser 2002; Anderson et 

al. 2005). Consuming food of higher quality may increase grazer fitness and population 

growth (Elser et al. 1996; Mackay and Elser 1998). By excreting the excess nutrients 

back into the water column, grazers can influence algal production and community 

composition (Sterner and Elser 2002; Vanni et al. 2002). Top-down controls, while less 

straightforward than bottom-up effects, can strongly alter community composition via 
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stoichiometric shifts (Vanni et al. 1997; Elser et al. 1998; Frost et al. 2002) as well as the 

more obvious effects of changing prey abundance. Thus, changing bottom-up and top­

down controls can affect both plant and animal abundance and elemental cycling. 

While nutrient cycling within the water column can be affected by stoichiometric 

imbalances between primary producers and grazers, sediment nutrient fluxes can also be 

strongly influenced by the stoichiometry of deposited organic matter. For example, 

increased resource availability may increase the abundance and nutrient content of 

primary producers which may then be deposited to the sediments. Since sediment organic 

matter (SOM) quality and lability are partial determinants of sediment microbial activity, 

increased algal contributions may result in higher rates of sediment remineralization. 

However, not all of the remineralized nutrients will be returned to the water column as 

sediment bacteria may retain nutrients to maintain optimum stoichiometric balance (Elser 

et al. 1995). Alternatively, high rates of organic matter deposition may stimulate 

microbial activity leading to sediment anoxia and, consequently, nitrate influx 

(denitrification) and carbon burial (Hessen et al. 2004; Dahllof and Karle 2005). Further, 

when sediments are aerobic, phosphate is chemically bound and biologically unavailable 

but as anoxic conditions develop phosphate is desorbed and may by released to the 

overlying water column (Valiela 1995). Thus, depending on the quantity and quality of 

organic matter delivered to the benthos, sediments may be a source or a sink of inorganic 

nutrients. 

Previous seagrass experiments demonstrated that resource availability and food 

chain length can influence above-ground biomass distribution between trophic levels 

(Duffy et al. 2001; Duffy et al. 2003; Douglass et al. 2007), SOM composition and 
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quality (Canuel et al. 2007), and gross ecosystem productivity (Spivak et al. 2007). But it 

remains unclear how these effects translate into changed ecosystem process rates. To 

assess the effects of resource availability and food web structure on seagrass ecosystem 

properties and fluxes, we conducted an experimental manipulation of water column 

nutrient enrichment and food web composition (i.e. food chain length and herbivore 

species richness) and measured their effects on above-ground biomass, stoichiometric 

ratios, and ecosystem metabolism. We predicted that nutrient enrichment would increase 

plant and algal biomass and this would lead to higher rates of gross ecosystem 

production. In tum, nutrient enrichment would increase the quality of plant and algal 

derived organic matter deposited to the sediments, thereby increasing sediment microbial 

activity, leading to higher rates of sediment dissolved inorganic nitrogen (DIN) flux. 

Secondly, we expected that grazers would reduce algal abundance and recycle the 

consumed biomass back into the water column as DIN. Finally, we predicted that 

predators would initiate a trophic cascade by reducing grazers and indirectly increasing 

primary producer abundance. The increased plant and algal biomass would, in tum, 

increase gross ecosystem production, sediment organic matter quality, and sediment DIN 

flux. 

Methods 

Experimental Design. 

We conducted a mesocosm experiment to determine the main and interactive 

effects of nutrient availability, grazer species richness, and food chain length on the 

accumulation of primary producer and grazer biomass, flux rates of dissolved oxygen and 
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inorganic nutrients, and the elemental ratios of seagrass, algae, and invertebrate grazers. 

Water column nutrient availability was manipulated by adding Osmocote™ (N:P:K 

3:1 :2) fertilizer to half of the tanks. Grazer species richness varied across four levels (0, 

1, 3, or 5 species); the highest richness level contained five amphipod species present in 

the York River, Virginia, at the time of the experiment, each replicate of the intermediate 

level contained random a combination of three species, and the lowest richness level only 

had the most abundant species, Gammarus mucronatus. The remaining four grazer taxa 

were: Elasmopus levis, Melita nitida, Ampithoe valida, and Sympleustes spp. Food chain 

length was manipulated by exposing parallel sets of grazer treatments to a generalist 

predator, the blue crab, Callinectes sapidus. The 16 treatments were replicated 3 times 

each for a total of 48 mesocosm tanks. 

The outdoor mesocosm experiment was conducted over five weeks during 

summer 2006 in 120-liter translucent fiberglass tanks that were continuously supplied 

with water from the York River estuary, Virginia, USA. Water passed through a sand 

filter and then through 150 Jlm mesh before filling 'dump buckets' which regularly 

spilled into the tanks, providing turbulence and aeration. The filtering process eliminated 

larger animals and debris and minimized invasion by non-target animals while permitting 

passage of invertebrate larvae and algal spores, which often colonized the tanks. The 

tanks were filled with a sand- mud mixture (9:2), averaging 0.80% (± 0.18 SE) organic 

matter content, to a depth of 10 em. In contrast with previous experiments (Canuel et al. 

2007; Spivak et al. 2007), we chose to use a sediment substrate with approximately 1% 

OM to facilitate Zostera marina transplant success and growth (Koch 2001 ). One 

hundred pre-weighed eelgrass (Zostera marina) shoots, cleaned of grazers and epiphytes 
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were planted in each tank. Sixteen days later, grazing invertebrates were added to each 

grazer mesocosm. The five-species treatment received 18 individuals of each species, the 

three-species treatment had 30 individuals of each species, and the one-species treatment 

had 90 individuals of G. mucronatus. Eleven days later, two juvenile blue crabs were 

added to each predator treatment. Each nutrient treatment received 200 g of Osmocote™ 

slow release fertilizer in the first two weeks of the experiment and 100 g every week 

thereafter. Preliminary experiments revealed that Osmocote™ additions resulted in a 

peak in dissolved inorganic nitrogen (DIN) concentrations within 24 h. After this, DIN 

levels declined and remained constant for the next four days before dropping again. Thus, 

we refreshed half the fertilizer additions twice weekly to maintain elevated and constant 

nutrient levels. 

Nutrients were delivered through two perforated PVC tubes that were suspended 

from the top of the tanks. Twice a week, one nutrient PVC tube from each nutrient 

treatment was refreshed with new fertilizer. Water column nutrient concentrations were 

monitored each week by measuring NH4 + concentrations from five randomly chosen 

tanks of each nutrient treatment using the Koroleff colorimetric method. The five week 

experimental incubation time was chosen to minimize the risk of invasion by non-target 

animals and to prevent the complete consumption of eelgrass by the grazers. This time 

period permitted major changes in animal (one to two grazer generations) and plant 

community development and in surface sediment characteristics (Duffy et al. 2003; 

Canuel et al. 2007; Spivak et al. 2007). Despite limitations, this experimental 

infrastructure simulated several aspects of the biotic and abiotic field conditions well 

(Duffy et al. 2001). For instance, tank water averaged 25°C while water temperatures at 
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Goodwin Island archipelago, the system upon which this experiment was based, averaged 

23°C (Moore unpubl. data). At the end of the five week experiment we measured whole 

ecosystem fluxes of dissolved oxygen (DO), NH4 +, NOx, and P04"
3

, as well as primary 

producer biomass and the carbon and nitrogen ratios of sediments, primary producers, 

and invertebrate grazers (see below). Results for the aboveground plant and animal 

community and for SOM accumulation and composition are reported elsewhere (Duffy et 

al. in prep; Spivak et al. in prep). 

Primary producers. 

At the end of the experiment we collected above-ground seagrass blades, 

macroalgae, artificial seagrass blades for epiphytic chlorophyll a (Chl a), and sediments 

for benthic Chl a to determine primary producer biomasses. Because the tanks were a 

flow-through system, we did not measure phytoplankton abundance. Seagrass and algae 

were frozen (-20 °C) until analysis when they were dried (60 °C) and then combusted 

(400 °C) to determine ash-free dry mass (AFDM). Epiphytic chlorophyll a was extracted 

from the artificial seagrass blades in a 90:10 (v:v) acetone: methanol solution for 24 hat 

-20 °C. Samples were processed according to Douglass et al. (2007). For benthic Chl a, 

three sediment cores ( 1.5 em diameter) were collected from each tank and the upper 1 em 

was removed. The surface sediments from the three cores were combined in a pre­

combusted (450 °C) scintillation vial. Sediment samples were frozen (-20 oq and 

analyzed within six weeks of collection according to (Neubauer et al. 2000). Since 

benthic microalgal distribution can be patchy, we used composite samples to increase the 
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likelihood that the benthic Chl a concentrations represented the entire surface sediments 

in the mesocosm tanks. 

Grazers. 

Invertebrate grazers were collected at the end of the experiment and stored in 

ethanol. Sub-samples were analyzed for grazer species identity, abundance, and size 

class. Grazer ash-free dry mass (AFDM) was determined using previously established 

calculations (Edgar 1990). 

Ecosystem metabolism. 

We measured fluxes of dissolved oxygen (DO), NH4 +, NOx, and P04-
3 to 

characterize whole-ecosystem metabolism. Four days before the end of the experiment, 

we measured DO and sampled water (25 mL) for dissolved inorganic nutrient 

concentrations approximately every hour over two four-hour incubation periods, one 

during the day (10:00- 14:00 h) and another at night (22:00- 02:00 h). Flux rates were 

estimated by regressing dissolved nutrient concentration against elapsed time (see 

below). 

Half of the Osmocote™ fertilizer in the nutrient treatments was refreshed three 

days (50 g) and half was refreshed one week (50 g) prior to measuring water column flux 

rates. We estimated that theN~+ loading rate from the fertilizer at the time of the flux 

measurement incubations was 0.24 J..lM h-1
• Immediately prior to the incubation period, 

the water supply was shut off and clear plastic sheeting (2 mm thickness) was placed on 

the water's surface to minimize oxygen exchange with the atmosphere. Before each 
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measurement, the water was stirred to disrupt any stratification that may have formed. 

DO concentrations were measured using a YSI datasonde. Water samples were filtered 

through a pre-combusted ( 450 oq glass fiber filter and frozen ( -20° C) until analysis for 

NRt +, NOx, and P04-3 concentrations by standard methods using a Lachat auto-analyzer 

(Smith and Bogren 2001; Knepel and Bogren 2002; Liao 2002). 

We calculated the slope of change in concentration versus the time elapsed and 

divided this by the area of the tank to obtain flux. Because the measured DIN and P04-
3 

flux rates were much higher than the dissolution rate of Osmocote™, we are confident 

that our flux rates reflect biological processes within the experimental tanks. Hourly day 

and night rates were scaled to the volume of the mesocosm tanks (120 1) and to 14 h of 

light and 10 h of darkness to estimate daily summertime gross ecosystem production 

(GEP) of dissolved oxygen and daily net flux rates of inorganic nitrogen and phosphorus. 

DIN concentrations were calculated by summing NRt + and NOx. To calculate respiration, 

hourly nighttime oxygen consumption were scaled to 24 h and converted to carbon units 

using an assumed respiratory coefficient (RQ) of 1.0 (Hopkinson and Smith 2005; 

Middelburg et al. 2005). The production to respiration (P:R) was calculated by dividing 

estimated gross ecosystem production by respiration. 

Elemental composition of primary producers, grazers, and sediments. 

At the end of the experiment we collected seagrass blades, macroalgae, grazers, 

and sediments from each mesocosm to assess the effects of water column nutrient 

enrichment on their elemental composition. Twenty individuals each of the amphipods G. 

mucronatus and A. valida were collected from the treatments in which they were 
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originally stocked. Three sediment cores (2.6 em diameter) were collected from each tank 

and the top 1 em was removed. The surface sediments from each core were combined 

into a composite sample. All samples were stored in separate pre-combusted ( 450 °C} 

vials and stored at -20 oc until analysis for total organic carbon (TOC) and total nitrogen 

(TN) content by standard methods with a Fisons Flash Elemental Analyzer (Modellll2) 

after removing inorganic carbon (Hedges and Stern 1984). We used acetanilide as the 

standard. Molar elemental ratios were calculated by first normalizing TOC and TN to the 

molar weight of carbon and nitrogen, respectively, and then dividing molar TOC by 

molar TN. We did not measure the phosphorus content of the sediments. 

Statistical analyses. 

The results were analyzed as a fully factorial three-way analysis of variance 

(ANOVA, SAS version 9.1 for Windows), with grazer treatment (df= 3), food chain 

length (i.e. predator presence or absence, df= 1) and nutrient availability (df= 1) as 

fixed factors. Data were logarithmically transformed as necessary to maintain 

homogeneity of variance as determined by the Cochran's C test. From the ANOVAs, we 

calculated the magnitude of main and interactive effects (ro2
, estimated proportion of 

variance explained by the experimental variable). The analyses included three replicates 

of every treatment except for the no nutrient, no crab, one grazer species treatment. One 

replicate of this treatment was excluded because it was contaminated by more than 500 

mg of ash-free dry mass of non-target grazers. One additional sample was excluded from 

analyses of Z. marina and macroalgal biomass (nutrient, no crab, five grazers) while four 

samples were excluded from analysis of grazer biomass (no nutrients, no crabs, five 
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grazers; nutrients, no crabs, five grazers; nutrients, crabs, one grazer; nutrients, crabs, 

three grazers) due to sample loss. Thus, we report the type III sum of squares (SS) results 

from the ANOV A model. 

To help interpret the drivers of ecosystem flux rates, we performed multiple linear 

regressions of daily GEP, daily respiration, and daily fluxes of DIN and P04-
3 against the 

abundances of the major primary producers. To detect correlations between the flux rates, 

we performed a multiple linear regression of daily GEP against daily DIN and P04-
3

• 

Simple linear regressions of daily GEP, daily respiration, and daily flux rates of DIN and 

P04-3 against sediment C:N were also performed. In addition, to understand whether 

respiration was related to autochthonous organic matter production or bulk sediment 

organic matter quality, we regressed respiration against net ecosystem production and 

sediment C:N. 

Results 

Nutrient concentrations. 

During the first two weeks 200 g of Osmocote™ fertilizer were added to each 

nutrient treatment, resulting in an average NIL.+ concentration of 29.23 !J.M (± 5.45 SE). 

Osmocote™ additions were reduced to 100 g per nutrient treatment for the remaining 

three weeks and the average NH/ concentration fell to 14.371J.M (± 1.32 SE). 

Concentrations ofNH/ were 0.95 !J.M (± 0.25 SE) and 2.58 !J.M (± 0.57 SE) in the non­

nutrient treatments during weeks 1-2 and 3-5, respectively. Thus, the NIL.+ concentration 

of nutrient treatments was approximately 30 times ambient during the first two weeks and 

5 times ambient during the remaining three weeks. The NIL.+ concentrations we observed 
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in the no-nutrient treatments were typical of late spring and summer conditions in the 

York River estuary while the concentrations in the nutrient amended treatments were 

similar to or higher than late fall conditions (K. Moore unpubl. data). 

Primmy producer biomass. 

Primacy producer biomass was generally reduced by grazers and increased by 

nutrient additions. Relative to the grazer-free controls, grazers reduced epiphytic Chl a 

and nearly eliminated macroalgae (Fig. 1; Table 1 ). Grazers decreased Z. marina biomass 

in the three and five species treatments, but not in the one grazer species treatment which 

suggested that G. mucronatus was not responsible for eelgrass loss. Nutrient additions 

uniformly increased epiphytic Chl a but increased macroalgae only in the absence of 

grazers, resulting in a nutrient by grazer interaction. Overall, grazers were stronger 

determinants of plant and algal biomass than were predators or nutrient enrichment, as 

indicated by the estimated magnitudes of effect (Table 1 ). Benthic Chl a was insensitive 

to food chain length, grazer richness, and nutrient availability. 

Grazer biomass. 

In the treatments with multiple grazer species, G. mucronatus was the most 

abundant grazer and the largest contributor to total grazer biomass in both the presence 

(7 5 - 85% of total grazer biomass) and absence ( 66 - 68%) of predators (Fig. 2; Table 1 ). 

Because G. mucronatus was so abundant we divided the grazer response into two 

categories: G. mucronatus only and minor grazers (i.e. grazers other than G. 

mucronatus). Predator presence reduced minor grazer biomass but had no effect on G. 
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mucronatus, suggesting that G. mucronatus may was susceptible than other grazers to 

predation by blue crabs. Nutrient enrichment increased G. mucronatus biomass but had 

no effect on the minor grazers. 

Elemental ratios. 

Nutrient enrichment increased the nitrogen content of eelgrass as reflected in 

higher% TN and lower C:N of Z. marina blades (Fig. 3; Table 1 ). Grazers decreased Z. 

marina %TN in nutrient treatments and increased % TOC in non-nutrient treatments; 

resulting in grazer by nutrient interaction effects for both variables. Under ambient 

nutrients, predators decreased %TN which resulted in higher C:N and created predator by 

nutrient interaction effects. Heavy grazing prevented us from obtaining macroalgal 

samples for nutrient analysis from every tank. However, there was evidence of a positive 

nutrient effect on macroalgal quality as the C:N was 26.92 (± 2.02 S.E.; n = 8) in non­

nutrient treatments and 14.77 (± 1.17 S.E.; n = 12) in nutrient treatments. 

Elemental content of SOM was less sensitive than that of primary producers to 

changes in nutrient concentration, predator presence, and grazer richness (Fig. 4; Table 

1). Predators generally increased %TOC ofbulk SOM and, consequently, C:N. Grazer 

richness had an idiosyncratic influence on SOM %TN and % TOC, both being maximized 

in the three-grazer treatment under nutrient enrichment, but had no effect on the molar 

C:N. 

At the end of the five-week experiment, there were measureab1e differences in the 

total nitrogen(% TN) and organic carbon(% TOC) content of both grazer species 

measured: G. mucronatus and A. valida (Fig. 5, Table 1). Elevated nutrient 
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concentrations increased %TN and % TOC of G. mucronatus but reduced the % TOC 

content of A. valida. Surprisingly, predator presence increased the %TOC content of A. 

valida. While TOC and TN content of the varied somewhat, the molar C:N ratio did not 

change in response to our experimental manipulations. Thus, the stoichiometric ratio of 

grazers was more conservative than that of their primary producer food sources. 

Ecosystem fluxes. 

Gross ecosystem production (GEP) and respiration were both increased by 

nutrient enrichment and reduced by grazers (Fig. 6; Table 1). Predators decreased GEP 

and respiration only at the zero and one species richness levels, resulting in a predator by 

grazer richness interaction. The ratio of production to respiration (P:R) was generally 

lower in grazer treatments compared with grazer-free controls. Predators influenced P:R 

in an idiosyncratic way resulting in a predator by grazer interaction effect. Daily GEP 

was positively correlated to the daily flux rate of DIN (p = 0.013;? = 0.13) but was not 

related to P04-
3 (data not shown). Net daily fluxes of DIN and P04-

3 increased with 

nutrient enrichment but were unaffected by food web manipulations (Fig. 7; Table 1 ). 

The slope ofthe ratio ofthe fluxes ofDIN:P04-
3 was 15.4, which was similar to Redfield 

values. 

Discussion. 

Surprisingly, the strongest effect of nutrient enrichment in our experiment was 

increased accumulation of grazer, not plant, biomass. Nutrients efficiently passed through 

the food chain, increasing the biomass of the grazing amp hi pod, Gammarus mucronatus, 
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which was able to regulate primary producer abundance. Grazer consumption of plants 

and algae translated into lower rates of ecosystem production. While top-down (i.e. 

grazing) controls governed primary producer biomass and production, nutrient 

enrichment dominated effects on the stoichiometry of Z. marina and on DIN and P04-
3 

flux rates. Although we do not have data for carbon and nitrogen composition of 

macroalgae it seems likely that nutrient enrichment may have increased G. mucronatus 

biomass by increasing primary producer quality, rather than or in addition to increasing 

primary production per se. Our results also indicated that DIN and P04-
3 were recycled at 

roughly Redfield proportions. Overall, grazing determined the productivity and 

abundance of plants and algae while nutrient enrichment influenced the storage and 

cycling of inorganic nitrogen and phosphorous. 

Effects of nutrient enrichment and food web composition on plant and animal biomass 

The nutrient enhancement of macroalgae and epiphytic algae was absent in grazer 

treatments, showing that grazing was a stronger determinant of algal biomass than 

bottom-up forcing. Grazers also decreased eelgrass biomass, but only in the three and 

five species treatments, which included Ampithoe val ida a member of a family known to 

graze heavily on macroalgae and seagrass (Duffy and Hay 2000; Valentine and Duffy 

2006). Since Z. marina abundance was similar in the grazer-free controls and in the 

monocultures, G. mucronatus likely had little effect on eelgrass biomass, which is 

consistent with previous experiments in this system (Duffy and Harvilicz 2001; Duffy et 

al. 2001 ). It is perhaps surprising that G. mucronatus did not indirectly increase Z. marina 

biomass by reducing competitive macroalgae and epiphytes. The minor grazers likely 
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reduced Z. marina biomass directly by grazing on leaves or indirectly by damaging the 

leaves while consuming attached algae. Overall these data corroborate previous studies 

showing that the individual grazer species filled different functional roles which, in turn, 

affected primary producer community composition. 

The positive effect of nutrient enrichment on G. mucronatus biomass indicated 

that primary production stimulated by nutrient enrichment was rapidly channeled to 

grazing invertebrates and, by extension, higher trophic levels. Unlike G. mucronatus, 

minor grazer biomass was not elevated in nutrient enriched treatments. Minor grazers 

may have consumed primary producers that were unresponsive to nutrient amendments 

or, more likely, that they were outcompeted by G. mucronatus. It is also possible that the 

changes in grazer abundance reflected an early successional sequence; a different pattern 

might have emerged had the experiment run longer (Cardinale et al. 2007). However, it is 

likely that differences in grazer biomass were due to species-specific variations in life 

history and sensitivity to environmental conditions (i.e. temperature, salinity, DO, etc.) 

(Procaccini and Scipione 1992; Attrill et al. 1999). Since the experimental duration 

permitted the production of at least two amphipod generations (Duffy 2003) our results 

should reflect interactions between the grazer species. 

Predators reduced minor grazer biomass but did not affect G. mucronatus, 

suggesting that the minor grazers, either as individuals or as a population, were more 

susceptible to predation by crabs. Despite the negative predator effect on minor grazer 

biomass, there was no evidence of a trophic cascade suggesting that the primary producer 

community reflected the dynamics of the most abundant grazer species. This finding is in 

contrast to previous experiments in which crab predators initiated a trophic cascade, 
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increasing biomasses ofmacroalgae and sediment microalgae (Duffy et al. 2005; Canuel 

et al. 2007; Spivak et al. 2007). It is possible that the low vulnerability of G. mucronatus 

to predation prevented a trophic cascade. The absence of predator effects underscores the 

importance of understanding how system productivity and community composition can 

affect interactions between successive trophic levels (Chase 2003; Borer et al. 2005). 

Overall, both bottom-up and top-down controls regulated biomass in this system, 

but affected different components. Grazing tended to be a stronger determinant of 

primary producer abundance even under nutrient addition. This result corroborates 

previous studies demonstrating that grazing controls can overwhelm nutrient effects 

because grazer consumption of algae is immediate whereas nutrient stimulation of algal 

growth has a time lag (Hillebrand 2002). The relative importance of bottom-up versus 

top-down controls on grazers also depended on grazer identity. For instance, G. 

mucronatus was more abundant in nutrient-enriched treatments and was unaffected by 

predation. Whereas minor grazers did not respond to nutrient enrichment but were 

decreased by predators. These results confirm that grazer community composition can, in 

part, determine whether bottom-up controls ascend or top-down controls cascade through 

a food web (Chase 2003; Borer et al. 2006). 

Effects of nutrient enrichment and food web composition on plant and animal 

stoichiometry 

While grazers were the main determinant of primary producer abundance, nutrient 

enrichment strongly influenced the quality of producer tissues. Nutrient enrichment 

decreased the C:N of Z. marina and macroalgal tissues, thereby increasing their 
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nutritional value to grazing invertebrates. Conversely, there was no difference in grazer 

C:N in the nutrient vs. non-nutrient treatments. The less plastic stoichiometry of 

invertebrate grazer vs. primary producer tissues is typical (Sterner and Elser 2002). 

There were two possible explanations for the lower C:N of Z. marina blades in 

the nutrient vs. non-nutrient treatments (Fig. 3C; Table 1 ). First, Z. marina was nutrient 

limited in the non-nutrient treatments and absorbed the nitrogen from the water column to 

relieve nutrient stress. Second, Z. marina might have exhibited 'luxury consumption' by 

absorbing more nitrogen than needed for immediate growth and metabolism (Sterner and 

Elser 2002). However, since C:N values of Z. marina leaves have been reported between 

7.2- 17.8 (Atkinson and Smith 1983), 'luxury consumption' seems unlikely. The 

lowered seagrass C:N may not have increased grazing, as observed in other systems 

(McGlathery 1995; Goecker et al. 2005), since Z. marina biomass was decreased in both 

the non-nutrient and nutrient treatments at higher levels of species richness (Fig. 1B). 

However, grazers reduced Z. marina %TN in nutrient-enriched treatments (Fig. 3A; 

Table 1 ). Thus, it is possible that grazers either consumed nitrogen-rich sea grass tissues 

or that they damaged the seagrass blades and this led to nitrogen leaching. In non-nutrient 

treatments, Z. marina % TOC was increased by grazers while C:N was increased by 

predators (Figs. 3B-C; Table 1 ). Mechanical damage to the plant blades caused by 

grazers and predators might have induced a plant physiological response, such as 

production of carbon-rich secondary metabolites including phenolics (Hay et al. 1994; 

Arnold and Targett 2002) or increased storage of carbohydrates (Alcoverro et al. 2001). 

Accumulation of these carbon-rich moieties, could reduce Z. marina quality as inferred 

by the C:N ratios. The negative effect of grazers and predators on Z. marina quality (non-
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nutrient treatments) is consistent with the hypothesis that plants increase carbon-based 

defenses and I or store carbohydrates when resource availability is low (Bryant et al. 

1983; Alcoverro et al. 2001; Massey et al. 2005). However, there is little research on 

seagrass physiological responses to grazing damage and more evidence is needed to 

support the mechanism put forth here (Heck and Valentine 2006). Nutrient effects on 

eelgrass and macroalgal tissues did not translate into alter SOM quality as indicated by 

the C:N. However, sediment C:N is a poor indicator of OM sources since SOM reflects 

contributions from primary producers, animals, and sediment microbes as well as the 

products of OM decomposition by sediment bacteria. Thus, sediment C:N likely reflected 

a mixture of OM sources (Elser and Foster 1998). 

Due to stricter biochemical constraints, elemental ratios of animals are generally 

less flexible than vascular plants and algae (Elser et al. 2000; Sterner and Elser 2002; 

Vrede et al. 2004). As such, we expected the C:N of grazers to remain constant despite 

changes in plant and algal quality. Nutrient enrichment slightly but significantly 

increased %TN and % TOC of G. mucronatus but decreased % TOC of A. val ida. 

Predators, however, increased the % TOC of A. val ida. Although the nitrogen and carbon 

content of grazers changed in response to nutrients and food chain length, the C:N of both 

grazers was insensitive to our experimental manipulations. This supported our prediction 

that grazer stoichiometry would be less plastic than Z. marina and algae. Since the C:N of 

grazers was lower than the C:N of potential food sources (i.e. primary producers and 

sediments), it is likely that grazers preferentially retained nutrients to maintain an optimal 

stoichiometric balance. Previous studies demonstrated that C:N ratios of invertebrates 

(insects and crustacea) are relatively constrained, likely reflecting their body structure 
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and life history (Sterner and Elser 2002). Similarly, zooplankton have a narrow variation 

in N but are more variable in P content, which is likely due to changes in growth rate and 

biochemical requirements (Sterner and Elser 2002). 

Ecosystem metabolism was a JUnction of plant biomass and sediment dynamics 

A final goal of this experiment was to determine whether ecosystem productivity 

and fluxes of inorganic nutrients reflected changes in above-ground biomass or in SOM 

quality. Although our measured flux rates reflected combined water column and sediment 

dynamics we acknowledge that sediment microbial processes are important to 

biogeochemical cycles and should be considered in greater detail. GEP and ecosystem 

respiration were increased by nutrient additions and decreased by grazers, reflecting 

similar changes in primary producers While GEP was correlated to above-ground 

primary producer biomass, ecosystem respiration appeared to be driven by benthic 

processes. Respiration was negatively related to surface sediment C:N but was not 

correlated to net ecosystem production(?= 0.03,p = 0.195; data not shown). This 

suggests that sediment microbes, including benthic microalgae, rather than above-ground 

biomass, dominated ecosystem respiration. However, sediment C:N only explained 17% 

of the variation in ecosystem respiration flux. It is possible that water column processes 

or processes in the deeper sediments (i.e., below 0-1 em) may explain more of the 

variation, but we do not have information to support or refute this hypothesis. Grazers 

also decreased the ratio ofGEP to respiration (P:R), which is indicative of the balance 

between autotrophy and heterotrophy (Fig. 6C; Table 1 ). Combined, these data indicate 
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that grazers were the strongest determinant of ecosystem metabolism but that nutrient 

effects on SOM quality likely had indirect effects on respiration rates. 

