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ABSTRACT

Analyses of EPA long-term datasets (1985-1994) combined with field studies and 
ecosystem model development were used to investigate phytoplankton and nutrient 
dynamics in the York River estuary. Analysis of the EPA dataset showed that algal 
blooms occurred during winter-spring followed by smaller summer blooms. Peak 
phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the 
mesohaline zone whereas during the summer bloom it occurred in the tidal fresh- 
mesohaline transition zone. River discharge appears to be the major factor controlling the 
location and timing of the winter-spring blooms and the relative degree of potential 
nitrogen (N) and phosphorus (P) limitation. Phytoplankton biomass in tidal fresh water 
regions was limited by high flushing rates. Water residence time was less than cell 
doubling rate during seasons of high river flow. Positive correlations between PAR at I m 
depth and chlorophyll a suggested light limitation of phytoplankton in the tidal fresh- 
mesohaline transition zone. A significant relationship between the delta of salinity 
between surface and bottom water and chlorophyll a distribution suggested the 
importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. 
Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled 
by N with the nutrient supply provided by benthic or bottom water remineralization. In 
general, phytoplankton dynamics appear controlled to a large extent by resource 
limitation (bottom-up control) rather than zooplankton grazing (top-down control).

The dynamics of phytoplankton size structure were investigated in the freshwater, 
transitional and estuarine reaches of the York River over an annual cycle. The 
contribution of large cells (micro-plankton, >20 (im) to total biomass increased 
downstream during winter whereas that of small cells (nano-. 3 - 2 0  (im; pico-plankton.
<3 (im) increased downstream during summer. I conclude from these studies that spatial 
and seasonal variations in size structure of phytoplankton observed on the estuarine scale 
are determined both by the different preferences of micro-, nano-, and picoplankton for 
nutrients and by their different light requirements. Analyses of phytoplankton size 
structure are, thus, necessary to better understand phytoplankton dynamics and to better 
manage water quality in estuarine systems.

An ecosystem model was developed to integrate these data and to investigate 
mechanisms controlling the size-structured phytoplankton dynamics in the mesohaline 
zone of the York River estuary. The model developed in Fortran90 included 12 state 
variables describing the distribution of carbon and nutrients (nitrogen, phosphorus) in the 
surface mixed layer. Forcing functions included incident radiation, temperature, wind 
stress, mean flow and tide including advective transport and turbulent mixing. Model 
results supported the general view that phytoplankton dynamics are controlled by abiotic 
mechanisms (i.e. bottom-up control) rather than biotic, trophic interactions in the York 
River estuary. Model sensitivity tests showed that small cells (pico-, nano-sized) are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X

more likely regulated by temperature and light whereas large cells (micro-sized) are 
regulated by physical processes such as advection and tidal mixing. Microphytoplankton 
blooms during winter-spring resulted from a combination of longitudinal advection and 
vertical diffusion of phytoplankton cells rather than in-situ production.
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PROJECT OVERVIEW

ECOSYSTEM ANALYSIS OF WATER COLUMN PROCESSES IN THE YORK 
RIVER ESTUARY, VIRGINIA: HISTORICAL RECORDS, FIELD STUDIES AND

MODELING ANALYSIS
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INTRODUCTION & BACKGROUND

Estuarine systems are considered to be complicated marine environments for 

scientists struggling to elucidate the ecology of an organism. On the other hand, they are 

excellent sites for ecological studies since biotic and abiotic factors, varying spatially and 

temporally, control the dynamics of organisms in the entire system. In addition to the 

complexity of the systems, estuaries are productive (Ryther 1969) and play a major role 

in supporting commercial fisheries since they provide habitats and food resources for 

juvenile commercial fish and shellfish (Smith 1966, EPA 1982, Levinton 1982).

Understanding the dynamics of phytoplankton is important since as primary 

producers they are the main source of carbon and nutrients (e.g. N, P) in a food web 

(Kemp and Boynton 1981, Boynton et al. 1982, Coffin and Sharp 1987, Sundbaeck et al. 

1990). Phytoplankton affect water quality, especially dissolved oxygen by 

photosynthesis and respiration, and can serve as substrates for microbial decomposition 

resulting in oxygen depletion when their ungrazed biomass has accumulated (Officer et 

al. 1984, Seliger et al. 1985, Malone et al. 1986, Sundbaeck et al. 1990). In addition, 

plankton are also light-absorbing particles which can limit their own growth, i.e., self- 

shading (Kirk 1994), and the depth of light penetration. In eutrophic estuarine 

environments, characterized by high nutrient input, primary production tends to be 

unstable, and zooplankton or other higher level organisms typically can not respond
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quickly to oscillations in standing stocks of primary producers (biomass), resulting in an 

accumulation of biomass. Accumulations of ungrazed biomass can modify the 

composition of the classic food chain that includes phytoplankton, copepods and fishes 

into a microbially-dominated food chain that includes DOC (from phytoplankton), 

bacteria, protozoa and copepods. This shift in food chain composition gives rise to 

enhanced microbial decomposition and oxygen depletion (Sundbaeck et al. 1990. Jonas

1992).

Phytoplankton production in aquatic environments may be regulated by bottom- 

up controls, nutrient fluxes associated with physical variability and top-down controls, 

biotic, trophic interactions (Carpenter et al. 1987, Day et al. 1989, Alpine and Cloem 

1992. Kivi et al. 1993). There has been a controversy over the relative importance of 

bottom-up vs. top-down control and established concepts of resource competition 

(Tilman 1982) and trophic cascade (Carpenter et al. 1985) for many years. It is now 

generally accepted that the relative importance of bottom-up vs. top-down control of 

structure in phytoplankton is scale-dependent; that is, the structure is determined neither 

entirely by resource competition nor trophic cascade over time scales of interest. In 

estuarine environments, these controlling mechanisms interact with phytoplankton in 

complex ways, mainly because of freshwater and tidal energy inputs into the system 

(Alpine and Cloem 1992, Pennock and Sharp 1994, Cloem 1996). Temporal variations 

in river discharge rates into an estuary can affect phytoplankton production and size 

structure or taxon composition through several processes: 1. altering inputs of nutrients 

from the surrounding watershed; 2. altering light availability by way of estuarine
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gravitational circulation, stratification, and changing the turbidity maximum zone along 

the estuary; 3. altering rates of dilution or advection of phytoplankton; and, 4. altering the 

amount of detrital or suspended organic matter supporting heterotrophs in an estuarine 

system (Malone and Chervin 1979, Malone et al. 1980, Fisher et al. 1988, Malone et al. 

1988, Gallegos et al. 1992, Madariaga et al. 1992, Boyer et al. 1993). Whereas seasonal 

and interannual fluctuations in river discharge rates produce low-frequency oscillations in 

the phytoplankton community, variations in tides (tidal mixing) result in high-frequency 

oscillations (Haas 1975, Ray et al. 1989, Aksnes and Lie 1990, Cloem 1991). In 

estuaries, industries such as sewage treatment plants and power plants also introduce 

allochthonous inputs into the system. Increasing population and industrial development 

may contribute to eutrophication through point or non-point sources in estuaries.

It is necessary to fractionate phytoplankton assemblages into different size classes 

as a way of elucidating phytoplankton dynamics since cell size influences the response of 

phytoplankton communities to environmental variation (Takahashi & Bienfang 1983, 

Fogg 1986, Oviatt et al. 1989, Glibert et al. 1992, Armstrong 1994, Hein et al. 1995) 

thereby impacting aquatic food web structure and fisheries (Lenz 1992, Painting et al.

1993). These changes in size classes and fluctuating biomass, resulting from 

environmental disturbance, impact nutrient and DO distributions as well as heterotrophic 

consumers in the water column. Since cell size influences sinking (Michaels and Silver 

1988) and transport rates, it will determine where ungrazed biomass accumulates and 

undergoes microbial processing by bacteria and protozoa which then play a role in
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depleting DO (Jonas 1992) and in recycling nutrients (Caron 1991) which can be a major 

source for primary production (Kemp and Boynton 1984).

The EPA Chesapeake Bay Program has supported biweekly to monthly 

collections of water quality and biological data along the York River estuary since the 

mid-1980's. Although a large database now exists for the York River, little has been 

done to synthesize and use the information to analyze water column processes and 

especially phytoplankton dynamics. The York River system can be considered as a 

weakly eutrophic system compared with other tributaries in the Chesapeake Bay. 

However, nitrate and total phosphorus loads have increased significantly in the 

Pamunkey River (one of two rivers forming the York) over the period July 1989 to 

December 1995 (Bell et al. 1996). The York River system may become more eutrophic 

over the next decade as anthropogenic inputs of nutrients increases due to projected high 

population growth rates and land use conversions (Corish et al. 1995). Despite the 

importance of the phytoplankton community in terms of ecological and management 

issues, mechanisms controlling phytoplankton abundance, production and community 

composition in the York River estuary have not been well established.

For several decades, simulation models have been used to explore plankton 

dynamics in aquatic systems due to their ability to integrate and synthesize a tremendous 

array of information. Models have been used to describe interactions between various 

plankton components and their physical-chemical environments which would be difficult 

otherwise due to the complexity of the interactions.
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The objectives of this study were to: (1) examine seasonal and spatial variations 

of the size structure and the biomass of phytoplankton and investigate major controlling 

factors for the phytoplankton community in the York River estuary by analyzing both 

historic datasets (10 years of EPA long-term data) as well as field data collected over an 

annual cycle, (2) develop an ecosystem model describing phytoplankton dynamics and 

explore the main factors controlling size structure of the phytoplankton community in the 

York River estuary integrating the existing and field data.

This dissertation is grouped into four chapters, i.e., project overview, three 

research chapters, and summary and synthesis. Research section one describes spatial 

and temporal characteristics of phytoplankton and inorganic dissolved nutrients based on 

EPA long-term datasets (1985-1994). Spatial and temporal characteristics of size 

fractionated phytoplankton are presented in Section EL Development of an ecosystem 

model and the ecosystem modeling analyses are presented in Section HI.
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ABSTRACT

Ten years (1985-1994) of data were analyzed to investigate general patterns of 

phytoplankton and nutrient dynamics, and to identify major factors controlling those 

dynamics in the York River Estuary, Virginia. Algal blooms were observed during 

winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during 

the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas peak 

phytoplankton biomass during the summer bloom occurred in the tidal fresh-mesohaline 

transition zone. River discharge appears to be the major factor controlling the location 

and timing of the winter-spring blooms and the relative degree of potential N and P 

limitation. Phytoplankton biomass in tidal fresh water regions was limited by high 

flushing rates. Water residence time was less than cell doubling rate during high flow 

seasons. Positive correlations between PAR at Im depth and chlorophyll a suggested 

light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. 

Relationships of salinity difference between surface and bottom water with chlorophyll a 

distribution suggested the importance of tidal mixing for phytoplankton dynamics in the 

mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was 

generally controlled by N with the nutrient supply provided by benthic or bottom water 

remineralization. The implications of limiting factors and river discharge for water 

quality management in the basin are discussed briefly.
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INTRODUCTION

Phytoplankton abundance and primary production in aquatic environments may 

be regulated by abiotic mechanisms such as nutrient fluxes related to physical-chemical 

variability (i.e. bottom-up control) and biotic, trophic interactions (i.e. top-down control) 

(Carpenter et al. 1987; Day et al. 1989; Kivi et ai. 1993; Armstrong 1994; Caraco et al. 

1997). In fact, there has been continuing controversy and debate over the relative 

importance of bottom-up vs. top-down controls and established concepts of resource 

competition (Tilman 1982) and trophic cascade (Carpenter et al. 1985) for many years. It 

is generally accepted that the relative importance o f bottom-up vs. top-down controls of 

structure in the phytoplankton is scale-dependent; that is, the structure is determined 

neither entirely by resource competition nor trophic cascade over time scales of interest. 

In estuarine environments, these controlling mechanisms interact with phytoplankton in 

complex ways, mainly because of freshwater and tidal energy inputs into the system 

(Alpine and Cloem 1992; Pennockand Sharp 1994; Cloem 1996). Temporal variations 

in river discharge to an estuary can affect phytoplankton production and size structure or 

taxon composition through several processes (e.g. Malone and Chervin 1979; Malone et 

al. 1980; Cloem et al. 1983; Pennock 1985; Malone et al. 1988; Gallegos et al. 1992; 

Madariaga et al. 1992; Boyer et al. 1993). While seasonal and interannual fluctuations in 

river discharge invoke low-frequency oscillations in the phytoplankton community, 

variations in tides (tidal mixing) result in high-frequency oscillations (Haas 1975; Ray et
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al. 1989; Aksnes and Lie 1990; Cloem 1991). In estuaries, facilities such as sewage 

treatment plants and power plants also introduce allochthonous inputs. Increasing human 

population densities and industrial development contribute to eutrophication through 

point and non-point sources in estuaries.

The EPA Chesapeake Bay Program has supported biweekly to monthly 

collections of water quality and biological data along the York River estuary since the 

mid-1980’s. Although a large database now exists for the York River, little has been 

done to synthesize and use the information to analyze water column processes and 

especially phytoplankton dynamics. The York River system can be considered as a 

weakly eutrophic system compared with other tributaries in the Chesapeake Bay.

However, nitrate and total phosphorus loads have increased significantly in the 

Pamunkey River (one of two rivers forming the York) over the period July 1989 to 

December 1995 (Bell et al. 1996). The York River system may become more eutrophic 

over the next decade as anthropogenic input of nutrient increases due to projected high 

population growth rates and land use conversion (Corish et al. 1995). Despite the 

importance of the phytoplankton community in terms of ecological and management 

issues, mechanisms controlling phytoplankton abundance, production and community 

composition in the York River estuary have not been well established.

The objectives of this study were to: (1) examine seasonal and spatial variations 

of phytoplankton and nutrient concentrations in the York River over the period 1985- 

1994; and (2) investigate mechanisms controlling phytoplankton and nutrient dynamics 

on seasonal, annual, and interannual time scales.
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MATERIALS AND METHODS

Area description and data analyses

The York River system, a subestuary of the Chesapeake Bay, is composed of 

three rivers, i.e. the York, Pamunkey, and Mattaponi (Fig. 1). The York River is formed 

by the confluence of the Pamunkey and Mattaponi rivers at West Point (48 km from its 

mouth). Total average freshwater discharge to the river system is 70 m3 sec 1 (Hyer 

1977). The salinity distribution of the York River system is affected by the interaction of 

freshwater, salt water, tidal energy and wind. Salinity gradients between the surface and 

bottom layers are influenced by neap and spring tidal cycles with destratification of the 

water column occurring at high spring tides and stratification developing during the 

intervening periods (Haas 1975). During low flow conditions, salt water extends 21 to 31 

km upriver from West Point (Bender 1986).

The EPA Chesapeake Bay Monitoring Program (CBMP) and the Virginia State 

Water Control Board (VSWCB) have collected water quality data from 10 stations in the 

York River system over the period 1984 to the present. The results presented here 

include analyses of the water quality data from 7 stations along the axis of the Pamunkey 

and York rivers collected between June 1984 and December 1994. Locations of the 

sampling stations are shown on Fig. 1. The stadons represent tidal freshwater, river -  

estuary transition, and upper, middle and lower estuarine zones. TF4.2 is located in the
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Fig. 1. The EPA Chesapeake Bay Monitoring stations in the York River estuary.
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tidal freshwater zone. RET4.1 is located upriver of RET4.3 in the transitional zone of the 

Pamunkey River. LE4.1, LE4.2 and LE4.3 are in the upper, mid, and lower reaches of 

the mesohaline zone of the York River respectively. WE4.2 is located at the mouth of the 

estuary (mesohaline). Station designations are those used by the Virginia State Water 

Control Board (1987). Data were collected monthly between November and February 

and twice monthly during the periods of March through October, when biological activity 

was highest and water quality problems most apparent (Virginia Water Control Board 

1987).

Biological and other living resources have been assessed at stations TF4.2,

RET4.3 and WE4.2 since July 1986 and primary production (estimated by H14CO;?' 

uptake, p.g C I 1 h 1) since January 1989. Mesozooplankton (> 202 pm) abundance from 

July 1986 to December 1994 and microzooplankton (> 73 and < 202 pm) abundance 

from January 1993 to December 1994 were analyzed for this study. Chlorophyll a data 

were collected from surface water only at all stations except station WE4.2 where 

chlorophyll a was measured in both surface water and at Im above bottom. Light 

attenuation coefficients (JQ) were estimated by dividing 1.45 by reported secchi disk 

depths. PAR (photosynthetically active radiation) at I m depth was calculated using 

Beer’s Law, Iz = /„ e'1̂, where I: is the intensity of light at z, the depth of interest, /„ is the 

surface intensity, and k is the water column attenuation coefficient. Solar radiation data 

(1989-1994) measured at the Virginia Institute of Marine Science located ca. 10 km 

upstream from the York river mouth were used for the /„ values.

Mean daily river discharge (Q) of the Pamunkey and Mattaponi rivers at the fall 

line were collected by the U.S. Geological Survey. Only discharge data for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Pamunkey River were used in these analyses since discharge patterns of the Mattaponi 

River followed those of the Pamunkey. Monthly means were derived and used for all 

analyses. To examine the effects of variable river discharge rates three distinct 

hydrographic years were chosen from the data set. The lowest (1991, Q = 16.1 m3 s 1) 

and highest flow years (1994, Q = 43.9 m3 s'1 ) over the 10 year period of study were 

chosen to examine the extremes in river discharge rates. Mean flow (Q = 28.9 m3 s '1) for 

54 years (1941-1994) was determined and 1990 (Q = 31.9 m3 s '1) was chosen as 

representative of the mean flow year. To examine the effects of river discharge rates on 

phytoplankton dynamics at the lower estuary stations (LE4.1, LE4.2, LE4.3 and WE4.2), 

it was necessary to determine lag time, defined as the time required for transport of a 

water mass from the fall line to the lower estuary (mesohaline zone). Lag time was 

determined as the time delay necessary to optimize the R2 value for regressions of salinity 

vs. river discharge for low and high flow periods of the year. Two periods were selected: 

January to May as the high flow period and June to December as the low flow period in a 

yearly cycle since river discharge rates varied with season. Scenarios of 0, I. and 2 

months were established from the results of running an 1-D hydrodynamic model for the 

York River developed by Dr. J. Shen at the Virginia Institute of Marine Science (VTMS).

Linear regression was used to investigate statistical correlations between the 

various water quality parameters and physical factors. Raw data or monthly averages 

were used in the regression analysis without log transformations.
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RESULTS

River discharge and response lag periods

Figure 2 shows the seasonality of river discharge measured at the fall line in the 

Pamunkey and Mattaponi rivers. Periods of high discharge occur in winter and spring 

followed by reduced or low discharge during the summer and fall. Discharge rates near 

the fall line on the Pamunkey at Hanover, Virginia average 28.6 and on the Mattaponi at 

Beulaville Virginia 15.0 m3 s'1 over the period 1985 to 1994. Peak discharge rates were 

extraordinarily high during the years, 1993 and 1994.

Table I shows R2 values for regressions of surface salinity vs. river discharge and 

indicates the importance of considering lag time for stations in the lower estuary (stations 

LE4.1, LE4.2, LE4.3). For example, when salinity at station LE4.3 (lower estuary) was 

regressed against river discharge with no lag time included, the R2 value for the 

regression was the minimum. For the low flow period of June to December, inclusion of 

a 2 month lag improved the R2 for the regression from 0.07 (no lag) to 0.39 (2 month 

lag). For stations LE4.2, LE4.3 and WE4.2 lag times of I and 2 months were chosen for 

the periods January to May and June to December, respectively in the following analyses. 

At station LE4.1 no lag was used for the high flow period and a I month lag during the 

low flow period.
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Fig. 2. Time series of river discharge rates of the Pamunkey and Mattaponi River in the 

York River estuarine system from 1985 to 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

<n
CO

E,
CO
CD

73
cc
CDO)
CO
_co
CO

b
u .
CD
>

i r

160 

140 H 

120 

100 

80 

60 

40 - 

20 - 

0 -

Monthly mean of Pamunkey

111 i i |  i n  n  i n  11 i | m  1111 n  n  | i  i n  n  111 m  n

op
&

<£>
&

Year
&

Monthly mean of Mattaponi

| i i n i i m i i | i i i i m i i i i | i i i r r n  r t »r p  i

CU rP
■CF

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Table 1. R2 for linear regression of surface water salinity vs. river discharge rates 
measured at the fall line in the Pamunkey River. Ten years (1985-1994) of monthly 
mean data were used for the analysis.

Station:
Period:

Scenario

LE4.1 
Jan-May Jun-Dec

LE4.2 
Jan-May Jun-Dec Jan-May

LE4.3
Jun-Dec

No lag 0.47b 0.33b 0.45b 0.21b 0.34b 0.07a

1 month-lag 0.26“ 0.45b 0.34b 0.36b 0.52b 0.28b

2 month-lag 0.20a 0.40b 0.29a 0.38b 0.52b 0.39b

3: P < 0.05, b: P <  0.0001
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Seasonality o f phytoplankton blooms and productivity

Over the 10 year period, each station showed a repeating pattern of seasonal 

phytoplankton blooms (Fig. 3). Blooms were arbitrarily designated as episodes when 

chlorophyll a exceeded 10 pg I'1. In tidal freshwater regions (TF4.2, RET4.1), maximum 

chlorophyll concentrations usually occurred during the summer, low flow period but were 

generally short in duration and less than 15 pg I 1 chlorophyll (Fig. 3A, 3B). At the lower 

transition station (RET4.3), two bloom periods were evident; a short, winter bloom 

followed by a more intense late spring-summer bloom (Fig. 3B, 3C). The upper and mid 

reaches of the mesohaline zone (LE4.1, LE4.2) had winter-spring blooms and smaller 

summer blooms (Fig. 3D, 3E) while the lower reach (LE4.3) experienced smaller winter- 

spring and no apparent summer blooms (Fig. 3F). The transitional station RET4.3 had 

relatively high concentrations of chlorophyll a during the summer at a time when nitrite + 

nitrate input from freshwater was low.

Seasonal and spatial characteristics of primary production were similar to those of 

phytoplankton biomass (Fig. 3). Phytoplankton production was high during summer and 

low during winter at the tidal freshwater station (Fig. 3A). At transition station RET4.3. 

two peaks were observed; a short, winter peak followed by a higher and prolonged 

summer peak (Fig. 3B). The station at the mouth of the estuary showed a spring peak 

and relatively high production during summer (Fig. 3C).

Effects o f river discharge on phytoplankton biomass

Table 2 gives the results of regression analyses of chlorophyll a or primary production 

versus river discharge, IQ, PAR and temperature for low, mean and high flow
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Fig. 3. Seasonal distributions of chlorophyll a and primary production in the York River 

system; monthly means and standard errors were calculated from the 10 years data (1985- 

1994) for chlorophyll a and from 7 years data (1988-1994) for primary production. 

Dashed line at 10 pig I'1 indicates our criterion for algal blooms and primary production 

shown in Fig. 3F was measured at WE4.2.
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Table 2. Results (R2) of linear regression analysis of chlorophyll a (pg I'1) or primary production (pg C I'1 h '1) vs. river discharge rates 
(Q , m3 s'1), light attenuation coefficients (K d, m'1), PAR at 1 m depth (PAR, pEin m 2 s'1) and temperature (T, C) during the low 
(1991), mean (1990) and high (1994) flow years. R‘ less than 0.1 omitted and denoted by ‘ ’. R" in parentheses represents correlation 
for primary production and negative values represent negative relationships.

