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ABSTRACT

A computational framework is built and demonstrated which is capable of testing plant 
growth strategies. The framework consists of Vgrass, a carbon based simulation model 
of a single Zostera marina plant, and the genetic algorithm (GA). Vgrass is based on 
published seagrass models, published photosynthetic data, and general plant physiology 
information. The model grows individual leaves whose initiation times are based on 
degree-day intervals. Leaf size is computed and combined with shoot density to compute 
population self shading. Leaf length is an emergent property since leaf growth is limited 
by light attenuation caused by population self shading. The model is able to show 
the relationship between leaf size and shoot density in response to light availability. 
Degree-days is also shown to be an effective method in modeling the emergence of 
Zostera marina leaves. The GA and Vgrass are combined to demonstrate the GA 
as an optimization method and to demonstrate a secondary sensitivity analysis. In 
an optimization exercise, the RMS error between Vgrass biomass and that of another 
published model is minimized. Solutions with fitness ranking within 10% of the smallest 
RMS error are compared in a secondary sensitivity analysis. The analysis can be used to 
indicate parameter sensitivity in regards to the models ability to attain  the optimization 
goal. Plant growth strategies are tested by searching for configurations of Vgrass 
parameters best able to: maximize relative growth rate, maximize biomass, and maximize 
net primary production. Configurations found by the GA lead to plant growth patterns 
that are not biologically realistic; plant growth strategies based on maximizing ” growth” 
lead to unrealistic plant growth. The plant growth patterns from each of the tests are 
discussed in relation to ecological and economic principles. Configurations found by the 
GA search are unique to the optimization goal and the resulting plant growth patterns 
are shown to support the given goal. Therefore, the computational framework is shown 
to be successful in testing plant growth strategies. Further, this study shows that care 
must be taken when defining the fitness function and that the GA is an effective tool at 
finding ’’holes” in a model.

xiv
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Chapter 1

Computational Plant Physiology

1.1 Introduction

Plant physiological processes span a wide range of time scales and resources must be 

allocated between growth, storage, disease resistance, discouraging predators, reproduction, 

etc. The mechanisms driving allocation are still largely unknown (Thornley, 1998) and there 

is open debate regarding any specific goal to allocation (Givnish, 1983). Allocation between 

plant growth and reproduction, when viewed in an economic sense of costs and benefits of 

the alternative allocations, has been shown to be optimal at the evolutionary scale (Sakai, 

1993). While the result is optimal in the sense of a cost-benefit analysis, was there a plant 

growth strategy tha t lead to this balance? Taking a hierarchical view, plant processes, 

including allocation, must be organized so th a t the species is persistent. Going to deeper 

levels in the hierarchy, to shorter time frames, how are the processes organized in order 

to meet the long-term objective of species persistence while simultaneously responding to

1
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CH APTER 1. COMPUTATIONAL P L A N T  PH YSIO LO G Y  2

short-term environmental stresses? Is there a strategy to plant growth?

If there is a  growth strategy, it appears to  be impossible to determine experimentally. 

Meanwhile, computational science has evolved, to a point were this question can be ap

proached through a combination of simulation and  artificial intelligence. The computational 

approach does not measure a plant growth strategy, but instead searches for plant growth 

patterns tha t would result from a given strategy.

This study shows the construction and demonstration of a computational framework to 

assist the study of plant allocation and growth, strategies. The framework consists of two 

main components. The first component is a carbon based model of the eelgrass Zostera ma

rina that models the allocation and growth of an individual plant. The model is controlled 

by 25 parameters which, when given values, are  collectively referred to as a configuration. 

The second component is a search method from the field of artificial intelligence called 

the Genetic Algorithm (GA)1. The GA searches for configurations of controlling param

eters that meet a prescribed plant growth goal or strategy. The combination of GA and 

simulation allows a researcher to address the question: What configuration of controlling 

parameters is best able to describe a plant that is, for instance, maximizing biomass?

The computational framework is shown to be  effective at testing plant growth strategies. 

The framework is able to show that different plant growth goals lead to different parameter 

configurations and therefore plant growth patterns. Analysis of the resulting configura

tions and their behaviors reveals that they are achieving the given goal. In relation to 

the plant growth strategies, this study shows that strategies based on maximizing three

1The word genetic in genetic algorithm  does not im ply  any connection to biological genetics. The GA is 
a search m ethod based on natural selection; genetic is used here as a metaphor.
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CH APTER 1. COMPUTATIONAL P L A N T  PH YSIOLOG Y  3

different growth measurements lead to unrealistic plant behaviors. Meanwhile a forth goal, 

longevity, leads to plant configurations and behaviors that are more normal. Additionally, 

the computational framework is shown to be an effective tool for finding mathematical holes 

in models. Also, when combining a GA with an ecological simulation care must be taken 

when formulating the GA’s fitness function.
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CHAPTER 1. COMPUTATIONAL PLANT P H Y S IO L O G Y  4

1.2 Chapter Summaries

The primary objective of this study is to build and dem onstrate  a  computational frame

work to test plant growth strategies. The intent is not to discern underlying mechanisms 

required for plant growth strategies, but to predict h o w  a plant might behave if a given 

growth strategy were present. To meet this objective a plant simulation is coupled with a 

GA. This project is sub-divided into the following 3 ctuapters: 2) to show the design and 

perform ance of the plant simulation, Vgrass2, 3) to exp la in  the GA, its interface to Vgrass, 

and demonstrate the combination (framework) of V grass with the GA, and 4) to apply the 

framework to three plant growth strategies.

Chapter 2 describes the model’s construction, valida_tion, calibration, sensitivity analy

sis, and performance. Vgrass was constructed mainly firom the published Zostera marina 

models of Wetzel and Neckles (1986) and Verhagen an*d Nienhuis (1983), photosynthetic 

data from Dennison and Alberte (1986), and plant physiological data from Nobel (1991). 

Zostera marina was chosen since it has been studied extensively and is an ecologically 

important species (Dennison et al., 1993). The model includes the fundamental plant phys

iological processes (photosynthesis, respiration, and allocation), plant phenology (timing of 

new leaf initiation and abscission), and environmental facto rs (light, temperature, and self 

shading). Vgrass does not take the classical approach of limiting above-ground biomass 

with an internal parameter. Since Vgrass is based on a n  individual plant, and grows indi

vidual leaves, it uses leaf geometry to compute a self shiading factor so that above-ground 

growth is limited by its own shade.

2The completed model will hereafter be referred to as Vgrass; t=he V  is for virtual.
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CH APTER 1. COMPUTATIONAL P L A N T  PH YSIO LO G Y  5

Vgrass validation was simplified by relying on its ancestral underpinnings and by showing 

that it can replicate Zostera marina biomass curves of a third published model, Buzzelli, 

et al. (1999).

Sensitivity analysis of Vgrass was similar to that of its ancestors; Vgrass showed sen

sitivity to light and temperature. Additionally Vgrass showed sensitivity to the timing of 

leaf initiation and abscission, both of which are indirectly related to fight and temperature.

To demonstrate the self shading feature of the Vgrass model it was run a t two different 

shoot densities based on Orth and Moore (1986). Vgrass was able to qualitatively show 

growth behavior similar to O rth and Moore (1986) and in agreement with Jacobs (1979). 

The results show that leaf length and  shoot density are related to insolation; the possible 

influence of nitrogen is not needed to  explain the relationship as suggested by Short (1983).

Chapter 3 describes the GA method and how the GA interfaces to Vgrass. The GA 

is used to calibrate Vgrass’ 25 controlling parameters and results from the GA search are 

used to discuss the the model’s flexibility in reaching a given search goal. Vgrass has 25 

parameters that control plant allocation and leaf phenology, these parameters and a fitness 

function form the link between Vgrass and the GA. Briefly, the GA manipulates sets of the 

parameters and passes one set at a tim e to a fitness function. The fitness function passes the 

parameters to Vgrass and evaluates Vgrass’ performance against a given criterion. Here the 

criterion is to minimize the RMS error between the biomass curve of Vgrass and the biomass 

curve of Buzzelli et al. (1999). For each set of parameters the fitness function returns a 

metric describing that configuration’s ability to meet the criteria. The GA searches for a 

configuration of parameters best capable of meeting the criteria. The results demonstrate
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configuration of parameters best capable of meeting the criteria. The results demonstrate
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CHAPTER 1. COMPUTATIONAL P LA N T P H Y SIO L O G Y  6

the ability of the GA to calibrate model parameters given a measurable criteria.

In addition, a secondary sensitivity analysis was done. Configurations were taken from 

the pool of trials used by the GA during its search for the optim um  configuration. A group 

of configurations whose fitness values were within 10% of tHe best individual were culled 

and histograms of parameter values were made for each parameter. The purpose was to 

evaluate the sensitivity of each parameter in terms of Vgrass’ ability to reach the search 

goal. The analysis showed that some controlling parameters could vary within a very narrow 

range, some displayed a bi-modal behavior, and some showed a wide range of values. This 

demonstrated a feature of the GA that standard optim ization methods cannot replicate. 

When viewed as terrain, standard search methods rely on a. reasonably well defined peak; 

(singular) for convergence. The GA is able to reveal cases where the best solutions (plural) 

may exist on a  mountain range. In the study of complex non-linear natural systems, the 

latter seems to be the more likely case.

During model rims interesting model behaviors were noted that required parts of the 

Vgrass model to be reconstructed. The discussion of chapter 3 describes how model design 

can affect the outcome of a GA search. The results show th a t when a model is to be used 

with a GA, the model builder must carefully evaluate the cost—benefit of the various possible 

model configurations.

Chapter 4 shows the results of applying the com putational framework in testing plant 

growth strategies. The strategies were maximization of relative growth rate, maximization 

of biomass, and maximization of net primary production. As an example of a non-strategy, 

longevity (the ability to survive 20 simulated years) was also tested.
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The test for maximizing relative growth rate (RGR) lead to a p attern  of plant growth 

that was more related to how plant growth was measured. RGR was measured on a two 

week cycle and leaf emergence and abscission followed this two-week pattern. The results 

illustrate the caxe that must be taken when formulating a fitness function for the GA.

The test for maximizing biomass lead to huge plants. Leaf emergence for all of the 

season’s leaves occurred early in the season and leaves were not abscised until P:R  ratios 

were less than one. The results indicate that the goal of maximizing biomass leads to plant 

growth that totally ignores any economy to plant growth.

The test for maximizing net prim ary production (NPP) leads to large plants but also 

considers some economy in the plant growth. Maximizing NPP is a  balance between max

imizing production while minimizing respiration losses. The results show a pattern of leaf 

emergence and abscission that can be attributed to a strategy that optimizes carbon gain.

A test for longevity (surviving 20 years of simulated growth) revealed 88.479 of 90,000 

solutions capable of achieving the goal. All of the 88,479 solutions were pooled and used 

to generate one representative of the test. Results from analysing th a t individual reveals 

plant growth patterns that were more reasonable when compaxed to the optimization tests.

Chapter 5 is a summary of the studies findings and relates them to research done in the 

field of artificial-life.
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Chapter 2

The Vgrass Model

ABSTRACT

Published observations showing a relationship between leaf length and shoot density- 
motivated the construction of an individual-based Zostera marina model. The model 
simulates one plant as a shoot with multiple leaves and simple meristem and root compo
nents. Leaf geometry is computed and combined with shoot density so that population 
self shading limits light availability and therefore above ground biomass. The model does 
not have a parameter that limits leaf growth; leaf growth is an emergent property of 
light availability. The individual based model also simulates the emergence and growth of 
individual leaves with the timing of emergence based on the integration of degree-days. 
Model output is compared to published observations and shows a relationship between leaf 
length, shoot density, and irradiance without the complicating factor of nitrogen availabil
ity. Degree-days is shown to be an effective method to simulate the timing of leaf initiation.

9
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2.1 Introduction

10

Seagrass models have augmented the study of the relationship between environmental 

processes and the distribution and abundance of Zostera marina. Short (1980) provides 

a model of Zostera marina and demonstrates the role of light, temperature, and current 

velocity on the seasonal variation in seagrass production. Simulation results of production 

rates were correlated with independent observations made in neighboring seagrass commu

nities. Verhagen and Nienhuis (1983) describe a model that includes the effects of aging 

on the production rates of leaves. Their model correlates with vertical and horizontal dis

tributions of seagrass in Lake Grevelingen, The Netherlands. The model of Wetzel and 

Neckles (1986) includes epiphyte—grazer relationships and also indicates temperature and 

depth limits to seagrass growth in the lower Chesapeake Bay. Simulation results correlate 

well with independently obtained results of depth limits of seagrass growth (Wetzel and 

Neckles (1986) simulation, 1.0 -  2.0 meters; O rth and Moore (1983), 1.2 -  1.6 meters).

The above models are based on the average behavior of a population of plants. In the 

Wetzel and Neckles (1986) model, for example, one variable is used to represent the above 

ground biomass of plants contained within 1 m2. Likewise, all other model variables and 

parameters are spatially averaged to 1 m2. In the model there is a parameter that sets 

an upper limit on above-ground biomass. As above-ground biomass approaches this value 

photosynthesis is limited to slow down growth. Ultimately, photosynthesis is shut down 

when biomass equals this upper limit. This empirical approach simulates spatial limits to 

plant growth and, indirectly, the effect of plant self shading.

Meanwhile there are published observations that show a relationship between leaf length
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and shoot density (Jacobs, 1979). O rth and Moore (1986) show the recovery of an eelgrass 

bed after periods of high temperatures likely caused a die off. In the year after the die

off shoot length is shorter, plant biomass is lower, but shoot density is higher. In the 

second year after the recovery these metrics more closely resembled those observed before 

the die off (Moore, personal conversation). Leaf length and shoot density may be related 

to nitrogen availability. O rth (1977) shows increases in leaf length and biomass due to an 

increase in nitrogen, while Short (1983) shows leaf length and shoot density variation across 

an am m onium and depth gradient. Jacobs (1979) shows a correlation between leaf length 

and shoot density and asserts that insolation controls shoot density.

These published observations motivated the design of an individual based seagrass model 

with the following objectives: 1) the model would use plant geometry and shoot density 

as a feedback mechanism to limit light through self shading. W ith these mechanisms in 

place shoot biomass becomes an emergent property since self shading negates the need for 

a parameter that limits shoot biomass; 2) to study the relationship between leaf length and 

shoot density as shown in O rth and Moore (1986).

This paper shows the construction, validation, calibration, sensitivity analysis, and per

formance of the Vgrass model. The model is rum at two shoot densities based on Orth 

and Moore (1986) and shows a  relationship between leaf length and shoot density that is a 

function of self shading.
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2.2 Model Summary

The Vgrass model uses carbon as its currency and is based on a carbon fraction of 

38% of tissue dry weight (Short 1987). An individual plant is modeled with simple root 

and meristem components and zero to several individual leaves. Natural root systems can 

have multiple shoots but for model simplicity one root component supports one shoot with 

multiple leaves. For the Vgrass model, plant and shoot are synonymous.

Vgrass has four state variables; leaf mobile caxbon, leaf structural carbon, meristem 

carbon, and root/rhizome carbon (Figure 2.1b). Each active leaf is modeled individually 

(as opposed to lumping all leaves into one state variable) so that the total number of state 

variables actually changes as new leaves start and old leaves are abscised. Leaf mobile 

caxbon can move between the leaf and the meristem and from there be allocated to leaf 

growth or root/rhizome storage. Leaf structural caxbon is the result of leaf growth and, 

once allocated, cannot return to the meristem. This model also makes a distinction between 

leaves that axe growing and those which have stopped growing (mature leaves). At the point 

where a leaf becomes mature, allocation to structural caxbon is stopped. The mobile caxbon 

pool is still free to exchange with the meristem. When a leaf is abscised, any mobile carbon 

within the leaf and the structural carbon are lost. The meristem state variable, while labeled 

as meristem, is mainly a mathematical construct to simplify the interactions between leaf 

state variables and the root/rhizome variable. The root/rhizome state variable represents 

both root and rhizome biomass and can exchange caxbon bidirectionally with the meristem.

To describe Vgrass further a comparison is made with the Wetzel and Neckles (1986) 

model; both axe shown in Figure 2.1. For brevity the Wetzel and Neckles (1986) model will
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Figure 2.1: Simplified Forrester based diagrams of a) the Wetzel and Neckles (1986) model 
(WN86) and b) Vgrass. The diagrams show the primary differences between the models 
while not showing each model in its entirety. In the WN86 model biomass directly limits 
photosynthesis while in Vgrass photosynthesis is limited by leaf geometry and shoot density.
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hereafter be referred to as WN86.

WN86 models the average behavior of a population of plants spread over a given area. 

Vgrass models an individual plant but is, basically, a  scaled down version of a spatially 

averaged model. WN86 and Vgrass include the effects of light and temperature on photo

synthesis but are different in how photosynthesis is limited by shoot biomass. Shoot biomass 

in WN86 is limited by a parameter set to an observed upper-limit on above ground biomass 

for Zostera marina (150 g C m-2 ). As shoot biomass approaches 150 g C m-2 , photosyn

thesis is limited through a feedback equation. If shoot biomass reaches, or becomes greater 

than 150 g C m-2 , photosynthesis is stopped. In contrast, the Vgrass model grows individ

ual leaves and the biomass of each leaf is used to compute leaf geometry. Leaf length does 

not decrease optical depth. Leaf lengths and shoot density are combined with Julian day, 

leaf width, and latitude to compute a shading factor. The computed shading factor is used 

to reduce the light available for photosynthesis. Biomass ultimately limits photosynthesis 

but through geometry and not a model parameter. Since there is no parameter that directly 

limits leaf growth, leaf growth becomes an emergent property (Cowan et al., 1994). The 

emergent nature of leaf growth should be the result of the interaction between leaf geom

etry and self shading. This behavior is assumed to be of critical importance in order to 

observe changes in leaf length, and thereby biomass, based on changes in the surrounding 

environment.

Another difference between WN86 and Vgrass is tha t Vgrass splits leaf carbon into a 

mobile carbon variable and a structural carbon variable (Figure 2.1). Leaf photosynthesis 

contributes to the leaf mobile carbon pool which is used for leaf respiration and which can
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be translocated to the meristem. Carbon allocated to leaf structure, from the meristem, 

cannot be brought back into the mobile carbon pool and is lost when the leaf is abscised. 

Leaf carbon in WN86 can be translocated to root/rhizome but the flow is unidirectional. 

Leaf carbon is also lost to grazers, leaf respiration, and leaf mortality. Leaf caxbon in Vgrass 

is zero when no leaves are attached. A leaf is started by translocating meristem carbon into 

structural leaf caxbon.

Translocation from above-ground tissue to the root/rhizome is limited by root/rhizome 

biomass identically in each model: there is a parameter, based on spatial limitations, that 

limits below ground biomass. However, root/rhizome caxbon in Vgrass can be translocated 

from the root/rhizome to the meristem to support leaf growth or increased respiration 

requirements. Root/rhizome respiration in the two models is identical.

Since Vgrass simulates the emergence and growth of individual leaves, a method was 

needed to time leaf initiation. Emergence for the season’s first leaf, and subsequent leaves, is 

based on a time-temperature clock of degree-days. This method has been used in other grass 

models to predict plant phenology (Kiniry and Bonhomme, 1991; Dofing 1995; Saaxikko and 

Carter, 1996). The determination of when a leaf stops growing and when it is abscised is 

based on a leaf’s integrated daily production-to-respiration ratio. Each event occurs when 

the leaf’s P:R  ratio falls below a target value set by a corresponding controlling parameter 

(defined later).

Vgrass is an incremental step in seagrass modeling by moving from spatially averaged 

models to an individual based model. Incremental step is used here literally since the con

struction of Vgrass is based on the models of Wetzel and Neckles (1986), and Verhagen
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and Nienhuis (1983). Vgrass is literally a scaled version of its ancestors. W herever possible 

equations and parameters from the published models were scaled to an individual plant. 

Photosynthesis is based on data from Dennison and Alberte (1986) and general! plant phys

iology data axe taken from Nobel (1991). Vgrass is based on published mo»dels for two 

reasons. First, the published models are based on and validated against observational data; 

reusing their formulations simplifies the validation of Vgrass. Second, it is a_ssumed that 

the amount of detail from the models and from the Dennison and Alberte (1986) study is 

sufficient for the research goals of this study.

2.3 Model Equations

2.3.1 The environment

The physical environment includes fight, water depth, water temperaturre, and fight 

attenuation due to water column attenuation and population self shading. Equations and 

parameter values for the environment axe from Wetzel and Neckles (1986) and axe fisted in 

Table 2.1.

Temperature

Tc(fjd) — Tavg \ TaTnp COS i ? (T*  - 25) (“C) (2.1)

Photosynthesis and respiration axe functions of temperature. Tem perature is also used 

to track degree-days (an integration of time and tem perature).
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Table 2.1: Definitions and values of model parameters. Environmental values are typical of 
the southern Chesapeake Bay USA, and identical to Wetzel and Neckles (1986).

Sym bol P u rp o se V alue U n its

E n v iro n m en ta l
Tavg Temperature average 16.25 °C
Tamp Temperature amplitude 13.75 °C
2avg Tidal depth average 1.1 m
2amp Tidal depth amplitude 0.4 m
PP-i -*■ avg Photoperiod average 11.75 Hr
PPamp Photoperiod amplitude 2.25 Hr
P  A R avg PAR average 28.25 E m-2 day-1
PARamp PAR amplitude 16.75 E m-2 day-1
K d Water column attenuation - 1 m-1

T im e
Tjd Julian Day l..n Day
T~hr Hour of the simulation 1..X Hr
Tfird Hour of the day 1..24 Hr

P  ho tosyn thesis
L CA Leaf carbon to area conversion 0.035 mg C mm~2
Qpl Photosynthetic temperature coeff. 1.08 -
K-ec Photosynthetic carbon conversion 0.0015 mg C (jlE ~1
R-Cjtiqx Maximum rate of reaction center 2.0 x l0~12̂ iE hr-1
al Leaf aging coefficient 0.5 -
m Chharea slope 6.1 xlO-15 mm2 chi-1
b Chharea intercept -7 .5 xlO-13 mm2

R esp ira tio n
Q rl Leaf Respiration coefficient 1.04 -
Jmax Maximum leaf age 70 Days
LRmax Maximum leaf respiration 0.00054 mg C mg C-1 hr-1
Q rr Root respiration coefficient 1.05 -
Qrm Meristem respiration coefficient 1.05 -
RRmax Maximum root respiration 0.00054 mg C mg C-1 hr-1

Maximum meristem respiration 0.00054 mg C mg C-1 hr-1
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Tidal Height

Z^Tfrr) — Z avg s Zamp  s in
2ir

12A Tfir (m ) (2 .2)

Tidal height varies water column depth above the plant. Since light is attenuated in the 

water column (eq. 2.6) it affects light attenuation.

The following equations are for photoperiod (PP(rJ£f)) and daily PAR (PAR(rjd)). 

PAR(Tjd) is daily total irradiance and is used with PP(rj^) in equation 2.5 to compute 

an instantaneous rate at the airrwater interface.

Photoperiod

PP{Tjd) =  PPavg ~  < PPamp COS
27r 
365 Tjd (hr) (2.3)

Daily PAR

PAR{Tjd) -  P A R avg - P  A R arnp cos
2ir
365 Tjd ( E m 2 day l ) (2.4)

PAR at the air:water interface

7T
COS

P P (r jd)
('Thrd ~  12) > (fiE m - s l ) (2.5)

The positive sign indicates non-negative numbers. Values computed as less than zero, 

become zero.

