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PREFACE

Benthic community structure in marine hard-bottom habitats can be regulated by 

recruitment processes, interspecific competition, predation, and physical disturbance which 

vary along gradients of environmental stress. In contrast, the regulation of community 

structure in soft-bottom systems has been extensively studied, but a unifying theory of 

regulating forces remains elusive. In this dissertation, I (1) reviewed models of benthic 

community regulation, (2) examined the role of predation in structuring marine benthic 

communities in two zones along a salinity gradient, (3) examined effects of predation on a 

common and abundant bivalve, and (4) determined an appropriate community regulation 

model for this soft-bottom community. Specifically, predation intensity was manipulated 

experimentally in the field along a salinity gradient to quantify its impact upon benthic 

diversity as well as survival of a dominant infaunal prey species, Macoma balthica.

In the introductory chapter I reviewed the theoretical literature, which emphasizes 

studies in the rocky intertidal zone, on community regulation in marine benthic systems, 

and I modified the Menge and Sutherland (MS) model to incorporate soft-bottom 

communities (Chapter 1). Next, I presented results from manipulative experiments which 

employed predator exclusion cages to determine the structuring forces and diversity of 

benthic communities in two zones along a salinity gradient. I compared Simpson's 

diversity index and Shannon-Wiener diversity for communities in two salinity zones (5-10 

ppt and 15-20 ppt) in the York River (Chapter 2 -I). To validate field caging experiments,

I used behavioral observations of the key epibenthic predators, blue crabs, Callinectes

viii
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sapidus, spot, Leiostomus xanthurus, croaker, Micropogonias undulatus, hogchoker. 

Trincects maculatus, and summer flounder, Paralichthys dentatus around cages in a 

laboratory mesocosm. I also used carbon, nitrogen and sediment analysis to look at 

differential deposition in varying cages to reveal any caging artifacts and looked at 

sediment carbon content between two estuarine zones to get an indication of possible 

"bottom up" (i.e., nutrient) limitation of the benthic communities (Chapter 2-II). Then, I 

quantified the shallow-water predator guild which preys upon the benthic prey assemblage 

to determine if differences in predator abundance were responsible for any differences 

between zones seen in caging experiments. Trawling was conducted around the cages in 

both downriver and upriver zones (Chapter 2 - HI) throughout three months in the 

summer. Finally, I determined the effect of predation on thin-shelled clams, Macoma 

balthica, in differing salinity zones and assessed the validity of the MS consumer stress 

model in this marine soft-bottom system. Macoma balthica typically shows higher 

abundances upriver than downriver, and I addressed the hypothesis that the differential 

distribution was due to higher predation downriver (Chapter 3). I conclude that this 

system is not driven purely by predation but also by species limitations due to the estuarine 

salinity regime, and possibly by nutrients and productivity. The York River system may be 

driven by both "top down" and "bottom up" forces, such as primary production, predation 

and environmental factors.
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ABSTRACT

A unifying theory of community regulation in soft-bottom systems remains elusive, 
despite extensive field studies on the factors controlling community structure. In this 
investigation, I have (1) reviewed models of community regulation, (2) examined the role 
o f predation in controlling benthic diversity in two zones along a salinity gradient, (3) 
examined effects of predation upon an abundant bivalve, Macoma balthica, and (4) 
investigated and revised a model of community regulation in an estuarine soft-bottom 
system. The Menge and Sutherland (MS) model of community regulation was developed 
for rocky intertidal habitats, but can be modified for soft-bottom systems. This "consumer 
stress model" posits that mobile consumers feed ineffectively in harsh environments, and 
that the relative importance o f physical disturbance, competition and predation varies 
predictably with the magnitude of recruitment, environmental conditions, and trophic 
position. In this model, competition for a resource depends directly upon the level of 
recruitment, and does not address the joint effects of recruitment and resource availability, 
which are important in soft-bottom communities. I have revised the model to fit soft- 
bottom systems by changing the recruitment axis to a "recruitment: resource ratio."
Hence, the impact of a given level of recruitment depends upon resource availability, 
which characterizes different benthic systems.

According to the predictions of the MS model, under extreme environmental 
stress, physical factors are most important in determining community structure; predation 
becomes significant when environmental conditions are less severe. Thus, the low 
diversity in physically stressful habitats results from a reduction in the importance and 
intensity of predation; in contrast, benign habitats are characterized by high diversity due 
to an increase in the importance and intensity of predation. In this series of field 
experiments, I tested the applicability of the MS model in a soft-bottom estuarine 
community. I quantified predator abundance, prey abundance and diversity, and the 
differential effect of predation on species diversity and survival of an abundant prey 
species, Macoma balthica, along an estuarine gradient in two tributaries of Chesapeake 
Bay. Benthic diversity was lower in upriver high-stress habitats than downriver low-stress 
habitats, in agreement with predictions of the MS model. However, the following findings 
are inconsistent with model predictions: (1) predator abundance was greater upriver, (2) 
predation intensity and its impact on benthic diversity were greater upriver, (3) predation- 
induced mortality of transplanted Macoma balthica clams, and natural mortality of clams 
were higher upriver, and (4) predator removal or enhancement had significant effects on 
diversity upriver and not downriver. Therefore an alternative community regulation model 
applies to this system. Higher stress upriver neither inhibited predators from entering that 
zone, nor from feeding at higher rates. The pattern in predator abundance and predation 
intensity (higher in zones of higher environmental stress) was contrary to the MS model

XV
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predictions. Predators aggregated upriver where carbon production was increased, and 
prey were abundant. Hence, a more suitable model for this soft-bottom system may be 
one that incorporates the effects of production and predation along with recruitment, 
competition and environmental stress.

xvi
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CHAPTER I:

REGULATION OF MARINE BENTHIC COMMUNITY STRUCTURE 

MODELS AND APPLICATION TO CHESAPEAKE BAY
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I. FORCES STRUCTURING COMMUNITIES

Community ecologists seek to characterize patterns in abundance and distribution 

of species, the key interactions between these species and the relative importance of 

physical and biological processes to community regulation. These structuring forces 

include both physical factors (i.e., stressors that exceed a species' physiological tolerance), 

as well as biological processes (e.g., competition, predation and recruitment; Menge and 

Sutherland 1987). Although the importance of biological processes in community 

organization has been documented and modeled for terrestrial and marine hard-bottom 

and coral reef communities (Hairston et al. 1960, Connell 1961a, b, Paine 1966, Dayton 

1971, Menge 1974, Gaines and Roughgarden 1985, Underwood and Fairweather 1989), 

predation patterns have not been incorporated into a model of community regulation for 

soft-bottom marine communities, which differ substantially from other marine 

communities (Wilson 1991). Physical factors also affect benthic communities significantly 

(Moore 1972, Rosenberg 1977, Alongi 1990, Warwick and Clarke 1993) and must be 

incorporated into models of community structure (i.e., Menge and Sutherland 1976,

1987). In this review, I sought to elucidate the role of biological interactions and physical 

stress in regulating all marine benthic communities in both soft and hard substrates and 

incorporate this information into a revised model for community regulation.
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Experiments on predation and competition

An understanding of potentially important forces structuring communities arises 

from reviewing previous investigations in marine systems. Connell and Paine's early work 

(Connell 1961a, b, Paine 1966, 1969), as well as subsequent studies (Paine 1971. Dayton 

1971, Menge 1974) elucidated the fundamental importance of competition and predation 

in structuring intertidal communities. From this series of investigations, the keystone 

predator theory was developed. "Keystone" predators control the abundance of 

competing prey species, preventing competitive exclusion and increasing diversity one 

trophic level below the keystone predator (Paine 1966). Additionally, predators have a 

large impact on communities in other systems such as pelagic (see review in Sih et al.

1985), or soft bottom areas (see reviews in Wilson 1991, Olafsson et al. 1994).

Though clear patterns are hard to identify in most systems (Underwood and 

Denley 1984), investigations in both fresh water and marine soft-sediment habitats have 

shown some consistent patterns (Hayne and Ball 1956, Peterson 1977, 1979b, Reise 1977, 

1985, Vimstein 1977, 1979, Berge and Valderhaug 1983). Soft-bottom systems 

consistently lack a single keystone predator and competitive dominant. Instead, they have 

guilds o f generalist predators and a complex array of competitive interactions (Hines et al. 

1990). Species diversity either remains unchanged or increases when epibenthic predators 

are excluded in field experiments (Vimstein 1979, Hines et al 1990, Wilson 1991,

Olafsson et al. 1994), confirming the absence of a keystone predator or competitive 

exclusion since diversity does not decrease with predator exclusion (typical of rocky 

intertidal experiments; e.g., Paine 1966). Applicability of the keystone predator theory
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may be limited to selected habitats where immobile, space-limited species are common 

(Wilson 1991).

In the 100 or more predation experiments in soft sediments, contradictory findings 

regarding predator effects on infaunal prey abundance and diversity can sometimes be 

explained by indirect effects. In some investigations, abundance and species richness 

increased with predator exclusion (Commito 1976, Vimstein 1977, 1979, Reise 1977, 

1978, 1985, Bell and Coull 1978, Peterson 1979b, Woodin 1981, Botton 1984); whereas 

in other instances, the effects o f predation were minimal (Berg and Hesthagen 1981,

Thorp and Bergey 1981, Choat and Kingett 1982, Ward and Fitzgerald 1983, Raffaelli and 

Milne 1987, Jaquet and Raffaelli 1989, Mattila et al. 1990, Bonsdorff et al. 1986, Mattila 

and Bonsdorff 1989). Only epibenthic predators were excluded during these experiments, 

releasing infaunal predators from predation and allowing them to increase in abundance, 

reducing abundances of their prey (Ambrose 1984, Commito 1982, Menge 1995).

Soft-sediment communities differ substantially from hard substrate communities, 

thus the keystone predator or Menge and Sutherland (1987) theories do not necessarily 

apply directly. Soft-sediment communities are primarily composed of small infaunal 

species which have an intimate relationship with their habitat — "they eat it, they lick it, 

they move through it," and they modify it in many ways (p. 188, Dayton 1984). Hence, 

many physical, geological and biological process in muddy-bottom estuaries are impacted 

by the activities of benthic infauna (Day et al. 1989). The three-dimensional nature of soft 

sediments may allow a refuge from predation and an associated reduction in prey 

encounter rate when contrasted with that in a two-dimensional habitat (Peterson 1979b).
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Competition and recruitment may not have as much influence upon community 

structure as predation and environmental stress in soft-bottom habitats, because of the 

three-dimensional nature of the sediment, which promotes coexistence of species 

(Peterson 1979b). In a recent review, Olafsson et al. (1994) conclude that recruitment 

limitation is not the dominant determinant of spatial and temporal patterns in soft-bottom 

systems. The effect of elevated recruitment (typically associated with increased 

competition) may be minimal, since there is not a decrease in an available resource, due to 

the three-dimensional nature of the living space and apparent abundance o f food (Peterson 

1979b). Thus, recruitment does not act similarly in hard and soft-bottom systems and may 

increase competition only in hard-bottom systems (Olafsson et al. 1994).

Environmental stress gradients

Effects of biological factors can be modified by the physical environment (Menge 

1974, Menge and Lubchenco 1980, Gilinsky 1984, Cody and Diamond 1975, Menge and 

Sutherland 1987). Stress can be considered the response of an organism to variation in 

environmental conditions that are less than optimal for growth, reproduction or survival. 

Effects depend on how severe and how often conditions deviate from optimal. 

Environmental stress gradients are caused by both mechanical forces, i.e., "physical 

stresses" (e.g., air, water, snow, ice, sediments, rocks, logs) and by effects o f biochemical 

reactions, i.e., "physiological stresses" (e.g., temperature, dessication, light, salinity;

Menge and Sutherland 1987). Organisms may have an optimal level of each factor, and 

suboptimal levels can cause minor or lethal damage to the organism (Denny et al. 1985).
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The physical environment can be effective in structuring the community, as evidenced by 

investigations dealing with many different trophic levels (Brett 1970, Thistle 1981, Pihl

1986).

Salinity in an estuary can be used as a surrogate measure of an environmental 

stress gradient (Menge and Olson 1990), and predator-prey dynamics can be investigated 

along an estuarine salinity gradient (Hines et al. 1990, Vimstein et al. 1984). Upriver, 

low-salinity areas experience more severe changes in salinity, temperature and turbidity 

(Rennie and Nielson 1991), thereby posing a physiologically challenging environment for 

predators or prey. Shallow temperate brackish areas are characterized by great seasonal 

variation in abiotic factors (Thorman 1986); periods of intense rain in spring and elevated 

temperatures in summer cause dramatic declines in salinity and increases in temperature 

which are most abrupt in upriver areas. Consequently, the consumer stress model of 

Menge and Sutherland (1987), which posits that predation intensity is inversely related to 

environmental stress, would predict that physiologically stressful upriver sites will be 

characterized by decreased importance of predation in controlling community structure, in 

contrast to less stressful downriver sites. There are no documented tests of the MS model 

(1987), however, in soft-bottom habitats.

Summary of important regulating forces in soft-bottom communities

Experiments in shallow tidal soft-bottom systems are common and the importance 

of biotic regulating forces to these systems has been reviewed (Peterson 1979b, Schoener 

1983, Commito and Ambrose 1985, Reise 1985, Olafsson et al. 1994). In summary,
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biological factors can control soft-bottom benthic community structure, though the role of 

physical factors acting in concert with biological factors needs further investigation. 

Predation can often reduce species abundance and is thus often an important structuring 

force, whereas interspecific competition is often unimportant to community structure in 

soft-bottoms. The impact of biological processes that structure soft-bottom systems may 

be modified by environmental stress (Menge and Sutherland 1987). Physical stress is 

important in hard-bottom marine habitats (Menge and Sutherland 1987), and is prevalent 

in soft-bottom systems (Boesch 1977, Bonsdorff 1989, Mattila 1992), but the influence of 

environmental stress on the importance of biological factors remains unclear.

Severe stress is likely to reduce the importance of interspecific interactions, such as 

predation or competition, on influencing community structure (Paine 1966, Menge and 

Sutherland 1976). Shallow areas are characterized by great seasonal variation in abiotic 

factors, such as temperature and wave action (Boesch 1977, Rennie and Nielson 1991, 

Mattila 1992), thus physiological stress may play an important role in community 

regulation in shallow systems such as tributaries to Chesapeake Bay. I hypothesize that 

stress is important in structuring soft-bottom systems on a local scale, though physical 

disturbance may not be as intense in subtidal communities in Chesapeake Bay as on an 

exposed rocky shore. Processes including gradients in environmental production as well 

as local stress will influence overall diversity and species distribution.

Unifying theories of community regulation have been developed for hard-bottom 

systems and thus provide useful heuristic tools for defining important structuring forces in 

soft sediments. For instance, the importance of predation as a structuring force first
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increases and subsequently declines as environmental stress or disturbance in hard-bottom 

systems increases (Menge 1976, Menge and Lubchenco 1981, Gilinsky 1984, Menge and 

Sutherland 1987); similar patterns may hold for soft-bottom systems. Perhaps the best 

approach to utilizing information from localized studies and broadening their applicability 

is to incorporate their findings using theoretical models that encompass broader spatial and 

temporal scales, and consequently, a greater range of variation in key biological and 

physical processes.

II. THEORETICAL MODELS

Summary of competition and predation models

Conceptual models and empirical evidence may be useful in either explaining or 

predicting patterns in community structure (i.e., species diversity and abundance) in 

marine systems. Stochastic variation, such as that from recruitment dynamics, may, 

however, limit our predictive capabilities (Underwood and Denley 1984). To understand 

the roles of biotic and environmental forces in structuring benthic communities, we must 

develop a predictive and explanatory theoretical framework. Fundamental empirical gaps 

in our knowledge of the effects of competition and predation on the structure o f soft- 

sediment communities have precluded a unifying theory regarding patterns and processes 

in marine communities. Theoretical models from hard-bottom communities may, 

however, provide guidance (Menge and Olson 1990).

Theories on community regulation, originally developed in hard-bottom systems,
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have emphasized the importance of predation (Paine 1966, Bayne 1981, Connell 1983, 

Menge and Sutherland 1976, 1987, Glasser 1978, 1979, Oksanen et al. 1981, Schoener 

1982, Menge and Olson 1990). The early models of community structure were developed 

for terrestrial systems (Hairston et al. 1960) and suggested that competitive exclusion 

occurs only in the absence of predation. In food chains with two levels (i.e., grazers feed 

upon primary producers), primary producers are regulated by predation. Primary 

producers do not suffer interspecific competition because grazers regulate their 

abundance. In food chains with three levels (i.e., carnivores feed on grazers which feed on 

primary producers), grazer abundance is controlled by carnivores, thus primary producers 

compete interspecifically. Thus, predator and prey are regulated by different factors 

(Oksanen et al. 1981). Top carnivores are likely resource limited, whereas plants are 

controlled by grazers in two-level food chains and by interspecific competition for 

resources in three-level systems. Thus, the importance of structuring forces differs 

depending on trophic complexity and linkages, and must be evaluated separately for each 

community.