1991 (Low Flow) 1990 (Mean Flow) 1994 (High Flow)
Parameters

Stations Q Kd PAR T Q Ku PAR T Q Kd PAR T

TF4.2 -0.14
(0.17)

0.28“
(0.29“)

0.26“
(0.32b)

- 0.30“ 
(0.11) ()

0.45b
(0.38b)

-o.u
() ()

0.47b 
(0.7 lb)

RET4.1 - 0.27“ - 0.34b ().55b 0.60b - 0.49b -0.17 0.68b -0.15 -0.12 0.23 0.33b

RET4.3
()

- 0.20 
()

0.11
(0.29“) (0.21) (0.15) (0.16) (0.87b)

-0.34b
(0.28“) ()

0.11 0.48b
(0.66b)

LE4.1 - 0.15 0.14 0.74b

LE4.2 0.19 -0.15 ().32b 0.15 0.13 0.66b 0.69b 0.31“

LE4.3 ().32b 0.49b 0.30“ -0.18 0.49b 0.63b

WE4.2
()

0.64b
(0.13)

0.29“
(0.20) ( )

0.11 
( ) (0.44b)

0.28“
(0.15) (0.26“)

0.48b
0.66b

0.23
(0.35b) ( ) ()

“ : P< 0 .1 ,b : P<0.05
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years (1991, 1990, and 1994, respectively). Chlorophyll a concentrations and 

distributions were generally correlated with river discharge (Table 2). The correlations 

were highest and more evident during years of mean (1990) and high flow (1994) than 

during low flow (1991). For all flow conditions, chlorophyll a was negatively correlated 

with river discharge rate in the upper, tidal freshwater and oligohaline regions of the 

estuary and positively correlated for mean and high discharge rates in the lower estuary.

A 1-D hydrodynamic model (Dr. J. Shen, VIMS) was run to estimate residual velocity 

(m s '1) in the tidal freshwater zone using mean river discharge rates over 9 years (1983- 

1992) for the months of August and January. Residual velocities in August and January 

were estimated to be 3.63 and 6.85 km d'1 respectively at the tidal freshwater station 

(TF4.2). Mean doubling times of phytoplankton in the Pamunkey River are reported to 

be 2.12 and 0.92 d'1 for August and December respectively (Kindler 1991). Using these 

estimates, phytoplankton would require 0.47 and 1.09 days to double their biomass 

during summer (August) and winter (December) and would be transported 1.71 and 7.47 

km in the required time intervals. Thissuggests that the phytoplankton are flushed out of 

the upper, tidal freshwater regions during the winter or high flow periods, preventing 

phytoplankton biomass from accumulating.

In the mesohaline zone the positive correlation between chlorophyll a and river 

discharge rate is strongest during high flow years such as 1994 indicating riverine input 

enhances the phytoplankton growth in this zone. Figure 4 shows the relationship between 

river discharge and the location of peak chlorophyll concentration (A) and between river 

discharge and chlorophyll a during winter-spring at the mid-estuary station LE4.2 (B). 

The location of peak chlorophyll a concentration was significantly correlated (r2 = 0.61;
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Fig. 4. Correlation between river discharge rates and location of chlorophyll a peaks (A) 

and mean chlorophyll a at station LE4.2 (B) during winter-spring period January-April 

for 9 years 1986-1994.
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P = 0.0133) with river discharge rates over the period 1986 to 1994 and spring 

chlorophyll a concentration was significantly correlated (r2 = 0.77; P = 0.0017) with 

spring river discharge over the period 1986 to 1994. These results indicate that river 

discharge determines the location and magnitude as well as timing of winter-spring 

blooms.

Light limitation, temperature and potential grazing effects

The relationship between light attenuation (IQ) and chlorophyll a was positive in 

the mesohaline zone but negative at stations in the Pamunkey River. This pattern is 

generally similar to the relationship observed between chlorophyll a and river discharge. 

River discharge was strongly and positively correlated with K<i during the high flow year 

(1994) indicating Kd may be a good predictor of potential riverine nutrient inputs to the 

York River system (R2 = 0.47 (P = 0.014) at station TF4.2, R2 = 0.71 (P < 0.001) at 

station RET4.3, and R2 = 0.52 (P = 0.008) at station LE4.2). The relationship between 

chlorophyll a and PAR at 1 m depth was examined for direct effects of light on 

phytoplankton biomass but a general pattern was not evident from the results (Table 2).

In order to determine the general pattern of light limitation, monthly means of 

data (1989-1994) were used to examine the general relationship between chlorophyll a 

and PAR at I m depth. Only at station RET4.1 was chlorophyll a concentration strongly 

correlated with PAR (R2 = 0.77; P = 0.0002) indicating light limitation of phytoplankton 

production at this station.

To further investigate potential light limitation in the York River system, a light 

limitation index was derived based on DiToro et al. (1971) and computed as;
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where e = base of the natural logarithms,/ =  photoperiod as a fraction of a day, k = 

attenuation coefficient ( m 1), z = the depth (m), lm -  incident average light intensity (Ein 

d '1), and I„p, = optimal light intensity (Ein d '1). Thus, the lower the index, the greater the 

degree of light limitation. Figure 5 shows the light limitation index (LtLim) during years 

of low, mean and high flow indicating that transitional station RET4.1 is most light- 

limited in the York River system. Chlorophyll a and the light limitation index were also 

significantly correlated over the three years (1990, 1991 and 1994) at station RET4.1 (R2 

= 0.28; P<  0.001).

Chlorophyll a and primary production were significantly and positively correlated 

with temperature at stations in the upper river (Pamunkey) during years of low. mean and 

high flow but not in the lower estuary (Table 2).

Relationships between microzooplankton and mesozooplankton abundances and 

chlorophyll a were examined for the stations where data were available to investigate 

possible grazing effects on phytoplankton populations. At stations TF4.2. RET4.3, and 

WE4.2 there was no significant correlation between mesozooplankton abundances and 

chlorophyll a, or microzooplankton abundance. Microzooplankton abundance and 

chlorophyll a were both strongly (R2 = 0.55) and significantly (P < 0.0001) correlated at 

stations TF4.2 and RET4.3 but not at station WE4.2. There was also no apparent lag time 

between microzooplankton and chlorophyll a. Thus, there are no evident grazing effects
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Fig. 5. Light limitation index calculated from a mechanistic equation (DiToro et al. 

1971) during low (1991), mean (1990) and high (1994) flow years.
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on the phytoplankton dynamics but microzooplankton abundance in tidal fresh and 

transition zones may be regulated by bottom-up controls.

Nutrient dynamics

Figure 6 shows the spatial and temporal distributions in the dissolved inorganic 

nitrogen (DIN):dissoived inorganic phosphorus (DIP) molar ratio and chlorophyll a 

concentration for the years representing low, mean and high river discharge rates.

DIN:DIP molar ratio were used as an index for potential nutrient limitation based on 

Redfield ratio (16:1). Potential P limitation, from the high DEN:DIP ratio at the tidal 

freshwater station (TF4.2) was present during all seasons and its longitudinal extent was 

directly proportional to river discharge rate suggesting that riverine input of NO2 + NO3 

regulated potential P limitation. Potential P limitation was highest during winter-spring 

due to N input from runoff whereas potential N  limitation. low DIN:DIP ratio was 

apparent from the transitional zone stations downriver especially during the summer-fall 

period. During high flow years, potential N limitation was present at mid and lower 

reaches of the mesohaline zone throughout the year except for the period of peak river 

discharge rate (February; see Fig. 2). The early appearance of potential N limitation 

during the high flow year appears to coincide with the occurrence of large winter-spring 

blooms following peak river discharge. Higher N uptake during spring blooms might 

induce the earlier N limitation in the mesohaline zone. During the low flow year, there 

was no apparent bloom event throughout the river system. From these results, not only 

does the l im in g  and magnitude of potential nutrient limitation relative to N  and P appear
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Fig. 6. Distributions of N:P molar ratio and chlorophyll a in the York River over annual 

cycles during the low (1991), mean (1990) and high flow years (1994). Left panels 

describe patterns of N:P molar ratio and right panels those of chlorophyll a\ color scale 

applies only to right panels.
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related to river discharge but chlorophyll distribution within the estuary reflects different 

river discharge regimes.

Salinity dilution plots were used to examine sources and sinks of DO, ammonium, 

orthophosphate, silicate, and nitrite+nitrate as well as chlorophyll a and light attenuation 

coefficient for the summer period July to August (Fig. 7) during years of low (1991), 

mean (1990) and high flow (1994) in the York River system. Summer DO 

concentrations in bottom water decreased sharply at approximately 15 psu while surface 

water DO concentrations remained relatively constant along the salinity gradient (Fig.

7A, 7B). In bottom water, ammonium concentrations increased at the same salinity as 

DO concentration decreased (Fig. 7D). Differences in ammonium (especially) and 

orthophosphate concentrations were detected between surface and bottom water at the 

lower reach of the mesohaline zone during the years of mean and high flow years (Fig.

7B - 7F) indicating that ammonium and orthophosphate were released from the benthic 

environment or due to heterotrophic activity in bottom waters. Interestingly, 

mesozooplankton abundances (1993-1994) were significantly correlated with ammonia 

(R2 = 0.42; P = 0.0006) and orthophosphate concentrations (R2 = 0.24; P = 0.015) at 

station WE4.2 (data not shown).

Summer ammonia and orthophosphate concentrations in the water column 

decreased as river discharge rates increased (Fig. 7C-7F) due in all likelihood to both 

phytoplankton uptake and flushing. Sources of ammonium appear to be bottom water or 

sediment in the lower reaches of the mesohaline zone. Phosphorus increases linearly 

downstream in both surface and bottom waters to the upper region of the mesohaline 

zone and then abruptly decreases in the lower estuary for low and mean river discharge
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Fig. 7. Salinity dilution curves of DO, ammonium, orthophosphate, silicate, 

nitrite+nitrate, chlorophyll a and light attenuation coefficient in the water column of the 

York River system for low (1991), mean (1990) and high (1994) flow years during the 

summer-fall period (June through October).
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years (Fig. 7E, 7F). For the high discharge year, the pattern is reversed suggesting uptake 

or simple dilution. How these differences might be related to differences in river 

discharge is not apparent.

Silicate and nitrite+nitrate concentrations decreased downstream suggesting 

runoff is the major source for those nutrient pools in the York River estuary (Fig. 7G-7J). 

Silicate showed relatively conservative properties while nitrite+nitrate did not above 10 

psu except during the high flow year. Rapid decrease of nitrite+nitrate concentrations at 

10-15 psu appears to be due to phytoplankton uptake corresponding to peak chlorophyll 

a concentration (see Fig. 7K). Silicate concentration increased as river discharge rates 

increased whereas nitrite+nitrate concentrations were not clearly related to river 

discharge rates. No difference in silicate and nitrite+nitrate was detected between surface 

and bottom. Chlorophyll a peaks were observed at 10 - 15 psu (Fig. 7K) whereas 

maximum light attenuation coefficients were recorded in the range of 17 to 22 psu (Fig. 

7L).

The final set of analyses done for the mesohaline stations was to investigate other 

mechanisms potentially affecting ammonium and phosphorus dynamics and in particular 

the role of tidal mixing and benthic regeneration. Figure 8 shows the relationship 

between surface and bottom water salinity differences and concentrations of dissolved 

oxygen, ammonium and phosphorus in bottom water for the lower York River station 

during the summer-fall period (June to October). It is clear that ammonium and 

phosphorus are regenerated (released from the sediments) in bottom waters as the water 

column becomes stratified. Low DO concentrations indicate high metabolic rates with 

the concomitant release of nutrients which on destratification are mixed with surface
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Fig. 8. Regression of water quality parameters (DO, NFL^ and P043' in bottom water) vs. 

salinity difference between surface and bottom water during the summer-fall (June- 

October) of mean (1990), low (1991) and high (1994) flow years at the lower 

estuary station WE4.2 (a: P < 0 .1, b: P < 0.05).
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waters. These results support previously reported studies in the lower estuary by Haas 

(1977), Webb and D’Elia (1980), and D’Elia, et al. (1981).

DISCUSSION

Nutrient limitation

Nutrient limitation is commonly defined as the constraint on phytoplankton 

growth rates and potential rate of net primary production (biomass accumulation) by the 

low concentration of a specific nutrient (Howarth 1988). Nutrient limitation of growth 

rates is based generally on small temporal and spatial scales (hours to days; liters to m3) 

whereas nutrient limitation of net primary production is based on larger scales (weeks to 

months; hectares to km3). Nutrient limitation has been assessed by many approaches 

including; comparing ambient nutrient concentrations to half-saturation constants (Fisher 

et al. 1992), molar DIN:DIP ratios (Redfield 1963; Fisher et al. 1992), molar total N:P 

ratios (Magnien et al. 1992), nutrient addition bioassays (D’Elia et al. 1986; Haas and 

Wetzel 1993) and ecosystem overviews (Boynton et al. 1982; Malone et al. 1988). Since 

nutrient and phytoplankton data analyzed in this study were based on ecosystem spatio- 

temporal scales (weeks, km3), nutrient limitations on net primary production at ecosystem 

scales were examined by molar ratios of ambient DIN and DIP concentrations in the 

surface water based on the ratio of 16:1 (Redfield et al. 1958). Absolute concentrations 

of nutrients in the study sites were mostly higher than half-saturation constants for uptake 

(DIN = 2 (iM, P O 43'  = 0.2 |lM; Fisher et al. 1988) which are accepted as an index for
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nutrient limitations of growth rates. Therefore, we used DIN: DIP ratios as indicators of 

potentials for N and P limitations rather than actual nutrient limitation.

Based on this rationale, potential P limitation was present in the tidal freshwater 

regions but shifted to N limitation in the lower estuarine regions during summer and fall 

(Fig. 6). This conforms to the generally accepted view that marine phytoplankton are 

more likely to be limited by N whereas freshwater phytoplankton are more likely to be 

limited by P (Hecky and Kilman 1988). Magnien et al. (1992) reported greater overall 

potential for phosphorus rather than nitrogen-limitation of phytoplankton in the upper 

mainstem of the Chesapeake Bay, the Patuxent Estuary, and the Potomac Estuary. They 

hypothesized that a greater loss of phosphorus than nitrogen through sedimentation and 

burial drives the patterns of nutrient limitation in these systems. The high loss of 

phosphorus was thought to be due to the significantly greater fraction of particulate 

phosphorus versus particulate nitrogen in the load input at the head of the estuaries. This 

mechanism could explain why tidal freshwater and/or transitional stations may 

experience potential P limitation in the York River system. It is known that some of the 

nutrient load deposited to bottom sediment is remobilized into the water column through 

mechanisms such as remineralization or desorption (Kemp and Boynton 1984; Boynton 

and Kemp 1985; Magnien et al. 1992). The ammonium concentrations varied with 

temperature-driven cycles of benthic regeneration and release whereas the 

orthophosphate concentrations are affected by the change in redox potential concomitant 

with benthic DO depletion (Kemp and Boynton 1992). Magnien et al. (1992) found that 

recycling was occurring at N:P ratios lower than those delivered as inputs, inducing a 

relatively large phosphorus source during summer and fall and a lowering of water
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column N:P ratios during these periods. This process could be an important mechanism 

for the shift from potential P limitation to potential N limitation in transitional or 

mesohaline stations in the York River system. Salinity dilution diagrams for 1990 and 

1991 showed that surface orthophosphate increased linearly downstream until it 

decreased rapidly at 15-20  psu (Fig. 7E). Surface ammonium ranged 0.3 -  5.9 |iM was 

relatively constant over the river regions (Fig. 7C) while orthophosphate increased 

resulting in potential N limitation in the water column during the period in transitional 

regions. Potential N limitation may become less intense as surface orthophosphate 

decreases rapidly below ca. 15 psu in both surface and bottom waters. It is interesting 

that surface orthophosphate concentrations did not decrease (Fig. 7E) in the region of 

summer chlorophyll a maximums (10 psu; Fig. 7K). It is not clear if this is either an 

indication of P sources in addition to orthophosphate (e.g. Malone et al. 1996) or an 

indication of rapid recycling and the ‘buffering’ effect of adsorption-desorption reactions 

which partition phosphate between particulate and dissolved phases (e.g. Liss 1976).

These spatial shifts also agree with the proposed scenario that P limitation shifts 

to N limitation with movement downstream during fall and winter and in turn a shift to N 

limitation with movement upriver during summer for salinity gradients of 3.8-25 psu 

(Webb 1988). Webb (1988) proposed that a direct effect of winter runoff caused the shift 

over “salinity gradients”. The direct effect of winter runoff was obvious when we 

examined the spatial distribution of N:P ratios during years with different river discharge 

(Fig. 6). Seasonal patterns in nutrient limitation were also observed in nutrient 

enrichment studies carried out in the lower York River (Webb 1988), in the Patuxent 

River (D'Elia et al. 1986), and in the main stem of Chesapeake Bay (Fisher et al. 1992).
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Persistent P limitation in tidal freshwater regions was found in nutrient bioassay 

studies by Haas and Wetzel (1993) who also reported that phytoplankton biomass in tidal 

freshwaters of the Rappahannock River is weakly limited by phosphorus and by light 

throughout the year. At a station located at the mouth of the Rappahannock River, 

phytoplankton experienced prolonged nitrogen limitation throughout the year except for a 

period of phosphorus limitation during March to May. Si limitation was not found in 

these bioassay studies as well as other enrichment studies in the York River (Dr. K.

Webb, Personal Communication).

Based on the comparison of our analyses with the results from enrichment studies, 

molar N:P ratios of ambient nutrients appear to be a good indicator of nutrient limitation 

on phytoplankton biomass accumulation in these systems. Malone et al. (1996) discussed 

the scales on which phytoplankton production oscillates in response to nutrient supply 

and suggested that the extrapolation of results from small-scale nutrient-enrichment and 

uptake-tumover rate experiments to the larger ecosystem scale is disputable, as Hecky 

and Kilham (1988) suggested. Malone et al. (1996) concluded that seasonal blooms and 

annual phytoplankton production at the baywide scale are a consequence of 

phytoplankton response to riverine nitrogen input. The Chesapeake Bay is N limited 

rather than P limited on estuarine time and space scales. Results of this study (Fig. 6) 

also showed that winter-spring blooms in the mesohaline zone are the response of 

phytoplankton to nitrogen input through river discharge.

Accumulation of ungrazed phytoplankton results in high heterotrophic microbial 

production (Malone et al. 1986; Verity 1987) and seasonal oxygen depletion in bottom 

water (Malone 1992). The large winter-spring blooms following peaks of river discharge
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might contribute to summer oxygen depletion in bottom water in the lower estuary which 

aggravates water quality in the York River system and suggests the importance of 

controlling N input from runoff in nutrient reduction strategies. Temporal and spatial 

variations of nutrient limitation also must be considered in the process of controlling 

point source nutrients since the extent to which phytoplankton biomass responds to the 

nutrient supply varies with physiological status of phytoplankton. Potential nutrient 

limitation of the phytoplankton in the York River system had temporal and spatial 

variations whose extent was determined by river discharge rate (see Fig. 6).

Seasonal variations in biomass and productivity

A comparative analysis of 63 estuaries (Boynton et al. 1982) showed that 

chlorophyll a concentrations were highest during warm seasons (May-Oct) and peak 

primary production always occurred during warm periods (June-Sept.) while minima 

generally occurred during the winter. Chlorophyll a concentrations, in all except one 

case, were higher than the annual mean at the time when maximum production rates 

occurred. Thus, chlorophyll a concentration is generally in phase with phytoplankton 

production. This pattern has been considered as evidence that temperature is a principal 

factor affecting nutrient recycling processes and plankton growth rates which are required 

to maintain high production rates (Eppley 1972; Nixon 1981). In tidal fresh water 

regions of the York River estuary, the patterns of phytoplankton biomass were also in 

phase with temperature and primary production (Table 2) probably due to temperature 

and light effects on maximum algal growth rate combined with low flushing rates in the 

head of the York River estuary. Similar patterns were observed in other river dominated
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systems; e.g., the Rappahannock (Haas and Wetzel 1993) and James River (Filardo and 

Dunstan 1985) systems in the lower Chesapeake Bay, the mainstem Chesapeake Bay 

(Harding 1994), and San Francisco Bay (Cloem et al. 1983). Summer peaks of 

chlorophyll a in the York River were similar to those in the Rappahannock (Haas and 

Wetzel 1993) but much lower than those in the James River (Filardo and Dunstan 1985).

River discharge effects were also evident and act as a controlling factor for 

phytoplankton dynamics in the head of estuaries. Filardo and Dunstan (1985) reported 

that chlorophyll a and photosynthetic production of particulate organic carbon in very 

low salinity regions (0 - 0.78 psu) were inversely correlated with river discharge rates. 

Primary production in the upper bay of the Louisiana Estuary also was negatively 

correlated with river discharge rates (Randall and Day 1987). Results of this study also 

showed that phytoplankton populations are flushed out of tidal freshwater regions during 

the winter high flow periods and phytoplankton biomass accumulation is limited by high 

flushing rates in spite of high concentration of DIN and silicates in the tidal freshwater 

regions.

For the transition stations below the freshwater regions, controls on 

phytoplankton dynamics are more complex since the river-estuary transition regions 

experience a tubidity maximum where the location and degree of mixing are controlled 

by river discharge (Hansen and Rattray 1965). Phytoplankton in the turbidity maximum 

zone has been reported to be limited by light (Cloem et al. 1983; Wofsy 1983; Harding et 

al. 1986; Pennock and Sharp 1994). Salinity change (osmotic stress) has also been 

suggested as a mechanism resulting in mass mortality of freshwater phytoplankton 

species (Filardo and Dunstan 1985). In addition, Avnimelech et al. (1982) reported the
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tendency of clay minerals to form floes incorporating phytoplankton, and further 

reducing phytoplankton biomass in these regions. The results of our study also indicated 

the highest light limitation at the upper transitional station (RET4.1) in the York River 

estuary. The upper river-estuary transition station maintained low phytoplankton 

biomass throughout the annual cycle except for a characteristic small summer bloom 

(Fig. 3B) suggesting phytoplankton in this region are influenced by both river discharge 

and limited by light. On the other hand, chlorophyll a maxima have been observed in 

clearer waters upstream or seaward of the turbidity maximum during summer or fall and 

associated with removal of ammonium, nitrate, phosphate and silicate in estuaries 

(Anderson 1986; Harding et al. 1986; Fisher et al. 1988). Increased light penetration and 

sufficient nutrients are thought to be major causes for the accumulation of phytoplankton 

biomass in clearer waters upstream of the turbidity maximum zone (Harding et al. 1986; 

Fisher et al. 1988). In the James River, high chlorophyll a levels were reported to be 

derived largely from high concentrations of physiologically healthy freshwater diatoms 

due to selective trapping that resulted from the balance between diatom sinking rate and 

the net upward water velocity in very low salinity waters (0.5 psu) during periods of low 

river discharge in the summer and fail (Moon and Dunstan 1990). A chlorophyll a 

maximum was also observed at the lower transition station (RET4.3) in this study (Fig. 

3C). Salinity dilution plots showed that chlorophyll a maxima developed in the salinity 

range of 10 - 15 psu, i.e., the upstream part of the turbidity maximum (Fig. 7K, 7L). The 

chlorophyll a maximum may be attributed to more available light and sufficient nutrients 

remineralized by heterotrophic activity in the water column and bottom sediments since 

there were no differences in surface and bottom ammonium, silicate and nitrite+nitrate
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concentrations (Fig. 7). These results suggest that the water column in the oligohaline 

zone is relatively well-mixed with rapid recycling of nutrients or there may be another 

source for N to support phytoplankton growth during summer. Glibert et al. (1991) 

reported that urea accounted for 70 - 80 % of the total phytoplankton N uptake in the 

plume of the Chesapeake Bay estuary. They also suggested grazers as important 

organisms releasing dissolved organic N (DON) in late summer whereas nutrient- 

deficient phytoplankton seemed to release more DON in winter.

The highest turbidity occurred in mesohaline regions instead of oligohaline areas 

(Fig. 7L) and generally paralleled the light limitation function (Fig. 5) indicating that the 

turbidity maximum zone of the York River system may have been missed in the sampling 

scheme employed here. Turbidity maxima have been generally recorded in the 

oligohaline (1 - 10 psu) zone in the Chesapeake, Delaware and Hudson estuaries (Fisher 

etal. 1988).