Since patterns of GEP mirrored above-ground plant and algal biomass, we 

expected daily flux rates of DIN to reflect uptake by plants (Hansen et al. 2000), release 

by grazers (Vanni 2002), and removal by sediment microbial processes (Dahllof and 

Karle 2005). Thus, we predicted that DIN flux rates would be low when plant biomass 

was high and that flux rates would be high when grazers were abundant. Instead, DIN 

flux rates were increased by nutrients at all levels of grazer species richness (Fig 7 A; 

Table 1) and were not correlated to the abundances of any of the primary producers or 

grazers (Table 2; grazer data not shown) nor sediment C:N (Table 3). In non-nutrient 

treatments, DIN fluxes were negative indicating that inorganic nitrogen was being 

removed, likely by sediment microbial processes. However, in the presence of nutrient 

enrichment, DIN fluxes were consistently positive suggesting high rates of regeneration. 

It is possible that the short experimental duration combined with the high abundances of 

macroalgae and grazers prevented or reduced benthic microalgal productivity in nutrient­

enriched treatments. This community is particularly important to sediment redox 

conditions and oxygen sensitive processes that mediate in nitrogen transformations and 

cycling (McGlathery et al. 2007). 

In this system, the most likely contributors to P04-
3 flux were grazers and 

sediments. Grazers recycle P04-
3
, from ingested plants and algae, back into the water 

column while P04 -
3 is effluxed from sediments under anaerobic conditions (Nixon et al. 

1980; Valiela 1995). Consequently, we predicted that P04-3 flux rates would increase 

with grazer abundance and the availability of labile SOM. At the end of the five week 
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experiment, daily flux rates ofP04-3 were increased by nutrients but were unaffected by 

predator presence or grazer species richness (Fig. 7B; Table 1 ). This indicates that grazer 

recycling of P04-3 was not a large contribution to the daily flux rate. P04-3 flux correlated 

positively to epiphytic Chl a and negatively to surface sediment C:N (Tables 2, 3). It is 

possible that nutrient enrichment increased epiphytic biomass, which contributed labile 

OM to the sediments and increased SOM quality. Sediment microbial activity likely 

increased in response to higher quality OM, potentially leading to lower sediment oxygen 

concentrations and increased efflux of P04 -3• Sediment release may be a more likely 

source of inorganic phosphorous than bacterial remineralization as microbes might retain 

some of the recycled nutrient to maintain internal stoichiometric balance (Elser et al. 

1995). Since epiphytic Chl a and surface sediment C:N only cumulatively explain 20% of 

the variation in P04-3 other processes must also be important determinants ofP04-
3 flux. 

Another possibility is that the C:N ratio of surface sediments (0-1 em) was not 

representative of the entire sediment pool (10 em depth). If oxygen concentrations 

decreased with increasing depth, as is typical of coastal sediments, release ofP04-
3 from 

the deeper anoxic sediments would be likely. Combined, these data suggest SOM quality 

and likely, sediment reducing conditions, were likely stronger determinants of daily P04-3 

flux than grazer richness or predator presence. 

In coastal areas, relative fluxes of inorganic nitrogen and phosphorus are 

generally lower than the Redfield ratio of 16:1, possibly due to the removal of nitrogen 

by denitrifying bacteria (Nixon et al. 1980; Valiela 1995). In this experiment, daily fluxes 

of DIN and P04 -
3 were being regenerated at roughly the Redfield ratio, suggesting that 

algal organic matter is being recycled and that denitrification may not be an important 
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process in this system (McGlathery et al. 2007). Nutrient enrichment increased the 

relative flux of DIN to Po4·3
, from 16.06 (± 3.38 S.E.) to 28.83 (± 3.29 S.E.) in non­

nutrient and nutrient treatments, respectively. The higher DIN flux in nutrient enriched 

treatments suggest that fertilizer additions may have fueled the microbial community and 

increased recycling. In addition, there was no correlation between the ratio ofDIN:P04"
3 

fluxes and grazer species richness nor predator presence (data not shown). Combined, 

these data suggest that both water column and sediment processes contributed to fluxes of 

inorganic nutrients and that DIN and P04-
3 were regenerated at rates in ratios consistent 

with Redfield organic matter. 

Our results largely supported our initial hypotheses and demonstrated that bottom­

up and top-down controls affected where biomass accumulates within the food web, the 

stoichiometric ratios of primary producers, and ecosystem metabolism. Nutrient 

enrichment increased_macroalgae and epiphytic Chi a which, in turn, increased GEP and 

G. mucronatus biomass. The grazing community effectively controlled algal and 

epiphytic production stimulated by nutrient enrichment, lending support to the hypothesis 

that invertebrate grazers can alleviate negative effects of eutrophication (Armitage et al. 

2005; Burkepile and Hay 2006; Heck and Valentine 2007). Surprisingly, predators did 

not initiate a trophic cascade. Although there were few main predator effects, predator 

interactions with grazers and nutrient enrichment underscore the complexity of the 

system. However, the absence of strong predator effects may lend support to the notion 

that community composition can, in part, determine the strength of trophic cascades. 

Combined, our results indicate that shifts in resource availability and food web 

composition influence nutrient storage (as biomass) and cycling in seagrass habitats. 
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Table I. Test<l of significance and estimated magnitude of effects (m 2) of nutrient enrichment, food chain length, and grazer species richness and their interactions on biomass, elemental ratios, and daily flux rates. 
When an interaction was significant the dataset was divided acwrding to the interaction (i.e. predators vs. no predatol3 and nutrients vs. no nutrients) and single factor ANOVAs were run. For interactions. P refern to 
pmJators, G to grazers, and N to nutrients. Significantp values are listed in bold. 

Plant biomass 
Zostera marina (AFDM, g) 

Predators 
No predators 

Macroalgae (AFDM, g) 

Nutrients 
No nutrients 

Epiphytic Chi a (~tg cm·2) 

log Benthic Chi a (J.tg cm·2
) 

Grazer Biomass 
log Gammarus mucronatus 
log Minor Grazers 

Stoichiometry 
Z. marina %TN 

Nutrients 
No nutrients 
Predators 
No predators 

z. marino %roc 

Nutrient<; 
No nutrients 
PredatoB 
No predators 

Z. marino C:N (molar) 

SOM%TN 
SOM%TOC 

Nutrient<; 
No nutrients 
Predators 
No predators 

Nutrient enrichment 

0.086 
0.260 
0.173 
0.018 

0.003 

0.297 

0.034 
0.799 

<0.001 

<0.001 
<0.001 

0.471 

0.095 
0.198 

<0.001 

<0.001 
<0.001 

0.8J4 
0.925 

29.62 0.01 
16.11 0.01 
16.65 O.D2 

116.88 0.02 

54.88 0.09 

0.20 0.00 

2.16 0.05 
0.01 0.00 

9.34 0.83 
3.75 0.52 
5.08 0.00 

42.06 0.10 
9.94 0.02 

1374.60 0.57 

1015.37 0.83 
430.26 0.67 

0.00 0.00 
0.00 0.00 

Food chain length 

0.086 

0.472 

0.286 
0.859 

0.279 

0.121 

0.419 
<0.001 

0.154 

0.574 
0.006 

0.777 

0.203 
0.093 

0.058 
0.847 
0.048 

0.148 
0.035 

29.71 0.02 

9.95 0.00 

26.79 0.00 
0.51 0.00 

6.50 0.00 

0.45 0.02 

0.28 0.00 
3.10 0.20 

0.21 O.Ql 

0.04 0.00 
0.69 0.31 

0.78 0.00 

17.92 O.o3 
28.50 0.08 

46.13 0.01 
0.13 0.00 

96.37 0.18 

0.00 0.01 
0.15 0.05 

Grazer rommunity 

p MS 

<0.001 
O.Oll 

<0.001 
<0.001 

<0.001 
o.ooz 
0.006 

0.912 

0.219 
0.205 

0.019 

0.008 
0.147 
0.950 
o.ooz 
o.ou 

0.053 
0.009 
0.212 
o.ozz 
0.315 
0.045 
0.813 
0.90~ 

0.059 

0.049 
0.045 

184.00 0.)8 
59.31 0.29 

149.59 0.70 
846.81 0.53 

918.32 0.81 
125.56 0.42 

27.21 0.12 

0.03 0.00 

0.68 0.02 
0.28 0.()) 

0.37 0.04 

0.71 0.)1 
0.14 0.()7 
0.01 0.00 
0.65 0.16 

41.02 0.10 

32.26 0.19 
49.10 0.33 
22.34 0.06 
23.77 0.19 
14.64 0.00 
11.71 0.20 
6.17 0.00 
2.69 0.00 

28.50 0.()6 

0.00 0.07 
0.09 0.07 

Interactions 

PxG 0.023 (34.51) 

NxG <0.001 (194.85) 
NxPxG 0.041 (58.15) 

NxP 0.024 (0.55) 
NxG 0.007 (0.47) 
PxG 0.038 (0.) I) 

NxG 0.005 (0.51) 
NxP 0.036 (45.95) 
NxG 0.013 (39.93) 

NxG 0.006 (34.14) 
NxP 0.042 (53.29) 

Model error 

MS 

9.39 0.54 
11.82 0.64 
6.61 0.29 

18.71 0.32 

21.87 0.18 
15.55 0.54 

5.36 0.81 

0.18 1.12 

0.41 0.99 
0.16 0.87 

0.10 0.33 

O.IJ 0.60 
O.o7 0.58 
0.11 0.19 
0.08 0.20 
9.53 0.80 

10.15 0.78 
8.87 0.65 
D.~~ 0.85 
5.48 0.50 

11.88 0.40 
3.47 0.76 

20.81 0.89 
14.)4 0.21 
9.24 0.26 

0.00 0.93 
0.03 0.9~ 



SOM C:N (molar) 0.051 4.92 O.oJ <0.001 18.86 0.15 0.404 1.20 0.00 1.19 0.83 

G. mucronatus %TN 0.043 12.50 0.04 0.676 0.49 0.00 0.214 3.74 O.QI 2.T!o 0.99 
G. mucronatus %TOC 0.028 189.32 0.05 0.818 1.86 0.00 0.153 69.66 0.04 ~4.20 0.96 
G. mucronatus C:N (molar) 0.151 2.25 0.02 0.834 0.05 0.00 0.102 2.58 0.06 1.02 0.98 
A. valida %TN 0.421 3.93 0.00 0.766 0.53 0.00 0.958 0.02 0.00 NxPxG 0.045 (27.15) 5.76 0.97 
logAmpithoe valida %TOC 0.027 0.01 0.05 0.002 0.02 0.12 0.092 0.00 0.06 0.00 0.71 
A. valida C:N (molar) 0.299 0.06 0.00 0.905 0.00 0.00 0.477 0.03 0.00 0.05 1.03 

Daily Flux rates 
GEP(mmol01 m-2 d"1

) <0.001 9.70E-Kl4 0.09 0.084 1.81E-Kl4 O.ol <0.001 1.58E+{)5 0.44 PxG 0.0318 (1.91E-Kl4) 5727.31 0.44 

PredatoJS 0.002 6.40£+{)4 0.21 <0.001 7.56E+{)4 0.47 4480.88 0.28 
No predatoJS 0.040 3.55E+{)4 0.09 <0.001 1.03E+{)5 0.57 7056.85 0.38 

Respiratton (mmol C m·2 d" 1
) <0.001 6.48E+{)4 0.28 0.024 8.70£+{)3 O.oJ 0.001 I.OIE-1{)4 0.11 PxG 0.017 (6069.89) 15;\4.90 0.54 

Predators <0.001 1.95E+{)4 0.51 0.784 843.09 0.00 2;\52.66 0.58 
No predatoJS <0.001 2.61E+{)4 0.38 <0.001 1.54E+04 0.44 662.61 0.18 

Production: Respiration (P:R) 0.098 0.26 0.02 0.408 0.06 0.00 <0.001 1.01 0.27 PxG 0.044 (0.266) 0.09 0.69 
Predators 0.182 0.18 0.02 <0.001 1.04 0.52 0.09 0.45 
No predator.; 0.326 0.09 0.00 0.064 0.25 0.19 0.08 0.87 

DIN (mmol m-2 d' 1
) <0.001 5.26E+{)4 0.48 0.352 5J8.21 0.00 0.145 116.26 0.02 602.95 0.45 

P04"
3 (mmol m·2 d" 1

) <0.001 109.82 0.38 0.517 0.91 0.00 0.060 5.83 0.04 2.B 0.61 

DIN :P04'3 
0.002 4171.45 0.12 0.400 275.86 0.00 0.517 279.()4 0.00 377.93 0.94 



Table 2. Regression of daily ecosystem flux rates against biomass of the major primary producer groups. The coefficient indicates the directionality of the relationship while the partia11 indicates 
the goodness of fit. Significant p values are in OOld. 
Ecosystem fimction Zostera marina Epiphytic Chi a Macroalgae Benthic Chi a Total Model 

Coefficient Partial r'• p Coefficient Partial .-2* p Coefficient Partial r'• p Coefficient Partial r2* p r' 

GEP (mmol 0, m·' d'1) 9.17 0.09 <0.001 5.15 0,01 0.310 9.35 0.26 <0.001 32.36 O.ol 0.327 0.36 

Respiration (mmol C m·' d' 1
) 3.34 0.06 0.054 6.32 0.05 0.064 1.75 0.05 0.086 0.96 0.00 0.965 0.16 

DIN (mmol ni2 d'1) -2.21 0.06 0.083 3.00 0,03 0.229 0.23 0.00 0.754 7.35 0.00 0.649 0.10 

P043 (mmol ni2 d'
1
) .{),ll 0.06 0.090 0.30 0.10 0.015 .{).05 O.o3 0.191 .{).37 0.00 0.662 0.20 

• partial r' was calculated by dividing the type Ill SS by the corrected total SS. 



Table 3. Regressions of daily ecosytem flux rates against 
sediment organic matter quality (C:N). The coefficient 

indicates the directionality of the relationship while(' 
indicates the goodness of fit. Significant p values are in bold. 
Ecosystem function Sediment C:N (mol:mol) 

Coefficient 2 r p 

GEP (mmol 0 2 m'2 d'1) -34.06 0.10 0.029 

Respiration (mmol C m'2 d'1) -21.82 0.21 0.001 

DIN (mmol m'2 d'1) -6.62 0.04 0.153 
P04' 3 (mmol m'2 d'1) -0.53 0.10 0.026 



Table 4. Ecosystem respiration as a function of sediment organic matter quality and gross ecosystem production (i.e. 

autochthonous organic matter). The coefficient indicates the directionality of the relationship while the partial f 
indicates the goodness of fit. Significant p values are in bold. 

Flux Sediment C:N (molar) GEP (mmol 0 2 m-2 d-1
) Total Model 

Coefficient Partial r2* p Coefficient Partial r2* p 

Respiration (mmol C m· d- ) -20.09 0.17 0.003 34.64 O.Q3 0.195 0.20 

*partial~ was calculated by dividing the type III SS by the corrected total SS. 



Figure Captions. 

Figure 1. The effects of nutrients (N), predators (P), and grazer richness (G) on primary 

producer biomass. Nutrient enrichment increased macroalgae (A) and epiphytic Chi a 

(C). Grazers reduced abundances ofmacroalgae (A), Z. marina (B), and epiphytic Chi a 

(C). Benthic Chi a (D) was unaffected by the experimental manipulations. For this and 

the following figures, all error bars are standard error and the statistical results are 

reported in Table 2. 

Figure 2. The effects of nutrients {N) and predators (P) on grazer biomass. Nutrients 

increased the biomass of G. mucronatus (B) while predators reduced the abundance of 

minor grazers (C). 

Figure 3. The effects of nutrients (N), predators (P), and grazer richness (G) on Z. marina 

elemental content. (A) %TN was increased by nutrients and decreased by grazers. (B) 

% TOC was increased by grazers but only in non-nutrient treatments, resulting in a grazer 

by nutrient interaction. (C) Nutrients decreased C:N (mol:mol) and, hence, increased the 

nutritional quality of Z. marina. 

Figure 4. The effects of nutrients (N), predators (P), and grazer richness (G) on sediment 

organic matter (SOM) elemental content. (A) %TN was influenced by grazer richness but 

was unaffected by nutrients and predators. (B) % TOC was increased by predators and 

influenced by grazers but unaffected by nutrients. (C) C:N was increased by predators. 
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As SOM had a lower C:N than Z. marina or macroalgae, it is likely that SOM derived 

from multiple sources of varying quality. 

Figure 5. (A-C) Nutrients (N) increased G. mucronatus %TN and %TOC, but did not 

affect C:N. (D-F) Nutrients decreased and predators (P) increased the% TOC of A. valida 

(E). However, both% TN ~nd C:N were insensitive to nutrient and food web 

manipulations. These data indicate that grazer stoichiometric ratios were less flexible 

than primary producers. 

Figure 6. (A) Nutrients (N) increased and grazers (G) decreased gross ecosystem 

production. (B) Ecosystem respiration was increased by nutrients but decreased by 

grazers and predators (P). (C) The ratio of production to respiration was decreased by 

grazers. Values below or above one (marked by the horizontal line) are indicative of net 

heterotrophy or autotrophy, respectively. 

Figure 7. Nutrients increased the daily flux rates of DIN (A) and P04-
3 (B). DIN and P04-

3 (C) were positively correlated (c = 0.64;p < 0.001). The equation of the line was: y = 

15.40x + 12.16, with a slope similar to Redfield organic matter (N:P = 16). 
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Spivak et al. Fig. 3 
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Spivak et al. Fig. 6 

800 
Gross Ecosystem Production A 

--I 

"0 
N 

I a 
0 400 
a a 
'-' 

0 
Q 

0 

400 
Ecosystem Respiration B 

--I 
"0 

~ a 
200 0 9 9 a a 

'-' 

u 

v -N, -P 

0 0 -N,+P 

3 
Production : Respiration c 

----T- +N -P 
-e- +N+P 

0 L-~----~----r-·--~----~----~~ 

0 1 3 5 

Grazer Species Richness 



Spivak et al. Fig. 7 
150 

'\l -N, -P Daily Flux Rate A 
,.-._ 0 -N, +P -I -T- +N, -P ""c:::: 

N 100 +N,+P I 

8 -0 
8 

50 8 
"-" 

z -Q 

0 " ' .. '. 0 
10 

Daily Flux Rate B 
,.-._ -I 
""c:::: 

N 
5 I 

8 -0 
8 
8 

"-" 0 0 0 M ·0· I 
"'T 

0 
Cl-; 

-5 
0 1 3 5 

200 
Grazer Species Richness 

DIN: P04-3 c 
• • ,.-._ • -I 100 ""c:::: 

N 
I 

8 -0 
8 0 8 
"-" 

z -Q 

-100 
-4 0 4 8 

P04-3 (mmol m-2 d-1) 



Chapter 5: 

Community composition and nutrient enrichment influence sediment organic 

matter composition in an experimental seagrass ecosystem. 

Amanda C. Spivak, Elizabeth A. Canuel, J. Emmett DuffY, J. Paul Richardson 
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Abstract. 

Above-ground animal and plant communities may influence sediment microbial 

processes through the production of detrital organic matter (OM). Consequently, changes 

in OM sources and quality, as precipitated by above-ground communities, may have 

implications for sediment biogeochemistry. Here, we experimentally tested how sediment 

organic matter (SOM) composition changes in response to shifts in grazer species 

richness, trophic structure, and resource availability in a seagrass habitat. We 

manipulated community composition and nutrient levels since fishing and coastal nutrient 

enrichment, respectively, are two common perturbations to seagrass ecosystems. Our 

mesocosm experiment utilized a factorial design manipulating water column nutrient 

levels, food chain length (i.e. predator presence vs. absence), and grazer species richness 

(0, 1, 3, or 5 species). At the end of the five-week experiment, we analyzed the sources 

and quality of surface SOM using fatty acid (FA) biomarkers. We found that nutrient 

enrichment increased macroalgal and epiphytic biomass but resulted in lower abundances 

of algal and microbial FA in the sediments. Predator effects varied with grazer identity 

and did not cascade to primary producer abundance. In the sediments, predator presence 

increased the abundance ofF A deriving from heterotrophic bacteria. In general, grazer 

effects on primary producer abundance and SOM composition were stronger than 

nutrient enrichment and food chain length. 
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Introduction. 

Declining biodiversity coupled with increasing anthropogenic stresses have 

prompted questions about how these disturbances affect ecosystem functioning (Hooper 

et al. 2005; Balvanera et al. 2006; Cardinale et al. 2006). This has generated studies 

exploring the effects of above-ground trophic structure (Shurin et al. 2002; Petchey et al. 

2004; Byrnes et al. 2006), diversity within and between trophic levels (Tilman et al. 

1997; Naeem and Li 1998; Duffy 2003), resource availability (Ware and Thomson 2005; 

Hulot and Loreau 2006; Cloern 2007), and their interactions (Menge 2000; Chase 2003; 

Borer et al. 2006) on a variety of ecosystem functions across habitats. These changes in 

above-ground communities and resource availability may also extend to microbial 

communities in terrestrial soils (Mikola and Setala 1998; Wardle et al. 2004) and marine 

sediments (Canuel et al. 2007; Spivak et al. 2007). The link between animals and plants 

above-ground and microbes in soils and sediments is often detritus. As soil and sediment 

bacteria govern rates of decomposition and nutrient regeneration (Boschker and 

Cappenberg 1998; Holmer et al. 2004; Dahllof and Karle 2005), it is important to 

understand how these communities are affected by changes in the quality and 

composition of detrital organic matter (OM) as precipitated by above-ground 

communities. To this end, we conducted a mesocosm experiment testing the singular and 

interactive effects of trophic structure, herbivore species richness, and nutrient· 

concentrations on sediment organic matter (SOM) composition in a seagrass habitat. 

We used a coastal seagrass (Zostera marina) ecosystem as a model habitat for 

several reasons. First, animal and primary producer species within seagrass habitats are 

well studied (Duffy 2006; Heck and Valentine 2006). Resident invertebrate grazers 

158 



consume a variety of primary producers, including macroalgae, epiphytes, and 

occasionally seagrass blades (Duffy and Harvilicz 2001; Heck and Valentine 2006). 

Through their feeding habits and preferences, grazers can influence the delivery and 

composition of sediment organic matter (SOM) (Duffy 2003; Canuel et al. 2007). As 

SOM quality is an important determinant of sediment bacterial activity grazer mediated 

shifts in SOM composition may influence remineralization rates and carbon storage 

(Hansen and Blackburn 1992;(Cebrian and Duarte 2001). 

Second, seagrass communities are affected by fishing efforts that reduce food­

chain length (Duffy et al. 2005) and by coastal eutrophication that increases water 

column nutrient concentrations and reduce light availability (Cloem 2001; Orth et al. 

2006). The loss of commercially important predators (e.g., fish and blue crabs) that live 

in seagrass systems may influence grazer community composition and strengthen grazer 

controls on primary producers (Heck and Valentine 2007). Coastal eutrophication is cited 

as a leading cause of two factors that contribute to seagrass loss, algal overgrowth and 

low water quality (Cloem 2001; Orth et al. 2006). Elevated water column nutrient 

concentrations may strengthen bottom-up controls since resource availability is a 

predictor of primary producer biomass and the abundances of organisms at higher trophic 

levels (Duarte et al. 2000; Ritchie 2000; Ware and Thomson 2005). However, in seagrass 

beds top-down controls by grazing invertebrates generally negate the stimulatory effects 

of nutrient resources on algae (Hughes et al. 2004; Armitage et al. 2005). 

Finally, seagrass and benthic microalgae are sensitive to bacterial transformations 

of nitrogen, sulfur, and other nutrients in the sediments (Holmer et al. 2005; McGlathery 

et al. 2007; Perez et al. 2007). Bacterial decomposition of SOM regenerates inorganic 
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nitrogen that may rapidly be taken up by benthic microalgae in the surface sediments 

(Hansen et al. 2000; Eyre and Ferguson 2002; McGlathery et al. 2007). Deeper in the 

sediments, or if oxygen availability is depleted, sulfate reduction may become an 

important pathway for OM decomposition. However, an accumulation of sulfides may 

negatively affect seagrass health (Calleja et al. 20Q7; Perez et al. 2007). Thus, changes in 

SOM that affect the sediment bacterial community may, in tum, influence the primary 

producer community. 

We assessed SOM composition and quality by analyzing fatty acid biomarkers. 

These compounds serve as functional proxies linking OM to potential sources since they 

are reliably produced by specific groups of organisms (Canuel and Martens 1996; 

Napolitano 1998; Dalsgaard et al. 2003). Diagnostic biomarkers often have site-specific 

methyl groups, double bonds, or branching patterns that are useful for tracing sources of 

OM (Napolitano 1998; Dalsgaard et al. 2003). For example, bacteria synthesize iso-, 

anteiso-, and methyl-branched fatty acids while microalgae produce highly unsaturated 

long chain fatty acids (Volkman et al. 1998). Here, we analyzed total fatty acids (TFA) 

and a sub-class of the TFAs, phospholipid-linked fatty acids (PLFA), to compare OM 

contributions from detrital and viable or recently viable sources, respectively. 

Previously, we conducted mesocosm experiments to asses the influence of 

community composition (DuffY et al. 2003; Canuel et al. 2007) and light availability 

(Spivak et al. 2007) on SOM composition. These experiments revealed that both top­

down and bottom-up controls affected the relative abundance ofSOM deriving from 

primary producers and bacteria. One of the motivations of this experiment was to 

determine whether the type of bottom-up control (i.e. light vs. nutrients) is important to 
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SOM composition. To this end, we manipulated water column nutrient levels, food chain 

length (predator presence vs. absence), and grazer species richness (0, I, 3, or 5 species) 

and measured their effects on primary producer abundance and sediment fatty acid (FA) 

biomarker composition. In addition, we examined whether primary producer abundance 

and sediment FA responses were more or less variable at the low (0-species) or high (5-

species) levels of grazer richness. Specifically, we tested three main hypotheses. First, 

nutrient enrichment would increase algal biomass and algal contributions to SOM. This 

would, in tum, increase SOM lability and sediment bacterial activity. Second, the 

presence of a grazer community would control algal production stimulated by nutrient 

enrichment Thus, grazer feeding preferences would indirectly increase seagrass 

abundance, by reducing algae and increasing light, thereby influencing SOM 

composition. Third, the presence of predators would reduce grazer biomass and activity, 

thereby increasing the accumulation of algae, SOM quality, and sediment heterotrophic 

activity. Consequently, predators may exacerbate the effects of nutrient enrichment by 

negatively affecting the grazer community. Finally we compared the primary producer 

and SOM composition results from this mesocosm experiment to those from a previous 

field experiment with a similar design (Chapter 3). 

Methods 

Experimental Design. 

We conducted a mesocosm experiment to test the main and interactive effects of 

nutrient availability, grazer species richness, and food chain length on sediment fatty acid 

biomarker composition. Results for primary producer and grazer biomass, ecosystem 
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metabolism, and bulk SOM content are reported in Chapter 4. Water column nutrient 

concentrations were manipulated by adding Osmocote™ slow release fertilizer (N:P:K = 

3:1 :2) to half of the tanks. Grazer species richness was varied across four levels (0, 1, 3, 

or 5 species). The highest richness level contained five amphipod species present in the 

York River estuary, VA, at the time of the experiment, the intermediate level contained 

random combinations of three species, and the lowest richness level only had the most 

abundant and annually persistent species, the amphipod Gammarus mucronatus. The 

remaining four grazer species were also amphipods: Elasmopus levis, Melita nitida, 

Ampithoe valida, and Sympleustes spp. Food chain length was manipulated by exposing 

parallel sets of grazer treatments to a generalist predator, the blue crab, Callinectes 

sapidus. The 16 treatments were each replicated 3 times for a total of 48 mesocosm tanks. 

The outdoor mesocosm experiment was conducted over five weeks during 

summer 2006 in 120 liter translucent fiberglass tanks that were continuously supplied 

with water from the York River estuary, VA. Water passed through a sand filter and then 

through 150 1-1m mesh before filling 'dump buckets' which regularly spilled into the 

tanks, providing turbulence and aeration. The filtering process eliminated larger, non­

target animals while permitting passage of invertebrate larvae and algal spores, which 

often colonized the tanks. The tanks were filled with a mixture of sand : mud (9:2 w:w), 

averaging 0.80% (± 0.18 S.E.) organic matter (OM) content, to a depth of 10 em, In 

contrast with previous experiments (Canuel et al. 2007; Spivak et al. 2007), we used a 

sediment substrate with approximately 1% OM to facilitate Zostera marina transplant 

success and growth (Koch 2001). One hundred pre-weighed eelgrass (Z. marina) shoots, 

cleaned of grazers and epiphytes, were planted in each tank. Sixteen days later, grazing 
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invertebrates were added to each grazer mesocosm. The five-species treatment received 

18 individuals of each species, the three-species treatment had 30 individuals of each 

species, and the one-species treatment had 90 G. mucronatus individuals. Eleven days 

later, two juvenile blue crabs were added to each predator treatment. Each nutrient 

treatment received 200 g ofOsmocote™ slow release fertilizer in the first two weeks of 

the experiment and 100 g every week thereafter. We reduced the fertilizer dosage since 

the target concentration was five times ambient and 200 g resulted in higher than target 

concentrations. The 200 g and 100 g additions ofOsmocote™ increased NH/ 

concentration to 30.6 (29.23 1-1M) and 5.6 (14.37 1-1M) times ambient, respectively 

(Spivak et al. in prep). Nutrients were delivered through two perforated PVC tubes that 

were suspended from the top of the tanks. Twice a week, one nutrient PVC tube from 

each nutrient treatment was refreshed with new fertilizer. Water column nutrient 

concentrations were monitored each week by measuring NH.t +concentrations from five 

randomly chosen tanks of each nutrient treatment using the Koroleff colorimetric method. 