The relative impact of competition, predation and physical disturbance as major 

regulating forces in rocky intertidal communities (Connell 1961a, b, Paine 1966, Dayton 

1971) contrasts with results from experiments in marine soft sediments (Woodin 1974, 

Reise 1977, Peterson 1979b). In soft sediments, processes involving competition, such as 

trophic group ammensalism and adult-larval interactions (Rhoads and Young 1970,

Woodin 1976, 1978, Peterson and Andre 1980), are difficult to demonstrate and may only 

be important at extremely high infaunal densities.
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In soft-sediment habitats, there is little evidence that space is limiting (i.e., 

interference competition; Woodin 1974, Roe 1975, Peterson and Andre 1980, Levin 1981, 

Paine 1984, Tamaki 1985, see review in Wilson 1991). Infauna of soft-sediments can 

penetrate into the sediment and often live amongst one another (Levinton 1977); vertical 

partitioning of the space is possible, reducing the likelihood of competitive encounters 

(Wilson 1991). Rhoads and Young (1970) pointed out that functional groups can be 

mutually exclusive to settlement. For instance, the trophic group ammensalism theory 

hold that deposit feeders may inhibit settlement of suspension feeders by disturbing and 

resuspending sediment, thereby clogging the feeding apparatus of suspension feeders.

Food may be a limiting resource in soft sediments. There is evidence for food as a 

limiting resource to secondary production (i.e., exploitative competition; Peterson and 

Andre 1980, Peterson 1982, Dauer et al. 1982, Wiltse et al. 1984, Peterson and Black 

1987, Olafsson 1988, see review in Olafsson et al. 1994), however, few studies detected 

impacts of food manipulation on survival. Thus, evidence for strong effects of 

competition in soft-bottom systems is mixed, and both interference and exploitative 

competition are o f little importance (Peterson 1979b, Olafsson et al. 1994). Extensive 

reviews have shown agreement that competition is not very important in controlling soft- 

bottom community structure (Wilson 1991, Olafsson et al. 1994), however, predation has 

emerged as a major controlling factor (see review in Olafsson et al. 1994).

The influence of predation upon community structure varies by the intensity of 

predation (Vimstein 1977, Reise 1985, Menge and Sutherland 1987). In the rocky 

intertidal zone, high local diversity is often maintained by moderate to high levels of
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predation, whereby selective predation on dominant competitors prevents competitive 

dominants from monopolizing food or space (Paine 1966, 1971, 1974). The "intermediate 

disturbance" hypothesis states that species diversity is highest at intermediate levels of 

predation (Connell 1978). Predation acts to increase diversity by (1) reducing the density 

of competitive dominants allowing competitively inferior species to increase, (2) reducing 

most species densities to a level below that regulated by competitive exclusion, and (3) 

creating patches with lower densities at different stages o f succession to hypothetical 

climax communities (Paine 1966, 1971, Vimstein 1977, Reise 1985, Mattila 1992). 

Extremely high predation pressure, alternatively, may decrease diversity by causing local 

extinctions of relatively rare species. Therefore, predation can potentially enhance or 

reduce species diversity, depending on its intensity.

Intertidal hard-bottom communities are easily manipulated and have been 

extensively studied, yielding a synthetic model of community regulation (Menge and 

Sutherland 1976). In this model, competition and predation act in concert such that 

competition is more important at higher trophic levels, while predation maintains diversity 

at lower trophic levels (Menge and Sutherland 1976, Dill 1987). In addition, the relative 

importance of predation increases in trophically complex systems.

Further development of a community structure model includes the effects of 

competition, predation and recruitment along gradients of disturbance or stress (Menge 

and Sutherland 1987). This "consumer stress model" posits that mobile consumers are 

excluded from, or feed ineffectively in, harsh environments, and that the relative 

importance of physical disturbance or physiological stress, competition and predation
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varies predictably with the magnitude of recruitment (Menge 1991). environmental 

conditions, and trophic position (Menge and Olson 1990). Under extreme environmental 

stress, physical factors are most important in determining community structure; predation 

becomes significant when environmental conditions are less severe. Furthermore, 

expanded models incorporate small-scale regulatory factors (e.g., competition, predation 

and physical disturbance) as well as large-scale factors such as environmental stress, 

productivity, and energy production by plants (Menge and Olson 1990). In sum, the 

model predicts that at low environmental stress, predation is important, and at high 

recruitment and intermediate environmental stress and predation, competition is most 

important.

Environmental stress models (ESMs)

The effect of environmental stress on an organism can be either direct (e.g. 

temperature, salinity, moisture, and light) or indirect and, as such, is influential upon 

community structure (Menge and Sutherland 1976, 1987, Menge and Olson 1990).

Models incorporating gradients in environmental stress in marine systems are replete for 

the rocky intertidal habitat (Menge 1976, Menge and Sutherland 1976, Menge and Farrell 

1989, Denny et al. 1985). These ESMs predict that the influence of species interactions 

on community structure depends directly on the degree of environmental stress (Menge 

and Olson 1990). Furthermore, trophic complexity depends upon environmental stress; 

for instance, food chain length should increase under benign environmental conditions.
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Moreover, the specific outcome of stress depends on whether predators or prey are more 

affected, thereby yielding either prey stress models or consumer stress models.

• Prey stress models (PSMs)

In PSMs, prey species are more severely affected by environmental stress than 

predators, such that prey defenses are weakened more than the consumer's activity (Fig. 

1.1a; Menge and Olson 1990). At low environmental stress levels, predators and prey are 

equally affected, but at increased stress, the activity o f predators is little reduced, but that 

of prey falls markedly. This predicts that consumers would be highly active and effective 

at high environmental stress, thereby increasing the importance of predation and reducing 

diversity. These models are hypothesized to apply to plant control by herbivores.

• Consumer stress models (CSMs)

CSMs are those that assume the consumer is more severely affected by 

environmental stress than the prey (Fig. 1.1b). In high stress environments, predators are 

inhibited, and prey abundance is predicted to increase, consequently increasing 

interspecific competition. Under low stress, predation intensity is high, and prey 

abundances are controlled by predators, thereby reducing competition (Menge and Olson 

1990). Depending on the level of competition, infaunal species diversity could be 

enhanced or reduced at low environmental stress, i.e., enhanced if there is no competitive 

dominant, or reduced if there is a competitive dominant.
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Fig. 1.1. Contrasting predictions o f alternative environmental stress models, (a). In 

prey stress models, prey (dashed lines) are expected to be more severely 

inhibited by increasing stress than consumers (solid lines). Performance in 

prey decreases at high environmental stress without consumers present 

(solid circles), and decreases more severely with consumers (solid 

triangles). As a result, the effect of consumers on prey increases with 

increasing stress, (b). In consumer stress models, consumers are expected 

to be more severely inhibited by increasing stress than are prey. The 

performance of consumers decreases markedly at high environmental stress 

(open circles), releasing prey from consumers, thereby increasing prey 

performance at high stress (solid triangles). Thus, the relative effect of 

consumers on prey decreases with increasing stress. (Modified from 

Menge and Olson 1990).
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A corollary of this model states that where an environment is "severe" and 

"unpredictable," adaptations are to the physical environment, but in "benign" or 

"predictable" environments, adaptations are to other organisms and the community is 

controlled biologically (Sanders 1969). The latter situation may characterize downriver, 

high-salinity habitats of Chesapeake Bay, where physical conditions are not rigorous. If a 

consumer stress model can apply to these systems, and if downriver habitats are 

biologically controlled, the importance of predation should be greater there than in areas 

with more severe physical conditions (i.e., upriver).

* Recruitment models

The most recent model of Menge and Sutherland (1987), hereafter referred to as 

the MS model, incorporates recruitment density (influx of new individuals into the 

population) into the environmental stress model (Fig. 1.2). The level o f recruitment alters 

the importance of competition and predation; often, at low recruitment, competition is 

reduced (Gaines and Roughgarden 1985, Underwood and Fairweather 1989). In the two- 

dimensional rocky intertidal system, where space is limiting, higher recruitment 

exacerbates competition for that limiting resource. The effect of recruitment limitation on 

community structure in soft sediments has only recently been addressed (Summerson and 

Peterson 1984, Peterson 1991, Peterson and Summerson 1992). A comprehensive review 

concluded that recruitment limitation does not appear to determine spatial and temporal 

patterns in soft-sediment systems (Olafsson et al. 1994).
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Fig. 1.2. Model of community regulation at intermediate trophic level (i.e., first 

consumers), showing the predicted relative importance of (i.e., the 

proportion of community variance caused by) disturbance (physical 

factors), competition, and predation (consumption) in relation to variation 

in environmental stress and recruitment density and/or growth rates of 

recruits; modified from Menge and Sutherland (1987).
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Nutrient/Productivity models (N/PMs)

N/PMs have been developed for various systems with low productivity (Fretwell 

1977, Oksanen et al. 1981). In these models, plants in relatively unproductive systems do 

not produce enough energy to support the herbivores in the community, there are many 

basal (i.e., plant) species, and the community is thereby controlled by interspecific 

competition. In more productive systems, energy is sufficient to support both herbivores 

and carnivores, consequently increasing the importance of predation in community 

regulation. In this case, nutrient or productivity levels determine trophic complexity rather 

than environmental stress (Menge and Olson 1990). Though there is evidence for food 

limitation in both deposit- and suspension-feeders (see review in Olafsson et al. 1994), the 

effects are often on growth and fecundity, whereas effects on survival are rare.

I l l  REVISED MODEL OF MARINE BENTHIC COMMUNITY REGULATION

Previous theoretical models provide a framework for development of a community 

regulation model that incorporates soft-sediment communities, which formerly eluded a 

unifying theory (Wilson 1991). The MS model, developed from, and applied to, the rocky 

intertidal zone, can be modified to apply to other habitats, such as soft sediments. The 

MS model does not consider soft-sediments nor does it recognize that soft-sediment
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Fig. 1.3. Model of community regulation for soft-bottom systems at intermediate

trophic level, showing the predicted relative importance of physical factors, 

competition, and predation in relation to variation in environmental stress 

and the recruitment: resource ratio (the relative amount of recruitment to 

available space or food). In this model, the effect of competition is minimal 

along the majority of the recruitment: resource axis and only becomes 

important at extremely high recruitment: resource ratios. (Modified from 

Menge and Sutherland 1987). This differs from Fig. 1.2 in that even at 

high recruitment in soft bottoms, the importance of competition is never as 

great as in areas of high recruitment in hard bottoms.
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habitats may have recruitment densities that equal those of hard-bottom, space-limited 

habitats, without competition becoming important.

In this modification, I consider the differential importance of competition in 

systems with differing resource availability. The recruitment axis of the MS model is 

revised to include the three-dimensional nature of soft-sediments by relating recruitment to 

resource availability. In this modified model, the recruitment axis is changed to a 

"recruitment: resource ratio" (Fig. 1.3) wherein the impact of a given level of recruitment 

depends upon resource availability. For instance, when recruitment and resource 

availability are relatively low, or when recruitment and resources are comparably high, 

then a low recruitment: resource ratio applies, and competition does not strongly impact 

community structure. In soft sediments (or presumably other habitats) where the resource 

(e.g., space) is abundant, a high recruitment may be associated with a extensive available 

settlement habitat (i.e., resource) and the system would have a low "recruitment: resource 

ratio." Hence, this level of recruitment: resource ratio leaves the system at the front face 

of the model (Fig. 1.3), which suggests little influence of competition; this is consistent 

with scant evidence for competition in soft-sediment habitats (Dauer et al. 1982, Wiltse et 

al. 1984, Wilson 1991). Though more common in space-limited hard-bottom habitats, 

there may be an extremely high level of recruitment in soft-sediment communities where 

resources, either food or space, become limiting and competition becomes influential (see 

review in Wilson 1991). In this situation, the recruitment: resource ratio is high, bringing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the system to the back face of the model (Fig. 1.3) where interspecific competition is 

somewhat important. Along the environmental gradient, the predictions are similar to 

those set forth in the MS model for a given recruitment: resource ratio. For example, at 

low recruitment: resource ratios and relatively benign environmental conditions, the 

importance of predation is greater than at high environmental stress, where physical 

factors dominate and the importance of predation is reduced (Figs. 1.2 and 1.3).

The relative importance of structuring forces on species diversity are similarly 

modified from the MS model for species diversity (Fig. 1.4; Modified from Menge and 

Sutherland 1987). In the MS diversity model, developed for hard-bottom systems, when 

recruitment is high, the diversity curve is bimodal, with low diversity due to competitive 

exclusion at the midpoint. When recruitment is low, competition among prey is not 

important, resulting in a unimodal curve (as in the front face of Fig. 1.2). The important 

missing component of the MS model is a recognition of systems that are not limited by 

resources, and, thus, are able to absorb a high recruitment without increased competition 

(Fig. 1.5).

In soft-bottom systems, when recruitment is relatively low, the predictions for 

benthic diversity are the same as those for hard-bottom systems, i.e., competition among 

prey is not important, and diversity increases until predation becomes severe enough to 

cause local extinctions. However, at high recruitment, resources are still not limiting and 

the effect of competition will not be as great as in hard-bottom systems. Competition may 

be moderately important, leading to exclusion, reducing diversity, and causing a bimodal 

diversity curve (Fig. 1.5) with a less severe dip than in hard-bottoms (Fig. 1.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Fig. 1.4. Remake of Menge and Sutherland's (1987) synthetic model of species 

diversity which is derived mainly from rocky intertidal data. When 

recruitment is high and competition leads to exclusion, the diversity curve 

is bimodal. The left mode of the diversity curve is the intermediate 

(physical)-disturbance model and the right mode is the predation model of 

species diversity. When a broad range of physical conditions is considered, 

this bimodal curve predicts the changes expected in species diversity as 

physical conditions ameliorate. When recruitment is low, competition 

among prey is not important (as in Fig. 1.2), and species diversity depends 

on the interaction among the physical environment, predation intensity, and 

colonization patterns. If we assume that the number of locally competent 

species that can successfully colonize and persist increases with decreasing 

stress, diversity should increase until predation becomes severe enough to 

cause local extinctions. The result should be a unimodal curve.
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Fig. 1.5. Model of species diversity in soft-bottom systems. When recruitment is 

low, competition among prey is not important, as in hard-bottom systems 

(see Fig. 1.3). At this point, species diversity depends on the interaction 

among the physical environment, predation intensity, and colonization 

patterns. The result is a unimodal curve with diversity increasing until 

predation becomes severe enough to cause local extinctions. However, at 

extremely high recruitment, resources may be slightly limiting and the 

effect of competition will not be as great as in hard-bottom systems. If 

competition is important, it may lead to exclusion, reducing diversity, and 

causing a bimodal diversity curve with a less severe dip than that predicted 

for hard-bottom systems (Fig. 1.4). (Modified from Menge and Sutherland 

1987).
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To apply the MS diversity model to soft-bottom as well as hard- bottom systems, 

it is helpful to conceptualize variation in the importance of competition with resource 

availability across recruitment values for these different systems (Fig. 1.6). When 

recruitment is low, the importance of competition is necessarily low throughout a range of 

systems with differing magnitudes of resource availability. When recruitment is high, and 

available resources are high (as is typical in three-dimensional soft-bottom systems; the 

front face of the model, Fig. 1.6), the importance of competition rises slowly to an upper 

asymptote. When recruitment is high and available resources are low (such as limited 

space in hard-bottom systems; the back face of the model, Fig. 1.6), the importance of 

competition rises quickly to an upper asymptote well above that seen for high resource 

availability (i.e., in soft bottom systems). The overall effect is a reduced importance of 

competition in areas with high resource availability.

I modify the MS diversity model to allow application of the model to soft 

sediments and any benthic system by changing the recruitment axis to a recruitment: 

resource ratio (Fig. 1.7). At high environmental stress, the new model, like the MS 

model, predicts that physical factors will limit species diversity, whereas at intermediate 

environmental stress, the importance of both physical factors and predation will be 

minimal, leading to increased diversity, as in the MS model at low recruitment (Fig. 1.2). 

Finally, as in the MS model, In more benign environments, the importance of predation 

increases, thereby decreasing diversity. Because of low recruitment, competition should 

not be important. Thus, at low recruitment: resource ratios, a unimodal curve of species 

diversity applies. Typically in soft-bottom systems, resources are not limiting, the
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Fig. 1.6. Conceptual model of variation in the importance of competition with

resource availability across recruitment values for a range benthic systems. 

When recruitment is low, the importance of competition is necessarily low, 

with any magnitude of resource availability. When recruitment is high, and 

available resources are high (as is typical in three-dimensional soft-bottom 

systems), the importance of competition rises slowly to an upper 

asymptote. When recruitment is high and available resources are low (such 

as limited space in hard-bottom systems), the importance of competition 

rises quickly to an upper asymptote well above that seen for high resource 

availability (i.e., in soft bottom systems). The overall effect is a reduced 

importance of competition in areas with high resource availability.
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Fig. 1.7. New modified Menge and Sutherland synthetic model o f species diversity 

in all benthic systems incorporating the recruitment to resource ratio. 

When recruitment is low, recruitment: resource ratio will be low and 

competition among prey is not important (see Figs. 1.2 & 1.3), At this 

point, species diversity depends on the interaction among the physical 

environment, predation intensity, and colonization patterns. As 

environmental stress decreases, the number of colonizing species increases, 

and diversity should increase until predation becomes severe enough to 

cause local extinctions. The result should be a unimodal curve. However, 

at extremely high recruitment, when resources may be limiting and the 

recruitment: resource ratio is high, competition may lead to exclusion, 

reducing diversity, and causing bimodal diversity curve. Typically in soft- 

bottom systems, resources are not limiting and the recruitment: resource 

ratio is low to moderate and the diversity curve would be expected to be 

mostly unimodal. In hard-bottom systems, resources are more limiting and 

competition is important, leading to a bimodal diversity curve (Modified 

from Menge and Sutherland 1987).
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recruitment: resource ratio is low to moderate, and the diversity curve would be expected 

to be unimodal. In contrast, at high recruitment: resource ratios, an uncommon situation 

for soft-sediments where the three-dimensional space is generally not limiting, species 

diversity is bimodal (i.e., intense competition may pertain at intermediate environmental 

stress levels where neither physical factors nor predation are intense). A predicted 

bimodal diversity curve may characterize hard-bottom systems, where resources are 

limiting and competition is important. The hypotheses of a unimodal diversity curve in 

soft-sediment systems and a bimodal one in hard-bottom systems can be rigorously tested.