Self shading

Jacobs (1979) shows a relationship between leaf length and shoot density but the re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THE VG RASS MODEL 19

co

Figure 2.2: Diagram of 3-D self shading model. Each rectangle represents one plant. Solar 
elevation and azimuth (after refraction at the surface) is shown with the solid line drawn 
from base of the plant at the origin. The line intersects a  plant (3rd from the left) which is 
shading the plant at the origin. Its shadow is shown in light gray and shades 50% of the 
origin plant.

quirement here is to compute a shading factor as a function of leaf geometry and shoot 

density. A literature review for shading studies did not reveal any empirical relationships 

directly applicable to this study, so an elementary model of shading was developed.

Shading is estimated from a 3-dimensional representation of an eelgrass bed where rect

angles represent individual plants. All rectangles stand vertical and have their surface areas 

normal to north and south (Figure 2.2). The rectangles are rigid and stationary; they do 

not bend over for current velocity effects nor do they track the sun. Each rectangle is placed 

randomly (in x and y) in the virtual bed by selecting two random numbers between 0 and 

1000 mm (the bed size is 1000 x 1000 mm). The orientation of the bed places the origin 

(0,0,0) at the north west corner. An additional rectangle, which will get shaded, is placed at 

the origin and a second additional rectangle is placed in space to receive 100% of available
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light. Daily irradiance is integrated on both of these rectangles as follows.

Julian day and latitude are used to compute sun elevation and azimuth angles at 3 

minute intervals (time interval, not degrees of arc) from first light to noon. The 3 minute 

interval was chosen by first trying larger intervals and then reducing interval size until 

repeated shading calculations returned similar results. Refraction of light at the air-water 

boundary is computed using Snell’s Law (Kirk, 1994). At each interval a  shadow is computed 

for the shaded rectangle. Shading neighbors axe found by intersecting their locations with a 

line that runs from the origin to the refracted point of entry into the water (Figure 2.2); the 

closest rectangle on this fine is selected. The distance to the closest shading neighbor, the 

geometries, and the solar zenith, are used to compute the percentage of area that is shaded 

on theshaded blade. Irradiance is integrated for both theshaded andunshaded blades from 

first light to noon (symmetry of the irradiance function is assumed for afternoon to dark). 

Light collected on the shaded blade is divided by the light collected on the unshaded blade 

and yields a fraction of fight collected for that day. This was repeated for all combinations 

of shoot density, leaf width, leaf length, Julian day, and latitude given in Table 2.2.

For each combination, 300 different bed configurations were averaged. The only thing 

tha t changed within the bed configurations was the placement of the individual leaves; 

placement was randomized. The value of 300 was chosen by increasing the number of 

combinations until the computed average changed less than 1% from trial to trial. Results 

were placed in a 5-D lookup table.

Vgrass gets the shade factor (5) from the 5-D lookup table where shoot density, leaf 

width, leaf length, Julian day, and latitude are the table ordinates. The values for each
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Table 2.2: Ordinate values used to compute the shading array. Values extend beyond 
published values so that linear interpolation can be done within array boundaries.

P a ra m e te r V alues U nits

Shoot density 10, 100, 500, 1000, 1500, 2000, 3000, 5000, 
7500, 10,000, 12,500, 15,000

shoots m-2

Leaf width 0.1, 0.5, 1, 2, 4, 6, 10, 15, 20, 25, 30, 40 mm

Leaf length 10, 50, 100, 250, 500, 750, 1000, 1250, 1500, 
2000, 2500

mm

Julian day 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
120,130, 140, 150, 160, 170, 180

day

Latitude 30, 37, 40 °N

ordinate are listed in Table 2.2; a 5-D linear interpolation is used for look-ups that do not 

match ordinate values. The ranges of these values axe slightly beyond published ranges so 

that interpolation remains inside the ordinate ranges. Each leaf is opaque which may result 

in an over estimate of shade.

PAR at the leaf’s surface can now be computed. This is also the amount of light reaching 

a PSU (Photosynthetic Unit) since the attenuation of light as it passes from the leafs surface 

to the PSU is not considered.

PAR at leaf surface

P A R leaf = Sel{KdZ(Thr)}+logC^iW )j (^E m-2 s- i )  (2.6)

Equation 2.6 attenuates surface irradiance (P A R sec) through plant self shading (J) and
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Figure 2.3: Average, Amplitude and Phase of Tpsir- The cosine form was chosen so that 
the phase number indicates the Julian day of the positive peak.

water column attenuation (K^). The result is the instantaneous light available a t the leaf’s 

surface.

2.3.2 Controlling Parameters

Vgrass has 25 parameters that can be varied to manipulate plant behavior. Table 2.3 

shows each of the parameters, their purpose, their value for the nominal configuration, and 

their dimensional units. The set of values in this table will be collectively referred to as the 

nominal configuration. Except for Degree-days-first-leaf all of the parameters are used in 

triplets to compute a T variable (fourth column). An example equation and plot is shown 

in Figure 2.3.

r d d f  determines how many degree-days will pass before the first leaf of each growing 

season is allowed to grow. Degree-days is an integration of time and temperature and is
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Table 2.3: Controlling parameters for the nominal configuration. Except for Degree-days 
first leaf each T variable is computed from three of the controlling parameters as in Figure 
2.3. Space is used in the table to highlight the grouping.

P a ra m e te r N o m in a l U nits T V ariab le

Degree-days first leaf 6 °C Day r  DDF

Degree-days next average 150 °C Day
Degree-days next amplitude 65 °C Day Tdd
Degree-days next phase 240 Days

Shoot density average 1075 Shoots m-2
Shoot density amplitude 360 Shoots m-2 Tsd
Shoot density phase 250 Days

Leaf width average 5 mm
Leaf width amplitude 0.1 mm IV
Leaf width phase 180 Days

PSU density average 750 108 PSU m m -2
PSU density amplitude 200 108 PSU m m -2 r  psu
PSU density phase 60 Days

PSU antenna average 450 Chi P S U '1
PSU antenna amplitude 20 Chi P S U '1 r  ANT
PSU antenna phase 360 Days

Stop leaf P:R  average 3 Ratio
Stop leaf P:R amplitude 5 Ratio Fsto p
Stop leaf P:R phase 180 Days

Abscise leaf P :R average 9 Ratio
Abscise leaf P :R amplitude 4 Ratio Fa b s
Abscise leaf P:R phase 300 Days

Shoot:Root average 4 Ratio
ShootrRoot amplitude 0.3 Ratio Fs r
Shoot:Root phase 50 Days
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used as a tem perature clock in plant models for predicting phenological development in 

maize (Kiniry and Bonhomme, 1991), baxley (Dofing 1995), and spring cereals (Saarikko 

and Carter, 1996). Degree-days are integrated when the tem perature is greater than 5 °C.

r £> o establishes when the next leaf will be allowed to start growing. When a new leaf is 

initiated, whether it be the first leaf of the season or a  subsequent leaf, two things happen. 

The current value oi T dd is placed into a target variable and the integrator for degrees 

is set to zero. Degree-days is integrated until the T dd target is reached. At that instant 

the next new leaf is allowed to grow. Tdd establishes, through temperature and time, the 

plastichrone interval.

T s d  establishes the current density of plants. This variable is used in the calculation of 

self shading and to scale the biomass of the individual plant to an areal estimate.

r iv defines the width of a leaf that is about to s ta rt growing. When a new leaf is started, 

based on Td d -, the width of the new leaf is set to the current value of this variable.

r p su  defines the number of PSU’s mm -2  that new leaf will have. The current value of 

r psu  is assigned to a new leaf as it is started (just like Tw) and does not change over time 

for the leaf. This variable allows PSU density to change on a seasonal basis, but only from 

leaf to leaf.

T a n t  defines the number of additional chi that will be added to a PSU for use as antenna 

chi. Just like T p su , the value is assigned to a new leaf as it is started and does not change 

over the life of the leaf.

T s t o p  defines the P:R ratio at which the leaf changes status from growing to mature. 

This value is assigned to a new leaf as it is started. At midnight of each day, total daily
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production and respiration for the leaf are compared to the value of T s t o p  that was assigned 

to the leaf. If the leaf P:R ratio is equal to or less than this value, the status of the leaf 

is changed from growing to mature. When a leaf reaches the status of mature, the growth 

equations for the leaf are no longer computed.

r .4£ s defines the P:R ratio at which the leaf is abscised from the plant. This is just 

like Fs t o p  except that the status of the leaf changes from mature to dead. At this point 

the leaf variables axe no longer computed and its mass no longer contributes to biomass 

calculations.

T s r  defines the plant’s target shoot-to-root ratio. At each step in the simulation 

is compared to the plant’s current shoot-to-root ratio. If the plant’s shoot-to-root ratio is 

less than Fs r , root growth is limited (the reverse is also true). If the difference between 

the two ratios is small, neither shoot nor root growth is limited.

2.3.3 Photosynthesis

Photosynthesis in the WN86 model is based on production vs. irradiance curves from 

observational data. To support requirements for future applications of the Vgrass model 

a slightly more sophisticated, but empirical, photosynthesis model was derived. The goal 

was to build a model of elementary chlorophyll (chi) dynamics so production vs. irradiance 

curves axe a function of the number of PSU’s and the number of antenna chi molecules 

added to a PSU.

The photosynthetic component of Vgrass is based largely on data from Dennison and 

Alberte (1986). Data axe from Zostera marina plants growing over a depth range of 0.5 m
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to 7.0 m and with, sizes simila r  to those found in the lower Chesapeake Bay (Orth and 

Moore, 1986). Data are taken from plants that span a range of high to low light avail

ability; this should allow the model to replicate a full range of photosynthetic adaptation. 

Photosynthetic data from other studies was not included to simplify validation.

Computing photosynthesis starts  with converting leaf structural carbon and the car

bon content of chi to leaf area. First, converting structural caxbon to leaf area is based 

on 1.6 dm 2 gm -1 DW (Dennison and Alberte, 1986). It is converted to mg C DW using 

0.38 mg C mg-1  tissue (Short 1987) and is multiplied by 1.5 to factor in a metabolic con

struction cost (Poorter and Villar, 1997). The conversion factor, Lc a , is 0.035 mg C mm-2 . 

Even though a metabolic construction cost is added, this is still within the margin of pub

lished data for Zostera marina (Dennison and Alberte, 1982). Second, leaf carbon allocated 

to chi is computed from 833 g C (mol chi-1 ) (Nobel 1991), the leaf’s PSU density (Lpsu), 

and the amount of chi used for antenna (L.^jvr); these were assigned from Tpsu  and ^ a n t  

when the leaf started. From these two factors, leaf caxbon is converted to leaf axea (Aieaf ). 

Since leaf width was assigned when the leaf first started, length is calculated and used later 

for self shading.

From Aieaf  and Lp s u  the to ta l number of PSU’s in the leaf axe known. A relationship 

between the number of PSU’s and the amount of fight energy they can harvest is needed. 

This is done by estimating an effective PSU axea based on 2.75 to 4.25 mg chi dm-2  (Den

nison and Alberte, 1986) and from estimates that a PSU is comprised of 150 to 700 total chi 

molecules (Nobel 1991). From these factors, and appropriate unit conversions, the effective 

axea of the PSU’s in the leaf is:
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Leaf Chi Effective area

27

Achi = ™-^AieafLpsu(D ANT  +  150) j  -f- b (mm2) (2.7)

The coefficients in equation 2.7 axe based on the assumptions: 1) that a PSU will have 

no less than 150 chi molecules, and 2) that the relationship between chi quantity and axea 

can be approximated as linear (See table 2.1 for parameter values).

A photosynthetic rate (P g ) is computed by multiplying A chi by PA R ieaf .  Saturation 

in the production vs. irradiance curve is a function of the number of PSU’s in a leaf and 

the maximum photon processing rate of a reaction center; 1 photons every 5 milliseconds 

(Nobel, 1991). Caxbon from photosynthesis is placed into the leaf mobile caxbon state 

variable. Additionally, there is a feedback in the model so that if leaf mobile caxbon becomes 

excessive, photosynthesis is limited (Bidwell, 1974; Lambers et al. 1998).

Figure 2.4 shows production vs. irradiance curves for various PSU densities and PSU 

antenna quantities. These curves exhibit behavior as shown in Dring (1982) and axe numer

ically similar to those in Dennison and Alberte (1986). The photosynthetic model achieves 

this behavior based on a simple empirical model but is sufficient for the Vgrass model. Chi 

dynamics axe much more complex than this.

As in Verhagen and Nienhuis (1983) an age function (Gs) is applied to decrease leaf 

productivity with time. Zimmerman et al. (1995) show that photosynthesis does not change 

with leaf age. Decreasing production with age, while not specifically calibrated for this 

purpose, also simulates epiphytic growth which reduces light at the leafs surface (Penhale,
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Figure 2.4: Model gross production, vs. irradiance curves based on (a) leaf area and
(b) chi content computed from the photosynthetic equations. Solid line based on 
2,000 x 108 PSU mm~2 with 550 antenna chi. Dashed line based on 2,000 x 108 PSU mm-2 
with 200 antenna chi. Dot-dash based on 2,000 x 108 PSU mm~2 with 100 antenna chi.

1977). The effect of temperature on photosynthesis is also modeled as in Verhagen and 

Nienhuis (1983) and the same coefficient for 0  is used here. A coefficient to convert the 

photosynthetic rate to carbon production, K Ec » is based on 8 Einsteins fixing 1 mole of 

CO2 (Nobel, 1991). Production is:

Production

P  =  K EcPGGsQ{p r 20) (m g C h r " 1) (2.8)

2.3.4 Respiration

Respiration is computed for each growing and mature leaf, the meristem, and 

root/rhizome tissue. All respiration equations follow the form of Verhagen and Nienhuis 

(1983). Carbon for leaf respiration is taken from leaf mobile carbon and the equation for leaf 

respiration has an additional term so that respiration increases with age (equation 2.9). Ad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THE VGRASS MODEL 29

ditionally, root respiration changes with the photoperiod (Zimmerman and Alberte, 1996). 

Roots become aerobic 1 hour after the beginning of the day’s photoperiod, and become 

anaerobic 0.5 hrs after the end of the photoperiod. When the roots are anaerobic they 

respire at 65% of their aerobic rate. Respiration is based on the carbon content of the com

ponent (Cc), a maximum respiration rate for the component (Rmax), and a temperature 

coefficient ( O r ).

Respiration

R  = Cc RmaxO%c - 20) x ^ -  ( m g C h r - 1) (2.9)
Jrnax̂

Leaf only

2.3.5 Allocation

The flows of caxbon between state variables axe: 1) leaf mobile caxbon to/from meristem 

caxbon, 2) meristem caxbon to leaf structural carbon (leaf growth), 3) meristem caxbon 

to/from the root/rhizome.

The flow of caxbon between leaf mobile caxbon and the meristem is a simple gradient 

flow based on Minchin et al. (1993). Leaves with high production have a net flow of caxbon 

to the meristem even though night time respiration requirements may require the flow to 

reverse.

The flow of caxbon from the meristem to leaf structural caxbon is based on the growth 

equation from Verhagen and Nienhuis (1983). Growth is limited if meristem carbon is not 

available or if the current plant shoot-to-root ratio is higher than  the desired, shoot-to-root 

ratio which set by Vs r -

The flow of caxbon from the meristem to the root/rhizome is based on the below ground
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growth equation from Verhagen and Nienhuis (1983). Root/rhizome growth can be limited 

by three physical constraints: the availability of carbon from the meristem, the current 

plant shoot-to-root ratio and Ts r : and spatial limitations on root growth (from W N86).

ITsk is used as in Grace (1997) to simply allocate carbon to leaf growth or root/rhizome 

storage based on the plant’s current shoot-to-root ratio.

The flow of carbon from the root/rhizome to the meristem is a simple formulation so 

that if meristem carbon falls to a certain level, root/rhizome carbon can be moved into the 

meristem. The equations that move carbon between the meristem and root are calibrated 

such that the meristem always has carbon. If caxbon begins to build up in the meristem, 

it is transported to the root. If meristem carbon is low, caxbon is translocated from the 

root. Ultimately, allocation is dependent on the desired shoot-to-root ratio and spatial 

limitations.

2.4 Vgrass Validation

Nearly the entire Vgrass model was built on equations and coefficients from the mod

els of Verhagen and Nienhuis (1983) and Wetzel and Neckles (1986). These models were 

validated against data  from natural systems. Since this model reuses their equations and 

coefficients and none of the coefficients were altered to work in this model, validation of 

these same equations and coefficients would be redundant. Photosynthetic equations were 

based on literature estimates, mainly from Dennison and Alberte (1986) and Nobel (1991). 

Performance of the photosynthetic model was numerically similar to data in Dennison and 

Alberte (1986) and is shown in Figure 2.4; this similarity verifies the photosynthetic equa
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tions.

Validation of the integrated models was taken in two steps. First, simulation code 

which initiated, grew, and abscised leaves was monitored to ensure it modeled the leaf 

phenology. Second, a calibration step was added to show that the model can replicate 

biomass curves from a third model, BWM99 (Buzzelli et al. 1999). The BWM99 model 

contains an updated version of the WN86 model as a sub-component of a much larger 

ecosystem model. The biomass curves from BWM99 are considered to be more accurate 

(Wetzel, personal conversation) than those from the WN86 model.

2.5 Vgrass Calibration

For calibration, the controlling parameters (Table 2.3) were adjusted so that biomass 

data from Vgrass and BWM99 were similar. The growth and loss of individual leaves causes 

Vgrass biomass to fluctuate (Figure 2.5); similarity involved a visual approximation of the 

Vgrass biomass trends in relation to the BWM99 biomass data. Also, Vgrass performance 

was carefully watched so that, for instance, leaf age and the number of leaves growing did 

not fall outside published data. Essentially, biomass data needed to be comparable while 

other plant chaxacteristics remained within reported ranges.

In a natural seagrass bed multiple shoots can originate from one plant; in Vgrass, each 

shoot is considered to be an individual plant. Biomass from Vgrass and BWM99 is compared 

in Figure 2.5 on both a plant and areal basis. Shoot density data from Moore (1996) is used 

to scale the BWM99 data down to a plant and, likewise, to scale the Vgrass plant up to an 

areal estimate. Figure 2.6 shows that the nominal simulation is stable over 5 years. That
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Table 2.4: Metrics are computed from the second year of the simulation. Ranges of values 
are reduced to minimum, average, and maximum values. NPP is Net Primary Production. 
BIO is the peak biomass obtained during the year. RMS % biomass error is computed as 
in equation 2.10 but with a modification (see text).

M etric M in A vg M ax U n its
First Shoot 70 Julian day
Plastichrone 8 13 30 Days
Leaf Length 20 26 33 cm
Leaf Age 20 28 49 Days
LAI 1.6 5.2 2 —2 m m
Leaves 22 leaves y -1
NPP Plant 294 mg C y -1
NPP Pop. 343 g C m“ 2 y 1
BIO Plant 124 mg C
BIO Pop. 149 g C m - 2

RMS AG 28.4 RMS % biomass error (MOD)
RMS BG 12.5 RMS % biomass error (MOD)
RMS Plant 26.9 RMS % biomass error (MOD)

is, the biomass peaks from year to year a re  similar in magnitude, and there is no evident 

trending.

Table 2.4 lists performance metrics collected from the second year of the simulation. 

These were collected for comparison to published data and are used later to compare differ

ent Vgrass runs. The calculation for RMS % biomass error is done slightly different from 

standard practice. Computing RMS % biomass error based on equation 2.10 lead to rather 

high values. Since biomass from Vgrass fluctuates while the BWM99 biomass is relatively 

smooth, every data point leads to an increase in the summed error. The resulting number 

quantifies the amount of deviation but gives no indication as to whether or not the trend 

in the deviations follows the BWM99 da ta . To capture the trend a slight modification is 

made to equation 2.10. If Vgrass biomass is greater than BWM99 biomass, the % differance
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Figure 2.5: Biomass from the nominal configuration compared to BWM99 model biomass. 
O utput from the BWM99 model shown as dashed (smooth) line. Output from the nominal 
configuration in black/gray (jagged) lines, a) Above-ground and c) below-ground biomass 
of an individual plant, b) Above-ground and d) below-ground biomass of a  square meter 
of seagrass bed. The Vgrass model simulates individual leaves instead of lumping their 
biomass into one state variable. The growth and abscission of the individual leaves causes 
the biomass to fluctuate. Biomass from the single plant is multiplied by shoot density 
(Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Figure 2.6: Biomass plot of the nominal configuration showing stability over 5 years (i.e. 
there is no evident trending).

is added in the summation. If Vgrass is lower than BWM99 biomass, the % difference is 

subtracted. This results in a value that captures the ability of the Vgrass model to follow 

the trend of the BWM99 even though there may be large excursions. Ideally the positive 

and negative exclusions would average to zero. The resulting values axe presented in table

2.4 for above-ground biomass (AG), below-ground biomass (BG), and for AG and BG col

lectively. Since the below-ground component is modelled in similar fashion to WN86, the 

% error is lower than that experienced by the above-ground calculation.

Vgrass plant biomass is typical for the southern Chesapeake Bay. O rth and Moore (1986) 

show an areal biomass of 300 g C m-2 . Using a shoot density of 1,200 shoots m-2 and the 

0.38 g C (g tissue DW)-1 (Short, 1987), peak plant biomass is ca. 95 mg C plant-1 . Given 

that the biomass data from O rth  and Moore (1986) was based on an average, Vgrass plant
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Figure 2.7: Nominal configuration leaf growth, a) each bax represents the start date (left 
edge), growth stage (left shaded area), mature stage (right unshaded area), and abscission 
(right edge), b) fines indicate the start date (x axis) and the final length (y axis) of the 
leaf.
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Figure 2.8: Nominal configuration whole-plant production vs. irradiance plots based on leaf 
area (a) and chi (b). Each line represents 24 hrs of data; the hysteresis is due to production 
differences between morning and afternoon. The numbers at the end of each line indicate 
the Julian  day of the second year of simulation from which the data were taken.

total biomass (Figure 2.6) is nearly identical.

Figure 2.7a shows leaf longevity and, through overlapping bars, that no more than 3 

leaves are attached at a time. Longer plastichrone intervals are seen in the winter and 

spring seasons (Figure 2.7b and leaves grow to a longer length during the peak of the 

growing season. Figure 2.8 shows how a  and P mai  through the year. The changes are 

due to Vpsir and r a n t - These curves show a hysteresis effect that is due to a feedback in 

Vgrass th a t limits photosynthesis if leaf mobile carbon exceeds a parameter specified value. 

Production in the afternoon can be limited if production was high earlier in the day and the 

plant could not allocate the mobile carbon fast enough to the roots or to new leaf growth.
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Table 2.5: RMS % Biomass error for model parameters. Error is % biomass change averaged 
from 10% increase and 10% decrease in the parameter value.

S ym bol P a ra m e te r  fu n c tio n E r r o r
Photosynthetic temperature coefficient 233

Q rl Leaf Respiration coefficient 232
K EC Photosynthetic carbon conversion 57
RCmai Maximum rate of reaction center 54
3 max Maximum leaf age 51
LRmni Maximum leaf respiration 50
Lca Leaf carbon to area conversion 49
al Leaf aging coefficient 45
m Chlrarea slope 43
Oftft Root respiration coefficient 36
Q rm Meristem respiration coefficient 29
b Chlrarea intercept 25
RRmax Maximum root respiration 6
RMjnai Maximum meristem respiration 6

2.6 Sensitivity Analysis

Parameter sensitivity was computed using Root Mean Square (RMS) percent change in 

biomass (Equation 2.10). Average RMS error, based on Swartzman. and Kaluzny (1987), 

due to a 10% increase and 10% decrease in each parameter’s value is shown in Table 2.5.