The five-week experimental incubation time was chosen to minimize the risk of invasion 

by non-target animals. This time period permits major changes in animal (one to two 

grazer generations) and plant community development and in surface sediment 

characteristics (DuffY et al. 2003; Canuel et al. 2007; Spivak et al. 2007). Despite 

limitations, this experimental infrastructure simulates several aspects of the biotic and 

abiotic field conditions well (DuffY et al. 2001). Results for the aboveground plant and 

animal community and for ecosystem metabolism and stoichiometric ratios are reported 

elsewhere (Duffy et al. in prep; Chapter 4). 
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Sediment fatty acid analyses. 

At the end of the five week experiment, sediments were collected and analyzed 

for fatty acid biomarker composition. Three sediment cores (2.6 em diameter) were 

collected from every mesocosm tank; the upper 1 em from each was removed and 

combined to form a composite surface sediment sample which was stored in a pre­

combusted ( 450 °C) jar. Samples were immediately put on ice following collection and 

were later frozen at -80 oc until analysis. 

Fatty acids (FA) were analyzed using a revised Bligh & Dyer (1959) method 

(Macnaughton et al. 1997). Briefly, sediment samples were extracted with 

methanol:chloroform :K2HP04 50 mM buffer (2:1:0.8, v:v:v) using an accelerated 

solvent extraction system (Dionex ASE 200). Following extraction, the samples were 

partitioned and the organic phase removed and allowed to sit over anhydrous Na2S04 

overnight to remove traces of water. The samples were concentrated to 1 mL (Zymark 

Turbo Vap 500). The total lipid extracts were separated into non-polar (Fl/2) and polar 

(F3) fractions using silica gel columns; each fraction was then eluted with solvents of 

increasing polarity (Guckert et al. 1985). Fl/2 (neutral and glyco-lipids) and F3 

(phospholipids) were each saponified, using procedures described in Canuel et al. (2007). 

Following saponification, the residue was extracted under basic (saponified-neutral) and 

acidic pH (saponified-acid). The saponified acid fraction was methylated using BF3-

CH30H and purified using silica gel chromatography. Before analysis by gas 

chromatography (GC), samples were evaporated to dryness under N2, and a small volume 

· of hexane ( 100 J!L for the polar fraction and 400 IlL for the non-polar) was added. The 

F As, as methyl esters, were analyzed by gas chromatography following previously-
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published methods (Canuel and Martens 1993; Zimmerman and Canuel2001). Peaks 

were quantified relative to an internal standard, methyl heneicosanoate, added just prior 

to GC analysis. Peak identities were verified using reference standards and by combined 

gas chromatography-mass spectrometry using a Hewlett-Packard 6890 GC interfaced 

with a mass selective detector operated in electron impact mode. F As are designated as 

A:BroC, where A is the total number of carbon atoms, B is the number of the double 

bonds, and C is the position of the first double bond from the aliphatic "ro" end of the 

molecule. The prefixes "i" and "a" refer to iso and anteiso methyl branched F As (see 

Canuel et al. 1995 and references therein). Results for two classes of fatty acids are 

presented: phospholipid-linked fatty acids (PLF A) which represent viable or recently 

viable biomass and total fatty acids (TF A) which represent neutral, glyco-, and 

phospholipids and include the sum of the viable and detrital contributions. 

Statistical analyses. 

Results of the experiment were analyzed in a fully factorial three-way analysis of 

variance (ANOVA, SAS version 9.1 for Windows), with grazer treatment (df= 3), food 

chain length (i.e. predator presence or absence, df = I) and nutrient availability ( df = 1) as 

fixed factors. Data were logarithmically transformed as necessary to maintain 

homogeneity ofvariance as determined by the Cochran's C test. From the ANOVAs, we 

calculated the magnitude of main and interactive effects (ro 2
, percent of variance 

explained). To determine whether abundance of sediment fatty acid groups varied among 

replicates, we conducted the Levene's test of homogeneity of variance (Schultz 1985). 

The three species treatment was excluded from the Levene's analysis as it contained 
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random combinations of grazer species (whereas the one and five species treatments had 

constant composition among replicates) and, consequently, was expected to be the most 

variable treatment. All analyses included all three replicates of every treatment except for 

two: (1) one replicate of the no-nutrient, no-crab, one-grazer species treatment was 

excluded due to contamination by more than 500 mg of grazer ash-free dry matter; and 

(2) a replicate of the no-nutrient, crab, five-grazer species treatment was excluded from 

the total fatty acid analyses because of low internal standard recovery. Thus, we reported 

the type III sum of squares (SS) results from the ANOV A model. Analyses were 

performed on fatty acid biomarker concentrations (ng g-1sediment). Results for primary 

producer and grazer abundances were reported in Chapter 4. 

To aid data interpretation, we performed multiple regression and principal 

components analyses (PCA). We examined relationships between the fatty acid groups 

and the major primary producers (Z. marina, macroalgae, and epiphytic Chi a) and 

invertebrate grazers using multiple linear regressions. Since G. mucronatus was the most 

abundant grazer at all levels of richness, we divided the grazer response into two 

categories, G. mucronatus only and "minor" grazers (i.e., total epifauna less G. 

mucronatus; see Chapter 4). The partial r2 was calculated by dividing the type III SS for 

each response variable by the total SS. We conducted principal components analysis 

(PCA; using Minitab 15) to better elucidate relationships between manipulated and 

response variables. We only performed PCA on SOM variables, as these responded to 

primary producer abundance determined by food web composition and nutrient 

concentrations. PCA loadings describe the relationships between the response variables 

and the dominant principal components. PCA loadings were also regressed against the 

166 



major primary producer groups (Z. marina, macroalgal biomass, and epiphytic Chi a) to 

help interpret the results. 

Results 

Above-ground biomass. 

Results for above-ground biomass of primary producers were reported in Chapter 

4. Here, we present the results for grazer community composition and relative abundance 

in the one and five species treatmentsJ(Fig. 1). We compared the one and five grazer 

treatments since the one species treatment only contained G. mucronatus and the five 

species treatment included the full complement of grazers. Since G. mucronatus is the 

most perennially abundant grazer, a comparison between the monoculture and the five 

species treatment reflects a realistic hypothesis of grazer community composition after 

and before, respectively, a grazer extinction event. The three species treatment was 

excluded because it consisted of random grazer combinations, some of which did not 

include G. mucronatus. 

Nutrients increased grazer biomass in the one and five species treatments (Fig. 1; 

Table I). This effect was stronger for G. mucronatus in the one species treatment (m 2 = 

0.19) than for total epifaunal biomass in the five grazer treatment (m2 = 0.12). Predators 

reduced total epifaunal biomass but had no effect on G. mucronatus biomass in the one 

species treatment. There was no difference in total grazer biomass in the one versus five 

grazer species treatments, however, G. mucronatus achieved higher biomass in the 

monoculture than in the polyculture .It is possible that the changes we observed in grazer 

biomass reflect early successional dynamics in grazer community development and that, 
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had the experiment run longer, different patterns might have emerged (Cardinale et al. 

2007). However, the experimental duration did permit the production of several grazer 

generations (Duffy et al. 2003) and likely allowed for competitive interactions between 

grazer species. 

Total fatty acids. 

At the end ofthe experiment the abundance oftotal fatty acids (TFA) was lowest 

in the one grazer species treatment but was unaffected by nutrient enrichment or predator 

presence (Fig. 2A; Table 2). Variation in TF A abundance (among replicates) in the one 

and five species treatments was similar (Table 3). TF A abundance correlated negatively 

to biomasses Z. marina and G. mucronatus and positively to minor grazers (Tables 4, 5). 

Patterns in TF A and phosopholipid-linked FA (PLF A) were qualitatively very similar, 

however, PLF A abundance was not significantly affected by any of the manipulated 

variables (Fig. 2B; Table 2). Since TF A and PLF A derive from detrital and recently 

viable OM sources, respectively, we normalized the abundance ofPLFA to TFA to 

determine the relative contributions from each OM pool (Fig. 2C). Nutrients increased 

PLF A:TF A which is consistent with higher abundances epiphytes in enriched treatments 

(Chapter 4). The ratio was not related to the abundances of any of the primary producers 

but was negatively correlated to minor grazer abundance (Tables 4, 5). Since the PLFA 

contributions to the TF A pool were small and the trends in PLF A and TF A sub-classes 

were similar, we only present results for the TF A hereafter. 

We partitioned the TFA into five sub-classes based on FA chain length and 

saturation and branching patterns (Table 6). Saturated, short-chain FAs (C 12:o + C14 0), 
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which constituted 3-6% ofthe TFAs, are indicative of algal and microbial sources of OM. 

Abundance ofthis group was lower in treatments with nutrients but was unaffected by 

predators and grazers (Fig. 3; Table 2). C12:o + C14:o was negatively correlated to G. 

mucronatus biomass (Table 5). Abundances of saturated long chain FA (~(C24:o- C30:0); 

5-11% ofTF A), C16:o (20-30% ofTF A), and C 18 0 (3-9% ofTF A) were insensitive to all 

ofthe experimental manipulations (data not shown). 

Polyunsaturated F As (PUP A), which are indicative of labile, algal-derived OM 

accounted for approximately 15% ofTFA. We analyzed two PUPA groups, C 20:4 + C 20:5 

(i.e. C2o PUP A) and C22:5 + C226 (i.e. C22 PUP A) which represent OM contributions from 

diatoms and dinoflagellates, respectively (Fig. 3; Table 2). Grazers were the strongest 

determinant ofPUFA abundance as C 20 PUPA was lowest and C 22 PUPA was highest in 

the G. mucronatus monocultures. Minor grazer biomass correlated positively with C2o 

PUP A and negatively with C22 PUP A (Table 5), suggesting that grazer diet preferences 

influenced the composition of sedimentary PUP A .. Grazers also affected the variance of 

the PUP A groups (Table 3). C20 PUP A was more variable in the five- than in the one­

species grazer treatments whereas C22 PUP A was more variable in the one- than in the 

five-species treatments. In summary, the results for saturated F As and PUP A indic(\te that 

grazer community composition can influence the importance of different primary 

producer taxas to SOM through their feeding preferences. 

Branched fatty acids (iso- and anteiso C 13:o + C 15:o + C 17:o + CI9:o; BrFA) 

representative of sediment heterotrophic bacteria, accounted for 5-11% of TF A (Fig. 3; 

Table 2). Grazer richness and predator presence increased the abundance ofBrFA but 

there was no effect of nutrients. Abundance ofthis TFA sub-class correlated negatively to 
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biomasses of G. mucronatus and Z. marina (Tables 4, 5). The data indicate that food web 

structure and composition, and their effect on the primary producer community, 

influenced the sediment heterotrophic community. 

We also analyzed the ratio C2o:sro3: C22:6ol3 to estimate diatom-derived OM 

contributions to the sediments (Budge and Parrish I998; Shin et al. 2000). The ratio was 

lower in the G. mucronatus (I species treatments) suggesting that this grazer reduced FA 

contributions from diatoms relative to dinoflagellates (Fig. 3; Table 2). In addition, there 

was less variability of the ratio (across replicates) in the one versus five species 

treatments, suggesting that G. mucronatus was a more effective consumer of diatoms in 

the monoculture than in the polyculture (Table 3). This hypothesis is further supported by 

positive correlations between the ratio C2o 5ro3 : C22:6ro3 and minor grazer biomass (Table 

5). Predators decreased the ratio C2o:sro3 : C22:003, but only in the three and five grazer 

species treatments which created a predator by grazer interaction effect. c20:5ro3 : c22:6ro3 

was negatively correlated to Z. marina biomass but not the biomass of any of the algal 

groups (Table 4). Thus, grazing by G. mucronatus and, to a lesser extent, the presence of 

crab predators tended to shift the composition of SOM from diatom to dinoflagellate 

contributions. 

PCA provided a summary ofTFA composition in response to grazer richness, 

predator presence, and nutrient availability (Fig. 4). PCI and PC 2 described 42.6% and 

I7.5% of the variance, respectively and were both negatively correlated to Z. marina 

biomass (Table 7). The negative correlation between PC I and Z. marina was supported 

by the loadings ofTFA, short chain FA, C2o PUFA, BrFA, and C2o:sro3: C22:oo3 (all 

negatively related to Z. marina; Table 8). PC I tended to separate SOM variables 
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according to grazer effects especially in nutrient enriched treatments. For instance, TF A, 

C2o PUF A, and C2o:sro3 : C22:6ro3 had positive PC 1 scores and were lowest in the one grazer 

treatments while C22 PUF A and PLF A:TF A had negative PC 1 scores and were highest in 

the one grazer treatments. PC2 separated the one grazer treatment (positive scores) from 

all other grazer treatments (negative scores). PC2 also provided some information about 

predator effects as SOM C:N, C22 PUF A, and BrFA, had positive scores and were 

increased by predators. 

We analyzed PC scores in the presence and absence of nutrients to determine 

whether enrichment affected relationships between grazer and predator treatments (Fig. 

4). One grazer species treatments were distinct from the rest of the grazer treatments 

despite nutrient concentrations. In the absence of nutrients, the zero, three, and five 

grazer species treatments tended to cluster together. In the presence of nutrients, 

however, there were three distinct groupings according to species richness: (1) the one 

species treatment, (2) the zero species treatment, and (3) the multi-species treatments. 

The clustering of the three and five grazer treatments suggests that the species rich 

communities were more similar to each other than they were to the zero or one species 

treatments. In addition, predator effects tended to be stronger under nutrient enrichment 

as treatments with predators tended to have more positive PC2 scores than those with 

grazers only. In summary, the PCA results indicate that grazer identity (i.e. G. 

mucronatus) was a strong determinant ofSOM composition. Secondarily, nutrient 

enrichment increased the importance of predator presence and grazer richness to 

sediment geochemistry. Finally, despite differences in the composition ofthree- and five­

species treatments, they consistently grouped together. 
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In summary, nutrient enrichment increased the abundance ofmacroalgae and 

epiphytes (Chapter 4) and this translated into higher G. murcronatus biomass (Fig. 1) and 

a greater proportion of PLF A relative to TF A (Fig. 2). The grazer community reduced 

above-ground primary producer biomass (Chapter 4) but SOM composition was most 

influenced by grazer identity. This is suggested by low abundances ofTFA, C2o:4 + C2o:s, 

and C2o:sw3 : C22:6w3 in the G. mucronatus monocultures (i.e. one-species treatments; Figs. 

2, 3). Predators reduced minor grazer biomass (Chapter 4) hut did not initiate a trophic 

cascade, as evidenced by an absence of predator effects on primary producer biomass and 

representative F As in the sediments. Surprisingly predator presence and grazer richness 

both increased BrF As, suggesting that the above-ground trophic structure is important to 

the sediment heterotrophic community (Fig. 3). 

Discussion. 

Grazer community compostion and richness had much stronger effects, on 

average, than nutrient enrichment or predators, on SOM composition (Table 2). 

Specifically, the amphipod, G. mucronatus, sharply reduced the abundance ofSOM 

deriving from diatoms in the one-species treatment (Fig. 3). However, similar SOM 

composition in the three and five grazer species treatments suggested that the strong 

effects of G. mucronatus were dampened in more diverse communities. It was somewhat 

surprising that grazer effects on sediment FA groups were stronger than nutrient 

enrichment since light availability, another bottom-up force, was a main determinant of 

SOM composition in a previous experiment (Spivak et al. 2007). It is probable that 

nutrient enrichment in this experiment did not lead to reduced light availability because 
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grazers were able to control primary producer abundance (Chapter 4). Thus, grazing 

invertebrates appear to lessen the effects of nutrient enrichment in this seagrass habitat as 

shown in others (Hughes et al. 2004; Armitage et al. 2005; Heck and Valentine 2007). 

Grazer species identity and richness affected SOM composition. 

In this experiment, one of the clearest trends was that SOM composition differed 

in the one versus the three and five grazer species treatments. This strongly suggested 

that G. mucronatus exerted a much greater influence over SOM composition in the 

absence of competition with other grazer species. These differences may have been due 

to G. mucronatus accruing more biomass in monoculture than in a multi-species 

community (Fig. 1; Table I). However, the strong effect of nutrient enrichment on G. 

mucronatus biomass and the general lack of nutrient by grazer interaction effects on 

SOM composition suggest that the influence of this grazer was not proportional to its 

abundance. Thus, despite relatively high G. mucronatus biomass in the five species 

treatments, direct or indirect interactions between grazer species attenuated the influence 

of G. mucronatus on SOM composition. This suggests that grazer diversity may weaken 

trophic effects that extend to SOM composition (Finke and Denno 2002; 2004). 

Alternatively, minor grazers may have had a disproportionate influence on SOM 

composition despite their low abundance. This hypothesis is in accord with other 

experiments suggesting that grazer identity rather than biomass is important to ecosystem 

properties (Duffy et al. 2001; Canuel et al. 2007; Jaschinski and Sommer 2008). 

However, from this dataset we can not discern which hypothesis provides the most likely 
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explanation for differences in SOM composition between the grazer monocultures and 

po lycultures. 

Differences in SOM composition in the one- versus three- and five-species 

treatments hint that grazer community makeup and interactions can impact sediment 

biogeochemistry (Duffy and Harvilicz 2001; Canuel et al. 2007; Spivak et al. 2007). For 

instance, diatom-derived OM (i.e. C2o:4+C2o:5, C2o:5m3:C22:6ro3; Fig. 3) was less abundant in 

the grazer monocultures compared to the polycultures. This is consistent with a previous 

study where G. mucronatus decreased the accumulation ofbenthic microalgae 

(chlorophyll a) and the relative abundance ofpolyunsaturated FAs (Canuel et al. 2007). 

Since algal OM is particularly labile, SOM quality might have been lower in the 

monoculture than in the more species rich treatments (Canuel and Martens 1996). The 

higher abundances of diatom-derived F As (C2o:4 + C2o:5 and C2o:5m3 : C22:6m3) in the three­

and five-species treatments might have been the indirect result of minor grazers reducing 

Z. marina, thereby increasing light availability and, hence, sediment microalgal 

production (Chapter 4). This hypothesis is supported by negative correlations of Z 

marina with TF A and FAs indicative of diatom OM (C2o 4 + C2o:5, and C2o:5m3 : C22:6m3; 

Table 4). Increased abundance oflabile, algal-derived SOM may also stimulate sediment 

microbial activity as BrF A (sediment heterotrophic bacteria) abundance was higher in the 

mixed grazer species treatments than in monoculture (Fig. 3; Table 2). Supporting this 

hypothesis was the negative correlation between Z. marina biomass and abundance of 

iso- and anteiso-BrF A, which are abundant in gram positive bacteria (Kaneda 1991) 

(Table 4). Thus, an indirect effect of reduced Z. marina biomass might have been a 

heightened sediment bacterial response, suggesting that shifts in SOM composition 
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precipitated by grazer effects on primary producers influenced the sediment bacterial 

community. Cascading effects of above-ground animals on organic matter composition 

and the bacterial community have been observed in soil systems as well (Lavelle et al. 

1997; Bardgett et al. 1998; Wardle et al. 2004). This suggests that above-ground 

community composition and structure may affect biogeochemical cycles in a variety of 

ecosystems. 

We tested whether our data supported the portfolio hypothesis, which predicts that 

variability will decrease as species richness increases (Tilman 1999; Lhomme and 

Winkel2002), by comparing the variance ofSOM properties among replicate mesocosms 

at low (1) and high (5) grazer species richness. There was little evidence that the five­

grazer species community conferred stability since the variance of many fatty acid groups 

was similar in monocultures and mixed species treatments (Table 3). However, when 

variance in FA abundance differed between the one- and five-species treatments, the 

pattern was opposite of the prediction. For example, there was less variance in the 

abundance of diatom-derived F As (C2o:4 + C2o:5, C2o:SroJ : C22:6ro3) in the one- versus five­

species treatments (Fig. 3; Table 3). This was likely the result of G. mucronatus 

efficiently consuming diatoms in the one species treatment. In contrast, grazer 

interactions in the multi-species community, may have reduced G. mucronatus' ability to 

consume diatoms and, consequently, resulted in higher and more variable concentrations 

of representative F As (i.e. C2o4 + C2o:s. C2o:sroJ : C22:6roJ). While diatom F As were less 

variable in the one-species treatment, dinoflagellate F As (C22:s + C22:6) were variable in 

the five-species community ((Budge and Parrish 1998)Table 2). It is possible that algal 

sources ofC22 PUPA were more efficiently grazed in the mixed species community than 
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in the monoculture. Overall, these data suggested that grazer species richness did not 

consistently influence the variance in algal contributions to SOM. 

Combined, our results indicated that grazer community composition (identity and 

richness) were important determinants ofSOM composition. Despite the high biomass of 

G. mucronatus, relative to the minor grazers in the five species treatment, SOM patterns 

were not controlled solely by this species. Instead, minor grazers moderated the effects of 

the more abundant G. mucronatus and may have disproportionately affected SOM 

composition. Consequently, it is important to consider the entire grazer community rather 

than focus on the most abundant species (Jernakoff and Nielsen 1997; Matthiessen et al. 

2007; Jaschinski and Sommer 2008). 

Bottom-up and top-down controls on SOM composition. 

Effects of nutrients and predators on primary producers and grazers in this 

experiment (Chapter 4) also affected SOM composition. For instance, nutrients increased 

the relative abundance of labile FAs (PLFA:TFA) in the sediment (Fig. 2; Table 2). Thus, 

algal growth, stimulated by nutrient enrichment, increased the lability and quality of 

SOM. Curiously, abundance of sediment microbial and algal FAs (C120 + C14:o) was 

lower in nutrient enriched treatments (Fig. 3; Table 2). Predators increased sediment 

bacterial FA abundance (BrFA; Fig. 3; Table 2), possibly by increasing SOM lability, 

physically altering sediment conditions, or both. Previous studies demonstrated that 

grazers can stimulate sediment microbes by fragmenting POM and increasing surface 

area, by changing the chemical composition of OM, by irrigation and sediment 

resuspension which reduce build-up of metabolites, etc. (see papers by Aller; Lee 1991; 
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(Zimmer et al. 2002; Mermillod-Biondin et al. 2003; Zimmer et al. 2004) While we are 

unable to resolve the mechanism, the positive effect of predators on bacterial F As is 

consistent with previous experiments (Canuel et al. 2007; Spivak et al. 2007) and 

suggests that food chain length was an important determinant of the sediment 

heterotrophic bacterial community and microbial processes. Shifts in sediment bacterial 

activity may have important implications for Z. marina and algal productivity. For 

instance, an increase in sediment bacteria that leads to anoxic conditions and a build up of 

sulfides maynegatively affect seagrass health (Holmer et al. 2006; Calleja et al. 2007; 

Perez et al. 2007). Alternatively, an increase in sediment bacteria and bacterial activity in 

aerated surface sediments may lead to higher rates of mineralization and nitrogen 

availability to benthic microalgae (Eyre and Ferguson 2002; McGJathery et al. 2007). 

Although there were few main predator effects on SOM variables, it is possible 

that the influence of predators was moderated by nutrient enrichment. Evidence for this 

comes from PCA (Fig. 4). There was little distinction between treatments according 

predator presence in the absence of nutrients, whereas treatments separated along PC2 

according to crab presence in nutrient enriched treatments (Fig. 4). In addition, SOM 

variables increased by predators (BrF A, SOM C:N) had positive PC 2 loadings (Table 8). 

This suggests that interactions between bottom-up and top-down controls may produce 

different SOM patterns than either variable singularly. 

Although primary producer abundance and SOM composition were sensitive to 

bottom-up (i.e. nutrient enrichment) and top-down (i.e. food web composition) controls, 
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grazer effects were generally stronger and more pervasive (see ro 2 values in Table 2). The 

importance of grazer effects was also supported by the PCA as the one-species treatment 

was consistently separated from the other treatments despite nutrient enrichment or 

predator presence. Thus, the grazing community was likely a stronger determinant of 

ecosystem properties than resource availability and trophic structure. The importance of 

grazing, relative to nutrient enrichment and predation, is consistent with previous studies 

and suggests that grazers may play a pivotal ecological role in seagrass habitats (Heck et 

al. 2000; Hughes et al. 2004; Armitage et al. 2005) and in other systems (Hillebrand et al. 

2000; 2002; Borer et al. 2006; Burkepile and Hay 2006). 

Experimental comparisons. 

Although mesocosm experiments allow for controlled manipulations, their value 

partly depends on how accurately the system mimics the natural environment. To this 

end, we tested the interactive effects of nutrient enrichment and seagrass community 

composition on ecosystem functioning in a mesocosm (Chapter 4; this study) and a field 

experiment (Douglass et al. 2007; Chapter 3). 

In both the mesocosm and field experiments, nutrients increased above-ground 

algae and reduced Z. marina biomass (Douglass et al. 2007; Chapters 3, 4) as often found 

in other experiments (McGiathery 1995; Hauxwell et al. 2003; Hughes et al. 2004). In 

addition, changes in the primary producer community were reflected in SOM 

composition. For instance, nutrients decreased the abundance ofF As deriving from algae 

and microbes (short-chain FA) in both this mesocosm study and in the field experiment 

(Chapter 3). The declines in Z marina abundance and benthic algal and microbial 
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production were likely the indirect results of nutrients reducing light availability by 

stimulating above-ground epiphytic algal growth (Havens et al. 2001; Bintz et al. 2003; 

Hauxwell et al. 2006). 

In both the mesocosm and field experiments, the above-ground animal 

community strongly influenced primary producers and SOM composition. For instance, 

grazers decreased epiphytic Chi a but had no effect on benthic microalgae. The latter 

result may seem surprising since grazers reduced benthic Chi a in two previous 

mesocosm experiments (Canuel et al. 2007; Spivak et al. 2007). Instead grazer effects on 

above-ground algae translated into changes in SOM composition and quality. For 

example, diatom-derived contributions to SOM, as indicated by C16:Jro? : C16:o, and C2o:sro3 

: C226ro3, were reduced in the mixed grazer community of the field experiment (Chapter 

3) and in the one species treatment of this study. It was curious that the mixed grazer 

community did not decrease diatom-derived OM in both the mesocosm and field 

experiments. However, the mixed grazer treatments in each experiment contained 

different grazer species. The field experiment included one amphipod (G. mucronatus) 

and twoisopods (Erichsonella attenuata, Idotea balthica) while this study contained five 

different amphipod species. 

These differences in the deposition of plant derived OM may be a function of 

grazer feeding preferences and interactions. The importance of grazer identity on SOM 

composition was demonstrated in a previous mesocosm experiment. Duffy and Harvilicz 

(2001) showed that grazer feeding preferences significantly influenced the accumulation 

of different types of macroalgae. For example, red algae, such as Polysiphonia, increased 

significantly in treatments with the amphipod G. mucronatus. Canuel et al. (2007) found 
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that long chain fatty acids, indicative of vascular plant OM, were more abundant in G. 

mucronatus monocultures while short chain fatty acids, deriving from algae and 

microbes, were more abundant in monocultures of the isopod Erichsonella attenuata. In 

monoculture, G. mucronatus and E. attenuata had strong effects on FA sub-groups. SOM 

composition in grazer species polycultures, however, largely reflected the entire 

community rather than a single species (Canuel et al. 2007). The averaging effect of a 

mixed grazer species on SOM composition was largely consistent with the results of this 

experiment. For example, the abundance of C2o PUF A and the ratio C2o:sro3 : C22:6ro3 were 

lowest in the one grazer species treatment but were more abundant in the mixed species 

treatments. Thus, despite the high G. mucronatus biomass, minor grazers strongly 

influenced SOM composition. Consequently, it may be important to consider the effects 

of the entire grazer community rather than the influence of the most abundant species. 

SOM composition was also influenced by food chain length in both the field and 

mesocosm experiments. Abundances ofBrFA and MeBrFA (sulfate reducing bacteria) 

were increased by predators in both experiments. Since this result was congruous with 

previous mesocosm experiments (Canuel et al. 2007; Spivak et al. 2007), it is likely that 

predators enhance sediment heterotrophic activity by increasing SOM quality or by 

physically altering the sediment environment (Mermillod-Blondin et al. 2003; Wardle et 

al. 2004; Zimmer et al. 2004). For example, crab burrowing may increase oxygen 

penetration into the sediments, creating more favorable conditions for microbial 

decomposition (Morrisey et al. 1999; Fanjul et al. 2007). Crabs may also fragment plant 

detritus increasing the surface area available for grazing. Thus, heavy harvesting of this 
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invertebrate may have implications for rates of OM decomposition and carbon storage in 

the sediments. 