In the lower region of the transition zone (RET4.3), the short winter bloom 

suggests that phytoplankton growth may not be limited by high flushing rates during the 

winter in contrast to the upper transition zone (RET4.1). Channel morphology changes 

dramatically between the upper transition station (RET4.1) with a narrow and deep 

channel and the lower transition station (RET4.3) with a broad and shallow channel. This 

change in channel morphology might relax the limitation by high flushing rates. An 

extraordinarily high chlorophyll a concentration (70.8 pg

I'1) recorded in January, 1990 at this station (data not shown) may be explained by patchy 

distribution of phytoplankton (e.g. Sellner et al. 1991) or selective trapping of large cells 

which can grow at fairly low light levels and high nutrient levels in this region.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

In the mesohaline zone of the Chesapeake Bay, seasonal variations in 

phytoplankton biomass were correlated with riverine nitrate whereas seasonal variations 

in productivity were correlated with temperature and light (Malone et al. 1988). 

Phytoplankton biomass peaks occurred during spring when river discharge and riverine 

nutrient input were high, but phytoplankton productivity was highest during summer 

when river discharge and riverine nutrient input were low. Malone et al. (1988) 

concluded that the summer productivity peak in the mesohaline reach of the Chesapeake 

Bay is due to remineralization of nitrogen delivered to the system during the previous 

spring. Grazing was suggested as the major process controlling phytoplankton biomass 

in the surface water during summer which was characterized as high primary productivity 

and low biomass relative to spring (Sellner and Kachur 1987; White and Roman 1992). 

Malone et al. (1986) observed that most of the summer flux of POM into the benthos is 

derived from phytoplankton.

In the mesohaline zone of the York River system, on the other hand, variations in 

phytoplankton biomass were significantly correlated with riverine nitrate whereas 

variations in primary production were not correlated with either temperature or light (see 

Table 2). Seasonal variation of phytoplankton biomass was similar to that of productivity 

at the mouth of the York River estuary (Fig. 3). This result differs from reports on other 

estuaries (Boynton et al. 1982) and the mainstem of the Chesapeake Bay (Malone et al. 

1988) suggesting riverine N input coupled with other physical factors controls 

phytoplankton production as well as phytoplankton biomass in the lower York River 

estuary. Malone et al. (1988) indicated that high grazing rates explain low phytoplankton 

biomass during summer phytoplankton productivity maximum. The similarity in
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seasonal patterns between biomass and production in this study suggests there are limited 

grazing effects in the mesohaline zone of the York River estuary.

The effect of destratification and stratification of the water column was evident on 

summer chlorophyll a in the mesohaline zone when we examined the relationship 

between chlorophyll a and salinity differences between surface and bottom water during 

summer time (Fig. 9). Tidal mixing is thought to be a mechanism supplying ammonium 

and orthophosphate released from bottom water and/or benthic sediments to surface 

water during summer and fall based on observed differences in ammonium and 

orthophosphate concentrations between surface and bottom water (Fig. 7). Significant 

correlations of bottom ammonium and orthophosphate vs. surface-bottom salinity 

difference (Fig. 8) indicate an important role of water column mixing in recycling of 

ammonium and orthophosphate. Destratification of the water column also affected DO 

distributions in the mesohaline zone. Webb and D’Elia (1980) reported that spring-tidal 

destratification enhances the input of benthic-regenerated nutrients into the surface water 

and replenishes Oz in the deep water from surface water in the lower York River.

Nutrient recycling is thought to be induced by high activity of benthic or bottom 

water heterotrophic metabolism stimulated by warm temperature and allochthonous 

organic matter derived from freshwater or ungrazed phytoplankton produced during the 

winter of previous year. Summer ammonium concentration in lower reaches (station 

LE4.3) of the mesohaline zone was correlated with spring chlorophyll a of previous years 

in middle reach (station LE4.2) of the mesohaline regions (R2 = 0.76; P = 0.0048).

The concept of the river continuum (Minshall et al. 1985) plays a role in leading 

to a general understanding of organic carbon processing and metabolism in rivers
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Fig. 9. Variations of chlorophyll a and salinity difference between surface and 

bottom water during summer and fall (June-October) in 1994 at the mouth (WE4.2) 

of the York River estuary.
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(Howarth et al. 1996). The concept assumes that ecological processes downstream in a 

river are coupled to upstream processes, and to changes in channel morphology of the 

river moving downstream. The York River appears to conform to this concept since 

phytoplankton growth in the lower river relies on the nutrient, especially nitrite+nitrate, 

delivered from the upper river. Large portions of nutrients in the upper river are thought 

to be delivered to the lower river since phytoplankton growth in the upper river is limited 

by short residence time during high flow season due to the characteristic morphology of 

channel in the upper river. This mechanism is more clear when the effect of N input 

through river discharge on spring blooms in lower estuary was considered (Fig. 4). The 

unusually high summertime peak of chlorophyll a (68.7 |ig I’1) at station RET4.3 in 1989 

and non-bloom during summer at station TF4.2 in 1989 (data not shown) may be 

explained by the effect of N input and short residence time and/or light limitation due to 

relatively high rates of river discharge during the summer of 1989 compared with other 

years (see Fig. 2). This unusual pattern implies that river discharge has a direct impact on 

phytoplankton dynamics in the entire York river system supporting the river continuum 

concept in the York River system.

CONCLUSIONS

We use a spatially and temporally extensive data set to analyze variations in 

factors potentially limiting phytoplankton biomass and production in the York River 

estuary. By affecting residence time, nutrient input, light regime, and tidal mixing, river
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discharge rates regulate the magnitude, location and timing of phytoplankton blooms in 

the York River estuarine system indicating that ecological processes of the York River 

system are predictable based on the river continuum concept. Phytoplankton growth in 

tidal fresh water is limited since the residence time (dependent on the river discharge 

rate) can be less than the cell doubling time. Temperature-dependent metabolism is also 

an important mechanism in this zone. In the transition zone or turbidity maximum zone, 

phytoplankton are limited mainly by light and internal processes dependent on 

temperature and estuarine circulation. In mesohaline regions, riverine nitrite + nitrate 

input during the winter results in winter-spring blooms at locations experiencing potential 

nitrogen limitation. Tidal mixing also influences summer phytoplankton dynamics in the 

mesohaline zone by supplying regenerated nutrients via a predictable cycle of column 

stratification-destratification. In general, phytoplankton dynamics appear controlled to 

large extent by resource limitation (bottom-up control) rather than zooplankton grazing 

(top-down control).
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ABSTRACT

The dynamics of phytoplankton size structure were investigated in the freshwater, 

transitional and estuarine reaches of the York River over an annual cycle. The 

contribution of large cells (micro-plankton, >20 pm) to total biomass increased 

downstream during winter whereas that of small cells (nano-plankton, 3 - 2 0  pm; pico- 

plankton, <3 pm) increased downstream during summer. In the freshwater region, the 

contribution of micro-phytoplankton to phytoplankton biomass was significant during 

warm seasons (spring and summer) but not during colder seasons (winter), whereas the 

contribution of small-sized cells (especially picoplankton) increased during cold seasons. 

Temperature, light and high flushing rate appear to control phytoplankton community 

structure in the freshwater region. In the transitional region, nano-sized cells dominated 

the phytoplankton population throughout all seasons except during the spring bloom 

(April) when the biomass of micro-phytoplankton increased. Size structure in the 

transitional region is most likely regulated by light availability. In the mesohaline region, 

nano- and pico-sized cells dominated the phytoplankton population during the summer 

bloom whereas micro-sized cells dominated during winter bloom. Factors controlling 

phytoplankton community size structure in the mesohaline zone may be riverine nitrogen 

input, temperature and/or advective transport from upriver. We conclude from these 

studies that spatial and seasonal variations in size structure of phytoplankton observed on
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the estuarine scale is determined both by the different preferences of micro-, nano-, and 

picoplankton for nutrients and by their different light requirements, suggesting that 

analyses of size structure phytoplankton dynamics are necessary to better understand 

phytoplankton dynamics and to better manage water quality in estuarine systems.
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INTRODUCTION

It is important to understand phytoplankton dynamics since phytoplankton are the 

dominant primary producers and main sources of carbon and nutrients (e.g. nitrogen, 

phosphorus) in marine food webs (Haines 1976, Thayer et al. 1978, Kemp and Boynton 

1981, Boynton et al. 1982, Coffin and Sharp 1987, Sundbaeck et al, 1990).

Phytoplankton affect water quality, especially dissolved oxygen by photosynthesis and 

respiration and can serve as substrates for microbial decomposition resulting in oxygen 

depletion when their ungrazed biomass has accumulated (Morris et al. 1978, 1982, 

Officer et al. 1984, Seliger et al. 1985, Malone et al. 1986, Jackson et al. 1987, Tuttle et 

al. 1987, Sundbaeck et al. 1990). Plankton are also light-absorbing particles which can 

limit their own growth, i.e., self-shading (Kirk 1994), and the depth of light penetration.

In eutrophic estuarine environments characterized by high nutrient input, primary 

production tends to be unstable, and zooplankton or other higher level organisms 

typically can not respond quickly to oscillations in standing stocks of primary producers 

(biomass), resulting in an accumulation of biomass. Accumulations of ungrazed biomass 

can modify the composition of the classic food chain that includes phytoplankton, 

copepods and fishes into a microbially-dominated food chain that includes DOC (from 

phytoplankton), bacteria, protozoa and copepods. This shift in food chain composition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

may give rise to enhanced microbial decomposition and oxygen depletion (Sundbaeck et 

al, 1990, Jonas 1992).

It is necessary to fractionate phytoplankton assemblages into different size classes 

in order to elucidate phytoplankton dynamics since cell size influences the response of 

phytoplankton communities to environmental variation (Williams 1964, Smayda 1965, 

Eppley & Thomas 1969, Malone & Chervin 1979, Takahashi & Bienfang 1983, Fogg 

1986, Oviatt et al. 1989, Glibert et al. 1992, Armstrong 1994, Hein et al. 1995), thereby 

impacting aquatic food web structure and fisheries (Brooks & Dodson 1965. Longhurst et 

al. 1967, Martin 1970, Parsons & Lebrasseur 1970, De Mendiola 1971, Walsh 1976, Lenz 

1992, Painting et al. 1993). In estuarine food webs, cells less than 12 pm are grazed by 

copepod larvae, copepodites, tintinnids, oyster larvae, and other microzooplankton 

(Capriulo & Carpenter 1983, Turner et al. 1983, Fritz et al. 1984, Maurer et al. 1984). 

whereas netplankton (>20 pm) are grazed by adult copepods, fish larvae, scallops.

Atlantic menhaden, and others (Mullen and Brooks 1967, Durbin and Durbin, 1975,

Scura and Jerde 1977, Pierson 1983). Over long (or short) time scales anthropogenic 

inputs to estuarine systems may change both the quality (size structure) and quantity 

(biomass) of primary producers. These changes in size classes and fluctuating biomass 

resulting from environmental disturbance impact nutrient and DO distribution as well as 

heterotrophic consumers in the water column. Since cell size influences sinking 

(Michaels & Silver 1988) and transport rates, it will determine where ungrazed biomass 

accumulates and undergoes microbial processing by bacteria and protozoa which then 

play a role in depleting DO (Jonas 1992) and in recycling nutrients (Caron 1991) which 

can support primary production (Kemp and Boynton 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

In past studies, estuarine phytoplankton were usually categorized into two size 

fractions: netplankton (20-200 pm) and nanoplankton (<20 pm). However, in recent 

years picoplankton (0 .2-2 pm), comprised of minute chroococcoid cyanobacteria and 

eukaryotic phytoplankton, have received attention in estuarine phytoplankton studies (Ray 

et al. 1989, Lacouture et al. 1990, Malone et al. 1991, Iriarte 1993). Their major 

contribution to primary production in oceanic environments has been well established 

(Joint & Pomroy 1983, Li et al. 1983, Glover et al. 1988, Jochem 1988), and the 

dominance of these minute plankton has been attributed to their efficient light-harvesting 

processes (Glover et al. 1985, Fogg 1986, Kirk 1986), efficient nutrient uptake- 

phycoerythrin synthesis-photosynthesis linkages (Raven 1986), and low sinking rates 

(Takahashi & Bienfang 1983). On the other hand, picoplankton experience some 

disadvantages of small size, including the inability to move into nutrient-rich or more 

sufficiently illuminated regimes, and a greater vulnerability to grazers (Fogg, 1986).

Small size classes may be selectively grazed by zooplankton, as was experimentally 

demonstrated by Ryther and Sanders (1980). Perissinotto (1992) also reported that 

smaller cells (nanophytoplankton) were preferentially selected by zooplankton in the 

community of the Prince Edward Archipelago. In this study, phytoplankton were grouped 

into three size classes; micro-size ( > 20 pm), nano-size ( 3 - 2 0  (im) and pico-size ( < 3 

pm).

The EPA Chesapeake Bay Program has monitored chlorophyll a concentrations as 

a water quality parameter once or twice per month since mid-1980 in the York River 

estuary. However, chlorophyll a content was not determined for the different size classes. 

Therefore, to better understand phytoplankton processes in the York River estuary, size
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structure dynamics need to be established. Main goals of this study were to: ( I) examine 

temporal and spatial variations in abundance of various size classes of phytoplankton in 

the York River estuary; (2) investigate mechanisms controlling size structure dynamics 

and provide information for the projected ecosystem model for this system.

MATERIALS AND METHODS

Study site and sample collection.

The York River system, a subestuary of the Chesapeake Bay, is composed of three 

rivers: the York, Pamunkey, and Mattaponi (Fig. I). The York River is formed by the 

confluence of the Pamunkey and Mattaponi rivers at West Point, 48 km from its mouth. 

Total average freshwater discharge to the river system is 70 m3 sec'1 (Hyer 1977). The 

salinity distribution of the York River system is affected by the interactions of freshwater, 

salt water, tidal energy and wind. Salinity gradients between the surface and bottom 

layers are influenced by neap and spring tidal cycles with destratification of the water 

column occurring at high spring tides and stratification developing during the intervening 

periods (Haas 1975). During low flow conditions, salt water extends 21 to 31 km upriver 

from West Point (Bender 1986).

Three stations along the axis of the York and Pamunkey River (Fig. I) were 

sampled over one annual cycle at high tide during the spring tidal cycle. Sample dates 

were August 8, 1996, August 15, August 21, September 26, November 11, January 23, 

1997, February 20, March 10, April 7, and June 4. One sample (August 8, 1996) was
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Fig. I. Sampling stations in the tidal freshwater (Station I), transitional (Station H) and 

mesohaline (Station HI) regions of the York River estuary.
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collected at low tide during the neap tidal cycle. The stations represent the tidal fresh 

(Station I), river-estuary transition (Station II) and mesohaline zones (Station m) in the 

York River estuarine system. Samples were collected from I m depth below the surface 

and I m above the bottom using either a water pump or Nanssen bottle. Bottom 

concentrations of nutrients and chlorophyll a were not measured from November 1996 or 

February 1997 to June 1997 at Station I since this station was characterized as a 

well-mixed water column. Measurements of biological, chemical and physical properties 

showed little difference of the properties between surface and bottom water at the station. 

Surface concentrations were used to calculate molar N:P ratios or averages of the 

parameters in the bottom water over the sampling period at Station I.

Chlorophyll a measurement

Phytoplankton were fractionated by filtration through 20 (im Nytex® mesh (1-2 

liters) and 3 [im PORETICS® polyester membrane filters (1 liter) with minimal vacuum «  

150 mm Hg). For chlorophyll a (chi a) determinations, ten ml of non-fractionated whole

(s)water, 20 ml of 20 fim filtrate, and 40 ml of 3 jim  filtrate were filtered through Whatman 

25 mm GF/F™ glass fiber filters (0.7 jxm) under vacuum (< 120 mm Hg). Sample 

filtration was performed in duplicate and immediately following sampling to minimize 

the grazing effect. The filters were placed in dark test tubes pre-filled with 8 ml 

extraction solution (45% dimethyl sulfoxide (DMSO), 45% acetone, 10% deionized 

water, and 1% diethylamine (DEA) (Webb & Hayward unpubl.)) After storage for 12 hrs 

at room temperature, fluorescence was read on a Turner Designs® 10-AU Fluorometer. 

One or two drops of HCL (2N) were added and the extractant re-read for determination of
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pheopigments following acidification. The ratio of fluorescence before and after 

acidification was used to examine grazing effects on phytoplankton population (e.g. 

Welschmeyer and Lorenzen 1985) in the York River estuary. Chlorophyll a 

concentrations were determined using the equation: chlorophyll a concentrations = 

chlorophyll a readings before acidification x [volume of extraction solution / volume of 

filtered sample]

Chlorophyll a in each size fraction was determined by consecutive subtraction of 

fractions < 3 pm and < 20 pm from whole water chlorophyll a.

Measurement of dissolved inorganic nutrient and physical properties

Water samples (50 ml) for nutrient analysis were filtered (0.45 pm Gel man 

Supor®) immediately following sampling to minimize uptake by phytoplankton and 

stored refrigerated until analysis. Ammonium was analyzed by the phenolhypochlorite 

method (Greenberg et al., 1992), and nitrite (NOi) + nitrate (NO3 ) were measured by 

Alpkem® autoanalyzer at the Ecosystem Process Lab, Virginia Institute of Marine Science 

(VIMS). Orthophosphate (PO4"3) was measured by the molybdate method as discussed in 

Parsons et al. (1984). The detection limit of the autoanalyzer is 0.012 pM for nitrite + 

nitrate and 0.032 pM for orthophosphate. Dissolved silica (Dsi) was measured using a 

TECHNICON AAII® Continuous Row Analyzer (Segmented) at VIMS Analytical 

Service Center. The basic procedure for the determination of soluble silicates is based on 

the reduction of a silicomolybdate in acidic solution to molybedenum blue by ascorbic 

acid (Technicon Industrial Systems 1973). Detection limit for the Dsi is 0.013 mg I'1.
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A YSI® Model 33 S-C-T Meter was used to measure temperature and salinity. A 

LICOR® PAR Radiometer was used for measuring solar and submarine irradiance at 

depths of 10, 35, 60, 85 and 110 cm. Light attenuation coefficients were determined 

using Beer’s Law, Iz = L e**, where Iz is the intensity of light at z, the depth of interest, L 

is the intensity at the surface, and k is the attenuation coefficient of water. Water depth 

was measured using either a sonar depth meter installed on the boat or a scale marked on 

the Nanssen bottle’s line.

Other data collections and statistical analysis

Daily mean solar irradiation data were collected at Virginia Institute of Marine 

Science, Gloucester Point, Virginia, also site of Station II (Fig. 1). Monthly means of 

solar irradiance were calculated from the data downloaded from VIMS data archives. 

Daily discharge rates near the fall line on the Pamunkey River at Hanover were collected 

by U.S. Geological Survey, and monthly means were calculated from the data. 

Extraordinarily high river discharge occurred for 3 days in early September 1996; this is 

probably due to a large storm event (Fig. 2). Samples were not collected until late 

September although the storm event significantly increased the monthly mean discharge 

rate. Because of the delay in our sampling following the storm, the river discharge rates 

for the 3 days affected by the storm event were not included in the calculation of monthly 

mean river discharge rates used for regression analysis. Linear simple and multiple 

regression analyses were employed to investigate correlations between phytoplankton size 

class abundance and physical and biological properties.
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Fig. 2. Time series of river discharge rates from April 1996 to June 1997 at fall line of 

the Pamunkey River in the York River estuary.
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RESULTS

River discharge and solar irradiation

River discharge rates for the period from July 1996 to June 1997 (Fig. 2) 

displayed a seasonality similar to that in the long-term datasets (see Fig. 2 in Section I); 

rates were high during winter and spring, and low during summer and fall. Discharge 

rates were extraordinarily high during fall, especially September probably due to a storm 

(Fig. 2). The wettest month was December 1996 and the driest one was June 1997. River 

discharge rates near the fall line on the Pamunkey River (Hanover) averaged 45.3 m3 s '1, 

a rate higher than the ten-year (1985-1994) mean of 28.6 m3 s '1. Therefore, the period for 

this present study is considered as wet. Monthly mean discharge rates ranged from 12.2 

(June) to 99.8 m3 s'1 (December).

Solar irradiation data collected at Gloucester Point also revealed a seasonal trend 

with PAR highest during June and lowest during December for the period 1988 to 1997 

(Fig. 3 A). Peaks of irradiation in 1996 and 1997 were lower than during most years 

during 1988 to 1995. Average irradiance (248.2 (iE m'2 s '1) was lower than during the 

period July 1996 to June 1997 and lower than average irradiance (301.8 |iE m'2 s '1) 

measured over the period January 1988-July 1997. The monthly mean solar irradiation 

ranged from 115.3 [lE m'2 s'1 in December to 381.8 (iE m'2 s’1 in June (Fig. 3B).

Other physical properties; water depth, temperature, salinity and light attenuation 

coefficients
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Fig. 3. Surface daily and monthly PAR (|iE m'2 s '1) at Gloucester Point, Virginia from 

January 1988 to June 1997 (A) and April 1996 to June 1997 (B).
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Water depths of Stations I, II and III were 7.06 ± 0.35, 7.11 ± 0.29 and 16.06 ± 0.47 m 

respectively. High flushing rates in the tidal freshwater region (Station I) of the York 

River estuary are thought to be due to a characteristic bottom morphology with a deep and 

narrow channel. Surface water temperatures at Station I ranged from 3.3 to 28.0 °C over 

the sampling period (Table 1). There were no temperature differences between surface 

and bottom layers at Station I, indicating that the water column was well-mixed. At 

Station II, surface water temperature ranged from 5.2 to 28.5 °C whereas bottom 

temperature ranged from 5.2 to 27.0 °C. Temperature differences between surface and 

bottom water were greater during summer, especially August, than during winter. At 

Station m, surface water temperatures ranged from 4.5 to 26.5 °C whereas bottom 

temperature ranged from 4.5 to 26.0 °C. Temperature differences between surface and 

bottom waters at Station IK were smaller than at Station II. Water temperatures at all 

stations were highest during August and lowest during January.

Station I had 0 9cc salinity (Table I) throughout the sampling period except in June 

1997 (0.8 %c ) following a severe drought (see Fig. 2) indicating that the water column is 

well-mixed. At Station II, surface water salinity ranged from 1.8 to 13.0 %c whereas 

bottom salinity ranged from 4.0 to 14.0 %c. The water column at Station II was somewhat 

stratified, especially during August, February and March. Surface salinities at Station HI 

ranged from 12.0 (February) to 17.5 %o (August 21) whereas bottom salinities ranged 

from 16.0 (March) to 22.2 %o (November). Average salinities at Stations H and HI for the 

sampling period were 7.76 ± 1.0 and 15.83 ± 0.53 %c for surface water and 9.16 ± 0.88 

and 18.41 ± 0.64 %o for bottom water.
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Table 1. Temperature (°C ), salinity (%o) and light attenuation coefficient (Kd, nV1) collected at the stations (1, II and III) in the York 
River estuarine system.