Hence the modified model of community regulation permits incorporation of a 

variety of soft-sediment habitats, from the coastal ocean to the deep sea. Its predictions, 

however, remain to be tested. In the following investigation, I experimentally examine the 

influence of predation upon benthic community structure along an environmental gradient, 

and apply the modified MS model of community regulation to the findings.

IV  A MODEL SYSTEM

The Chesapeake Bay predator-prey system

An understanding of the predators and prey in a given system is necessary for 

understanding the importance of different structuring forces within that system. In 

Chesapeake Bay, dominant epibenthic predators include the blue crab, Callinectes 

sapidus, as well as various demersal fishes such as spot, Leiostomus xanthurus, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



croaker, Micropogonias undulatus (Horwitz 1987, Hines et al. 1990). The benthic prey 

assemblage is dominated by infaunal polychaetes and bivalves (Boesch 1977, Vimstein 

1977, 1979, Holland 1985, Holland et al. 1987, Hines et al. 1990). Secondary production 

by benthic organisms is the major pathway by which organic carbon is recycled out of the 

sediment and to higher trophic levels (Diaz and Schaffner 1990). The secondary 

production in this estuary is high, at approximately 17 g C/nr/yr (Diaz and Schaffner 

1990), and a large percentage of the total number of infauna is eaten by epibenthic 

predators (Vimstein 1977, Holland et al. 1980, Hines et al. 1990, Diaz and Schaffner 

1990). In this system, infaunal species are the most important prey for epibenthic piscine 

and crustacean predators (Vimstein 1979, Hines et al. 1990, Mansour 1992).

The blue crab is dispersed widely along the Atlantic and Gulf coasts of North 

America, and is abundant throughout Chesapeake Bay (Williams 1984, Hines et al. 1987, 

1990, Lipcius and Van Engel 1990). This species is important in energy transfer in 

estuaries, serving as both omnivore and prey (Baird and Ulanowicz 1989). Feeding 

efficiency and prey capture in blue crabs vary significantly with prey availability, predator 

density and habitat complexity (Blundon and Kennedy 1982a, b, Arnold 1984, Lipcius and 

Hines 1986, West and Williams 1986, Hines et al. 1990, Eggleston 1990, Mansour and 

Lipcius 1991, Eggleston et al. 1992). The diet of blue crabs, however, consists mainly of 

bivalve molluscs, predominantly Mya arenaria and Macoma balthica, and conspecifics, as 

well as polychaetes, other crabs and fish (Laughlin 1982, Alexander 1986, Hines et al. 

1990, Mansour 1992, Ebersole and Kennedy 1995).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Epibenthic fish, Leiostomus xanthurus (spot), Micropogonias undulatus (croaker), 

and Trinectes maciilatus (Hogchoker) were among dominant predators identified in the 

Rhode River, a Chesapeake Bay tributary (Hines et al. 1990). Leiostomus xanthurus 

populations consisted of a singe size class which migrated into the subestuary in May.

This species fed primarily on Macoma balthica siphons, small crustaceans and meiofauna. 

Micropogonias undulatus was also composed of a single size class but moved into the 

estuary in November. This species fed extensively on amphipods and polychaetes. 

Trinectes maculatus was composed of three year classes, was present year-round, and fed 

on amphipods, polychaetes and clam siphons.

In most shallow-water marine systems, the predatory guild is dominated by 

generalists capable of consuming a diversity of prey (Vimstein 1977, 1979, Peterson 

1979a, b, Levinton 1982, Dayton 1984, Livingston 1984, Hines et al. 1990). Chesapeake 

Bay is no exception, with mobile generalist predators having overlapping diets of a 

diversity of prey including polychaetes, small crustaceans and clam siphons (Hines et al. 

1990). Though predation is a dominant controlling factor in Chesapeake Bay benthic 

systems (Vimstein 1979), there is not dominance by a single keystone-type predator since 

all are generalists (Hines et al. 1990), and competitive exclusion is unlikely (Vimstein 

1977, Peterson 1979b). In some cases, when predation is intense, the predator feeds upon 

a wide range of prey species, causing an associated decline in the entire benthic 

community (Gilinsky 1984).

In contrast, some rocky intertidal habitats are characterized by competitively 

dominant prey and a "keystone" predator (Paine 1966). Such predators can affect the
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structure of communities and persistence of populations by increasing diversity (Menge 

and Sutherland 1987, Wilson 1991, Sih et al. 1985), depending on the form of the 

predator-prey interactions with individual species. Generalist predators therefore can have 

a negative effect on diversity, in contrast to a keystone predator, which typically 

maintains high diversity (Paine 1966).

V APPROACH

Using the Cheasapeake Bay and its tributaries as a model system in which to test 

the ideas of predator-prey relationships in a soft-sediment habitat, I set forth the following 

objectives:

• To determine how macrobenthic species diversity and abundance are affected by 

different predators using various cage designs that exclude specific predators from 

benthic habitats;

• To determine how an environmental gradient of stress correlated with salinity (i.e.. 

upriver and downriver) modifies the impact of predation on macrobenthic 

community structure;

• To assess the effects of predator exclusion cages on predator behavior, sediment 

grain size and nutrient deposition.

• To assess differences in shallow-water predator abundances associated with 

upriver and downriver areas in the York and Rappahannock Rivers.
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• To test the effect of predation on bivalves along a salinity gradient in two replicate 

systems over the long-term (i.e., two-years) and over short periods (i.e.. weeks) 

during the summer.

This dissertation will add to our knowledge of the effect of predation on community 

regulation in soft-bottom habitats, and the modification of the impact of predation by 

environmental stress.
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ABSTRACT

Regulation of benthic community structure has been studied extensively in marine 
systems, resulting in a community regulation model that incorporates the effect of 
predation, competition, environmental stress and recruitment - the Menge and Sutherland 
consumer stress model (MS). This model predicts that low diversity in physically stressful 
habitats results from a reduction in the importance of predation; in contrast, benign 
habitats are characterized by high diversity due to an increase in the importance of 
predation. In this investigation, I have quantified predator abundance, prey abundance and 
diversity, and the differential effect of predation along an estuarine gradient in tributaries 
of Chesapeake Bay to examine the applicability of the MS model in a soft-bottom 
estuarine community. Benthic diversity was lower in upriver higher-stress habitats than 
downriver lower-stress habitats, in agreement with predictions of the MS model.
However, the following findings are inconsistent with predictions from the MS model: (1) 
predator abundance was greater upriver, and (2) predator removal or enhancement had 
significant effects upriver and not downriver, and therefore (3) the MS model needs to be 
modified substantially to be applicable to this system. Higher stress upriver neither 
inhibited predators from entering that zone, nor from consuming prey. This soft-bottom 
benthic system is apparently not driven purely by "top-down" forces, but is probably 
regulated by "bottom-up" forces indicated by increased carbon production upriver and 
associated increased predator abundance. Thus, the system is regulated by a combination 
of salinity tolerance, primary production and predation.
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INTRODUCTION

Community structure

Benthic community structure is driven by both biological (Hairston et al. 1960, 

Connell 1961a, b, Paine 1966, Dayton 1971, Menge 1974) and physical forces (Moore 

1972, Rosenberg 1977, Alongi 1990, Warwick and Clarke 1993), whose impact is well 

documented for terrestrial and marine hard-bottom communities. Biological forces 

include predation, competition and recruitment of young. Numerous field experiments 

manipulating the abundance of predators or competitors (e.g., through the use of predator 

exclusion cages in the rocky intertidal; Connell 1961a, 1983, Paine 1966, Menge and 

Sutherland 1976) show the importance of these structuring forces in hard-bottom systems. 

The keystone predator concept (sensu Paine 1966) has emerged from these studies, 

whereby such predators enhance species diversity by allowing competitive exclusion. The 

exclusion of a keystone predator results in the decline of competitively inferior prey 

species and increase by a competitive dominant, thereby reducing species richness and 

diversity (Paine 1966, 1974, Peterson 1979b, Menge 1995).

Soft-bottom marine communities differ substantially from other marine 

communities (Wilson 1991) and structuring forces have not been determined sufficiently in 

these systems. Soft-bottom systems are ubiquitous in the marine environment, are 

important for transfer of food through food webs. They also can be productive and
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important as feeding grounds, spawning areas and nurseries (Adams 1976, Pihl 1982,

1985, Evans 1983, 1984). These habitats are characterized by high seasonal fluctuations 

in salinity, temperature, and wave action which have an effect on community regulation 

along with biotic interactions (Boesch 1977, Mattila 1992).

Biological factors such as predation may or may not control soft-bottom 

community structure (Connell 1975, Peterson 1977, 1979a, b, Vimstein 1979, Sih et al. 

1985, Menge and Farrell 1989, Hines et al. 1990, Thorp 1986, Wilson 1991). In soft- 

bottom communities, species diversity either increases or remains unchanged when 

epibenthic predators are excluded (Vimstein 1979, Holland et al. 1980, Hines et al. 1990, 

Wilson 1991), indicating the absence of both keystone predators and interspecific 

competition.

Biological forces can be modified by the physical environment and can change 

along gradients of environmental stress. The effects of both biological (e.g., predation) 

and environmental (e.g., stress) structuring forces on benthic community structure, 

however, have not been satisfactorily determined for marine soft-bottom systems. Species 

abundance, diversity, food web size, food web complexity, and the major species 

interactions are often connected with gradients in elevation, water flow or salinity (Boesch 

1977, Menge and Olson 1990). For example, species diversity increases with decreasing 

latitude and with decreasing depth in the deep sea (Jackson 1972, Vimstein et al. 1984, 

Grassle et al. 1979, Rex et al. 1993). An estuarine gradient may also be important in 

modifying benthic community structure, and this study addresses the influence of 

predation along an estuarine salinity gradient within tributaries of Chesapeake Bay.
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An environmental gradient in salinity can affect species diversity. For example, in 

estuaries, diversity increases with salinity due to the marine origin of most species and 

their consequent inability to cope with reduced or fluctuating salinities (Fig. 2.1; Boesch 

1971, Remane and Schlieper 1971, Wolff 1983). Thus, benthic diversity is lower in 

estuaries, but abundance may be higher due to elevated food availability, among other 

things (Day et al. 1989). In Chesapeake Bay, benthic infaunal distribution and abundance 

are associated with salinity gradients in addition to other physical factors such as sediment 

type, oxygen concentration, and frequency of bottom disturbance (Boesch et al. 1976, 

Schaffner et al. 1987, Pihl and Rosenberg 1992). This study addresses a community that 

lies between 5 and 25 ppt, with an upriver, low salinity zone near the minimum in 

estuarine diversity. The benthic community may be regulated by a suite of biotic and 

physical or physiological factors, which may be addressed in models of community 

regulation.

Community regulation models

Community regulation has been variously modeled, particularly by environmental 

stress models, whose predictions depend on whether the prey or consumers are more 

affected by stress (Menge and Olson 1990). Prey Stress Models (PSMs) predict that 

stress weakens prey more severely than predators, thus predation has a greater effect in 

high stress areas. For example in anoxia, benthic fauna may be weakened, rise to the 

sediment surface, and be eaten by predators that are less severely affected because they 

can migrate. Conversely, Consumer Stress Models (CSMs) predict that consumers are
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Fig. 2.1. Changes in species richness (number of species) along a salinity gradient 

(from Remane and Schlieper 1971).
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more affected by stress than prey, reducing predation, increasing prey abundance, and 

thereby increasing competition in high stress habitats.

One dominant model for community regulation is the Menge and Sutherland (MS) 

consumer stress model (1987). This model, which was developed for the rocky intertidal 

habitat, posits that consumers are more severely affected by environmental stress than 

prey. Specifically, the MS model suggests that if a consumer stress model applies, the 

importance of predation increases with reduced environmental stress, because of an 

increase in predator foraging efficiency in areas of lower stress (Menge and Lubchenco 

1981, Gilinsky 1984, Menge and Sutherland 1976, 1987, Menge and Farrell 1989). For 

instance, in areas of low wave exposure (low stress), the predatory starfish Pisaster is 

common and limits epifaunal prey density; in areas of extreme wave exposure and stress, 

its foraging activities and impact are minimal (Menge 1975). Such trends in predation 

over varying levels of environmental stress may also hold for soft-bottom communities 

(Sih et al. 1985).

A major tenet of the MS model is that diversity increases and the importance of 

predation increases with a decrease in environmental stress. In addition, the model 

predicts that low stress environments have low diversity because reduced predator activity 

allows competitive exclusion. This model was developed for processes on a local scale 

(e.g., across the intertidal zone) where the suite of predators and prey span the gradient 

between the two zones and the model may best apply to small spatial scales (Menge and 

Olson 1990). I will, however, examine the utility of this model on larger spatial scales 

where the suite o f predators is similar, but prey species change substantially across the
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gradient of interest, i.e., a soft-bottom system along a salinity gradient in the York and 

Rappahannock Rivers, Chesapeake Bay.

Environmental stress models (ESMs) may not be applicable to all systems and 

Nutrient/Productivity models (N/PMs) may be more appropriate in some situations 

(Menge and Olson 1990). According to the expected domain of ESMs or N/PMs, 

intertidal areas should be mostly controlled by ESMs at local scales, while N/PMs are 

predicted to be influential at larger meso- and geographic scales. Shallow waters should 

be controlled by ESMs while deeper areas should be influenced by N/PMs. Large river 

and stream systems should be controlled by N/PMs, while small rivers and streams should 

be controlled by ESMs. In sum, if a given habitat has a high level of environmental stress, 

it is likely to be influenced by an ESM, whereas if stress is low to moderate, N/PMs may 

apply better. With these predictions, it is not clear whether a shallow river system 

spanning a large geographic scale (~20 km) should be influenced by an ESM or N/PM.

The York and Rappahannock River systems spanning an estuarine gradient in stress (e.g., 

salinity, temperature, turbidity), provide a good model for examining the applicability of 

different community regulation models to a soft-bottom community.

If we assume that interspecific competition is not important in soft-bottom systems 

(Peterson 1979b, Sih et al 1985, Wilson 1991), then diversity should show a unimodal 

peak along a gradient of environmental stress (Menge and Sutherland 1987). Diversity 

increases with decreasing environmental stress, as does the importance of predation in 

community regulation. Diversity is low at high environmental stress because few benthic 

species can tolerate extreme physical conditions (Kinne 1970, Boesch 1977). At
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intermediate stress, diversity is highest. At low stress, predators become efficient and 

eliminate some prey species, thereby decreasing diversity. If the MS model can be applied 

to this system, I predict, in accord with Menge and Sutherland, that the importance of 

predation should increase with a decrease in environmental stress, along with a consequent 

increase in diversity. In the case of soft-bottom systems, diversity would not change due 

to competitive exclusion, but may instead change due to the effect of predators on 

evenness. Because of the presence of many generalist predators (Hines et al. 1987) that 

can consume abundant species, evenness may increase with predator abundance.

Species diversity varies at many scales from local to global (Rosenzweig 1995), 

and often in concert with the intensity of competition, predation, disturbance, and 

environmental gradients (Paine 1966, Connell 1978, Sih et al. 1985). In Chesapeake Bay, 

for example, diversity of benthic infauna covaries positively with a gradient in salinity (i.e., 

higher diversity in more saline waters; Boesch 1977). Patterns in benthic species diversity 

are related to gradients in environmental conditions in various ecosystems. Stable 

environmental conditions often result in higher diversity, as in the tropics where 

fluctuations in temperature and other environmental factors are minimal and diversity is 

high (Jackson 1972, Vimstein et al. 1984, Rex et al. 1993). For example, tropical forests 

support 10 times more tree species than temperate forests of equal biomass (Latham and 

Ricklefs 1993). High salinity zones in estuaries exhibit less fluctuation in abiotic 

conditions and diversity is increased compared with lower salinity areas (Boesch 1977).

The deep sea is more stable than coastal zones and diversity increases with increased 

depth (Grassle 1989).
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In this study, salinity is used as a surrogate measure to define an environmental 

gradient and test its impact upon predator-prey dynamics in marine soft-bottom systems 

(Menge and Olson 1990). Variation in the importance of predation has not been 

investigated along salinity gradients, even though such gradients are a ubiquitous feature 

of estuaries (Boesch 1971). In general, upriver low-salinity areas experience more 

extreme fluctuations in salinity, temperature, and turbidity than downriver high-salinity 

areas. For example, salinity changes during a tidal cycle in the upper estuary can be as 

high as 5 ppt within 12 hours, whereas less than 3 ppt change is common in the down- 

estuary areas (Boesch 1971). Long-term monitoring throughout Chesapeake Bay also 

shows that the variance in salinity (standard error of the mean) increases with decreasing 

salinity in the James, York, and Rappahannock Rivers (Dauer et al. 1989). In addition, 

temperature at the mouth of the river is more stable than in the rest of the river because of 

the relative proximity to oceanic influence (Boesch 1971). Physical disturbance from 

sediment deposition is also greater upriver, usually near the turbidity maximum (L. 

Schaffher, personal communication).