Overall, SOM patterns in the field experiment (Chapter 3) and in this study were 

largely consistent. While field experiments would be preferable to mesocosm 

experiments, the mesocosm setup allowed us to control grazer community composition 

and measure ecosystem metabolism (Chapter 4) which would have been unfeasible in the 

field. Risk of contamination by non-target grazers species in the field experiment 

prevented us from manipulating grazer species more precisely than the presence or 

absence of a mixed species community. Thus the use of complementary mesocosm and 

field experiments yielded information about grazer species and community effects on 

SOM composition and demonstrated that nutrient enrichment and trophic structure can 

rapidly influence SOM quality, despite the presence of previously deposited OM and 

variance in environmental conditions typical of field situations. 
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Table 1. Tests of significance and estimated magnitude of effect (w2) of nutrient enrichment. food chain length, and species rictmess on grazer community composition. We only analyzed differences in 
Fer abundance in the oneverrus the five-species treatments. Data were log transformed to obtain homogeneity of variance. Significant p (<0.05) values are in bold 

Response Nutrient enrichment Food chain length Grazer Richness (1 vs. 5) lntern.ctions Model error 

p MS ro' p MS ro' p MS ro' MS ro' 

log G. mucronatus biomass +1 0.004 0.39 0.19 0.097 0.10 0.04 0.021 0.21 0.10 O.Q3 0.63 
log total epifauna biomass + I 0.017 0.29 0.12 0.046 0.19 O.Q7 0.345 0.04 0.00 0.04 0.73 



Table 2. Tests of significance and estimated magnitude of effects t1l 
2
) of nutrient enrichment, 1iJod chain length, and grazer conununity on SOM C0111JX)sition. In order to detennine whether grazer.ftee controls and 

grazer richness levels differed in their effects on the respome variable we conducted Student.Newman·Kwls (SNK) analyses; different meam are designated by letters. When an interaction was significant, the dataset 
was divided according to the interaction (i.e. with vs. without nutrients or with vs. without predatoJ5) and the AN OVA was run again. Significant intelactions are followed by the p value for significance and the mean 
squared in parentheses. N refers lO nutrient enrichment; G to grazer comnnmity; P lO predators. Fatty acid analyses were conducted on abundance mnnalized to sediment (ng g -1

). See text for description of fatly acid 
OT ic matter sources. 
Response Nutrient enrichment Food chain l!'!!!lth Grazer communi~ Interactions Model error SNK 

p MS p MS m' p MS MS 

Total FA 0.242 2.SOE+08 0.01 0.2~1 2.70£+{)8 0.00 0.002 1.19£+{)9 0.17 1.97E+{)8 0.88 o•th3as• 

PLFA OJ08 208244.11 0.00 0.317 505353036 0.00 0.109 10709661.01 0.04 4883030.~0 0.97 O"hJI>3ab5a 

PLFA 'TFA 0.022 0.00 0.0~ 0.967 0.00 0.00 0.002 0.01 0.1~ 0.00 0.76 O"tb:~•s• 

Ctzo+Cl4:o 0.033 J.38E+{)6 0.0~ 0.331 2.74E+{)5 0.00 0.095 1.58E+{)6 0.05 6.80E+{)5 0.96 11'1'3"5" 

:E(C24·o·Clo:o) 0.829 7.69E+04 0.00 0.161 2.0JE+{J6 O.QI 0.768 J.75E+{)5 0.00 9.86E+{)5 1.03 11'1'3"5" 

C2o:s+C20·4 0.992 7.8)E+{)I 0.00 0.979 5.JIE+{)2 0.00 <0.001 2.82£+{)7 0.58 7.79E+{)~ 0.44 fflb3c5d 

Cn.6+~2·5 0.187 7.74E+04 0.00 0.410 2.%E+04 0.00 <0.001 1.90E+{)6 0.63 4.2~£+04 0.38 fft3'5" 

BrFA 0.095 8.16E+{)6 0.02 0.066 I.OOE+{)7 0.03 0.010 1.24E+{)7 0.12 2.7~£+{)6 0.90 0"1"3"b5b 

odd BrFA• 0.142 2.90£+{)6 0.01 0.031 6.7~E+{)6 0.05 0.006 6.56E+{)6 0.1) IJIE+{)6 0.87 {)"Ja3ab5b 

log evenBrFA' 0.108 1.20E+{)Q 0.02 0.09~ l.J1E+OO 0.02 0.0~2 1.27E+{)Q O.o7 4.40E-OI 0.96 OaJa3"5" 

MeBrFA§ 0.115 J.51E+04 0.02 0.038 6.29E-t;J4 0.05 0.145 2.58£+04 0.03 I.DE-t;J4 0.98 0"1'3'5' 

Ct6:to,7:CI6:0 0.004 0.71 0.05 0.550 O.oJ 0.00 <0.001 1.72 0.42 N•G 0.023 (0.27) 0,07 0.49 IJ'Jb3a5a 

rrutrimts 0.6)7 0.02 0.00 0.002 0.78 0.48 0.09 0.59 (f}b3a5a 

ooootriom 0.182 0.13 0,03 <0.001 1.18 0.72 0.05 0.27 0"1bJ"5" 

C20:~"'' :~~:6ro3 0.250 12.42 0.00 0.318 9.B 0.00 <0.001 835.14 0.72 NxG 0.013 (,8.15) 9.04 0.21 f!tb.:nd 

ootrients 0.091 22.02 0,01 <0.001 466.30 0.86 6.81 0.12 0"1"3"5" 

no nutrients 0.948 0.05 0.00 <0.001 420.49 0.73 hG 0.012 (61.34) 11.58 0.19 o•tb3c.5c 

aabs 0.972 0.01 0.00 <0.001 )49.88 0.82 7.68 0.19 O"lb3a5c 

no crnbs 0.151 23.85 0.01 <0.001 562.90 0.79 N•G 0.021 (4~.35) 10.40 0.15 ()"Jb3c5d 

• iso·, anteiso· :E(Ct3-0 + Cn,o + Cn,o + C19:o) 

tiso·(CP4:o+CI6:o) 

§ 10Mel7:0+ l0Mel9:0 



Table 3. Results from Levene's test of homogeneity of variance for fatty acid biomarker composition. Grazer richness treatments (i.e. 
1 or 5 species) are listed in the Variance coll!mn according to whether the treatments were more or less variable relative to each 
other. The mean and standard deviation (SD) are listed for each treatment as well as the p for the Levene's test. See text for 

description of fatty acid organic matter sources. Fatty acid analyses were conducted on abundance normalized to dry sediment (ng g" 
1 

Response Variance 

Less 

Total FA 
PLFA: TFA 
PLFA 

Cu:o + C14:o 

k(Cz4:o - C3o:o) 

Czo:s + Czo:4 1 < 

Czz:6 + Czz:s 5 < 

BrFA 
oddBrFA* 

log even BrFAt 

MeBrFA§ 

c16:1ro7: c16:0 < 

Czo:Sro3 : c22:t1JJ3 < 

* iso-, anteiso- k(CB:o + C1s:o + C11:o + Ct9:o) 

t iso- (CJ4:0 + Ct6:o) 

§ 10Me17:0+ 10Me19:0 

1 grazer 

More mean S.D. 

24057.71 11214.17 
0.17 0.03 

4044.31 1807.35 

1436.41 812.43 

2447.22 1088.83 

5 350.81 199.13 

1058.60 344.06 

3096.35 1513.49 
2307.47 1141.82 

6.17 0.59 

235.69 110.58 

5 0.00 0.00 

5 0.00 0.00 

5 grazers Levene's HOY 

mean S.D. p 

49379.96 16191.87 0.467 
0.13 0.02 0.565 

6546.20 2372.89 0.128 

2300.15 964.05 0.745 

2830.69 996.86 0.242 

4231.04 1125.35 0.006 

272.17 106.98 0.001 

5150.83 2102.11 0.392 
3654.77 1347.07 .0.610 

6.91 0.62 0.754 

297.43 126.90 0.903 

0.88 0.08 0.001 

20.81 4.17 <0.001 



Table 4. Results of regression analyses of fatty acid biomarker groups against the biomass of the major primary producers. The coefficient indicates the 

directionality of the relationship. Partial r2 calculated by dividing the type III SS by the corrected total SS of the model. See text for description of fatty 

acid O!]lanic matter sources. Anal~ses were conducted on fat!:J::: acid abundance normalized to~ sediment {n~ ~· 1}. 
Response Zostera marina (AFDM, g) Macroalgae (AFDM, g) Epiphytic Chi a (l"g cm'2) Total Model 

Coefficient Partial r2 
p Coefficient Partialr2 

p Coefficient Partial r2 
p r2 

Total FA -1514.08 0.19 0.002 -178.73 0.01 0.515 1052.53 0.03 0.237 0.23 
PLFA -146.65 0.08 0.047 -35.84 0.01 0.400 206.90 0.05 0.136 0.14 
PLFA :TFA 0.00 0.07 0.088 0.00 0.01 0.485 0.00 0.01 0.488 0.09 

C12:o + C1•:o -53.56 0.08 0.054 -18.09 0.03 0.262 37.40 0.01 0.470 0.12 

l:(C24:0- C3o:o) -46.47 0.05 0.139 -9.28 0.01 0.612 97.13 0.06 0.104 0.11 

c20:s + C2o=• -186.71 0.29 <0.001 -3.84 0.00 0.884 23.71 0.00 0.780 0.29 

c22:6 + c22:5 28.51 0.10 0.035 -11.74 0.05 0.137 16.89 0.01 0.501 0.16 

Branched FA -111.96 0.16 0.004 -39.30 0.06 0.008 80.54 0.02 0.259 0.24 
oddBrFA• -111.96 0.16 0.004 -39.30 0.06 0.079 80.54 0.02 0.259 0.24 

log even BrFAt -0.06 0.16 0.003 -0.02 0.06 0.071 0.09 0.09 0.022 0.31 

Me BrFA§ -5.23 0.04 0.171 -2.47 0.03 0.272 1.00 0.00 0.889 0.07 

CI6:Iro7: Cl6:o -0.02 0.02 0.319 0.00 0.01 0.624 -0.03 0.02 0.315 0.05 

c 20:5<0 3 : c 22:6o>l -1.02 0.30 <0.001 0.05 0.00 0.700 -0.04 0.00 0.932 0.31 

• iso-, anteiso-l:(C n:o + C 15:o + C n:o + CI9:o) 

t iso- (CJ4:o + CI6:o) 

§ 10Me17:0+ 10Mel9:0 



Table 5. Results of regression analyses of fatty acid biomarker groups against the biomasses ofG. mucronatus and minor 

grazers. The coefficient indicates the directionality of the relationship. Partial?- calculated by dividing the type III SS by 
the corrected total SS of the model. See text for description offatty acid organic matter sources. Analyses were conducted 

on fatty acid abundance normalized to dry sediment (ng g-1 ). 

Response G. mucronatus (mg) log Minor grazers (mg) Total Mode 

Coefficier Partial r p Coefficient Partial r p r 

Total FA -3.96 0.13 0.036 7288.24 0.14 0.026 0.27 
PLFA -0.28 0.03 0.350 653.14 0.06 0.192 0.09 
PLFA: TFA 0.00 0.13 0.020 -0.02 0.23 0.003 0.36 

c12,o + cl4:o -0.20 0.13 0.042 253.16 O.D7 0.136 0.20 

L:(C24:o- C3o:o) -0.14 0.05 0.270 63.59 0.00 0.772 0.05 

C2o:s + c2o:4 -0.32 0.08 0.055 1153.65 0.34 <0.001 0.42 

C22:6 + C22:s 0.05 0.04 0.159 -289.80 0.42 <0.001 0.46 

Branched FA -0.48 0.13 0.045 434.97 0.04 0.277 0.17 
oddBrFA* -0.35 0.14 0.038 290.50 O.D3 0.299 0.18 

log even BrFAt 0.00 0.16 0.029 0.14 0.04 0.254 0.20 

MeBrFA§ -0.02 0.09 0.123 -3.00 0.00 0.910 0.09 

cl6:lw7 : CI6:0 0.00 0.16 0.005 0.27 0.31 <0.001 0.47 

c20:5w3 : c22:6w3 0.00 0.06 0.018 7.95 0.61 <0.001 0.66 

* iso-, anteiso- L:(Cn:o + C1s:o + Cl7:o + Cl9:o) 

t iso- (CJ4:o + Cl6:o) 

§ 10Mel7:0+ 10Me19:0 



Table 6. Names and sources of fatty acid (FA) groups analyzed in this experiment. 

Fatty Acid (FA) Group 

Short chain FA 

C 20 Polyunsaturated FA C 20,4 + C2o:s 

C 22 Polyunsaturated FA C22:s + C22:6 

Branched FA iso, anteiso odd I(Cn:o- CI9:o) 

Likely source 

Algae and microbes 

Diatoms 

Dinoflagellates 

Heterotrophic bacteria 

Reference 

Viso and Marty 1993 

Viso and Marty 1993; Budge and Parrish 1998 

Viso and Marty 1993; Budge and Parrish 1998 

Volkman et a!. 1980 



Table 7. Results from regression analyses of principle components (PC) against the major primary producer groups. The 

coefficient indicates the directionality of the relationship. Partial -I was calculated by dividing the type III SS by the corrected 
SS of the model. 

PC 

PC! 

PC2 

Zostera marina (AFDM, g) 

Coefficient Partial r
2 p 

-0.30 0.27 <0.001 
-0.12 0.11 0.029 

Macroalgae (AFDM, g) 

Coefficient Partial r2 p 

-0.05 0.02 0.260 
0.05 0.05 0.136 

Epiphytic Chi a (Jlg cm"
2) Total Model 

Coefficient Partial r2 p r2 

0.15 0.02 0.254 0.31 
-0.07 0.01 0.504 0.16 



Table 8. Loadings of principal components 1 (PC1) 
and 2 (PC2) for concentrations of total fatty acid 
(TF A) groups. Fatty acids are expressed as abundance 

normalized to dry sediment (ng g-1). See text for 
description of organic matter sources of fatty acids. 

Variable PC1 PC2 

SOM C:N (mol:mol) 0.02 0.11 
TFA 0.39 0.11 

PLFA: TFA -0.17 0.25 
Monounsaturated FA 0.37 -0.15 

C12:o + cl4:o 0.35 0.22 

L(C24:o - C3o:o) 0.25 0.37 

C2o:s + c2o:4 0.34 -0.19 

c22:6 + c22:s -0.11 0.49 

oddBrFA* 0.35 0.23 

log even BrFAt 0.33 0.18 

MeBrFA§ 0.21 0.19 

cl6:1m7 : cl6:0 0.20 -0.40 

c20:5m3 : c22:6m3 0.23 -0.39 

* iso-, anteiso- L(Cn:o + CIS:O + Cn:o + cl9:o) 

t iso- (CI4:0 + Cl6:o) 

§ 10Me17:0 + 10Me19:0 



Figure Captions. 

Figure I. Biomass distribution of individual grazer species. Results are only presented for 

the one and five species treatments since those contained grazer communities of constant 

composition while the three grazer treatment contained random combinations of species. 

Figure 2. Effects of nutrient enrichment, food chain length, and the grazer community on 

the abundances oftotal fatty acids (TFA) and phospholipid linked fatty acids (PLFA) as 

well as the ratio PLFA:TFA. Results are presented for fatty acid abundance normalized to 

dry sediment (ng g'1). See text for organic matter source assignment of each fatty acid 

biomarker subgroup. 

Figure 3. Effects of nutrient enrichment, food chain length, and the grazer community 

TFA sub-classes. (A) Short-chain FA (C12:o + C14:o) abundance was reduced by nutrients 

and grazers. (B) C2o PUF A (C2o4 +C2o:s), representative of diatom OM, was least 

abundant in the one species treatment. (C) C22 PUF A (C22:s+C22:6), common in 

dinoflagellates, was more abundant in the grazer monoculture than the polycultures. (D) 

Branched FA (i, a 2:(CB:o- C19:o)), from heterotrophic bacteria, were increased by 

predators and grazers. (E). C2o:sro3 : C22:6ro3, indicative of diatom OM, was least abundant 

in the one-species treatments. Results are presented for fatty acid abundance normalized 

to dry sediment (ng g'1). 
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Figure 4. Principal component scores for total fatty acid groups in treatments with and 

without nutrients. PC2 separated the grazer monoculture treatments from the grazer-free 

controls and three and five species treatments. PC 1 tended to separate the treatments with 

three or five grazer species from the monocultures and controls; this effect was strongest 

in nutrient treatments. 
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Introduction. 

The rapid loss of global biodiversity combined with changing environmental 

conditions has spurred research investigating interactions between biodiversity (Chapin et 

al. 1998; Balvanera et al. 2006; Bunker and Naeem 2006), community structure (Chase 

2003; Burkepile and Hay 2006; Byrnes et al. 2006), and ecosystem functioning (Tilman 

et al. 2001; Downing 2005; Hooper et al. 2005). Changes in above-ground plant and 

animal communities that influence ecosystem functioning may also affect processes in 

soils and sediments (Wolters 2000; Liiri et al. 2002; Heemsbergen et al. 2004; Wardle et 

al. 2004). Detrital organic matter (OM) produced by above-ground communities often 

serves as substrate to below-ground organisms and, therefore, functionally links the two 

communities. The quality of sediment organic matter (SOM) is a partial determinant of 

sediment bacterial activity (Boschker and Cappenberg 1998; Holmer et al. 2004; Bouillon 

and Boschker 2006). Thus, changes in SOM quality that influence the sediment microbial 

community may have implications for nutrient cycling and regeneration. Thus, a goal of 

my dissertation was to address the role of SOM as a link between above- and below­

ground communities. I tested the interactive effects of above-ground community 

composition and resource availability on (1) SOM quality; and (2) ecosystem metabolism 

and nutrient dynamics in a seagrass habitat. I used a seagrass (Zostera marina) ecosystem 

as a model system because ( 1) the animal and plant communities are well studied 

(Valentine and Heck 1999; Duffy 2006; Heck and Valentine 2006); and (2) seagrass 

habitats are commonly influenced by perturbations that affect resource availability (i.e. 

eutrophication) and trophic structure (i.e. fishing) (Cloem 2001; Orth et al. 2006). The 

results from my dissertation will increase our understanding of seagrass ecosystem 
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functioning and will better elucidate the role of SOM as a link between above- and 

below-ground communities. 

Experimental Design. 

I examined the effects of resource availability and food web composition on 

seagrass ecosystem functioning in two mesocosm experiments and one field experiment. 

The first mesocosm experiment varied light levels, food chain length (i.e. predator 

presence), and grazer species richness (0, 2, or 4 species) in a factorial design (Chapter 

2). This experiment ran for six weeks during Summer 2003. At the conclusion of this 

experiment I analyzed changes in gross ecosystem production (GEP), primary producer 

biomass, and bulk SOM content and composition. The second mesocosm experiment 

manipulated nutrient levels, food chain length, and grazer species richness (0, 1, 3, or 5 

species) in a factorial design (Chapters 4-5). This experiment lasted 5 weeks in Summer 

2006. I measured flux rates of dissolved oxygen (DO), dissolved inorganic nitrogen 

(DIN), and phosphate as well as changes in primary producer and grazer biomass and 

SOM composition. The field experiment had a similar design to the second mesocosm 

experiment; except that the presence (not richness) of the grazer community was varied 

(Chapter 3). The design of the field experiment was less complex that those of the 

mesocosm experiments due to the difficulty in maintaining grazer treatments and 

preventing contamination by non-target grazers. Field cages were situated in an eelgrass 

(Zostera marina) bed at Goodwin Islands in the York River, VA. This experiment ran for 

4 weeks during Summer 2005. At the end of the field experiment I analyzed primary 

producer abundance and SOM composition. In all three experiments, SOM composition 
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was evaluated using fatty acid (FA) biomarkers. Please see the previous chapters for a 

more detailed explanation ofF A biomarkers and their use. The remainder of this chapter 

is devoted to describing similarities and differences in the results of the three experiments 

and to describing the conclusions from this dissertation. 

Discussion. 

In general, grazer identity and community composition were stronger the 

determinants ofF A composition than resource levels and predator presence. Predator 

effects on SOM composition were generally weak, suggesting that above-ground trophic 

cascades may not consistently affect plant contributions to SOM. Finally, resource 

identity was important; light availability was a stronger determinant of SOM composition 

than nutrient levels. The presence of interactive effects between food web composition 

and resource levels indicates that these factors should not be considered in isolation. 

Grazers. 

Grazers reduced algal biomass in all three experiments but only reduced Z. 

marina biomass in rnesocosm experiment 2 (Tables 1, 2; Chapters 2-4). Grazer effects on 

the primary producer community often translated into changes in SOM composition. In 

mesocosm experiment 1, grazers reduced macroalgae and benthic Chl a as well as the 

relative abundance of algal and microbial FA (C12:o + C14:o; Table 1; Fig. 1 ). In 

mesocosm experiment 2, grazers reduced epiphytes and the relative abundance ofF As 

deriving from diatoms (C2o:4 + C2o:s; Table 2). Although grazers strongly influenced both 

primary producer abundance and SOM composition, patterns ofF A abundance were not 
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consistent in grazer treatments across experiments (Tables 1, 2). For instance, the relative 

abundance of long chain FA (vascular plant OM) was decreased by grazers in ambient 

light treatments ofmesocosm 1 (C24:0; Chp. 2), was increased by grazers in the field 

experiment (C24:o-C2s:o; Chp.3), and was unaffected by grazers in mesocosm 2 (C24:o­

C2s:o; Chp. 5). The relative abundance of short chain F As (algal and microbial OM) was 

decreased by grazers in mesocosm experiment 1 (C!2:o+C14:0; Chp. 2) but was increased 

by grazers in the field experiment (C12:o+C14:o; Chp. 3; Tables 1, 2; Fig. 1). While this is 

curious, differences in SOM composition between experiments may be the result of 

grazer community composition rather than grazer species richness. For example, 

mesocosm experiment 1 included two amphipod species (Ampithoe longimana, G. 

mucronatus) and two isopods (Jdotea baltica and Erichsonella attenuata). The grazer 

community in the field experiment consisted of G. mucronatus, I. baltica, and E. 

attenuate. Finally, in mesocosm experiment 2, I used five amphipod species: G. 

mucronatus, Elasmopus levis, Melita nitida, Ampithoe valida, and Sympleustes spp. 

While there was some overlap in species composition between experiments (mainly G. 

mucronatus), none of the experiments used the same grazer community. Thus, 

differences in SOM patterns between experiments may be due to grazer community 

composition and the diet preferences of particular grazer species. 

Previous studies demonstrated that grazer identity is important to multiple 

ecosystem properties (Duffy et al. 2001; Matthiessen et al. 2007; Jaschinski and Sommer 

2008), including SOM composition (Duffy et al. 2003; Canuel et al. 2007). Canuel et al. 

(2007) found that the relative abundance of long chain FA (vascular plant OM) and short 

chain FA (algal and microbial OM) was higher in G. mucronatus and E. attenuate 
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monocultures, respectively. While these two grazer species had strong effects on FA sub­

groups in monoculture, SOM composition largely reflected the entire community, rather 

than a single species, in grazer polycultures (Canuel et al. 2007). This suggests that 

grazer diversity may weaken trophic effects that extend to SOM composition (Finke and 

Denno 2002; 2004). The averaging effect of a mixed grazer species on SOM composition 

was largely consistent with the results of mesocosm experiment 2 (Chp. 5). For example, 

C2o PUF A abundance and the ratio C2o:sro3 : C22:6ro3 were lowest in the one grazer species 

treatment but were more abundant in the mixed species treatments. Consequently, it is 

important to consider the effects of the entire grazer community rather than the influence 

of the most abundant species. 

Another trend was that multi-species grazer communities tended to have more 

similar SOM composition than treatments without grazers or with only one species. For 

instance, in mesocosm experiment 2, principal component (PC) scores of treatments with 

two- or four-grazer species were more similar to each other than either was to the grazer 

free controls in ambient light treatments (Chapter 2; Fig. 2). In mesocosm experiment 2, 

PC scores of treatments with three and five grazer species were consistently different 

from the scores of one grazer treatments (Chapter 5; Fig. 2). This trend was more evident 

with nutrient enrichment. However, it is important to note that G. mucronatus was the 

only grazer in the monoculture treatments and it was the most abundant grazer in the five 

species polyculture. Despite the high abundance of G. mucronatus, SOM patterns in the 

five species community did not resemble SOM patterns in the monocultures. This 

suggested that grazer identity rather than biomass is important to ecosystem properties 

(Duffy et al. 2001; Canuel et al. 2007; Jaschinski and Sommer 2008). 
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Predators. 

In all three experiments, I initially predicted that the presence of crab predators 

would initiate a trophic cascade, whereby grazer biomass would be reduced and primary 

producer abundance increased. However, crab predators only had a positive effect on 

macroalgal biomass in mesocosm experiment 1 (Table 1; Chapter 2). This was somewhat 

surprising and suggested that the effect of predators may depend on the species 

composition of the grazer community. For instance, crabs sharply reduced total epifaunal 

biomass in mesocosm experiment 1 but not in mesocosm experiment 2 (Fig. 3). Thus 

differences in grazer community composition and grazer species susceptibility to 

predation by crabs likely affected the propagation of predator affects to lower trophic 

levels. 

Positive predator effects on plants and algae may translate into increased labile 

algal contributions to SOM which could, in turn, stimulate sediment bacterial activity. 

For instance, Canuel et al. (2007) found higher abundances of polyunsaturated FA 

(PUFA), indicative of labile algal OM, and branched FA, deriving from heterotrophic 

bacteria, in treatments with predators. This suggested that predators indirectly influenced 

sediment biogeochemistry. However, there was no evidence of a positive predator effect 

on PUF A in any of the experiments described in this dissertation. Instead, predators 

decreased the relative abundance of PUF A in low light treatments of mesocosm 1 ( Chp. 

2) and in the field experiment (C22:5 + C22:6; Chapter 3) .. However, in both mesocosm 

experiments and in the field experiment, predators increased the relative abundance of 

branched FA (Fig. 4). Instead of increasing labile algal contributions to SOM, predators 
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may have influenced sediment bacteria through other processes such as fragmenting 

POM and increasing surface area, changing the chemical composition of OM, irrigation 

and sediment resuspension which reduce build-up of metabolites, etc. (Zimmer et al. 

2002; Mermillod-Blondin et al. 2003; Zimmer et aL 2004). Shifts in sediment bacterial 

activity may have important implications for Z. marina and algal productivity. For 

instance, an increase in sediment bacteria that leads to anoxic conditions and a build up of 

sulfides may negatively affect seagrass health (Holmer et al. 2006; Calleja et al. 2007; 

Perez et al. 2007). Alternatively, an increase in sediment bacteria and bacterial activity in 

aerated surface sediments may lead to higher rates of mineralization and nitrogen 

availability to benthic microalgae (Eyre and Ferguson 2002; McGlathery et al. 2007). 

Consequently the positive effect of predators on the bacterial community may have 

implications for sediment biogeochemistry and the primary producer community. 

Resources. 

High resource levels increased above-ground macroalgal and epiphytic abundance 

in all three experiments while only light increased sediment microalgal abundance in 

mesocosm experiment 1 (Chps. 2-4; Tables 1, 2; (Douglass et al. 2007)). Z. marina 

biomass was increased by high light levels (mesocosm expt. 1; Chapter 2) but was 

decreased by high nutrient levels (field experiment; Chapter 3; Tables 1, 2). High nutrient 

levels increased epiphytes early in the field experiment (Douglass et al. 2007) and likely 

reduced Z. marina biomass by reducing light availability. 

Changes in the primary producer community were reflected in SOM composition. 

For instance, algal and microbial fatty acids (FA) (Cl2:o+CI4:o) were increased by high 
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light availability (mesocosm expt. 1) but were decreased by nutrient enrichment 

(mesocosm expt. 2 and field expt.; Tables 1, 2; Fig. 1; Chps. 2-3, 5). High nutrient levels 

may have indirectly reduced algal and microbial F As in the sediments by increasing 

shading by above-ground macroalgae. In general, however, the effects oflight 

availability on SOM content and composition were stronger than nutrient enrichment. For 

example, a greater number ofF A sub-groups (i.e. short and long chain FA, branched FA, 

polyunsaturated FA) were affected by light availability than by nutrient levels (short 

chain FA and branched FA in the field experiment). In addition, light availability strongly 

influenced where sediment FA sub-classes clustered in principal components analysis 

(PCA) while nutrient levels had little influence on FA groupings (Fig. 2; Chapters 2, 5). 

In ambient light, grazer-free treatments were clearly distinct from communities with two­

or four-grazer species (Chp. 2). In low light, though, treatments were not separated by 

grazer richness but by predator presence or absence (Chp. 2). Combined, these results 

suggested that, in ambient light, treatments with grazers had more similar SOM 

compositions than grazer-free controls while, in low light, treatments with predators were 

more similar to one another than treatments without predators. Nutrient enrichment, 

however, had little effect on the PCA scores (Chp. 5). The results of these analyses 

suggested that light availability was a more important determinant of SOM composition 

than nutrient concentrations. 

Although light was a stronger determinant of SOM composition, nutrient 

enrichment influenced both primary and secondary production as well as plant elemental 

content and dissolved nutrient fluxes (Chp 4). For instance, while light and nutrients both 

increased total algae in the mesocosm experiments, only nutrient enrichment extended up 
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a trophic level to increase biomass of the grazer G. mucronatus (Fig. 3). The positive 

effect of nutrients on G. mucronatus biomass might have been the result ofhigher 

abundance or higher quality of primary producers (i.e., lower C:N; Chp. 4). 

Consequently, both light and nutrients may be equally important determinants of 

ecosystem functioning but they may affect different ecosystem properties and processes. 

Conclusions. 

Overall, food web composition and resource availability were important 

determinants of seagrass ecosystem metabolism and SOM composition (Fig. 5). 

Importantly, resource identity had a strong influence on ecosystem nutrient fluxes, animal 

and plant biomass, and SOM composition. In general, light was a more important 

determinant of SOM composition than nutrient concentrations. However, nutrient 

enrichment strongly influenced nutrient storage in biomass and ecosystem metabolism 

(Chp. 4). Predator effects on SOM composition were generally weak and tended to vary 

with grazer community composition, suggesting that grazers differed in their 

susceptibility to predation by blue crabs. Finally, my results indicated that grazer species 

identity and community composition strongly influenced SOM composition. While 

individual grazer species may differ in their effects on FA sub-classes, multi-grazer 

species communities tended to have similar patterns of SOM composition, as indicated 

by PCA (Fig. 2). In addition to the main effects of resources and food web composition, 

there were a variety of interactions indicating that sea grass ecosystem functioning is 

influenced by multiple factors that should not be considered in isolation. 
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Table 1. Comparison of results between mesocosm experiments 1 and 2. 
Resources were light and nutrients in experiments 1 and 2, respectively. 
Arrows indicate whether resource, grazers, or crabs increased or decreased the 
response variables. Fatty acid (FA) data are presented as percent of total FA 
abundance R G C b esource razers ra s 

Macro algae D..,- D..l. D 
Z. marina D ..a. 
Benthic Chi a D D 
GEP NA 

..,. D..l. D 
TFA: TOC D 

o/oShort chain FA D..l. D D 
%Long chain FA D 
%Branched FA D ..,. D"'l" 

0Mesocosm Expt. 1 • Mesocosm Expt. 2 



Table 2. Comparison of results between the field experiment and mesocosm 
experiment 2. Arrows indicate whether nutrients, grazers, crabs increased or 
decreased plant biomass or fatty acid (FA) response variables. FA data are reported 
as percent of total FA abundance. 