__ K ........1 C U I U C l t U U l C

Stations: I II III I II III I II III
Date Depth

Aug 8, 1996 Surface 28.0 28.5 26.5 0.0 8.0 17.0 2.62 2.61 2.61
Bottom 28.0 27.0 26.0 0.0 9.0 18.0

Aug 15 Surface 26.0 26.0 25.0 0.0 10.0 17.0 3.08 2.81 1.43
Bottom 26.0 24.5 24.0 0.0 11.0 20.0

Aug 21 Surface 26.8 27.2 27.0 0.0 8.2 17.5 2.79 3.33 1.27
Bottom 26.8 26.2 26.9 0.0 10.2 18.8

Sep 26 Surface 22.0 22.0 22.5 0.0 9.0 15.0 3.73 3.60 1.30
Bottom 22.0 21.2 22.0 0.0 10.9 16.5

Nov 11 Surface 13.2 12.5 13.0 0.0 9.0 17.0 3.69 3.64 1.10
Bottom 13.2 13.0 15.0 0.0 10.0 22.2

Jan 23, 1997 Surface 3.3 5.2 4.5 0.0 6.3 15.0 3.24 2.92 1.17
Bottom 3.2 5.2 4.5 0.0 7.3 18.2

Feb 20 Surface 6.8 6.8 6.2 0.0 1.8 12.0 2.57 4.25 1.70
Bottom 6.8 6.0 5.2 0.0 4.0 19.0

Mar 10 Surface 10.5 10.0 9.0 0.0 3.8 15.0 4.42 6.68 2.01
Bottom 10.5 10.0 9.0 0.0 6.2 16.0

Apr 7 Surface 16.0 15.0 13.8 0.0 8.5 15.8 2.75 3.51 1.52
Bottom 16.0 15.0 * 0.0 9.0 *

Jun 4 Surface 21.0 20.0 19.0 0.8 13.0 17.0 3.9 3.2 1.1
Bottom 21.0 20.0 18.0 0.8 14.0 17.0

* : No measurement taken. o
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Average light attenuation coefficients (Kd) during the sampling period were 3.28 

± 0.2, 3.66 ± 0.37 and 1.52 ± 0.15 m 1 for Stations I, II and m  respectively. Attenuation 

coefficients (Table I) ranged from 2.57 (February) to 4.42 m'1 (March) at Station I, from 

2.61 (August 8) to 6.68 m'1 (March) at Station II and from 1.1 (November, June) to 2.61 

m'1 (August 8) at Station m. Although there was no clear seasonal effect, Kd was clearly 

affected by river discharge since it peaked at all stations during March (Fig. 4G. 4H, 41) 

corresponding to a sharp decrease in salinity due to high river discharge rates (see Fig. 2). 

It was reported in Section I of this dissertation that river discharge was significantly 

positively correlated with Kd.

Dissolved inorganic nutrients in the water column

Figure 5 shows the seasonal variations in concentrations of inorganic nutrients at 

the study sites. Ammonium concentrations did not vary seasonally at Station I (Fig. 5A). 

They were high during winter and low during summer at Station II (Fig. 5B) whereas they 

were low during winter and high during summer-fail at Station HI (Fig. 5C). Surface- 

bottom differences were found at Station H (Fig. 5B) but were not as obvious at Station 

HI (Fig. 5C). Bottom ammonium concentrations at Station IE were generally higher than 

surface concentration throughout the sampling period, especially during summer and fall 

(Fig. 5C). Table 2 shows that the average ammonium concentration was higher in bottom 

water than in surface water at Station HI and higher in surface than in bottom waters at 

Station II. Average bottom ammonium concentrations were highest in the mesohaline 

zone (Station 1H), whereas average surface ammonium concentrations were highest in the 

river-estuary transition zone (Station II).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

Fig. 4. Temperature, salinity and light attenuation coefficient distributions at each station 

in the York River system.
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Fig. 5. Seasonal distributions of ambient ammonium (NFLT), nitrite+nitrate (NOV+NOO, 

orthophosphate (PO43 ) and dissolved silicate (Dsi) at three stations along the axis of the 

York River system.
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Table 2. Average ambient concentrations and standard errors of ammonium (NH/, pM), nitrite + nitrate (N02'+N03' , pM), dissolved 
inorganic nitrogen (DIN, pM), orthophosphate (PO.,v, pM), and dissolved silicate (Dsi, pM) in the York River estuary.

Stations
Nutrients:

Denth
NH/ (pM) NCX +NO, (pM) DIN (pM) P043 (PM) Dsi (pM)

Station I Surface 1.27 ±0.27 10.2 ± 1.85 11.6 ± 1.99 0.42 ± 0.09 124.3 ± 14.6

Bottom 1.21 ±0.29 10.4 ± 1.79 11.6 ± 1.99 0.39 ±0.09 124.3 ± 14.6

Station 11 Surface 2.63 ± 0.95 9.74 ± 1.73 12.37 ±2.37 0.43 ±0.10 106.2 ±8.33
Bottom 1.92 ±0.77 10.4 ±2.76 12.4 ±3.08 0.47 ±0.14 97.9 ± 7.79

Station III Surface 1.70 ±0.51 6.61 ± 1.71 8.31 ± 1.62 0.44 ± 0.22 44.4 ± 6.48

Bottom 5.23 ± 1.24 5.80 ± 1.58 11.0 ±2.55 0.49 ±0.17 29.8 ± 5.90
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At Station I nitrite + nitrate levels were highest during periods of high river 

discharge, especially February (Fig. 5D). Surface nitrite + nitrate concentrations peaked 

in February at Station II (Fig. 5E) and increased at Station HI (Fig. 5F). Similar seasonal 

patterns were detected for silicate in surface waters (Fig. 5J, 5K, 5L). Surface nitrite + 

nitrate concentrations were not different than bottom concentrations at Stations II and HI 

whereas surface silicate concentrations were consistently higher than bottom 

concentrations. Low silicate concentrations in both surface and bottom waters occurred 

at all stations concurrent with low river discharge rates. Average nitrite + nitrate and 

silicate concentrations over the sampling period were highest in the tidal freshwater zone 

(Station I), and decreased moving downstream (Table 2).

There were no clear seasonal variations in orthophosphate concentrations at 

Station I (Fig. 5G). At Station H, orthophosphate concentrations were high during 

summer-fall but low during winter (Fig. 5H). Significant differences between surface and 

bottom water were not observed at Station H. On the other hand, bottom concentrations 

were generally higher than surface concentrations during August at Station HI (Fig. 51). 

Average orthophosphate concentrations increased downstream in bottom water but not in 

surface water (Table 2). At Station HI, average orthophosphate concentrations were 

higher in bottom than in surface waters. Field data for nutrients (ammonium, nitrite + 

nitrate, dissolved inorganic nitrogen, orthophosphate, and silicate) collected at the study 

sites are presented in Appendices I and H.

Figure 6 shows molar N:P ratios for the 3 study sites. Significant differences were 

not observed between surface and bottom waters at any station. There was an apparent 

seasonal pattern. The N:P ratio is lower than Redfield during the warm season suggesting
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Fig. 6. Temporal variations of molar N:P ratios of ambient inorganic dissolved 

nutrients at study sites in the York River estuary.
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N limitation of phytoplankton growth and higher during the cold season suggesting P 

limitation due to high riverine N input during winter-spring. A shift from P to N 

limitation moving downstream during the warm season was not observed in this study as 

documented in the first section of this dissertation.

Temporal and spatial variations of chlorophyll a

At Station I total chlorophyll a concentrations in surface water were at a minimum 

during winter, increased in March and peaked during summer (Fig. 7A). The 

concentrations began to increase after March (Fig. 7A). This same seasonal chlorophyll a 

signal applied to all phytoplankton size classes (see Fig. 7D, 7G, 7J) and was also 

observed in the EPA long-term dataset analyzed in Section I. There was little difference 

in chlorophyll a concentrations between surface and bottom waters, probably due to 

mixing at Station I.

At Station II, surface chlorophyll a concentrations were generally higher than at 

other stations except for the cold season (January, February and March (Fig. IB)). High 

chlorophyll a concentrations were observed during November when other stations 

experienced their minimum. The spring bloom occurred during April, with chlorophyll a 

higher than observed at any other station (close to 100 p.g f 1 (Fig. 7B)). 

Microphytoplankton biomass significantly increased during the spring bloom (Fig. 7E). 

The seasonal pattern of nanophytoplankton stocks (Fig. 7H) was nearly the same as that 

for total chlorophyll a (Fig. 7B), indicating that phytoplankton biomass is generally 

dominated by nanophytoplankton except during the spring bloom. Picophytoplankton 

were abundant during summer but their biomass decreased as temperatures declined (Fig.
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Fig. 7. Seasonal distributions of size fractionated chlorophyll a (whole, micro, nano and 

pico) at three stations along the axis of the York River system.
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7K). All size classes had minimum biomass during the cold season. In bottom water, 

seasonal patterns of phytoplankton biomass were similar to those in surface water 

although they were consistently lower except during the cold season.

Station HI showed a clear seasonality with a small scale summer bloom and 

larger-scale winter-spring blooms (Fig. 7C). The winter bloom developed at a time when 

other stations experienced their minimum abundance. Microplankton biomass was 

highest during winter and lowest during summer in surface water (Fig. 7F).

Nanoplankton had a bimodal pattern with high abundances during summer and winter- 

spring (Fig. 71). In contrast to microplankton, picoplankton had the highest abundances 

during summer and the lowest abundances during winter (Fig. 7L). Surface chlorophyll a 

(whole) concentrations were higher than bottom concentrations during summer, 

especially August, but the opposite was shown during winter-spring (Fig. 7C). The peak 

of chlorophyll a (whole) in bottom water coincided with peak bottom microplankton 

biomass in April (Fig. 7F), and a significant surface-bottom difference was observed 

during this period. These results showed that microplankton were the most significant 

component of phytoplankton in the bottom water of the mesohaline zone. The biomass of 

all three size classes was relatively low during summer in bottom water with stratification 

observed for nanoplankton and picoplankton.

In the surface water of Station I the contribution of large cells 

(microphytoplankton) to total chlorophyll a was significant during the warm season 

whereas the contribution of small cells (nano, picophytoplankton) increased rapidly 

during the cold period (Fig. 8A). At Station II nanophytoplankton dominated the 

phytoplankton community throughout the sampling period (Fig. 8B). The contribution of
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Fig. 8. Percent contributions of three size classes (micro, nano and pico) to the total 

chlorophyll a in the surface water of the study sites of the York River estuary; upper 

panels describe contributions of size classes based on chlorophyll a concentrations shown 

in the lower panels.
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large cells increased rapidly during the spring bloom. At Station IE small cells (nano, 

picophytoplankton) dominated the mesohaline phytoplankton community during the 

warm season whereas large cells dominated the community during the winter bloom (Fig. 

8C). Shifts in size structure at Station HI initiated in fall just as river discharge rates 

began to rise, suggest a cause and effect relationship.

At Station I contributions of various size classes to phytoplankton abundance in 

bottom water were similar to those of size classes in surface water (Fig. 9A). At Station 

II, the microphytoplankton contribution appeared to increase over the sampling period 

although nano-sized cells remained dominant in the bottom phytoplankton community 

(Fig. 9B). At Station IE, small cells (nano-, pico-sized), especially pico-sized cells, 

decreased whereas the contribution of micro-sized cells increased over the sampling 

period (Fig. 9C) compared to each size class in surface water (see Fig. 8C).

In the surface water of our study sites average chlorophyll a concentrations of 

whole, micro-size and nano-size classes were highest at Station n, whereas chlorophyll a 

from the pico-size class was highest at Station IE (Table 3). In the bottom water whole 

and nano-size classes were most abundant at Station E whereas pico-size and micro-size 

classes dominated at Stations IE and I respectively. Surface averages were higher than 

bottom averages except for the nano-size class at Station I and the whole and micro-size 

class at Station El. These results indicate the important role of the micro-size class in the 

accumulation of phytoplankton biomass in the lower estuary of the York River system. 

Field data for chlorophyll a concentrations of each size class are presented in Appendix 

EL
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Fig. 9. Percent contributions of three size classes (micro, nano and pico) to the total 

chlorophyll a in the bottom water of the study sites of the York River estuary; upper 

panels describe contributions of size classes based on chlorophyll a concentrations shown 

in the lower panels.
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Table 3. Average chlorophyll a concentrations and standard errors (jug I 1) of whole, micro-size, nano-size, and pico-size class 
collected during sampling period in the York River estuary.

Stations
Size class:

Denth
Whole (pg I'1) Micro (pg l'1) Nano (pg l l) Pico (pg l'1)

Station I Surface 15.0 ±2.90 5.60 ± 1.40 7.25 ± 1.32 2.15 ±0.36
Bottom 15.7 ± 3.10 5.53 ± 1.32 8.20 ± 1.62 2.02 ± 0.33

Station II Surface 34.28 ±9.32 8.48 ±3.61 23.5 ± 6.33 2.29 ± 0.67
Bottom 27.8 ±5.97 7.06 ± 2.23 19.1 ±3.82 1.16 ±0.20

Station III Surface 22.6 ±2.88 7.00 ±2.13 13.0 ± 1.90 2.60 ± 0.69

Bottom 25.3 ±5.93 11.3 ±3.66 12.9 ±2.45 1.08 ±0.09

00
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Figure 10 shows the seasonal variations in chlorophyllrpheopigment ratios 

(chlrpheo; ratios of fluorometer readings before and after acidification) at three stations. 

For all stations and most classes chlrpheo ratios peaked during November indicating a 

decrease in percent of detrital particle. At Station II all size classes except micro-size in 

February had low chlrpheo ratios during winter-spring in surface water (Fig. 10B. 10H. 

10K) indicating a high abundance of detrital particles.

Average chlrpheo ratios in unfractionated water were lowest in Station I surface 

water, and highest in Station I bottom water (Table 4). This may indicate riverine inputs 

of detrital particles to the tidal freshwater zone and fluxes of detrital particles from the 

surface to the bottom and/or oceanic inputs through estuarine circulation into the 

mesohaline zone of the York River estuary. When we examined size fractionated 

chlrpheo ratios, the average ratio of the micro-size class was lowest at Station HI whereas 

average ratios of nano- and pico-size classes were lowest at Station I. In the bottom water 

at Station EH, average ratios decreased as cells size increased (Table 4) suggesting a 

possible role of large cells or aggregates in supporting benthic heterotrophy. Compared 

to other size classes, average chlrpheo for pico-sized cells in bottom water was close to 

that in surface water of Station HI. This indicated that there was little depth variation of 

detrital particles in the small size class. During the entire sampling period pico-sized 

cells generally had lower chlrpheo ratios than did other size classes at all three stations, 

indicating that they included more detrital particles than did other size classes.

Linear simple and multiple regression analysis
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Fig. 10. Seasonal patterns of acidification ratios i.e., chlorophyllrpheopigment ratios 

(chlrpheo; ratio of fluorometer readings before and after acidification) at three stations 

along the axis of the York River system.
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Table 4. Average chlorophyll:pheopigment ratios (ratios of chlorophyll a readings before and after acidification) and standard errors of 
whole, micro-size, nano-size, and pico-size classes collected during sampling period in the York River estuary.

Stations
Size cluss:

Depth
Whole Micro Nano Pico

Station 1 Surface 1.65 ±0.05 1.86 ±0.07 1.61 ±0.05 1.44 ±0.04

Bottom 1.63 ±0.05 1.86 ±0.07 1.58 ±0.06 1.43 ±0.04

Station 11 Surface 1.73 ±0.08 1.99 ±0.14 1.70 ± 1.08 1.56 ±0.07

Bottom 1.58 ±0.09 1.70 ±0.19 1.57 ±0.08 1.44 ±0.06

Station III Surface 1.81 ±0.04 1.75 ±0.12 1.80 ±0.04 1.63 ±0.03
Bottom 1.55 ±0.06 1.42 ±0.13 1.45 ±0.04 1.56 ±0.07

00
ON
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Table 5 shows results (r)  of linear regression analyses of relationships between 

the biomass of various phytoplankton size classes and various physical and biological 

properties of the York River estuary including river discharge rates, chlrpheo, PAR and 

temperature. At Station I, river discharge rates (Q, m V l) were significantly negatively 

correlated with phytoplankton biomass in unfractionated water. This relationship was 

similar for the nano-size class at the 0.05 significance level and for micro- and pico-size 

classes at the 0.1 significance level. Chlrpheo ratios were not correlated with any size 

class abundance at Station I (Table 5). PAR and temperature were significantly positively 

correlated with abundance of all size classes except the nano-size class for PAR at the 

0.05 significance level. Nano-size class biomass was correlated with temperature at the 

0.1 significance level. Temperature was significantly and negatively correlated with 

percent contributions of pico-size (a  = 0.05) and nano-size classes (a  = 0 .1): however, 

temperature was positively correlated with percent contribution of the micro-size class to 

the phytoplankton community. Multiple regression analysis showed that river discharge 

rates, PAR, and temperature were responsible for 92 % (whole), 87 % (micro-size class), 

80 % (nano-size class) and 89 % (pico-size class) of the variation in size class structure at 

Station I.

At the river-estuary transition Station (Station H), river discharge was not 

correlated with phytoplankton abundance (Table 5); however, chlrpheo ratios were 

significantly positively correlated with whole and nano-size class abundances. PAR and 

temperature were significantly correlated only with pico-size class abundances. Based on 

multiple regression analysis, PAR and temperature were responsible for 75% of the 

variation in pico-size class biomass.
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Table 5. Results (r2) of linear regression analysis on surface chlorophyll a (|Ag I'1) or percent contribution by each size class (%) vs. 
river discharge rates (Q, m3 s'1), chlorophylhpheophytin ratio (chhpheo), PAR at 1 m water depth (PAR, jiEin m 2 s'1) and temperature 
(T, °C) during the sampling period, r2 less than 0.1 omitted and denoted by r2 in parenthesis represents correlationship of percent 
contributions vs. parameters, and negative value represents negative relationship.

Parameters: 

Size Class

Station I Station 11 Station III

Q ChhPheo PAR T Q Chl:Pheo PAR T Q* ChhPheo PAR T

Whole -0.52“ - 0.54" 0.86" 0.12 0.46" 0.12 -0.19 0.12

Micro -0.36' -0.15 0.58" 0.81" 0.58" 0.19 -0.69"

( ) (-) (0.14) (0.49") ( ) ( ) ( ) ( ) (0.55") (0.49") ( ) (-0.70")

Nano -0.59" 0.35' 0.68" 0.10 0.74" 0.10 0.14

( ) ( ) (0.10) (-0.33') ( ) (0.17) ( ) ( ) (-0.33) ( ) ( ) (0.58")

Pico -0.37' - 0.58" 0.84" 0.26 0.28 0.73” 0.61" -0.48" 0.16 0.66"

(0.36') ( ) (-0.11) (-0.41") ( ) ( ) (0.16) ( ) (-0.71") (0.36') ( ) (0.66")

Whole, Micro, Nano, and Pico: total, micro-sized, nano-sized, and pico-sized chlorophyll a. 
#: One month-lag time considered.
*: P <0.1, **: P <0.05.

00
00
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At the mesohaline Station (Station HI), river discharge rates were significantly 

correlated with micro-size class abundance (r2 = 0.58, P < 0.05), whereas temperature 

was significantly correlated with pico-size class abundance (r2 = 0.66, P < 0.05). River 

discharge rates were significantly correlated with percent contribution of 

microphytoplankton, whereas temperature was significantly correlated with percent 

contributions of nanophytoplankton and picophytoplankton. Negative relationships 

between temperature and micro-size class biomass may be due to autocorrelation between 

temperature and river discharge rate. Similarly negative relationships between river 

discharge rates and pico-sized chlorophyll a may be due to autocorrelation between 

temperature and river discharge or due to slow growth rates of small cells at high supply 

rates of nutrients, compared to large cells (microphytoplankton). Based on multiple 

regression analysis, 69 % of the variation in pico-size class biomass was explained by 

river discharge and temperature. Chlrpheo ratios were correlated with the contribution of 

microplankton to total biomass but not with microplankton biomass. PAR at Im depth 

was not correlated with any size class in the mesohaline zone.

Table 6 shows results (r2) of linear regression analyses of relationships between 

size class biomass (chlorophyll a) or percentage contribution of individual size classes to 

total biomass and physical and biological parameters in bottom water. At Station I, 

results of correlations of size class biomass or percent contributions of size classes vs. 

physical/biological parameters were similar to those in surface water (see Table 5). At 

Station IL, there was no significant relationship between size class biomass and chlrpheo 

ratios whereas growth of pico-sized cells appeared to be regulated by light and 

temperature. Station HI showed a strong positive relationships between river discharge
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Table 6. Results (r) of linear regression analysis on the bottom chlorophyll a (|ig 1‘) or percent contribution by each size class (%) vs. 
river discharge rates (Q, m3s'), chlorophylhpheophytin ratio (Chl.Pheo), PAR at 1 m water depth (PAR, (iEin m'2 s'1) and temperature 
(T, °C) during the sampling period, r  less than 0.1 omitted and denoted by ’. r2 in parenthesis represents correlationship of % 
contributions vs. parameters, and negative value represents negative relationship.

Parameters: 
Size Class

Station I Station II Station III

Q ChhPheo PAR T Q ChhPheo PAR T Q’ ChhPheo PAR T

Whole -0.49" 0.57" 0.89" 0.95" 0.29 -0.12 -0.74"

Micro -0.29 0.55" 0.84" 0.97" -0.79"

(-) ( ) (0.14) (0.33’) ( ) (-0.10) (-0.16) (-0.25) (0.85") ( ) ( > (-0.70")

Nano -0.63" 0.48" 0.78" 0.10 0.83" 0.28 0.19 -0.67"

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (-0.82") (-0.54") ( ) (0.60")

Pico -0.33’ 0.56" 0.73" 0.24 0.16 0.62” 0.79" -0.48" 0.64"

(0.38') (0.11) (-0.19) (-0.66") (-0.18) ( ) (0.57") (0.31’) (-0.69") ( ) ( ) (0.64")

Whole, Micro, Nano, and Pico: total, micro-sized, nano-sized, and pico-sized chlorophyll a. 
1: One month-lag time considered.
’ : P < 0.1, **: P < 0.05.

s



91

rates and biomass of unfractionated phytoplankton (r2 = 0.95), microphytoplankton (r2 = 

0.97) and nanophytoplankton (r2 = 0.83). River discharge rates were positively correlated 

with the contribution of microplankton to total biomass but negatively correlated with 

percent contribution of nanoplankton. Temperature was significantly correlated with 

picoplankton biomass.

DISCUSSION

It has been reported that nanoplankton (<20 |im) are dominant and more 

productive than netplankton (>20 |im) in oceanic waters whereas netplankton are more 

abundant in continental shelf and coastal upwelling waters (Malone 1980, Tremblay and 

Legendre 1994). In most estuaries nanoplankton are abundant although netplankton 

contribute more to total biomass. In estuarine waters nanoplankton have been recognized 

as more important contributors to primary production particularly during summer 

(McCarthy et al. 1974, Van Valkenberg & Flemmer 1974, Durbin et al. 1975, Haas 1975, 

Sellner 1983). The predominance of nanoplankton in nature has been postulated to result 

from their intrinsically higher rates of growth (e.g. Eppley and Sloan 1966), nutrient 

uptake (e.g. Munk and Riley 1952, Eppley and Thomas 1969, Friebele et al. 1978), and 

photosynthesis (Taguchi 1976, Malone 1980a, Malone and Neale 1981).

The tidal freshwater station (Station I) was thought to be enriched with riverine N 

and DSi input from riverine runoff throughout the year; however, the concentration of 

nitrite + nitrate was lower than that in the mesohaline zone during summer (see Fig. 5D,
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5F) most likely due to high uptake by large phytoplankton which reportedly dominate 

when the supply of nitrate (“new” nitrogen) is high (Eppley & Peterson 1979, Malone 

I980a,b, Probyn 1985). Based upon the observed positive significant correlation between 

temperature and biomass for all size classes of phytoplankton, we assume that warm 

summer temperatures stimulated nutrient uptake and, therefore, maximum algal growth 

rates in the tidal freshwater region of the river (Table 5). Such effects of temperature on 

the uptake of N and maximum algal growth rate have also been observed by Eppley 

(1972) and Carpenter & Dunham (1985). A significant correlation between light intensity 

and phytoplankton biomass also suggests that elevated light availability may have 

contributed to the increase in biomass during summer when the water column was less 

turbid (Fig. 3, Fig. 4G). High flushing rates during winter also appear to limit 

phytoplankton growth and biomass in the tidal freshwater region, since total community 

biomass as well as that of three of its size classes were generally inversely correlated with 

river discharge rate (Table 5). Limitation of phytoplankton growth by high flushing rates 

is also documented in Section I. We observed that the contribution of pico-sized 

phytoplankton to total biomass was negatively correlated with total chlorophyll a (r2 = 

0.41, P < 0.05). Chisholm (1992) similarly observed that the percentage of small cells in 

the phytoplankton community increased as total chlorophyll a decreased. Results of 

multiple regression analysis show that the phytoplankton community as a whole and its 

subclasses, including microphytoplankton, nanophytoplankton and picophytoplankton in 

the tidal freshwater portion of the York river estuary are regulated by river discharge 

rates, temperature and light.
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Controls on phytoplankton dynamics at the transitional station (II) are more 

complex. The river-estuary transition region is the site of the turbidity maximum whose 

location and degree of mixing are controlled by the river discharge rate (Hansen &

Rattray 1965). Based on light attenuation coefficients at three stations, we have 

determined that the turbidity maximum develops during February and March (Fig. 4G. 