E rror  = \ Y  ( ^ n 0 > ( £ ^ ^ )  aT00 (RMS % Biomass error) (2.10)
t=i

In equation 2.10, the summation occurs on hourly intervals for th e  second year of the 

simulation rim. B nom(t) represents the biomass at time t  for the nom inal rim, and B(t) 

represents biomass during the sensitivity run.

Table 2.5 shows the results of RMS error and the percent biomass change for the model’s
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constant parameters. The table is sorted in order of decreasing RMS % biomass error. The 

two most sensitive parameters, Q p l  and Q r l , are temperature coefficients for photosynthe

sis and leaf respiration. Q p l directly affects the only source of carbon input for the model, 

and 0 p l  affects a major source of carbon loss in the model. The next parameters in the 

table, Ke c  and RCmax directly affect the conversion of light to carbon and the maximum 

rate of a reaction center. Like Q p l , these parameters play a direct role in carbon acquisi

tion. Generally, since the models that Vgrass is based on reflect sensitivity to temperature 

and light it is not surprising that Vgrass is also sensitive to the same.

Table 2.6 shows the results of RMS % biomass error for the controlling parameters. 

The values used for the controlling parameters are listed in thenominal column of Table 

2.3. Since these parameters control model behavior, it is desirable that the model show 

a moderate level of sensitivity to these parameters. It is interesting to note that the first 

three parameters directly affect timing events during the plant’s life cycle. Taken together 

these 3 parameters affect when a leaf starts growing, stops growing, and is abscised. A 10% 

change (36 days) in either of these parameters has more impact on the RMS error than, 

for instance, changing the number of chi in the PSU. This suggests that the model is more 

sensitive to event timing than to the averages or amplitudes of the paxameters. This should 

be expected given the seasonal variation in temperature and light and the need to time 

plant events in phase with these variations. Leaf width average appears low in the table 

(leaf width average, 22 RMS % biomass error) while leaf width phase and amplitude axe 

at the very bottom. While leaf width affects LAI, and ultimately self shading, it does not 

appear to be a major influence on leaf biomass. The nominal value for leaf width is 5 mm.
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Table 2.6: RMS % Biomass error for each, of the controlling parameters. Error is % biomass 
change averaged from 10% increase and 10% decrease in the parameter value.

P a ra m e te r  fu n c tio n U n its E r ro r
Stop leaf phase Days 85
Abscise leaf P:R phase Days 58
Degree-days between phase Days 55
PSU density average 108 PSU m m -2 51
Stop leaf P:R amplitude Ratio 50
Abscise leaf P:R average Ratio 50
Stop leaf P:R average Ratio 48
PSU antenna average Chi PSU "1 45
Degree-days between average °C Day 43
Shoot density average Shoots m-2 38
Shoot density amplitude Shoots m-2 36
PSU density amplitude 108 PSU m m -2 33
Shoot density phase Days 33
Degree-days between amplitude °C Day 32
Abscise leaf P:R amplitude Ratio 32
PSU antenna phase Days 31
Leaf width average mm 22
PSU density phase Days 22
Shoot:Root average Ratio 21
Degree-days to first leaf °C Day 13
PSU antenna amplitude Chi PSU "1 13
Shoot:Root amplitude Ratio 6
Shoot:Root phase Days 6
Leaf width phase Days 6
Leaf width amplitude mm 0
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Table 2.7: Comparison of Vgrass and da ta  from O rth and Moore (1986) at two different 
shoot densities. D ata from Orth and Moore were estimated from figures. Plant weights 
were converted to carbon using 0.38 g C (g tissue DW)-1 .

Orth and Moore Vgrass

Shoot Density 1100 2500 1075 2500 Shoots m -2
Leaf Length 40 20 33 27 cm
Max Biomass (Plant) 120 80 124 90 mg C
Max Biomass (Areal) 133 200 149 233 g C m-2

2.7 Model Application

O rth and Moore (1986) show year-to-year changes in a seagrass bed after a die-off of 

seagrass at an inshore site. The die-off was not evident at a nearby offshore site and the 

die-off was presumed to be caused by a ”certain period” of high temperature. In the yeax 

after the die-off, shoot density was higher while leaf length was shorter, and above- and 

below-ground biomass increased. In the year following the recovery, shoot density and leaf 

length reverted to pre-die-off values (Moore, personal conversation). These year-to-year 

changes in density, leaf length, and biomass are compared here with the Vgrass model.

The nominal configuration of Vgrass has similar shoot density (1,075 shoots m-2 aver

age) to the shoot density in O rth  and Moore (1986) before the die-off 

(ca. 1,100 shoots m-2 ). For comparison, the controlling parameter for shoot density was 

changed to 2,500 shoots m~2 in the Vgrass model. Output from Vgrass was compared the 

observed data at the two shoot densities. Metrics that can be compared between Vgrass 

and the observed data are shown in Table 2.7.

In a qualitative comparison of the observed data  and Vgrass output there is agreement
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Table 2.8: Response of Vgrass simulation metrics after a change in shoot density. Metrics 
are computed from the second year of the simulation. Ranges of values are reduced to 
minimum, average, and maximum values. NPP is Net Prim ary Production. BIO is the 
peak biomass obtained during the year.

Nominal Configuration High-Density Configuration

M etric M in A vg M ax M in A vg M ax U n its
First Shoot 70 70 Julian day
Plastichrone 8 13 30 8 13 30 Days
Leaf Length 20 26 33 18 22 27 cm
Leaf Age 20 28 49 19 26 37 Days
LAI 1.6 5.2 3.0 8.3 2 —2 m m
Leaves 22 23 leaves y-1
NPP Plant 294 207 mg C y-1
NPP Pop. 343 536 g C m-2 y-1
BIO Plant 124 90 mg C
BIO Pop. 149 233 g C m-2

in the overall trends. When shoot density is increased, leaf length decreases, plant biomass 

decreases, and areal biomass increases. Likewise, the relationship between shoot density 

and leaf length shown here is in agreement with Jacobs (1979); an increase in shoot density 

leads to a shortening of leaf length.

Figure 2.9 shows lower individual biomass but increased areal biomass with the increase 

in shoot density when compared to the BWM99 benchmark. It also shows, in similar fashion 

to Orth and Moore (1986), that an increase in plant biomass is largely due to an increase in 

below ground biomass. While leaf length is lower in the high-density configuration, it may 

not be significantly lower as shown in Figure 2.10. It was assumed that the self-shading 

model would lead to higher than expected shading. The decrease in leaf length here supports 

this (see discussion).

In the Vgrass model leaf growth is stopped when its daily production to respiration ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THE VGRASS MODEL 42

Above Ground Biomass (Plant) Above Ground Biomass (Areal)
250

200

150

50

125

100

I 75CO
Q_

O) 50 
E

25

Below Ground Biomass (Plant) Below Ground Biomass (Areal)
80

• (d)70
60

60 120 180 240 300 360

30

25

20

a . 15
Ou>
E 10

60 120 180 240 300 360
Julian Day (year 2) Julian Day (year 2)

Figure 2.9: Biomass from the high-shoot-density configuration compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) fine. O u tpu t from 
the high-shoot-density configuration in black/gray (jagged) lines, a) Above-ground and 
c) below-ground biomass of an individual plant, b) Above-ground and d) below-ground 
biomass of a square meter of seagrass bed. The Vgrass model simulates individual leaves 
instead of lumping their biomass into one state variable. The growth and abscission of 
the individual leaves causes the biomass to fluctuate. Biomass from the single plant is 
multiplied by shoot density (Moore 1996), and therefore, the areal biomass is subject to the 
same fluctuations.
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Figure 2.10: High-shoot-density configuration leaf growth, a) each bar represents the start 
date (left edge), growth stage (left shaded area), mature stage (right unshaded area), and 
abscission (right edge), b) lines indicate the start date (x axis) and the final length (y 
axis) of the leaf. The x!s represent the lengths and timing of leayes from the nominal 
configuration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THE VGRASS MODEL 44

falls below the value set by T s t o p - Likewise, a leaf is abscised when its daily production to 

respiration ratio falls below the value set by Tabs- Higher shoot density increases shading 

and causes the leaves to stop growing and abscise sooner than in the nominal, lower-shoot- 

density, case. This decreases leaf length, leaf age, and above ground biomass (Table 2.8). 

Below ground biomass for the plant is maintained, relative to a plant growing at a lower 

shoot density, since leaf growth is slowed and the root/rhizome tissue growth has not reached 

limiting values. The individual plant is smaller but when the individual plant biomass is 

multiplied to an areal basis, areal biomass is higher than the nominal case. The same 

increases (plant compared to population) axe shown with NPP and LAI.

2.8 Discussion

The objectives of this study were: 1) to build a seagrass model where plant geometry and 

shoot density axe feedback mechanisms that limit light. 2) to compaxe output of the Vgrass 

model w ith data from O rth and Moore (1986). This chapter reviewed the construction, 

validation, and sensitivity analysis for a model based primarily on two published models and 

published photosynthetic data. As with the models ancestors, Vgrass showed sensitivity to 

light and temperature. Additionally, since the model simulated individual leaves, sensitivity 

was shown to the timing of leaf events. Since the timing of leaf events is based on degree- 

days, this indirectly shows sensitivity to temperature.

The environmental equations for Vgrass were taken directly from WN86 and included 

the use of a constant light attenuation coefficient of 1 m-1 . A constant value is not realistic 

in the sense of closely modeling the natural environment. However, modeling the short-
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Figure 2.11: Shade Factor (5) as a function of LAI. Points are average 5 values for LAI 
values computed with the self shading model. 5 continues to drop for LAI values greater 
than 10.

term dynamics of IQ may not affect the long-term trends of the models behavior. Zharova 

(2001) found that using a fixed (field average) value for light attenuation resulted in model 

behavior similar to when a variable scenario was used. The same might also be said for the 

daily fluctuations of temperature which are also not typically modeled.

A 3-D model was constructed to compute self-shade based on leaf length, leaf width, 

shoot density, Julian day, and latitude. This may be a case where a simplified approach 

may have lead to similar results. Figure 2.11 shows the relationship between LAI and the 

self shade factor (5). A curve fit to these data points may have given similar results while 

eliminating the need for a 5-D linear interpolation.
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Phenology in Vgrass is based on a method used in other grass models (Dofing, 1995; 

Kiniry and Bonhomme 1991; Saarikko and Carter, 1996). Degree-days are integrated and 

the integrated value indicates the passage of time and temperature. Chemical reactions 

axe tem perature dependent and degree-days is used to capture the time and temperature 

dependence of plant growth. Vgrass uses degree-days to predict the timing of the seasons 

first leaf and successive leaves. The emergence of the first leaf occurs at the beginning 

of growing season (Julian day 70) suggesting that degree-days is an effective method for 

timing Zostera marina models. However, the use of degree-days may need to be modified for 

Zostera marina models. Figures 2.7 and 2.10 show a shortening in the plastichrone interval 

during a time in the season when temperature reaches its highest point. The shortened 

interval is mathematically correct; increased temp era tine  causes degree-days to integrate 

quickly. As a result Vgrass initiates new growth at a time in the season when growth 

may be stressed by higher temperatures. The WN86 model decreases P m a x  (based on 

field studies) when the tem perature is above 25 °C as a means to capture the temperature 

related limitation. To capture this in the Vgrass model, the degree-days integration should 

be slowed when temperatures exceed 25 °C. In Vgrass, degree-days are integrated when 

the tem perature exceeds 5 °C. Likewise, stopping the integration when the temperature 

exceeds 25 °C may result in a reasonable approximation and lengthen the plastichrone 

interval during periods of high temperature.

Controlling when a leaf stops growing and when a leaf is abscised is accomplished with 

the variables T s t o p  and Tabs- These variables establish a P:R  ratio for each of these events 

and was based on general plant physiology (Lambers et al. , 1998) since no specific published
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data were found. For each. leaf, production and respiration are integrated throughout the 

day. At midnight the ratio is calculated. Leaves meeting the P s t o p  value stop growing. 

Likewise, leaves meeting the T abs value axe abscised. The numbers used in the nominal 

configuration were selected based on a combination that allowed a reasonable leaf age. 

The average values are r57’OF=3 and I\lb5= 9 . These values indicate that a leaf will stop 

growing at a P:R ratio of 3 and immediately be abscised since the condition for abscission 

has also been reached. The value of Tabs could be anything greater 3 and still give similar 

results. Further research is needed to improve the model. In an economic evaluation, 

abscising a leaf when the P:R  ratio seems high; the leaf still provides a net income of 

carbon.

Photosynthesis in Vgrass is empirically derived from data in Dennison and Alberte 

(1986). The objective was to build a photosynthetic model wherein Pm  a x  and a , and 

thereby production vs. irradiance curves, would become emergent behaviors of chi dynamics; 

the selection of T psu  and Taa/t- The nominal model shows that this type of emergence 

is possible but with no real advantage; simple production vs. irradiance curves could have 

resulted in similar model performance. The role of chi dynamics will become important in 

a future application of Vgrass.

The data  taken from O rth and Moore (1986) in table 2.8 can be compared to self-thinning 

processes discussed in Harper (1977). As the shoot density decreases from 2,500 shoots m -2 

to 1,100 shoots m-2 , individual plant mass increases as with other plants (Harper, 1977). 

In contrast, areal biomass decreases; in other plants areal biomass increases with a decrease
3

in plant density. Harper (1977) shows that self-thinning follows w = cp~i which shows
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the relationship between plant mass (w) and plant density (p). When the relationship is 

plotted on log-log axes, -§ is the slope of the line and c is the y-axis intercept. When the 

data from Orth and Moore (1986) is used, a slope of -0.5 is computed for the two plant 

densities and weights. But since the data axe taken from two growing seasons, this value 

may not represent anything meaningful. If instead, it is assumed that the data reflect a 

’self-thinning’ pattern and the slope actually is - | ,  then 2 lines with differing c exist. As 

suggested by a shading study in Harper (1977), the transition from 2,500 shoots m-2 to 

1,100 shoots m~2, and thereby a change in c, can be explained by lower light availability 

during the second year. (A similar change in c occurs using data from Orth and Moore 

(1986) from a nearby, offshore site.) Since Vgrass qualitatively followed the data from Orth 

and Moore (1986), and light levels were the same for each case in Vgrass, a conflict arises. 

The Vgrass model also shows that LAI decreases by a factor of 2 when shoot density changes 

from 2,500 shoots m-2 to 1,100 shoots m-2 . Meanwhile, LAI for the Orth and Moore (1986) 

data changes by a factor of only 1.1. This 10% change is probably not significant since it is 

computed from rough estimates taken from small figures.

Differences in LAI for the Vgrass model can come from two sources. First, from an over

estimate of shade in the self shade model. Second, from an overestimate in the conversion 

of leaf biomass to leaf area. Both may be involved. A Vgrass leaf will stop growing when 

its P:R ratio drops below the T s t o p  threshold. This threshold will be reached sooner if 

shade is overestimated relative to the length of the leaves. An overestimate of shade relative 

to a change in LAI will cause this to happen. As well, if leaf biomass is converted to an 

overestimate of leaf size, the same will occur. The self-shading model is likely the leading
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factor since it is uncalibrated and the conversion from, leaf biomass to leaf area is based 

on published data. Whichever is the cause, it shows up in comparing leaf length between 

Vgrass and O rth and Moore (1986). In  the Orth and Moore (1986) study leaf length changes 

by a factor of 2 whereas in Vgrass (Table 2.8), leaf length changes by a  much smaller factor.

In considering Vgrass’ response to  a change in shoot density, Jacobs (1979) asserts that 

shoot density is controlled by insolation. To complicate this, nitrogen supply may play a role 

in shoot density (Short, 1983) and shoot length (Orth, 1977). Short (1983) suggests that 

the relationship between shoot density and leaf length is related to both nitrogen supply 

and light availability. The Vgrass model does not consider nitrogen dynamics in its growth 

response but is able to show the relationship between shoot density and leaf length for 

Zostera marina. This suggests that nitrogen need not play a major role in this influence. 

Concurrently, since Vgrass does not consider nitrogen dynamics in plant growth, it cannot 

suggest that nitrogen plays no role in the relationship between shoot density and leaf length. 

Harper (1977) shows data from a nutrient related study wherein changes in nutrients and

 3
shoot density follow a line of constant c in the relationship w =  cp 2 . An experiment like 

this for Zostera marina would likely confirm what Zimmerman et al. (1987) found; that 

Zostera marina growth is not likely limited by N since field N concentrations are above a 

limiting threshold.

The Short (1983) study expresses the idea that shoot density and leaf length axe related 

to an optimal strategy for harvesting sediment nitrogen and harvesting light. In O rth and 

Moore (1986) shoot density and leaf length changed after a  die-off and then changed back 

to pre-die-off values. W hat caused these responses? Is there an optimal growth strategy?
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Is It a  strategy to optimize the growth of an individual plant or that of the population? 

W hat is optimized?

Vgrass is an incremental step in seagrass modeling. It uses leaf geometry as a feedback 

mechanism to limit light availability so that above-ground biomass growth becomes an 

emergent behavior. This is a necessary feature to explore optimal growth since optimal 

implies a trade-off between a cost and benefit. The cost of adding more above-ground 

biomass to increase light harvesting must be balanced with the amount of shading it will 

cause. Vgrass was not designed to automatically find th a t balance point, but does provide 

a model to study the interaction.

Vgrass, in comparison to its ancestors, carries the assumption that Zostera marina 

growth is largely influenced by light and temperature. Vgrass makes a  contribution by 

showing that leaf phenology may be effectively modeled by incorporating a degree-days 

time-temperature clock. It is also shown that the limitation of growth through self shading 

can be modeled as a function of leaf geometry and shoot density; albeit, with a shading 

model that needs calibration. Adding these features was necessary for future use of the 

Vgrass model in studying plant growth strategies.
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Chapter 3

Combining Vgrass 

With A Genetic Algorithm

ABSTRACT

An individual based seagrass model (Vgrass) was coupled with a Genetic Algorithm 
(GA) to demonstrate the GA in combination with an ecological model. The GA method 
is described, the interface between the GA and Vgrass is defined, and the GA is used 
to optimize Vgrass controlling parameters. The goal for the GA was to minimize the 
RMS error between the biomass curves from Vgrass and a published seagrass model. 
The exercise demonstrated use of the GA for optimization but more importantly, two 
model behaviors were noticed that have important implications on model construction. 
In order for chi allocation to work properly the model had to be modified to include a 
cost factor so that allocating chi to increase photosynthetic unit density was five times 
more expensive (in terms of carbon requirements) than allocating chi as antenna chi. The 
factor of five is a  model calibration and may not represent the actual biological cost, but 
the cost factor must be included for production vs. irradiance curves to replicate natural 
behavior. This study also showed that models coupled with the GA must be carefully 
constructed to include both the cost and benefit of any modeled features. Additionally, it 
is shown how a population of GA solutions can serve as a secondary sensitivity analysis. 
The additional sensitivity analysis indicates the model’s flexibility in reaching the search 
goals of the GA.

54
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3.1 Introduction

Optimization methods have been used in ecological modeling for several beneficial pur

poses. Drynan and Sandiford (1985) show several linear algebra formulations (or models) 

that have been used to study economic and biological objectives in fisheries management. 

While economic and biological complexity lead to differing results from each of the for

mulations, the authors suggest that results can  be used together to assist the fisheries 

manager. Mohan and Keskar (1991) compare optim al management strategies based on the 

storage and release of water in a reservoir system. The reservoir system provides irriga

tion and hydropower production; operational policies for the system axe complicated by 

this dual purpose. The study showed that policy based on release targets was better that 

policy based on storage targets. Mao and Mays (1994) describe another multi-objective 

model where the goals are to minimize freshwater inflow to an estuary while maximizing 

commercial-fish harvest of five fish species. Each of these studies usesgoal programming or 

linear algebra based techniques that require th e  modeler to provide and initial guess at a 

possible solution. The initial guess can lead to solutions that are locally optimal. That is, 

the best solution, or global optimum, can be missed unless many initial guesses are tried. 

It is also notable that the goal programming approach is complex to implement when there 

axe multiple objectives in the goal.

A search algorithm, the Genetic Algorithm (GA), has been used for optimization and 

has the attribute of being a global search algorithm; there is no single first guess to limit 

the search around a local optimum. As well, thie GA has performed very well on complex 

problems (Goldberg, 1994). Mitchell (1997) prowides a brief history of evolutionary compu
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tation and the GA. In summary, evolutionary computing started  in the 1950’s and 1960’s 

using operators inspired by natural genetic variation and natural selection. This early work 

was problem specific and based mainly on mutations of a few paxent solutions to generate 

new solutions closer to the optima. Holland (1975) developed the GA as a means to study 

adaptation in nature and to bring this feature into computer science. Holland’s work in

troduced a population of candidate solutions and used selection and crossover of successful 

solutions as a means to create new candidate solutions. The method is based on natural 

selection and has been applied to many areas of science and engineering.

Goldberg (1994) cites four reasons why the GA is an attractive search and optimization 

method. 1) GA’s can solve hard problems quickly and reliably. Most of the evidence for 

this is empirical but the theory is maturing. 2) GA’s are easy to interface to existing 

simulations and models. As opposed to dynamic programming approaches which must be 

closely coupled with a simulation, the GA can exist as a separate entity with a simple 

interface to the simulation. This will be shown here later. 3) GA’s are extensible. This 

means that the GA can be used in situations where there may be several global solutions. In 

nature these solutions would be considered different species that fulfill a  certain ecological 

niche. This feature is used here and is also demonstrated in Johnson (1996). 4) GA’s are 

easy to hybridize. That is, the GA can be modified to handle problem specific features.

A search for Genetic Algorithm in the engineering and science literature will reveal 

many different applications of the GA method. In ecological modeling the GA has not 

been used as widely; which is interesting given the method’s origin. The GA has been used 

to calibrate model parameters (Wang, 1997), to study spider-web construction (Krink and
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Vbllrath,1997), and to study the spatial movements of fish (Huse and Giske, 1999). There 

axe other applications in the literature but these illustrate three different ways that a GA 

can be applied.

Wang (1997) used a  GA to optimize parameters in a rain-runoff model. To test the 

effectiveness of the GA, the author used the GA to optimize a problem wherein the optimal 

solution was already known. The GA was able to find a solution very close to the hypothet

ical optimum. Since most standard methods require an initial starting point, the author 

also combined the GA with the univariant search method. The GA predicted the starting 

point from which the standard method then found the optimal solution.

Using a GA to calibrate model parameters is actually an optimization problem that 

could be accomplished with other optimization methods. But the GA can be used for more 

complex tasks that cannot be done with classical optimization methods. This is shown in 

the following two examples.

Krink and Vollrath (1997) use a rule-based simulation and a GA to study spider web- 

building behavior. The rules for the simulation are used to define spiraling, radius, and 

looping behaviors (geometry rules) from which a cyber-spider then spins a web. The GA 

is used to optimize the web design for prey capture while considering construction cost of 

the material and the amount of skill, or time, required to build the web. A comparison 

of real and simulated webs showed no significant differences. Differences that exist might 

be explained through environmental factors such as gravity; a real spider can move faster 

going down than up; the cyber-spider did not consider the effects of gravity on movement. 

This study is an example of a complex simulation that is easily interfaced to a  GA. The
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simulation is not a set of equations which are then optimized through linear algebra or 

calculus based methods. In fact, this type of problem may be difficult, if not impossible, to 

solve with the standard mathematical methods. This is in large part due to the non-linear 

and discontinuous nature of the underlying simulation. The SIMPLEX method (Nelder and 

Mead, 1965) requires a continuous solution surface.