Nutrients G ra :n:~ rs Crabs 

Epiphytes - - -Z. marina - - -0/oShort chain FA - - .._. -0/oLong chain FA -0/oBranched FA • - - -o/oC20 PUFA - -0/oC22 PUFA - -Diatom : Dino. - - -• Field Ex pt. • Mesocosm Expt. 2 



Figure Captions. 

Figure 1. Comparison of short chain fatty acids (FA; C12:o + C14:o) abundance across 

experiments. Both nutrients and light reduced short chain FA, which are indicative of 

algal and microbial sources of OM. Significant (p < 0.05) effects of resources, crab 

predators, and grazers are indicated in the upper comer of each graph by R, C, or G, 

respectively. Treatments with predators are circles, without predators are triangles, with 

resources are closed, without resources are open. 

Figure 2. Comparison ofPCA scores from two mesocosm experiments, one varying light 

availability and the other varying nutrient enrichment. In mesocosm experiment 1, circles 

represent treatments with crab predators and triangles represent treatments without crab 

predators. Open symbols represent treatments with zero grazers, shaded symbols are 2 

grazers, and closed symbols are 4 grazers. In mesocosm experiment 2, triangles are zero 

grazers, circles one grazer, squares three grazers, and stars five grazers. Open symbols 

are treatments without crab predators while closed symbols denote treatments with 

predators. 

Figure 3. Comparison of grazer biomass in two mesocosm experiments. Nutrient 

enrichment increased G. mucronatus biomass, suggesting that bottom-up forces may 

ascend the food web. Light availability, however, did not affect grazer biomass. 

Significant (p < 0.05) effects of resources, crab predators, and grazers are indicated in the 

upper comer of each graph by R, C, or G, respectively. 
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Figure 4. Comparison ofbranched FA abundance across experiments. Predators had a 

positive effect on branched fatty acids in all three experiments. Significant (p < 0.05) 

effects of resources, crab predators, and grazers are indicated in the upper comer of each 

graph by R, C, or G, respectively. Treatments with predators are circles, without 

predators are triangles, with resources are closed, without resources are open. 

Figure 5. Comparison of the effects of resource levels, grazer richness, and predator 

presence on gross ecosystem production and sediment organic matter (SOM) content and 

composition in mesocosm experiments 1 and 2. Solid lines represent direct effects while 

broken lines are indirect effects. Dark lines represent main effects while light lines are 

interactive effects. Short chain fatty acids (FA), representing algal and microbial OM, are 

C12:o + C14:0· Bacterial FAs are iso, anteiso I:(C13:o + C15:o + Cn:o + C19:o). 

Polyunsaturated FAs, representing labile algal OM, are I:(CJs:4 + C2o:4 + C2o:5 + C22:5 + 

C22:6) except in mesocosm experiment 2 which does not include CJs:4· 

224 



Spivak. Figure 1 

Mesocosm Expt. 1 
R= Light 

14 .-----~Ik-·n-t7h~ic-a~~-a-e----~R 

,).. & microbes C 

i.:::::::=·i:~=~=:::¥ G 

• 'f'--.. ==t 

0 

Mesocosm Expt. 2 
R = Nutrients J(j ~-----=-:__ ___ _, 

Iknthic algae & microbes 

R ~ 
"' 

() 

Groze1 Species Riclmesa 

Field Expt. 
R = Nutrients 

-Grazer +Grazer 



Spivak. Figure 2 

/-, 
<;;~ 

2 

0: 
\f"'. 
("'I 
'"-' 
('•I 0 
r ·, _, 
0.. -1 

-2 

r-·. 2 
,0 

0• 
0\ 

~' 
N 
''-' 
("'j 0 
u 
0.. -l 

-2 

-2 

Mesocosm Expt. 1 

~~ 

imbTlig~t 

T T 

1 

Low light 

1 ~ 
.Jf-
~ v 

-1 0 2 
PC I (31."7%) 

3 4 

Mesocosm Expt. 2 

With Nutrients 
3 

"""' .¢ 
0' ...., + 
N ,..,, 
-' 

0 <"I 

0 

~ 

-3 L---.-------i'----~-----+ 

·p-
o· 
""'; 
r··l .,., 
;::-;o 
v 
A. 

... __ , 

+ :\'ithout Nutrient.~ 

..; .. 
>---i., 1-_._.y 

6 
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Spivak. Figure 4 
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Spivak. Figure 5 
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Appendix I. Raw DO daU:I. from Chapter 2. 

lJD Tonk Cy....... O opp ... -- o-o.·. lJD W(~ ¥
31

ol "l'm":,vo) 1 00 (mg/L) 00 (mg/L) 00 (mg/L) DO (mg/L) {JX)] (mM) [00] (mM) [001 (mM) [DO] (mM) (~1 (mM) T:~ T T=~ T 
_. , •. , ....... OOatT=O (T~l) (1=2) (T~3) (T=4) T=O T=l T~2 T~3 f=4 =O =l 

L 
L 
L 

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 

2 2 0 CON CRAB L 141371.67 0.14 13.53 17.61 19.37 18.90 0.44 0.57 0.62 0.61 0.00 0.60 
3 0 CON CRAB L 141371.67 0.14 13.46 15.41 17.90 22.10 0.43 0.50 0.58 0.71 0.00 0.60 

6 
8 

10 
2 
4 
6 
8 

10 
6 

10 
4 
8 
2 
6 

10 

CON CRABL 
CON CRAB l. 

4 CON CRAB L 
4 CON Nocrah L 
4 CON Noclltl L 
2 CON Nocrall L 
6 0 CON NocrabL 

CON Nocrah L 
AE CRAB L 
AI CRAB L 

141371.67 
141371.67 
141371.67 
141371.67 
14137167 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 

6 2 CB CRAB L 141371.67 
4 2 CE CRAB L 141371.67 
3 Gl CRAB L 141371.67 
4 AE Nocrah L 141371.67 
6 AI Nocrnh L 141371.67 
I 2 CB NocrabL 
5 2 CE Nocnlh l 
5 2 Gl Nocnlh l 
66 AU...CRABL 

4 ALL CRAB L 

141371.67 
141371.67 
141371.67 
141371.67 
l4l:t71.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 

6 AlL CRAB L 
8 AlL CRAB L 

10 AlL CRAB L 
2 AU Nocrnb L 

All. Nocrab L 
All. Nocrnb L 141371.67 

10 

10 
2 

10 

10 
4 
8 
2 

to 
4 

2 6 All. Nocrnb L 141371.67 
5 6 All. Nocrab L 141371.67 

2 0 L'ON CRAB D 
0 CON CRAB D 
0 CON CRAB D 

3 0 CON CRAB D 
4 0 C..ON CRAD D 
4 0 CON Nocrah D 
4 0 CON Nocntb D 
2 0 CON NocrubD 
6 0 CON Nocrab D 
3 0 CON Nocmh D 
5 AE CRAB D 
2 2 AI CRABD 
6 2 CB CRABD 
4 2 CE CRABD 
3 2 Gl CRADD 
4 2 AE Noa11b D 
6 2 AI "Nocmb D 
I 2 CB N.lC111.bD 
5 2 CE Nocrab D 
5 2 Gl Not,Tab D 
66 All.CRABD 
2 6 All. CRABD 
36 All.CRABD 

141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 
141371.67 

0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 

0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 

13.99 15.45 20.29 21.71 0.45 0.50 0.65 0.70 0.00 0.85 
10.43 11.86 IS.72 18.30 034 0.38 0.51 0.59 0.00 0.68 
12.46 15.23 17.21 18.93 0.40 0.49 0 . .% 0.61 0.00 0.65 
!lAO 12.65 13.45 18.04 037 0.41 0.43 0.58 0.00 OHJ 
1336 1637 l7JO 21311 OA3 O.!i3 O.!i6 0.7U 000 0.60 
12.91 16.30 19.30 20.77 0.42 O . .'i3 0.62 0.67 OJIO 0.80 
12.97 16.22 20.10 22.59 0.42 0.52 0.65 0.73 0.00 0.72 
14.29 J.l74 17.75 19.71 0.46 0.44 0.57 0.64 0.00 0.6f"" 
10.92 13.03 16.40 17.71 0.35 0.42 0.53 0.57 0.00 0.80 
14.03 16.70 18.25 21.78 0.45 0.54 0.59 0.70 0.00 0.63 
14.78 17.69 19.10 21.92 0.48 0.57 0.62 0.71 0.00 0.60 
13.03 16.62 20.60 22.60 0.42 0.54 0.(;6 0.73 0.00 0.72 
9.76 13.18 16.25 20.10 0.31 0.43 (1.52 0.65 0.00 0.60 

11.29 13J!I 15.62 17.45 0.36 0.45 0.50 0.56 0.00 0.85 
9.01 9.60 11.47 13.52 029 0.31 0.37 0.44 0.00 0.67 

13.40 14.13 16.50 20.ll 0.43 0.46 0.53 0.6.."i 0.00 0.57 
9.48 12.05 15.02 17.05 031 0.39 0.48 0.55 0.00 0.68 
823 9.72 11.75 11.27 0.27 0.31 0.38 0.36 0.00 0.73 

15.47 14.47 18.8S 22.90 OJO 0.47 0.61 0.74 0.00 0.62 
10.97 12.72 16.25 :ID.D7 0.35 0.41 0.52 0.65 0.(10 0.60 
9.30 11.69 15.15 17.40 OJO 0.38 0.49 O . .'i6 0.00 0.75 

1026 10.38 14.24 17.12 0.33 0.33 0.46 0.55 0.00 0.68 
10.86 11.44 14.20 18.99 0.35 0.37 0.46 0.61 0.00 0 60 
7.50 7.94 9.10 10.27 0.24 0.26 0.29 0.33 0.00 0.63 
7.95 8.52 9.5-S 11.05 0.26 0.27 0.31 0.36 OJIO 0.65 
8!18 8.70 9.98 11.38 0.26 0.2S 0.32 0.37 0.00 0.75 

~ w - ·~ ~ ~ = = = ~ 
8.76 9.19 w.n 11.11 o.28 oJo OJ5 o.38 o.oo o.63 

7.15 
7.77 

12.72 
12.45 
8.50 
5.78 
5.06 

12.72 
7.12 

10.07 
6.05 
6.?:9 

11.54 
11.6S 
8.15 

10.60 
6.70 

10.46 
6.55 
121 
6.7:\ 
6.32 
610 

6.58 
7.00 

11.77 
11.13 
7.65 
5.06 
4.79 

12.20 
6.05 
8.15 
6.32 
5.49 

10.77 
10.62 
7.36 
9.60 
600 
9.32 
5.37 
6.91 
6.33 
5.43 
5.39 

5.72 
6.02 
9.96 
9.46 
6.30 
4.30 
3.87 

11.10 
5.22 
7.65 
5.615 
4.>4 
9.71 

10.22 
6.17 
7.88 
5,12 
7.79 
3.ro 
6.37 
5.68 
4.51 
4.615 

5.33 
5.16 
9.15 
S.49 
5.615 
3.46 
3.00 

10.63 
3.89 
6.21 
4.90 
3.64 
9.20 
9.14 
4.77 
7.19 
4.58 
6.94 
2.70 
5.89 
4.96 
3.66 
3.88 

4.40 
4.40 
8.38 
8.69 
5.06 
2.95 
2.45 
9.68 
3.41 
4.75 
4.35 
3.20 
8.71 
8.55 
3.30 
6.49 
4.00 
6.98 
2.04 
5.41 
4.35 
3.05 
3.30 

013 
025 
0.41 
0.40 
0.27 
0.19 
0.16 
0.41 
023 
0.32 
020 
0.20 
0.37 
OJS 
0.26 
0.34 
012 
0.34 
0.21 
023 
0.22 
0.20 
0.20 

0.21 
013 
0.38 
0.36 
0.25 
0.16 
0.15 
0.39 
0.20 
0.26 
010 
0.18 
0.35 
0.34 
0.24 
0.31 
0.19 
0.30 
0.17 
0.22 
0.20 
0.18 
0.17 

0.18 
0.19 
0.32 
0.31 
0.20 
0.14 
0.12 
0.36 
0.17 
0.25 
0.18 
0.13 
0.31 
0.33 
0.20 
0.25 
0.17 
0.25 
0.12 
0.21 
0.18 
0.15 
0.15 

0.17 
0.17 
0.30 
0.27 
0.18 
0.11 
0.10 
0.34 
0.13 
0.20 
0.16 
0.12 
0.30 
0.29 
0.15 
0.23 
0.15 
0.22 
om 
0.19 
0.16 
0.12 
0.13 

0.14 
0.14 
0.27 
0.28 
0.16 
0.10 
0.08 
0.31 
0.11 
0.15 
0.14 
0.10 
0.28 
0.28 
0.11 
0.21 
0.13 
0.23 
0.07 
0.17 
0.14 
0.10 
0.11 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
{).()0 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.78 
0.77 
0.70 
0.78 
0.70 
0.78 
0.77 
0.77 
0.80 
0.73 
0.68 
0.77 
0.72 
0.78 
0.7S 
0.70 
0.72 
0.7ll 
0.77 
0.78 
0.78 
0.77 
0.77 

Elapsed F..lapsed f.Japsed 
TIDU;!(h) Tnne(h)T Time(h)T 
T~2 =3 =4 

1.48 2.3.'i 
1.62 2.36 
1.92 2.46 
u:o 2.41 
1.78 241 
1.53 2.35 
1.70 2311 
1.90 2.45 
1.87 2.42 
1.75 2.38 
1.88 2.45 
1.77 2.39 
1.72 2.38 
1.87 2.42 
1.47 2.35 
1.93 2.45 
1.78 2.41 
1.57 2.30 
1.83 2.41 
1.62 2.35 
1.58 2.36 
1.67 2.36 
1.87 2.43 
UIO 2.41 
1.73 2.36 
1.50 2.35 
1.67 2.41 
1.85 2.43 
1.85 2.41 
1.77 2.39 

1.62 
1.57 
1.47 
1.60 
1.50 
1.60 
1.57 
1.53 
1.62 
1.53 
1.45 
1.57 
1.52 
1.60 
1.63 
1.47 
1.51 
1.60 
1.58 
1.63 
U2 
1.57 
1.53 

2.42 
2.38 
2.27 
2.40 
2.32 
2.40 
2.38 
2.33 
2.42 
2.35 
2.25 
2.38 
2.33 ,.., 
2.43 
2.27 
2.33 
2.40 
2.40 
243 
2.32 
2.38 
2.33 

3.15 
2.95 
2.93 
3.07 
2.98 
2.93 
2.85 
3.00 
3.1»! 
3.02 
2.92 
2.88 
3.00 
3.07 
3.17 
2.93 
,.fXJ 
3.07 
3.07 
3.15 
3.03 
2.90 
J.OO 



D 6 ALL CRAB D 141]71.67 0.14 13.58 12.76 11.64 11.05 10.61 0.44 0.41 0.38 0.36 0.34 0.00 0.78 1.60 2.40 3.07 
D 10 6 All CRAB D 14B71.67 0.14 12.10 10.35 9.51 8.90 7.92 0.39 0.33 0.31 0.29 0.26 0.00 0.72 1.52 2J3 3.00 
D I 6 All NOf....711b D 141371.67 0.14 6.57 6.20 ,.., 5.12 4.56 021 0.20 0.18 0.17 0.15 0.00 0.78 1.63 2.43 3.15 
D 6 All Nol.711b D 141371.67 0.14 6.40 5.R3 5.23 4.58 4.12 011 0.19 0.17 0.15 0.13 0.1)() 0.77 1.57 2.38 3.0!! 
D I 6 AU. No=bD 141371.67 0.14 6.60 6.01 '·"' 5.00 4.56 021 0.19 11.18 0.16 0.15 O.UO 0.77 1.53 2.33 3.00 
D 8 2 ' All Nocmb D 141371.67 OJ4 6.76 6.10 5.52 4.94 4.46 022 0.20 0.18 0.16 0.14 0.00 0.78 1.60 2.40 3.07 
D 10 ' 6 ALL Nocnob D 141371.67 0.14 8.67 8.08 7.43 7.03 6.50 028 0.2(l 0.24 013 0.21 0.00 0.72 1.52 2.33 3.(.:l 



Appendix 2. Total latty acid (ng g.oc)data from Chapter 2. 

Light 
0 1 

glaZBnl 0 2 
Componell2·2 4-3 2..o1 6·2 M - ~ ~ ~ - ~ - ~ M M 
12:0 114.0797 .59.75400 45.62272 90.12443 92.45476 4598916 10.4399 22.1732 99.42665 62.97306 62.16443 23.13636 97,62843 623671 63.66233 2170172 50.00792 10.3.2366 68.98767 64.410117 60.33031 151.2977 32.02109 

62.40354 23.66206 26.32326 0 39.21832 21.51105 0 0 4 012626 51.49439 10.51539 2.475174 8.425274 7.662027 11.76926 1.511401 6.580596 0 4.739551 7.746622 1.601001 63.17126 0 
e13 37.0297 14 30567 6.362102 o 21.44276 4.616063 o 3.920763 4.11103 4.506535 o 3.066349 6.079601 o o o 31.12424 o 
13:0 12.60645 9.583696 12.26708 10.16229 11.48684 7.491383 6.993096 6.61467 1UI0468 11.72579 52.11796 19.16107 44.66572 36.96092 33.70962 14.36056 21.54728 36.64634 32.03407 36.07826 54.27411 74.16773 33.67662 
14•1 22.23566 3.600766 15.70373 164.0266 20.49645 1.084662 16.63566 106.3882 57.49591 36.49278 4.794433 26.54493 16.14164 20.20516 10.57467 16.74926 21.33867 10.10565 20.91674 17.61669 40.93722 10.60597 
14:0 2619.669 2166.593 199656 3045.806 1630.103 1167.303 624.3905 1351.024 2716.934 2809.66 958.099P:t 423.396.2 1641.971 1133.722 1056607 700.3335 949.565· 1716.632 1724.568 1566.416 1412.946 2419.321 776.4424 

1375.012 904106 832.7696 589.461 660.8504 6.809622 304.265 480.3906 1121.891 166.6642 279.5895 71.14255 116.792 102.334 171.6099 58.9165 143.5553 126.8691 1210557 117.5193 599.046 1190.969 207.6099 
a16 679.1332 356.0367 366.1273 276.4698 473.4164 40.53429 165.6576 226.3668 567.4556 1367.579 176.3666 42.59274 61.25209 66.85842 90.64369 36.02601 68.11593 26.79933 61.43641 63.4742 4096601 726.4961 130.7316 
15:1 116.67 36.68702 29.65093 0 1011.2147 0 0 2.319464 105.6662 32.13626 125.466 37.07599 121.644 106.2722 90.91016 21.23033 66.44958 66.27794 90.5712 67.011735 194.2665 169.0337 37.75626 
16:0 943.6746 626.5664 6267791 939.3221 646.2334 325.2143 467.6967 531.0256 769.6122 904.6671 517.5844 210.2493 669.4526 494.4047 496.3989 219.6957 321.8372 343.1355 5400329 575.0673 572.3151 975.7746 361.5601 
16:4 
16:3 
16:2 
i16 
16·1w7 
10:1w9 

i17 

"' 17"1 
17:0 

16.2 
16:1w9c 

16:0 
i19 

'" 

4 556554 54.09237 14.0058 3.063683 30 65631 6.901788 24.72669 0 
0 0 0 0 
0 305.3641 31.01613 139.6246 0 80.9972 25.82897 0 

5.951236 33.06462 6.659332 0 
0 
178.5264 50.49823 0 

43.44156 13.30566 22.23137 6.166572 22.91452 25.7526 2.276306 192.9617 51.1137 35.72557 64.15299 0 
278.769Q 104.9463 346.6677 556.5917 163.7144 30.16656 95.36056 651.1706 397.5192 1167.355 3312.449 1826.668 0 

22.24755 36.53303 0 
0 
161.5206 189.2646 0 

25.3269 2.4fi6756 23.38826 31.5211 0 
0 0 0 0 0 
169.0314 0 0 134.3246 0 

54.75743 0 
6.190472 0 
171.6275 24.6506.2 

171.2625 221.9921 17.43361 205.6406 25.5676 206.97 2476696 57.98652 1144.613 294.8659 
3674.615 3090.662 450.0961 3296.421 137.272 5417.631 5656.317 1059.526 7727.303 3190.24 

176.0949 3633.25 162.2764 0 616.6362 299.592 0 135.4346 1292.478 721.2976 205.6131 72.99601 269.6864 201.3355 271.6779 2787.321 410.6406 61.36042 211.6964 264.9557 63.87316 41.68042 96 9035 
3129.379 14900 25 7654.263 1687 619 5205 806 7585.194 10758 53 10756 06 3647.196 2128.653 7045.316 3626.346 3578.837 3369.639 3465.079 5272.819 1212.281 6056.368 11011.2 6732.342 3415.907 

69.46817 126.0664 43.64146 44 64663 26 67767 11.5463 52.78028 6015597 6.549097 266409 20.3086 3.475472 3.116676 7.456503 27.73241 9.271314 5.543635 753.7951 11.52055 15.14166 13.11702 138.3675 30.49304 
199.3715 178.9505 6.137692 41.91045 21.19419 89.9602ti 123.3643 56.07902 76.06445 40.80051 38.66935 20.18467 24.06744 42.36182 2ti.90517 24.65627 12.63561 10.44106 81:1.96377 46.89995 163.0995 37.33386 
108.4377 107.7234 51.58434 70.05434 77.56115 60.74141 55.29965 20.51668 133.6975 134.4465 43.29574 21.100<1 11 96527 69.51863 30.5268 7.938606 34 74303 6.832611 61.07768 3.962222 120.3581 413.0063 123.0219 
394.346 111.6362 102.5959 36.75297 176.8171 49 30915 11.23511 24.2442 221.2191 252.6634 166.1569 7.726485 313.2609 104.9221 139.7236 6151396 2066129 235.756 106.6504 1315319 306 5471 236.1626 61 07601 
293.2744 350.667 1066627 378.6179 263.4191 160.6659 270.7472 311.41 476.8457 567.0902 156.6997 44.26269 20.14442 139.!5089 217.2036 46.99767 5643641 12.16302 214.6864 127.5574 fi0.92ti95 4907345 161.2692 

44.54666 0 107.1632 0 2716662 1901093 2103262 86.1062 62.62667 169.3926 111.3103 73.94578 55.19976 184.0651 0 149.6816 240.6431 0 201.6795 50.47645 
11.67617 337.6191 164.6555 2373.935 2030.63 359.4853 213.6571 242.777 199.6852 275.628 232.6826 221.4254 205.3599 512.363 333 4063 386.6998 569.206<1 266.2605 516.0921 109.1367 

1507.014 316.6936 917.6531 2039.614 213.2197 332.1297 1613.46 630.3714 462.8643 412.5193 542.3446 367.294 361.0214 491.6396 735.1614 56.17992 629.1261 966.679 61.18996 964.0647 60.36281 
289.4523 396.3816 1919654 7691696 244 9406 160.2793 235.6649 111l5.2ti2 444.6669 662.5069 221.7466 419.6704 390.6357 606.9992 171.346 175.5906 1264.444 866.1402 470.2611 647.1902 932.161 347.0767 

976.6728 969.1965 657.0201 106.6726 1442.911 460.3676 107.6535 2631443 2411.81 2217.57 1042.117 101.0674 755.5204 768.2377 229.2096 153.927 220.727 1016.299 1290.647 253.6159 1243.606 426.1973 360.657 
1868.678 1677.373 1123.90<1 961.2371 767.5637 607.403 770.0604 8979676 1665.646 566.4345 392.7400 63.00371 541.6189 627.407 166.5213 164.7622 63.32283 667.12 739.5735 159.1205 915.659 1371.037 436.6032 
127.1381 64.41961 35.11235 65 73312 2066865 7595868 67.00659 60.64754 4400317 66,96492 21.67631 0 6.590062 1.676775 0 3.87427 0.675637 3.907096 0 4.916443 11.67777 79.54635 0 
39.1012 0 0 0 2.342126 40.21777 49.05656 0 1,976641 2 70571 5.28361 0 22.89693 7.129603 6.564107 3.361526 0 

'19.1' 147.4922 62.66566 46.88356 95.9293 45.92315 26.48679 15.26466 53.46091 120.2515 150.1717 46.05832 14.66965 23.1853 19.35432 5683659 1-49481 3353983 42.73925 103.4561 38.49195 0 3768948 64.66133 
19:0 1496.661 1204.492 1209.304 1233.184 1166.213 1191.746 1236.521 1017.937 1558.214 1386.351 736.9082 695.9297 795.5914 766.1588 963.2969 9671932 747.1742 665.6356 651.2299 1058.296 1094.677 1342.849 1425.259 
'20:5w6' 1363.161 308.3948 209.7766 5.907912 656.7846 177.5745 3.606637 47.90038 960.3509 1009.09 336.7644 201.4205 656.0897 426.9177 r-63.1853 191.9452 632.317 64.36336 546.1933 572.6971 0 391.6756 3.112707 
20:4w6 253.9957 749.1835 425.626 7.799136 1661.705 383.1155 3.608898 76.51312 2416.309 2467.802 64.71934 459.5705 1345.621 1084.33 123ti 512 674 3937 1710929 1364.611 1477.205 1748.466 810.6222 2718.1)67 331 4631 
20:5w3 196.8306 71.14423 109.2746 0 116.1523 6.588884 0 10.77227 236.6092 226.3054 136.197 46.76098 117.9225 93.04236 151.7359 60.11049 39.77061 94.86365 172.631 229.4025 1508.749 165.6694 735.1069 
20•3 223.0613 193.9013 199669 0 107,1706 324.9067 241.6675 242.0703 139.0164 191464 66.63609 32.37469 74.36784 51.74921 7611992 39.69197 49.82433 101.5278 74.49392 101.7896 59.44787 117.1294 44.44074 
20:2 364.2566 3414839 3564611 641.9583 776&158 539.9363 355.7109 396.6631 60.06330 85.8901 29.67239 15.63266 33.4148 3.325659 2511166 20.48043 13.99454 49.26496 23.96106 11.19656 6.608821 16.94787 0 
20·1w7 5362286 96.35635 96.74572 34.3048 33.76122 62.92611 12.99326 3.359776 14.92268 66.30979 22.33369 18.30824 24.56674 16.38294 29.19294 37.69193 3612277 55.97073 61.75683 45.67445 75.06458 113.4148 13.14651 
20:0 1696.733 1331.906 131364 1256.010 1198.98 1265.618 1213.236 939.35 1719.827 1666.703 668.0251 925.8501 687.6537 669.4764 1079.462 1239.801 613.3661 663.9331 1011.179 1302.233 1410.262 1976.69 1410.126 
21•0 369.8346 321.2825 353.6004 423.1076 392 3153 3661975 473.9933 471.2466 376.5791 382.977 521.3775 396.3527 414.7933 565.3508 500.235 409.2548 433.1152 176.9639 769.6179 523JJ546 339.8965 667.3176 624.6545 
22:6w6 186.2319 66.72821 36.48082 0 96.63044 55.35907 0 167.5253 172.4938 2703213 20.6177 63.80556 50.23067 105.3704 12.29765 60.96655 62.9433 95.59276 90.95655 0 205.3564 0 
22:6w3 349.9602 137.9341 730095 0 4090171 98.32411 18.37949 0 5147631 643.4568 146.1245 113.1603 241.36'9 236.7937 343.521 69.42597 215.9219 260.6066 442J~7 406.9607 408.6475 705.8287 0 
'22:5w0 0 0 0 

202.7029 0 22:5w3 
22:2 

75.38913 29.37336 0 
55.24167 0 

124.9549 34.14964 0 200.1143 2163041 45.21973 22.66637 59.78286 40.88161 65.65691 24.34749 39.75945 90.91734 96.07837 97.51967 0 
22.60769 345.1 301.6755 36.44834 77.21002 6.868659 2153457 1196567 0 11.76055 59.3698 22.51066 0 

33.45335 22.19526 0 11.57907 22.19339 10.18006 94.17645 491.1421 496.2668 23.59702 16.97041 3.019969 7.711331 15.63968 27.7742 24.56752 48.21365 22.86494 21.90176 363.0664 0 
22:0 951.1193 386.9305 420.1666 262.4279 273.9459 268.0776 1401474 145.3623 463.094 5564754 208 5493 65.6544 163.924 136.0427 190.7254 104.795 134.5438 233.1161 165.252 249.357 359.1454 767.9647 129.4894 
23:0 271.3016 161.3865 192.2701 197.5007 166.6521 194.4351 173.7412 139.0929 218.3821 239.1639 160.1446 164,3007 157.0524 1616765 168.1798 163.0813 150.5854 172.4706 165.6343 184.4604 196.7324 264.61011 209.9762 

63.76675 44.90725 14.80616 0 36.66356 3.149778 25.96063 3.669421 49.59611 87.5367 10.96216 7.250332 3.687712 14.2316 8.667243 12.60878 35.14256 30.67927 45.8557 26.06306 120.545 36.16815 
24:0 1827.403 615.0405 1223.005 806.4705 549.747 569.2666 367.5511 218.8559 1173.96 896174 2934166 106.7643 406.3511 2467116 295.4129 207.38 202.7696 477.6656 344.9494 608.1518 591.2155 1565.283 279.9422 