4H, 41). The chlorophyll a minima observed during winter corresponded with peak light 

attenuation coefficients which probably resulted from high river discharge rates (see Fig. 

4H, 7B). The effect of river flow rate on water column turbidity is supported by the 

inverse relationship between salinity and light attenuation (Fig. 4E, 4H). Thus, 

phytoplankton growth in this river-estuary transitional zone was likely limited by light 

during the cold season when river discharge rates were high. Low chkpheo ratios during 

the cold season (Fig. IOB) appear to result from the increase of detrital particles either 

due to autolysis of phytoplankton under light-limited condition or due to grazing. 

Pheopigments, which are released as egested fecal material by grazers, have been used as 

an indicator of herbivorous grazing (e.g. Welschmeyer and Lorenzen 1985. Shuman and 

Lorenzen 1975). Suspended pheopigments can also be produced within phytoplankton 

cells during senescence of phytoplankton caused by poor growth environments or 

prolonged exposure to the dark (Yentsch 1967, Daley and Brown 1973). Thus, it is 

difficult to distinguish the relative importance of grazing vs. light limitation in regulating 

phytoplankton biomass in the river-estuary transition zone. Biomass of whole and nano­

sized classes of phytoplankton was significantly correlated with chlrpheo ratios (Table 5) 

suggesting that they may be controlled by either light limitation or zooplankton grazing. 

However, it was documented in Section I that phytoplankton dynamics in the York River
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are regulated primarily by resource limitation (bottom-up control) rather than zooplankton 

grazing (top-down control) in the York River estuary.

Picoplankton biomass was significantly correlated with both PAR and 

temperature. The extraordinarily large spring bloom (close to 100 jig I'1) observed during 

April 1997 was most likely caused by a combination of increased temperature and light 

availability (Fig. 4B, 5B). High nitrite + nitrate supply by river flow also may have 

supported the observed growth of large phytoplankton (micro-sized class) (Fig. 8B).

In estuaries chlorophyll a maxima have been observed in clearer waters both 

upstream and seaward of the turbidity maximum during summer or fall and have been 

associated with removal of ammonium, nitrate, phosphate and silicate (Anderson 1986, 

Harding et al. 1986, Fisher et al. 1988). In this study the chlorophyll a maximmum was 

observed during August at the transition station (Fig. 7B, 8B), an occurrence which may 

be attributed to either more available light or nutrients remineralized from bottom water 

or sediment. Dominance of small cells such as nanoplankton during chlorophyll maxima 

suggests that phytoplankton in the transition regions rely on recycled nutrients 

(ammonium) rather than new nutrients (nitrite + nitrate) for their growth. This scenario is 

supported by low ammonium concentrations (probably due to rapid uptake by 

phytoplankton) but relatively high nitrite + nitrate concentrations observed during 

summer-fall (Fig. 5B, 5E).

Chkpheo ratios for microplankton were consistently lower in bottom than in 

surface water (Fig. 10E) compared with other size classes. Increased contributions of 

microplankton but decreased contributions of picoplankton were also observed in bottom 

water when surface chlorophyll a was at a minimum (Fig. 8B, 9B). These results suggest
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that dead cells moved from the lower estuary by tidal net upstream transport may be the 

major contributors to accumulation of phytoplankton biomass in the bottom waters of this 

station.

As discussed in the first section of this dissertation, during spring-summer 

nitrogen may limit phytoplankton growth in the mesohaline zone. During summer the 

biomass of small cells (pico- and nano-size classes) was most closely correlated with 

temperature (Table 5). High summer temperatures increase remineralization of organic 

nitrogen and phosphate in sediments (see Section I, this dissertation), thereby releasing 

ammonium and orthophosphate which can stimulate growth of small phytoplankton. The 

higher concentrations of ammonium and orthophosphate observed in bottom compared to 

surface waters in the mesohaline zone further support this contention (Fig. 5C. 51). 

Regenerated ammonium was considered as the primary nutrient source for picoplankton 

and nanoplankton production in the southern Benguela upwelling system during winter 

(Probyn 1985). In this study, nitrite + nitrate concentrations were relatively high in 

surface water during summer, especially August (Fig. 5C) but ammonium concentrations 

were low (Fig. 5F). These results suggest that small phytoplankton prefer ammonium to 

nitrite + nitrate. Recycled nutrients accumulate in bottom water, especially during 

stratification cycles, which occur primarily during neap tides in the lower York river 

(Webb and D’Elia 1980), as discussed in chapter one of this dissertation.

In the mesohaline zone, phytoplankton biomass was higher in bottom than in 

surface water, but only during winter-spring.(Fig 9C). This trend was also apparent when 

we examined EPA long-term data (Fig. 11) for WE4.2 station located at the mouth of the
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Fig. 11. Temporal distributions of chlorophyll a in the surface and bottom water at station 

WE4.2 (near the mouth of the York River estuary) from 1985 to 1994; station WE4.2 is 

one of the stations which have been monitored by EPA Chesapeake Bay Monitoring 

Program in the York River.
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York River estuary. In addition, the contribution of large ceils to total biomass increased 

while chlrpheo ratios for the large cell fraction of phytoplankton decreased throughout the 

sampling periods from summer through winter and spring (Fig. 8F; Table 4). These 

results indicate that either sinking of large-sized detrital particles from surface water or 

net upstream transports of the detrital particles in bottom water may be the mechanism 

responsible for the large accumulation of biomass in bottom water during winter in the 

mesohaline zone. Small cells have been shown to have negligible sinking rates compared 

to large cells (Takahashi & Bienfang 1983). Consequently, differences in quality (size 

structure) of phytoplankton in surface water may affect seasonal variations in total 

phytoplankton quantity (biomass) as well as size structure (quality) in bottom water. 

Considering the low biomass of picoplankton during winter-spring blooms, 

microplankton rather than aggregates of picoplankton (c.f. Gomes 1992) are likely to be 

the dominant contributors to organic carbon fluxes from surface to bottom water.

Strong correlations between large phytoplankton biomass and river discharge rates 

(Tables 8, 9) suggest that in surface water river discharge rates determine the location and 

magnitude of winter-spring blooms which, in turn, sink and contribute to high biomass in 

bottom water. The analysis of long-term EPA data in the first section of this dissertation 

similarly showed that river discharge determines both the location and magnitude of 

winter-spring blooms in the surface water of the lower estuary in the York River system. 

Based on results of regression analyses of data (Table 5) and as reported by others 

(Eppley & Peterson 1979, Malone 1980a,b, Probyn 1985), large phytoplankton cells 

(micro-sized) dominate in areas with high supply rates of new nitrogen as observed 

during winter-spring when river discharge rates are highest. However, it is difficult to
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distinguish the relative importance of in-situ production supported by riverine N input vs. 

advective transport of microphytoplankton from the upper river as a principal source for 

winter-spring blooms of microphytoplankton. The accumulated biomass in bottom water 

during winter and subsequent remineralization by benthic microorganisms are likely to 

contribute to anoxic conditions during summer. These results demonstrate that analyses 

of size structure phytoplankton dynamics are necessary to understand the response of the 

total phytoplankton population to environmental change in estuarine systems.

With respect to spatial variations, we observed that small cells tend to be more 

abundant as one moves down the estuary (Malone 1980b). Iriarte (1993) found that 

biomass in the >1 pm fraction was highest midway down the estuary and decreased both 

in landward and seaward directions. In contrast, biomass in the small sized (0.2-1 pm) 

fraction was highest at the seaward end of the estuary. A similar trend was observed for 

small size cIasses(0.2-3 pm) in Lacouture et al.’s study (1990). Observations made in this 

dissertation are similar to those of Lacouture et al. (1990); i.e. with contributions of small 

cells (nano-, pico-sized) to total biomass increasing downstream during summer and 

dominance of large cells increasing downstream during winter (Fig. 8).

In contrast to the lower estuary, rates of ammonium regeneration in the tidal 

freshwater zone are thought to be relatively low during summer due to the short residence 

time of detrital particles. This scenario is supported by the low ambient concentrations of 

ammonium and relatively high concentrations of nitrite + nitrate observed in bottom 

water of the tidal freshwater station (Fig. 5 A, 5B) during summer. The high availability 

of “new” nutrients (nitrite + nitrate) may stimulate the growth of large cells relative to
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small cells (e.g. Eppley & Peterson 1979, Malone I980a,b, Probyn 1985). More turbid 

water in the tidal freshwater zone may also favor large cells which have a lower light 

optimum than small cells (c.f. Laws 1975). Downstream ammonium concentrations 

increase and light attenuation decreases supporting growth of small cells probably due to 

their efficient light-harvesting processes (Glover et al. 1985, Fogg 1986, Kirk 1986), 

efficient nutrient uptake-phycoerythrin synthesis-photosynthesis linkages (Raven 1986), 

and low sinking rates (Takahashi & Bienfang 1983), compared to large cells. During 

winter, on the other hand, all size classes are limited by the high flushing rates in the tidal 

freshwater zone. Increased dominance of small cells during this period reflects the 

general view that the contribution of small cells to phytoplankton standing stock increases 

as total chlorophyll a decreases (e.g. Chisholm 1992). During winter, nitrite + nitrate are 

dominant in N pools in the lower estuary, supporting the growth of large rather than small 

cells in the lower estuary.

In conclusion, phytoplankton growth in the tidal freshwater zone may be limited 

by high flushing rates and regulated by light and temperature. The large contribution of 

microplankton to total phytoplankton biomass is thought to be due to the availability of 

sufficient nitrite + nitrate compared with other regions in the York River estuary. In the 

river-estuary transition zone, phytoplankton production is most likely limited by light 

availability since this region experiences a turbidity maximum during winter. 

Nanoplankton which dominate the phytoplankton community in the river-estuary 

transition zone throughout the year are most likely regulated by light. Growth of large 

cells in this zone is dependent on nitrite + nitrate input but only when light is not limiting.
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In the mesohaline zone total phytoplankton biomass follows a bimodal seasonal 

distribution with both summer and winter blooms. During summer small cells 

(picoplankton and nanoplankton) dominate, while during winter large cells 

(microplankton) dominate. This seasonal shift in size structure is thought to be due to the 

different preferences of phytoplankton size classes for “new” (nitrite + nitrate) vs. “old” 

(ammonium) nutrients in the water column. We conclude from these studies that spatial 

and seasonal variations in size structure of phytoplankton observed on the estuarine scale 

is determined both by the different preferences of micro-, nano-, and picoplankton for 

nutrients and by their different light requirements. These results further indicate that 

phytoplankton size structure in the York river estuary may be regulated primarily by 

resource limitation (bottom-up control) rather than zooplankton grazing (top-down 

control). Consequently, the present study supports the conclusions established from the 

EPA long-term data analyses on phytoplankton and nutrient dynamics and further 

demonstrates that analyses of size structure phytoplankton dynamics are necessary to 

better understand phytoplankton dynamics including the response of the total 

phytoplankton population to environmental change in estuarine systems.
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Appendix I. Ammonium (NHt*) and nitrite plus nitrate concentrations (NCV + NO3 ') at 
Stations I, II and HI in the York River estuary.

Date

NH4+ (h M ) NCV+ N O 3 (JIM)
Stations:

D epth
I n in 1 n m

Aug 8. 1996 Surface 0.90 0.65 0.48 10.3 11.5 11.6
Bottom 0.79 0.48 4.14 10.9 19.1 13.6

Aug 15 Surface 0.42 0.21 0.25 6.71 14.6 17.1
Bottom 0.53 0.53 11.5 8.07 19.7 11.2

Aug 21 Surface 1.19 0.21 0.50 5.28 2.21 10.5
Bottom 0.39 0.68 11.2 5.35 7.35 12.8

Sep 26 Surface 0.34 0.09 5.64 5.54 11.7 6.68
Bottom 0.32 0.53 7.85 5.52 12.1 4.70

Nov 11 Surface 1.96 2.06 2.69 11.7 8.74 1.16
Bottom 1.96 0.39 7.28 * 3.56 1.98

Jan 23. 1997 Surface 2.65 7.41 1.93 12.6 12.7 6.00
Bottom 2.65 7.02 2.21 11.8 22.7 4.46

Feb 20 Surface 0.73 6.68 1.05 20.1 16.9 7.14
Bottom * 4.28 2.44 * 6.16 4.16

Mar 10 Surface 2.65 6.48 1.96 16.9 13.9 5.48
Bottom * * 2.60 * 4c 4.86

Apr 7 Surface 1.18 0.83 0.71 13.0 1.24 0.20
Bottom * 0.88 2.03 * 0.00 0.16

Jun4 Surface 0.71 1.73 1.74 0.64 3.94 0.22
Bottom * 2.53 1.03 * 3.34 0.050

* : No measurement taken.
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Appendix II. Dissolved inorganic nitrogen (DIN), orthophosphate (PO 43 ) and dissolved silicate (Dsi) concentrations (mg I'1) at the 
study sites in the York River estuary.

Date

DIN (nM) PO43- (HM) Dsi (tiM)
Stations:

Depth
I II III I n m I n in

Aug 8, 1996 Surface 11.2 12.2 12.1 0.52 0.74 2.26 127 123 70.8
Bottom 11.7 19.5 17.7 0.55 0.87 0.68 127 125 45.7

Aug 15 Surface 7.13 14.8 17.3 0.82 0.97 0.61 101 120 62.4
Bottom 8.60 20.2 22.8 0.84 1.10 1.42 102 110 52.0

Aug 21 Surface 6.47 2.42 11.0 0.74 0.52 0.47 109 116 62.1
Bottom 5.74 8.03 24.0 0.71 0.58 1.39 107 no 58.7

Sep 26 Surface 5.88 11.8 12.3 0.80 0.92 0.65 140 III 52.0
Bottom 5.84 12.6 12.6 0.80 0.96 0.68 140 102 42.9

Nov 11 Surface 13.7 10.8 3.85 0.32 0.29 0.11 171 124 50.6
Bottom 13.7 3.95 9.26 * 0.14 0.28 * 104 22.6

Jan 23, 1997 Surface 15.3 20.1 7.93 0.40 0.11 0.05 160 106 36.9
Bottom 14.4 29.7 6.67 0.21 0.18 0.10 * 101 19.8

Feb 20 Surface 20.8 23.5 8.19 0.11 0.22 0.059 156 135 49.3
Bottom * 10.4 6.60 * 0.10 0.10 * 123 16.0

Mar 10 Surface 19.5 20.4 7.44 0.18 0.21 0.050 144 109 35.2
Bottom * * 7.46 * * 0.054 * 93.4 26.3

Apr 7 Surface 14.2 2.07 0.91 0.17 0.14 0.045 127 65.4 19.6
Bottom * 0.88 2.19 * 0.09 0.095 * 62.1 9.57

Jun 4 Surface 1.35 5.67 1.96 0.11 0.22 0.050 8.79 52.7 4.77
Bottom * 5.87 1.08 * 0.18 0.059 * 48.7 4.88

* : No measurement taken.
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Appendix III. Chlorophyll a (pg I'1) of size classes including whole fractions (whole), micro-size (micro), nano-size (nano) and pico- 
size (pico) classes at the sampling stations in the York River estuary (*= no measurements taken).

Whole (pg I'1) Micro ( p g l 1) Nano(pgl ‘) Pico (pg I'1)
Stations: I ii III I II III I II III I n III

Date
Aug 8, 1996

Depth
Surface 30.6 47.9 24.1 15.0 8.2 0.9 11.5 32.1 18.4 4.1 7.6 4.8
Bottom 32.5 19.1 11.1 13.8 2.6 1.9 14.4 14.1 7.9 4.3 2.4 1.3

Aug 15 Surface 24.5 23.4 25.0 9.1 3.1 0.4 12.3 16.4 17.9 3.1 3.9 6.7
Bottom 25.1 16.2 8.9 7.5 2.4 1.1 15.0 12.0 6.1 2.6 1.7 1.7

Aug 21 Surface 20.1 57.0 21.8 8.1 15.7 8.7 38.8 14.9 3.3 2.5 5.0
Bottom 23.5 48.7 8.1 8.9 14.2 1.4 12.0 32.8 5.3 2.6 1.8 1.4

Sep 26 Surface 16.0 23.7 11.8 6.8 6.2 0.8 6.7 15.1 7.6 2.5 2.4 3.4
Bottom 17.6 25.8 13.2 8.1 4.5 2.4 7.2 20.0 9.7 2.3 1.3 1.1

Nov 11 Surface 6.9 62.0 8.1 3.1 5.2 2.3 2.7 55.2 4.6 1.0 1.6 1.1
Bottom * 21.4 7.0 * 3.7 1.5 * 17.0 4.5 * 0.7 1.0

Jan 23, 1997 Surface 4.2 4.1 22.2 0.9 0.9 12.3 2.5 2.7 8.7 0.8 0.5 1.2
Bottom * 19.6 42.8 * 6.2 20.3 * 12.9 21.8 * 0.4 0.8

Feb 20 Surface 6.6 5.9 36.9 0.8 1.5 20.3 4.3 3.6 15.7 1.6 0.8 1.0
Bottom * 8.7 36.5 * 2.7 18.3 * 5.5 17.3 * 0.6 0.9

Mar 10 Surface 5.3 7.3 36.2 1.5 0.7 11.3 2.8 5.8 23.6 1.0 0.7 1.3
Bottom * 27.0 48.4 * 5.7 * 20.4 25.0 * 0.9 0.9

Apr 7 Surface 14.5 92.8 21.6 5.4 38.4 10.6 7.6 53.4 10.3 1.5 1.0 0.7
Bottom * 71.6 55.9 * 24.6 33.4 * 46.1 21.8 * 0.9 0.8

Jun 4 Surface 21.2 18.7 17.9 5.3 4.9 9.1 13.5 11.9 8.1 2.4 1.9 0.8
Bottom 14.7 21.2 * 4.0 10.4 * 9.8 9.8 * 0.9 1.0
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ABSTRACT

An ecosystem model was developed to investigate mechanisms controlling the 

size-structured phytoplankton dynamics in the mesohaline zone of the York River 

estuary. The model included 12 state variables in a unit volume (m3) describing the 

distribution of carbon and nutrients (nitrogen, phosphorus) in the surface mixed layer.

The state variables consisted of autotrophs including pico-, nano-, and micro­

phytoplankton; heterotrophs including bacteria, flagellates + ciliates, microzooplankton, 

and mesozooplankton; the nutrients nitrite + nitrate, ammonium, and orthophosphate as 

well as dissolved organic carbon (DOC), and particulate organic carbon (POC). 

Groupings of autotrophs and heterotrophs were based on ceil size and ecological 

hierarchy; mixotrophy was not considered. Forcing functions included incident radiation, 

temperature, wind stress, mean flow and tide which includes advective transport and 

turbulent mixing. The ecosystem model was developed in Fortran90 using differential 

equations that were solved using the 4th order Runge-Kutta technique. Model results 

supported the general view that phytoplankton dynamics are controlled by abiotic 

mechanisms (i.e. bottom-up control) rather than biotic, trophic interactions in the York 

River estuary. Larger, mesozooplankton appear to be controlled by top-down 

mechanisms. Model sensitivity tests showed that small cells (pico-, nano-sized) are more 

likely regulated by temperature and light whereas large cells (micro-sized) are regulated 

by physical processes such as advection and tidal mixing. Microphytoplankton blooms
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during winter-spring resulted from a combination of longitudinal advection and vertical 

diffusion of phytoplankton cells rather than in-situ production.
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INTRODUCTION

Phytoplankton dynamics in aquatic environments may be regulated by abiotic 

mechanisms; nutrient fluxes related to physical-chemical variability, i.e., bottom-up 

control and biotic; trophic interactions, i.e., top-down control. (Carpenter et al. 1987; Day 

et al. 1989; Alpine and Cloem 1992; Kivi et al. 1993; Armstrong 1994; Caraco et al. 

1997). There has been continuing controversy and debate over the relative importance of 

bottom-up vs. top-down controls and established concepts of resource competition 

(Tilman 1982) and trophic cascade (Carpenter et al. 1985) for many years. In estuaries, 

these controlling mechanisms interact with phytoplankton in complicated ways, mainly 

due to freshwater and tidal energy inputs into the system (Alpine and Cloem 1992; 

Pennock and Sharp 1994; Cloem 1996). Temporal variations in river discharge to an 

estuary can affect phytoplankton production, biomass accumulation and size structure or 

taxon composition through several processes: I. altering inputs of nutrients from the 

surrounding watershed; 2. altering light availability by way of estuarine gravitational 

circulation, stratification, and changing the turbidity maximum zone along the estuary; 3. 

altering rates of dilution or advection of phytoplankton; and, 4. altering the amount of 

detrital or suspended organic matter supporting heterotrophs in an estuarine system (e.g. 

Malone and Chervin 1979; Malone et al. 1980; Cloem et al. 1983; Pennock 1985; Malone 

et al. 1988; Gallegos et al. 1992; Madariaga et al. 1992; Boyer et al. 1993). While 

seasonal and interannual fluctuations in river discharge produce low-frequency
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oscillations in the phytoplankton population, variations in tides (tidal mixing) result in 

high-frequency oscillations (Haas 1975; Ray et al. 1989; Aksnes and Lie 1990; Cloem 

1991).

In previous sections of this dissertation, phytoplankton and nutrient dynamics 

were investigated by analyzing EPA long-term monitoring data and summarizing the 

results of an annual sampling program in the York River estuary, Virginia. The studies 

presented general spatio-temporal characteristics of phytoplankton biomass and size 

structure. Several conclusions on the potential controlling factors were indicated from 

the results but it was difficult to identify the major controlling factors for phytoplankton 

due to the complexity of interactions between phytoplankton and other plankton, and 

between phytoplankton and the variable physical-chemical environment.

For several decades, simulation models have been used to explore plankton 

dynamics in aquatic systems due to their ability to integrate and synthesize a tremendous 

array of information. Models have been used to describe interactions between various 

components of the plankton community and their physical-chemical environments which 

would be difficult otherwise due to the complexity of the interactions. In this regard, the 

objectives of this study were to 1. develop an ecosystem model focusing on size- 

structured plankton dynamics which would integrate the EPA long-term data base and the 

annual sampling data, and 2. investigate major mechanisms controlling size-fractionated 

phytoplankton and nutrient dynamics in mesohaline zone of the York River estuary, 

Virginia. The hypotheses established in Section I and II of this dissertation were further 

examined by the ecosystem modeling analyses.
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MATERIALS AND METHODS

Area o f model application

The York River estuarine system, a subestuary of the Chesapeake Bay, is 

composed of three rivers, i.e. the York, Pamunkey, and Mattaponi (Fig. 1). The York 

River is formed by the confluence of the Pamunkey and Mattaponi rivers at West Point 

(48 km from its mouth). Total average freshwater discharge to the river system is 70 m3 

sec'1 (Hyer 1977). Salinity distribution in the York River system is affected by the 

interaction of freshwater, salt water, tidal energy and wind. Salinity gradients between 

the surface and bottom layers are influenced by neap and spring tidal cycles with 

destratification of the water column occuring at high spring tides and stratification 

developing during the intervening periods (Haas 1975). The area of model application is 

located in the mesohaline zone, 13 km from mouth of the York River estuary (Fig. 1). 

Average water depth is 16.7 m and salinity ranged from 12.0 to 17.5 in surface water and 

from 16.0 to 22.2 in bottom water during the period of August 1996 to June 1997.

Model Description

I. General Conceptual Structure of the Model

The conceptual ecosystem model includes 12 state variables for describing the 

distribution of carbon and nutrients in the surface mixed-layer of the mesohaline zone in 

the York River estuary (Fig. 2). The state variables consist of autotrophs including pico- 

(<3 (im), nano- (>3 and <20 pm), and micro-phytoplankton (>20 |im); heterotrophs 

including bacteria, flagellates+ciliates, microzooplankton (>70 and <202 (im), and
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Fig. 1. Study site is located in the mesohaline zone of the York River estuarine system. 