In another ecological application of the GA, Huse and Giske (1999) present an individual 

based fish model where the spatial movement of fish is controlled by a neural network1. 

The neural network controls reactive and predictive behaviors; reactive behaviors search for 

ideal habitat (temperature and prey) while predictive behaviors enable adaptive response 

to seasonal changes. In the second year of a fish’s life it spawns a number of offspring in 

proportion to its body size. In their study the GA is not used to optimize, per se. GA 

methods are used so that offspring are a mix of their mother’s genetic makeup and that 

of another member of the population. The new genetic makeup controls a neural network 

which determines how the offspring will respond to the environment. There is no specific 

optimization goal other than the implicit goal of survival and reproduction. The authors 

specifically cite a feature in their model, trophic feedback, that is necessary for proper model 

function. They also cite that this feature is impossible to implement with dynamic, or goal, 

programming methods2.

l A neural network takes multiple inputs such as environmental factors, processes them  by means of 
weighting factors and offsets, and provides an output response. The output response is used in this study 
to control movement of the fish in the simulated environment. The weighting factors and offset are selected 
by a GA. Neural nets can exhibit very complex behaviors while at a mechanistic level they are a simple 
combination of multiply and add functions. W hile the mechanism is simple the numbers used in the process 
have no interpret-able meaning. One cannot look at a neural net configuration and learn how the net came 
up with certain behaviors

2 these authors cite experience with goal-programming techniques in previous work.
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As for optimization, there are other methods besides the linear algebra based methods 

and the GA. There are several reasons for not choosing them . First, classical methods 

require a first initial guess which can lead to a local optim u m . An algorithm could be 

applied so that many initial guesses could be attempted systematically. This is feasible if 

there is a  limited number of p a rameters to be optimized. In  the application presented here 

there are 25 parameters that m ust be optimized and a systematic attem pt at trying various 

starting points would be computationally prohibitive. For example, if each parameter was 

tested with 10 initial guesses, there would be 1025 total initial guesses to optimize. Reducing 

each parameter to 5 initial guesses only reduces the computational burden to the order of 

1017 o p timizations. In comparison the GA is used here to find local and global optima 

in fewer than 105 simulation runs. A second reason for choosing the GA is related to the 

topography of the solution space. For example, some of the classical optimization routines 

use hill climbing methods to find the top of the hill, the optim al solution. These methods 

assume that the hill has a well defined peak on which to converge. If there is no well 

defined peak the method has trouble converging to the solution. A GA method makes no 

assumptions as to the shape of the solution space and has the ability to show a population 

of solutions wherein there may be several local optima.

In addition, other methods axe not considered here because of the broad applicability of 

the GA. Here the GA will be used to calibrate the Vgrass model; an optimization exercise. 

In Chapter 4, the Vgrass model and GA will be used to study plant allocation strategies; 

again an optimization exercise. In these optimization exercises it is desired to know if there 

is a  population of solutions close to the optimal solution as opposed to finding one solution.
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There is also a desire to use the Vgrass model in an individual based context to study 

adaptation at the scale of a population. The simplicity of the GA allows all of these studies 

to proceed with no modification to the Vgrass model and only minor changes in how the GA 

methods are used. The GA method was chosen for this study because it has been shown 

to be successful non-linear optimization. Since it works on a population of solutions, as 

opposed to a singular solutions, this feature allows for a secondary sensitivity analysis. I t  is 

not the objective of this study to demonstrate the GA as a possibly superior optimization 

method.

In this study the Vgrass model is coupled with a GA. The purpose of combining the 

plant model and search method is to enable future study of plant growth strategies. Here 

the objectives are to show how the model and GA are combined and to demonstrate how 

the GA can be used to calibrate Vgrass’ controlling parameters. To meet these objectives 

the GA method is described, the interface between Vgrass and the GA is shown, and results 

from a Vgrass/GA demonstration are reviewed. Coupling Vgrass with the GA resulted in 

some initially unexpected, but explainable, behaviors related to model construction. The 

behaviors provide insight to plant physiology and how it should be modeled in optimization 

studies.

3.2 The Simple GA

The GA gets its name because it is a method that mimics the process of natural selection 

(Holland, 1975; Goldberg, 1989 and 1994; Mitchell, 1997). No inference should be made by 

the reader that the genetic in GA is in any way manipulating the real genetics of a living
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organism. The GA is a  search algorithm; genetic is a metaphor. It is accurately termed 

a search algorithm as opposed to an optimization method since the method is capable of 

more than optimization. Optimization implies a process that computes a number, or set of 

numbers, that maximize or minimize a given function. Search has broader application in 

that it may apply to numeric and symbolic methods. For clarification, a simple symbolic 

method might use letters in a string such as AD O EPW  to describe a path  through a set 

of nodes. The first node would represent the initial state, each successive letter would 

represent changes in state until the goal W  is achieved.

The simple GA is termed as such because it works with binary values, 1 and 0. In 

biological terms these are alleles. Alleles are grouped together to form a gene and the 

combination may be used to represent a value or trait. For example, 1101 could represent the 

number 13, or perhaps the 13f/l letter of the alphabet. Genes are concatenated to become a 

chromosome. For the GA, the chromosome may be a set of numbers or symbols. A biological 

organism may have multiple chromosomes which collectively are called a genome. The 

simple GA used here has just one chromosome and the genes are used to represent integer 

values. A set of integers, or genotype, is converted to floating point numbers which are 

used to control the Vgrass simulation. A genotype, in the context of this study, represents 

a trial configuration in a search towards a goal.

The GA process starts with a population of genotypes, or individuals, where the alleles 

are randomly set to 1 or 0. Each individual is passed to a fitness function (discussed in more 

detail later) which returns a value that represents the individual’s score in its attem pt at 

reaching the goal. After the entire population has been evaluated, individuals are selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. VGRASS W ITH TH E GENETIC A L G O R IT H M  62

for crossover. Selection is based on a  weighted ramdom process wherein individuals with 

higher fitness have a higher likelihood of being selected as parents. After two individuals 

are selected as parents, there is a probability that crossover will occur. If crossover does 

not occur, the individuals are just placed into the nesxt generation. If crossover will occur, a 

crossover point is randomly selected. The crossover p o in t is the location in the chromosomes 

were a split will occur, creating a head and tail ponrtion for each of the two parents’ chro

mosomes. Two offspring are made by taking head o«f one parent and concatenating it with 

the tail of the other parent. Parents are repeatedly : selected and crossed over until another 

population of trials is produced. After crossover is complete, there is a small probability 

that each allele will undergo mutation. In this case, the allele value of 1 or 0 is switched.

Generation after generation is produced and te s te d  until the solution is found or it is 

evident that population fitness is no longer improving. Typically, the average population 

fitness is tracked and when changes from generation to generation are small or nonexistent, 

the process is stopped. The best individual from th e  last generation is usually taken as the 

solution. Since there is a population of solutions, tthe best individuals can be selected to 

see if there is a distribution of genes that lead to h igh ly  fit individuals. This will be shown 

later.

The GA method is based on a collection of processes that make extensive use of random 

numbers: the first population is generated randomly, selection is a weighted random process, 

that crossover will occur is a probabilistic event, crossover is based on choosing a crossover 

point randomly, and mutation occurs randomly. D espite the use of random numbers in 

the GA method, GA’s do converge on a solution. This is largely due to the weighted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. VG RASS W ITH  THE GENETIC ALG O RITH M  63

random process of selecting parents. The theory behind how the GA method converges is 

summarized in Goldberg (1994) and Mitchell (1997). Briefly, the GA works because highly 

fit  patterns have a  higher probability of propagating from generation to generation than the 

less fit patterns. W hen highly fit patterns are selected and crossover, there is a  likelihood 

that a better pattern  will result thus increasing population fitness with each generation.

Use of the word pattern here is important. The GA only manipulates patterns of l ’s 

and 0’s based on ranking from another function; it has no information about what it is 

searching for or o p timizing. This feature gives the GA broad applicability since the same 

GA code that optimizes a plant simulation can also be used to optimize a turbine engine. 

The only difference between the two problems, from the viewpoint of the GA, is the number 

of alleles used in the chromosome.

3.2.1 Vgrass-GA Interface

This following section describes how the chromosome’s l ’s and 0’s are interpreted and 

evaluated by a fitness function. Table 3.1 lists the controlling parameters for the Vgrass 

model along with the values for the nominal configuration and each parameter’s dimension. 

These are the parameters that must be read from the genes of the chromosome.

Table 3.1 also shows the upper and lower limits for each parameter; the GA does not 

search outside of these ranges. Each range is divided into an integer number of intervals 

where the interval size is set by the minimum resolution. The upper and lower limit and 

the resolution are used to determine how many binary digits, or bits, will be needed to 

represent all possible values. For instance, 3 bits can represent 8 unique values such as the
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Table 3.1: Vgrass/GA Controlling parameters interface. The GA search range is defined 
by the lower and upper limits. Resolution is used with the limits to determine how many 
bits are necessary to represent the range of values. The 25 sets of bits are concatenated 
into a 209 bit chromosome which is manipulated by the GA. Floating point numbers are 
computed from the 25 binary numbers and passed to the GA via a fitness function. The 
parameter set used for the nominal (NOM) configuration is listed along with values chosen 
by the GA (GA) in the GA demonstration.

Parameter
Lower
Limit

Upper
Limit

Min.
Res. Bits NOM GA Units

DD first leaf 2 10 0.1 7 6 8 °C Day
DD next avg. 0 350 1.0 9 150 200 °C Day
DD next amp. 0 100 1.0 7 65 83 °C Day
DD next ph. 0 365 1.0 9 240 311 Days
Shoot dens. avg. 100 12,500 10.0 11 1075 1109 Shoots m-2
Shoot dens. amp. 0 2,000 10.0 8 360 364 Shoots m-2
Shoot dens. ph. 0 365 1.0 9 250 235 Days
Leaf width avg. 1 25 0.1 8 5 4 mm
Leaf width amp. 0 12 0.1 7 0.1 0.8 mm
Leaf width ph. 0 365 1.0 9 180 178 Days
PSU dens. avg. 10 5000 10.0 9 750 2300 108 PSU m m '2
PSU dens. amp. 0 500 1.0 9 200 303 108 PSU m m '2
PSU dens. ph. 0 365 1.0 9 60 307 Days
PSU ant. avg. 0 650 2.0 9 450 383 Chi P S U "1
PSU ant. amp. 0 300 1.0 9 20 39 Chi P S U "1
PSU ant. ph. 0 365 1.0 9 360 20 Days
Stop P:R avg. 0.5 30 0.1 9 3.0 7.8 Ratio
Stop P:R amp. 0 10 0.1 7 5.0 5.1 Ratio
Stop P:R ph. 0 365 1.0 9 180 198 Days
Abscise P:R avg. 0.5 16 0.1 8 9.0 11.3 Ratio
Abscise P:R amp. 0 8 0.1 7 4.0 3.9 Ratio
Abscise P:R ph. 0 365 1.0 9 300 249 Days
Shoot.-Root avg. 0.2 10 0.1 7 4.6 4.6 Ratio
Shoot:Root amp. 0 5 0.1 6 0.3 1.5 Ratio
Shoot:Root ph. 0 365 1.0 9 50 330 Days
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integers 0 through 7. A multiplier and an offset, based on the upper and lower limits, are 

used to convert the integer into a real value. This process is the same for all 25 controlling 

parameters and results in a set 25 real numbers for input to a fitness function.

The fitness function takes the set of param eters and passes them to the Vgrass model. As 

the model runs, the fitness function tracks key -variables in the simulation tha t are needed to 

evaluate fitness. For instance, if the goal is to optimize biomass, the fitness function tracks 

biomass. At the end of the simulation run th e  fitness function returns, in this example, 

the highest biomass attained during the simulation. This fitness value is used by the GA 

during the selection process mentioned earlier.

In summary, the interface between the GA and the Vgrass simulation amounts to three 

steps. 1) convert the binary chromosome into 25 controlling parameters; 2) the fitness func

tion passes the parameters to Vgrass and monitors Vgrass’ progress; 3) after the simulation 

is complete the fitness function returns a fitness rank to the GA method. This process is 

repeated for each individual in the population before the GA performs the selection process.

3.2.2 GA Demonstration

In this demonstration the GA searches for a configuration of Vgrass controlling param

eters that fulfill the goal of minimizing the RIVES error between Vgrass’ biomass and that of 

the seagrass component of the model of Buzzelli, et al. (1999) 3. Shoot density from Moore 

(1996) was used to convert the BWM99 data to  the scale of an individual plant.

The fitness function computed the RMS errors for above ground and below ground

3Hereafter the Buzzelli, et al. (1999) model is referred to as the BWM99 model.
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biomass during the second year of the simulation run. RMS error was computed as:

Error =
8760 /  \  z

T  ^ # 51^ /99  M — Rvgrass{t)J (RMS error) (3.1)

RMS error for above ground and RMS error for below ground were added and returned 

as a fitness rank to the GA. In order to compare plants that would be morphologically 

similar, the  search limits for 6 of the controlling parameters were limited to values similar 

to the nom inal configuration. Allowed ranges were: leaf width (4-6 m m ), leaf w idth average 

(0-1 mm), leaf width phase (175-185 days), shoot density (975-1175 shoots m-2 ), shoot 

density average (330-390 shoots m -2 ), and shoot density phase (225-275 days). Without 

these limits  it is possible for the GA to find other leaf width and shoot density combinations 

that meet the fitness goal. These plant configurations would not be as directly comparable 

to the nominal configuration since the leaf width and shoot density could be very different.

For this study a population was comprised of 450 individuals; the number was chosen 

subjectively. With a population of 450 individuals, maximum (or minimum) fitnesses were 

observed in  less than 200 generations; all fitness tests were run  for 200 generations for 

similarity. Figure 3.1 shows the maximum and average fitnesses of the population over the 

200 generations. The average population fitness decreases quickly a t first as individuals 

with poor fitness values are more likely to be eliminated from the population. The figure 

also shows the value of the worst individual for each population. Even the value of worst 

individual for each generation generally improves, while there is the occasional spike caused 

by m utation or a crossover that leads to a less fit individual.
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Figure 3.1: Average population fitness (dot) and worst individual fitness (x) from each of 
the 200 generations. The goal was to minimize the RMS error between the biomass curves 
from Vgrass and the BWM99 model; smaller values axe better.

After the 200 generations were completed the best individual of all the generations 

was chosen. It would seem the final generation would hold the best individual but th a t 

is not always the case. There is nothing notable about the last generation such that its 

best individual should be chosen over any other individual from any generation. If it were 

known ahead of time that value X were the best possible, computation would have ended 

with that generation. The configuration values for the best individual axe listed in Table

3.1 in column GA.

Biomass for the GA-selected configuration is similar to that of the BWM99 model and 

shows stability over a 5 year rim (Figures 3.2 and 3.3). Direct comparison of biomass from 

the GA-selected configuration and the nominal configuration was desired but not visually 

clear. Plotting the two together leads to a confusing plot of jagged overlapping lines. For 

that reason the smooth biomass plot from the BWM99 model is used as a benchmark. The
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benchmark is a useful reference since not all biomass plots (here and in Chapter 4) cannot 

use the same plotting limits.

Figure 3.4 shows leaf growth patterns that are typical except for two observations. First, 

except for one leaf, the leaves do not have a mature stage, they are abscised immediately 

after the growth stage ends. Second, leaves started in the middle of the growing season are 

shorter than those in the early and late parts of the growing season. Shorter leaves without 

a  mature stage would seem to decrease the leaf area index (LAI) but Table 3.2 shows that 

average LAI is similar to the nominal case (1.6 m2 m-2 Nominal, 1.5 m2 m-2 GA-selected). 

Also, plastichrone intervals are slightly shorter for the GA-selected configuration. (13 days 

Nomina] average, 11 days GA-selected) while the average leaf length slightly longer (26 cm 

Nomina], 30 cm GA-selected). The GA-selected configuration grows two more leaves (24 

vs. 22) while the plastichrone interval was smaller and the average leaf age was shorter 

(28 days Nominal, 21 days GA-selected).

The similarities and differences between the nominal and GA-selected plants reflect 

that there are multiple ways that the plant can be configured and still exhibit a similar 

biomass pattern. One configuration has short leaves in the middle of the growing season but 

maintains LAI by growing longer leaves in the early and later parts of the growing season. 

Leaf age is shorter but more leaves are grown by having a slightly smaller plastichrone 

interval. The differences and similarities between the two configurations show that trade

offs can be made in how the plant is configured while still showing similar biomass patterns. 

An increase in one attribute can be balanced by decreases in one or several other attributes. 

As a result the RMS error values for each configuration axe numerically similar (Table 3.2).
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Figure 3.2: Biomass from the GA-selected configuration compared to BWM99 model 
biomass. O utpu t from the BWM99 model shown as dashed (smooth) line. Output from 
the GA-selected configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass o f an individual plant, b) Above-ground and d) below-ground biomass of 
a square meter o f  seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Figure 3.3: Biomass plot of the GA-selected configuration showing stability over 5 years 
(i.e. there is no evident trending).

Table 3.2: GA-selected configuration performance metrics. The first six metrics are com
puted from the second year of the simulation. Metrics with a range of values are reduced to 
minimum, average, and maximum values. NPP is Net Primary Production. BIO is the peak 
biomass. NPP and BIO are the average of peak values obtained during years 2 through 5 
of the simulation. RAIS error is computed as in equation 3.1.

Nominal Configuration GA-selected Configuration

M e tr ic M in A vg M ax M in A vg M ax U n its
First Shoot 70 72 Julian day
Plastichrone 8 13 30 6 11 29 Days
Leaf Length 20 26 33 20 30 46 cm
Leaf Age 20 28 49 18 21 27 Days
LAI 1.6 5.2 1.5 3.9 2 —2 m m
Leaves 22 24 leaves y-1
NPP Plant 294 417 mg C y-1
NPP Pop. 343 531 g C m -2 y 1
BIO Plant 124 132 mg C
BIO Pop. 149 161 g C m-2
RMS AG 16.9 17.5 RMS error
RMS BG 3.8 3.9 RMS error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. VGRASS W ITH  THE GENETIC ALG ORITHM 71

45

£  40

35

30

25

30 60 90 120 150 180 210 240 270 300 330 360

50

40

-c 30

^  20

10

0
30 60 90 120 150 180 210 240 270 300 330 360

Julian Day (year 2)
Figure 3.4: GA-selected configuration leaf growth, a) each bar represents the start date (left 
edge), growth stage (left shaded area), mature stage (right unshaded area), and abscission 
(right edge), b) lines indicate the start date (x axis) and the final length (y axis) of the 
leaf. The x’s represent the lengths and timing of leaves from the nomin.il configuration.
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Other trade-offs can be shown. The GA-selected plant is more productive on both an 

individual and areal basis, while the m axim um  biomass’ are relatively similar (Table 3.2). 

This draws the question, how can a plant be unore productive while maintaining a  similar 

biomass? Table 3.1 shows that the GA-selected configuration has a PSU density 3 times 

greater than the nominal configuration. Also, lleaf growth in the GA-selected configuration 

is stopped at a much higher P:R ratio (7.8 GA-selected, 3 Nominal) and abscised a t a  

much higher P:R ratio (11.3 GA-selected, 9 Nom inal). The cases where T ab s is greater 

than Tsto P indicates that a mature leaf stage is not needed to meet the required goal. In  

these cases the value Tabs is virtually meaningless, the leaf is abscised immediately after 

it stops growing. The increase in chi, and stopoping and abscising the leaves early (at high 

P:R ratios) enhances the net primary production  metric. At the same time, stopping and 

abscising the leaves earlier helps to maintain tlhe biomass pattern.

Figure 3.5 shows production vs. irradiancee curves from 4 days of the second year of 

simulation. The curves show a hysteresis effectt which is due to differences in morning and 

afternoon production rates. The difference in jproduction may not be due to differences in 

illumination. They are more likely due to higbner levels of mobile carbon in the leaf which 

causes a feedback to inhibit photosynthesis.

3.2.3 Goal Sensitivity

A feature of the GA search method is th iat a population of solutions is used in the 

search. In any given population there will be sseveral to many individuals w ith high fitness 

values. Looking across all generations, a group of highly fit individuals can be culled to see
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Figure 3.5: GA-Selected configuration whole-plant production vs. irradiance plots based 
on leaf area (a) and chi (b). Each line represents 24 hrs of data; the hysteresis is due to 
production differences between morning and afternoon. The numbers at the end of each fine 
indicate the Julian day of the second year of simulation from which the data were taken.

if parameter values are converging to unique optimal values or if some range of variability is 

evident. Variability for a  parameter could indicate that the param eter is not important to 

the overall fitness value. Expressed another way, a range of acceptable values could indicate 

that the model is not sensitive to that parameter in terms of reaching the GA’s goal.

In this section individuals with a fitness value that was within 10% of the best fitness 

(the GA-selected configuration) are culled from the entire set of individuals tested over 

200 generations. Since it is possible for one individual to exist in several generations, 

the population was reduced to individuals with unique param eter values. Persistance of 

an individual through several generations only means that it was selected and may have 

crossed over with itself. Controlling parameter values from the resulting 121 individuals 

were combined to make histograms (Figure 3.6).
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Figure 3.6: Histograms of 121 controlling parameter configurations pulled from the top 
10% of individuals over the entire set of 200 generations. The histograms reveal th a t many- 
different combinations of parameter values lead to high fitness. Y-axis units is number of 
individuals.
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The histograms for leaf width average, amplitude, and phase and shoot density average, 

amplitude, and phase axe not considered here since they were artificially limited to small 

ranges- Of the remaining 19 histograms, 13 show a bi-modal signature. This indicates 

that two ranges of values for that parameter can lead to high fitness. Since 13 of the 19 

histograms have this behavior it is difficult to show if parameter ranges can be grouped 

together for the purpose of illustrating trade-offs. For instance, PSU density average has 

two distinct ranges of values as does degree-days to first leaf. It is difficult to know if high 

PSU density is related to the first or second set of histogram bars for degree-days to first 

leaf.

In contrast, 4 of the 19 histograms have pronounced single histogram baxs indicating 

that high fitness is achieved within a small range of values for that param eter. Also, 6 

of the 19 parameters have at least one set of histogram baxs that shows a wider range of 

acceptable values for high fitness.

Another 6 of the 19 parameters show a narrow range of possibilities for achieving high 

fitness. This narrow range suggests that the ability of the GA to achieve the goal is more 

sensitive to these values. For compaxison, axe these the same param eters that axe also 

highest in the model’s sensitivity analysis? The answer is no.

Stop leaf phase is first in the sensitivity list of controlling param eters (Table 2.6) but 

has two histogram peaks in Figure 3.6p. There axe 5 paxameters that have one histogram 

bar in Figure 3.6 indicating that the selection range for these parameters is narrow in order 

to attain  high fitness. Meanwhile these same 5 paxameters axe distributed throughout the 

Vgrass model sensitivities in Table 2.6. This shows that while Vgrass m ay be sensitive to a
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parameter in the classical sensitivity analysis, that parameter may not have a similar effect 

when the GA and Vgrass are used in combination.