0 0 0 0 0 0 
400.5607 182.8108 166.1577 156.2793 140.938 552.~55 91.63649 44.6655 176.906 25619 102.7165 39.32691 76.11381 83.63319 107.9052 73.91061 78.77504 105.3129 96.36436 90.53446 196.4702 376.6438 97.6508 

0 0 0 0 
165.3921 60.69262 76.4644 63.6898 58.00641 322.2112 46.03046 32.45959 73.17469 119.9118 50.24141 26.8867 36.21409 36.69932 71.20779 4113635 36.62396 52.02014 59.94607 62.37497 105.7016 165.9774 54.34683 

0 0 0 0 0 0 0 0 0 
30:0 0 0 0 0 
31:0 0 0 0 0 

- 0 0 
Total 21753.01 25393.94 16109.64 25033.47 22405.68 11269.97 13036.66 17600 73 33707 46 31380.3 10685.06 12856.46 15440.35 16169.07 22291.86 13509.36 37772.96 12231.92 
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69.30891 21.70784 68Jl8011 120.7329 36.6934 34.69454 50.25958 
43.07067 0 60.22078 0 0 25.1443 
0 0 26.04714 0 0 7.663832 
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259.2765 66.03774 202.7814 412.0277 78 89044 102.3435 200 4823 
292 9282 167.1822 264.0980 477.8158 146.0874 252.1462 292.9207 
0 45.27554 0 213.2131 68.02871 100.5556 111.0797 
469.4891 1091414 32.95808 597.1899 148.6652 166.8982 261.204 
54 43916 251.5326 53.48952 1208.875 66.19009 439.7744 67 63857 
502.4725 327.1931 749.1839 1133.816 337.4334 476.3978 645.5049 
1351.707 561.7825 1334.081 2445.856 475.008 585.1572 1138.907 
1554.689 437.2931 761.9364 1106.529 401.7295 866.0028 628.131 
18 0491 8.723269 0 7.028294 4.636346 0 
0 0 1445.861 66.49868 0 0 5.826604 
44.72786 20.32594 34.16238 80.50265 12.51273 19.08326 57.11108 
B9.00191 1284.724 451.6078 1486.205 812.8496 1237.824 1332.307 
1506.167 252.6106 631.1671 27.27689 3.815951 0 643.1123 
680.5714 31.27217 144.4295 1395.276 483.9461 514.7374 1554.089 
560.4393 12.71369 86.90867 2260.617 003.6671 985.3316 12R6393 
15.4757 0 28.13563 28.00133 75.15001 
25.59999 27.11861 601.3526 72.79156 11.70283 15 70195 0 
47.19349 47.56057 332.1408 127.6382 61.80173 66.19795 36.48058 
4498292 1356.815 14.55391 1690.553 50.96727 1246.969 1401.895 
1102.372 612.6404 309.6077 501.9621 599.1971 655.3963 622.0144 

28.61587 4.377393 
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36.23579 42.96439 60.09236 

0 0 1.637556 0 0 0 0 
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22.06417 32.44759 32.649 28.68953 28.40247 36.52197 16.87185 46.49609 37.0357 13.37432 64.61801 26.33959 26.91687 22.99348 19.09961 25.16202 26.96211 
264.1352 65.60567 144.1048 131.9749 9.620413 0 6.062425 30.93544 68.55247 42.64015 72.8397 64 27016 27.38136 112.7974 67.12564 184.6067 
700.9275 1541.158 1309 556 1213 62 947.7768 528 141 506 5626 1623.056 229.6676 606.5937 574.463 8V.0167 217.5727 811.9179 1114.599 1688.866 

5591013 259.2144 697.278 634.0477 565.6497 59t.n67 257.2997 248.7316 683.9582 33.64256 263.6002 222.112 497.3015 92.86589 355.3795 371 9252 1106.357 
261.4563 149.6536 377.699 350.001 334.7643 593.73 151.4119 170.7187 447.5724 66.03386 2103008 150.5576 453.3932 68.14305 286.1646 222.3019 14.61856 
48.06401 1264732 4061453 40.41764 43.37191 81.51775 23.19775 68.82295 78.92937 32.66332 35.32063 17.66533 50.30698 19.6419 36.72788 36.13657 7.878962 
3281976 165.0166 410.9071 362.4972 350.56n 416.2113 209.3634 244.1361 509.8.221 7049835 267.5491 215.266.2 302.3781 148.8653 269.6633 261.7611 41.66228 

0 0 29.32369 0 0 3.363267 0 0 
0 0 0 0 0 0 0 0 

197.214 64.30839 186.3729 0 253.2196 67.4279 176.8536 0 261.1995 
1392.934 436.4964 1681.975 1189.245 1302.475 76S.788 602.4266 732.5534 1359.418 71.71969 621.9168 434.8003 612.6279 233.667 622.5559 1316.133 7.950006 
4945.175 1700.744 5771.402 4760114 4~.378 3113.366 2678.142 2961.45 6402.999 590.4025 2413.224 2112.014 2791.061 1336.35 2600.685 4095.245 4726.211 

336.738 3024927 47.12602 15.30715 157.4451 41.11597 0 6.427124 10.15064 34.92757 5.037072 16.95734 17.43838 0 
5199.916 2756-~ 6758.13 5217.348 4685.708 4121.915 3109.466 3199.037 6554.401 936.2838 2535.824 2399.236 3413.687 1740.601 4053.505 4985.397 7059.269 
74.64746 61.82577 1224928 143.1271 68.97547 60.37146 44.2156 7.690035 140.4177 1514663 56.57817 113.4086 65.34945 23.56878 47.649 95.93435 169.4877 
138.4125 68.66086 212.6286 158.3318 159.6634 140.3761 6712567 65.25304 202.8663 16 79203 64 66842 63.76823 106 999 36.00123 147.943 217.3647 

245.783 89.45696 28.2.6336 146.6407 169.9322 300:6964 150.3543 177.9571 342 1384 19.53733 210.2361 155 5918 164 7799 128.0566 173.801 245.9663 108.1677 
61.96266 43.20147 104.9542 81.64286 104.1296 139.0926 40.16644 67.36361 121-.6132 30.24973 56.93649 53.3927 99.30276 32.43956 74.65333 72.42154 90.57996 
195.6127 187 4612 275 59011 3091866 289.7265 286 3692 240.3288 184.2255 366.1604 70 42934 248.2168 137.1579 311.914 155.7215 331.619 208.9954 

0 0 1291785 64.76375 126.9574 0 2.865195 6603951 130.5396 0 9900061 115.7681 95.12511 
139.2092 35.57821 401.2234 262.7182 264.5077 323.7667 18.06829 2011849 363.9353 13.94502 158.8974 4967756 160.239 6.144616 201.267 125.6624 7.951437 
361.0362 101.7417 561.8962 556.6572 335.2133 182.8201 371.1986 987.7329 46.02829 178.6626 225.0233 .¢06.9537 122.87!'> 694.1798 312.9108 6024362 
1375.011 507.3071 1243.912 1038493 670.3837 5809777 1578.13 203.1045 575.4916 580.878 956.6977 319.1156 1976.781 165.247 916.7514 
955.1746 69:19115 118.9209 1266.299 1281.407 432.0057 621.1932 647.2122 1453495 1768259 567.6864 466.3491 799.9066 2658221 900.6315 244.7994 1056.343 
204.4238 1175083 1089834 662.7574 964.7644 140.16 566.6535 420.3537 946.6016 272.1717 654.1184 449.9635 600.5757 414.2443 869.0666 1072387 

0 6456292 0 95.86647 1.165669 0 0 0 70.47653 110.9236 0 391.9402 0 63.97712 7.404516 
0 12.75536 6.100272 0 7.564149 12.65007 0 0 0 0 4.276046 0 

3117!'>76 7.696242 70.53562 41.5729 0 18.62291 5.477162 0 51.98661 0 0 0 694167 0 26.8334 77.79388 
2939.565 2764.505 2701.446 2281 006 2492 663 3160 496 2859.961 2691.357 3119.172 2933.051 2440 12 2589477 2203 496 2844.252 2762.724 2919.58 2366.589 
768.7065 7.29611 1125.641 764.6245 24.55908 0 23 60302 0 1047.645 0 0 6 143346 24.14906 145.1045 0 
2275.605 225.6891 2896.506 1661.6 697.5002 463.6896 536.1181 562.1106 1999.623 15.51687 408.6346 295.6506 600.1262 343.6435 697.3516 771.4666 522.7064 
64 68674 334.6939 126 8645 99.65642 1649.075 1306.797 846.4217 1204.673 163.7705 46 96072 601.7429 715.6512 1095.641 27.03704 1645.579 1545.602 890.5013 
2491062 0 0 106.0465 33.10274 26.66795 19.32652 45.6507 64.76239 0 70.17636 22.69764 0 0 39.76575 54.32424 60.65229 
75.96402 0 98.41631 136.2234 51.06197 49.246 1937225 44.42792 1742653 0 136.5476 20.11081 36.7648 35.06606 65.05593 78.69624 196.7968 
66.52296 24.37728 104 8981 80.901103 78.19595 42.51756 22.27087 26.85776 101 0679 10.99746 43 13006 31.78012 27.6312 16 69147 62.30526 72.90169 2.214528 
1702.225 65.39636 1609.452 1314.659 1466.48 2035.763 1578442 1485.019 1871.065 1508.214 1443.864 1496.444 1417.821 1693633 1698.105 1658.907 1445.723 
559.9251 1782.617 748.4731 778.521 757.9081 644.9938 1667.488 736 568 754.3444 678.9361 878.434 748M67 619.9048 741.5755 602.7056 431.3547 

0 176.0799 113.1117 104.7768 4.983712 0 71.48718 123.237 0 1.217853 0 75.03617 11.20423 35.61196 0 0 
563 3905 0 823.9416 519.567 556.9015 426.0954 152.5903 309.2961 556 6061 16.17712 204 3015 186 7164 291.5099 65.63216 275.1436 442.0052 170.7602 

0 0 0 0 0 0 0 0 0 0 0 
355.5861 44.9799 62.17398 197.9515 35.59222 45.58806 109.6168 110.6718 0 198.5523 157.3696 231.5724 96.1797B 23.33346 78.52316 165.8517 8.442917 80.36069 51.13366 82.44222 22.20064 134.8722 127.4927 51.76252 

0 36.67067 10.6816 0 3340662 0 0 96.906 0 0 0 0 0 0 57.79119 21.05173 2703773 0 559.7479 0 0 
170.6776 18.66591 94.50214 75.21077 10.76059 1651126 1029467 2245812 1.921603 3680027 3.36316 24.10043 378936 4.456683 14.95126 175.9172 33.63178 14.37847 9336441 394.7675 12.39111 20.96744 626.3304 10.26638 
7719455 167.5862 66.36667 516.1696 8.2.6653 119.9145 297.8929 127.2505 85.12363 265.5208 174.68 213.7889 374.9057 118.7379 160.4407 254.2993 134.253 96.68184 339.6168 88.67566 278.163 140.1825 330.8968 
362.9116 201.6299 716.5732 240.4959 1557366 221.6703 220.2091 118.6469 147.7967 128.3006 136.4717 121.6291 149.5193 119.9123 148.6484 107.5537 135.2409 120.2215 122.7439 131.8529 124.1174 112.7883 
3869341 44.06516 13.66093 77.41836 31.61035 62.65287 68.58271 25.49979 14.65687 48.38756 20.56356 42.16742 23.26644 12.72161 39.38195 44.68239 16.01127 15.51367 38.99502 2.596556 .25.09436 22.35073 3115635 
620.0596 3488004 210.8071 7534168 224.0713 268.3077 763.0338 233.7058 14~.1006 416.6029 236.1713 306.303 574.7051 167.6187 260.6428 367.2924 194.6924 225.9477 175.353 428.117 125.6842 344.2633 158.0441 549.3697 
0 0 0 0 0 

83.30625 111.2552 84.94462 239.9209 62.44179 56.46073 209.5438 
0 0 0 

28.03986 84.69061 0 126.0606 3510674 2 056931 94.51301 
0 0 0 

0 
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109.7865 37.75775 
0 

117.26-471 20.06216 
105.11857 80.15156 

2260.96 863.6661 

.. 
51.1111886 

0 
0 

25.17785 
124.958.2 
11139.396 

, .. .. 
17.9756 99.20396 

0 
0 

17.006411 111.7723 
28.07115 1113.0931 

1180.5066 2069.384 

,_, ,_, 
96.80416 26 56317 

0 
0 

35.05783 23.91731 
176.111711 159.3665 
1450946 1807.298 

1~1 3--5 
10113032 5.660611 70.68377 6711063 80.311157 60.16691 

0 0 3.690162 
0 0 1.579018 0 

10.22965 10.111726 36.117944 44.59161 31.63969 34.304411 
1110.6566 34.341102 57.73871 34.611194 16-4.2231 67.59761 
297.0778 229.1392 1600.436 1250.1169 1402.603 1129.122 

1271 096 1144.3672 7911.1730 376.6732 1378 19 894 5345 1007.616 111.3597 168.11312 1037.816 915.1193 9161124 
8650861 248.6161 1186.9439 2113.634 629.6032 662.1116 567.611111 75.119786 94.96812 660.11637 700.0269 58-4.3298 
128.1343 11.68565 36.76954 0 1081265 102.622 71.26996 16.331111 3.1}46462 77.67073 120.0189 61.99442 
7111.0736 295.6853 376.1948 .2511.0703 66911172 531.0667 460.1113 86.23836 122.1977 537.7446 635.0795 395.6556 

110.2726 
542.0645 
34.03612 59.65108 12.7927 26.96946 0 13.871113 39.113072 31.25602 0 53.68982 0 34.0353 

0 0 0 0 
0 11.065941 0 186.3567 7.718666 0 11.723415 1211.71173 2117.6001 0 122.9989 

19711.062 170.2606 760.5201 Q1.558211 1897.7117 1205.661 2036.935 33.01175 113.3939(1 654.0935 191.7625 926.9735 1043.531 
0077 705 12.M404 3277.054 80.68604 6257102 11935.195 6721.689 11953648 7 9:98433 11971.391 5172.119 5655.257 11310.617 
1191.7198 965.3331 201.3498 0 116 91163 117 7661J7 3&1-5286 30.166711 0 13.27076 2S4 6172 333.2601 303.6666 

6341.1 11185.751 54"S0.86 21126.277 8242.699 5970.709 71198.919 1315.305 11116.987 6275.1166 6890.2116 5724.076 11727013 
292.11266 113.0667 36.631117 0 173.0886 1111.9335 157.694 17.4-1644 134.9008 110.2131 255.1201 127.63111 
273.70311 102.5043 97.51001 103.5277 27.56194 217.7386 222.22113 56.96454 253.11111 216.3771 190.11611 193.11795 
543.2065 64.59268 103.61157 59.0492 1553575 417.7341 26-49662 32.13126 27.76889 367.2937 1134.3299 253.66211 400.3.."113 
235.7334 3.289221 0 15.81061 17.87073 189.2117 135.9358 11.59589 0 Hi3.5976 194.7635 125.6707 200.0792 
1129.2204 00.67732 98.7112111 216.6092 213.777 298.6722 277.9013 81.56436 176.112 351.088 413.11398 216.2516 387.61166 
296.6307 61R6-49 655.9069 0 146.119111 0 311.6362 5.0016113 o 0 106.5621 123.0967 

13.392611 400.0325 762.7793 1109.211 260.4567 1007.21 11.21953 1132.1676 830.2166 776.2894 235.6033 21111.91116 
669.5617 0 646.63111 0 68.3443 642841 546.7761 32.116977 0 19.57896 21.88908 701.768 1112.065 

291.2599 752.5997 167 60511 225.2687 1369.9111 1040852 112.8041 57.05306 1696.312 1396.139 1261.712 
77.2403 66.211179 64.387 339.7663 1622,861 1239081 129.971 6692671 12111.12 1616067 6113.1565 306.916-4 

897.9077 193.0945 357.2163 1139.306 843.1629 9974573 670.5906 613.1118 1037.6-411 1037.1116 168.2519 173.2075 
7.620667 3.6661611 0 6.975.2511 96.21047 13.96963 11.946706 6.665151 10.76064 0 62.22122 

8.580433 0 5.052008 6.035329 0 8.33331 0 4.715778 0 0 
70.16559 33.26009 66.60095 16.71306 79.69107 16 70496 128.6697 0 11.53692 51.99206 31.348117 60.22037 43.94378 
273.2.597 2008.268 2619.126 2527.252 2931.096 2742.864 1969.28 2951.556 2293.836 3091.075 2750.613 28711.166 2565.002 
1236.195 56.123115 333.2631 0 46.12279 1102.562 0 
1772.1115 66.5182 518.2049 0 1096.683 937.1372 1656.736 0 1100469 919.6913 660.9823 793.46 
102.11719 0 22.51019 16.61023 1920.762 1352.276 104.8306 2.066237 0 1670.704 1863.162 153.11255 1357.651 
5.376226 101.7661 62.6356 0 78.86483 70.89693 138 9942 48.90826 79.87799 162.0461 163.8271 6.2767711 54.90128 
33.11222 163.6013 110.4065 240.21168 100.2163 72.976211 1293216 59.20149 159.7146 134.021 96.113199 66.119561 63.06645 
109,9623 8.463121 15.20603 8.367115 79.36286 49.92107 11.94623 19.55113 32.9514-1 63.302113 59.22643 43.19226 
1837.154 16Hi.049 1561.975 11103.628 1603.319 1734.987 12711.792 1566.661 1270.187 2022.036 17117 175704 1643.353 
755.6366 1113.52211 1137.3795 1120.52119 762.3827 7193071 691.3729 1156.127 297.3458 443.3765 4411.781 755.6072 7116.5095 
211.0537 0 6672048 0 8.05987 127.1621 130.6312 0 0 0 11611134 110.4051 5.9111623 
398,9321 11.811336 1119.21191 8.918663 447.1091 1114.0616 369.7182 0 111.98356 1175.9661 1199.3333 257.2913 387.8618 

0 0 0 0 0 0 0 0 
117.1116 6.11115904 35.048116 0 86.67682 89.64432 59.211277 0 34 821175 119.68297 63.73445 9.4067811 

0.721822 15.29236 60.17229 33.37229 0 25.55259 2289904 19.70963 22.62107 112.341112 337.21171 0 553.5139 
628.21115 312.11133 137.2595 0 171.9416 30.435611 231111564 11.04086 29.67202 31.17056 20.93913 19.99666 

113.8265 216.9756 0061137 300.3715 32ti.25211 2450001 34.39434 70.39777 366.2198 342.7197 26611699 266.3045 
143.2106 12ti.ll962 132.3M3 136.61131 1116.9633 1111.1636 146.3961 130.81113 126.1133 100.5343 16971197 1111.3346 160.7602 
29.80566 15.86926 17.571166 21.Cl5076 29.507157 2tiA755 47.683511 11.029608 36.01309 69.82593 111.7034 -47.78467 46.281119 
589.3706 20!) 0469 485.1305 155.6167 496.1894 1126.2346 4115.0075 119.15351 81.93761 623.4661 389.6477 433.6561 394.1213 

2111.693 21.521123 100.3122 

10.16944 23.36167 32.72737 
0 
0 

0 0 0 

0 213.2653 103.4507 219.2723 11.608135 II 092857 126.3007 59.10622 165.16113 119.26029 
0 0 0 0 0 0 0 0 0 

0 20.07629 46.66186 4A08021 6.817388 22.63631 26.78923 8.5958"19 13A0569 
0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 
0 

38329.91 10935.54 
0 0 0 0 0 0 0 0 0 

18604.38 6367.1169 31655.52 267211.63 31757.27 3621.611 '1025.111 26313.9 29329.91 22966.37 21928.111 



light 1 1 

- 1 1 
gJW(Inl 2 2 
Componen2-2f3-4 4-3f3-4 fl-6[3-4 8-313-'1 1o-4f3-4 24f3-4 4-4f3-4 ~2f3-4 6-613-4 10-313-4 2--3 4-6 6-5 8-4 10··2 2-5 4-1 6-4 6-5 1o-6 2·11:1-4 4-513-4 ~113-'1 ~213-4 

'" 13:0 

14;0 
i15 

'" 15:1 ,.. 
16•4 
16:3 
16:2 
i16 
16:1w7 
16:!w9 

17.56067 4.280~9 5.447782 0 1.286536 13.56944 0 5.507939 38.22717 3.5~331 2.441293 1.221241 1.454494 0 2.048563 0 0 6.774623 0 0 2.063934 4.676853 2.430715 36.1545 
2.682456 0 0 0 0 0 0 4.012626 1.325869 1A28103 0 0 0 0.743511 0 0 0 1.601001 0 0 25.6521 
2.665312 4.899035 0 0 0 3.863699 0 0 3.380008 0 0 0 0 0 0 1.583242 0 0 0 0 
2.862235 2.6:24108 5.2224911 0 2.358957 1.920346 6.121138 2.11532 3.560098 1.918153 2.119254 5.759731 0.1187294 1.293403 2.563292 0 2A333311 0 2.103694 3.10514 4.831777 2.8111038 26.09556 
0.834129 3.800766 5.746237 3.415745 4.490256 1.084882 3.203516 3.~485 9.050477 5.943091 23.24265 0 8.586691 0.725332 9.626617 0 64131 1.071966 0 6.636657 0 7.2280e6 3.7'69681 0 
157.0384 60.75591 113.0647 36.25822 63.12731 27.98709 11.28695 18.64014 222.9394 155.4345 109.2473 29.61491 64.3366 71.1637 123.4841 51.35158 42.45716 150.5807 178.52611 124.9194 159986 169.6046 40.67776 839.1116 
93.35435 261!7045 6645294 1097163 66.71936 6.809822 3.580058 28.22189 124.5094 76.84325 127.4366 25.71535 3.079309 0 5.644715 27.42762 40.76097 1368833 37A1753 0 104.9056 160.8779 3744415 827.3429 
44.72891 11.04736 21.4886 5.394612 29.61575 5.209033 2.493659 11.98367 51.{)9613 31.70044 86.29371 14.28063 I) 14.45645 24.11'9414 0 16.50616 2.13172fi 7.51ll239 85.53276 1651719 5085427 
1.860133 2.132002 0 0 1.3556 0 0 2.319464 2.541336 2.233015 11.66252 1.561771 2.346456 0 7.282329 0 2.143386 0 6.682346 4.506135 77.03396 4.500633 0 37.1111089 
34.14338 17.48353 22A9866 13.20558 24.61584 9.420399 6.559952 19.50274 52.911149 36.784 75.6HI 16.92323 51.01786 40.92635 154.5375 28.71126 24.64474 124.0956 72.55671 97.43506 6.752095 59.&0299 21.7075 334.0764 
4.558554 0 0 0 3.083883 0 0 6.762951 0 5.951236 0 0 0 0.888007 0 5.705737 2.458756 0 0 0 0 35.66831 

0 0 0 0 0 0 0 0 0 0 8.190472 0 
0 0 0 0 0 0 0 0 0 

43.44156 13.30565 2223137 6.168572 2291452 7.175242 2.2763065 51.1137 35.72557 5.886522 0 
276 7599 104.9463 17.60603 56.98256 183.7144 3.7161 9.362889 7.775511 397.5192 269.7158 56.24664 120.5684 
18.7681l3 5.900911 182.2764 0 11.46364 21.47523 0 99.92406 0 19.6293 22.87662 0 

0 0 0 0 0 0 0 0 
0 17.43381 21.58303 6.993993 17.06882 0 57.98652 4803428 13.16186 220.1042 

0 2.065033 7.848244 201.41118 11.24071 0 440.2481 0 350.5629 276.0734 95.52775 1493.102 
20.5745 31.82266 66.16981 10.46771 230.8557 81.36642 36.13007 45.03721 63.87318 41.68042 6.666372 196.1717 

647.0376 2754624 490.090ol 141.8829 492.860o'l 114.4092 651l5752 331.731 1053.613 W3A256 34.92227 307.1768 163.7206 211.4459 368.7775 627.6091 493.1614 322.5573 1200.254 376.3671 811.0993 806.5942 226.0999 3124491 
12.72365 0 10.02776 0 5.727628 0 1.298041 3.601954 8.549097 9.827294 0 0 0 1.01316 0 4.794349 0 746.5514 6.239882 0 13.11702 16.811653 5.491549 41.38368 
13.6440!1 4.517149 7.558912 6.137692 6.976549 5.593331 5.714394 5-33614 20.61373 14.40804 13.61208 6.929505 2018467 7.383307 3.873232 0 10.44106 13.65269 16.2fi246 16.75926 6.2f:i7436 94.69516 

a17 6.635057 0 15.94838 6310377 4.137724 0 o 1.722426 26.16786 5.299662 o 5.262763 5.711674 8.292789 11.26036 o 13.20054 6.832611 8.726873 3 952222 13.51097 12.120o'l8 3.919725 166.3992 
17:1 12.66077 2.676193 11.55041 3604822 6149814 2.047327 0 4.301008 14.54421 9.040009 0 7.726465 1.521422 4.675962 11.92173 10.64495 20.66129 15.70717 23.37416 1.494265 25.78223 17.13673 5.94034 108.3172 

25.42602 12.61757 17.91218 10.00176 16.61446 7.3692fi9 5.579flo8 20.86146 68.64467 106.6166 2391571 17.36561 13.56706 17.90899 39.25198 10.92547 14.62585 4.563233 59.39858 21.02324 41.20531 83.64459 14.90926 143.0845 
16·4 26.05438 0 4.621607 0 0 0 0 2.716882 0 16.67724 8 76569 0 0 0 0 0 6.150103 0 0 0 0 28.01524 0 0 
18•3 0 10.97205 13.65695 11.67817 14.03648 7.120604 8.137155 ?".033526 0 0 47.89911 11.95686 0 3.338454 7.646959 0 13.92117 0 43.54225 4.380239 21.34014 99.46655 0 439.4376 

210.3361 316.8931'l 756.6208 27.82528 247.2396 160.0737 31.72435 35.46223 502.9567 169.1042 79.81368 17.1196 16.46666 24.22667 36.11646 0 37.6596 56t.7992 75.1952 77.95027 81.18996 0 8036261 0 
18:1w9c 115.1401 109.0727 214.6496 71.80861 100.2489 69.33891 59.58962 104A3419 169.6499 125.6268 220.2472 64.37456 21.49802 29.38945 56.90367 29.95025 152.893 496.4663 357.2169 62.547~ 106.613 174.2276 275600 436.Hi97 
18·tvwQ: 2~.2861 64.64344 1177651 3686137 1161122 26.74909 0 105.2593 3041726 280.6723 361.0722 86.04532 87.66149 114.3562 229.20!16 146.0698 206.4478 0 507.6305 230.8746 251.1463 327.4629 0 982.2679 
18;0 107.1326 57.96339 114.6358 45.11002 65.14591 33.01601 17.72929 119.0953 360.6542 5041711 22.73479 45.80767 76.342 79.29877 109.1971 146.6127 22.1076!1 1.14!1084 190.4777 114.4723 99.37306 180.2091 314961 365.8545 
i1!1 5635416 0 6.639127 0 5.227604 0 3.58716 11.71121 1464702 15.52476 0 0 1.676775 0 3.67427 0 3.1l07095 0 0 11.67777 17.49717 0 18.(1491 
a19 2.276676 0 0 0 0 0 2.342126 11.03361 5.509286 0 0 UJ78841 2.70571 1.46880!1 o 22.69693 7.129503 3.795827 3.361526 0 6.673656 0 
.1!1·1· 11.9277!1 0 0 0 0 0 0 0 0 11.42045 2f:i.96608 0 0 0 0 0 6.7771ll3 0 56.64205 0 0 0 50.37433 44.72766 
19:0 9.285042 6.897658 7.306808 7.301171 5.140868 6.441179 3698018 5.110836 1180182 6.150012 3.92.3842 3.529617 3.929147 4517572 7.670o'l33 7.195117 4.152549 7.863195 11.21409 5.6711825 7.555844 6.126472 5.83531 53.125 

0 1066285 0 5.007912 0 0 3608637 0 0 0 0 0 0 0 0 0 95.66063 64.36336 0 0 0 0 3.112707 0 
20:4¥1'6 46.74492 23.43657 23.55358 7.799136 0 6.647076 3.608898 7.242483 36.41269 23.59635 45.83324 14.626116 23.72702 29.53061 50.49631 3116309 0 160.4321 43.37241 46.68078 37.23754 37.68163 17.33128 175.1113 
20:Sw3 53.76842 0 43.05061 0 16A263 6.588884 0 10.77227 6:2.82365 46.38616 82.74988 24.27142 40.16301 46.50623 99.70452 60.11049 0 5.195088 106.3195 146 9489 56.86562 73.75226 0 550.4393 
20;3 4.869927 3.7509!1 0 0 0 0 0 0 5.759763 1.663954 4.023134 1.899013 1694603 2.157351 4.205924 2.57936 0 1340368 0 7.922151 0 7.913624 1.373216 15.4757 