Water samples were collected at the site (Station IH) over an annual cycle.
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Fig. 2. Diagram describing biological and chemical processes coupled with forcing 

functions in the model of the York River system. Odum’s symbols (1983) were used for 

this diagram.
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mesozooplankton (>202 (im); the nutrients NCV+ NO3', NTLt*, and PO4"3, and non-living 

organic materials, DOC, and POC. Groupings of autotrophs and heterotrophs are based 

on cell size and ecological hierarchy; mixotrophy was not considered in the model.

Forcing functions include incident radiation, temperature, tide, wind stress, and 

mean flow. Incident radiation and temperature were estimated using empirical equations 

for Gloucester Point, VA (Wetzel and Meyers, 1994). Salinity and wind stress data were 

collected by the Virginia Institute of Marine Science at Gloucester Point. VA. Daily river 

discharge rates at the fall line were collected by US Geological. The surface boundary 

condition is specified by a zero flux condition for all state variables at the atmosphere- 

water interface. Vertical transport by advection and diffusion, sinking for organisms, and 

fluxes for nutrients were incorporated into the model as the bottom boundary condition, 

in which the flux of organisms and nutrients was specified by vertical exchange or 

sinking rate times biomass and nutrient flux from bottom water respectively. Chlorophyll 

a and nutrients collected from bottom water over an annual cycle and presented in 

Section II of this dissertation were used as input data for the bottom boundary condition. 

The model was developed in Fortran90 (Microsoft* Fortran Power Station) and 

differential equations were solved using the 4th order Runge-Kutta technique.

Table 1 gives the variable names, symbols and units for the forcing functions, 

state variables and boundary conditions used in the model.

2. Mathematical Structure for Hydrodynamic Processes

The tidally averaged-model was simulated for plankton dynamics in the surface 

mixed-layer of the mesohaline zone in the York River system (Fig. 3). The surface
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Table 1. Forcing functions, state variables and boundary conditions (t = time) used in the 
ecosystem simulation model.

Variable Symbol Unit

Forcing (or driving) variables:
Incident radiation I(t) Ein d '1
Temperature T(t) °C
Salinity S(t) psu
Wind Uidt) cm s '1
Flow Q(t) m3 s’1

State Variables (components)
Picophytoplankton PP(t) mg Chi m‘
Nanophytoplankton NP(t) mg Chi m 3
Microphytoplankton MP(t) mg Chi m 3
Heterotrophic Bacteria HB(t) g C m'3
Heterotrophic Flagellates+Ciliates HFC(t) g C m'3
Microzooplankton Zl(t) g C m'3
Mesozooplankton Z2(t) g C m'3
Particulate Organic Carbon POC(t) gC m "3
Dissolved Organic Carbon DOC(t) g C m'3
Ammonium Nl(t) jiM
Nitite+Nitrate N2(t) pM
Orthophosphate P(t) |iM

Boundary Specifications:
Fluxes of state variables = 0 at Symbols of all state variables Same as the unit
interface of atmosphere-surface 
water. Fluxes = Sinking, vertical 
exchange at interface of surface 
mixed-layer and bottom layer, and 
flows = inflow (Q in )  and outflow 
(Q out) of surface layer

with time function described above
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Fig. 3. Schematic representation of net transport in an estuarine system (A) and geometric 

structure of the ecosystem model developed in this study (B). The surface mixed-layer 

depth, Ziwas determined by an empirical equation for the York River (Hayward et al. 

1986).
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mixed-layer depth, zi was determined by an empirical equation derived for the York 

River estuary by Hayward (1986) as Equation L

z, = exp(3.0666- 0.06064 SS0652*), ( 1)

where, 5S is the salinity difference between the surface and bottom waters. SS (Equation 

2) was calculated as the top half of a sine wave (e.g. Eldridge and Sieracki 1993):

SS = a sin ( 2)
V /

where, a is an amplitude of 5 ppt and X is a wavelength of 28 days.

Table 2 presents the differential equations for the state variables and the symbols 

employed are given in Table 3. As described in Table 2, every state variable is affected 

by advective transport and turbulent mixing. Longitudinal transport in the surface mixed- 

layer is determined by the residual velocities ( m s 1) of incoming ((?,) and outgoing river 

flows (Q„) through the layer as shown in the second terms on the left hand side of the 

equations. The river flow (Q{) entering section n (Fig. 3) is estimated by a function of 

surface salinity (55„./, psu) and bottom salinity (65„./, psu) of section n-l and vertically 

averaged river discharge rate (R D „ m3s'1) through the water column in section n as 

Equation 3 (Prichard 1965). The river flow (Q„) leaving section n (Equation 4) is also 

estimated by a function of surface salinity (SSn+i, psu) and bottom salinity (BSn+1, psu) of 

ection n+I and vertically averaged river flow (RDn+/, m V 1) in section n+I.
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Table 2. The differential equations employed for the state variables. The symbols are 
described in Table 3.

(1) Picophytoplankton
dPP duPP dwPP d ~.dPP n o r  S' o  n crr*  \ +--------+--------=— D------+PP(G-R-H FCG z-r - r  - r )
dt dx dz dz dz m a  1

(2) Nanophytoplankton
dNP duNP dwNP d n BNP D +--------+---------=— D-------N P(G -R -ZIG z~r - r  - r )

dt dx dz dz dz m a  '
(3) Microphytoplankton

dMP duMP dwMP d n  dMP /tears' o  -nr- \ +--------+--------=— D--------+M P(G-R-Z2G z-r - r  - r )
dt dx dz dz dz m “ '

(4) Heterotrophic Bacteria
dHB duHB dwHB d n dHB +--------+•---------=— D-------+HB{G-R-HFCGz~r )

dt dx dz dz dz m
(5) Heterotrophic Flagellates + Ciliates

dHFC duHFC dwHFC d „ dHFC u Cnrr, D 7)  ̂ , e e &--------— - - - D - ^ - r H F a G - R - Z l G z - W J H F G z - r J

(6) Microzooplankton
dZI duZl dwZI d n dZl -ju r' a -77/-' t t  f  iV;/- \
I T ' —*-----

(7) Mesozooplankton
dZ2 duZ2 dwZ2 d r tdZ2 a -y-,., ,c e * +------+---------=— D---+Z2(G-R -Z2M -(f + fJZ 2G z~r)
dt dx dz dz dz * *

(8) Particulate Organic Carbon
dPOC duPOC dwPOC d n dPOC ,, e v u c r  u u r r  71 7 i r  77 77n  \  ----------+-----------=— D--------I f  +fJ{HFC-HFCGz^Zl-ZlGz+Z2'Z2Gz)

dt dx dz dz dz
-rJ P P  *NP +MP -HB -HFC-ZJ -Z2)-POC{rr r J

(9) Dissolved Organic Carbon
dPOC + duDOC ̂  dwPOC = d_Q dDOC + {pp+N p +MP) +riPOC-HB-G 

dt dx dz dz dz
(10) Ammonium

dNI_ +duN]_ . dwNl_ = d_D dNJ_ _N fr  ̂̂ HB.R +HFC.R +ZI.R +Z2-R)-PR(PP-G -NP-G-MP-G) | //rv 
dt dx dz dz dz

(11) Nitrite * Nitrate
—  -NIT-DENIT-(I -PR)(PP-G-N P-G-M PG)lfcw

dt dx dz dz dz
(12) Orthophosphate

diP^duP ̂ avvP=_a_D8P HHB.R rH FC-R-Z1R-Z2R-PP-G -N P G-M P-G)/frp  
dt dx dz dz dz
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Table 3. Symbols and units of physical, biological and chemical processes incorporated 
in the model.

Physical and biochemical Processes Symbol Unit

Residual velocity in X. Z direction u , w m s '
Diffusion coefficient D m2 s '
Picophytoplankton:

Gross production P P G ( t ) g C m ' d '1
Respiration P P R ( t ) g C m ' d_l

Nanophytoplankon:
Gross production i V P G ( t ) g C m '  d 1
Respiration N P R ( t ) g C m ' d ' 1

Microphytoplankon:
Gross production M P G ( t ) g C m ' d '1
Respiration M P R ( t ) g C m ' d ’1

Grazing by heterotrophic flagellates+ciliates H F C G z ( t ) g C m ’ d '1
Grazing by microzoopiankton Z I G z U ) g C m ' d '1
Grazing by mesozooplankton Z 2 G z ( t ) g C m 1 d '1
Sinking rate of phytoplankton r , m d '1
Exudation rate of phytoplankton r , x d '1
Mortality rate of auto- and heterotrophs r m d '1
Heterotrophic Bacteria

Gross production H B G ( t ) mg C m ' d '1
Respiration H B R ( t ) mg C m d’1
Excretion f c  v o r  f c  p H B R ( 1 1 mg N or P m ' d '1

Heterotrophic Flagellate
Gross production H F C G ( t ) mg C m ■’ d '1
Respiration H F C R ( t ) mg C m ’ d '1
Excretion f c . x  o r  f c  p H F C R ( t ) mg N or P m ’ d '1

Microzoopiankton
Gross production Z I G ( t ) mg C m ’ d '1
Respiration Z I R ( t ) mg C m ’ d_i
Excretion f c . X  o r  f c : p Z l R ( t ) mg N or P m ’ d '1

Mesozooplankton
Gross production Z 2 G ( 0 mg C m ’ d‘‘
Respiration Z 2 R ( t ) mg C m ’ d '1
Excretion f c .  x  o r  f c .  p Z 2 R (  t ) mg N or P m 1 d-1
Grazing by fish Z 2 M mg C m ’ d '1

C:N and C:P ratios f c . x ,  f c . P unitless
Fraction of egestion by grazers f x unitless
Fraction of sloppy feeding by grazers f t unitless
Leaching rate of POC n d '1
Grazing loss rate of POC n o d’1
Nitrification N I T ( t ) g N m ' d"1
Denitrification D E N I T U ) g N m d '1
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(3)

(4)

and

The surface and bottom salinities in the sections n-1 and n+I were estimated 

based on 20 years data for the York River estuary (Wojcik 1981). Vertically averaged 

river discharge rates in section n-1 were predicted by running a l-D hydrodynamic model 

developed by J. Shen at Virginia Institute of Marine Science under 6 different river 

discharge rates at the fall line of the York River system. In order to account for effects of 

river discharge rates at the fall line (RDp), the vertically averaged river discharge rates in 

section n-l (Equation 5) were predicted by using the correlation (r2 = 0.98) between the 

prediction and river discharge rate at fall line (RDfi) as input data in the hydrodynamic 

model. The vertically averaged river discharge rate in section n-1 was assumed to equal 

that in section n+I.

Vertical advection is governed by the upward velocity (w) in the vertical axis (-) 

as shown in the third terms on the left hand side of the equations. The upward velocity

RDn.i = I.384RDfj+2.62 (5)

was determined by dividing the interface area (m2) between surface mixed and bottom 

layers into the upward flow (Qup, m V 1) which is determined by subtracting outgoing 

flow (Qa) from incoming flow (£?,) (see Fig. 2).
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Turbulent mixing is governed by the empirical equation for the diffusion 

coefficient (D) in Equation 6 (Denman and Gargett 1983).

D = 0 .25eA T 2 (6)

The rate of dissipation of turbulent kinetic energy, e is expressed as Equation 7 

and the buoyancy frequency, N2 (s'1 = radians s'1) as Equation 8, where o> is turbulent 

frictional velocity ( m s 1), K is von Karman's constant, zi, Zz are water depths of surface 

and bottom layers, m» is bed shear velocity (0.01 m s '1), g is the acceleration due to 

gravity, pw is the density of water, 9p/9z is the vertical density gradient. In order to take 

into account the effects of bottom friction, u* (bed shear velocity) was incorporated into 

the equation employed by Denman and Gargett (1983) and typical values (i.e. 0.01 m s’1) 

provided by Dr. S. Kim at VIMS were chosen for model simulation.

3 3co. u.
e = ---- + -----  (7)

KT, KZz

N ‘ ( 8 )
Pw dz

The turbulent frictional velocity, <o» (Equation 9), is a funtion of windstress (T), 

air and water densities (p«=1.2 kg m '\ pw, respectively), a drag coefficient (C/o, l-3x 

10‘3), and the mean windspeed 10 m above the sea surface (Urn). Water densities are 

determined by Equation 10, where k is a constant, 7.5x1 O'4, and S is salinity (Hamilton 

1977).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

0) .  =
PgC 1 0 ^ 1 0  

P»
(9)

where

Pw = pa(l + kS) ( 10)

3. Mathematical Structure for Biological and Chemical Processes 

Phytoplankton population densities are determined by advective transport, 

turbulent mixing, gross growth rate, respiration rate, sinking rate, mortality (senescence) 

rate, exudation rate, and grazing rate by herbivores (Table 2). Gross growth, G (Equation 

11) is limited by light and nutrients acting on the potential maximum growth rate, which 

is itself dependent on body size and temperature.

Moloney and Field (1989) presented a significant relationship between body mass (pg C) 

and maximal nutrient uptake rates of phytoplankton (Equation 12). The effect of 

temperature on the maximal growth rates is also considered since Eppley (1972) 

documented that there is a significant relationship between temperature and an upper 

physiological limit to phytoplankton growth in conditions where neither light nor nutrient 

were in limited supply. The temperature effect is modeled as a function of the surface 

water temperature , T(t) and a constant kcai was defined as a calibration parameter.

G -  Gm ■Ltlim -Ntlim ( 1 1 )
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( 12)

Light limitation is determined by f  kd, z, Im and /„ as shown in Equation 13 

(DiToro et al. 1971), where / i s  the photoperiod as a fraction of a day (e.g., 0.5 at the

incident average and optimal light (Ein/day), respectively. Light attenuation (kd) was 

measured over an annual cycle and used as input data. Daily kd values were interpolated 

based on the field data. /„ can differ between size classes of phytoplankton and was 

determined in the process of calibration for the York River ecosystem model.

Nutrient limitation is detemined using the Monod (1942) model (Equation 14). 

Equation 15 gives the derivation for the half saturation constant for each limiting nutrient. 

The half saturation constant (KN) for nitrogen is calculated using Moloney and Field 

(1991) equations based on cell mean size (biovolume, pm3) which can be converted to 

cell mass (M, C pg ). KP is determined by dividing K \ by the N:P ratio.

equinoxes), kd is the light attenuation coefficient (m '1), zi is the depth (m), /,„ and /„ are

/ N  PNtLim = Min
K s + N '  Kp + P

(14)

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

K „ = 2 M 0J*. (15)
N : P

Estimation of respiration is based on an empirical equation, a function of surface 

water temperature (T(t)) and phytoplankton gross growth (G) as given in Equation 16 

(Biebl and McRoy 1971).

R = 0.5[0.5G(0.0104T(t)+0.3432)+ein,37nT<!hiom}] (16)

Sinking rates of primary producers are determined by allometric relationships 

(Moloney and Field 1989), as 0.029M042. Mortality (senescence) rate (rm) and a constant 

fraction of DOC release (cf. Malone and Duckiow 1990) by phytoplankton (exudation 

rate, rex) were determined by model calibration since equations or kinetics for the 

processes have not well established.

Grazing by herbivores is based on an empirical, ceil size relationship between 

grazer and prey, and a prey density function (given below). It is assumed that 

heterotrophs feed only on prey within a size range from 10 to 100 times smaller than 

themselves. The mathematical equations employed to describe the relationships are 

based on nonlinear, donor- and recipient-controlled feedback equations developed by 

Wiegert (1973) and applied by Wiegert and Wetzel (1979) and Wetzel and Christian 

(1984). Trophic interactions between prey (or resouce, /) and predator (or recipient, j)  are 

regulated by feedback terms composed of four density related parameters: Ay, the 

resource (donor) density or concentration below which uptake by the recipient is limited;
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Gjj, the resource density or concentration at which the donor resource is not available to 

the recipient population; A ,̂ the recipient density or concentration above which uptake of 

a resource is less than maximum (limited); Gjj, the maximum maintainable recipient 

density or concentration for a population when other resources are not limiting. It was 

assumed that the observed range in population densities during the sampling over an 

annual cycle included threshold and limit levels of each compartment in the ecosystem 

model of the York River model. Donor-controlled (/£>,,) and recipient-controlled 

feedback ifbjj) terms were determined by standing stocks of donor (X,) and recipient (Xj) 

compartments, and the density parameters (Equation 17).

t X - G ,  
A/ ~ G„ fl>u =

X,~Au
Gu ~ Au

(17)

The feedback terms are constrained to range from 0 to I (maximum feedback 

control) and are dimensionless.

The recipient-controlled feedback must be corrected to allow for uptake or 

consumption of a population at maximum density such that uptake or consumption by the 

recipient from donor compartment meets metabolic losses. The metabolic correction 

term (C,7) accounts for respiration (/?*«), egestion (feg) and sloppy feeding (f,f) of grazers 

as in Equation 18, where Gzm is the maximum grazing rate (explained below).

C,. = 1------------ % ----------  (18)
< * * [ 1 - ( /* + / , ) ]

The correction term is incorporated into the total multiplicative feedback terms, TFij, 

combining both donor- and recipient-controlled controls as Equation 19, where fbjj' is
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prime values offb^, and determined as l-fbjj. Nomenclatures i and j  follow the numbers 

of state variables shown in Table 2 in the description of energy flow below where “i” is 

the donor and “j” is the recipient compartments respectively.

TFtj = I - tfbij '(I - fb jj • Cij)l (19)

Heterotrophic bacterial production is determined by gross growth, respiration, and 

grazing (Table 2). Bacterial growth (Gb) was a function of bacterial maximum growth 

rates (Gm), bacterial density (X4) and total multiplicative feedback control (TF,,) on DOC 

uptake by bacteria;

Gb — Gvtb-X4-(l -  TFij) (20)

where Gm  was derived as for phytoplankton growth maximum rate (Equation 12). 

Respiration rate (Equation 21) is estimated by a function of basal respiration (brb. 0.3d'1), 

bacterial density, recipient-controlled feedback term (fbij) and a fraction (40%) of 

bacterial gross growth, Gb (see Eldridge and Sieracki, 1993).

Rb — brb 'Xjfbjj + 0.4Gb (21)

The “assimilation efficiency” of bacteria is assumed to be 100%.

The other heterotrophs represented in the model have a similar structure for 

controlling factors: advective transport, turbulent mixing, gross growth, grazing by 

higher-level consumers, respiration, egestion and sloppy feeding. Gross growth, Gi,et 

(Equation 22) is determined by a function of flux preference (TPtJ), maximum grazing
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rate (Gzm), predator compartments (Xj), and total multiplicative feedback (TF,/) on energy 

flow from prey to grazer or predator.

Ghet = TP,j-Gzm'Xj(I  -  TF.;) (22)

Gzm was determined by cell size of each size class; 63M\ie, ~t> 25 and TP,, is a function of 

feeding preference (P,,), flux preference value (PD,) and the donor-controlled feedback 

term (fbti) as Equation 23.

TPli = P,r PDj (l - fb i}) (23)

Feeding preference was considered since each predator has two classes of potential prey 

(autotrophs vs. heterotrophs) as shown in Fig. 3.

Respiration of grazers (/?/,«) is estimated by a function of basal respiration rate 

(bnie[, 0.4 d '1), grazer density (X,), recipient-controlled feedback of the grazer-predator 

(fbjj) and fraction (30%) of gross growth (Ghet)of grazer-predator (Equation 24)

Rhe> = bri,et - Xj-fbjj + 0.3 Ghe, (24)

Grazers egest a proportion of ingested matter as faeces as well as respiration;

10 % of ingestion is assumed to be egested as faeces (c.f. Barthel 1983, Miller and 

Landry 1984).

POC dynamics were determined by inputs from advective transport, turbulent 

mixing, mortality (senescence) rate of plankton, egestion rate of grazers, rate of sloppy 

feeding and losses due to leaching rate of POC and uptake by higher-level consumers
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(Table 2). Sloppy feeding and grazing loss to zooplankton were defined as calibration 

parameters.

DOC concentrations were regulated by advective transports, turbulent mixing, 

exudation of phytoplankton, lysis of POC (leaching) and uptake by bacteria. Leaching 

rate was determined by calibrations within the range of literature values.

Ambient nutrient concentrations are determined by advective transport, turbulent 

diffusion and phytoplankton uptake rates and excretion rates of heterotrophs, as shown in 

Table 2. Uptake rates of nutrients by phytoplankton are calculated by dividing gross 

growth rates (G) by C:nutrient ratios; GiC:Nt)''. Assuming that phytoplankton prefer 

ammonium (NFLt"1") as their source of N, the preference (PR) was determined as a 

function of concentrations of ammonium (NH4) and nitrite + nitrate (NOx) concentrations 

and the half saturation constant (AT,V) for nitrogen (Equation 25).

 +  E i E d J i   <25)
< t f , + [ / W U ) ( K v + [ W , ] )  < [ A W 4 ] +  [ A f O , ] ) < A r v + [ A J O J )

Excretion rates of heterotrophs are determined by respiration rates (Ri,et) and 

C:nutrient ratios; R^iC .-N t)'1. For the nitrogen pool, it was assumed that heterotrophs 

only excrete ammonium; however, nitrification of ammonium is a source for 

nitrite+nitrate, as well as input through turbulent mixing. Nitrification (NIT) was 

determined by a temperature-dependent mechanism as in Equation 26 (Jaworski et al. 

1972), where the time is I day, k, is k2o <temp' 2°\ where k2o = nitrification rate at 20 C 

(0.068 d a y 1), 9 = constant for temperature adjustment of nitrification rate (1.188).
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NTT = [NH ^] -exp(k, -time) (26)

Denitrification was assumed to be 10 % of nitrite+nitrate concentrations.

Model Validation and Sensitivity Analysis

Field data collected over an annual cycle (Section II) were used as validation data 

for the three size- structured phytoplankton populations and for nutrients. Bacterial 

abundance and DOC data collected (Aug. 96 -  May 97) by G. Shultz at VTMS were used 

for model validation. The bacterial data were collected from a site close to the region of 

this study. In order to convert bacterial abundance to bacterial biomass, a conversion 

factor of 50 fg C |±m'3 was used (Fagerbakke et ai. 1996). Field data were not available 

for validation of heterotrophic flagellate + ciliate densities. The data for only 

heterotrophic flagellate densities collected by Kindler (1991) were used for the 

validation. EPA monitoring data collected at the station (WE4.2) nearby the mouth of the 

York River were used for model validation of micro- and meso-zooplankton.

Abundances of these heterotrophs were converted to biomass using the conversion 

factors of 9.3 ng cell'1 for microzoopiankton and 9.3 |ig cell'1 for mesozooplankton 

(Moloney and Field 1991). POC data (May 1995 to March 1996) collected at the mouth 

of the York River by Dr. E. Canuel (VIMS) were used as validation data for POC 

concentrations.
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Sensitivity analysis was performed to examine how sensitive model output was to 

specified changes in parameter values. Hypotheses proposed in the previous sections 

(Section I and H) were examined in the process of sensitivity analysis for the coefficients 

related to, or values of, parameters hypothesized to be major controlling factors on 

phytoplankton dynamics in the York River system after model calibration and validation. 

Each parameter was changed by ±20% in individual runs. Model sensitivity was 

estimated as the root mean square deviation (RMS) between the daily values of state 

variables from nominal model runs (A/*) and the outputs from sensitivity runs (S*) for 3 

year simulations (n = 1095 days) and was computed as Equation 27.

In order to determine the effects of parameter variation, the percent change in outputs 

was calculated based on comparison between RMS and the means of each state variable 

for the nominal runs.

Model Validation

1. Forcing Variables

Comparison of model predictions and field data for the principal forcing variables 

show generally good agreement although variation in mean daily irradiance was

(27)

RESULTS
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especially prominent and not captured by the model (Fig. 4). Field data for mean daily 

irradiance and surface temperature were collected at VIMS, Gloucester Point, VA. 