Biomass data from each of the 121 configurations was averaged together and is shown in 

Figure 3.7. The biomass curve shows perturbations caused by the growth and abscission of 

individual leaves even though 121 plants have been averaged. The perturbations are due to 

degree-days between average, amplitude, phase (Figure 3.6k-m) each having a narrow range 

of selection. This further demonstrates that the timing of leaf events is critical to matching 

the biomass curve of the BWM99 model.
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Figure 3.7: Average biomass of the top 121 configurations compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) line. Output from the 
configuration in black/gray (jagged) lines, a) Above-ground and c) below-ground biomass 
of an individual plant, b) Above-ground and d) below-ground biomass of a square meter 
of seagrass bed. The Vgrass model simulates individual leaves instead of lumping their 
biomass into one state variable. The growth and abscission of the individual leaves causes 
the biomass to fluctuate. Biomass from the single plant is multiplied by shoot density 
(Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. VGRASS W ITH  THE GENETIC ALG O RITH M  78

3.3 Discussion

To summarize, this chapter covered the integration of Vgrass with a GA. The GA 

method was described and the Vgrass-GA interface was shown. To demonstrate the Vgrass- 

GA combination the GA was used to select Vgrass controlling parameters that lead to a 

minimum in RMS error between biomass in the Vgrass model and biomass from the BWM99 

model. Initially the GA was introduced as an optimization method but in this project one 

the GA’s features was used to show the GA to be capable of more than optimization. Since 

the GA works with populations of solutions, a subset of highly fit individuals was culled and 

the individuals were compared. The result was a sensitivity analysis of Vgrass’ controlling 

parameters in relation to their selection ranges and goal fitness.

When the GA and Vgrass were first used together a couple of unexpected, but explain

able, behaviors were noticed. First, equation 2.7 (computing chi area) does not consider the 

relative cost differences of chi used for building reaction centers and chi used for antenna. 

When the GA selected PSU density and PSU antenna parameters, the values resulted in pro

duction vs. irradiance (PI) curves that did not have the typical shape. Normally production 

increases in proportion to light until the photosynthetic apparatus is saturated. When irra

diance exceeds the saturation level, production remains fixed with increases in irradiance; 

E-max- At high irradiance production can be inhibited and can decrease with an increase 

in irradiance. In early GA selected configurations production increased in proportion to 

irradiance, but only up to P max- The photosynthetic apparatus never saturated. Likewise, 

there was never an overabundance of chi. This behavior is explainable in the context of chi 

construction cost (carbon) and the benefit (or energy) derived from the investment.
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Chi is part of the structural leaf carbon and therefore imposes a construction and res

piration cost. Higher concentrations of chi in a leaf result in a more expensive leaf with a 

higher respiration rate. The construction and respiration costs kept the GA from selecting 

chi near its upper limit; energy collection was matched for energy requirements. This trade 

off affected total chi, but there was no trade off in how chi was allocated to increase PSU 

density or to increase the number of antenna chi. Since there was no difference in the cost 

of adding more reaction centers or adding more antenna chi, the GA chose to add more 

chi as reaction centers to meet energy collection requirements. As a question, if there is no 

difference in cost in allocating chi to the reaction center or antenna, then why build PSU’s 

that saturate? Saturation implies that there is an excess of chi absorbing light that cannot 

be processed by the number of reaction centers. The excess chi increase the respiration load 

without the benefit of increased energy collection. The simple chi allocation model shows 

that it is more expensive to build chi into a PSU than  to add chi as antenna.

In  order for the GA to select PSU paxameters such that saturation was observed in the 

P vs. I curve, a carbon cost factor was introduced. After trial and error it was found that if 

reaction center chi was 5 times more expensive than  antenna chi, the GA would select PSU 

parameters that lead to more normal P vs. I curves. This cost factor is a calibrated factor 

and may not reflect the relative cost differences of chi in real plants. The chi allocation 

model is not realistic in how the cost of chi is computed; it only accounts for the amount of 

carbon in a chi molecule and not the supporting apparatus required for electron transport, 

etc. Figure 3.5 shows the P vs. I curve for the GA-selected model.

W hile a cost factor of 5 did lead to more normal P  vs. I curves, how the cost factor
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is applied may not be totally correct. Table 3.1 shows that the PSU density for the GA- 

selected configuration is 3 times greater than the nominal configuration (2,300 vs. 750 x 

10s PSU mm-2 ). If the cost factor of 5 is reasonable, then the total cost of chi and its 

corresponding respiration load needs to be increased. In a biological plant it is not just a 

m atter of chi allocation bu t also a m atter of additional proteins and lipids required to build 

PSU complexes and supporting membranes (Bjorkman, 1981). Here the allocation of chi is 

greatly simplified and represents the total cost of the various supporting materials.

In another instance of combining the GA and the Vgrass model, unrealistic biomass 

values were noted in the leaf biomass. Above ground biomass values were 3 to 6 orders 

of magnitude higher than expected. Structural leaf carbon was within expected ranges 

while the mobile carbon pool was accumulating large amounts of carbon. There was no 

mathematical limit on the mobile carbon concentration and with the goal of maximize 

biomass (this involved testing for future application of the Vgrass-GA combination), the 

GA used this mathematical feature to attain the goal. To fix the problem a feedback was 

introduced to limit photosynthesis as the concentration of mobile leaf carbon increased. 

This is an example of how a model may behave well under normal circumstances even 

though the model may have underlying structural problems. Proper use of a GA with a 

model can be a way to find these problems. Given the proper goal, the GA will exploit 

mathematical weakness’ in the model in order to achieve the goal.

These two examples illustrate something about the plant and the model. In all cases 

where a plant can experience a benefit (more leaf area to harvest more light) there must 

also be a cost (increased shading). Analyzing plant behavior without regard to both would
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be short-sighted. For the model, both cost and benefit must be included or replaced with 

a more empirical relationship. Vgrass’ ancestors modeled the relation between production 

and irradiance as an empirical, but experimentally derived, relationship. Here chi dynamics 

were initially modelled in a fashion that considered the benefit of adding more chi without 

including the cost. While the formulation was functional for nominal runs, the flaw in the 

formulation was quickly revealed when an op timization criterium was applied. This was 

shown again in the case where mobile carbon built up in the leaf tissue, there was no cost 

factor to inhibit the build up of mobile caxbon.

The Vgrass-GA combination, and the results obtained from it, illustrate a different 

approach in model construction and demonstrate a fundamental benefit of applying the GA 

method to an ecological simulation. First, Vgrass was constructed so as to consider the cost 

and benefit of adaptable features (leaf area vs. shading). Vgrass’ ancestors are built mostly 

from a combination of empirical functions that re-integrate experimental findings. Their 

approach provides insight to what-if scenarios, but predictions on how a plant responds to 

environmental change axe limited to predictions in biomass change (this is not a negative 

critique, the models fulfill their purposes). When Vgrass was run at two shoot densities 

(Chapter 2), Vgrass was able to show a reduction in leaf length due to the reduction of light 

availability. This relationship was shown because Vgrass modeled the cost and benefit of 

adding more leaf tissue.

To the second point, adding the GA to a model provides additional insight to the model’s 

construction and its ability to replicate natural behavior. Two cases were cited above 

showing that an early version of Vgrass included only one half of the cost-benefit relationship
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for chi dynamics and in the accumulation of unobile carbon in leaf tissue. Applying the GA 

to a model that performed well in the nomi inal case quickly revealed that the model was 

missing half of the cost-benefit feature. Also, when the cost-benefit feature is complete, the 

Simulation-GA combination provides a metfliod to exercise the cost-benefit relationships. 

In the case of Vgrass the cost-benefit relatioonship in chi dynamics was used to show that 

chi added to the reaction center must cost 5 times that of chi added as antenna.

There is another benefit to applying the G3A to an ecological simulation. The GA carries 

a population of potential solutions through m an y  generations. During this process a family 

of individuals are found that achieve high firtness values. In this study 121 individuals in 

90,000 trials were found to have a fitness sco:*re within 10% of the best individual. Plotting 

histograms of the controlling parameters revewded that some parameters had a narrow range 

in the selection process, some had multiple r-anges of selection, and others revealed a wide 

range of suitable values. This suggests two tthings. First, for highly non-linear ecosystem 

simulations there may be no point in a ttem pting  to optimize model parameters in the 

classical sense of finding one optimal solutiom. In terms of expressing the solution surface 

as a contour, or topography, there may not b»e a global maximum in the form a well defined 

peak. Instead, highly fit solutions may be fo «und along a mountain range. The GA is able 

to indentify the mountain range of solutions^ while the solution surface may have cliffs or 

discontinuities. In contrast, standard methodis look for a peak on a surface that cannot have 

discontinuities, or cliffs. For instance, the S« imp lex method requires a  continuous surface 

and a unique minimum in the vicinity of the ssearch. (Nelder, 1965). Second, the histograms 

reveal a secondary sensitivity analysis that caan be performed on the simulation. In the case
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of matching biomass curves, the histograms reveal that some parameters can vary by more 

than others in achieving high fitness value. But it cannot be captured in a classical % RMS 

error calculation. Some of the parameters display multiple ranges of acceptable values. In 

this study it was shown that the parameters for computing degree-days between leaves were 

important to m atching biomass curves. This makes intuitive sense since matching a biomass 

curve would depend on the t iming of leaf initiation.

In this study the Vgrass model was combined with a GA to, mainly, show how the GA 

could be implemented as an op timization routine. In the process of combining the GA 

and Vgrass model several important things were illustrated. First, combining the GA and 

model can be used to reveal information regarding plant physiology. Here it was shown that 

in order for chi parameter selection to yield realistic production vs. irradiance curves, the 

cost of allocating chi to increase PSU density is 5 times higher than the cost of allocating 

chi for use as antenna chi. Second, model construction is critical to proper function with 

the GA since the GA can exploit weakness in model design. Here is was shown that while 

the model behaved well in normal circumstances, the GA made use of a weakness in the 

model in order to achieve its goal. Third, when using a GA to optimize a model, a family 

of solutions can indicate parameters that are key in reaching the optimization goal. The 

parameters that are important to reaching the goal, may not be the parameters that exhibit 

higher sensitivity in a standard sensitivity analysis.
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Chapter 4

Testing Plant Growth Strategies

ABSTRACT

The Genetic Algorithm (GA) is used with the Vgrass model to demonstrate a com
putational framework capable of testing plant growth strategies. The GA searches for 
configurations of Vgrass controlling parameters best able to meet the following strategies: 
optimization of relative growth rate, optimization of biomass, optimization of net primary 
production, and longevity. The first three strategies are tested at the spatial scale of an 
individual plant and at the scale of a population of plants; comprising 6 total tests. The 
final strategy is based on plant longevity. For each of the seven tests, the GA selected 
distinct configurations of controlling parameters and each configuration lead to distinct 
plant growth patterns. The plant growth patterns reveal that the simulated plant is 
following the given strategy even though the growth patterns are not biologically realistic. 
The ability to find distinct configurations for each growth goal demonstrates the ability 
of the computational framework to address this type of problem. Ecologically, the results 
indicate that plants do not pattern their configuration or allocation behaviors to attain 
some maximization of growth strategy.

86
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4.1 Introduction

Plant allocation hypotheses span a full range of time scales from short, on the order of 

days, to evolutionary, on the order of generations.

In a short time scale, the multiple limitation hypothesis predicts that plant morphol

ogy and physiology adjust so that all resources become simultaneously limiting (Kastner- 

Maresch and Mooney, 1994; Bloom et al. 1985). Kastner-Maresch and Mooney (1994) favor 

the hypothesis that allocation occurs at a short time scale by stating that a plant must adapt 

an allocation strategy to varying short-term environmental conditions. As an example that 

allocation can change on a short time scale, Zimmerman et al. (1996) show that limpets 

grazing on the epidermis of Zostera marina induce caxbon limitation and alter allocation. 

Grazed plants lose less than 10% of their tissue by volume and do not produce lateral 

shoots in the spring-summer period of maximum growth. The relatively small amount of 

tissue that was lost supported CO2 uptake and photosynthesis. T hat small amount must 

be important since plants that are not grazed allocate 800% more caxbon to their roots.

Gleeson and Tilman (1992) review assumptions and predictions made by a model of 

optimal allocation and include an important point: short-term hypotheses only consider 

plant behavior at a single point in time. Any observation of non-optimal behavior fails to 

consider that the plant may be optimizing allocation for long-term benefits. That optimal 

allocation occurs over a longer scale is supported by Ahra.ha.msnn and Caswell (1982). Plants 

show adaptations for nutrient uptake, water conservation, tem perature tolerance, pollinator 

attraction, herbivore avoidance, seed dispersal, etc. One of these factors cannot be singled 

out as the crucial item for determining allocation. All constraints must be considered. As
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an example, some plants sacrifice growth for reproduction (Poorter and Garnier, 1999). 

This is also supported by Grime (1977) noting that shade tolerant plants that show little or 

no response to increased shading are probably more concerned with long-term survivability 

in deep shade than with maximizing light interception and dry-matter production.

At an even longer time scale, studies have shown that plants allocate resources in a 

fashion that leads to evolutionary stability for the species. At this scale studies include: 

allocation to attractive structure for animal-pollinated flowers (Sakai, 1993), allocation to 

flower and seed size (Sakai and Sakai, 1995), seed vs. clonal reproduction (Takada and Naka- 

jima, 1996; Sakai, 1995), allocation to growth and reproduction (Kozlowski and Janczur, 

1994), and optimal strategies for the fraction of individuals entering diapause in a stochas

tic environment (McNamara, 1994). This list is not exhaustive but complements the list of 

allocation studies to help show the range of time scales that have been considered. Each of 

these studies use mathematical models to show optimal allocation and support the model 

with biological evidence.

It seems logical to assume that a plant must optimize allocation at all time scales since 

there is biological evidence to support hypotheses at each of the different time scales. Op

timal allocation typically refers to allocation that supports an evolutionary stable strategy 

(Givnish, 1983a). Evolutionary stability requires allocation to reproduction vs. allocation 

to plant growth so it is easy to understand why long-term models focus on allocation to 

reproduction. But what is optimized at the shorter time scales? Givnish (1983a) presents 

a collection of papers that show the importance of form and function in the growth cycle 

and competitive abilities of the plant. Studies range from the scale of stomata! conductance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. TESTING P L A N T  G RO W TH  STRATEG IES  89

(Givnish, 1983b), to the orientation and support of leaves in the canopy (Fisher, 1983). 

Growth is necessary to support the higher level purpose of reproduction (Lambers et al. 

1998), but how is allocation optimized at ail of the various time and space scales? I f growth 

is the goal, what is the strategy for optimizing growth and how can it be tested?

The goal of the study was to build and demonstrate a computational framework capable 

of testing several plant growth strategies. The computational framework consists of an 

individual based model of Zostera marina (Vgrass) coupled with a Genetic Algorithm (GA). 

In this combination, the Vgrass model has a set of parameters that control allocation and 

the GA searches for a combination of these parameters necessary to a tta in  one of several 

plant growth goals. Further, the objective of this study is not to demonstrate a mechanism 

that supports a plant growth strategy, but instead to explore the result of a plant growth 

strategy.

4.2 Vgrass/GA

The Vgrass model has 25 controlling parameters which are formulated into nine T vari

ables (Table 2.3). Of the nine variables, seven directly afreet allocation: leaf initiation 

( r d d f  and r d o ) ,  leaf growth and abscission (T s t o p , and Tabs)) light harvesting (Tpsu , 

and Tajvt)? and shoot to root ratio (F sr)- Each of these variables affects allocation empiri

cally since no attempt is made to explain the underlying plant mechanisms. The assumption 

is made that regardless of the underlying mechanisms, these variables adequately reflect the 

outcome of the mechanisms.

Chapter 3 describes how the GA is interfaced to the Vgrass model. For these studie’s,
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there axe two notable differences. First, the fitness function in Chapter 3 measured the 

RMS error between the biomass of the simulation and that o f the BWM99 model. Here 

that fitness function is replaced with seven fitness functions (each done separately) that 

evaluate the model’s ability a t attaining each of the given goals (these goals, or strategies, 

are enumerated later). The second change allows the model’s performance to be evaluated 

at the scale of a plant or a population of plants. In evaluating the model at the plant 

scale, the shoot density selection range is limited to: shoot density (975-1175 shoots m-2), 

shoot density average (330-390 shoots m-2 ), and shoot density phase (225-275 days). This 

effectively eliminates these variables as part of the selection process since shoot density is 

virtually the same for all model evaluations. This forces the individual plant to coexist 

in a population of identical peers at a shoot density similar to that of seagrasses in the 

southern Chesapeake Bay (Moore, 1996). Results from these model runs represent those of 

an individual plant. In order to evaluate the allocation strategy a t the population level, the 

shoot density parameter selection, is open to the full range given in Table 3.1. This allows the 

model’s performance to be evaluated at the scale of a  population and parameter selection 

reflects the result of a population of plants attempting to achieve the goal collectively. This 

is not to suggest that a population of natural plants could work together but the results of 

the computational exercise do have implications for human m anipulated plant populations.

The four growth strategies are: optimization of relative growth rate (RGR), optimization 

of biomass (BIO), optimization of net primary production (N PP), and longevity (LONG). 

RGR, BIO, and NPP are optimized for an individual plant and for a population of plants. 

Longevity is tested as an optim ization goal for a population wherein persistence is the
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measure of fitness. In total, there are 7 strategies tested. The selection of these goals is 

subjective. Biomass, relative growth rate, and net primary production are growth measure

ments commonly reported in the plant literature. In contrast to these goals, allocation to 

achieve longevity is a good enough approach. That is, a plant only needs to be good enough 

in its allocation strategy to attain  population persistence: energy spent on being too much 

better is wasted. The criteria used for longevity is for the simulation to run for 20 years.

Due to the different ranges of biomass data from each of the seven strategies it was 

impossible to use identical axis limits on all of the biomass plots. While it would be desirable 

to compare all of the model output to the nominal run of Chapter 2, the resulting plot would 

not be legible due to the excursions caused by individual leaves growing and abscising. To 

help the reader compare data, biomass data from the BWM99 model (Buzzelli et al., 1999) 

is used here as a benchmark and appears as a dashed line in the biomass plots. This was 

done since data from the nominal configuration was similar to that of the BWM99 model.

For all of the Vgrass/GA rims, 200 generations of 450 individuals were accomplished. 

The selection of these numbers is subjective but based on observations of how long it took 

for the GA to find an optimal solution. The number of individuals in a population was 

a multiple of 30 to balance the computational load over 30 CPU’s running in parallel. 

The number of generations and individuals are actually larger than necessary to ensure 

that an optimal solution was found within the 200 generations. The best individual, or 

set of parameters, was then rim through the simulation program again in order to collect 

performance metrics and data  for a standard set of tables and plots.
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4.3 Optimization Goal:

Maximization of Relative Growth Rate

RGR was computed as the percent change in total plant biomass over a 2-week period. 

RGR values for the 26, 2-week periods of the second simulation year were added together and 

returned to the GA as the fitness rank. The GA searched for a configuration of controlling 

parameters best capable of maximizing the sum of the 26 RGR values.

Two tests were rim. First, RGR was maximized for an individual plant (RGR-Plant), 

that is, biomass for an individual plant was used in the RGR calculation. In  the second run 

RGR was maximized for a population of plants (RGR-Population). In this case biomass 

for the individual was scaled up to a population by multiplying biomass w ith shoot-density. 

Results of the searches are shown in Table 4.1.

4.3.1 Strategy One: RGR-Plant

Biomass for the RGR-Plant configuration is about half that of the nominal configuration 

(Figures 4.1 and 4.2). In comparing metrics in Table 4.2 to the nominal configuration, 

the average RGR-Plant plastichrone interval is longer (19 days vs. 13 days), leaf lengths 

are shorter (17 cm vs. 26 cm), average leaf age is shorter (16 days vs. 28 days), leaf area 

index (LAI) is lower (0.9 m2 m-2 vs. 1.6 m2 m-2 ), and the number of leaves grown is less 

(16 leaves vs. 22 leaves).

Leaves for the RGR-Plant configuration are shorter, younger, and fewer in number than 

the nominal configuration (Figure 4.3). PSU density and antenna chi counts (Figure 4.4a
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Table 4.1: GA selected configurations for RGR-Plant and RGR-Population growth, strate
gies compared to the nominal configuration. Each column represents the individual that 
attained the highest fitness for the indicated test. Since the binary chromosome is 209 bits 
long, the individual should be the best of 2209 or on the order of 1062 possible configurations.

P a ra m e te r N o m in a l
R G R
P lan t

R G R
P o p . U n its

Degree-days first leaf 6 6 9 °C Day

Degree-days next average 150 237 315 °C Day
Degree-days next amplitude 65 98 8 °C Day
Degree-days next phase 240 226 67 Days

Shoot density average 1075 991 506 Shoots m -2
Shoot density amplitude 360 364 234 Shoots m -2
Shoot density phase 250 226 12 Days

Leaf width average 5.0 8.3 8.9 mm
Leaf width amplitude 0.1 9.3 7.4 mm
Leaf width phase 180 172 264 Days

PSU density average 750 3879 2671 108 PSU m m -2
PSU density amplitude 200 406 391 10s PSU n u n '2
PSU density phase 60 120 241 Days

PSU antenna average 450 552 463 Chi PSU-1
PSU antenna amplitude 20 42 58 Chi PS U "1
PSU antenna phase 360 63 26 Days

Stop leaf P:R average 3.0 27.1 16.8 Ratio
Stop leaf P:R amplitude 5.0 0.9 0.7 Ratio
Stop leaf P:R phase 180 262 164 Days

Abscise leaf P:R average 9.0 15.2 14.5 Ratio
Abscise leaf P:R amplitude 4.0 0.1 7.9 Ratio
Abscise leaf P:R phase 300 237 276 Days

ShootrRoot average 4.0 2.7 0.4 Ratio
Shoot:Root amplitude 0.3 0.2 1.3 Ratio
ShootrRoot phase 50 15 344 Days
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Figure 4.1: Biomass from the RGR-Plant configuration compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) line. Output from 
the RGR-Plant configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and d) below-ground biomass of 
a square meter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.2: RGR-Plant configuration performance metrics. The first six metrics are com
puted from the second year of the simulation. M etrics with a range of values are reduced to 
minimum, average, and maximum values. NPP is Net Primary Production. BIO is the peak 
biomass. NPP and BIO are the average of peak values obtained during years 2 through 5 
of the simulation.

Nominal Configuration RGR-Plant Configuration

M etric M in A vg M ax M in A vg M ax U n its
First Shoot 70 70 Julian day
Plastichrone 8 13 30 13 19 46 Days
Leaf Length 20 26 33 8 17 58 cm
Leaf Age 20 28 49 14 16 21 Days
LAI 1.6 5.2 0.9 2.0 o —2 m m
Leaves 22 16 leaves y-1
NPP Plant 294 263 mg C y_I
NPP Pop. 343 310 g C m-2 y-1
BIO Plant 124 79 mg C
BIO Pop. 149 98 g  C m -2

80

60

a -4 0
OO)

20

365 730 1095 1460 1825
Julian Day

Figure 4.2: Biomass plot of the RGR-Plant configuration showing stability over 5 years (i.e. 
there is no evident trending).
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and 4.4b) axe higher but not high enough to elevate NPP or BIO. N PP for the plant and 

areal basis are lower for the RGR-Plant configuration (263 mg C y-1 and 310 g C m-2 y-1 

vs. 294 mg C y-1 and 343 g C m~2 y-1 )- Peak biomass for the plant and areal basis are 

also lower (79 mg C and 98 g C m-2 vs. 124 mg C and 149 g C m~2).

Leaf length for the RGR-Plant configuration is shorter during the growing season (Fig

ure 4.3) while leaf width reaches 15 mm (Figure 4.4c). This leads to a smaller LAI and 

allows more light to reach the leaf’s surface. Figure 4.5 shows a  peak irradiance ap

proaching 600 /iE m-2 s-1 , while the nominal configuration peak irradiance was around 

450 fiE m—2 s_ l .