Changes in physical characteristics are likely to have profound effects on the 

activities of resident fauna, such that lower salinity areas are more stressful (Menge and 

Olson 1990). This may be especially true in estuaries where many species are of marine 

origin (Remane and Schlieper 1971). Changing salinity requires osmoregulation which is 

costly in terms of energy expenditure, and low salinity may be additionally harsh for 

species with marine origins. Infauna are immobile and are evolutionarily adapted to their 

surrounding environmental fluctuations. Conversely, predators are able to migrate,
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therefore they can escape undesirable environmental conditions and need not be 

physiologically adapted to a harsh physiological environment. For instance, though the 

blue crab has a wide salinity tolerance (Mangum and Towle 1977), growth and feeding 

efficiency are higher at higher salinities (Cadman and Weinstein 1988). Though the blue 

crab is characterized as euryhaline, below suboptimal salinities (~27ppt), respiration rate 

increases (Colvocoresses et al. 1974, Mangum and Towle 1977) and varies inversely with 

salinity due to higher energy demands of osmotic regulation at low salinity (Findley et al. 

1978). For instance, in the non-tidal Baltic where there are steep gradients in salinity, few 

epibenthic predators occur due to the salinity stress (Bonsdorff and Blomqvist 1993). 

Temperature stress may also affect predators migrating into and out of upriver areas. For 

instance, ventilation rates in some estuarine fish (e.g., Trimctes macidatus, Morone 

americana, and Leiosiomns xanthurus) significantly increased after temperature increases 

of 2.5 to 5°C (Burton 1979). Hence, predators are likely to be more stressed upriver.

Measures o f diversity

Diversity measures are central to understanding community ecology (MacArthur 

1965, Whittaker 1972, Peet 1974, Pielou 1975, Grassle et al. 1979, Lande 1996). 

According to Lande (1996), "a good measure of diversity should ideally be nonparametric 

and statistically accurate." Though there are many diversity indices, each of which seeks 

to characterize the diversity of a sample or community with a single statistic (Magurran 

1988), the most frequently used measures are nonparametric and do not depend on a 

particular species abundance distribution from which the natural community will likely
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deviate (e.g., log series, Fisher et al. 1943; broken stick, MacArthur 1957: or lognormal, 

Preston etal. 1948).

Two key parameters characterize diversity, richness (i.e., the number of species) 

and evenness (i.e., equitability across all species). Other measures include indices such as 

the Shannon-Wiener information index H1 and Simpson's diversity (1-A), which are based 

on species frequencies (Magurran 1988). Diversity has also been described as within and 

among communities (alpha and beta diversity, respectively) and total diversity in a set of 

communities (gamma diversity; Whittaker 1972, Ricklefs and Schulter 1993). Lande 

(1996) defines the different measures and I summarize them here.

► Species richness is simply the number of species in a community. This is the most 

basic measure of diversity because the data is relatively easy to collect, however, it 

can be biased because rare species are often absent from samples.

► Evenness is the division of individuals among the species and is also a commonly 

used measure.

► Shannon-Wiener Diversity, H' (Shannon and Wiener 1962), is the average 

information per individual described by

For a given number of species, the information reaches its maximum value when all 

species (S) are equally frequent in the community, and p, is the number individuals 

of species /. In practice, this index increases with the number of species in a

( 1 )
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community and will not go above five. This is a popular measure o f diversity and 

thus is comparable across many studies; however, it may be biased depending on 

the number of species in a community (Hutcheson 1970). In speciose 

communities, this measure of diversity may be inaccurately low if few individuals 

are sampled. Accurate estimation of H' requires sampling large numbers of 

individuals (more than twice the number of species in the community; Lande 

1996).

Simpson's concentration, X (Simpson 1949), is the probability that two randomly 

chosen individuals from a given community are the same species. It is described by

where p, is the number of individuals of species /.

Simpson's diversity = 1 - X

is the probability that two randomly chosen individuals are different species.

This can be an unbiased estimator that accurately extrapolates species diversity, 

even from a small sample size. Though many indices are used, a recent statistical 

evaluation of diversity indices determined that the most accurate estimation of total 

species diversity based on random sampling uses an ANOVA for Simpson's 

diversity (Lande 1996).

( 2 )
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Benthic communities and their predators

The benthos in Chesapeake Bay comprises diverse assemblages of species (Diaz 

and Schaffher 1990). Shallow-water assemblages in unvegetated areas of Chesapeake Bay 

are less dense and diverse than comparable vegetated areas (Orth 1977). Vegetation may 

provide partial refuge from predation for infauna, as it is difficult for predators to forage 

and dig through the rhizome mats of seagrass. In addition, infaunal densities are lowest in 

summer and fall, during and after the period when predators are abundant in the system 

(Hines et al. 1987, 1990). Thus, predation appears to be a primary biotic factor 

influencing species abundances, at least in high salinities (Vimstein 1977, 1979) and likely 

governs infaunal community structure.

The numerous predation experiments in soft sediments present contradictory 

findings regarding epibenthic predator effects on infaunal prey abundance and diversity. In 

some cases, abundance and species richness have increased with predator exclusion 

(Commito 1976, Vimstein 1977, 1979, Reise 1977, 1978, 1985, Bell and Coull 1978, 

Peterson 1979, Woodin 1981, Botton 1984); whereas in other instances, the effects of 

predation are minimal (Berge and Hathagen 1981, Thorp and Bergey 1981, Choat and 

Kingett 1982, Ward and Fitzgerald 1983, Raffaelli and Milne 1987, Jaquet and Raffaelli 

1989, Mattila et al. 1990, Bonsdorff et al. 1986, Mattila and Bonsdorff 1989). Some 

inconsistencies have been explained by the presence of small or infaunal predators that are 

not excluded by exclusion cages (Ambrose 1982, 1984, Vimstein 1978). Though much 

has been gained from earlier investigations, conclusions from one location may not be
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broadly applicable and further experimentation with predation in soft sediments is 

warranted.

In Chesapeake Bay, the main epibenthic predators include the blue crab 

(Callinectes sapidits), two sciaenids, spot (Leiostomus xcmthurus) and Atlantic croaker 

(Micropogonias undulatus), and two flatfish, the hogchoker (Trinectes macidatus) and 

the summer flounder {Pciralichthys dentatus) (Vimstein 1977, Mansour 1992). Despite 

intense predation , there does not appear to be a keystone predator (sensu Paine 1966) in 

this system (Hines et al. 1990).

These bottom-feeding predators either migrate into or become active in 

Chesapeake Bay and its tributaries in the spring, feed throughout the summer and early 

fall, and then cease to feed or emigrate in the fall (Hines et al. 1987, McErlean et al.

1973). Many of these predators feed on infauna, consequently affecting benthic 

abundance and diversity (Vimstein 1979); predation effects of epibenthic crustaceans, 

such as the blue crab, can be greater than the effects of epibenthic fishes (Nelson 1981, 

Botton 1984, Quammen 1984, Gee 1987). A focus on predation intensity must 

incorporate not only the identification of predatory species, but also the abundance and 

effectiveness of those predators (Menge 1983).

In addition to the common epibenthic predators, infaunal predators can also 

influence abundances of other infauna (Roe 1976, Riese 1979, Ambrose 1982, 1984, 

Commito 1982, Oliver et al. 1982). Many infaunal predators, such as nemertean worms, 

increase in abundance with predator exclusion, and subsequently decrease abundance of 

their infaunal prey (e.g., small polychaetes such as Paraprionospio pinnata,
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Scolecolepides viridis and Peloscolex gabreillae\ Holland et al. 1980). This suggests that 

the prey of predatory infauna may be less abundant in the absence than in the presence of 

epibenthic predators (Ambrose 1984). Therefore, results of caging studies must be 

interpreted with caution.

The system of interest in this study is the York and Rappahannock River tributaries 

o f Chesapeake Bay. The estuarine gradient is mainly a salinity gradient, but other 

environmental factors vary concurrently (see Boesch 1977, Dauer et al. 1989). Many 

environmental variables increase in variance upriver in this system (i.e., salinity, turbidity, 

and temperature - to a lesser degree). For example, comprehensive monitoring 

throughout the York, James and Rappahannock Rivers showed increased variance in 

salinity with distance upriver (Dauer et al. 1989). Some variables, however, such as 

oxygen stress in channels (Phil et al. 1992) and bottom disturbance are negatively 

correlated with salinity.

Caging effects

Most experiments dealing with the effect of predation on the benthos employ 

predator exclusion cages, which have been utilized in rocky intertidal habitats to elucidate 

the importance of competition and predation in community regulation (Connell 1972, 

1975); similar effects have been detected in some soft-bottom systems (Vimstein 1977, 

1979, Peterson 1979b, Holland et al. 1980, Dayton 1984, Quammen 1984, Hines et al. 

1990). Other investigations have shown weak responses of prey to predator removal, 

although these cases may be underreported (Hall et al. 1990). Additionally, weak
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responses may be detected at one time of year, when strong responses may occur at 

another (Summerson and Peterson 1984). Some difficulties arise in the use o f cages due 

to caging artifacts (see Vimstein 1978), such as reduced current flow and or increased 

deposition of sediments (McCall 1977). Such sedimentation can be either beneficial or 

detrimental, by suffocating suspension-feeders or increasing food for deposit-feeders, 

respectively (Peterson 1979b, Hulberg and Oliver 1980). If caging experiments are 

carefully planned and interpreted, they can be useful in determining the role o f predation in 

benthic systems.

Goals and hypotheses

This study was designed to answer the question "does the effect of predation upon 

benthic community structure change along an estuarine gradient in the York River?" and 

"do the current models of benthic community regulation apply to soft-bottom systems?" 

Specifically, I attempted to do four things, to determine (1) natural benthic species 

diversity (richness, H' and Simpson's diversity, 1 - A.) in shallow water at two different 

zones (upriver and downriver) along the York River, (2) caging artifacts & effects on 

predator behavior (examined in the laboratory), sediment grain size, and nutrient 

deposition (e.g., carbon and nitrogen levels), (3) natural predator abundance in two 

zones in two rivers throughout the summer predation period, and (4) the effect of 

predation on benthic community structure by using predator removal or enhancement and 

consequent changes in species richness, evenness, or diversity (H1 and Simpson's diversity, 

1-A.) within the two zones. In this paper "community" will refer to an assemblage of
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macrobenthic populations at specific sites, and the patterns o f community structure will be 

described using various indices that will be quantitatively compared using statistical 

methods.

My hypotheses were that (1) as in deep water areas, species diversity in shallow 

water habitats would decrease further upriver, away from ocean access, (2a) predators 

would have no access to the benthos within 'full cages', intermediate access to open 

sediment, and enhanced activity around and inside of partial cages, and (2b) cages would 

not significantly increase deposition of fine sediments and nutrients (3) predators would be 

more abundant upriver (based on deep-water abundances), and, based on Menge and 

Sutherland's consumer stress model, (4) the effect of predation would be greater in 

downriver, lower stress areas and thus community structure would show greater change 

with predator exclusion or enhancement downriver.
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METHODS AND MA TERIALS 

Study area

All studies in this dissertation were conducted in shallow subtidal habitats of the 

York and Rappahannock Rivers, tributaries of Chesapeake Bay. These areas were selected 

at 1-2 m depths, were unvegetated and had muddy-sand sediments. Study sites were set 

up in the York and Rappahannock Rivers, at two salinity zones per river, the upper 

mesohaline zone at about 15-20 ppt (referred to as downriver) and the lower mesohaline 

zone at about 5-10 ppt (referred to as upriver). Four York upriver sites were 

approximately 25 miles from the mouth of the River and located near West Point, whereas 

the four downriver sites were approximately 5 miles from the mouth, near Gloucester 

Point (Fig. 2.2, Table 2. la). On the Rappahannock River, the four upriver sites were 

approximately 30 miles from the mouth, near Bowler's Rock, and the four downriver sites 

were approximately 10 miles from the mouth, near Urbanna. The four sites in each 

salinity zone were established using a grid of random locations at shallow depth and in 

muddy-sand sediments. Two sites were located at each of the northern and southern 

shores of the Rivers in both salinity zones. Field experiments on macrobenthic community 

structure were conducted throughout the summers of 1992 and 1993, whereas trawling 

for predator abundance was conducted in the summer of 1994. Analysis of benthic data 

was conducted using an analysis of variance (ANOVA; Table 2.1b). In summary, the 

experimental design was as follows.
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Fig. 2.2. Sampling zones (filled circles) on the York River. Four sites at the upriver 

zone near West Point, and four sites downriver near Gloucester Point.
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Table 2. la. Summary of experimental sampling sites where predator exclusion cages were 
established and environmental parameters. Y = York River, H = high salinity, downriver. 
Salinities and Temperatures are means of values measured at sampling sites (n = 6 ). SE = 
Standard Error. Sediment samples taken in each cage at initial deployment o f the cages. 
Depth is the maximum observed at high tide.

SITE - 
SHORE

LATITUDE
LONGITUDE

SALINITY 
(ppt)/ 
TEMP (°C) 
(mean ± SE)

SEDIMENT 
% Gravel,
% Sand

SEDIMENT 
% Silt & 
Clay

DEPTH
(meters)

YH1-NE 37°15.092 N 
76°3 0.451 W

19.0 ±0.52
23.0 ±2.42

0.06,
86.52

13.41 2 . 0

YH2-NW 37°18.122 N 
76°33.648 W

18.2 ±0.75 
23.5 ±2.44

0 ,
81.77

18.23 1.5

YH3 - SE 37°15.727 N 
76°32.801 W

19.2 +.1.01 
23.8 ±2.39

0 ,
83.12

16.88 1.5

YH4-SW 37°16.194 N 
76°33.462 W

18.3 ±0.80
23.3 ±2.25

0.05,
84.64

15.31 2 . 0

YL1 -N E 37°27.589 N 
76°43.432 W

11.8 ±0.58 
24.2 ± 2.33

0.45,
62.95

36.60 1.5

YL2-NW 37°27.790 N 
76°43.542 W

1 1 . 6  ±0.60 
12.2 ±0.58

0.23,
78.00

21.77 1.5

Y L3- SE 37°15.092 N 
76°30.451 W

1 1 . 6  ±0.60 
24.3 ± 2.34

o,
84.40

15.60 2 . 0

YL4-SW 37°26.818 N 
76°44.884 W

12.2 ±0.58 
24.6 ± 2.46

0.53,
61.96

37.51 1 .0
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Table 2. lb. Potential Analysis of Variance Model displaying all factors used in this study. 

In practice only some of these factors were used in any one ANOVA (e.g.. Cage type x 

Zone for York River only).

\jkim =  M +  C, + Lj +  R* + D, + Zm + Sm +  C,Zj +  QR* +  Q D , + Z p k + Z p ,  

+  CfR̂ D/ + C,Zpk + CtZPi + ZpPi + ZpkCp,  + Qljktm

FACTORS VARIABLE FACTOR TYPE LEVELS DESCRIPTION

Cage Type c, Crossed 5 Five cages

Zone z, Crossed 2 Upriver, Downriver

River R* Crossed 2 York, Rappahannock

Date D, Crossed 3 luly, Aug., Oct.

Site s . Blocked 4 NE, NW, SE, SW
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• 2 Rivers: York, Rappahannock;

• 2 zones per River: Downriver' = Upper-Mesohaline (18-20 ppt), and

'Upriver' = Lower-Mesohaline (7-10 ppt);

• 4 Replicate sites per zone: 2 on the south side, 2 on the north side of the

river;

• 5 caging treatments per site: 'full cage', 'roof only', 'sides only', 'cage

control' and 'no cage'.

I. BENTHIC SPECIES DIVERSITY

Cages were deployed in July to reduce caging influence on infaunal recruitment; 

the maximum reproduction and recruitment of infaunal organisms in Chesapeake Bay are 

between February and May (Mountford et al. 1977). Because predators are active in the 

system in warm summer months, this study was conducted throughout the mid-summer, 

and early fall 1992-1994.

At each study site, a grid was set up whereby plots were separated by 3 m. One of 

the five predator-exclusion cage treatments was randomly assigned to each plot. The full 

experiment consisted of 80 cages ( 2  rivers x 2  salinity zones x 2  shores per river x 2  sites 

per shore x 5 cage treatments). I used five different cage designs of 1-m2 PVC-framed, 

mesh-covered square cages. Two cage types excluded specific predators ('full cage', 'sides 

only1), two of the five types ('roof only', 'cage control') attracted predators, thus enhancing
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predation, and one cage type ('no cage') allowed natural predators complete access to 

cages. Each cage type and its purpose is described below:

'full cage'- A 1-m2 frame extended 25 cm above the sediment surface, and was covered 

on all sides with 1.5-cm mesh. A 20-cm deep aluminum skirt extended from the 

bottom of each cage into the sediment to prevent migration of infauna or digging 

by predators. This cage was designed to exclude all predators greater than 1.5 cm 

from access to the benthos. All evidence suggests this cage design was effective 

(except occasionally I found a crab inside this treatment, but it was immediately 

removed and the cage repaired).

'roof only'- This cage only extended 5 cm off the sediment surface, had no mesh on the 

sides and only mesh on the roof. It was designed to exclude many o f the 

epibenthic fishes, but allow access by crabs through 5-cm-high openings on the 

sides. Because it provided structure, this cage type actually enhanced predator 

activity (see cage artifacts & effects results).

'sides only'- This cage had four sides of mesh and no roof. It was designed to exclude 

predators approaching from the sides (e.g., flatfish or rays), and turned out to be 

effective at excluding most predators (see cage artifacts & effects results).