Salinity difference between surface and bottom waters was calculated from EPA 

monitoring data (station WE4.2) collected from June 1994 to October 1994. The 

equation for salinity difference used in this model was previously verified based on field 

data (June-September, 1985) by Eldridge and Sieracki (1993).

2. State Variables

The plankton ecosystem model was simulated for 3 years and model predictions 

of state variable concentrations for the third year were used for validation. The simulated 

state variables for nominal model runs were compared to field measurements. Good 

agreement was generally shown in terms of range and temporal distributions (Fig. 5 and 

6) Model output for total chlorophyll generally followed field data except for peaks 

during February and March (Fig. 5A). Simulated microphytoplankton densities matched 

very closely field observations (Fig. 5B). For nanophytoplankton, simulation output was 

similar to that of field concentrations except for the peak during January and February 

(Fig. 5C). Simulated picophytoplankton concentrations generally followed the pattern of 

field measurement (Fig. 5D).

Modeled heterotrophic bacterial biomass in a unit volume (m3) was close to that 

of measured bacterial biomass (Fig. 5E). Minimum concentrations during winter 

predicted by the model corresponded to field observations. It is difficult to validate 

simulated heterotrophic flagellate + ciliate biomass since few data for the protozoan 

biomass were available for the York River. However, the range of predicted protozoan
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Fig. 4. Comparison of predicted values by the model to field data for surface daily PAR 

(A) and temperature (B) collected at VIMS, Gloucester Point, Virginia from August 1996 

to July 1997. Salinity difference between surface and bottom waters was calculated from 

EPA monitoring data (Station WE4.2) collected from June 1994 to October 1994.
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Fig. 5. Validation results for size fractionated chlorophyll a (total, micro, nano and pico) 

and heterotrophic bacteria, heterotrophic flagellate + ciliate in the mesohaline zone of the 

York River estuarine system. Field chlorophyll a data were collected from August 1996 

to June 1997. Heterotrophic bacteria data were collected by Gary Schultz (VTMS) and 

flagellate biomass (Kindler, 1991) alone is shown in Fig. 5F. EPA monitoring data were 

used for micro- and meso-zooplankton biomass.
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Fig. 6. Validation results for particulate organic carbon (POC), dissolved organic carbon 

(DOC) and nutrients (dissolved inorganic nitrogen, ammonium, nitrite+nitrate and 

orthophosphate) in the mesohaline zone of the York River estuarine system. POC was 

collected from May 1995 to March 1996 by Elizabeth Canuel and DOC collected by 

Gary Schultz (VIMS). Field nutrient data were also used (Sin et al. 1998).
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biomass (Fig. 5F) was within that of heterotrophic flagellate biomass alone measured by 

Kindler (1991) although there is a possibility that the model underestimated the 

protozoan biomass. Simulated concentrations of microzooplankton were distributed 

within the range of measured concentrations which fluctuated greatly over the annual 

cycle (Fig. 5G). The ecosystem model did not simulate the peak of mesozooplankton 

concentrations during December but the range was similar to field concentrations (Fig. 

5H).

As for protozoan biomass, it was difficult to validate POC concentrations since 

few data were available for comparison but it appears that the model underestimates York 

River concentrations based on several field data points (Fig. 6A). Measured DOC 

concentration did not vary greatly over an annual cycle whereas simulated DOC 

concentrations revealed a seasonal pattern; low concentrations during the warm season 

and high during the cold season (Fig. 6B). Modeled dissolved inorganic nitrogen (DIN), 

ammonium, and nitrate + nitrite concentrations showed good agreement with field data 

(Fig. 6C, 6D, 6E). The pattern of the simulated orthophosphate concentrations generally 

followed measured concentrations except the observed August 1996 peak (Fig. 6F). In 

general, model results for nutrients fluctuated greatly with a frequency less than a month 

which was not captured in field data.

Model Sensitivity Analysis

I. Model Sensitivity: parameter variation

To investigate potential mechanisms determining plankton dynamics in the 

model, a parameter was considered as ‘sensitive parameter’ related to controlling factors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

for a state variable if a 20 % change in the parameter produced >10 % change in 3 years 

average concentration of the state variable relative to the nominal run.

Tables 4 and 5 present RMS of sensitivity runs for ±20 % change in selected 

parameters and the % change of average state variable. Most state variables generally 

were not sensitive to this range in parameter values except for mesozooplankton, X(7).

Picophytoplankton, X(I) was marginally sensitive to changes in certain parameter 

values demonstrating a range of 3 to 5 % change in average concentrations relative to the 

nominal model run (Table 4). Nanophytoplankton. X(2) were generally insensitive to 

changes in parameters related to metabolic processes although they appeared sensitive to 

a change in cell size, xM(2); % change = 10 %. In contrast to small cells, large cells 

(microphytoplankton, X(3)) were sensitive to change in cell size, xM(3) and bed shear 

velocity (shrvel) exhibiting 14 and 12 % change in average concentration respectively.

Heterotrophic bacteria. X(4) and protozoa (flagellate+cilate, X(5)) were 

insensitive to changes in parameters (Table 4) having changes less than 2 %. 

Microzooplankton, X(6) responded to change in bed shear velocity (shrvel) as 

microphytoplankton did. Changes in mortality, sloppy feeding and egestion rates showed 

% changes close to 10 % whereas change in cell size, hetM(3) resulted in a minor change 

in concentration. Unlike other heterotrophs, mesozooplankton were highly sensitive to 

each parameter tested. They showed high sensitivity (>20 %) to loss terms such as 

mortality (rm(7)), sloppy feeding (fsf(3)), egestion {eg(3)), and loss to higher consumers 

(Z2M). Change in cell size also produced changes close to 20 %.

POC was sensitive to changes in the loss term, leaching rate (r/) but not to 

changes in the loss rate (rlo) by grazing or to bed shear velocity (Table 5). DOC was
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Table 4. The results of sensitivity analyses (±20 % change in parameter values) for 
biological components in the York River ecosystem model. Symbols for state variables 
and parameters are also given in Appendix I; % changes >10 % marked by *.

State Variable Parameter -20 % +20 % Average RMS % Change

X (l): xlo( 1): optimum light (I„) 0.21 0.13 0.17 4.4
Picophytoplankton xM< I ): cell mass (M) 0.14 0.15 0.15 3.7

rm( I ): mortality rate (r„) 0.18 0.24 0.21 5.3
rex(I): exudation rate (rrJ 0.18 0.24 0.21 5.3
pij( I): grazer preference (Pij) 0.11 0.13 0.12 3.1

shrvel: bed shear velocity (u.) 0.12 0.13 0.13 3.2

X(2): xlo(2): optimum light (I„) 0.13 0.15 0.14 1.2
Nanophytoplankton xM(2): cell mass (M) 1.26 0.86 1.06 9.0

rm(2): mortality rate (rm) 0.04 0.06 0.05 0.5
rex(2): exudation rate <rrx) 0.06 0.08 0.07 0.6

pij(2): grazer preference (pt;) 0.35 0.23 0.29 2.5
shrvel: bed shear velocity (u.j 0.43 0.07 0.25 2.1

X<3): x!o(3): optimum light (l„) 0.11 0.08 0.09 1.3
Microphytoplankton xM<3): cell mass (M) 1.96 0.08 1.02 14.5’

rm(3): mortality rate (rm) 0.45 0.41 0.43 6.1

rex(3): exudation rate (r„) 0.45 0.41 0.43 6.1

pij(3): grazer preference (pt,) 0.15 0.15 0.15 2.1

shrvel: bed shear velocity (u.) 1.71 0.02 0.86 12.3’

X(4): herMf I ): cell mass (M) 0.003 0.004 0.003 2.7

Bacteria rm(4): mortality rate (r„) 0.0002 0.0002 0.0002 0.2

X(5): hetM(2): cell mass (M) 0.0004 0.0003 0.0003 1.9

Flagellate+Ciliate rm(5): mortality rate (rm) 0.0001 0.0001 0.0001 0.32

fsfl I ):fraction o f sloppy feeding (f,) 0.002 0.0002 0.0002 I.l

feg( I ): fraction o f  egestion 0.002 0.0002 0.0002 1.1

X(6): hetM(3): cell mass (M) 0.0008 0.0008 0.0008 1.6

M icrozooplankton rm(6): mortality rate (rm) 0.003 0.006 0.004 8.7

fsf(2): fraction o f  sloppy feeding ( f t) 0.004 0.006 0.005 9.8

feg(2): fraction o f egestion (fes) 0.004 0.006 0.005 9.8

shrvel: bed shear velocity (u.) 0.017 0.0001 0.008 16.9'

X(7): hetM(4): cell mass (M) 0.001 0.001 0.001 17.2'

Mesozooplankton rm(7): mortality rate (rn) 0.002 0.002 0.002 28.1'

fsfl 3): fraction o f sloppy feeding (fst) 0.002 0.002 0.002 29.8'

feg(3): fraction o f egestion (frg) 0.002 0.002 0.002 29.8'

Z2M: grazing by fish (Z2M) 0.001 0.001 0.001 20.5'
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Table 5. The results of sensitivity analyses (±20 % change of parameter values) for 
chemical components (POC, DOC and nutrients) in the York River ecosystem model. 
Symbols for state variables and parameters are also given in Appendix I; % changes >10 
% marked by *.

State Variable Parameter - 2 0 % + 2 0 %
Average

RMS
%

Change

X(8): POC rl: leaching rate (rl) 0.029 0.050 0.039 12.8’

Rio: grazing loss rate (rlo) 0.017 0.022 0.019 6.3

shrvel: bed shear velocity (u-) 0.005 0.002 0.003 1.0

X(9): DOC rl: leaching rate (rl) 0.084 0.064 0.074 4.0

shrvel: bed shear velocity (u-) 0.024 0.04 0.32 1.8

XI10): NH4 hCNrat: C:N ratio (C:N) 0.002 0.004 0.003 12.8’

shrvel: bed shear velocity (u.) 0.053 0.031 0.042 2.4

X( 11): N 0 2+NOs rdenit: denitrification 0.006 0.007 0.007 8.7

shrvel: bed shear velocity (u.) 0.121 0.062 0.092 1.7

XI12): P 0 4 cprat: C:P ratio (C:P) 0.0007 0.0009 0.0008 10.5'

shrvel: bed shear velocity (u.) 0.007 0.004 0.006 2.3
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marginally sensitive to changes in leaching rate and bed shear velocity. Ammonium, 

X(10) was sensitive to the change in C:N ratio for heterotrophs. Nitrite+nitrate was not 

sensitive to denitrification rate or to bed shear velocity. Orthophosphate concentration 

was sensitive to change in the C:P ratio but it was not sensitive to bed shear velocity.

2. Model Sensitivity: forcing variables

Average RMS and % change in the concentrations of the state variables are 

presented in Table 6 given ±10 Ein m'2 d '1 change in incident radiation, ±2 °C s 

temperature change, and ±20 % changes in the light attenuation coefficient and top to 

bottom salinity difference. Picophytoplankton, X(I), microzooplankton, X(6). 

nitrite+nitrate, X(ll)  and orthophosphate concentrations were sensitive to changes in 

incident daily irradiance. All state variables except microphytoplankton and POC were 

sensitive to changes in temperature and light+temperature. Small phytoplankton (X(I) 

and X(2)), microzooplankton and nutrients (X(6), X( 10), X( 11), X( 12)) were sensitive to 

changes in ktl (light attenuation coefficient). Nano- and micro-phytoplankton, 

mesozooplankton, POC and nutrients were sensitive to changes in top to bottom salinity 

difference (Table 6).

Figure 7 shows sensitivity results for pico-, nano- and micro-phytoplankton given 

±10 Ein m‘2 d '1 and 2 °C change in incident radiation and temperature respectively. 

Increase (or decrease) in daily irradiance increased (or decreased) pico- and nano­

chlorophyll a concentrations whereas an increase of light level did not affect micro­

chlorophyll a concentrations. Effects of change in top to bottom salinity difference on 

phytoplankton are presented in Fig. 8. Change in salinity difference did not affect pico-
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Table 6. Average RMS and % change in concentrations of state variables when forcing functions (incident radiation, temperature and 
salinity) and light attenuation coefficient (k,i) were changed. These sensitivity analyses were performed given a ±10 Ein m'2 d'1 
change in incident radiation and ±2 °C temperature change, and ±20% changes in light attenuation coefficient and top to bottom 
salinity difference; % changes >10 % marked by *

....Forcing Variable: Incident Radiation Temperature Light & Temperature kd Salinity Difference

State Variable RMS % RMS % RMS % RMS % RMS %

X(1):PP 0.62 15.8* 0.42 10.7* 1.05 26.8* 0.42 10.6* 0.26 6.6

X(2): NP 0.62 5.2 2.86 24.2’ 2.97 25.2* 2.84 24.0’ 2.56 21.6’
X(3): MP 0.37 5.2 0.51 7.3 0.67 9.6 0.58 8.3 2.47 35.1*
X(4): HB 0.003 2.6 0.025 21.9* 0.030 25.6* 0.009 8.1 0.009 7.8

X(5): HFC 0.001 5.9 0.003 17.5* 0.003 18.5* 0.001 5.7 0.0009 5.1

X(6): Zl 0.012 23.3’ 0.019 38.9* 0.020 41.4* 0.005 10.5* 0.004 8.1
X(7): Z2 0.0002 3.8 0.004 62.2’ 0.004 61.8* 0.000 1.2 0.0007 10.8’
X(8): POC 0.009 3.0 0.018 5.7 0.024 7.7 0.019 6.2 0.045 14.6’
X(9): DOC 0.08 4.3 0.30 16.3* 0.33 17.8* 0.14 7.5 0.099 5.4

X(10): N1 0.11 6.0 0.31 17.5* 0.36 20.3* 0.20 11.4* 0.35 19.8*

X(U):N2 0.58 10.8’ 0.85 15.7* 1.40 25.7* 0.91 16.7* 1.12 20.6*
X( 12): P 0.03 12.7’ 0.050 20.7* 0.068 27.9’ 0.049 20.3* 0.056 22.9*

o\
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Fig. 7. Sensitivity results for pico-, nano-, and micro-chlorophyll a (mg m'3). The effects 

of change in light and temperature were examined given 10 Ein m’2 d '1 increase and 

decrease in incident radiation and 2 °C increase and decrease in temperature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e
o>
E .
co
■>»xz
CL
o
i —

o
sz01oo

8
 Nominal Run
  +10 B nm  V  & +2°C
 10 Bn m'2 cf1 & -2 °C

7

6

5

4

3

2

1

0
J F M A M J J AN

1996 1997

E
05
E ,
cc
>sz
CLou .o
JZ01ocCO

25

20

15

10

5

0
F M A M J J A

1996 1997

E
05
E ,
co
>.cQ.O

01o
o

25

20

15

10

5

0
A M J J A

1996 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

Fig. 8. Sensitivity results for pico-, nano-, and micro-chlorophyll a (mg m’3). The effects 

of change in top to bottom salinity difference were examined given 20 % increase and 

decrease in top to bottom salinity difference.
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phytoplankton concentrations but it affected nano- and microphytoplankton 

concentrations. A 20 % increase in salinity difference increased nanophytoplankton 

concentrations whereas increase in salinity difference decreased microphytoplankton 

concentrations. Responses of nutrients to change in the salinity difference are presented 

in Fig. 9. Ammonium and orthophosphate responded negatively to change in the salinity 

difference especially during summer (Fig. 9A, 9B) whereas nitrite + nitrate responded 

positively to the change especially during winter-spring (Fig. 9C).

3. Model Sensitivity: physical processes

Effects of a change (±20 %) in the mixed layer depth and removal of physical 

processes including diffusion, vertical advection and diffusion-advection are given in 

Table 7. Nano-, micro-phytoplankton, micro-, meso-zooplankton, nitrite+nitrate, and 

orthophosphate were sensitive to change in the mixed layer depth as they were sensitive 

to change in diffusion when diffusion processes were removed from the model. Removal 

of vertical advection affected all state variable concentrations. Overflows in 

heterotrophic compartments prevented the model from running when the horizontal 

advection term was removed from the model. All state variable concentrations except 

pico-phytoplankton and heterotrophic bacteria were changed when the physical processes 

of diffusion and advection were removed from the model.

Figure 10 shows the model outputs for phytoplankton when the physical 

processes of advection and diffusion were removed from the model. Concentrations of 

picophytoplankton did not change greatly but nanophytoplankton concentrations were 

slightly increased. Winter-spring blooms of microphytoplankton completely disappeared
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Fig. 9. Sensitivity results for ammonium, nitrite+nitrate and orthophosphate (|lM). The 

effects of change in top to bottom salinity difference were examined by comparing 

nutrient concentrations between a nominal run and sensitivity runs given 20 % increase 

and decrease in top to bottom salinity difference.
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Table 7. Average RMS and % change in concentrations of state variables when the mixed layer depth, Z| was changed (±20 %) 
and physical processes were removed from the model; no diffusion, no vertical advection and no diffusion and advection; % 
changes >10 % for mixed layer depth and >100 % for others marked by *.

-^Physical Process: Mixed Laver Demh Diffusion Vertical Advection Diffusion-Advection

State V ariable^^"- RMS % RMS % RMS % RMS %

X( 1): PP 0.39 9.9 0.22 5.5 3.32 84.5 0.18 4.5

X(2): NP 2.82 23.8* 1.18 10.0 10.5 89.1 1.51 12.8

X(3): MP 0.90 12.8’ 8.15 115.9* 8.39 119.3* 8.31 118.1*

X(4): HB 0.010 8.4 0.009 8.0 0.14 118.8* 0.005 4.7

X(5): HFC 0.001 5.6 0.002 9.3 0.016 91.2 0.002 11.2

X(6): Zl 0.007 14.6* 0.025 49.9 0.055 112.5* 0.023 46.0
X(7): Z2 0.001 15.3* 0.003 38.0 0.010 155.2* 0.004 53.8
X(8): POC 0.030 9.8 0.015 4.9 0.28 89.1 0.049 15.7
X(9): DOC 0.16 8.9 0.096 5.3 2.18 119.1* 0.36 19.8
X( 10): N1 0.17 9.8 0.17 9.9 2.16 123.1* 1.54 87.6
X(U):N2 0.66 12.1* 0.64 11.8 6.55 120.8* 5.24 96.6
X(12): P 0.042 17.3* 0.03 12.8 0.30 124.5* 1.22 502.8*
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Fig. 10. Sensitivity results for pico-, nano-, and micro-chlorophyll a (mg m 3). The 

effects of advection + vertical diffusion were examined by comparing chlorophyll a 

concentrations between a nominal and sensitivity run when no advection + vertical 

diffusion were incorporated.
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when advection and diffusion mechanisms were removed from the model. Effects of the 

physical processes on nutrients are illustrated in Fig. 11. Oscillations of nutrients in the 

nominal model run observed during the warm season in 1996 disappeared and I996's 

summer peaks of the nutrients also disappeared. Relatively high concentrations of 

orthophosphate were observed during winter-spring (Fig. 11C).

In order to investigate the role of diffusion as a factor influencing phytoplankton 

and nutrient dynamics, we examined the relationship between vertical eddy diffusivity 

(D) and chlorophyll a and nutrient concentrations (Fig. 12, Fig. 13). Biomass of small 

cells was related negatively to the coefficients at the scale of neap-spring tidal cycle (Fig. 

12A, 12B) whereas biomass of large cells was slightly positively related to the 

coefficients (Fig. 12C). Ammonium showed apparently positive relationship with 

vertical eddy diffusivity throughout the annual cycle (Fig. 13A). Nitrite + nitrate and 

orthophosphate showed a positive relationship with the eddy diffusivity during the warm 

season whereas they were negatively related during the cold season (Fig. 13B. 13C).

This result suggests vertical diffusion plays an important role in the nutrient dynamics of 

surface water.

The distributions of horizontal incoming and vertical upward flows were 

compared with those of chlorophyll a to investigate effects of advection on 

phytoplankton densities (Fig. 14). In general, stocks of small cells are negatively related 

to the flows (Fig. 14A, 14B) whereas those of large cells are slightly positive related to 

the flows (Fig. 14C).

4. Model Sensitivity: boundary conditions
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Fig. 11. Sensitivity results for ammonium, nitrite+nitrate and orthophosphate (jjM ). The 

effects of advection + vertical diffusion were examined by comparing nutrient 

concentrations between a nominal and sensitivity run when advection + vertical diffusion 

were removed from the ecosystem model.
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Fig. 12. The distributions of diffusion coefficient and chlorophyll a (pico-. nano-, and 

micro-sized) from the nominal model run of the ecosystem model.
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Fig. 13. The distributions of diffusion coefficient and nutrients (ammonium, nitrite + 

nitrate, and orthophosphate) from the nominal model run of the ecosystem model.
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Fig. 14. The distributions of incoming (horizontal) and upward flows and chlorophyll a 

(pico-, nano-, and micro-sized) from the nominal model run of the ecosystem model.
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Percent changes in the concentrations of state variables are presented in Table 8 

given ±10 % and ±20 % changes in incoming source water from upriver and from bottom 

water respectively. Only picophytoplankton. microzooplankton and POC were sensitive 

to the changes in picophytoplankton densities in the incoming source water from upriver. 

All state variables except pico-, microphytoplankton and mesozooplankton were 

insensitive to change in nanophytoplankton densities in incoming source water from 

upriver. Microphytoplankton and orthophosphate were sensitive to change in 

microphytoplankton densities in coming source water from upriver. Only nitrite+nitrate 

concentrations were sensitive to change in incoming source. None of state variables were 

sensitive to the incoming source for pico-phytoplankton from bottom water whereas 

microzooplankton and orthophosphate were sensitive to change in the incoming source 

for nano-phytoplankton from bottom water. Micro-phytoplankton were sensitive to 

change in their incoming source from bottom water. Ammonium and orthophosphate 

were also sensitive to change in their incoming source from bottom water.

DISCUSSION

The microbial food web has become considered a principal component 

influencing water column processes and has been incorporated into modeling efforts of 

plankton food webs since the ‘microbial loop’ concept was introduced by Pomeroy 1974 

and Azam et al. (1983). Complexity of the plankton food web has been addressed using 

allometric relationships, i.e., the size-dependence of plankton metabolic processes (e.g.
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Table 8. Percent change in concentrations of state variables when boundary conditions (incoming source from upriver (xin) and 
bottom water (xbt)) were changed. These sensitivity analyses were performed given ±10 % and ±20 % changes in the incoming 
source from upriver and from bottom water respectively; % changes >10 % marked by *.

^Boundary Variable: 

State Variable^''''''"

xin(l) xin(2) xin(3) xin(U) xbt(l) xbt(2) xbt(3) xbt(10) xbt(12)

X(1):PP 41.7* 3.39 0.24 0.24 0.41 0.68 0.09 0.06 0.06

X(2): NP 2.41 70.4* 2.16 1.61 0.04 3.94 0.48 0.49 1.16

X(3): MP 2.70 9.84 136.3* 0.55 0.04 3.39 24.4* 0.24 5.21

X(4): HB 5.81 10.7* 2.63 1.49 0.03 3.64 0.55 0.38 0.19

X(5): HFC 4.87 13.8* 2.12 0.36 0.07 3.20 0.42 0.10 0.29

X(6): Z1 10.4* 41.5* 7.51 0.13 0.28 19.6* 1.16 0.06 0.63

X(7): Z2 1.25 9.20 6.48 0.31 0.03 1.70 4.05 0.19 1.47

X(8): POC 11.8* 10.9* 4.65 0.20 0.09 1.05 0.59 0.07 0.22

X(9): DOC 5.62 16.2* 2.04 0.66 0.04 1.86 0.15 0.17 0.36

X(J0): NJ 4.89 13.9* 1.82 1.42 0.09 3.55 0.45 21.1* 0.42

X(11):N2 8.02 22.3* 9.56 60.3* 0.05 2.41 1.70 11.3 1.83

X(12): P 9.52 17.4* 10.7* 1.14 0.08 16.1 2.03 0.43 28.6*

vO
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Fenchel, 1974; Peters, 1983; Joint, 1991). Incorporation of such general size scale 

relationships for planktonic dynamics have provided a straight forward approach for 

plankton ecosystem modeling efforts (e.g. Moloney and Field, 1991, Painting et al., 1993, 

Tamsalu and Ennet, 1995). This approach simplifies the process to calibrate parameters 

for various size class components in a aquatic food web system, reducing the number of 

parameters to be evaluated (Ducklow 1994). However, the approach may greatly reduce 

the explanatory capability of the ecosystem model while it simplifies the problem of 

parameter estimation (Wetzel 1994). For the model given here, allometric relationships 

were employed for estimating maximum growth rate (Equation 12), half saturation 

constants (Equation 15) and sinking rate of phytoplankton to differentiate the processes 

based on ceil size. The size dependence of parameters governing the photosynthesis-light 

relations has not been well established to date. For this model, different values of 

optimal light intensity (/„) were used for each size class of phytoplankton (see Appendix 

I) to account for any size dependence of the parameters. Lower light optima were 

selected for large cells (c.f. Laws, 1975) and the values were determined by model 

calibration.