Maximizing RGR at the scale of 2-weeks calls for a strategy where biomass at the end 

of each 2-week period is greater than at the beginning. But since the RGR values for each 

2-week period are added together, biomass at the end of the year should be greater than 

at the beginning. A careful look at the d a ta  for Figure 4.2 shows th a t at the end of Day 

365 the plant abscises a leaf and causes a  biomass drop. On Day 366 when RGR begins 

to be measured for year 2, biomass starts at around 10 mg C for the plant. On the last 

day of year 2, plant biomass is near 20 mg C so that an increase is computed for the year. 

Immediately after RGR is computed for the year a leaf is abscised, so th a t biomass begins 

at a lower level for the next year.

The GA has chosen a combination of degree-days between leaves, P :R  for stopping 

growth, and P:R for abscission (Table 4.1) that produce this behavior (Figure 4.4d, e, and 

f). These factors are of primary importance when considering plant behavior along with 

the GA goal to maximize RGR. The ratios P :R  stop and P:R abscise are higher than in the
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Figure 4.3: RGR-Plant configuration leaf growth, a) each bar represents the start date (left 
edge), growth stage (left shaded area), mature stage (right unshaded area), and abscission 
(right edge), b) lines indicate the start date (x axis) and the final length (y axis) of the 
leaf. The x’s represent the lengths and timing of leaves from the nominal configuration.
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Figure 4.4: RGR-Plant configuration T variable plots. Each curve is computed from its T 
variable (Table 2.3) as in Figure 2.3.
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Figure 4.5: RGR-Plant configuration whole-plant production vs. irradiance plots based on 
leaf area (a) and clil (b). Each line represents 24 hrs of data; the hysteresis is due to 
production differences between morning and afternoon. The numbers a t the end of each 
line indicate the Julian day of the second year of simulation from which the data were taken.

nominal configuration, and the PI curves axe erratic (Figure 4.5). The erratic PI behavior 

shows that the PSU’s are over productive relative to the plant’s ability to use the carbon for 

storage or growth. Mobile carbon increases in the leaves faster than the meristem can take 

the mobile carbon and reallocate it to leaf growth or root/rhizome storage. The model has 

a feedback equation to limit photosynthesis when leaf mobile carbon reaches a parameter 

set value. The PI curves show cycling behavior as mobile carbon is overproduced and 

then used. These factors suggest that the timing of leaf events, and therefore biomass, is 

more important than balancing the leaf’s production with the p lant’s ability to use that 

production. This seems backwards compared to normal plant growth although the behavior 

is directly related to how the growth strategy is measured. The excessive production leads 

to high internal concentrations of mobile carbon and poor P vs. I curves. The simulated
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plant is using the mobile carbon pool to store excess mobile carbon so that when it is 

needed for leaf growth it is readily available; resupply from the roots is slower. In order 

to maximize fitness (relative to the goal) the leaves are abscised at the end of one RGR 

measurement period and another begins growing (Figure 4.3). This timing leads to positive 

RGR values. Growth of the new leaf can be maximized if the mobile caxbon pool contains 

readily available carbon.

The goal was to maximize RGR by adding RGR measurements every two weeks. The 

goal places emphasis on biomass and the timing of its gain and loss, not on the plant’s 

ability to balance production with the plants ability to use tha t production. Both of the 

P:R ratios { T s t o p , and Tabs) are near the high end of the allowable range indicating that 

higher values would be chosen if possible.

4.3.2 Strategy Two: RGR-Population

While plant above ground biomass for the RGR-Population configuration is somewhat 

higher than that of the nominal configuration, below ground biomass is much higher (Figure 

4.6). The configuration is stable for a 5 year rim (Figure 4.7) even though peak total plant 

biomass is roughly 4 times greater than the nominal configuration (536 mg C vs. 124 mg C), 

and biomass on an areal basis is slightly higher (170 g C m -2 vs. 149 g C m-2) as shown 

in Table 4.3.

The first leaf for the RGR-Population configuration s tarts  2 days later than the nominal 

configuration (Table 4.3) and the plastichrone interval is longer (18 vs. 13 days). Eaxly in 

the yeax leaves grow to longer lengths (up to 67 vs. 33 cm, Figure 4.8) and are wider (up to
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Figure 4.6: Biomass from the RGR-Population configuration compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) line. Output from the 
RGR-Population configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and d) below-ground biomass of 
a square meter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.3: RGR-Population configuration performance metrics. The first six metrics are 
computed from the second year of the: simulation. Metrics with a range of values axe reduced 
to minimum, average, and maximum*. values. NPP is Net Primary Production. BIO is the 
peak biomass. NPP and BIO are the ^average of peak values obtained during years 2 through 
5 of the simulation.

M e tr ic

Nominal

M in

Configur-ation 

A vg M ax

RGR-Population Config. 

M in  A vg M ax U n its
First Shoot 70 72 Ju lian  day
Plastichrone 8 13 30 12 18 48 Days
Leaf Length 20 26 33 7 32 67 cm
Leaf Age 20 28 49 14 19 27 Days
LAI 1.6 5.2 0.7 1.9 2 —2 m m
Leaves 22 14 leaves y-1
NPP Plant 294 30 mg C y-1
NPP Pop. 343 -32 g C m~2 y-L
BIO Plant 124 536 mg C
BIO Pop. 149 170 g C m " 2
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-  400

a -300  
O
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E 200

100
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Figure 4.7: Biomass plot of the RCSR-Population configuration showing stability over 5 
years (i.e. there is no evident trendimg).
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15 mm vs. 5 mm, Figure 4.10c) midyear than nominal. There are fewer leaves grown each 

year (14 vs. 22 leaves) and they abscise at a younger age (19 vs. 28 days). New leaves grow 

to shorter and shorter lengths as the season continues (Figure 4.8). Shoot density (Figure 

4.10h) is lowest during the period of the growing season when light is at its peak. The lower 

shoot density and shorter leaves help to lower LAI (0.7 vs. 1.6 m2 m -2 ) and increase light 

availability at the leaf surface (Figure 4.9) to nearly 600 fj,E m-2 s—1 (vs. 450 fiE m”2 s-1) 

during the middle of the year.

PSU density and antenna chi levels are within normal limits (Figure 4.10a and 4.10b), 

and the PI curves for days 90 and 150 have a relatively normal shape. By day 210, below 

ground biomass has reached its limit. W ith storage limited, the P I curves for days 210 and 

270 show that more carbon is being collected than can be processed.

NPP (Table 4.3) for the RGR-Population configuration is substantially lower than that 

of the nominal configuration (30 mg C y_l and -32 g C m-2 y -1 vs. 294 mg C y-1 and 

343 g C m-2 y -1). Larger than nominal below ground biomass is a factor in the lower NPP 

value as it introduces a large respiration demand. While NPP is positive for the plant, 

it is negative on an areal basis. This is due to how the GA used shoot density (Fs .d) 

and shoot-to-root ratio (Tso) in achieving the RGR-Population goal. Figure 4.6c shows 

plant below-ground biomass decreasing after Julian day 200 while Figure 4.6d shows areal 

below-ground biomass increasing. The GA has selected parameters such that shoot density 

increases (Figure 4.10h) after Julian day 200. Shoot density is used by the GA to increase 

areal below-ground biomass.

To attain  the goal of maximizing RGR at the population level, the GA should select
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Figure 4.8: RGR-Population configuration leaf growth., a) each bar represents the start 
date (left edge), growth stage (left shaded area), m ature stage (right unshaded area), and 
abscission (right edge), b) lines indicate the staxt date (x axis) and the final length (y 
axis) of the leaf. The x’s represent the lengths and timing of leaves from the nominal 
configuration.
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Figure 4.9: RGR-Population configuration whole-plant production vs. irradiance plots based 
on leaf area (a) and chi (b). Each line represents 24 hrs of data; the hysteresis is due to 
production differences between morning and afternoon. The numbers at the end of each line 
indicate the Julian day of the second year of simulation from which the data were taken.

parameters that lead to higher areal biomass at the end of year 2 than at the beginning. 

Figure 4.6b and 4.6d show that above ground biomass does not contribute directly to this 

goal; all of the biomass gain takes place below ground. Figure 4.10g shows that the GA 

selected for the ShootrRoot ratio to be less than 1 (it does not reach zero) from about day 

70 to day 240. This gives priority to below ground growth. The GA also selected for degree- 

days between leaves to be near the maximum allowed in the search. This would help reduce 

the number of leaves grown in a season to just the number needed to harvest enough energy 

to push below ground biomass to its limit. Increasing shoot density also helps to increase 

areal biomass at the end of the growing season. Shoot density for the RGR-Population 

configuration is nearly 100 days out of phase with the nominal configuration. In effect, 

shoot density is used to allow a few plants to grow large root storage during the middle of
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Figure 4.10: RGR-Population. configuration T variable plots. Each curve is computed from 
its r  variable (Table 2.3) as in Figure 2.3.
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the yeax. Shoot density increases at the end of the growing season, artificially increasing 

the areal below ground biomass. Artificial is used here in the sense that shoot density is 

increased mathematically but the carbon required by the new plants does not come from 

existing plants. Since the GA was able to control shoot density, it used it to help achieve 

its goal.

4.3.3 RGR-Plant vs. RGR-Population

In comparing the RGR-Plant to RGR-Population attributes in Tables 4.2 and 4.3, nearly 

all of the average values axe similar. There is a 2 day difference between first shoot initiation, 

1 day difference in average plastichrone interval, 3 day difference in average leaf age, almost 

no difference in LAI, and a difference of 2 leaves grown during the yeax.

The differences lie in the average leaf length (17 cm vs. 32 cm, plant vs. population), and 

in the NPP and Maximum Biomass metrics. Both NPP metrics (plant and areal) for the 

RGR-Plant configuration axe higher than those of the NPP metrics for the RGR-Population 

configuration 263 mg C y-1 and 310 g C m-2 y-1 vs. 30 mg C y-1 and -32 g C m-2 y-1 ). 

In contrast, the maximum biomass metrics axe higher for the RGR-Population configura

tion than for the RGR-Plant configuration (536 mg C and 170 mg C vs. 79 g C m-2 and 

98 g C m~2).

In selecting for a plant that optimizes RGR, the GA emphasizes the timing of leaf 

initiation, time to maturity, and timing of abscission. This is done in favor of balancing 

PSU size and number with the plant’s ability to use the haxvested caxbon and leads to 

higher NPP. In selecting for a population of plants that optimize RGR for the population,
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the GA selects plants that build biomass in the root (low Shoot:Root), while minimizing the 

number of leaves needed to accomplish the task. The photosynthetic apparatus balances 

well with growth and storage requirements until storage has reached its maximum. The GA 

also takes advantage of the fact that mass is not conserved when plant biomass is scaled to 

areal biomass. The GA controls shoot density and uses this to numerically increase plant 

population. The increase in population is not the result of existing plants using some of 

their biomass to produce new plants.
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4.4 Optimization Goal:

Maximization of Biomass

The fitness function for maximization of biomass tracked biomass through years 2-5 

of the simulation and recorded each year’s maximum value. The four maximum biomass 

values were averaged and returned to the GA as the fitness value. The GA searched for a 

configuration of controlling; parameters capable of maximizing the average of the four yearly 

peak biomass values. While maximizing biomass was the primary goal of the GA, taking 

the average of 4 biomass peaks constrained the solutions to those capable of surviving five 

years. Rephrased, the goal is maximize biomass in a fashion that leads to at least 5 years 

of simulated life.

Two tests were run. First, biomass was maximized for an individual plant (BlO-Plant), 

that is, biomass for an individual plant was used in BIO calculation. In the second run 

mass was maximized for a population of plants (BlO-Population). In this case biomass for 

the individual was scaled up to a  population by multiplying biomass with shoot density. 

Results of the searches are shown in Table 4.4.

4.4.1 Strategy Three: BlO -Plant

Biomass for the BlO-Plant configuration far exceeded biomass of the nominal config

uration (Figures 4.11 and 4.12). Leaves start growing 2 days earlier than the nominal 

configuration (Table 4.5). On average the plastichrone interval is shorter than nominal 

(10 days vs. 13 days) but has a m aximum value of 144 days (30 days nominal). The effect
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Table 4.4: GA selected configurations for BlO-Plant and BlO-Population growth strategies 
compared to the nominal configuration. Each column represents the individual that attained 
the highest fitness for the indicated test. Since the binary chromosome is 209 bits long, the 
individual should be the best of 2209 or on the order of 1062 possible configurations.

P a ra m e te r N om inal
B IO

P la n t
B IO
P op . U n its

Degree-days first leaf 6 4 2 °C Day

Degree-days next average 150 90 46 °C Day
Degree-days next amplitude 65 66 41 °C Day
Degree-days next phase 240 290 7 Days

Shoot density average 1075 975 1535 Shoots m-2
Shoot density amplitude 360 356 1992 Shoots m-2
Shoot density phase 250 272 326 Days

Leaf width average 5.0 21.1 4.2 mm
Leaf width amplitude 0.1 1.7 7.1 mm
Leaf width phase 180 72 293 Days

PSU density average 750 4600 4698 108 PSU m m "2
PSU density amplitude 200 347 413 108 PSU m m "2
PSU density phase 60 89 60 Days

PSU antenna average 450 573 640 Chi PSU "1
PSU antenna amplitude 20 29 241 Chi PSU "1
PSU antenna phase 360 25 94 Days

Stop leaf P:R average 3.0 0.8 1.5 Ratio
Stop leaf P:R amplitude 5.0 9.5 5.6 Ratio
Stop leaf P:R phase 180 11 39 Days

Abscise leaf P:R average 9.0 2.5 13.1 Ratio
Abscise leaf P:R amplitude 4.0 5.9 0.8 Ratio
Abscise leaf P:R phase 300 207 26 Days

ShootrRoot average 4.0 6.9 9.3 Ratio
Shoot:Root amplitude 0.3 3.3 2.0 Ratio
ShootrRoot phase 50 169 250 Days
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Table 4.5: BlO-Plant configuration performance metrics. The first six metrics are computed 
from the second yeax of the simulation. Metrics with a range of values are reduced to 
m inimum, average, and maximum values. NPP is Net Primary Production. BIO is the peak 
biomass. NPP and BIO are the average of peak values obtained during years 2 through 5 
of the simulation.

Nominal Configuration BlO-Plant Configuration

M etric M in A vg M ax M in Avg M ax U nits
First Shoot 70 68 Julian day
Plastichrone 8 13 30 2 10 144 Days
Leaf Length 20 26 33 6 15 36 cm
Leaf Age 20 28 49 149 174 216 Days
LAI 1.6 5.2 37 103 2 —2 m m
Leaves 22 26 leaves y_1
NPP Plant 294 -196 mg C y-1
NPP Pop. 343 -1,280 g C m-2 y—1
BIO Plant 124 2,947 mg C
BIO Pop. 149 3,912 g C m-2

of these values is shown in Figure 4.13 as leaves are started at the beginning of the season 

and survive into the latter part of the growing season. The minimum age for a leaf is 

149 days for the BlO-Plant compared to the nominal configuration having a maximum leaf 

age of 49 days. There is also a large mid-season gap where no new leaves me started. Leaves 

continue to grow through the entire mid-season and are abscised during their growth stage 

(i.e. they never reach maturity). Since the P:R  abscise ratio is greater than the P:R stop, 

leaves stop growing at the appropriate P:R stop ratio but then are immediately abscised.

Leaf length is similar to the nominal case (up to 36 cm vs. 33 cm) while leaf width 

is greater (21.1 mm vs. 5.0 mm, Table 4.4). Only 4 more leaves are used (26 vs. 22) but 

since most are growing at the same time LAI is considerably higher (up to 103 m2 m~2 

vs. 5.2 m2 m-2). The high LAI lowers peak light intensities after day 90 to less than
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Figure 4.11: Biomass from the BlO-Plant configuration compared to BWM99 model
biomass. O utput from the BWM99 model shown as dashed (smooth) line. Output from 
the BlO-Plant configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and d) below-ground biomass of 
a square m eter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the axeal biomass is subject to the same fluctuations.
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Figure 4.12: Biomass plot of the BlO-Plant configuration showing stability over 5 years (i.e. 
there is no evident trending).

200 fiE m-2 s_1 (450 fj,E m-2 s-1 for nominal).

The goal for the GA with BlO-Plant is to produce as large a plant as possible regardless 

of the cost. To accomplish this, PSU density and antenna chi are at (or near) their maximum 

values to elevate energy collection (Figure 4.15). The value of degree-days between leaves 

causes leaf growth patterns seen in Figure 4.13. This is reinforced by the F  s t o p  value of 

less than 1 that is assigned to each of these leaves, Figure 4.15f. As such, leaves started 

early actually are abscised after they have respired more carbon than they produced.

In comparing Figure 4.15e and Figure 4.15f it is notable that the phase of F s t o p  and 

P a b s  are nearly 180 days out of phase with each other. A leaf will be assigned a low T s to p  

ratio or a  low Tabs ratio. As such either a leaf will stop growing at a very low P:R ratio 

or, if V s t o p  is high, T abs would cause the leaf to be abscised at a very low P:R  ratio. The 

phasing of these two parameters will always lead to leaves that have very low P:R ratios
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Figure 4.13: BlO-Plant configuration leaf growth, a) each bar represents the start date (left 
edge), growth stage (left shaded area), mature stage (right unshaded area), and abscission 
(right edge), b) lines indicate the start date (x axis) and the final length (y axis) of the 
leaf. The x’s represent the lengths and timing of leaves from the nominal configuration.
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Figure 4.14: BlO-Plant configuration whole-plant production vs. irradiance plots based! on 
leaf area (a) and chi (b). Each line represents 24 hrs of data; the hysteresis is dues to 
production differences between morning and afternoon. The numbers at the end of e-ach 
line indicate the Julian day of the second year of simulation from which the data were takcen.

before they axe abscised.

The NPP values in Table 4.5 indicate that the GA has selected a plant configuration 

which optimizes biomass regardless of cost; the NPP values are negative. The negatltive 

values should be accompanied by biomass plots that show a plant which is losing caxbon Fbut 

Figure 4.12 shows no net loss of carbon from yeax to yeax. The negative values were tranced 

to an accounting error in computing NPP. The situation only arises in this and the BIIO- 

Population configuration. Caxbon for leaf respiration is taken from the leaf’s mobile caxbbon 

state vaxiable. Photosynthesis and caxbon flow from the meristem axe the only other floows 

that can add to the leaf’s mobile caxbon state variable. Leaves for this configuration becoome 

very old (up to 216 days) and photosynthesis and respiration axe negatively affected by Deaf 

age. Photosynthesis decreases and respiration increases to the point that photosynthesis sand
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Figure 4.15: BlO-Plant configuration F variable plots. Each curve is computed from its F 
variable (Table 2.3) as in Figure 2.3.
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meristem resupply cannot meet the leaf’s respiration demand. In the model, leaf respiration 

is logged before the flows are computed; the respiration demand is computed into NPP even 

though the leaf never respires the carbon. Mass balance is maintained in the model and the 

leaf is not allowed to respire at this elevated rate.

This accounting error did not show up during nominal rims when caxbon was mass 

balanced; the situation of high leaf respiration did not occur and was not anticipated. 

When this error was noticed, code was added to the model to print a statement when 

the condition occurred during model execution. All GA configurations were run with this 

modification to see if the situation occurred with other configurations. This error only 

happened when running the BlO-Plant and BlO-Population configurations and therefore 

does not affect results obtained for the other configurations.

4.4.2 Strategy Four: BlO-Population

Biomass levels for the BlO-Population configuration far exceed those of the nominal 

configuration (Figure 4.16 and Figure 4.17) but the configuration is stable over 5 years. 

Table 4.6 shows that leaf growth is started 4 days earlier (day 66 vs. day 70), leaf ages are 

greater (up to 230 days vs. 49 days), and nearly the same number of leaves are used (23 

vs. 22). Leaf length is greater (up to 1,307 cm vs. 33 cm) while leaf width is very thin 

(1 mm) for leaves started before Julian day 140 (Figure 4.18b and Figure 4.20c). Leaf age 

and size lead to high LAI (up to 469 m2 m-2 vs. up to 5.2 m2 m-2 ) but the timing of leaf 

initiation helps light availability at the leaves surfaces to be higher than nominal (up to 

600 fj,E m-2 s-1 vs. 450 [jlE m—2 s_1) early in the growing season (Figure 4.19).
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Figure 4.16: Biomass from the BlO-Population configuration compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) line. Output from the 
BlO-Population configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and  d) below-ground biomass of 
a square meter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and  abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996). and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.6: BlO-Population configuration performance metrics. The first six metrics are 
computed from the second year of the simulation. Metrics with a range of values are 
reduced to minimum, average, and maximum values. NPP is Net Prim ary Production. 
BIO is the peak biomass. NPP and BIO axe the average of peak values obtained during 
years 2 through 5 of the simulation.

Nominal Configuration BlO-Population Config.

M e tr ic M in A vg M a x M in Avg M ax U n its
First Shoot 70 66 Julian day
Plastichrone 8 13 30 1 12 160 Days
Leaf Length 20 26 33 8 634 1,307 cm
Leaf Age 20 28 49 21 150 230 Days
LAI 1.6 5.2 97 469 2 —2 m m
Leaves 22 23 leaves y-1
NPP Plant 294 -19 mg C y -1
N PP Pop. 343 -7,718 g C m-2 y-1
BIO Plant 124 5,531 mg C
BIO Pop. 149 17,361 g C m-2
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Figure 4.17: Biomass plot of the BlO-Population configuration showing stability over 5 
years (i.e. there is no evident trending).
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Figure 4.18: BlO-Population configuration leaf growth, a) each bar represents the start 
date (left edge), growth stage (left shaded area), mature stage (right unshaded area), and 
abscission (right edge), b) lines indicate the start date (x axis) and the final length (y 
axis) of the leaf. The x’s represent the lengths and timing of leaves from the nominal 
configuration.
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Figure 4.19: BlO-Population configuration whole-plant production vs. irradiance plots 
based on leaf area (a) and chi (b). Each, line represents 24 hrs of data; the hysteresis 
is due to production differences between morning and afternoon. The numbers at the end 
of each line indicate the Julian day of the second yeax of simulation from which the data 
were taken.

The goal for BlO-Population is to achieve a high biomass peak on an areal basis re

gardless of the cost. To accomplish this PSU density and antenna chi parameters are at 

(or near) their maximum values (Figure 4.20a and 4.20b). The P:R abscise ratio is rather 

high (near 15) but must be ignored in favor of P:R stop. The timing of maturity (P:R stop) 

and abscission (P:R abscise) requires leaf growth to stop before the leaf may be abscised. 