9.731159 0 5.004956 6.501861 0 0 10.27801 0 11.80123 4.438907 4.25193 4.187156 1.367972 3.325659 3.725518 2.992615 0 16.52457 0 11.191158 6.808821 3..571262 0 25.59999 
20:1w7 2.531645 5.181099 3.62034!1 2.464456 3.360526 2.680993 2.87165 3.359776 14.92288 1.52255 2.363769 2.118822 1.218205 2.082534 2.955087 1.284597 1.650566 5.517571 27.14312. 4.19788 1.633209 7.926469 1.761766 37.99082 
20;0 1(;.79515 11.05532 16.04145 9.758007 11.35343 5.286603 16.41306 6.409334 17.60752 16.02522 17.68462 6.658928 8.94392 12.02759 17.76945 21.30965 12..00~ 21.75946 31.6437 20.67427 17.30851 20.95195 14.2809 62.76497 
2.1;0 56.29233 54.32259 53.46761 1124418 86.49476 68.15794 11ll.1112 96.2()41 66.61195 79.08446 144.2347 146.2253 114.2514 124.7067 215.662 165.6533 174.5637 11.06233 431.6523 166.6293 113.9118 124 5649 105.7461 706.5066 
22·6w6 3.607132 0 0 0 0 0 0 0 0 0 0 2.604044 4JS52128 1172299 0 0 1.39888 12.24345 9.360171 0 6.305388 0 0 
22:6w3 10.43554 3.220027 10.72637 o 2.039124 o 12.60713 7.983467 16.67919 7.295393 10.23866 16.33014 33.08547 19.22819 12.3766 4.124085 46.46867 47.111605 5.454762 22.36249 0 120.0452 
.22:5w6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4.673449 3.173195 7.568694 0 3.497498 0 3.392915 4.2f:i266 0 3.41615 2.310661 7.196544 3.057274 0 12.73077 14.88499 0 5.896804 0 126.322 
22:2 0 0 0 0 22..507'69 0 0 2.153457 3.085248 0 0 0 0 6.226011 6.962395 0 0 
22.1w9 4A12328 4.14282 0 0 1.(140536 0 3.2116674 74A85 454.5252 422.0297 6.198021 5.386188 0 3.019969 2.2734177 2436122 6.929243 0 11.76385 0 0 31!1.7965 0 24.6442fi 
2211 14.08494 5.677383 15.41065 6.0476 9992972 5.844424 2.067186 17.99412 56.42186 3fi.40836 14.88315 4.393242 8.710573 11.12204 13.05236 6.762827 6.71:11667 17.95 21.06992 15.68825 14.51ll62 28.25335 5.83212!1 37.18664 
23:0 76.1702 63A3966 75.01166 77A9709 76.24507 74.4166 75.66946 75.6532 77.2729 75.7644 80.07229 62.19833 76.52621 60.83924 61.26089 61.54063 75.29266 66.2352!1 60..52296 64.69009 78.74632 78.80197 754046 84.62566 
24•1 2.601061 15.66886 14.80616 0 5.29627Q 3.149776 0 3.689421 2.305623 6.429851 0 2.441423 0 3.667712 0 0 0 6.72723 0 2.539994 0 29.25495 0 23 03426 
2.4;0 37.53227 0 71.65732 9.906336 31.96836 9.3917118 4.347677 25.61478 66.75456 30.03691 18.29667 6.308018 23.97792 19.61684 15.76393 11.98299 11.64974 36.36898 ~.81132 27.6002 31.66209 54.06717 13.0o'l22 76.59714 
25:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26:0 7.537584 0 0 0 5.725205 0 0 2.731345 64&l218 5.981681 0 1.772713 0 0 0 0 0 2.375896 6.610004 8.607601 0 26.91708 
27:0 0 0 0 0 0 0 0 
26:0 2.053608 0 2.063494 0 21.91469 
29;0 
30:0 
31:0 

"'' 2332.182 1100.006 2430133 537.1461 1573.763 595.0091 283.6946 1169.014 4246.367 34341.964 1582.056 86:2.5356 661.3017 609.7091 1495.~7 1572187 2435715 3664.269 1491.212 2496.866 3260.567 716.lS92 11637.36 



" " 2 2 2 2 2 6 6 
10-513-4 2-613~ 4-213-4 6-313- 8-1r.J...4 10-1f3-4 1-3plla 3-2plfa 5-:lptfa 7-6plta il-2plfe 1-6plla 3-4plfe 5-6plfP 7-5plta 9-3plla 1-:i!plla 3-1plfa S-4pHa 7-1plla 9-1plla 1-Splra 3-3plla 5-3plfa 7-3plfa 

1.927886 1.101671 0 5.500788 0.801801 1.801975 1.856091 3.0C.0075 0 3.582~2 4.292162 3.862179 0 0 1.791825 0 0 2141562 2.55.8011 2.342465 0 4.162515 0 10.144915 
0 0 0 0 0 0 0 1.837555 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1.513057 0.888238 2.398722 0.778192 0 2.853488 17.31024 3.870031 3.073224 7.128079 2.7430!1ll 1.691722 4.314804 2.472301 4,754959 1.273426 2.688959 4 813059 4.200279 0.8915974 4.000856 5.770994 4.950034 2.343451 

10.82933 110.6572 0 10.02003 5.30588.1 0 16.0746 231.4432 6.840086 98.98785 85.55899 9.820413 0 8.002425 9.751259 0 11A6902 18.7998 51.14781 5.26691 18.03883 34.9!l561 70.70l23 67.56142 43.02081 
57.41165 1.771844 76.28395 5928361 64.02719 9206062 97.00TT7 217.981 40.55964 171.2219 105.2079 95.32657 58.762915 47,36142 132.8077 7.484078 35.7184 49.30322 97.85981 36.02706 43.93993 108.1683 59.50455 277.3863 51.47187 
40.35739 102.1663 105.6177 36.73948 34.17885 104.4799 56.93164 53.52602 36.64217 97.0919 43.9618 88.8526 41.36164 41.87008 98.88049 8.794577 41.06792 4(1.34916_7311433 22.69151 35.64()33 49.35646 0 213.0536 19.72887 
21.20636 58.65fi26 61.74978 16.89356 17.97178 51.110331 25.45607 35.55195 19.74423 58.81288 26.21679 86.94844 25.39299 28.7fYI>77 54.77978 6.095723 23.2105 24.60281 61.22701 16.22663 27.flt;505 27.0620.2 14 61856 133A991! 12.24347 
6.100007 3.174663 8.013546 0 2.032487 3.24439 2.555369 0 2.035437 6.864976 0 7.514102 3.244053 2.26043 2.135862 0 0 0 4.62587 5.09514 0 4.003743 7 87t!982 9.284474 3499028 
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Appendix 6. Daytime (light) DO Huxes from Chapter 4. 
OO(mgll) OO(mgll) DO(mg/l.) DO (mgll) 00( ... 1 DO(mM) DO(mM)) DO( ... ) 

tank cosm nulr•nta .... ric.hneu T1 T2 T3 T4 T1 T2 T3 T4 Tl(min) T2(min) T3(min) T4(min) T1 (hr) T2(1w} T3(tw) T4(hr) 
10 5 1 0 9.31 13.56 14.61 18.27 0.29094 0.42375 0.45656 0.57094 0 74 145 206 0.00 1.23 2.42 3.43 
12 6 1 0 10.33 12.49 14.61 18.31 0.32281 0.39031 0.45656 0.57219 0 70 150 213 0.00 1.17 2.50 3.55 
14 3 1 0 10.8 13.34 18.5 19.3 0.3375 0.41688 0.57813 0.60313 0 72 154 207 0.00 1.20 2.57 3.45 
10 6 9.16 10 10.96 11.93 0.28625 0.3125 0.3425 0.37281 0 74 148 205 0.00 1.23 2.47 3.42 
11 6 8.61 9.29 10.74 11.43 0.26906 0.29031 0.33563 0.35719 0 68 154 219 0.00 1.13 2.57 3.65 
12 3 1 7.27 7.99 8.6 9.33 0.22719 0.24969 0.26875 0.29156 0 73 155 211 0.00 1.22 2.58 3.52 
8 3 3 8.71 9.69 11.05 12.65 0.27219 0.30281 0.34531 0.39531 0 71 147 204 0.00 1.18 2.45 3.40 

10 7 3 9.46 10.61 12.51 13.41 0.29563 0.33156 0.39094 0.41906 0 74 145 206 0.00 1.23 2.42 3.43 
11 4 3 7.82 8.74 9.74 10.79 0.24438 0.27313 0.30438 0.33719 0 67 153 218 0.00 1.12 2.55 3.63 
9 4 5 8.8 10.53 12.93 14.07 0.275 0.32906 0.40406 0.43969 0 74 148 205 0.00 1.23 2.47 3.42 

11 5 1 5 7.68 9.08 10.05 11.12 0.24 0.28375 0.31406 0.3475 0 71 153 215 0.00 1.18 2.55 3.58 
14 2 1 5 9.51 10.55 12.25 13.08 0.29719 0.32969 0.38281 0.40875 0 70 151 207 0.00 1.17 2.52 3.45 
8 4 0 0 "12.46 17.4 20.12 22.47 0.38938 0.54375 0.62875 0.70219 0 71 146 204 0.00 1.18 2.43 3.40 

12 1 0 0 7.8 10.75 13.56 15.94 0.24375 0.33594 0.42375 0.49813 0 72 154 211 0.00 1.20 2.57 3.52 
14 4 0 0 12.8 14.87 17.08" 16.22 0.4 0.46469 0.53375 0.50688 0 71 153 210 0.00 1.18 2.55 3.50 
8 6 0 1 8.53 11.24 12.68 13.41 0.26656 0.35125 0.39563 0.41906 0 72 146 204 0.00 1.20 2.43 3.40 
9 6 0 1 9.87 11.5 15.61 15.56 0.30844 0.35938 0.48781 0.48625 0 74 148 205 0.00 1.23 2.47 3.42 

12 2 0 1 10.08 12.25 14.3 15.06 0.315 0.38281 0.44688 0.47063 0 71 154 216 0.00 1.18 2.57 3.60 
9 2 0 3 8.52 10.02 11.07 12 0.26625 0.31313 0.34594 0.375 0 72 148 205 0.00 1.20 2.47 3.42 

11 7 0 3 7.15 7.85 9.83 10.6 0.22344 0.24531 0.30719 0.33125 0 71 153 216 0.00 1.18 2.55 3.60 
12 5 0 3 9.04 10.55 11.29 12.09 0.2825 0.32969 0.35281 0.37781 0 72 154 209 0.00 1.20 2.57 3.48 
9 5 0 5 8.35 9.64 10.9 12.6 0.26094 0.30125 0.34063 0.39375 0 74 148 205 0.00 1.23 2.47 3.42 

10 8 1 0 5 9.38 12.19 13.47 14.07 0.29313 0.38094 0.42094 0.43969 0 74 146 203 0.00 1.23 2.43 3.38 
12 7 'I 0 5 8.8 9.59 11.08 11.31 0.275 0.29969 0.34625 0.35344 0 69 150 205 0.00 1.15 2.50 3.42 
8 8 0 1 0 12.91 17.34 21.65 19.51 0.40344 0.54188 0.67656 0.60969 0 70 147 204 0.00 1.17 2.45 3.40 

10 1 0 1 0 9.9 11.56 12.21 16.47 0.30938 0.36125 0.38156 0.51469 0 74 146 204 0.00 1.23 2.43 3.40 
14 8 0 0 9.2 9.74 11.64 12.63 0.2875 0.30438 0.36375 0.39469 0 71 152 208 0.00 1.18 2.53 3.47 
8 5 7.03 7.82 8.33 9.22 0.21969 0.24438 0.26031 0.28813 0 71 147 204 0.00 1.18 2.45 3.40 
9 7 8.07 8.64 10.2 11.51 0.25219 0.27 0.31875 0.35969 0 73 147 204 0.00 1.22 2.45 3.40 

10 4 8.34 9.54 10.37 10.96 0.26063 0.29813 0.32406 0.3425 0 74 148 204 0.00 1.23 2.47 3.40 
9 8 8.15 8.92 10.59 11.67 0.25469 0.27875 0.33094 0.36469 0 74 148 205 0.00 1.23 2.47 3.42 

11 2 11.28 12.74 13.67 14.9 0.3525 0.39813 0.42719 0.46563 0 69 153 220 0.00 1.15 2.55 3.67 
12 4 8.85 9.06 9.76 11.3 0.27656 0.28313 0.305 0.35313 0 71 152 214 0.00 1.18 2.53 3.57 
9 3 7.65 8.15 9.55 11.05 0.23906 0.25469 0.29844 0.34531 0 74 148 205 0.00 1.23 2.47 3.42 

10 2 7.91 8.69 . 9.56 10.55 0.24719 0.27156 0.29875 0.32969 0 73 147 205 0.00 1.22 2.45 3.42 
11 3 7.57 8.12 9.56 10.08 0.23656 0.25375 0.29875 0.315 0 71 153 217 0.00 1.18 2.55 3.62 
8 0 15.51 17.94 20.18 24.94 0.48469 0.56063 0.63063 0.77938 0 71 145 202 0.00 1.18 2.42 3.37 
9 0 9.8 11.37 13.87 16.88 0.30625 0.35531 0.43344 0.5275 0 75 148 205 0.00 1.25 2.47 3.42 

14 0 0 0 9.5 10.97 12.56 14.37 0.29688 0.34281 0.3925 0.44906 0 72 154 207 0.00 1.20 2.57 3.45 
8 1 0 0 1 8.8 10.84 11.67 13.21 0.275 0.33875 0.36469 0.41281 0 71 138 195 0.00 1.18 2.30 3.25 

12 8 0 0 1 9.4 10.84 12.75 13.86 0.29375 0.33875 0.39844 0.43313 0 71 151 213 0.00 1.18 2.52 3.55 
14 7 0 0 9.8 11.77 12.27 13.32 0.30625 0.36781 0.38344 0.41625 0 72 153 205 0.00 1.20 2.55 3.42 
8 7 0 7.5 9.52 9.6 9.99 0.23438 0.2975 0.3 0.31219 0 71 147 204 0.00 1.18 2.45 3.40 

11 1 0 7.23 8.29 8.99 9.75 0.22594 0.25906 0.28094 0.30469 0 71 153 217 0.00 1.18 2.55 3.62 
14 5 0 8.65 9.98 10.5 11.61 0.27031 0.31188 0.33125 0.36281 0 72 154 206 0.00 1.20 2.57 3.43 



10 
11 
14 

8.04 
7.72 
7.74 

9.6 
8.3 

9.26 

10.05 
9.97 
9.87 

10.53 0.25125 0.3 0.31406 0.32906 
11.17 0.24125 0.25938 0.31156 0.34906 
10.79 0.24188 0.28938 0.30844 0.33719 

73 
71 
71 

146 
154 
153 

204 0.00 1.22 2.43 
218 0.00 1.18 2.57 
208 0.00 1.18 2.55 

3.40 
3.63 
3.47 



Appendix 7. Nitetime (dark) 00 fluxes from Chapter 4. 
DOCmg/L) OOCmgll.) OO(mgll.) OOCmM) OO(mM) OOCmM)) OO(mM) 

tank cosm ,..b'tents .... ......... T1 T2 Tl OOCmgiL)T4 T1 T2 Tl T4 TI(mln) T2(min} T3Cmin) T4(min) Tl(hr} T2(hr) T3(hr) T4{hr) 
10 5 0 5.2 3.89 3.47 2.67 0.1625 0.12156 0.10844 0.08344 0 57 114 170 0.00 0.95 1.90 2.83 
12 6 0 5.14 3.8 3.08 2.2 0.16063 0.11875 0.09625 0.06875 0 59 127 186 0.00 0.98 2.12 3.10 
14 3 0 5.08 4.31 4.26 2.35 0.15675 0.13469 0.13313 0.07344 0 60 135 194 0.00 1.00 2.25 3.23 
10 6 4.94 4.18 3.63 3.02 0.15438 0.13063 0.11344 0.09438 0 55 114 170 0.00 0.92 1.90 2.83 
11 6 9.39 8.07 7.1 6.38 0.29344 0.25219 0.22188 0.19938 0 61 126 185 0.00 1.02 2.10 3.08 
12 3 + 5.75 4.99 4.27 3.69 0.17969 0.15594 0.13344 0.11531 0 58 127 188 0.00 0.97 2.12 3.13 
8 3 + 7.59 6.69 5.84 4.77 0.23719 0.20906 0.1825 0.14906 0 57 111 169 0.00 0.95 1.85 2.82 

10 7 + 5.62 4.87 4.32 3.87 0.17563 0.15219 0.135 0.12094 0 57 114 170 0.00 0.95 1.90 2.83 
11 4 6.23 5.33 4.78 4.15 0.19469 0.16656 0.14938 0.12969 0 64 124 189 0.00 1.07 2.07 3.15 
9 4 + 5.56 4.91 4.43 3.84 0.17375 0.15344 0.13844 0.12 0 58 113 170 0.00 0.97 1.88 2.83 

11 5 5 5.95 5.09 4.35 3.73 0.18594 0.15906 0.13594 0.11656 0 59 126 185 0.00 0.98 2.10 3.08 
14 2 5 5.91 5.19 3.11 3.84 0.18469 0.16219 0.09719 0.12 0 58 127 180 0.00 0.97 2.12 3.00 
8 4 + 0 8.29 7.07 6.09 5.16 0.25906 0.22094 0.19031 0.16125 0 61 113 171 0.00 1.02 1.88 2.85 

12 1 0 5.24 4.33 3.07 2.14 0.18375 0.13531 0.09594 0.06688 0 58 126 187 0.00 0.97 2.10 3.12 
14 4 0 5.64 4.48 3.37 2.25 0.17625 0.14 0.10531 0.07031 0 58 128 191 0.00 0.97 2.13 3.18 
8 6 7.32 6.31 5.42 4.6 0.22875 0.19719 0.16938 0.14375 0 61 113 172 0.00 1.02 1.88 2.87 
9 6 7.17 6.33 5.71 4.9 0.22406 0.19781 0.17844 0.15313 0 57 112 169 0.00 0.95 1.87 2.82 

12 2 1 5.07 4.1 3.07 2.42 0.15844 0.12813 0.09594 0.07563 0 57 117 174 0.00 0.95 1.95 2.90 
9 2 3 5.31 4.67 4.2 3.65 0.16594 0.14594 0.13125 0.11406 0 57 112 169 0.00 0.95 1.87 2.82 

11 7 + 3 5.58 4.81 4.06 3.64 0.17438 0.15031 0.12688 0.11375 0 58 126 185 0.00 0.97 2.10 3.08 
12 5 3 5.04 4.18 3.53 2.88 0.1575 0.13063 0.11031 0.09 0 57 111 171 0.00 0.95 1.85 2.85 
9 5 5 5.48 4.73 4.09 3.37 0.17125 0.14781 0.12781 0.10531 0 54 112 167 0.00 0.90 1.87 2.78 

10 8 5 4.96 4.82 3.45 2.91 0.155 0.15063 0.10781 0.09094 0 55 114 170 0.00 0.92 1.90 2.83 
12 7 5 5.88 5.16 4.45 3.87 0.18375 0.16125 0.13906 0.12094 0 59 130 190 0.00 0.98 2.17 3.17 
8 8 0 6.95 6.23 5.62 4.91 0.21719 0.19469 0.17583 0.15344 0 59 112 170 0.00 0.98 1.87 2.83 

10 1 0 5.31 4.78 4.32 3.82 0.16594 0.14938 0.135 0.11938 0 56 114 170 0.00 0.93 1.90 2.83 
14 8 0 7.61 7.26 6.65 6.41 0.23781 0.22688 0.20781 0.20031 0 59 128 193 0.00 0.98 2.13 3.22 
8 5 + 1 7.81 7.53 7.19 6.92 0.24406 0.23531 0.22469 0.21625 0 58 112 169 0.00 0.97 1.87 2.82 
9 -7 1 5.11 4.59 4.07 3.71 0.15969 0.14344 0.12719 0.11594 0 54 113 166 0.00 0.90 1.88 2.80 

10 4 1 5.22 4.79 4.28 3.89 0.16313 0.14969 0.13375 0.12156 0 55 114 170 0.00 0.92 1.90 2.83 
9 8 3 5.98 5.46 5.07 4.66 0.18668 0.17063 0.15844 0.14563 0 57 112 170 0.00 0.95 1.87 2.83 

11 2 3 6.4 5.62 4.79 4.1 0.2 0.17563 0.14969 0.12813 0 63 123 188 0.00 1.05 2.05 3.13 
12 4 3 6.4 5.81 5.54 5.19 0.2 0.18156 0.17313 0.16219 0 58 128 186 0.00 0.97 2.13 3.10 
9 3 5 5.56 5.17 4.78 4.41 0.17375 0.16156 0.14938 0.13781 0 55 112 167 0.00 0.92 1.87 2.78 

10 2 + 5 4.87 4.29 3.69 3.14 0.15219 0.13406 0.11531 0.09813 0 52 111 166 0.00 0.87 1.85 2.77 
11 3 5 6 5.22 4.64 4.13 0.1875 0.16313 0.145 0.12906 0 59 126 185 0.00 0.98 2.10 3.08 
8 2 0 9.52 8.46 7.49 7.17 0.2975 0.26438 0.23406 0.22406 0 61 112 170 0.00 1.02 1.87 2.83 
9 1 0 5.07 4.23 3.49 2.99 0.15844 0.13219 0.10906 0.09344 0 55 112 166 0.00 0.92 1.87 2.80 

14 1 0 5 3.94 3.05 2.19 0.15625 0.12313 0.09531 0.06844 0 60 129 194 0.00 1.00 2.15 3.23 
8 1 1 6.64 6.04 5.42 4.76 0.2075 0.18875 0.16938 0.14875 0 58 111 169 0.00 0.97 1.85 2.82 

12 8 1 6 5.26 4.7 4.22 0.1875 0.16438 0.14688 0.13188 0 58 127 187 0.00 0.97 2.12 3.12 
14 7 1 6.65 6.08 5.35 4.31 0.20781 0.19 0.16719 0.13469 0 59 115 181 0.00 0.98 1.92 3.02 
8 7 3 7.45 6.97 6.54 6.16 0.23281 0.21781 0.20438 0.1925 0 57 112 169 0.00 0.95 1.87 2.82 

11 1 3 6.22 5.56 5.02 4.5 0.19438 0.17375 0.15688 0.14063 0 60 126 186 0.00 1.00 2.10 3.10 
14 5 3 6.09 5.56 4.86 4.49 0.19031 0.17375 0.15188 0.14031 0 60 129 195 0.00 1.00 2.15 3.25 



10 
11 
14 

3 
8 
6 

5.09 
10.17 

6.7 

4.49 
9.27 
6.27 

4.08 
8.57 
5.71 

3.67 0.15906 0.14031 0.1275 0.11469 
8.11 0.31781 0.28969 0.26781 0.25344 
5.36 0.20938 0.19594 0.17844 0.1675 

56 
60 
58 

114 
125 
127 

169 0.00 0.93 1.90 2.82 
184 0.00 1.00 2.08 3.07 
190 0.00 0.97 2.12 3.17 



Appendix B. Day and night NH4 fluxes from Chapter 4. 

Light Tank =b 
.......,, NH4time 1 NH4 Time 2 NH4 Time 3 NH4 Time 4 T1 (hr) T2 (h') T3 (h') T4 (hr) 

Day 8 31.27 1.22 1.23 1.04 0.00 1.18 2.42 3.37 
Day 4.02 3.81 3.37 3.70 0.00 1.25 2.47 3.42 
Day 14 2.98 2.93 2.82 2.35 0.00 1.20 2.57 3.45 
Day 8 0 0 3.99 3.41 2.75 2.83 0.00 1.18 2.30 3.25 
Dey 12 0 0 5.56 6.36 6.04 6.64 0.00 1.18 2.52 3.55 
Dey 14 3.94 3.35 3.06 2.34 0.00 1.20 2.55 3.42 
Day 5.94 6.03 5.71 5.45 0.00 1.18 2.45 3.40 
Dey 11 8.52 8.15 8.22 8.27 0.00 1.18 2.55 3.62 
Day 14 5.18 4.40 4.11 3.50 0.00 1.20 2.57 3.43 
Day 10 7.72 7.68 7.92 7.50 0.00 1.22 2.43 3.40 
Day 11 8.01 8.14 8.22 7.32 0.00 1.18 2.57 3.63 
Dey 14 6.35 6.36 5.80 5.22 0,00 1.18 2.55 3.47 
Day 8 2.98 2.20 1.56 1.48 0.00 1.17 2.45 3.40 
Day 10 3.07 2.49 1.91 1.56 0.00 "1.23 2.43 3.40 
Day 14 3.10 2.40 2:.10 1.40 0.00 1.18 2.53 3.47 
Dey 4.27 3.72 3.23 3.37 0.00 1.18 2.45 3.40 
Day 7.10 6.74 6.31 6.22 0.00 1.22 2.45 3.40 
Day 10 7.31 7.27 6.83 6.40 0.00 1.23 2.47 3.40 
Day 9 0 6.12 5.61 4.94 4.57 0.00 1.23 2.47 3.42 
Day 11 0 3.34 2.54 2.23 2.25 0.00 1.15 2.55 3.67 
Dey 12 6.43 5.92 5.38 4.63 0.00 118 2.53 3.57 
Day 6.59 6.54 6.19 0.00 1.23 247 3.42 
Dey 10 10.28 11.17 10.61 11.31 0.00 1.22 2.45 3.42 
Day 11 6.83 6.56 7.08 5.68 0.00 1.18 2.55 3.62 
Day 10.36 10.30 10.48 32.55 0.00 1.18 2.43 3.40 
Day 12 14.62 16.02 20.49 23.93 0.00 1.20 2.57 3.52 
Day 14 13.47 14.61 17.01 Hi.66 0.00 1.18 2.55 3.50 
Dey 32.38 31.17 33.10 30.01 0.00 1.20 2.43 3.40 
Day 39.03 48.57 43.14 38.78 0.00 1.23 2.47 3.42 
Day 12 11.53 19.20 22.02 24.71 0.00 1.18 2.57 3.60 
Day 16.77 29.18 31.48 36.23 0.00 1.20 2.47 3.42 
Day 11 19.44 21.95 27.32 31.13 0.00 1.18 2.55 3.60 
Day 12 16.44 22.94 21.91 25.00 0.00 1.20 2.57 3.48 
Day 9 30.77 46.41 49.08 74.84 0.00 1.23 2.47 3.42 
Day 10 8 20.84 27.81 34.76 49.20 0.00 1.23 2.43 3.38 
Day 12 7 16.34 22.21 25.95 28.13 0.00 1.15 2.50 3.42 
Day 10 2.82 1.71 2.52 5.12 0.00 1.23 2.42 3.43 
Day 12 13.07 13.70 37.61 57.27 0.00 1.17 2.50 3.55 
Day 14 13.35 19.74 22.45 21.26 0.00 1.20 2.57 3.45 
Dey 10 15.71 19.20 20.43 19.96 0.00 1.23 2.47 3.42 
Day 11 25.14 28.94 30.61 35.62 0.00 1.13 2.57 3.65 
Dey 12 24.63 28.01 32.23 32.66 0.00 1.22 2.58 3.52 
Day 8 1.51 33.32 36.96 39.52 0.00 1.18 2.45 3.40 
Day 10 27.28 36.50 37.92 42.83 0.00 1.23 2.42 3.43 
Dey 11 22.14 53.07 43.88 55.53 0.00 1.12 2.55 3.63 
Day 17.66 20.16 22.75 29.05 0.00 1.23 2.47 3.42 
Day 11 17.,94 20.87 23.17 27.09 0.00 1.18 2.55 3.58 
Day 14 18.33 21.26 24.86 25.82 0.00 1.17 2.52 3.45 



Night 1.77 0.58 0.65 0.50 0.00 1.02 1.87 2.83 
Night 9 3.77 3.40 2.88 2.61 0.00 0.92 1.87 2.80 
Night 14 2.05 1.93 1.65 1.27 0.00 1.00 2.15 3.23 
Night 8 4.22 3.84 3.34 2.96 0.00 0.97 1.85 2.82 
Noght 12 3.06 3.17 2.73 2.74 0.00 0.97 2.12 3.12 
Night 14 1.38 2.31 1.96 1.75 0.00 0.98 1.92 3.02 
Night 5.71 5.74 5.51 5.15 0.00 0.95 1.87 2.82 
Night 11 6.28 7.12 5.40 5.01 0.00 1.00 2.10 3.10 
Night 14 2.00 3.18 2.72 2.83 0.00 1.00 2.15 3.25 
Night 10 8.71 8.78 9.09 8.74 0.00 0.93 1.90 2.82 
Night 11 6.15 4.97 4.84 4.51 0.00 1.00 2.08 3.07 
Night 14 4.05 3.98 3.96 3.80 0.00 0.97 2.12 3.17 
N;ght 8 0 30.08 1.15 0.61 0.53 0.00 0.98 1.87 2.83 
Night 10 0 3.99 3.17 2.94 2.17 0.00 0.93 1.90 2.83 
Night 14 1.33 0.94 0.89 0."71 0.00 0.98 2.13 3.22 
Night 8 2.80 2.75 2.32 2.09 0.00 0.97 1.87 2.82 
Night 7.43 7.73 7.70 6.71 0.00 0.90 1.88 2.80 
Night 10 8.23 7.61 7.54 7.35 0.00 0.92 1.90 2.83 
Night 9 6.01 5.92 5.73 5.11 0.00 0.95 1.87 2.83 
Night 11 3.51 2.50 1.50 1.38 0.00 1.05 2.05 3.13 
Night 12 2.87 2.80 2.49 2.52 0.00 0.97 2.13 3.10 
Night 9 6.32 7.04 6.49 5.70 0.00 0.92 1.87 2.78 
Night 10 9.80 10.37 10.54 10.39 0.00 0.87 1.85 2.77 
Night 11 4.82 4.90 4.76 4.62 0.00 0.98 2.10 3.08 
Night 8 14.79 14.52 14.68 15.20 0.00 1.02 1.88 2.85 
Night 12 8.49 11.10 7.82 8.84 0.00 0.97 2.10 3.12 
Night 14 11.96 13.11 14.94 14.62 0.00 0.97 2.13 3.18 
Night 2.09 32.07 34.88 36.19 0.00 1.02 1.88 2.87 
Night 30.88 32.38 40.71 42.24 0.00 0.95 1.87 2.82 
Night 12 11.18 12.32 15.30 16.24 0.00 0.95 1.95 2.90 
Night 23.08 22.73 30.22 29.31 0.00 0.95 1.87 2.82 
Night 11 16.68 20.33 24.59 24.50 0.00 0.97 2.10 3.08 
N;ght 12 14.41 14.84 18.74 18.36 0.00 0.95 1.85 2.85 
Night 29.94 34.26 39.46 42.92 0.00 0.90 1.87 2.78 
Night 10 25.32 27.01 30.00 33.12 0.00 0.92 1.90 2.83 
Night 12 14.71 17.65 18.76 20.51 0.00 0.98 2.17 3.17 
Night 10 27.33 40.52 42.87 53.23 0.00 0.95 1.90 2.83 
Night 12 10.99 8.73 10.11 10.50 0.00 0.98 2.12 3.10 
Night 14 10.14 8.31 11.42 9.30 0.00 1.00 2.25 3.23 
Night 10 21.69 27.15 32.28 33.15 0.00 0.92 1.90 2.83 
Night 11 37.74 39.88 42.27 44.30 0.00 1.02 2.10 3.08 
Night 12 20.08 24.21 25.95 31.30 0.00 0.97 2.12 3.13 
Night 8 28.82 29.94 35.98 35.70 0.00 0.95 1.85 2.82 
Night 10 32.73 35.64 41.76 43.85 0.00 0.95 1.90 2.83 
Night 11 21.06 23.15 23.93 26.07 0.00 1.07 2.07 3.15 
Night 9 18.48 19.14 22.47 25.74 0.00 0.97 1.88 2.83 
Night 11 16.56 19.43 18.04 19.35 0.00 0.98 2.10 3.08 
Night 14 17.61 20.37 16.90 21.83 0.00 0.97 2.12 3.00 



Appendix 9. Dey and night NO~ fluxes from Chapter 4. 