'cage control'- This cage had a similar frame as the 'full cage', but was only covered on 2  

sides and half the roof with mesh. It was designed to allow access by all predators 

and to affect the hydrodynamics similar to the 'full cage'. Because of the structure 

provided, this cage enhanced predator activity (see cage artifacts & effects results).
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'no cage'- This cage consisted of a 1-nr flat frame placed on the sediment surface.

marking an area o f sediment to be sampled. It allowed access by all predators at 

their natural abundance (see cage artifacts & effects results).

Procedures: Initially, macrobenthic infauna were sampled when cages were deployed. 

Three subsamples were taken at random grid coordinates within each cage with a 8 .8 -cm 

diameter PVC core (0.006 m2) to a depth of 20 cm. Samples were brought to the surface 

and sieved through a'500-yum screen. Samples were stored in cloth bags and submerged in 

10% buffered Formalin with Rose bengal stain at the laboratory. Infauna were sampled 6  

weeks and 1 2  weeks after cage deployment.

Every sampling period, a 3-cm diameter core was taken in the center of each cage 

for surface-sediment grain-size analysis following the methods of Folk (1968). Salinity 

and water temperature were also recorded. Cages were checked for integrity and fouling 

organisms every 1 - 2  weeks, and repaired or scrubbed as necessary.

Macrofauna were removed from sediments and detritus using a two-step process. 

First, elutriation separated lighter organic material and most organisms from heavier 

sediment. The elutriate was sorted with a dissecting microscope. The heavy sediment 

fraction was sorted without a microscope, after spreading the material in a pan with some 

water. The samples were initially sorted into phylogenetic groups, and later identified to 

the lowest possible taxonomic level. The abundance of all species were recorded. 

Rarefaction curves were used to determine the number of subsamples needed for a 

standardized species count (Krebs 1989). For rank abundance in the natural community, 

the total number of individuals collected from all 3 subsamples at all four sites within a
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zone were compiled and compared. Diversity indices such as richness (S), evenness (J). 

Shannon-Wiener diversity (H1), and Simpson's diversity (1-A) as well as abundance were 

determined for each sample using a computer program developed by Youngseuk Park.

For each treatment replicate, the three subsamples were averaged and Analysis of 

Variance models run (Minitab 1993) to determine differences in diversity among cage 

treatments, river (salinity) zones, replicate sites, and sampling dates. In conducting this 

caging experiment, a critical assumption was made; it was assumed that the infauna within 

the areas where cages were deployed were homogeneously distributed, so that each cage 

initially enclosed the same infaunal community.

n. CAGING ARTIFACTS & EFFECTS

A. Laboratory predator behavior

Efficiency of predator exclusion cages was evaluated in a laboratory experiment using 

large experimental mesocosms and video cameras to quantify predator behavior around 

cages. Poor water clarity in the York and Rappahannock Rivers limited the ability to 

quantify the behavior of predators around predator exclusion cages in the field. These 

laboratory experiments were conducted in a computer-controlled laboratory setting, the 

Glucksman Experimental Mesocosm (GEM) facility.

Procedures: Fish and crabs were collected using a 4.9-m otter trawl towed near the field 

cages (See "predator abundance" procedures below). Animals were maintained in lm x
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2m x lm holding tanks until needed and were starved for at least 24 hours prior to 

experimentation.

Two 3,500 liter, 2m x 3m x 2m mesocosm tanks were filled with approximately 2 0  

cm of sand, and seawater was added to a level 40 cm above the sand. One of five cage 

treatments ('full cage', 'sides only', 'roof only', 'cage control' or 'no cage') was placed in the 

center of each mesocosm and buried to a level similar to that o f field cages.

For each trial the experimental cage was baited in the center with a chopped 

bloodworm. A predator was randomly selected from the following group: blue crab 

(Callinectes sapidus), Atlantic croaker (Micropogonias undulatus), spot (Leiostomus 

xanthums), and flatfish (either hogchoker, Trinectes maculatus, or summer flounder, 

Paralichthys dentatus). The predator was measured, placed into a large mesh basket 

within the mesocosm, and allowed to acclimate for five min. Predators from a range of 

sizes were used: blue crabs 50-149 mm CL, spot 95-195 mm TL, croaker 95-223 mm TL, 

flatfish 70-141 mm TL. An IR-sensitive camera above each mesocosm was positioned so 

that the cage and approximately 20 cm around the perimeter were visible. A red light 

automatically switched on with all other room lights off.

The predator was released from the mesh acclimation basket and allowed to roam 

the tank. Video recording was maintained for two hours after the predator was released. 

Activity was registered if the animal was inside the cage and this total time spent was 

compared between predators and treatments. At the conclusion of a trial, the predator 

and bait were removed and the same procedure was repeated for the next randomly 

selected predator and cage. Two replicate trials for each predator for each cage type were
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conducted. The total time over the two hour period that each predator was "in" each cage 

was computed and averaged for the two replicates of each treatment. Any significant 

differences between activity of species within different cage types was determined using 

ANOVA.

B. Sediment and nutrient analysis

Cage effects or artifacts were determined by several means including an 

examination of the efficiency of predator exclusion (see Laboratory predator behavior 

above), analysis of sediment grain size alterations, and an indirect analysis of flow using 

Carbon Hydrogen Nitrogen (CHN) measurements. Differences in sediment composition 

from one time period to another within a cage would be due to cage effects on current 

flow and sediment availability at the time. Difference between a particular cage treatment 

and the natural sediment (e.g., 'no cage') would indicate an effect of that cage on sediment 

deposition.

Procedures: Cages were visually examined each sampling period to determine if they 

were excluding the desired predators, though low visibility may have reduced detectability. 

Sediment samples for grain size analysis were taken with a 3-cm diameter core to 5 cm 

depth in each cage at each sampling period to quantify flow-mediated changes in sediment 

type. Sediment particle size distribution was determined by sieve and pipette analysis 

(Folk 1968). In addition, to test for modifications of food deposition rates to the sediment 

surface, one randomly selected cage of each type at each salinity per river was selected for 

CHN analysis (20 samples total). Each CHN sediment sample was taken from the top 0.5-
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1 cm of sediment, where labile organic deposition should be highest, and was frozen until 

analysis. Total organic carbon was determined by high temperature combustion and 

analysis of gas chromatograms by VIMS analysis personnel (Menzel and Vaccaro 1964)

HI. PREDATOR ABUNDANCE

To determine any differences in predator species composition, abundance or size, trawling 

was conducted within the two zones (upriver and downriver) used for benthic caging 

experiments. Trawling is a proven method of evaluating predator abundance in marine 

and estuarine systems (Hines et al. 1987), including tributaries of Chesapeake Bay such as 

the York and Rappahannock Rivers (Lipcius and Van Engel 1990).

Procedures: At each of the four replicate upriver and downriver sites per river, 

abundance of predators in the vicinity of the cages was quantified using a trawl in 1 - 2  

meters of water. Demersal fishes and crabs were collected with a 4.9-m semi-balloon 

otter trawl (3-m wide mouth, 5-cm-mesh net body, and 7-mm-mesh cod end). Two 2-min 

tows were taken parallel to shore at each site, one with the tidal current, and one against 

the tidal current. Distance traveled during each tow was estimated using a GPS unit.

Both trawls were compiled and analyzed as one sample. Thus, four replicate samples 

were taken in each of the upriver and downriver zones. Animals in each trawl were 

identified, counted and measured (fish: total length, crabs: carapace width). Sampling was 

repeated monthly May through August, 1994. Variation in epibenthic predator 

abundance was analyzed as a function of river, zone (upriver vs. downriver) and month 

using a full-factorial, fixed-effects analysis of variance model (Underwood 1981).
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RESULTS 

I. BENTHIC SPECIES DIVERSITY

A. A description of the natural community

Downriver, over 32 species were collected over four sites; ten of the species were 

abundant, accounting for 63% of the individuals collected. Dominant infaunal species in 

the natural community at the initiation of sampling (week 0- July 1992) were compared by 

determining rank dominance (Table 2 .2 ). Dominants included many deposit-feeding 

polychaetes, including the head-down feeding Heteromastus filiformis and Clymenella 

torquata, and the surface-feeding Tharyx sp., Streblospio benedicti, and Spiophanes 

bombyx, along with the predatory Nereis succinea and Glycinde solitaria. Among other 

taxa were a suspension-feeding phoronid, Phoronis psammophila, the amphipod,

Listriella clymenellae, often associated with C. torquata tubes, and a small gastropod 

Acteocina canaliculata. There were, however, no common bivalves downriver. The 

study sites and associated infauna were typical of shallow, unvegetated muddy-sand shoals 

in the mid to upper York River. Seventy taxa across both zones were accumulated 

(Appendix I).

Upriver, dominants comprised polychaetes, including the head-down deposit- 

feeding Heteromastus filiformis, the surface deposit feeding Streblospio benedicti, and the 

predatory Nereis succinea. Among other taxa, Macoma balthica, a facultative surface- or 

deposit-feeding bivalve was common, as well as deposit-feeding tubificids. A total of 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 0

Table 2.2. Dominant infaunal species rank and total abundance in the natural community 
at the initiation of the benthic diversity experiment in July 1992 (week 0). Dominance 
determined by species having more than 85 individuals/m2. Abundance was determined as 
the sum of individuals collected in three cores from all 4 replicate sites (total area = 0.07 
m2) at each river zone. P= polychaete, B = bivalve, 0  = oligochaete, A = amphipod, Ph = 
phoronid, G = gastropod. * = common to both river zones.

Species Rank #Indiv./
n r

UPRIVER:

Heteromastus filiformis (P) * 1 412

Macoma balthica (B) 2 355

Streblospio benedicti (P) J 270

Nereis succinea (P) 4 270

Tubificidae (0) 5 114

DOWNRIVER:

Heteromastus filiformis (P) * I 540

Tharyx sp. (P) 2 398

Clymenella torquata (P) J 341

Streblospio benedicti (P) 4 284

Listriella clymenellae (A) 5 241

Nereis succinea (P) 6 170

Acteocina canalicidata (G) 7 142

Phoronis psammophila (Ph) 8 128

Spiophanes bombyx (P) 9 114

Glycinde solitaria (P) 10 85
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species was collected over four sites (Table 2.2). Most species were polychaetes. with 

some bivalves, amphipods and gastropods. Of those, five were relatively abundant (having 

greater than five individuals over the four sites), and accounted for 83% of the individuals 

sampled.

During week 6 , species' rank dominance depended on cage treatment (Table 2.3). 

Downriver, 6  polychaete, 1 mollusc, 1 amphipod and 1 phoronid species were abundant. 

Upriver, 4 polychaete species, 2 mollusc species and oligochaetes were abundant.

B. Diversity in the natural community

Diversity in this study was compared using two main indices, Shannon-Wiener 

diversity (H‘) and Simpson's diversity (l-A). The Shannon-Wiener index is commonly 

used and thus, results here can be easily compared with other studies; however, this index 

is greatly influenced by number of individuals collected and therefore may be unreliable at 

low abundance. Simpson's diversity is not affected by sample size and therefore gives a 

reliable estimate of species diversity.

Diversity o f the benthic natural communities was significantly higher downriver 

than upriver (Table 2.4). Across ail time periods, mean H’ diversity downriver was 2.89 +

0.02 SE, compared to 2.08 + 0.02 SE upriver. Mean 1-A. was 0.81 + 0.07 SE downriver, 

compared to 0.74 + 0.07 SE upriver. The natural community was followed through time 

in the 'no cage' treatments and differences in river zone (downriver and upriver), and time 

(week 0, 6  and 12) were compared. Variance in H’ diversity between zones was 

homogeneous (Bartlett's test, P = 0.927), therefore raw data were used for the ANOVA.
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Table 2.3. Dominant infaunal species rank for each treatment at 6 -weeks sampling. 
Dominance determined by species having more than 85 individuals/m2. FC = 'full cage', 
RO = 'roof only', SO = 'sides only’, CC = 'cage control' and NC = 'no cage'. P = 
polychaete, B = bivalve, 0  = oligochaete, A = amphipod, Ph = phoronid, G = gastropod. 
* = common to both river zones. The symbol - means not ranked in top ten for that cage 
treatment.

Species
FC RO

Rank
SO CC NC

UPRIVER:

Tubificidae (0) 1 2 1 1 4

Nereis succinea (P) * 2 1 4 J
-v
J

Heteromastus filiformis (P) 3 4 *>j 2 1

Streblospio benedicti (P) 5 5 2 5 2

Macoma mitchelli 4 J 5 4 5

Macoma bcilthica (B) 7 6 7 6 6

Glycinde Solitaria (P) 6 7 6 7 7

DOWNRIVER:

Mercenaria mercenaria (M) 1 1 2 5 1

Mediomastus ambiseta (P) 2 J 1 1 7

Nereis succinea (P) * 3 5 5 3 6

Glycinde solitaria (P) 4 6 3 2 2

Clymenella torquata (P) 6 4 4 1 0 J

Spiophanes bombyx (P) - 8 8 1 0 8

Phoronis psammophila (Ph) 7 2 7 4 4

Amphipoda (A) 1 0 9 6 8 5

Thatyx sp. (P) 5 - 10 - 1
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Table 2.4. Benthic diversity through time for the natural community ('no cage' treatment). 
ANOVA factors include Zone (downriver and upriver), Time (week 0 , 6  and 12), blocked 
by Site (four replicate sites in each zone). Variance in H' diversity was homogeneous, 
therefore raw data were used for the ANOVA. Variance in X was heterogeneous, thus 
data was log-transformed for use in the ANOVA.

Measure Source of variation SS df MS F

Shannon- 
Wiener (H') Zone 3.95 1 3.95 37.74****

Time 0.28 2 0.14 1.34“

Zone x Time 0.14 2 0.07 0.70“

Site 0.17 •>j 0.06 0.54“

Error 1.57 15 0 . 1 0

Total 6 . 1 2 23

Simpson's 
index (log X) Zone 0 . 1 1 1 0 . 1 1 9.82**

Time 0.03 2 0 . 0 1 1.16“

Zone x Time 0 . 2 1 2 0 . 1 0 9.06***

Site 0 . 0 1
■->
J 0 . 0 0 0 .2 2 “

Error 0.17 15 0 . 0 1

Total 0.52 23

**** P < 0.001, *** P < 0.005, **P < 0.01, “  P > 0 .05
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Variance in X was heterogeneous between zones (Bartlett's test, P = 0.001 ), thus data 

was log-transformed and this data with homogeneous variance (Bartlett's test, P = 0.32) 

was used in the ANOVA. Throughout the sampling period, there was higher diversity 

downriver (as determined by both H' and 1-A; Table 2.4). There was a significant Zone x 

Time interaction for 1-A., thus, zones were compared separately for each time period. At 

week 0, there was no significant difference between Simpson's diversity downriver and 

upriver (ANOVA, df = 7, MS = 0.02, F = 2.00, P = 0.21). At week 6 , diversity was 

significantly higher downriver (ANOVA, df = 7, MS = 0.09, F = 9.46, P = 0.02), and at 

week 12 diversity was significantly higher downriver (ANOVA, df = 7, MS = 0.20, F = 

36.94, P = 0.001). Overall, in the natural benthic community, diversity was greater 

downriver, and did not change significantly throughout the summer and fall. This is in 

agreement with Menge and Sutherland's 1987 model that predicts higher salinity in less 

stressful, more stable environments.

The diversity of infaunal predators was similar upriver and downriver (only two 

species each zone) but the total abundance was slightly greater upriver (293 individuals 

upriver, 232 individuals downriver). At the 12-week sampling, the mean density of Nereis 

succinea downriver was 1278 ±511, whereas the density upriver was 4573 ±833 

individuals/m2. For the predatory Glycinde solitaria, density was greater downriver at 

1945 ±  548, than upriver at 833 ± 45 individuals/m2. Though nemerteans are typically 

found in high salinity, few were captured by my sampling method. Thus, any differences 

in predation were not likely due to difference in infaunal predators.
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For the natural community, there was significant variation between sites for some 

diversity measures. Upriver, H' was significantly different between sites (ANOVA d f=

11, F = 4.83, P = 0.033), as was A. (ANOVA df = 11, F = 9.34, P  = 0.005). Downriver, a 

significant difference between sites was only found for abundance (ANOVA df = 11. F = 

14.62, P = 0 .0 0 1 ). High variability in benthic infauna between sites may indicate that 

physical characteristics vary substantially between sites, and may further suggest that 

conclusions from a single site are not applicable throughout the river. Because of the high 

variation between sites, all subsequent analyses were blocked by site.

C. Caging Experiments

I. Abundance differences for two rivers - Week 6

At week 6 , abundance was analyzed for two rivers, the York and Rappahannock.

In the York, abundance was not significantly different downriver compared to upriver, nor 

were there treatment effects, but there was a significant difference due to site (Figure 2.3a. 

b. Table 2.5). In the Rappahannock River, abundance was significantly higher downriver, 

but there was no significant caging effect or site effect (Figure 2.3c, d, Table 2.5). In both 

rivers, there was high variability between sites, and few treatment effects that could be 

detected after 6  weeks. Due to time limitations and labor involved in the sorting and 

identification of all benthic samples, Rappahannock benthic samples were not identified to 

species and no diversity comparisons were made for this river. It appeared that there were 

similar, if not stronger, effects of predator exclusion on the benthos of the Rappahannock 

as there were on the York (Fig. 2.3).
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Fig. 2.3. Abundance of benthic invertebrates at 6 -weeks sampling (September 1993) 

for five different caging treatments. Mean + Standard Error from 4 

replicate sites at each river and zone combination: (a) York Downriver, (b) 

York Upriver, (c) Rappahannock Downriver, (d) Rappahannock Upriver 

Notice high standard deviations associated with the means because of 

substantial variation within each site.
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Table 2.5. Benthic abundance of infauna at the 6 -Week sampling for both the 
Rappahannock and York Rivers. ANOVA factors consisted of Cage type ('full cage', 'roof 
only', 'sides only', 'cage control' and 'no cage'), Zone (Downriver and Upriver), blocked by 
Site (four replicate sites in each zone).