In this configuration, leaf growth stops at a low P:R ratio (less than 5); the leaf is then 

considered mature. Any mature leaves whose P:R ratio is less than P:R abscise axe imme

diately abscised. Since all leaves have a P:R stop ratio less than the P:R abscise ratio, the 

leaves are immediately abscised when the P:R stop condition arises. As was noted in the 

BlO-Plant configuration, there is an accounting error for NPP when leaves respire a t a rate 

higher than what photosynthesis and the flow of caxbon from the meristem can supply.
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Figure 4.20: BlO-Population configuration. T variable plots. Each curve is computed from 
its r  variable (Table 2.3) as in Figure 2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. TESTING P L A N T  G RO W TH  STRATEG IES  123

The BlO-Population configuration produces an areal biomass maximum of 

17,361 g C m-2 (149 g C m -2 nominal). No other configuration produces nearly as much 

biomass. Normally, below ground biomass is constrained to 175 g C m-2 but notice in Fig

ure 4.16d that below ground biomass peaks near 450 g C m—2. Figure 4.20h shows that 

between days 100 and 180 shoot density is very small (100 shoots m-2 ). Just before and 

during this period, most leaves a re  started (Figures 4.18a and 4.18b). This timing allows 

the plants to individually grow large shoot and root biomass which peak just after Julian 

day 180 (Figure 4.16a and 4.16c). The below ground biomass is within the spatial limit of 

175 g C m-2 . Just after J ulian day 180, the shoot density rises (Figure 4.20h) and artifi

cially pushes areal biomass (below ground and above ground) to high values. Biomass is 

inflated artificially because the G A  has control over shoot density; the GA selected shoot 

density to achieve the goal of maximizing biomass. Note tha t while areal biomass is in

creasing up to ca. day 240 (Figure 4.16b and 4.16d), total individual plant biomass is 

decreasing (Figures 4.16a and 4.16c, Figure 4.17). After Julian day 180, individual plant 

biomass decreases sharply due to the  large respiration demand from old leaves and a large 

root biomass.

4.4.3 BlO-Plant vs. BlO -Population

Both BlO-Plant and BlO-Population configurations start a  group of leaves early and 

then keep them over the entire midyear growing season. Both configurations use about 

the same number of leaves (26 BlO-Plant and 23 BlO-Population). Plant and areal 

biomass values are unrealistically large (over 2,500 mg C p lan t-1 for BlO-Plant, over

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. TESTING  PLANT GROW TH STRATEG IES  124

5,000 mg C plant-1 for BlO-Population, vs. 100 mg C plant-1 for the nominal configura

tion), and each configuration has a high shoot:root ratio. Leaves are abscised immediately 

after reaching m aturity and have a long life span (up to 216 days and up to 230 days).

The configurations differ in that the BlO-Plant configuration uses short and wide leaves 

and the BlO-Population uses long narrow leaves. Leaf size leads to a smaller LAI for the 

BlO-Plant configuration (103 vs. 469).

It appears that the BlO-Population configuration leads to a plant capable of attaining a 

higher peak biomass than that of the BlO-Plant configuration (5,531 mg C vs. 2,947 mg C). 

The BIO-Population plant does reach a higher biomass, but shoot density plays a role in 

limiting plant size for the BlO-Plant configuration. Shoot density for the BlO-Plant configu

ration is limited so that shoot densities remain similar to the nominal model (approximately 

1,100 shoots m-2 ). Meanwhile the BlO-Population configuration lowers its shoot density 

to 100 shoots m-2 for Julian days 100 through 180. The BlO-Population plants may grow 

larger below ground biomass (and concurrently, above ground biomass) before running up 

against the spatial constraint of 175 g C m-2 for the below ground tissue. If the BlO-Plant 

test was given a lower shoot density, it most likely would grow much larger plants.
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4.5 Optimization Goal:

Maximization of Net Primary Production

Net primary production (NPP) was computed as the difference betwesen total yearly 

integrated production and total yearly integrated respiration. NPP was comaputed for years 

2 through 5 of the simulation, and the average of those four years was tsaken. The GA 

searched for a set of controlling parameters that were best able to maxim_ize the average 

NPP from 4 years of simulation. As in the BIO tests, the 4 year average aEso requires the 

solution to be stable for at least 5 total years.

NPP was maximized at the spatial scales of plant (NPP-Plant) and p o p u la tio n  (NPP- 

Population). Results of the searches are shown in Table 4.7.

4.5.1 Strategy Five: NPP-Plant

Compared to the nominal configuration, biomass for NPP-Plant is very# high (Figures 

4.21 and 4.22). In comparing plant performance metrics from Table 4.S3, the range of 

plastichrone interval is similar to the nominal configuration (5 to 29 days v s .  8 to 30 days) 

but the leaves are kept around for much longer periods of time (up to 107 darys vs. 49 days). 

Leaves for the NPP-Plant configuration grow up to 1,222 cm (Figure 4.23') vs. 33 cm for 

the nominal case but are very narrow (1 mm, Figure 4.25c). Leaf length, ’-width, and age 

together determine LAI values that are also quite high (up to 125 m2 m-2 v s .  5.2 m2 m-2 ).

Even though the leaves are quite long, peak irradiance is over 300 fj,E mn-2 s—1 (Figure 

4.24). As a result of the leaf area and light availability, NPP for an individual plant and NPP
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Table 4.7: GA selected configurations for NPP-Plant and NPP-Population growth strategies 
compared to the nominal configuration. Each column represents the individual that attained 
the highest fitness for the indicated test. Since the binary chromosome is 209 bits long, the 
individual should be the best of 2209 or on the order of 1062 possible configurations.

P a ra m e te r N o m in a l
N P P

P lan t
N P P
Pop . U n its

Degree-days first leaf 6 6 3 °C Day

Degree-days next average 150 159 155 °C Day
Degree-days next amplitude 65 48 49 °C Day
Degree-days next phase 240 314 314 Days

Shoot density average 1075 985 12,209 Shoots m-2
Shoot density amplitude 360 364 1,563 Shoots m-2
Shoot density phase 250 273 206 Days

Leaf width average 5.0 1.1 24.9 mm
Leaf width amplitude 0.1 0.1 0.1 mm
Leaf width phase 180 68 321 Days

PSU density average 750 4922 4903 108 PSU nun-2
PSU density amplitude 200 338 77 108 PSU mm"2
PSU density phase 60 238 77 Days

PSU antenna average 450 636 623 Chi PSU "1
PSU antenna amplitude 20 26 19 Chi PSU-1
PSU antenna phase 360 280 124 Days

Stop leaf P:R average 3.0 2.5 4.8 Ratio
Stop leaf P:R amplitude 5.0 0.1 6.2 Ratio
Stop leaf P:R  phase 180 327 164 Days

Abscise leaf P:R  average 9.0 1.7 1.0 Ratio
Abscise leaf P:R amplitude 4.0 0.6 0.1 Ratio
Abscise leaf P:R phase 300 291 167 Days

ShootrRoot average 4.0 9.2 9.0 Ratio
ShootrRoot amplitude 0.3 2.8 4.8 Ratio
ShootrRoot phase 50 226 203 Days
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Figure 4.21: Biomass from the NPP-Plant configuration compared to BWM99 model 
biomass. Output from the BWM99 model shown as dashed (smooth) line. Output from 
the NPP-Plant configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and d) below-ground biomass of 
a square meter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.8: NPP-Plant configuration performance metrics. The first six metrics axe com
puted from the second year of the simulation. Metrics with a range of values are reduced to 
minimum, average, and maximum values. NPP is N et Primary Production. BIO is the peak 
biomass. NPP and BIO are the average of peak values obtained during years 2 through 5 
of the simulation.

Nominal Configuration N PP-Plant Configuration

M etric M in Avg M ax M in A vg M ax U n its
First Shoot 70 70 Julian day
Plastichrone 8 13 30 5 9 29 Days
Leaf Length 20 26 33 390 1,203 1,222 cm
Leaf Age 20 28 49 46 60 107 Days
LAI 1.6 5.2 46 125 n r  m *
Leaves 22 29 leaves y -1
NPP Plant 294 8,142 mg C y -1
NPP Pop. 343 8,810 g C m~2 y-1
BIO Plant 124 1,913 mg C
BIO Pop. 149 2,062 g C m-2
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Figure 4.22: Biomass plot of the NPP-Plant configuration showing stability over 5 years 
(i.e. there is no evident trending).
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on an areal basis is much higher than  those of the nominal configuration (8,142 mg C y-1 

and 8,810 g C m-2 y-1 vs. 294 mg C y-1 and 343 g C m-2 y—L). P lant and areal maxi

mum biomass are also considerably higher than the nominal configuration (1,913 mg C and 

2,062 g C m-2 vs. 124 mg C and 149 g C m-2 ).

The strategy for NPP-Plant is to produce a plant that maximizes energy harvesting 

while minimizing respiration costs. This strategy is illustrated in how the controlling pa

rameters behave (Figure 4.25). Energy collection is accomplished by several means: first, 

by increasing PSU density and antenna chi to the maximum values, and second, by config

uring leaf width, degree-days between shoots, P:R stop, and P:R abscise values to grow a 

large leaf area (LAI) that is maintained for a long period of time. Along with the need for 

high production is the requirement for low respiration. A high ShootrRoot ratio minimizes 

the amount of carbon in the root system that would increase respiration costs. P:R stop 

and P:R  abscise minimize respiration losses by abscising leaves before their respiration costs 

become too large.

4.5.2 Strategy Six: NPP-Population

Biomass of individual plants for the NPP-Population was higher than  the nominal con

figuration (Figures 4.26 and 4.27). On an areal basis, biomass is much higher due to the 

higher shoot density (Figure 4.30h). This is also reflected in the maximum biomass val

ues in Table 4.9 (273 mg C for the plant and 3,412 g C m-2 on an  areal basis). Table 

4.9 shows plastichrone interval was slightly longer than the nominal configuration (up to 

44 days vs. 30 days). Leaf lengths were shorter (up to 18 cm vs. 33 cm) and leaf age was
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Figure 4.23: NPP-Plant configuration leaf growth., a) each bar represents the start date (left 
edge), growth stage (left shaded axea), mature stage (right unshaded area), and abscission 
(right edge), b) lines indicate the start date (x axis) and the final length (y axis) of the 
leaf. The x’s represent the lengths and timing of leaves from the nominal configuration.
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Figure 4.24: NPP-Plant configuration whole-plant production vs. irradiance plots based 
on leaf axea (a) and chi (b). Each line represents 24 hrs of data; the hysteresis is due to 
production differences between morning and afternoon. The numbers at the end of each line 
indicate the Julian day of the second year of simulation from which, the data were taken.

much longer (up to 170 days vs. 49 days). While leaf lengths were shorter, the shoot den

sity was high and leaves were wide (Figure 4.30h and 4.30c) contributing to a  large LAI 

(up to 474 m2 m~2 vs. 5.2 m2 m-2 ). Leaf dimension and density reduced the maximum 

light available to about 150 /iE m-2 s_I (Figure 4.29). The NPP-Population configuration 

used 30 leaves y~l , which along with the high LAI, high PSU density, and high antenna 

chi (Figure 4.30a and 4.30b), contributed to high NPP on both a plant and axeal basis 

(2,768 mg C y-1 and 34,505 g C m-2 y~l vs. 294 mg C y-1 and 343 g C m-2 y-1 ).

Maximizing NPP at the level of a population of plants calls for a strategy of maximizing 

population production while minimizing population respiration. The plants that comprise 

this population take many of the controlling parameters to extreme limits (Figure 4.30) 

suggesting that if a larger range were available, the GA would take advantage of it. Shoot
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Figure 4.25: NPP-Plant configuration P variable plots. Each, curve is computed from its T 
variable (Table 2.3) els in Figure 2.3.
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Figure 4.26: Biomass from the NPP-Population configuration compared to BWM99 model 
biomass. O utput from the BWM99 model shown as dashed (smooth) line. Output from the 
NPP-Population configuration in black/gray (jagged) lines, a) Above-ground and c) below- 
ground biomass of an individual plant, b) Above-ground and d) below-ground biomass of 
a square meter of seagrass bed. The Vgrass model simulates individual leaves instead of 
lumping their biomass into one state variable. The growth and abscission of the individual 
leaves causes the biomass to fluctuate. Biomass from the single plant is multiplied by shoot 
density (Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.9: NPP-Population configuration performance metrics. The first six metrics are 
computed from the second year of the simulation. Metrics with a range of values are 
reduced to minimum, average, and maximum values. NPP is Net Primary Production. 
BIO is the peak biomass. NPP and BIO axe the average of peak values obtained during 
yeaxs 2 through 5 of the simulation.

Nominal Configuration NPP-Population Config.

Metric Min Avg Max Min Avg Marx Units
First Shoot 70 67 Julian day
Plastichrone 8 13 30 5 9 44 Days
Leaf Length 20 26 33 6 15 18 cm
Leaf Age 20 28 49 36 62 170 Days
LAI 1.6 5.2 174 474 2 —2 mr m
Leaves 22 30 leaves y~L
NPP Plant 294 2,768 mg C y-1
NPP Pop. 343 34,505 g C m-2 y-1
BIO Plant 124 273 mg C
BIO Pop. 149 3,412 g C m-2
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Figure 4.27: Biomass plot of the NPP-Population configuration showing stability over 5 
yeaxs (i.e. there is no evident trending).
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Figure 4.28: NPP-Population configuration leaf growth, a) each bax represents the start 
date (left edge), growth stage (left shaded area), m ature stage (right unshaded area), and 
abscission (right edge), b) lines indicate the s ta rt date (x axis) and the final length (y 
axis) of the leaf. The x’s represent the lengths and timing of leaves from the nominal 
configuration.
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Figure 4.29: NPP-Population configuration whole-plant production vs. irradiance plots 
based on leaf area (a) and chi (b). Each line represents 24 hrs of data; the hysteresis 
is due to production differences between morning and afternoon. The numbers at the end 
of each fine indicate the Julian day of the second year of simulation from which the data 
were taken.

density is in the 10,000 to 12,500 shoots m~2 range as compared to the nominal case with 

shoot densities in the 1,100 shoots m -2 range. Shoot density, leaf width, and degree-days 

between shoots function to produce many plants with wide leaves. The GA is limited to 

growing 150 leaves over the entire 5-year simulation rim, or 30 leaves y -1 . This configu

ration used all 30 leaves suggesting that the GA might choose a configuration capable of 

growing more leaves if it were possible. P:R stop and P:R abscise work together so that 

leaves reach m aturity at a short length and are abscised as late as possible. P:R abscise 

never goes below 1 so that leaves are abscised just before their daily respiration exceeds 

production. Shoot:Root is high to minimize the respiration costs of a large root system.
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Figure 4.30: NPP-Population configuration T variable plots. Each curve is computed from 
its r  variable (Table 2.3) as in Figure 2.3.
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4.5.3 NPP-Plant vs. NPP-Population

In comparing the configuration for NPP-Plant to NPP-Population, there are a few 

similarities. Both configurations have a high ShootrRoot ratio that reduces the respiration 

costs of a large root system. An average of 30 leaves y-1 axe available (150 leaves over 

5 years), NPP-Plant uses 29 and NPP-Population uses 30. Both configurations also have 

selected high PSU densities and antenna chi counts. Each of these factors reaches the 

maximum allowed suggesting that larger values would be selected if possible.

Differences between the two configurations show that maximizing NPP at each scale 

requires a different strategy. Leaves for the NPP-Plant configuration axe long (over 1.2 m 

vs. 15 cm) and thin (1 mm vs. 25 mm) which lowers LAI (maximum of 125 m2 m~2 vs. up 

to 474 m2 m-2) and increases the amount of light available at the leaf’s surface (maximum 

of 300 /xE m-2 s_l vs. 150 pE m-2 s-1).

The NPP-Plant configuration has higher NPP on a per plant basis than does the NPP- 

Population configuration (8,142 mg C y-1 vs. 2,768 mg C y-1 ). The N PP-Plant config

uration has fewer but more productive plants. Meanwhile, the NPP-Population areal 

NPP is much higher than that of the N PP-Plant configuration (34,505 g C m-2 y-1 vs. 

8,810 g C m -2 y -L). The NPP-Population configuration has more plants but the plants 

axe less productive. These relationships axe in line with the goal of each test: NPP-Plant 

was to maximize NPP for the plant while NPP-Population was to maximize NPP on an 

areal scale. But since it has been shown in previous tests that caxbon is not conserved when 

scaling up to the population, further comparison may not be meaningful.
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4.6 Optimization Goal:

Maximization of Longevity

4.6.1 Strategy Seven: LONG-Population

The goal of long term survival requires that a plant survive for 20 years of simulation 

time. The fitness function for this goal returned the total number of days that the plant 

was able to survive.

As with the other searches, a population of 450 individuals was run  through 200 gen

erations. Of the 90,000 configurations, 88,479 were able to run the entire 20 years. Since 

so many configurations were able to reach the goal, culling one of them  for analysis was 

difficult since there was no way to select the best one. Instead histograms were made to 

indicate traits that were selected by many of the configurations. Plots within Figures 4.31 

to 4.38 are histograms of each of the 25 controlling parameters.

The histograms axe provided to show the range of values that lead to successful con

figurations. What cannot be shown with the histograms axe the combinatorial effects. For 

example, PSU density average has two relatively high peaks near 2,500 x 108 PSU mm~2 

and 3,500 x 108 PSU mm-2 while PSU density amplitude has peaks at 250 chi PSU-1 and 

350 chi PSU-1 . Other parameters also have peaks that axe nearly equal. W hat cannot 

be shown here is which PSU density average peak works best with either of the two PSU 

density amplitude peaks. If it were a simple m atter of two parameters, fitness testing could 

be used to make comparisons of the combinations. Since there axe 25 parameters, testing 

is beyond the scope of this study.
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Figure 4.31: Histogram of degree days to first leaf selection, counts (a), and degree days to 
next leaf selection counts for average (b), amplitude (c), and phase (d). The range of values 
along the X-axis coincide with the selection range available to the GA during the search.
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Figure 4.32: Histograms of Shoot density selection counts for average (a), amplitude (b), 
and phase (c). The count (y-axis) indicates the number of individuals found with the range 
indicated by the x-axis. The range of values along the x-axis coincide with the selection 
range available to the GA during the seaxch.
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Figure 4.33: Histograms of Leaf width selection counts for average (a), amplitude (b), and 
phase (c). The count (y-axis) indicates the number of individuals found with the range 
indicated by the x-axis. The range of values along the x-axis coincide with the selection 
range available to the GA during the search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. TESTING  P L A N T  GROWTH STRATEG IES 143

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
PSU density average (PSUxI 08 mm 2)

o  10

450 500
PSU density amplitude (PSUxlO mm )

25

20
COO

15x

2 10

50 100 150 200 250
PSU density phase (days)

300 350

Figure 4.34: Histograms of PSU Density selection counts for average (a), amplitude (b), 
and phase (c). The count (y-axis) indicates the number of individuals found with the range 
indicated by the x-axis. The range of values along the x-axis coincide with the selection 
range available to the GA during the search.
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Figure 4.35: Histograms of PSU antenna chi selection counts for average (a), amplitude (b), 
and phase (c). The count (y-axis) indicates the number of individuals found with, the range 
indicated by the x-axis. The range of values along the x-axis coincide with the selection 
range available to the GA during the search.
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Figure 4.36: Histograms of stop leaf P :R  ratio selection counts for average (a), amplitude 
(b), and phase (c). The count (y-axis) indicates the number of individuals found with 
the range indicated by the x-axis. The range of values along the x-axis coincide with the 
selection range available to the GA during the search.
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Figure 4.37: Histograms of Abscise leaf P:R ratio selection counts for average (a), amplitude 
(b), and phase (c). The count (y-axis) indicates the number of individuals found with the 
range indicated by the x-axis. The range of values along the x-axis coincide with the 
selection range available to the GA during the search.
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Figure 4.38: Histograms of shoot to root ratio selection counts for average (a), amplitude 
(b), and phase (c). The count (y-axis) indicates the number of individuals found with 
the range indicated by the x-axis. The range of values along the x-axis coincide with the 
selection range available to the GA during the search.
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For analysis, the value of the abscissa at the highest peak was chosen from each of the 

25 histograms Table 4.10. The 25 values were grouped into a chromosome evaluated in the 

same manor as the most fit individuals from other tests.

Long term survival was only run a t the population scale. Running the test at the scale of 

plant was not done because each of the optimal plant configurations was able to run for 20 

years. Also, since parameters were chosen from the histograms, and there are combinatorial 

complications, the resulting configuration may not represent the most fitindividual. In 

fact, there is no most fit individual for the LONG test; it is possible th a t a large group of 

configurations could persist for an indefinite period of simulated time.

Above ground biomass (Figure 4.39a) for the LONG configuration is similar to that of 

the nominal configuration while below ground biomass is about twice as high (Figure 4.39c). 

Shoot density differences lead to much higher areal biomass for both above and below ground 

(Figure 4.39b and 4.39d) and the 5 year plot (Figure 4.40) shows th a t biomass is stable 

over a 5 year run.

The first leaf emerges on Julian day 70 for both the LONG and the nominal configu

rations but the plastichrone interval, on average, is shorter for the nominal case (20 days 

vs. 13 days, Table 4.11). Leaf length for the LONG configuration is shorter (up to 19 cm 

vs. up to 33 cm) but the leaves are wider (19.7 mm vs. 5.0 mm, Figure 4.10). Leaf area 

combined with higher shoot density also leads to a higher LAI (up to 83 m2 m-2 vs. up 

to 5.2 m2 m-2 ) even though fewer leaves are grown (14 leaves vs. 22 leaves). While LAI 

is much higher, light availability is similar to the nominal case (up to ca. 400 fiE  m-2 s-1 

Figure 4.42).
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Table 4.10: Controlling parameters for the LONG configuration. Parameter values are 
chosen from the highest peak of each histogram (Figures 4.31 to 4.38

P a ra m e te r N o m in a l L O N G U n its

Degree-days first leaf 6 6 °C Day

Degree-days next average 150 335 °C Day
Degree-days next amplitude 65 55 °C Day
Degree-days next phase 240 329 Days

Shoot density average 1075 5651 Shoots m -2
Shoot density amplitude 360 498 Shoots m -2
Shoot density phase 250 30 Days

Leaf width average 5.0 19.7 mm
Leaf width amplitude 0.1 0.2 mm
Leaf width phase 180 19 Days

PSU density average 750 3422 10s PSU mm~2
PSU density amplitude 200 356 108 PSU mm~2
PSU density phase 60 161 Days

PSU antenna average 450 617 Chi P S U "1
PSU antenna amplitude 20 244 Chi PSU~l
PSU antenna phase 360 317 Days

Stop leaf P:R  average 3.0 6.9 Ratio
Stop leaf P:R  amplitude 5.0 2.1 Ratio
Stop leaf P :R  phase 180 294 Days

Abscise leaf P:R average 9.0 4.9 Ratio
Abscise leaf P:R  amplitude 4.0 4.1 Ratio
Abscise leaf P:R phase 300 18 Days

ShootrRoot average 4.0 0.4 Ratio
ShootrRoot amplitude 0.3 1.7 Ratio
ShootrRoot phase 50 173 Days

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. TESTING  P L A N T  GROWTH STRATEG IES 150

Above Ground Biomass (Plant) Above Ground Biomass (Areal)
200

150

o . 100 
O
O)

50

800

600

CMI
E 400 OO)

200

50

40

c 30
CO

t20
E

Below Ground Biomass (Plant)

(c)

10
\  --

60 120 180 240 300 360
Julian Day (year 2)

Below Ground Biomass (Areal)
250

200

150CM

50

60 120 180 240 300 360
Julian Day (year 2)

Figure 4.39: Biomass from the LONG configuration compared to BWM99 model biomass. 
O utput from the BWM99 model shown as dashed (smooth) line. Output from the LONG 
configuration in black/gray (jagged) lines, a) Above-ground and c) below-ground biomass 
of an individual plant, b) Above-ground and d) below-ground biomass of a square meter 
of seagrass bed. The Vgrass model simulates individual leaves instead of lumping their 
biomass into one state variable. The growth and abscission of the individual leaves causes 
the biomass to fluctuate. Biomass from the single plant is multiplied by shoot density 
(Moore 1996), and therefore, the areal biomass is subject to the same fluctuations.
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Table 4.11: LONG configuration performance metrics. The first six metrics are computed 
from the second year of the simulation. Metrics with a range of values are reduced to 
minimum, average, and maximum values. NPP is Net Primary Production. BIO is the peak 
biomass. NPP and BIO are the average of peak values obtained during years 2 through 5 
of the simulation.