The York River ecosystem model also employed density-dependent feedback 

control terms, a priori derivations based on testable underlying assumptions (e.g.

Wiegart, 1979) which have been documented as far superior to empirical equations for 

studying trophic interactions among biotic compartments in the microbial food web 

(Wetzel, 1994). The ecosystem model uses these derivations rather than mechanistic or 

empirical equations for C flows between predators and prey, and also between 

heterotrophic bacteria and DOC.
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Incorporation of physical processes is also essential in estuarine ecosystem 

process modeling since estuaries represent complex environments in which freshwater 

and tidal energy inputs interact to affect biological and/or ecological processes. The 

relationships between physical processes and plankton population dynamics in coastal 

estuarine systems have received increasing attention recently (Peterson and Festa, 1984, 

Cloem, 1991, Eldridge and Sieracki. 1993. Vidergaret al., 1993). The ecosystem model 

presented here includes advection and diffusion by incorporating empirical equations to 

estimate residual velocities in x and z directions and diffusion terms reflecting spring- 

neap, tidally induced stratification and destratification.

The results of model validation (Fig. 4, 5, 6) indicated that the ecosystem model 

captures the dynamics of the principal components of the plankton community. Based on 

the results of model sensitivity analysis (Table 4, 5), the model is also relatively robust 

since it was not greatly sensitive to changes in most parameters. Therefore, the model 

could be used to examine various hypotheses suggested in the previous studies on 

phytoplankton dynamics in the York River estuary (Section I and II).

The EPA long-term data analyses (Section I) indicated that phytoplankton 

dynamics in the York River estuary may be controlled by abiotic mechanisms i.e., 

bottom-up control rather than trophic, biotic interactions i.e., top-down control. Results 

of model sensitivity analyses (Table 4) supported the conclusion since phytopiankton 

were not sensitive to changes in parameters related to trophic interactions and other 

biological processes including feeding preference (pij), mortality rate (rm) and exudation 

rate (rex). Microphytoplankton were sensitive to change in cell size (xM(3)) and bed 

shear velocity (shrvel). Mesozooplankton were sensitive to changes in parameters related
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to biological processes suggesting that they may be controlled by biotic factors rather 

than abiotic mechanisms. Model sensitivity analysis for POC suggests that it is important 

to clarify the leaching rate (i.e., C flow between POC and DOC compartments).

Nutrients were sensitive to change in C:N ratio or C:P ratio indicating that it is important 

to use pertinent values for the ratios in the model.

Model sensitivity analyses of forcing variables (Table 6) suggest that small cells 

(pico-, nano-phytoplankton) may be regulated by light and temperature dependent 

metabolism since pico-phytoplankton were sensitive to change in incident radiation and 

temperature. Seasonal distributions of small cells (Fig. 5C, 5D) were also in phase with 

those of incident radiation and temperature (Fig. 4A, 4B) supporting the hypothesis. 

Results from sampling data in Section II showed a significant positive correlation 

between pico-sized chlorophyll a and temperature (Table 8). The small cells were also 

sensitive to changes in light attenuation.

Nano- and micro-phytoplankton, especially, were sensitive to changes in top to 

bottom salinity difference suggesting that larger cells may be regulated by physical 

processes such as tidal mixing (see Equation 8, 10). However, the response of 

phytoplankton to change in top to bottom salinity difference was different based on cell 

size (Fig. 8). Biomass of small cells, especially nano-sized, increased (Fig. 8A, 8B) when 

the salinity difference increased (+20 %) whereas biomass of large ceils, micro-sized, 

decreased as the salinity increased (+20 %). This result suggests that growth of small 

cells may be enhanced by stratification whereas growth of large cells may be enhanced 

by destratification. This conclusion was reinforced when we examined the relationship 

between phytoplankton and diffusion coefficient distributions which was negative for
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small cells and positive for large cells over the fortnight cycle (Fig. 12). The pattern for 

small cells is in contrast to the results observed in the EPA long-term data analyses (see 

Fig. 9 in Section I) whereas it agrees with the observation by Ray et al. (1989) in the 

mesohaline zone of the York River estuary. Ray et al. (1989) observed peak abundances 

of cyanobacteria and diatoms during periods of stratification and minima during periods 

of destratification. Using a numerical algal growth model controlled only by light 

limitation, Ray et al. (1989) concluded that cyanobacterial growth is limited by light 

availability in the surface water since vertical mixing increases the mixed layer depth and 

decreases light. A food web model (Eldridge and Sieracki, 1993) documented that 

changes in mixed-layer depth determines light availability regulating cyanobacterial 

growth rates in the mesohaline zone of the York River estuary. Therefore light 

availability coupled with the water column stratification-destratification cycle may be the 

major controlling factors for growth of small cells during the warm season in surface 

waters of the mesohaline zone. Based on long-term data analysis and a simulation model 

for the South San Francisco Bay, Cloem (1991) also documented that the temporal 

variation of phytoplankton biomass and production is largely driven by variation in 

physical forcings that control vertical tidal mixing. The model simulated the bloom 

dominanted by nanophytoplankton which occurred under slow vertical mixing conditions 

as a result of rapid phytoplankton growth in the euphotic zone, coupled with slow sinking 

and vertical diffusion from surface water to the lower water column and sediment where 

grazing occurs. The models (Ray et al., 1989, Cloem, 1991, Eldridge and Sieracki,

1993), however, did not include nutrients which also serve as an important controlling 

factor for phytoplankton dynamics. Results of my study suggested that tidal mixing is a
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major mechanism for supplying benthic-regenerated nutrients to the surface water during 

the warm season and the nutrients may be an important source for growth of small cells 

under elevated light levels during stratification (see Fig. 9, Fig. 12, Fig. 13). The 

importance of the water column stratification-destratification cycle for nutrient supply 

was also addressed by examining the correlations of bottom ammonium and 

orthophosphate vs. surface-bottom salinity difference in Section I of this dissertation.

Microphytoplankton were sensitive to change in bed shear velocity which 

determines the diffusion coefficient (Equation 7) as shown in Table 4 as well as change 

in top-bottom salinity difference. Stocks of large cells were positively related to 

horizontal and vertical flows (Fig. 14C). These results suggested that stocks of large cells 

may be determined by the physical processes of diffusion and advection. Effects of 

diffusion and advection on phytoplankton dynamics were investigated by removing the 

physical terms from the nominal model (Table 7, Fig. 10). Nano- and micro- 

phytoplankton, especially, were sensitive to the removal suggesting that populations of 

large cells may be controlled by physical processes including advection and diffusion in 

the lower part of the York River system. The model analysis suggested that winter- 

spring blooms of large cells are the consequence of physical processes including 

advection and diffusion rather than in-situ production considering their response to 

removal of the physical processes (Fig. 10) and nutrient input from upriver and bottom 

water (Table 8). Seasonal distributions of chlorophyll a from EPA long-term data 

showed that maximum chlorophyll a blooms develop in the region located more upriver 

than the modeled area of the estuary (see Fig. 3 of Section I). Bottom concentrations of 

chlorophyll were much higher than surface concentrations during winter-spring at the
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lower reach of the York River (station WE4.2, Fig. 11 of Section II). The high bottom 

water concentrations of chlorophyll a may serve as a major source for winter-spring 

blooms of large cells by physical processes including advection and diffusion rather than 

by growth of large cells through nutrient uptake coupled with light availability. Possible 

mechanisms for the high bottom concentrations of chlorophyll a were discussed in 

Section H of this dissertation.

CONCLUSIONS

We developed a tidally-averaged ecosystem model that incorporated physical 

mechanisms including advection and diffusion with a neap-spring, fortnightly tidal cycle 

to investigate the controlling factors for size-structured phytoplankton dynamics in the 

mesohaline zone of the York River estuary. The realistic ecosystem model and analyses 

with the model supported the hypothesis established from analyses of EPA long-term 

datasets that phytoplankton dynamics appear controlled to large extent by resource 

limitation (bottom-up control) rather than zooplankton grazing (top-down control) in the 

York River estuary. Larger, mesozooplankton appear to be controlled by biotic 

mechanisms. The model analysis also showed that growth of small cells (pico-, nano­

sized) may be regulated by light availability and temperature dependent metabolism on a 

seasonal basis. The simulated high-frequency fluctuations (days) of small cell population 

densities were phased with the neap-spring tidal cycle (fortnight) indicating that growth 

of cells over shorter time frames may be controlled by light availability coupled with
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water column stratification-destratification, and supported by the input of benthic- 

regenerated nutrients into the surface water through vertical mixing especially during the 

warm season in the mesohaline zone. Their growth may be limited by light availability 

during destratification (tidal mixing) because vertical mixing increases the mixed layer 

depth and decreases light. In contrast to small cells, biomass accumulation of large cells 

may be a consequence of vertical and horizontal transport of cells through advection and 

diffusion from upriver and bottom water rather than in-situ production. This study 

suggests that it is important to refine the physical description in the ecosystem simulation 

model and to consider quality (size structure) as well as quantity (biomass) of 

phytoplankton to better understand phytoplankton dynamics in coastal estuarine 

environments.
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Appendix I. Initial values for state variables and parameter values employed in the 
ecosystem model; symbol1 represents state variables in the Fortran90 codes whereas 
symbol2 denotes state variables used in the text of the dissertation.

Description Symbol1 Symbol2 Value Source

State Variables, initial conditions
Picophytoplankton XI I) PP(t) 6.0 mg Chla m Sin (unpublished)
Nanophytoplankton X(2) NP(t) 18.0 mg Chla m 3 Sin (unpublished)
Microphytoplankton XU) 3dP(t) 1.0 mg Chla m 3 Sin (unpublished)
Heterotrophic bacteria X(4) HB(t) 0.18 g C m 3 Kindler (1992)
Flagellates & ciliates X(5) HFC(t) 0.01 g C m 3 Kindler (1992)
M icrozoop lankton X(6) Zl(t) 0.01 g C m ' EPA monitoring data
Mesozooplankton X(7) Z2(t) 0.002 g C m ' EPA monitoring data
Particulate organic carbon X(8) POC(t) 0.60 g  C m 3 Canuel (unpublished)
Dissolved organic carbon X(9) DOC(t) 2.65 g C m ’ Schultz (unpublished)
Ammonium X(10) Nl(t) 5.63 pM Sin (unpublished)
Nitrite +- Nitrate Xf l l ) N2(t) 0.07 pM Sin (unpublished)
Orthophosphate X( 12) Pit) 2.26 pM Sin (unpublished)-

Parameters
Time step dt 0.0625 d Calibration
Stating time tzero 1.0 d Calibration
Ending time tend 1095.0 d Calibration
Optimum light for picophytoplankton xla(l) 20.0 Ein m 2 d '1 Calibration
Optimum light for nanophytoplankton x!o(2) L 5.0 Ein m 2 d '1 Calibration
Optimum light for microphytoplankton xlo(3) L 1.0 Ein m '  d"1 Calibration
Mass of picophytoplankton cell xM(J) 3d 0.088 pg Moloney & Field ( 1991)
Mass of nanophytoplankton cell xM(2) 3d 16.0 pg Moloney & Field (1991)
Mass of microphytoplankton cell xM(3) 3d 2800.0 pg Moloney & Field (1991)
Mass of heterotrophic bacteria cell hetMf I ) 3d 0.088 pg" Moloney & Field (1991)
Mass of heterotrophic 
flagellate+ciliate cell

hetM(2) 3d 9.3 pg Moloney & Field (1991)

Mass of microzooplankton cell hetM(3) 3d 9300.0 pg Moloney & Field (1991)
Mass of mesozooplankton cell hetM(4) 3d 9.3xl06 pg Moloney & Field (1991)
Denitrification rate rdenit 0.1 d '1 Calibration
C:N ratio CNrat C:N 6.0 DiToro et al. (1971)
C:P ratio CPrat C:P 42.0 Redfield (1958)
C:N ratio for heterotrophs hCNrat 5.0 Newell and Linley (1984)
C:Chla ratio cchl 50.0 DiToro et al. (1971)
Mortality rate of phytoplankton rm 1.0-10.0% Calibration
Exudation rate of phytoplankton rex r,x 1.0-10.0% Calibration
Leaching rate of POC rl n 20% Calibration
Grazing loss rate of POC rlo n„ 10% Calibration
Fraction of sloppy feeding M f * 10% Calibration
Fraction of egestion by grazers feg frg 10% Calibration
Mortality rate of mesozooplankton 723d 723d 25 % Calibration
Air density airden Pa 1.2x10'3 g cm 3 Park & Kuo (1993)
Drag coefficient dgcoeff C/o 1.3xlO’3 Park & Kuo (1993)
Shear velocity shrvel u. 0.01 m s 1 Calibration
Surface area of surface layer As(l) 4 .8 lx I06 m2 Calculation
Surface area of bottom layer As{2) 2.41xl06 m2 Calculation
Water volume of surface layer wvol( / ) 40.40xI06 m3 Calculation
Water volume of bottom layer wvol(2) 18.32xl06 m3 Calculation
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Conversion factor for time sdconv
Grazer preference for pij( I)
picophytoplankton
Grazer preference for pij(2)
nanophytoplankton
Grazer preference for pij(3)
microphytoplanktnn
Grazer preference for bacteria pij(4)
Grazer preference for flagellate + ciliate pij(5 
Grazer preference for microzooplankton pij(6 
Donor threshold for picophytoplankton aij( I 
Donor threshold for nanophytoplankton aij(2 
Donor threshold for microphytoplankton aij(3
Donor threshold for bacteria aij(4)
Donor threshold for flagellate + ciliate aij(5)
Donor threshold for microzooplankton aij(6)
Donor threshold for mesozooplankton aij(7)
Donor threshold for POC aij(8)
Donor threshold for DOC aij(9)
Donor threshold for ammonium aij( 10)
Donor threshold for nitrite + nitrate aij( 11)
Donor threshold for orthophosphate aij( 12)
Donor limit for picophytoplankton gij(I)
Donor limit for nanophytoplankton gij(2)
Donor limit for microphytoplankton gij(3)
Donor limit for bacteria gij(4)
Donor limit for flagellate + ciliate gij(5)
Donor limit for microzooplankton gij(6)
Donor limit for mesozooplankton gij(7)
Donor limit for POC gij(8)
Donor limit for DOC gij(9)
Donor limit for ammonium gij( 10)
Donor limit for nitrite + nitrate gij(II)
Donor limit for orthophosphate gij( 12)
Recipient threshold for ajj(I)
picophytoplankton
Recipient threshold for ajj(2)
nanophytoplankton
Recipient threshold for ajj(3)
microphytoplankton
Recipient threshold for bacteria ajj(4)
Recipient threshold for flagellate + ajj(5)
ciliate
Recipient threshold for ajj(6)
microzooplankton
Recipient threshold for ajj(?)
mesozooplankton
Recipient threshold for POC ajj(8)
Recipient threshold for DOC ajj(9)
Recipient threshold for ammonium ajj( 10)
Recipient threshold for nitrite + nitrate ajj(II)
Recipient threshold for orthophosphate ajj( 12)
Maximum recipient density for gjj(I)
picophytoplankton
Maximum recipient density for gjj(2)

86400.0 Calculation
P., 0.2 Calibration

Pii 0.2 Calibration

p., 0.2 Calibration

p., 0.8 Calibration
p., 0.8 Calibration
pn 0.8 Calibration
A,, 2.0 mg Chla m 3 Assumption
A„ 8.6 mg Chla m 3 Assumption
A,, 2.0 mg Chla m 3 Assumption
A„ 0.04 g C m 3 Assumption
A,, 0.03 g C m  3 Assumption
A„ 0.009 g C m 3 Assumption
An 0.002 g C m 3 Assumption
Ai, 0.30 g C m 3 Assumption
An 0.90 g C m 3 Assumption
A,, 0.50 pM Assumption
An 0.71 pM Assumption
A,, 0.16 pM Assumption

0.70 mg Chla m 3 Assumption
Gn 4.60 mg Chla m 3 Assumption
Gn 0.8 mg Chla m 3 Assumption
Gn 0.02 g C m 3 Assumption
Gn 0.01 gC  m 3 Assumption
Gn 0.007“g C m 3 Assumption
Gn 0.001 g C m 3 Assumption
Gn 0.20 g C m 3 Assumption
Gn 0.6 g C m 3 Assumption
Gn 0.21 pM Assumption
Gn 0.21 pM Assumption
Gn 0.032 pM Assumption
A, 5.50 mg Chla m 3 Assumption

An 20.6 mg Chla m 3 Assumption

Aa 20.3 mg Chla m 3 Assumption

An 0.18 g C m 3 Assumption
A„ 0.05 g C m 3 Assumption

An 0.065 g C m 3 Assumption

An 0.015 g C m  3 Assumption

An 0.80 g C m 3 Assumption
An 3.0 g C m 3 Assumption
An 5.0 pM Assumption
An 14.3 pM Assumption
An 1.98 pM Assumption
Gjj 6.7 mg Chla m'3 Assumption

Gn 23.6 mg Chla m 3 Assumption
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nanophytoplankton
Maximum recipient density for gjj(3)
microphytoplankton
Maximum recipient density for bacteria gjj(4)
Maximum recipient density for gjj(5)
flagellate + ciliate
Maximum recipient density for gjj(6)
microzooplankton
Maximum recipient density for gjj(7)
mesozooplankton
Maximum recipient density for POC Rjj(S)
Maximum recipient density for DOC gjj(9)
Maximum recipient density for gjj( I0)
ammonium
Maximum recipient density for gjj( 11)
nitrite + nitrate
Maximum recipient density for gjj( 12)
orthophosphate

CM 22.3 mg Chla m 3 Assumption

Cm 0.20 g C m 3 Assumption
Cm 0.06 g C m 3 Assumption

Cjj 0.075 g C m 3 Assumption

G„ 0.02 g C m 3 Assumption

G , 1.0 g C m 3 Assumption
G„ 3.60 g C m 3 Assumption
Gu 14.3 jiM Assumption

Gu 35.7 nM Assumption

G„ 2.26 pM Assumption
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The main objective of this dissertation research was to develop an ecosystem 

model and use the model as a tool to investigate principal factors controlling quantity and 

quality of phytoplankton and nutrient dynamics in the York River estuary. Modeling 

analysis along with the analyses of EPA long-term data and field data was useful in 

exploring water column processes in the York River estuary. It must be remembered that 

plankton dynamics in estuarine systems are complex due to the interactions between 

plankton and their environments which receive both freshwater and tidal inputs.

In Section I of this dissertation, I use a spatially and temporally extensive data set to 

analyze variations in factors potentially limiting phytoplankton biomass and production 

in the York River estuary. By affecting residence time, nutrient input, light regime, and 

tidal mixing, river discharge rates regulate the magnitude, location and timing of 

phytoplankton blooms in the York River estuarine system. Thus, ecological processes in 

the York River system are predictable based on the river continuum concept. 

Phytoplankton growth in tidal fresh water is limited since the residence time (dependent 

on the river discharge rate) can be less than the cell doubling time. Temperature- 

dependent metabolism is also an important mechanism in this zone. In the transition 

zone or turbidity maximum zone, phytoplankton are limited mainly by light and internal 

processes dependent on temperature and estuarine circulation. In mesohaline regions, 

riverine nitrite + nitrate input during the winter results in winter-spring blooms at 

locations experiencing potential nitrogen limitation. Tidal mixing also influences 

summer phytoplankton dynamics in the mesohaline zone by supplying regenerated 

nutrients via a predictable cycle of water column stratification-destratification. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

general, phytoplankton dynamics appear controlled by resource limitation (bottom-up 

control) rather than zooplankton grazing (top-down control).

From analyses of data collected over an annual cycle, I believe that phytoplankton 

growth in the tidal freshwater zone may be limited by high flushing rates and regulated 

by light and temperature. The large contribution of microplankton to total phytoplankton 

biomass is thought to be due to the availability of sufficient nitrite + nitrate compared 

with other regions in the York River estuary. In the river-estuary transition zone, 

phytoplankton production is most likely limited by light availability since this region 

experiences a turbidity maximum during winter. Nanoplankton which dominate the 

phytoplankton community in the river-estuary transition zone throughout the year are 

most likely regulated by light. Growth of large cells in this zone is dependent on nitrite + 

nitrate input but only when light is not limiting. In the mesohaline zone total 

phytoplankton biomass follows a bimodal seasonal distribution with both summer and 

winter blooms. During summer small cells (picoplankton and nanoplankton) 

predominate, while during winter large cells (microplankton) dominate. This seasonal 

shift in size structure is thought to be due to the different preferences of phytoplankton 

size classes for “new” (nitrite + nitrate) vs. “old” (ammonium) nutrients in the water 

column. I conclude from these studies that spatial and seasonal variations in size 

structure of phytoplankton observed on the estuarine scale is determined both by the 

different preferences of micro-, nano-, and picoplankton for nutrients and by their 

different light requirements. These results further indicate that phytoplankton size 

structure in the York river estuary may be regulated primarily by resource limitation 

(bottom-up control) rather than zooplankton grazing (top-down control). Consequently,
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this study supports the conclusions established from the EPA long-term data analyses on 

phytoplankton and nutrient dynamics and further demonstrates that analyses of size 

structure are necessary to better understand phytoplankton dynamics including the 

response of the total phytoplankton population to environmental changes in estuarine 

systems.

Based on the analyses of both the long-term data and an annual field datasets, I 

developed a tidally-averaged ecosystem model that incorporated physical mechanisms 

including advection and diffusion with a neap-spring, fortnightly tidal cycle to investigate 

the controlling factors for size-structured phytoplankton dynamics in the mesohaline zone 

of the York River estuary. The realistic ecosystem model and analyses with the model 

supported the hypothesis established from EPA long-term data analysis that 

phytoplankton dynamics appear controlled to large extent by resource limitation (bottom- 

up control) rather than zooplankton grazing (top-down control) in the York River estuary. 

Larger, mesozooplankton appear to be controlled by top-down mechanisms. The model 

analysis also showed that growth of small cells (pico-, nano-sized) may be regulated by 

light availability and temperature dependent metabolism on a seasonal basis. The 

simulated high-frequency fluctuations (days) of small cell populations were phased with 

the neap-spring tidal cycle (fortnight) indicating that growth of cells over shorter time 

frames may be controlled by light availability coupled with water column stratification- 

destratification, and supported by the input of benthic-regenerated nutrients into the 

surface water through vertical mixing especially during the warm season in the 

mesohaline zone. Their growth may be limited by light availability during 

destratification (tidal mixing) because vertical mixing increases the mixed layer depth
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and decreases light. In contrast to small cells, biomass accumulation of large cells may 

be a consequence of vertical and horizontal transport of cells through advection and 

diffusion from upriver and bottom water rather than in-situ production. This study 

suggests that it is important to refine the physical description in the ecosystem simulation 

model and to consider quality (size structure) as well as quantity (biomass) of 

phytoplankton to better understand phytoplankton dynamics in coastal estuarine 

environments.

This dissertation research has provided an integrative tool for better understanding 

water column processes including phytoplankton and nutrients dynamics and their 

interactions with physical processes in the York River estuary.
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