Measure/
River

Source of variation SS df MS F

Abundance/
Rappahannock Cage Type 825.2 4 206.3 1.42“

Zone 1435.5 1 1435.5 9 9 9 ***

Cage x Zone 364.4 4 91.1 0.36ns

Site 980.3 J 326.8 2.25“

Error 3928.9 27 145.5

Total 7552.3 39

Abundance/
York Cage Type 598.4 4 149.6 1 .2 2 ns

Zone 5.0 1 5.0 0.04“

Cage x Zone 199.3 4 49.8 0.41“

Site 1785.5 3 595.2 4.84**

Error 3318.6 27 122.9

Total 5906.8 39

*** P < 0.005, **P < 0.01, “  P > 0 .05.
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2. Abundance differences fo r dominant species -  Week 6

Six weeks after cage deployment, some significant differences were found in 

diversity as well as individual species abundance when analyzed relative to river zone and 

caging treatment in the York River. Species richness (R) for the 6 -week sampling in the 

York River was significantly greater downriver than upriver, though there were not 

significant differences between caging treatments (Fig. 2.4, Table 2.6a). Much of the 

variation was due to zone (44.9%). Greater diversity downriver was not surprising, as 

this trend has been seen in the literature (Remane and Schlieper 1971, Boesch 1977). 

Differences in H’ and k were examined through time and will be discussed along with final 

results at week 1 2 .

Abundance of dominant species (see Table 2.3) were compared by treatment six 

weeks after cage deployment (Fig. 2.5, Table 2.6b). Downriver, dominant infauna 

included five species of polychaetes, juveniles of the bivalve Mercenaria mercenaria, and 

some bivalves other than Mercenaria. 'Other' rare species were combined and also 

compared by treatment. There was extreme variation between replicate sites (high 

standard errors), thus few significant differences were detected. Four of five dominant 

polychaete species had greatest abundance in the 'full cage' treatment (Fig. 2.5). In all 

taxa, the 'full cage' treatment allowed higher abundances than the control, suggesting that 

removing predators may increase infaunal abundance at high salinity, but these trends were 

not significant after 6  weeks. Thus, predator exclusion can increase abundance in most 

species.
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Fig. 2.4. Benthic species richness (mean # sp. per 0.006 n r core) for York River 

samples at 6 -weeks after cage deployment (September 1993) for (a) 

Downriver and (b) Upriver zones. Each bar represents a different 

treatment, and the treatments are listed in order of increasing predator 

access. Compare bars on the left (low predation) to bars on the right (high 

predation).
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Fig. 2.5. Benthic abundance for eight dominant Downriver York taxa (Mean #

individ./ 0.006 nr core ± SE) from four replicate sites. The treatments are 

listed in order of increasing predator access. Compare bars on the left (low 

predation) to bars on the right (high predation).
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Table 2.6. (a) Benthic species richness at the 6 -Week sampling on the York River. 
ANOVA factors consisted of Cage type (’full cage', 'roof only', 'sides only', 'cage control' 
and 'no cage'), Zone (Downriver and Upriver), blocked by Site (four replicate sites in each 
zone).

Diversity
Measure

Source of variation SS df MS F

Richness (R) Cage Type 8.44 4 2 . 1 1 0.55“

Zone 113.91 1 113.91 29 7 4 ****

Cage x Zone 25.56 4 6.39 1.67“

Site 2.31 3 0.77 0 .2 0 “

Error 103.43 27 3.83

Total 253.65 39

**** p  < 0.005, *** P < 0.005, “ P > 0 .05.

Table 2.6. (b) Benthic abundance differences due to cage treatment 6  weeks after cage 
deployment for the York River. ANOVA results for selected abundant infauna for both 
downriver and upriver zones. P = polychaete, O = oligochaete, B = bivalve. * = 
common to both river zones.

Species df SS F P

UPRIVER:

Streblospio benedicti (P) 4 44.2 1 .2 0.34

Tubificidae (O) 4 146.7 36.7 0 . 2 1

DOWNRIVER:

Heteromastus filiformis (P) * 4 1.23 0.56 0.69

Tharyx sp. (P) 4 9.87 1.45 0.27

Nereis succinea (P) 4 1.29 0.08 0.99

Mercenaria mercenaria (B) 4 168.0 0.55 0.70
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The extreme variation between sites probably contributed to a lack of detectable 

between-treatment differences for most species, thus a closer examination for some 

abundant species was necessary. I selected the most abundant infaunal species, juvenile 

Mercenaria mercenaria, and carefully compared abundance across replicate sites and 

treatments. Two sites had very low, one site had intermediate, and one site had high 

abundances. At the high abundance site (i.e., site 2, Downriver NW), I investigated the 

effect of caging on abundance. To get replication at that single site, I used the two time 

periods (week 6  and week 12) as replicates blocked by time. When analyzed in this way, 

there was a significant difference between treatments (ANOVA, df = 4, F = 8.41, P = 

0.031), whereby the 'full cage' treatment had high abundance, and the abundance within 

the 'roof only' cage was significantly higher than that in areas exposed to predators (e.g., 

'cage control' and 'no cage'; Tukey test, Critical value, 5.67, P < 0.05). This suggests that 

only at high infaunal abundances is predation important, otherwise, the system may be 

driven by recruitment limitation. If the effect of predation can be seen only at high 

densities, infaunal densities of many species may be too low for detection of treatment 

effects in this study, or sample size was too low.

Upriver, at week 6 , there were no significant differences in individual species 

abundance between treatments. The power was low (0.30 for oligochaetes, the species 

with closest significance) and sample size needed to detect a difference of 4.85 at 90% 

probability is 40 (Table 2.6b). Some trends in abundance due to caging, however, were 

apparent (Fig. 2.6). Various species showed elevated abundance within the 'full cage' 

compared to the 'no cage' or 'cage control' (e.g., Streblospio benedicti, Macoma mitchelli
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Fig. 2.6. Benthic abundance for eight dominant Upriver York taxa (Mean # individ./ 

0.006 m2 core + SE) from four replicate sites. The treatments are listed in 

order of increasing amount of predation. Compare bars on the left (low 

predation) to bars on the right (high predation).
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and Oligochaetes; Fig. 2.6). In contrast, some species showed no change or the opposite 

trend (Nereis succinea, Heteromastus filiformis, Macoma balthica, and all Amphipods 

combined; Fig. 2.6). Note that more amphipods were present at the 'cage control1 

treatment which provided structure for epifaunal species. At week 6 , abundance of 

individual species were not significantly changed by predator exclusion or attraction (i.e., 

attraction to structure in the ’roof only’ or ’cage control1 treatment). The next level of 

investigation involved determination of diversity measures for all sites over both time 

periods, 6  and 1 2  weeks after the initial cage deployment.

3. Species diversity differences - Weeks 6 & 12

Predation had a greater effect on benthic diversity upriver than downriver. 

Differences in diversity due to caging treatments was analyzed across sampling weeks 6  

and 12 for both 1-A and H’. Both diversity indices showed similar results, but varied 

slightly due to the different ways they calculate diversity.

a. Simpson's diversity (I- X)

For Simpson's diversity, predation had a greater effect on diversity upriver. 

Downriver, diversity remained fairly constant from week 6  to week 12 (Fig. 2.7a); upriver, 

diversity in all treatments declined from week 6  to week 12 (Fig. 2.7b), apparently due to 

recruitment of some species, and a consequent reduction in evenness (see Appendix II). 

Diversity in the treatments with probable predator activity (e.g., 'roof only' and 'cage 

control') remained highest. A multi-way ANOVA revealed significant diversity differences
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Fig. 2.7. Simpson's diversity values (1-A.) for the 'no cage' treatment at initial 

deployment (week 0 ), and for all cage treatments at 6  weeks and 1 2  weeks 

after deployment, (a) Downriver, (b) Upriver.
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Table 2.7. Log-transformed Simpson's index (1) across two sampling periods 6 and 12-Weeks on the York 
River. ANOVA factors consisted o f Cage type ('full cage', 'roof only', 'sides only', 'cage control' and 'no cage'). 
Zone (Downriver and Upriver), Time (week 6 and 12), blocked by Site (four replicate sites m each zone).

Diversity Source of SS df MS F

Measure/Factor variation

(a) Simpson's Cage Type 0.071 4 0.018 0.47“

Index (log k)l Zone 2.645 1 2.645 70.07****

Downriver & Time 12.635 1 12.635 334.74****

Upriver Cage x Zone 0.365 4 0.091 2.42“

Cage x Time 0.067 4 0.017 0.44“

Zone x Time 0.996 1 0.996 26.37****

Cg x Zn x Tm 0.150 4 0.038 0.99“

Site 0.168 j 0.056 1.49“

Error 2.152 57 0.038

Total 19.250 79

(b) Downriver Cage Type 0.054 4 0.014 1.18“

Time 0 . 0 0 1 1 0 . 0 0 1 0.13“

Cage x Time 0.036 4 0.009 0.79“

Site 0.148 J 0.049 4.31*

Error 0.310 27 0 . 0 1 1

Total 0.550 39

(c) Upriver Cage Type 0.079 4 0.019 3.09*

Time 0.104 1 0.104 16.40****

Cage x Time 0 . 0 0 1 4 0 . 0 0 1 0.05“

Site 0.108 ■-ij 0.036 5.69***

Error 0.171 27 0.006

Total 0.464 39
**** p  < 0.001, *** P < 0.005, * P < 0.05, “ P > 0 .05
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due to Zone and Time (Table 2.7a), but a significant Cage effect was only found upriver 

with a 2-way ANOVA (Table 2.7c). For k, log-transformed data had homogeneous 

variance between river zones (Bartlett's test: T = 0.579, P = 0.447; Levene's test: T = 

1.008, P = 0.322) and were used for comparisons, because raw data were heterogeneous 

(Bartlett's test: T = 11.25, P = 0.001; Levene's test: T = 6.43, P = 0.015). For the multi

way ANOVA, there was also a nearly significant (at alpha = 0.05) Cage x Zone interaction 

(P = 0.059). Because of this, to be conservative, each zone was analyzed separately.

Downriver, the only significant effects were for Site (Table 2.7b), but upriver a 

significant Cage effect was detected, as well significant Time and Site effects (Table 2.7c). 

Because of the significant Time x Zone interaction in the multi-way ANOVA, each time 

was run separately. Both time periods showed a significant Zone effect, as seen in the 

multi-way ANOVA. Thus, Simpson's diversity showed significant effects of predation 

only upriver, whereby the cages that allow most predator access (e.g., 'roof only') had 

significantly higher diversity than all other treatments (Tukey test, P < 0.05 for 'roof only' 

and 'cage control' compared to other treatments).

b. Shannon-Wiener diversity (H)

Downriver displayed far greater H’ diversity than upriver (similar to results for 

k), and river zone explained much of the total variation (51%). However, there were no 

significant Cage treatment effects for the multi-way ANOVA (Fig. 2.8; Table 2.8a). 

Variance between zones for H’ was homogeneous, so raw data could be used for analysis 

(Bartlett's test: T = 0.028, P = 0.867; Levene's test: T = 0.004, P = 0.95). In the
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Fig. 2.8. Shannon-Wiener species diversity values (bits per individual) for the 'no 

cage' treatment at initial deployment (week 0 ), and all cage treatments at 6  

weeks and 12 weeks after deployment, (a) Downriver, (b) Upriver.
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Table 2.8. Shannon-Wiener diversity (H') across two sampling periods 6 and 12-W eeks on the York River. 
ANOVA factors consisted o f  Cage type ('full cage', 'roof only’, 'sides only', 'cage control' and 'no cage'). Zone 
(Downriver and Upriver), Time (week 6 and 12), blocked by Site (four replicate sites in each zone).________

Diversity Measure/Factor Source of 

variation

SS df MS F

(a) Shannon- Cage Type 0.076 4 0.019 0.17”

Wiener (H')/ Zone 8.450 1 8.450 76.63****

Downriver & Time 0.246 1 0.246 2.23m

Upriver Cage x Zone 0.715 4 0.176 1.62"

Cage x Time 0.128 4 0.032 0.29"

Zone x Time 0.050 1 0.050 0.45"

Cg x Zn x Tm 0 . 1 0 2 4 0.026 0.23"

Site 0.518 3 0.173 1.57"

Error 6.285 57 0 . 1 1 0

Total 16.570 79

(b) Downriver Cage Type 0.313 4 0.078 0.63"

Time 0.037 1 0.037 0.30"

Cage x Time 0.047 4 0 . 0 1 2 0.09"

Site 0.405 J 0.135 1.08"

Error 3.368 27 0.125

Total 4.170 39

(c) Upriver Cage Type 0.479 4 0 . 1 2 0 1.46“

Time 0.258 1 0.258 3.15"

Cage x Time 0.183 4 0.046 0.56"

Site 0.821 J 0.274 3.34*

Error 2.209 27 0.018

Total 3.951 39
* P < 0.05, m P> 0 .05.
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ANOVA, the Cage x Zone interaction was nearly significant and power was low (due to 

low sample size), therefore 2-way ANOVAs were conducted for each Zone 

separately.

Analyses for H' in the two zones separately revealed no significant differences 

downriver (Table 2.8b) but some upriver (Table 2.8c). Upriver across both time periods, 

there was no Cage effect, a significant Site effect (explaining 21% of the variation), and a 

nearly significant Time effect (Table 2.8c). To be conservative, I analyzed each time 

period separately.

At 6  weeks, there were no significant differences due to Cage treatment either 

downriver (ANOVA, df = 19, MS = 0.065, F = 0.51, P = 0.73), or upriver (ANOVA, d f= 

19, MS = 0.043, F = 0.54, P = 0.71). But at 12 weeks upriver, significant differences in 

species diversity due to Cage treatment (ANOVA df = 19, MS = 0 . 1 2 2 , F = 4.58, P = 

0.02), and Site (MS = 0.540, F = 20.24, P = 0.001) were detected. The 'roof only' and 

’cage control1 treatments had significantly higher diversity than other treatments (Tukey 

test, P  < 0.05). Downriver at 1 2 -weeks, there was no effect of caging (ANOVA df = 19, 

MS = 0.025, F = 0.25, P = 0.90). Thus, for H’, the only effect of predation on benthic 

diversity was seen upriver. Diversity was highest in caging treatments where predator 

access was greatest, suggesting that predation maintains diversity.

4. Changes in Richness, Evenness and Abundance -  Week 12

Diversity encompasses both richness and evenness, thus, to discern the 

mechanisms behind the shifts in diversity upriver, 1 further examined species richness.
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evenness and abundance for the different treatments after 1 2  weeks of cage deployment. 

None of these parameters alone showed significant effects due to caging, but a 

combination of these factors helped explain the cause of diversity shifts. Richness 

increased slightly with increased predator access (Fig. 2.9a, b); upriver there was higher 

richness in the 'roof only' and 'cage control' treatments (with high richness also in 'full 

cage'), though this effect was not significantly different downriver or upriver (Table 2.9a, 

b). Evenness downriver and upriver showed a similar pattern with cage treatment (Fig. 

2.9c, d); evenness was highest in the cage treatments where predators had greatest access 

(e.g., 'roof only', 'cage control' and 'no cage') though this was not significant (Table 2.9c, 

d). Abundance of individuals may affect evenness if there is recruitment of a few 

individuals. There was not much difference in abundance with treatment downriver (Fig. 

2.9e), but upriver, abundance increased substantially and was highest where predators 

were excluded (e.g., the 'full cage'; Fig. 2.9f), though the differences were not significant 

(Table 2.9d, f). Thus, upriver, the increased diversity in cages with predator access (e.g.. 

'roof only’ and 'cage control') derived most notably from increased evenness, slightly 

increased richness along with decreased abundance.

To summarize, downriver, there was no significant difference in 1-A. or H’ diversity 

due to treatment. Downriver, the number of individuals did not change considerably from 

6  to 12 weeks (compare Fig. 2.3a with 2.9e), indicating that recruitment was low. In 

contrast, upriver, there was a significant difference due to treatment for Simpson's 

diversity (across weeks 6  and 12) and H' (only seen at week 12). Upriver, abundance 

increased in cages with predator exclusion (e.g., 'full cage'; compare Fig. 2.3b with 2.9f),
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Fig. 2.9. Benthic species richness (a) Downriver and (b) Upriver, Evenness (c) 

Downriver and (d) Upriver, Abundance (e) Downriver and (f) Upriver 

York at 12 weeks sampling.
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Table 2.9. Richness, Evenness and Abundance for each river zone separately ( 1-way 
ANOVAs blocked by site) in the York.

a. Analysis of Variance for Mean Richness Downriver
Source DF Seq SS Adj SS Adj MS F P
cage type 4 42.302 42.302 10.576 1.77 0 . 2 0 0
site 3 70.777 70.777 23.592 3.95 0.036
Error 12 71.741 71.741 5.978
Total 19 184.821

b. Analysis of Variance for Mean Richness Upriver
Source DF Seq SS Adj SS Adj MS F P
cage type 4 10.302 10.302 2.576 1. 98 0.162
site 3 13.898 13.898 4.633 3.55 0. 048
Error 12 15.639 15.639 1.303
Total 19 39.839

c. Analysis of Variance for Mean Evenness Downriver
Source DF Seq SS Adj SS Ad] MS F P
cage type 4 0.16324 0.16324 0.04081 1 . 00 0.445
site 3 0.18278 0.18278 0.06093 1.49 0.266
Error 12 0.48926 0.48926 0.04077
Total 19 0.83528

d. Analysis of Variance for Mean Evenness Upriver
Source DF Seq SS Adj SS Ad] MS F P
cage type 4 0. 022770 0.022770 0.005693 1. 03 0.432
site 3 0.098885 0.098885 0.032962 5.96 0 . 0 1 0
Error 12 0.066415 0.066415 0.005535
Total 19 0.188070

e. Analysis of Variance for Mean Abundance Downriver
Source DF Seq SS Adj SS Adj MS F P
cage type 4 502.1 502.1 125.5 0.58 0.680
site 3 3386.0 3386.0 1128.7 5.26 0.015
Error 12 2575.5 2575.5 214.6
Total 19 6463.7

f. Analysis of Variance for Mean Abundance Upriver
Source DF Seq SS Adj SS Adj MS F P
cage type 4 4326.1 4326.1 1081.5 1.49 0.266
site 3 5052.7 5052.7 1684.2 2.32 0.127
Error 12 8698.2 8698.2 724.9
Total 19 18077. 0
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resulting in decreased evenness (Fig. 2.9d) and thus lower diversity there. Recruitment 

was apparently higher upriver, and diversity was highest where new recruits were 

consumed by predators (e.g., 'roof only' and 'cage control' treatments). Recruitment has 

been demonstrated to set the structure of macrobenthic communities. Following 

recruitment pulses, intense predation by fish and crabs can reduce infaunal abundances 

(Holland et al. 1985). Reduced abundances of new recruits would lead to increased 

evenness.