Nominal Configuration LONG Configuration

M etric M in A vg M ax M in A vg M ax U n its
First Shoot 70 70 Julian day
Plastichrone 8 13 30 12 20 47 Days
Leaf Length 20 26 33 5 13 19 cm
Leaf Age 20 28 49 13 33 73 Days
LAI 1.6 5.2 19 83 2 —2 m m
Leaves 22 14 leaves y-1
NPP Plant 294 771 mg C y-1
NPP Pop. 343 4,076 g C m-2 y-1
BIO Plant 124 180 mg C
BIO Pop. 149 945 g C m~2

200

150

Q-100
Ocn

50

365 730 1460 18251095
Julian Day

Figure 4.40: Biomass plot of the LONG configuration showing stability over 5 years (i.e. 
there is no evident trending).
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Figure 4.41: LONG configuration leaf growth., a) each bar represents the start date (left 
edge), growth stage (left shaded area), mature stage (right unshaded area), and abscission 
(right edge), b) lines indicate the start date (x axis) and the final length (y axis) of the 
leaf. The x’s represent the lengths and timing of leaves from the nominal configuration.
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Figure 4.42: LONG configuration whole-plant production vs. irradiance plots based on leaf 
area (a) and chi (b). Each fine represents 24 hrs of data; the hysteresis is due to production 
differences between morning and afternoon. The numbers at the end of each line indicate 
the Julian day of the second year of simulation from which the data were taken.

Higher PSU densities (over 3,000 x 108 PSU mm~2 vs. 1,000 x 108 PSU mm-2 ) antenna 

chi counts (over 600 vs. 450), and increased LAI, work together to produce much higher 

NPP values (771 mg C y-1 vs. 294 mg C y-1 plant, 4076 g C m~2 y-1 vs. 343 g C m -2 y-1 

areal) and higher peak biomass values (180 mg C vs. 124 mg C plant, 945 g C m -2 vs. 

149 g C m-2 ).

For each of the previous strategies the controlling parameter function plots (Figure 

4.43) were evaluated with respect the fitness function. Since many configurations lead to 

a plant capable of surviving 20 years, evaluation is impossible. This indicates a  stability 

with respect to the structure of the mathematical model and indicates that perhaps more 

constraints are needed within the model. More constraints within the model might limit 

the range of parameter selection and perhaps better reveal a long term survival strategy.
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4.7 Discussion

15-5

The objective for this study was to build and demonstrate a computational framework 

capable of testing plant growth strategies. The framework included a  simulation model of 

the eelgrass (Zostera marina), Vgrass, combined with a GA. The GA searched for combi

nations of Vgrass’ controlling parameters required for Vgrass to fulfill one of several growth 

strategies. The resulting param eter configurations lead to Vgrass biomass and leaf growth 

patterns that illustrated how a plant might grow if it were following one of the growth 

strategies. All of the results were compared to a nominal rim  of the Vgrass model.

This study did not have the goal of explaining the underlying mechanisms required to 

fulfill a growth strategy. Instead, this study searched for patterns of plant growth that 

should emerge if a  mechanism were in place to drive the strategy.

4.7.1 The strategies

Three maximizing growth strategies were tested at the plant and population scales 

along with the non-maximizing strategy of longevity. While the goal of longevity might be 

considered as testing for plant persistence, it is considered differently from the maximization 

goals. The three maximal strategies work at optimizing plant growth over a few seasons. 

Longevity simply looked for param eter configurations that allowed the plant to merely 

persist for 20 years of simulated growth.

The three optimal strategies were maximization of relative growth rate, maximization 

of biomass and maximization of net primary production. All three of the optimal tests 

produced plants that were not biologically realistic; none of them produced plant growth
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behaviors similar to the nominal run. The plant model did not consider allocation to 

reproduction which might change some of the allocation behaviors. That the results were 

not biologically realistic, suggests that plant growth is not driven by any of the growth 

strategies that maximize a growth function.

Givnish (1983a) suggests that experiments searching for growth strategies should all be 

compared to maximized biomass. Results from this study clearly show that maximizing 

biomass is not an appropriate benchmark. W hen biomass is maximized, there is no notion 

of economy in the plants growth. In pursuit of maximized biomass, leaves axe grown and 

remain attached even though their P:R ratios are less than  one. Why would a plant grow 

a leaf that becomes a sink for massive amounts of carbon and then abscise it? Maximizing 

biomass would have short-term benefit; quickly growing many leaves would exclude possible 

competitors for space and light. But once the biomass is attained, and the competitors have 

been excluded, there is no long-term advantage to keeping leaves that ultimately become 

large carbon sinks.

In the case of m aximizing biomass at the population scale, seasonal change in shoot 

density was selected by the GA. Figure 4.20 shows that the GA selected to increase shoot 

density after the typical growing season. Recall that the increase in biomass is purely 

mathematical; existing plants did not contribute carbon to the increase in shoot density. 

Meanwhile the GA did not control seasonal shoot density for the BlO-Plant test. In the 

BlO-Plant test the GA chose a configuration of controlling parameters that quickly built 

many leaves, and used the highly productive part of the season to amass a large below- 

ground reserve (Figures 4.11 and 4.13). Later in the year the below ground reserves were
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used so that total plant biomass continued to increase (Figure 4.12). This is interesting 

in the sense that the GA chose a strategy where total plant biomass was able to increase, 

while shoot density (self shading) was increasing, some early leaves were operating as carbon 

sinks, and light availability was decreasing (Equation 2.1). This illustrates the ability of the 

GA to coordinate a rather complex set of variables in order to achieve the goal. This may 

have application in considering forestry tables (Harper, 1977) for thinning and optimizing 

wood harvest. The GA has been applied in a similar study to consider space allocation in 

nurseries (Annevelink and Broekmeulen, 1995).

While the tests for maximizing biomass did not include respiration costs, the test 

for maximizing net primary production did. Maximizing NPP involved integrating NPP 

through each simulation year and then maximizing this number. In essence, production 

was maximized while respiration was minimized. But even with this trade-off in place, the 

resulting plant is not biologically realistic. Leaf emergence patterns in Figures 4.23 and 4.28 

(ignoring leaf size) are similar to those of the nominal model in that leaf initiation is spread 

out over the entire year. The leaves also have a mature/non-growth period before abscission 

and a new leaf emerges while others are still growing or mature; there is overlap. In an 

ecological context, this shows that in order to achieve higher values of NPP, leaves should 

emerge, grow, and abscise in a continuous cycle. Given that production and respiration are 

both included in this emergent pattern, it suggests that an economic strategy is at play. 

This pattern of leaf growth for Zostera marina may represent a dynamic optimal allocation 

strategy. This strategy is consistent w ith Kikuzawa (1995) where the tu rn  over of leaves is 

shown to be an optimizing strategy for caxbon gain in a light limited environment.
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Results from the test for maxim izing relative growth rate axe directly related to formu

lation of the fitness function. RGR for the plant is measured a t two week intervals and then 

later summed for the entire year. Leaf emergence and abscission follow a 2 week cycle (Fig

ure 4.3). Chapter 3 showed examples of the GA taking advantage of model construction; 

here the GA took advantage of the fitness function. This is not a flaw in the GA, it is a 

direct outcome of the fitness function. If a different fitness function were used to measure 

RGR, the solution would have been different.

In testing for longevity, 98% of the 90,000 configurations were able to complete 20 years 

of simulated growth. This reveals the stability of the Vgrass model but did nothing to strain 

the capabilities of the GA. All of the resulting configurations were combined to generate 

a representative configuration based on highly selected parameter values. The resulting 

biomass patterns (Figure 4.39) and plant growth patterns (Figure 4.41) axe significant in 

the sense that they follow, in general ways, both modeled and observed behaviors.

4.7.2 Another look at allocation

Thornley (1998) classifies allocation models into three categories, a) empirical, using a 

constant or variable allocation parameter; b) teleonomic, or goal oriented; c) mechanistic, 

showing a relationship between the source, transport, and sink. Two of these three cate

gories generally reflect the time scale at which the study is conducted. Simulation models 

axe typically run at the time scale of years and many use an empirical approach to alloca

tion; allocation theory is not the main purpose for the model. As examples, the seagrass 

models of Wetzel and Neckles (1984), Verhagen and Nienhus (1986), and Buzzelli et al.
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(1996) use an empirical relationship for allocation. If evolutionary stability for a  species 

can be described as a  teleological goal, Sakai (1993) shows that allocation to reproductive 

tissue is optimal. The third category of modeling, mechanistic, has been used a t all of the 

three time scales mentioned earlier (Thornley, 1998). However, a mechanistic model model 

is based on processes that occur on a short time scale.

Models to explain possible mechanisms for allocation have been tested. Thornley (1976) 

derives several steady-state allocation models based on tomato plants. Allocation is deter

mined by concentration differences between plant parts and is sufficient to mimic observed 

plant behaviors. In a s u m m ary  of shootrroot allocation models, Wilson (1988) compares 

four models including a complex model th a t invokes phytohormone control. The more 

sophisticated models do not perform any bette r at explaining allocation than  does Thorn- 

ley’s simple model. These modeling approaches suggest that, regardless of time scale, the 

underlying mechanism(s) for allocation are relatively simple.

Others have complicated biomass allocation theory by including nutrients and storage. 

While biomass can be used to determine how energy, or biomass, is allocated (Hickman 

and Pitelka, 1975), it probably cannot be used to represent how nutrients are allocated 

(Abrahamson and Caswell, 1982). Abrahamson and Caswell (1982) do suggest, however, 

that biomass may be a reasonable currency to measure allocation patterns because it may 

reflect an integration of all the individual m ineral allocations. They also note that consid

ering only biomass negates any consideration of what or if any nutrient is limiting growth. 

A plant will allocate resources to tissue growth to enhance uptake of a limiting nutrient 

or water (Chapin et al, 1987). This complicates the notion of optimal allocation since al
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locating more biomass for nutrient collection involves two optimal strategies: optimization 

of biomass allocation vs. optimal collection or retention of nutrients. Ryser (1996) points 

out that tissue structure prevents simultaneous optimization of both  nutrient acquisition 

and nutrient conservation. Fast growing, low density tissue has the short-term advantage 

of rapid nutrient uptake or large surface area for light harvesting, but has a shorter life 

span. In low nutrient environments, slower growing, high density tissue has the long-term 

advantage of nutrient conservation, and longer organ life span. Therefore, a plant cannot 

maximize both growth rate and nutrient conservation. Maximizing growth rate would imply 

using all available energy resources for growth and not storing energy for periods when re

source supply is diminished. Maximizing conservation would imply limiting growth during 

high nutrient availability so as to provide a reserve for growth during low nutrient periods. 

Can these arguments be unified and simplified?

To summarize, various studies (outlined earlier) have shown through theory and math

ematical models that allocation is optimized at various scales from stomatal conductance, 

to canopy structure, to evolutionary stability. Meanwhile, plant allocation has also been 

cast in economic terms (Chapin et al. 1990; Bloom et al. 1985; Chapin et al. 1987). The 

complications appear to arise at the short-term time scales where it is difficult to discern 

the importance of seemingly competing strategies. But these do not have to be at odds with 

each other.

Weible (2000) provides an interesting study in symmorphosis, the optimal allocation 

of resources based on the cost and benefit of different allocation options. In this book, 

animal physiology is shown to follow optimal strategies from the scale of the muscle cell to
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the lungs of various mammals. The author is able to show that a t  each scale there was a  

cost-benefit function in the design. For instance, increasing hematocrit (the percentage by 

volume of red blood cells in a given sample of blood) increases blood viscosity and likewise 

the amount of energy that must be expended to pump the blood. At the same time, when 

hematocrit increases, the rate of blood flow can decrease since the blood is carrying a richer 

supply of oxygen to the tissues. This would in effect lower the am ount of energy required 

for pumping blood. There is a balance where the cost of increaLsing viscosity equals the 

cost of decreased blood flow. Mammal design is very close to th is point. Dogs are shown 

to have a higher hematocrit percentage: they trade the cost of viscosity to attain higher 

performance. Goats, which are sedentary, have a lower hem atocrit percentage.

The point of including mammal design in this progression is to take advantage of the 

design differences in dogs and goats. Their design is not quite optim al at one scale in order 

to have advantages at another. It seems logical that plants would, share similar traits. For 

example, the PI curve demonstrates that plant design is not optim al at all scales. In chapter 

3 it was shown that a cost differential was needed in order for th e  GA to select realistic 

photosynthetic parameters. Without the cost differential in chi allocation, plants would 

not have the typical P I curve. There would be no saturation. Why build apparatus that 

saturates? I f  there is no difference in cost, it is an expense that carries no benefit. The 

periods of saturation may be relatively short compared to the am ount of time spent in a 

non-saturated state. Given the various costs of chi allocation, i t  may be better to tune 

the photosynthetic apparatus for energy capture during periods o f  low light availability. In 

similar fashion, the trade-offs regarding nutrient allocation and storage may at times be
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non-optimal at one scale in order for improved performance at another. Likewise, models 

built around optimal allocation cannot be formulated as steady state models. As was shown 

with the N PP-Plant test, the phenology of leaves is a  dynamic process that may be following 

an optimal allocation strategy.

4.7.3 The GA in ecological simulations

What are some of the pitfalls and benefits in applying the GA to ecological simula

tions? When adding a GA to a simulation there axe sometimes subtle details th a t must be 

considered in the design of the model and in the formulation of the fitness functions.

In concept, the only limits on the GA search axe expressed in the seaxch limits of 

the controlling parameters. This is definitely not the case, the model itself may provide 

unforeseen limits on the GA. As an example, the array used to store leaf information was 

initially set to 100. For a 5 year simulation this limited the plant to an average of 20 leaves 

per year. The array size had to be changed to 150 before the nominal simulation would run 

reasonably well for the full 5 year period.

The controlling parameters can also be used in unexpected ways by the GA. In the 

search for maximum areal biomass the GA took advantage of the fact that it controlled 

shoot density. The GA configured a plant capable of quickly gaining biomass while staying 

within spatial biomass limits, and then used shoot density to effectively multiply that 

biomass into an areal maximum.

The mathematical structure of Vgrass was considered a limiting factor in search behav

ior, but its importance was underestimated. In an early version of the model, there was
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no limit on below ground biomass and no limit on the concentration of mobile caxbon in 

the leaves. It was assumed that the shootrroot ratio and limits on above ground biomass, 

caused by shading, would also limit root growth and leaf mobile caxbon. These limits were 

not needed for the nominal model to run correctly. When searching for a means to optimize 

a function, the GA took advantage of these mathematical features and used them  to store 

caxbon. Plant biomass reached values on order of 10° mg C while leaf w idth and length 

remained in nominal ranges. The biomass accumulated in root caxbon and at very high 

concentrations of mobile caxbon within the leaves.

In the process of searching for a solution, the GA can balance costs and benefits. Initially, 

all chlorophyll was considered of equal cost. As was mentioned in chapter 2, cost values 

had to be calibrated so that solutions matching the BWM99 model had normal P I curves. 

W hen all chi had equal cost, the GA selected PSU densities and antenna chi counts such 

that the PSU never reached saturation. This points to a fundamental difference in how 

models need to be constructed for use with a GA. A simple production vs. irradiance curve 

cannot be used to model light harvesting if chi dynamics axe to be considered. In general, 

any adaptation to be modeled must consider the cost as well as the benefit of different 

adaptive configurations.

A model that behaves well for the nominal and validation steps may not work well when 

coupled with a GA. Experience gained here shows that testing the mathematical nature of 

the model becomes just as important as testing the sensitivity of the model’s parameters.

GA results axe a direct function of how the fitness of a configuration is evaluated. This 

was shown with the RGR test as the leaf growth patterns followed the two-week sampling
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periods of the fitness function.

As a benefit, the GA has the ability to search solution spaces that may have disconti

nuities and optimal surfaces that might be visualized as mountain ranges. It was shown in 

Chapter 3 that since the GA works with a population of solutions, a secondary sensitivity 

analysis can be performed. Analyzing the selection ranges of the various parameters can 

reveal which parameters (and their values) are more im portant in the selection process.

In another role the GA forms the basis for allowing ecological simulations to become 

adaptive. This requires many individuals to be modeled simultaneously and implementing 

a reproductive feature within the population of individuals. Successful patterns persist and 

emulate the selection process found in the natural system. In a model where costs and 

benefits are accurately modelled, the persistent individuals should reveal how the cost and 

benefits at several scales affect each other.

4.7.4 Suggestions for further research

First, the shade model should be calibrated. Also, this model is not valid in the tropics 

where the sun would be directly over head. Note in figure 2.2 that the leaves are perfectly 

vertical and would not collect fight.

Second, chi dynamics in the model need further refinement. It was relatively easy to 

construct a set of equations that were effective at mimicking the fight harvesting behavior 

of different chi configurations. But fight harvesting is only part of the needed model. It 

was shown in Chapter 2 that the metabolic cost of building PSU’s must be considered. The 

cost of adding chi as antenna is different than the cost of chi in the base reaction center.
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For this study, cost parameters were calibrated based on various model rims with the GA 

in Chapter 2. Since most of the Production vs. Irradiance curves in Chapter 3 exhibit 

abnormal behavior, it is apparent that more attention should be made to the construction 

and timing of chi dynamics.

Third, further reading about GA applications and Johnson (1996) indicate weakness 

with the binary chromosome used here. In a case where 1 or 2 bits in the chromosome are 

critical to search success, many generations can go by before these bits are set correctly. 

The binary search may not give equal weight to the entire search space and may not search 

the area where a maximum can be found. This may have occurred when validating the GA 

by searching for a configuration that could reduce RMS error below that of the nominal 

configuration. After several attempts with an improved model that should have performed 

better, the GA could not outperform, or even match the results it found on an early attem pt 

before the model was improved.

Lastly, using sine waves to allow seasonal variation in plant attributes may not be 

descriptively accurate for all of the attributes. As opposed to a single number with no 

seasonal variation, the sine waves did allow for more variations in plant behavior. It would 

be interesting to develop a plant-growth-grammar to describe plant behavior. A grammar 

based approach has a potential to be much more descriptive of plant behavior than sine 

waves and may perform better with the GA. Johnson (1996) demonstrated the usefulness 

of a gram mar based approach.
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Chapter 5

Concluding Remarks

The objective of the this study was to build a computational framework within which 

plant growth strategies could be tested. The computational framework consisted of a sim

ulation model (Vgrass) and a genetic algorithm (GA). Vgrass was a carbon based model 

of Zostera marina th a t was built from existing published models, published photosynthesis 

data, and general plant physiology information. In Vgrass, leaf geometry was computed 

and leaf size and shoot density were used to compute self shading. Self shading attenuated 

light available to the leaves and became a feedback mechanism limiting leaf growth. The 

model was run a t two shoot densities and was qualitatively found to replicate biomass and 

leaf growth data  from Orth and Moore (1986). The relationship between leaf length and 

shoot density was shown to be related to light availability.

Vgrass was coupled with a GA to demonstrate the use of a GA with an ecologically 

based simulation. The GA was used as an optimization method to find a configuration of 

Vgrass controlling parameters that minimized the RMS error between the biomass output of

169
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Vgrass and the model of Buzzelli et al. (1999). The GA was also shown to be more than an 

optimization method. Since the G A works with populations of potential configurations there 

can be a number of individuals with fitness values near that of the most fit. Configurations 

with a fitness value within 10% of the most fit individual were compared. Among the set 

of individuals some Vgrass parameters were found to be constrained to narrow ranges of 

selection. Some parameters were found to have two ranges of selection while others were 

found to have wide ranges of selection. This demonstrated two features of the GA. First, it 

revealed parameters whose values were more critical in achieving the fitness goal. Second, 

it demonstrates the ability of the GA to find ranges of near optimal solutions.

Lastly, the computational framework of Vgrass and the GA were used to test plant 

growth strategies. The strategies were maximization of relative growth rate, maximiza

tion of biomass, and maximization of net primary production. As a non-growth strategy, 

longevity (the ability to survive 20 simulated years) was also tested. The results from each 

of the tests that maximized a  growth pattern revealed plants that were not biologically re

alistic. Meanwhile, the longevity example showed many plant configurations able to survive 

20 years. The results suggest that plant growth may not be goal driven.

So is there a growth strategy that drives allocation? Experimental evidence suggests 

that a  growth strategy is not necessary for optimal allocation (Givnish, 1983). Results from 

this study show that allocation based on maximizing growth leads to biologically unrealistic 

behavior.

There is research in the area of artificial life which also suggests tha t growth strategies 

are not necessary. Artificial worlds, called artificial life or A-life, have been created in
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software with, the aim of isolating and replicating key features of natural systems. Resnick 

(1994) demonstrated how the simple actions of individuals form complex behavior without 

centralized control. In a simulation of termite construction behavior, 1,000 A-life termites 

were placed on a large grid (unspecified) on which 2,000 chips of wood were placed randomly. 

Rules that governed the behavior of the termites were; 1) a termite not carrying anything 

that bumped into a wood chip, picked up the chip; 2) a termite carrying a wood chip 

that bumped into another chip (or pile of chips) placed its chip on the pile. Within a few 

iterations of the model hundreds of piles were formed. Piles grew and diminished and after 

20,000 iterations only 34 piles remained. Ant foraging, traffic jams, and other examples 

were used to demonstrate that individual decentralized (no command hierarchy) behavior 

can result in complex, apparently directed systems.

In a computational science dissertation, Johnson (1996) demonstrates a grammar based 

genetic algorithm method in an A-Life world that has ecological significance. The genetic 

algorithm is an artificial intelligence search method that is based on principles of natural 

selection (Goldberg, 1989). A computer model of a 200 x 200 toroidal grid (a doughnut 

shape so there are no edges) was set up in which each cell could contain an animal, a rock, 

or a piece of food. The goal for each animal was to move about and find food to support 

its metabolism. Animals were allowed to select for hearing, seeing, speed, and hunting 

strength (strong animals could consume weak animals). Selecting stronger features resulted 

in a higher metabolism rate. Animals were allowed to develop a mind to control how the 

senses, speed, hunting strength, and grid movement would develop into a behavioral pattern. 

At different times in the experiment three dominant species appeared. The gatherer had
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strong sight and fast movement; it could see the food and get it quickly. The hunter had 

a strong sense of hearing and would move anywhere another animal was heard, sometimes 

going around rocks. The hunter did not need to move quickly and took advantage of animals 

that moved more often. Finally, a scavenger developed with minimal sensory and motor 

functions. The scavenger found animals that could not move and would wait for them to 

die; simple features gave it a low metabolism rate.

These examples demonstrate that complex behavior can be the result of simple inter

actions and that computational methods from A-Life and artificial intelligence can be used 

to demonstrate classical ecological principles. The next step is to substitute the A-life en

tities with the simulation of a real ecological entity. Examples of this have already been 

published. In an example to explain rat pup huddling, Schank and Alberts, (1997) show 

that the complex behavior can be explained by individuals behaving according to a  simple 

set of rules which are related to sensorimotor activities. In another example (mentioned in 

Chapter 3), Huse et al. (1999) use a genetic algorithm and a neural network to control the 

spatial movement in an individual based fish simulation.

Complex behavior does not have to be the result of a goal oriented principle, and very 

likely is not. It may be that humans apply anthropomorphic qualities to apparently directed 

complex non-sentient collectives.
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