Light 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 
day 

Tank 
8 
9 
14 

12 
14 
8 
11 
14 
10 
11 
14 
8 
10 
14 
8 

10 
9 
11 
12 
9 
10 
11 
8 
12 
14 
8 

12 
9 
11 
12 
9 
10 
12 
10 
12 
14 
10 
11 
12 
8 
10 
11 

11 
14 

.3 

NOx time 1 NOx Time 2 
18.46 0.04 
0.55 0.44 
0.82 0.91 
0.46 0.42 
0.87 0.88 
0.95 1.42 
0.47 0.46 
1.48 1.45 
1.29 1.37 
0.86 0.62 
1.14 1.13 
1.25 1.49 
0.47 0.23 
0.45 0.32 
0.86 1.08 
0.63 0.37 
1.01 0.58 
0.80 0.68 
0.89 0.57 
0.73 0.59 
1.26 1.10 
1.02 0.65 
0.87 0.72 
1.42 1.31 
14.92 17.77 
8.16 8.75 
11.29 15.09 
23.31 24.17 
27.30 35.84 
5.09 10.63 
7.36 17.20 
9.70 11.98 
7.20 13.34 
16.98 29.63 
9.21 14.66 
8.41 10.75 
29.25 52.79 
7.76 9.07 
7.25 13.67 
8.96 10.50 
18.31 22.57 
15.11 18.35 
0.39 20.84 
13.43 21.54 
13.60 40.85 
8.73 10.50 
10.27 13.88 
12.79 16.61 

Nox Time 3 NOx Time 4 N02 time 1 N02time 2 N02time 3 N02 time 4 
0.03 0.00 0.46 0.03 0.04 0.01 
0.32 0.41 0.16 0.14 0.10 0.13 
0.59 0.46 0.21 0.21 0.25 0.19 
0.27 
0.65 
0.65 
0.45 
1.10 
0.87 
0.58 
0.93 
0.92 
0.14 
0.22 
0.61 
0.32 
0.54 
0.59 
0.53 
0.41 
0.94 

0.65 
1.07 
20.57 
13.93 
17.95 
31.22 
33.52 
12.78 
18.60 
20.82 
13.84 
31.87 
20.45 
14.65 
87.86 
28.93 
16.60 
12.69 
23.78 
23.07 
27.11 
23.60 
30.96 
13.20 
15.25 
20.20 

0.23 
0.56 
0.45 
0.40 
1.04 
0.80 
0,52 
o.n 
0.89 
0.06 
0.19 
0.45 
0.29 
0.48 
0.50 
0.45 
0.27 
0.60 
0.62 
0.64 
0.92 
39.64 
17.66 
17.03 
30.58 
32.00 
16.84 
22.74 
20.68 
18.41 
48.35 
32.01 
17.27 
92.88 
43.54 
15.58 
12.66 
27.20 
24.14 
31.15 
27.41 
41.03 
18.64 
19.56 
21.85 

0.22 
0.43 
0.33 
0.24 
0.61 
0.41 
0.32 
0.50 
0.44 
0.16 
0.19 
0.26 
0.20 
0.36 
0.29 
0.31 
0.34 
0.56 
0.38 
0.30 
0.58 
1.33 
0.85 
0.82 
0.68 
0.72 
0.57 
0.42 
0.78 
0.70 
0.58 
0.66 
0.77 
0.74 
0.71 
0.45 
0.54 
0.77 
0.77 
0.02 
0.42 
0.73 
0.36 
0.62 
0.61 

0.23 
0.44 
0.30 
0.24 
0.56 
0.38 
0.26 
0.46 
0.41 
0.12 
0.19 
0.26 
0.17 
0.28 
0.29 
0.28 
0.25 
0.47 
0.30 
0.30 
0.52 
1.54 
1.16 
1.09 
0.74 
0.82 
0.62 
0.47 
0.82 
0.87 
o.n 
0.75 
0.90 
1.27 
0.69 
0.64 
0.45 
0.80 
0.82 
0.47 
0.47 
0.75 
0.41 
0.66 
0.72 

0.15 
0.30 
0.36 
0.24 
0.52 
0.42 
0.26 
0.44 
0.43 
0.12 
0.09 
0.28 
0.17 
0.25 
0.30 
0.23 
0.21 
0.47 

0.27 
052 
1.78 
1.50 
2.10 
0.84 
0.91 
0.66 
0.53 
0.85 
0.83 
0.96 
0.89 
0.98 
1.43 
0.62 
0.56 
0.45 
0.83 
0.81 
0.52 
0.49 
0.80 
0.41 
0.67 
0.73 

0.15 
0.33 
0.24 
0.21 
0.47 
0.38 
0,22 
0.39 
0.40 
0.07 
0.10 
0.21 
0.19 
0.22 
0.24 
0.21 
0.13 
0.39 
0.27 
0.24 
0.44 
4.12 
1.98 
1.57 
0.91 
1.00 
0.71 
0.55 
0.95 
0.77 
1.18 
1.14 
1.04 
1.49 
0.73 
0.59 
0.44 
0.80 
0.82 
0.59 
0.51 
0.79 
046 
0.60 
0.70 

N03 time 1 N03 time 2 
18.00 0.01 
0.38 0.29 
0.61 0.70 
0.24 0.19 
0.44 0.44 
0.62 1.12 
0.23 0.23 
0.67 0.88 
0.88 0.99 
0.55 0.36 
0.64 0.67 
0.82 1.08 
0.31 0.10 
0.26 0.13 
0.59 0.82 
0.43 0.20 
0.64 0.30 
0.51 0.39 
0.58 0.28 
0.39 0.33 
0.70 0.64 
0.67 0.35 
0.57 0.42 
0.84 0.79 
13.59 16.23 
7.32 7.59 
10.47 14.00 
22.63 23.43 
26.58 35.02 
4.52 10.01 
6.93 16.73 
8.91 11.16 
6.50 12.47 
16.40 28.86 
8.54 13.91 
7.63 9.85 
26.51 51.53 
7.05 8.38 
6.80 13.03 
6.42 10.05 
17.54 21.n 
14.34 17.53 
0.37 20.37 
13.01 21.07 
12.87 40.10 
8.36 10.09 
9.65 13.22 
12.18 15.89 

N03time 3 
-0.01 
0.22 
0.34 
0.12 
0.35 
0.29 
0.21 
0.59 
0.45 
0.32 
0.49 
0.49 
0.01 
0.13 
0.33 
0.15 
0.29 
0.30 
0.30 
0.20 
0.48 

0.37 
0.55 
18.79 
12.43 
15.85 
30.38 
32.61 
12.12 
18.07 
19.97 
13.01 
30.91 
19.56 
13.67 
86.43 
28.31 
16.04 
12.24 
22.95 
22.26 
26.59 
23.11 
30.16 
12.79 
14.58 
19.47 



night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
night 
11ight 
night 
night 
night 
night 
night 
night 
night 
riight 
night 
night 
night 
night 
night 
night 
night 
night 

14 
8 
12 
14 

11 
14 
10 
11 
14 
8 
10 
14 
8 
9 
10 

11 
12 
9 
10 
11 

12 
14 
8 

12 

11 
12 

10 
12 
10 
12 
14 
10 
11 
12 

10 
11 
9 
11 
14 

5 
2 

0.33 
0.45 
0.49 
0.58 
0.55 
0.82 
0.66 
0.76 
0.60 
0.97 
0.35 
0.93 
31.56 
0.54 
0.65 
044 
0.88 
0.91 
0.79 
0.28 
0.64 
0.82 
0.97 
0.78 
30.31 
7.11 
8.70 
0.20 
29.34 
6.09 
9.30 
9.12 
10.10 
19.51 
12.36 
9.5e 
29.34 
9.7ll 
4.77 
12.90 
44.79 
16.26 
26.77 
18,95 
12.97 
9.99 
10.66 
11.57 

0.05 
0.39 
0.90 
0.54 
0.51 
1.29 
0.58 
0.69 
1.30 
0.91 
0.37 
1.52 
0.09 
0.47 
1.03 
0.35 
0.80 
0.84 
0.74 
0.28 
0.63 
0.78 
0.91 
0.64 
31.03 
9.08 
14.47 
.13.41 
28.4"1 
7.07 
10.59 
11.52 
10.07 
21.08 
12.37 
12.48 
26.09 
5.39 
5.97 
16.47 
47.22 
19.32 
28.30 
20.32 
15.38 
10.48 
11.11 
18.74 

0.15 
0.27 
0.23 
0.41 
0.40 
0.40 
0.52 
0.59 
0.55 
0.81 
0.24 
0.57 
0.03 
0.28 
0.25 
0.31 
0.75 
0.75 
0.68 
0.13 
0.51 
0.70 
0.83 
0.55 
32.21 
7.40 
11.59 
34.66 
33.60 
9.07 
17.10 
12.73 
12.64 
23.85 
14.28 
13.17 
26.15 
6.82 
6.36 
19.41 
44.91 
21.03 
32.69 
23.f2 
13.77 
12.23 
11.15 
14.16 

0.06 
0.21 
0.13 
0.32 
0.32 
0.30 
0.48 
0.55 
047 
0.75 
0.25 
0.49 
·0.04 
0.20 
0.21 
0.27 
0.64 
0.67 
0.61 
0.07 
045 
0.63 
0.78 
0.48 
34.06 
8.5e 
13.09 
36.88 
34.55 
10.05 
15.17 
13.67 
12.55 
26.49 
17.10 
14.56 
32.09 
6.62 
5.7ll 
21.27 
46.47 
26.13 
32.57 
25.22 
15.72 
14.60 
12.34 
15.81 

0.16 
0.19 
0.19 
0.27 
0.37 
0.26 
0.36 
0.45 
0.40 
0.48 
0.18 
0.37 
1.23 
0.27 
0.19 
0.21 
0.39 
0.45 
0.37 
0.20 
0.43 
0.35 
0.45 
0.46 
4.03 
0.98 
0.92 
0.12 
0.95 
0.68 
0.57 
0.75 
0.79 
0.98 
0.83 
0.81 
0.83 
0.53 
o.se 
0.61 
1.01 
0.75 
0.66 
0.64 
0.71 
0.54 
0.62 
0.57 

0.07 
0.15 
0.22 
0.38 
0.40 
0.32 
0.29 
0.71 
0.36 
0.44 
0.26 
0.43 
0.10 
0.22 
0.23 
0.21 
0.37 
0.41 
0.34 
0.23 
0.46 
0.40 
0.44 
0.47 
4.32 
0.99 
0.86 
1.06 
1.06 
0.66 
0.64 
0.75 
0.70 
1.09 
0.84 
0.7ll 
0.82 
0.40 
0.35 
0.64 
1.02 
0.70 
0.73 
0.65 
0.73 
0.58 
0.74 
0.55 

0.05 
0.12 
0.15 
0.20 
0.29 
0.26 
0.27 
0.40 
0.35 
0.46 
0.19 
0.35 
0.03 
0.21 
0.17 
0.17 
0.42 
0.47 
0.33 
0.14 
0.35 
0.45 
0.42 
0.37 
4.68 
0.86 
0.95 
1.17 
1.15 
0.63 
0.65 
0.85 
0.71 
1.21 
1.19 
0.84 
0.88 
0.37 
0.39 
0.68 
0.95 
0.71 
0.78 
0.72 
0.57 
0.69 
0.57 
0.98 

0.00 
0.09 
0.10 
0.18 
0.26 
0.22 
0.29 
0.36 
0.32 
0.47 
0.18 
0.33 
0.04 
0.12 
0.17 
0.16 
0.31 
0.34 
0.29 
0.09 
0.32 
0.27 
0.37 
0.33 
4.86 
0.94 
1.04 
1.15 
1.13 
0.70 
0.58 
0.77 
0.72 
1.19 
0.92 
0.84 
0.96 
0.36 
0.32 
0.73 
0.97 
0.76 
0.73 
0.69 
0.60 
0.55 
0.53 
0.58 

0.18 
0.26 
0.30 
0.31 
0.18 
0.5e 
0.31 
0.31 
0.20 
0.49 
0.17 
0.5e 
30.33 
0.27 
0.46 
0.23 
0.49 
0.46 
0.42 
0.09 
0.21 
0.47 
0.52 
0.33 
26.29 
6.13 
7.78 
0.08 
28.39 
5.41 
8.73 
8.37 
9.31 
18.53 
11.53 
8.76 
28.51 
9.26 
4.21 
12.29 
43.78 
15.51 
26.11 
18.31 
12.26 
9.45 
10.04 
11.00 

.0.02 
0.24 
0.68 
0.16 
0.11 
0.98 
0.29 
..0.02 
0.94 
047 
0.12 
1.10 
..0.01 
0.25 
0.80 
0.14 
0.43 
0.43 
0.40 
0.06 
0.17 
0.38 
047 
0.17 
26.71 
8.09 
13.61 
32.35 
27.41 
6.41 
9.95 
1o.n 
9.37 
19.99 
11.53 
11.69 
25.27 
4.98 
5.62 
15.83 
46.20 
18.62 
27.57 
19.67 
14.65 
9.90 
10.37 
18.20 

0.10 
0.15 
0.07 
0.21 
0.10 
0.14 
0.24 
0.19 
0.21 
0.36 
0.05 
0.22 
0.00 
0.07 
0.07 
0.14 
0.33 
0.28 
0.36 
0.00 
0.16 
0.25 
0.41 
0.18 
27.53 
6.53 
10.64 
33.49 
32.45 
8.43 
16.45 
11.88 
11.93 
22.64 
13.09 
12.33 
25.27 
6.45 
5.97 
18.73 
43.96 
20.32 
31.91 
23.00 
13.20 
11.54 
10.58 
13.18 



N03time 4 T1 (hr) T2 (hr) T3 (hr) T4 (hr) 
-0.01 0.00 1.18 2.42 3.37 
0.28 0.00 1.25 2.47 3.42 
0.27 0.00 1.20 2.57 3.45 
0.08 0.00 1.18 2.30 3.25 
0.23 0.00 1.18 2.52 3.55 
0.20 0.00 1.20 2.55 3.42 
0.19 0.00 1.18 2.45 3.40 
0.57 0.00 1.18 2.55 3.62 
0.41 0.00 1.20 2.57 3.43 
0.29 0.00 1.22 2.43 3.40 
0.37 0.00 1.18 2.57 3.63 
0.49 0.00 1.18 2.55 3.47 
0.00 0.00 1.17 2.45 3.40 
0.09 0.00 1.23 2.43 3.40 
0.24 0.00 1.18 2.53 3.47 
0.10 0.00 1.18 2.45 3.40 
0.26 0.00 1.22 2.45 3.40 
0.26 0.00 1.23 2.47 3.40 
0.24 0.00 1.23 2.47 3.42 
0.15 0.00 1.15 2.55 3.67 
0.41 0.00 1.18 2.53 3.57 
0.35 0.00 1.23 2.47 3.42 
0.40 0.00 1.22 2.45 3.42 
0.48 0.00 1.18 2.55 3.62 
35.52 0.00 1.18 2.43 3.40 
15.68 0.00 1.20 2.57 3.52 
15.46 0.00 1.18 2.55 3.50 
29.67 0.00 1.20 2.43 3.40 
31.00 0.00 1.23 2.47 3.42 
16.13 0.00 1.18 2.57 3.60 
22.19 0.00 1.20 2.47 3.42 
19.73 0.00 1.18 2.55 3.60 
17.64 0.00 1.20 2.57 3.48 
47.17 0.00 1.23 2.47 3.42 
30.87 0.00 1.23 2.43 3.38 
16.23 0.00 1.15 250 3.42 
91.40 0.00 1.23 2.42 3.43 
42.81 0.00 1.17 2.50 3.55 
14.99 0.00 1.20 2.57 3.45 
12.22 0.00 1.23 2.47 3.42 
26.40 0.00 1.13 2.57 3.65 
23.32 0.00 1.22 2.58 3.52 
30.56 0.00 1.18 2.45 3.40 
26.90 0.00 1.23 2.42 3.43 
40.24 0.00 1.12 2.55 3.63 
18.18 0.00 1.23 2.47 3.42 
18.96 0.00 1.18 2.55 3.58 
21.15 0.00 1.17 2.52 3.45 



0.07 0.00 1.02 1.87 2.83 
0.12 0.00 0.92 1.87 2.80 
0.03 0.00 1.00 2.15 3.23 
0.14 0.00 0.97 1.85 2.82 
0.07 0.00 0.97 2.12 3.12 
0.08 0.00 0.98 1.92 3.02 
0.20 0.00 0.95 1.87 2.82 
0.20 0.00 1.00 2.10 3.10 
0.14 0.00 1.00 2.15 3.25 
0.28 0.00 0.93 1.90 2.82 
0.08 0.00 1.00 2.08 3.01 
0.16 0.00 0.97 2.12 3.17 
-().08 0.00 0.98 1.87 2.83 
0.09 0.00 0.93 1.90 2.83 
0.04 0.00 0.98 2.13 3.22 
0.11 0.00 0.97 1.87 2.82 
0.33 0.00 0.90 1.88 2.80 
0.33 0.00 0.92 1.90 2.83 
0.32 0.00 0.95 1.87 2.83 
-0.02 0.00 1.05 2.05 3.13 
0.14 0.00 0.97 2.13 3.10 
0.36 0.00 0.92 1.87 2.78 
0.41 0.00 0.87 1.85 2.77 
0.15 0.00 0.98 2.10 3.08 
29.20 0.00 1.02 1.88 2.85 
7.63 0.00 0.97 2.10 3.12 
12.05 0.00 0.97 2.13 3.18 
35.73 0.00 1.02 1.88 2.87 
33.42 0.00 0.95 1.87 2.82 
935 0.00 0.95 1.95 2.90 
14.59 0.00 0.95 1.87 2.82 
12.90 0.00 0.97 2.10 3,08 
11.83 0.00 0.95 1.85 2.85 
25.30 0.00 0.90 1.87 2.78 
16.18 0.00 0.92 1.90 2.83 
13.72 0.00 0.98 2.17 3.17 
31.13 0.00 0.95 1.90 2.83 
6.26 0.00 0.98 2.12 3.10 
5.47 0.00 1.00 2.25 3.23 
20.54 0.00 0.92 1.90 2.83 
45.50 0.00 1.02 2.10 3.08 
25.37 0.00 0.97 2.12 3.13 
31.84 0.00 0.95 1.85 2.82 
24.53 0.00 0.95 1.90 2.83 
15.12 0.00 1.07 2.07 3.15 
14.05 0.00 0.97 1.88 2.83 
11.81 0.00 0.98 2.10 3.08 
15.23 0.00 0.97 2.12 3.00 



Appendix 10. Day and night P04 -3 fluxes from Chapter 4. 

time tank oosm nutrients richness P04time 1 P04time2 P04time3 P04time4 T1 (hr) T2(hr) T3(hr) T4(hr) 
day 8 2.09 0.32 0.21 0.28 0.000 1.183 2.417 3.367 
day 0.82 0.52 0.44 0.42 0.000 1.250 2.467 3.417 
day 14 0.60 0.32 0.45 0.41 0.000 1.200 2.567 3.450 
day 8 0.42 0.41 0.34 0.39 0.000 1.183 2.300 3.250 
day 12 0.66 0.86 0.87 0.75 0.000 1.183 2.517 3.550 
day 14 0.43 0.46 0.47 0.46 0.000 1.200 2.550 3.417 
day 0.42 0.54 0.51 0.54 0.000 1.183 2.450 3.400 
day 11 0.79 0.86 0.72 0.94 0.000 1.163 2.550 3.617 
day 14 0.57 0.66 0.59 0.53 0.000 1.200 2.567 3.433 
day 10 0.66 0.45 0.63 0.53 0.000 1.217 2.433 3.400 
day 11 0.68 0.72 0.72 0.70 0.000 1.183 2.567 3.633 
day 14 0.55 0.49 0.42 0.39 0.000 1.183 2.550 3.467 
day 8 0.35 0.44 0.49 0.37 0.000 1.167 2.450 3.400 
day 10 0.48 0.51 0.42 0.42 0.000 1.233 2.433 3.400 
day 14 0.52 0.44 0.37 0.32 0.000 1.183 2.533 3.467 
day 0.32 0.29 0.29 0.31 0.000 1.183 2.450 3.400 
day 0.62 0.51 0.58 0.56 0.000 1.217 2.450 3.400 
day 10 0.60 0.49 0.55 0.60 0.000 1.233 2.467 3.400 
day 0.52 0.60 0.53 0.40 0.000 1.233 2.467 3.417 
day 11 0.56 0.59 0.66 0.66 0.000 1.150 2.550 3.867 
day 12 4 0.76 0.68 0.52 0.56 0.000 1.183 2.533 3.567 
day 9 3 0.56 0.52 0.47 0.000 1.233 2.467 3.417 
day 10 2 0.74 0.79 0.65 0.84 0.000 1.217 2.450 3.417 
day 11 3 0.65 0.79 0.79 0.77 0.000 1.183 2.550 3.617 
day 8 4 1.13 0.89 1.28 2.61 0.000 1.183 2.433 3.400 
day 12 1.53 1.56 1.95 2.34 0.000 1.200 2.567 3.517 
day 14 1.45 1.88 2.75 2.15 0.000 1.183 2.550 3.500 
day 2.66 2.56 3.62 3.07 0.000 1.200 2.433 3.400 
day 2.36 2.73 3.20 2.36 0.000 1.233 2.467 3.417 
day 12 1.27 1.84 1.53 2.28 0.000 1.183 2.567 3.600 
day 9 0.96 1.39 1.92 2.33 0.000 1.200 2.467 3.417 
day 11 1.27 1.93 2.18 2.88 0.000 1.183 2.550 3.600 
day 12 1.04 2.17 2.04 2.57 0.000 1.200 2.567 3.483 
day 1.49 2.76 3.60 5.72 0.000 1.233 2.467 3.417 
day 10 1.66 1.82 2.48 3.47 0.000 1.233 2.433 3.383 
day 12 1.62 1.53 1.84 2.53 0.000 1.150 2.500 3.417 
day 10 0.68 0.43 0.55 1.81 0.000 1.233 2.417 3.433 
day 12 1.41 1.69 2.42 4.30 0.000 1.167 2.500 3.550 
day 14 1.32 1.98 1.97 1.92 0.000 1.200 2.567 3.450 
day 10 1.33 1.42 1.44 1.46 0.000 1.233 2.467 3.417 
day 11 1.36 2.03 2.14 2.55 0.000 1.133 2.567 3.650 
day 12 1.90 2.31 1.83 2.17 0.000 1.217 2.583 3.517 
day 0.23 2.55 3.08 3.57 0.000 1.183 2.450 3.400 
day 10 1.36 2.54 2.69 3.16 0.000 1.233 2.417 3.433 
day 11 1.76 4.62 3.39 4.78 0.000 1.117 2.550 3.633 
day 9 4 1.01 1.19 1.43 1.88 0.000 1.233 2.467 3.417 
day 11 5 1.31 1.88 2.47 2.74 0.000 1.183 2.550 3.583 



day 14 1.32 2.11 2.34 2.39 0.000 1.167 2.517 3.450 
night 0.30 0.21 0.16 0.07 0.000 1.017 1.867 2.833 
night 0.33 0.40 0.34 0.32 0.000 0.917 1.867 2.800 
night 14 0.39 0.40 027 0.24 0.000 1.000 2.150 3.233 
night 8 0.45 0.55 0.44 0.33 0.000 0.967 1.850 2.817 
night 12 0.46 0.58 0.40 0.46 0.000 0.967 2.117 3.117 
night 14 0.38 0.89 0.27 0.23 0.000 0.983 1.917 3.017 
night 0.52 0.39 0.37 0.34 0.000 0.950 1.867 2.817 
night 11 0.65 2.39 0.56 0.52 0.000 1.000 2.100 3.100 
night 14 0.30 0.70 0.37 0.36 0.000 1.000 2.150 3.250 
night 10 0.76 0.53 0.64 1.44 0.000 0.933 1.900 2.817 
night 11 0.44 0.65 0.40 0.37 0.000 1.000 2.083 3.067 
night 14 0.34 0.52 028 0.23 0.000 0.967 2.117 3.167 
night 8 2.50 0.35 0.16 0.11 0.000 0.983 1.867 2.833 
night 10 0.48 0.58 0.90 0.48 0.000 0.933 1.900 2.833 
night 14 0.23 0.39 0.26 0.16 0.000 0.983 2.133 3.217 
night 8 0.27 0.39 0.15 0.17 0.000 0.967 1.867 2.817 
night 9 0.56 0.61 0.70 0.57 0.000 0.900 1.883 2.800 
night 10 0.58 0.46 0.58 0.71 0.000 0.917 1.900 2.833 
night 0.42 0.46 0.40 0.33 0.000 0.950 1.867 2.833 
night 11 0.37 0.54 0.42 0.39 0.000 1.050 2.050 3.133 
night 12 0.24 0.39 0.21 0.16 0.000 0.967 2.133 3.100 
night 9 0.42 0.54 0.53 0.37 0.000 0.917 1.867 2.783 
night 10 0.69 0.78 0.67 0.76 0.000 0.867 1.850 2.767 
night 11 0.60 0.69 0.83 0.55 0.000 0.983 2.100 3.083 
night 1.76 1.96 1.58 1.39 0.000 1.017 1.883 2.850 
night 12 1.21 1.11 0.78 1.00 0.000 0.967 2.100 3.117 
night 14 4 1.65 1.24 1.47 1.49 0.000 0.967 2.133 3.183 
night 8 5 0.25 2.77 3.71 3.56 0.000 1.017 1.883 2.867 
night 6 2.37 2.26 3.10 2.81 0.000 0.950 1.867 2.817 
night 12 2 1.16 0.84 1.04 1.31 0.000 0.950 1.950 2.900 
night 9 2 0.96 1.27 2.05 1.61 0.000 0.950 1.867 2.817 
night 11 7 1.76 1.26 1.99 1.81 0.000 0.967 2.100 3.083 
night 12 1.27 1.13 1.52 1.61 0.000 0.950 1.850 2.850 
night 9 1.60 2.24 2.20 2.21 0.000 0.900 1.867 2.783 
night 10 1.72 1.71 1.80 2.00 0.000 0.917 1.900 2.833 
night 12 1.36 1.33 1.53 1.47 0.000 0.983 2.167 3.167 
night 10 1.68 1.95 2.19 2.76 0.000 0.950 1.900 2.833 
night 12 1.39 0.80 0.88 0.84 0.000 0.983 2.117 3.100 
night 14 1.22 0.63 0.98 0.71 0.000 1.000 2.250 3.233 
night 10 1.26 1.49 2.91 1.46 0.000 0.917 1.900 2.833 
night 11 3.09 4.04 3.16 3.28 0.000 1.017 2.100 3.083 
night 12 1.54 3.26 1.67 3.23 0.000 0.967 2.117 3.133 
night 8 1.86 2.74 3.26 2.58 0.000 0.950 1.850 2.817 
night 10 3 1.99 2.19 2.40 2.60 0.000 0.950 1.900 2.833 
night 11 4 3 3.09 1.85 1.36 1.44 0.000 1.067 2.067 3.150 
night 4 5 0.83 1.10 1.56 0.98 0.000 0.967 1.883 2.833 
night 11 5 1.25 1.91 1.07 1.52 0.000 0.983 2.100 3.083 
night 14 1.55 1.24 1.59 1.75 0.000 0.967 2.117 3.000 



Appendox 11 Totallatlyacld (ngg~)dalafrorn Chapter5. 
nut119111 0 o 0 0 o 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 
rdl.-s 0 0 1 3 3 3 5 5 5 o o o 1 1 1 3 3 3 6 6 5 o o o 
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