The elevation in evenness upriver in cages where predators were attracted (e.g., 

'roof only' and 'cage control') is plausible because the predators could crop the abundant 

infauna, not allowing any one species to become dominant. Also of note is the reduced 

diversity from 6  to 12 weeks for all treatments (Figs. 2.7 and 2 .8 ). Across time periods 

the richness remained approximately equal, but the abundance of some species increased, 

thus evenness was reduced substantially. Upriver, recruitment (evidenced by increased 

abundance) occurred in all treatments, but in treatments with elevated predator density, 

new recruits were cropped, keeping evenness high (resulting in high H' and \-X). These 

infaunal results suggest that predators are most active in the 'roof only' and 'cage control' 

treatments. To corroborate this hypothesis, the predation activity in each cage type and 

the abundance of predators in each zone were quantified.
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D. CAGING ARTIFACTS & EFFECTS

A. Predator Behavior

When caging manipulations are used and significant effects are established, it is 

necessary to confirm the effects by looking at the cage efficiency. In the York River 

system, visibility is poor, thus efficiency of cages was determined in large mesocosms in 

the laboratory where predator activity around the cages could be established. Movements 

of predators in and around each of the five cage types in a 2 -hour period were quantified 

to estimate probable movement around cages and access by predators to the benthos 

within the cages in the field.

A comparison of time spent in each cage by each predator showed a significant 

Predator effect, a significant Cage treatment effect, and a Predator x Cage interaction 

(Table 2 .1 0 a). Crabs were the most active predator in cages (mean of 9 min/trial across 

all cage types) though spot were also active (mean of 1.1 min/trial across all cage types), 

and croaker were slightly active (mean of 0.02 min/trial across all cage types; Fig. 2.10).

In addition, the 'cage control' treatment had highest predator activity within it (mean of 

10.17 min/trial for all predators), the 'roof only' treatment had second highest activity 

(mean of 3.84 min/trial for all predators), then the 'no cage' treatment (mean of 2.86 

min/trial for all predators). Both treatments with notable access by predators (e.g., 'cage 

control' and 'roof only') had higher predator activity than the 'no cage' (i.e., natural 

sediment) treatment, suggesting that these cages attracted predators, rather than excluding 

them somewhat. The 'sides only' treatment had no activity within it, which may have been 

a consequence of the water depth in the mesocosms; the water was only 25 cm above the
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Table 2 .10a. Predator behavior in GEM lab experiments comparing time spent (over a 
total of 2 hours) in each cage type by each of four predator groups. ANOVA factors 
consisted of Cage type ('full cage1, 'roof only’, 'sides only', 'cage control' and 'no cage'), and 
Predator including the blue crab Callinectes sapidus, spot Leiostomus xanthums, croaker 
Micropogonias undulatus, and a flatfish (either hogchoker Trinectes maciilants, or 
summer flounder Paralychthes dentatus).

A 3-way analysis of Variance for time spent in each cage (min) by 
predator

Source DF Seq SS Adj SS Adj MS F P

predator 3 544.10 521.88 173.96 14.82 0 . 0 0 0
cage type 4 316.51 183.97 45.99 3.92 0 . 0 2 1
pred'cage 12 588.53 588.53 49.04 4.18 0.005
Error 16 187 .83 187.83 11.74
Total 35 1636.96
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Fig. 2.10. Mean time in minutes spent in each cage treatment (’full cage', 'roof only', 

’sides only’, ’cage control' and 'no cage') by each of 4 predator taxa (Blue 

crabs, spot, croaker, or flatfish) from behavioral experiments in the GEM 

laboratory.
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cage top. This water level, however is similar to that in which cages were placed in the 

field, and therefore may indicate that these cages were not accessed by predators in the 

field either. Note that bait was added to the cages, so the recorded activity within the 2 

hour trial was a liberal estimate of predator activity.

One-way ANOVAs for each predator and cage were run because of the Predator x 

Cage interaction (only for those predators that showed any activity, and only for cages 

that predators used). For blue crabs, there was significantly more time spent in the 'cage 

control’ versus the 'full cage' or 'sides only1 treatment (Tukey pairwise comparison, P < 

0.05), and much time was also spent in the 'roof only' and 'no cage' treatments (though not 

significantly different from 'full cage' or 'sides only', Tukey pairwise comparison, P > 0.05; 

Table 2 .10b). For spot, significantly more time was spent in the 'roof only' treatment 

compared to all other treatments (Tukey pairwise comparison, P< 0.05; Table 2 . 10b). For 

croaker, there was no significant difference in time spent in the different cages, though 

some minimal time was spent in both the 'roof only' and 'no cage' treatments (Tukey 

pairwise comparison, P >0.05; Table 2.10b; Fig. 2.10).

Each cage type was analyzed separately, and there was significantly more time 

spent in 'roof only' by crabs than spot or croaker, and significantly more time spent by spot 

than croaker (Table 2.10b). In the 'cage control’ and 'no cage', there was no significant 

difference in the amount of time spent by each predator of those that used the cage at all 

(Table 2 .10b). This suggests that both the 'cage control' and 'no cage' are used somewhat 

by all predators, but the 'roof only' is used more by crabs than any other predators. Thus, 

any differences in infaunal densities in the 'roof only' treatment are primarily due to crab
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Table 2 .10b. Predator behavior in GEM lab experiments comparing time spent m each cage type bv each of 
three predators separately, and each of three cage types separately (1 -way ANO VAs). Predators compared 
were the blue crab Callinectes sapidus, spot Leiosiomus xamhurus, and croaker Micmpogomas undulatus. 
(the flatfish both hogchoker Trinectes maculatus, and summer flounder Paralychthes dentatus were not active 
in cages at all and were thus left out of 1 -way ANOVAs). Cage types used were 'roof only’, 'cage control’, and 
'no cage’ ('sides onlv' and 'full cage’ had no predator activity within them and were therefore not used in I -way 
ANOVAs).

Analysis of Variance on time spent by crabs m  each cage (min/24hr) 
Source______ D£_________ SS_________ffS_________ F________ £

Cage type 4 8 6 6 . 6  216.6 5.84 0.040
Error 5 185.5 37.1
Total S 1052.1

Analysis of Variance on time spent by spot m  each cage (min/24hr) 
Source______ DF_________ SS_________£4S_________ F________ £

Cage type 4 3S.838 9.S60 17.51 0.008
Error 4 2.276 0.569
Total 8 42.114

Analysis of Variance on time spent by croaker m  each cage (min/24hr) 
Source______ DF_________ SS_________MS_________ F________ £

Cage type 4 0.00344 0.00086 0.76 0.595
Error 5 0.00569 0.00114
Total 9 0.00914

Analysis of Variance on Time spent by each predator in the Roof trt. 
Source_____ DF_________ SS___________ F_________ £

Predator 2 97.05175 48.52588 2.4E+04 0.000
Error 2 0.00403 0.00201
Total 4 97.05578

Analysis of Variance on Time spent by each predator in the cage control 
trt.
Source______ DF_________ SS_________MS_________ £________ £

Predator 2 647 323 2.28 0.424
Error 1 142 142
Total 3 789

Analysis of Variance on Time spent by each predator in the no cage 
treatment
Source______ DF_________ SS_________fJS_________ £________ £

Predator 2 1 1 0 . 6 55.3 3. 60 0.160
Error 3 46.1 15.4
Total 5 156.7
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activity, while differences in the 'cage control' and 'no cage' are attributable to crabs, spot 

and croaker alike. Although conditions in the lab are not identical to the field (i.e., no 

scouring or other current-induced compromises), the 'full cage' was effective in keeping 

predators out. This laboratory evidence supports field benthic diversity data showing a 

larger effect of predators in the 'roof only' and 'cage control’ treatments.

B. Sediment Effects (grain size, carbon and nitrogen levels),

Although sediment type at all sites varied, all could be characterized as muddy 

sand. I attempted to establish the experimental sites in locations with approximately 

similar sediment types. In shallow water, sediments in the York are typically sandy or 

muddy-sand. The sediment grain-size analysis yielded percent gravel, sand, and fines (silt 

and clay) for each cage at each site; mean percentage of each size fraction (for 4 replicate 

sites) for each cage type in each zone between two time periods (initial deployment vs. 12  

weeks) was compared with ANOVA.

In general, the cages did not significantly affect the sediments within, but there was 

a significant difference due to river Zone. There was no Cage x Time interaction, showing 

that predator exclusion cages had no greater change in sediment content than uncaged 

areas (Table 2 .1 la). This is encouraging and suggests that any differences in benthic 

diversity within the cages was not due to sediment deposition associated with the physical 

presence of the cage, but was instead due to the abundance of predators. There were no 

differences in the gravel fraction for any factors (most sites had no gravel), but significant 

differences were found in both the sand and silt/clay fractions for river zone (Table 2 .1 la).
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Table 2 .11 a. Sediment analysis between time period 0 and week 12 (at initial deployment and after 12 weeks in 
the field). Factors included Cage type ('fiill cage’, 'roof only’, 'sides only', ’cage control’ and ’no cage’)Zone 
(Downriver, Upriver), and Time with Site as a blocking factor.

Analysis of Variance for sand
Source DF See SS Adi SS Adi MS F D

cage type 4 21.24 32.21 8 . 05 0.19 0.943
Zone 1 1594.34 1625.70 1625.70 38 . 39 0 . 0 0 0
time 1 2218.98 2134.40 2134.40 50.40 0 . 0 0 0
cage*Zone 4 70. 95 71.77 17. 94 0.42 0.791
cage*time 4 100.31 81.44 20. 36 0.48 0.750
Zone*time 1 257.02 253 .63 253.63 5 . 99 0.018
cage*Zone* time 4 116.05 127.72 31. 93 0.75 0.560
site 3 630.26 630.26 210.09 4 . 96 0.004
Error 55 2328.98 2328.98 42. 35
Total 77 7338.13

Analysis of Variance for silt & clay
Source DF Seo SS Adi SS Adi MS p D

cage type 4 20.78 29.78 7.44 0 . IS 0. 946
Zone 1 1544.29 1575.13 1575.13 38 . 64 0.000
time 1 2188.24 2104.93 2104.93 51.64 0.000
cage*Zone 4 77 .48 77.83 19. 46 0.48 0."52
cage*time 4 104.23 85.05 21.26 0.52 0.720
Zone*time 1 237.63 233.97 233.97 5.74 0 . 0 2 0
cage*zone* time 4 112.55 125.14 31.29 0.77 0.551
site 3 614.01 614.01 204.67 5. 02 0.004
Error 55 2242.00 2242.00 40.76
Total 77 7141.22

Table 2.11 b. Mean percent sand and silt clay (with pooled SD) from 4 replicate sites for each cage pooled for 
both time periods (initial deployment and 12 weeks later).

Downriver
Cage Type Mean sand Std. Dev. Mean silt & clay Std.Dev.
Full cage 88.01 2.494 11.988 2.447
Roof only 87.28 2.301 12.706 2.257
Sides only 87.33 2.301 12.660 2.257
Cage control 86.37 2.301 13.616 2.257
No cage 88.30 2.301 11.420 2.257

Upriver
Cage Type Mean Std. Dev. Mean silt & clav Std.Dev.
Full cage 79.93 2.301 19.878 2.257
Roof only 77.54 2.301 22.001 2.257
Sides only 77.37 2.301 22.554 2.257
Cage control 80.19 2.301 19.641 2.257
No cage 76.38 2.494 23.475 2.447
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The percent sand was significantly higher (and siit & clay lower) downriver than upriver 

for all cage types. Percent sand was also higher for 12 weeks after deployment, compared 

to time 0  (Table 2 .1 lb). The increased silt & clay fraction upriver was probably related to 

increased runoff and associated fine particulates from upriver.

The caging treatments produced no differences in organic nutrients, but there were 

significant differences due to river zone for organic carbon, organic nitrogen and water 

content. Upriver, concentrations of carbon were significantly greater than downriver 

(ANOVA, df = 9, F = 12.8, P = 0.037; Fig. 2.1 la). Additionally, the C:N ratio, which can 

be an indicator of food quality (Valiela 1984), was approximately 10:1 upriver and 8 :1  

downriver, again indicating that upriver may have higher food quality. Concentrations of 

nitrogen, an element necessary for cell division and growth, were higher upriver than 

downriver, though not significantly so (ANOVA, df = 9, F = 2.12, P = 0.183); Fig. 2.1 lb). 

Higher upriver nutrient concentrations were likely because sites in this zone were closer to 

sources of carbon fixation such as tidal wetlands than downriver sites. Water content of 

the sediment was significantly higher upriver also (ANOVA, df = 9, F = 8.30, P = 0.020; 

Fig. 2.1 lc). None of these variables, however, varied with cage treatment (carbon by cage 

ANOVA, df=  0, F = 0.81, P = 0.57, nitrogen by cage ANOVA, df = 9, F = 1.36, P = 

0.367; % water content by cage ANOVA, df = 9, F = 0.54, P = 0.718). This suggests that 

there were not any detectable sedimentary artifacts and that differences between cages was 

due to the abundance of predators, not the physical presence of the cage.
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Fig. 2.11. Mean nutrient content for upriver and downriver sites for (a) organic

carbon, (b) organic nitrogen, and (c) water content of the sediment.
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m . NATURAL PREDATOR ABUNDANCE

Natural epibenthic predator abundance in two zones in two rivers throughout three 

months of the summer predation period (late May, early July and early August) in 1994 

were compared (pelagic predators caught in the trawl were not included). In Chesapeake 

Bay, dominant epibenthic predators include the blue crab as well as various demersal 

fishes (Horwitz 1987, Hines et al. 1990). The abundance and size-frequency distribution 

of predators in the shallow water areas of the York and Rappahannock Rivers (1-2 m 

depths) allow a unique look at shallow water predator abundance and distribution, with 

potential for comparison with deep water areas that are well studied (Mansour 1992, 

Holland et al. 1980, Lipcius and van Engel 1990).

Epibenthic predators caught in the York and Rappahannock Rivers included blue 

crabs (Callinectes scipidm Rathbun), spot (Leiostomus xcinthiirns Lacepede), and 

hogchoker (Trinectes mciculciius Bloch and Schneider). Of the 6,605 predators caught, 

spot were most abundant and accounted for 46.22% numerically, hogchoker accounted 

for 20.08%, blue crabs accounted for 9.74%, and Morone americana in the 

Rappahannock accounted for 10.33%. The predator guild was mainly the same in the 

York and Rappahannock, with the addition of the perch, Morone americana, in the 

Rappahannock. Other predators included croaker (Micropogonias undulatns), summer 

flounder (Paralichthys dentatns), oyster toadfish (Opsanus tan), blue catfish, channel 

catfish, sea robin and lizardfish.

Epibenthic predators had entered the York and Rappahannock Rivers by May 

1994 and were still present through August. The mean number of epibenthic predators
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(bottom-feeding fish plus crabs) was significantly greater upriver than downriver across 

both rivers (Fig. 2 .12a, b; Table 2 .12a) and was significantly greater in late May (mean of 

297.6 + 69.5/4 minute trawl) than both July (mean 58.1 ± 16.8) and August (mean 57.1 ± 

13.4; Tukey multiple comparison, critical value 3.43, F = 10.89, P < 0.001). There was 

no significant difference in the total number of fish predators between rivers, and all sites 

on at each river zone showed a similar pattern. There were significantly more epibenthic 

fish upriver than downriver and significantly more fish in May than July or August (Table 

2.12b; Fig. 2.12a, b).

Looking at each major predator separately, the total number of crabs differed 

significantly by river zone as well as river and there was a significant River x Zone 

interaction (Table 2 .12c; Fig. 2.12c, d). Because of the River x Zone interaction, one

way ANOVAs were run for crab abundance in each river separately (Table 2 .12d, e). In 

the York River there were significantly more crabs upriver than downriver (Fig. 2 .12c; 

Table 2.12d), but in the Rappahannock, there were few crabs overall, and there was no 

difference in the number of crabs found upriver or downriver (Fig. 2 .12d; Table 2 .12e).

The number of spot did not differ by river or by river zone, although more were caught in 

May compared to July or August (Table 2.12f). There were also significantly more 

hogchoker upriver than downriver in the York, though few were collected in the 

Rappahannock (Table 2 .12g, h, i). Although the trawling was not conducted in the same 

year as the caging experiments, similarities in seasonal water temperatures between years 

would allow similar patterns to occur annually. These significantly different abundances of
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Fig. 2.12. Mean predator abundance (No. individuals) per 4-minute trawl from 4 

replicate sites comparing downriver and upriver zones over the three 

approximately monthly samples in late May, early July and early August.

(a) Epibenthic fish in the York, (b) epibenthic fish in the Rappahannock, (c) 

blue crabs in the York and (d) blue crabs in the Rappahannock River. Note 

that the y-axes are different for fish and crabs to display the maximum for 

each predator group.
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Table 2 .12. Epibenthic predator abundance by River (York and Rappahannock) Zone (Downriver and 
Upriver) blocked by Month (May, July, and August; 2-way ANOVAs).

a. Analysis of Variance for total no. epibenthic predators (fish + 
crabs)

Source DF Seq SS Ad 3 SS Ad] MS F P

River 1 8243 8243 8243 0.36 0.549
Zone 1 282594 282594 282594 12.51 0 . 0 0 1
River*Zone 1 30351 30351 30351 1.34 0.253
Month 2 614569 614569 307285 13.60 0 . 0 0 0
Error 42 948845 948845 22592
Total 47 1884601

b. Analysis of Variance for total number of fish

Source DF Seq SS Ad] SS Ad] MS r D

River 1 2080 2080 2080 0 . 1 0 0.750
Zone 1 225776 225776 225776 1 1 . 1 2 0 . 0 0 2
River*Zone 1 14770 14770 14770 0.73 0.399
Month 2 561232 561232 280616 13.82 0 . 0 0 0
Error 42 852711 852711 20303
Total 47 1656570

c. Analysis of Variance for Number of crabs

Source DF Seq SS Ad] SS Ad] MS F P

River 1 2041.0 2041.0 2041.0 8.33 0.006
Zone 1 3185. 0 3185.0 3185.0 13.01 0 . 001
River*Zone 1 2775.5 2775.5 2775.5 11.33 0 . 0 0 2
Month. 2 1280.3 1280.3 640. 1 2.61 0 . 085
Error 42 10285.6 10285.6 244. 9
Total 47 19567.5

d. Analysis of Variance for York River number of crabs

Source DF Seq SS Adj SS Ad] MS F P
Zone 1 5953.5 5953.5 5953.5 13.15 0 . 002
Month 2 1768.1 1768.1 884.0 1. 95 0 . 168
Error 20 9052.3 9052.3 452.6
Total 23 16773.8

e. Analysis of Variance for Rappahannock River number of crabs
Source DF Seq SS Adj SS Adj MS F P

Zone 1 7.04 7.04 7. 04 0 . 2 2 0.642
Month 2 114.25 114.25 57 .12 1.81 0.190
Error 20 631.33 631.33 31.57
Total 23 752.62
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Table 2.12 (Cont'd)
f. Analysis of Variance for Number of Spot across both rivers

Source DF Seq SS Adj SS Ad] MS F P

River 1 6464 6464 6464 0 . 86 0.359
Zone 1 20460 20460 20460 2.72 0 . 106
River*Zone 1 46 46 46 0 . 0 1 0.938
Month 2 248917 248917 124458 16.55 0 . 000
Error 42 315753 315753 7518
Total 47 591640

g. Analysis of Variance for Number of Hogchoker across both rivers

Source DF Seq SS Adj SS Adj MS F P

River 1 27361 27361 27361 26.01 0 . 000
Zone 1 17557 17557 17557 16. 69 0 . 0 0 0
River*Zone 1 24390 24390 24390 23.18 0 . 0 0 0
Month. 2 1973 1973 986 0.94 0. 400
Error 42 44189 44189 1052
Total 47 115469

h. Analysis of Variance for York River number of hogchoker

Source DF Seq SS Adj SS Ad] MS F P

Source DF Seq SS Adj SS Adj MS F P
YkHi/lo 1 41667 41667 41667 21.04 0 . 000
YkMo 2 4849 4849 2424 1 . 2 2 0. 315
Error 20 39608 39608 1980
Total 23 86124
i. Analysis of Variance for Rappahannock River number of hogchoker

Source DF Seq SS Adj SS Adj MS F P

Source DF Seq SS Ad] SS Ad] MS F P
RpHi/Lo 1 280.17 280.17 280.17 3.55 0. 074
RapMonth 2 127.75 127.75 63.87 0.81 0.459
Error 20 1576.58 1576.58 78. 83
Total 23 1984.50
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predators between the two river zones suggests that the effect of predation should also 

differ by river zone.

Predators in the York and Rappahannock Rivers showed similar patterns of size, 

and growth was apparent throughout the summer. For brevity, only the July York River 

size-frequencies are shown as representative of major patterns for both rivers in all 

sampling months. Many of the individuals collected in these shallow-water trawls were 

too small to feed effectively on macrofauna. For example, spot < 50 mm TL do not feed 

on macrofauna (Weinstein 1983).

Crabs showed a bimodal size-frequency distribution for both rivers in all three 

sampling months, both downriver (though few crabs were caught) and upriver, as 

evidenced in the York River in July (Fig. 2.13). In July, modes were apparent at 65 mm 

CW and 115 mm CW (Fig. 2.13).

Likewise, hogchoker in the York River (Fig. 2.14) showed bimodal size-frequency 

distribution upriver. In July, two modes were apparent upriver, one at 50 mm and one at 

85 mm TL. Downriver few individuals were caught, though there was a single larger 

mode in size-frequency at 78 mm. In the Rappahannock, few hogchoker were present 

except in August in high salinity.

Spot were the most abundant predator throughout the summer (e.g., more than 80 

individuals were collected upriver in the York in May) and showed no difference in size 

between river zones or rivers, though slightly larger fish were collected upriver in the 

York in July (Fig. 2.15). The size-distribution typically showed a unimodal peak that 

progressed from a mode of 30 (May) to 75 (July) to 106 mm TL (August) through the
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Fig. 2.13. Population size structure of York River blue crabs {Callinecies sapidus) 

from 4 pooled trawls collected at Downriver and Upriver zones in July, 

1994. Size class is measured in millimeters carapace width.
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Fig. 2.14. Population size structure of York River hogchoker [Trinectes maculatus) 

from 4 pooled trawls collected at Downriver and Upriver zones in July, 

1994. Size class is measured in millimeters total length.
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Fig. 2.15. Population size structure of York River spot (Leiostomus xcmthuriis) from 

4 pooled trawls collected at Downriver and Upriver zones in July, 1994. 

Size class is measured in millimeters total length.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



York - July - Spot
Downriver

w
75 4  -

=5 3 -

0
A

1 H

jn
75 4  -
3 n 
T3■tfi >
=5 3 H 
c

2 2 H 
a> 

a

i hz

Upriver

Size Class (mm)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 3 6

sampling months in the York (Fig 2.15). In the Rappahannock, a single cohort of spot 

grew from 23 to 74 to 101 mm TL from May to August downriver.

In summary, predators were most abundant upriver throughout the summer across 

both rivers. Blue crabs showed the greatest difference between zones (i.e., were much 

more abundant upriver) and thus their effect should be greatest upriver. Hogchoker were 

abundant only in the York, whereas spot were equally abundant in both rivers in both 

zones.

Finally, the effect of predation on benthic community structure can be determined 

by assessing the effect of predator removal or enhancement on consequent changes in 

species richness, evenness, or diversity (FT and Simpson's diversity) within the two zones. 

Laboratory evidence for predator activity around cages showed an increase in the 'roof 

only' and 'cage control' treatments. These treatments showed significantly higher diversity 

(both H' and 1-A) 12 weeks after deployment. Highest overall diversity in the natural 

community was found downriver, but upriver, in treatments where predators were 

enhanced, diversity increased.
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DISCUSSION

In this investigation, epibenthic predator abundance, prey abundance and the 

differential effect of predation along an estuarine gradient in the York River were 

quantified. The findings from this study are novel in suggesting that predation is more 

important to benthic diversity in an area of increased environmental stress (i.e., upriver). 

The major findings include that ( I) diversity was lower upriver. (2) predator abundance 

was greater upriver, and (3) predator removal or enhancement had significant effects 

upriver and not downriver. The decreased diversity upriver was consistent with 

predictions from the MS model, however results of predator abundance and infaunal 

effects are not compatible with the model and therefore the MS model needs to be 

modified substantially to be implemented in this system. Higher stress upriver did not 

inhibit predators from entering that zone, nor from consuming infauna. Rather, predators 

appear to be drawn to upriver zones by the availability of food or preferable habitat 

(Weinstein 1983). Therefore, this benthic system appears to be driven by a combination of 

three things (1) salinity tolerance of prey organisms, (2) primary production and its 

ramifications for higher trophic levels and (3) predation. Bottom-up as well as top-down 

forces are important in controlling species diversity in this soft-bottom system.
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I. Infaunal abundance

In this study, differences in infaunal abundance between sites were so great that 

they overshadowed most effects of predation at the species level. Downriver, the 

variability in abundance between sites was great, even without any cage treatment (Fig. 

2.4). One site had much higher abundance than the others, and at this site, differences in 

predation (i.e., caging treatment) affected the abundances of infauna (e.g., for Mercenaria 

mercenarici).

For the abundant bivalve, Mercenaria mercenaria, the density within cages ('roof 

only') was significantly higher than that in areas exposed to predators ('cage control’ and 

'no cage') for one site. For M. mercenaria, when abundance was high, a significant cage 

treatment effect was detectable. At all other sites where abundance was low, no cage 

effect was detected. This suggests that in areas of low environmental stress (e.g., 

downriver), the effect of predation was increased with increased abundance or 

recruitment. This agrees with previous caging studies throughout Chesapeake Bay that 

have detected effects of predation at relatively high salinities when only one site was used 

(e.g., Vimstein 1979, Holland et al. 1980, Hines et al. 1990). These studies were also 

conducted earlier in the year when infauna is still recruiting and abundances may be higher. 

This implies that the MS model requires a slight modification to incorporate an increase in 

the importance of predation with elevated recruitment. Predation is only important at high 

infaunal abundances, otherwise, the system seems to be driven by recruitment limitation. 

This is corroborated in the experimental manipulations where downriver areas experience 

less severe changes in abundance and also show little effect of predator exclusion.
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Therefore, much can be gained by looking closely at one species (See Chapter 3) or at a 

single site (e.g., Vimstein 1979).

Recruitment has been recognized as an important force structuring communities 

(Holland et al. 1985, Gaines and Roughgarden 1985, Roughgarden et al. 1985), and 

spawned a series of hypotheses based on the idea of supply-side ecology (Underwood and 

Fairweather 1989). Increased recruitment in some species leads to decreased evenness 

and thus decreased diversity if predators do not consume the new recruits. Thus, 

predation is more important at high recruitment levels, requiring an increased slope of the 

predation importance line along the axis of recruitment in the MS model (see Menge and 

Sutherland 1987). Predators aggregate in areas of high prey densities (Mansour and 

Lipcius 1991) and thus must have the greatest effects in areas of higher prey densities.

II. Benthic species diversity

Diversity typically declines from the mouth of the estuary towards the freshwater 

reaches (Boesch 1977). Accordingly, the natural community in the York River was 

composed of a richer and more diverse assemblage downriver. There were clearly two 

different species assemblages, one upriver, with few species, and one downriver with 

greater diversity. This shift in diversity of the natural community from more diverse 

downriver to less diverse upriver is consistent with the MS consumer stress model (Menge 

and Sutherland 1987); in more stressful habitats (e.g., upriver) diversity decreases. This 

pattern is similar to that found in estuaries world-wide (Remane and Schlieper 1971) and 

to that described for deeper areas along the axis of the York River (Boesch 1977).
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The downriver benthic community was similar to those described in previous 

studies in the area (i.e., Vimstein 1977, Holland et al. 1987). In another caging study. 

Vimstein (1977) used a study site that was further downriver and in a sandier, poorly 

sorted substrate, thus Vimstein's H' diversity values were only slightly higher (averaging 

between 2.7 and 2.9 bits/indiv.). A few species found in the York River community are 

strictly estuarine and don’t penetrate into freshwater or marine water (see Boesch 1977). 

The question tested herein was whether or not this variation in diversity could be 

explained by differential importance of predation in structuring communities in the 

separate river zones. A major difference between this study and those conducted along a 

stress gradient in the rocky intertidal habitat (e.g., Paine 1966) is that the species 

assemblage changes appreciably across the gradient. The effects o f predation on diversity 

are confounded with a change in diversity due to salinity. This difference, however, points 

out that the MS model may be best applied to local spatial scales, where species 

composition is similar, or areas of more extreme stress (Menge and Olson 1990).

Investigations on forces structuring benthic hard-bottom communities have 

resulted in the Menge and Sutherland consumer stress model (MS). This model predicts 

that the importance of predation should be reduced in habitats with higher stress and that 

diversity should decrease with increasing environmental stress. Some investigators feel 

that soft-bottom systems are sufficiently different from hard bottom systems and therefore 

require different paradigms and models of regulation (Wilson 1991). I, however, argue 

that models developed for hard-bottom systems can be useful heuristic tools that can be 

examined and modified as necessary for soft-bottom systems. Based on predictions from
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the MS model, it was expected that predation would have a greater effect in the downriver 

higher stress areas in the York River, but conversely, the importance of predation was 

demonstrably greater upriver.

m . Caging artifacts & effects

Predator exclusion cages have been used extensively to study biological 

interactions in soft sediments (Hall et al. 1990). If effects of caging are detected, the 

possibility of cage-induced artifacts must be investigated. If not deployed properly, cages 

can be ineffective as predator exclosures and may serve as small artificial reefs (Vimstein 

1978). The presence of an elevated physical structure can also alter the hydrodynamics of 

the area, causing scouring or increased sedimentation (Naqvi 1968, McCall 1977). Cages 

may additionally enhance or reduce larval settlement (Woodin 1974). Thus, prior planning 

is needed for an assessment of cage efficiency and to avoid cage artifacts. In the least, 

potential caging artifacts should be inspected.

Examination of cage artifacts and effects produced a surprising result for predator 

behavior around the cages. In the laboratory, the 'full cage' was effective at excluding 

predators, but surprisingly the 'sides only' excluded all predators too. Additionally, the 

highest activity was seen in the 'roof only' and 'cage control' treatments, rather than the 

natural sediment (i.e., the 'no cage') treatment. A cage in a structureless soft-sediment 

environment can attract the very predators is designed to exclude, similar to the structure 

provided by natural reefs (Vimstein 1978), as was demonstrated in laboratory predator 

activity experiments. Furthermore, at a site where caging treatments are 3 m apart, a
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predator may be attracted by a 'cage control' structure and thereby removed from a natural 

sediment area (i.e., 'no cage' treatment).

Activity of predators in the field should be analogous to those in the laboratory, 

although the presence of juvenile crabs presents an additional problem. Crabs are difficult 

to keep out of cages; they can dig below the sediment to enter or can enter through the 

mesh as juveniles and molt to a size that affects resident infauna (Vimstein 1978). Some 

crabs were occasionally found within the full cages, but were immediately removed and 

holes repaired. Thus, the main effect of cages was to enhance predator density at the 'roof 

only’ and 'cage control’, to allow natural densities in the 'no cage', to reduce densities 'sides 

only', and to eliminate predators in the 'full cage' treatment. Blue crabs were the most 

active predator in the cages and therefore were presumed to have the greatest effect in the 

field. The activities recorded in the lab correspond well to treatment effects in the field 

and thus support the contention that predators caused the observed treatment effects, 

either by consumption of infauna or by sediment disturbance Additionally, sediment 

analyses, carbon and nitrogen analyses showed no significant effects of cages on 

sedimentary characteristics and therefore no caging artifacts are prominent.

A serendipitous outcome of the sediment analysis, however, was that upriver 

sediments were significantly finer and included more organic nutrients. A major focus of 

this study was not classification of benthic nutrients, but the trend seen in benthic carbon 

samples agrees well with other more comprehensive studies. For example, in deeper 

waters in the York River, there was a trend of increasing volatile solids with distance from 

the mouth of the York River (Dauer et al. 1989). Thus, the increased organic carbon and
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increased C:N ratio upriver may be indicative of a better food source upriver. Though the 

values measured in this study are low compared to other estuarine areas (Valiela 1984), if 

the difference is real, this suggests that upriver areas potentially have higher food 

availability. The community may therefore be controlled by food availability or "bottom- 

up" forces.

If the community is controlled by "bottom-up" forces, then predators would be 

expected to aggregate in areas with higher food (Oksanen et al. 1981). Although I did 

not document increased abundances of infauna upriver, increased biomass could yield 

more food for consumers. If organisms at each trophic level are food limited (Fretwell 

1977, 1987), and not controlled by predation, the system would be regulated by "bottom- 

up" forces only. A more plausible explanation, and one that fits the system examined 

herein, is that the system is regulated by co-limitation by predators and resources (Power 

1992). This means that primary production provides a template for communities, and 

predation acts on top of that (Arditi and Ginzburg 1989, Menge and Olson 1990). The 

relative importance of food limitation depends on the importance of predation. Prey 

populations, though reduced by predation, can increase with increasing resources (Arditi 

and Ginzburg 1989). In addition to examining cage artifacts, it was necessary to examine 

predator abundance around the deployed cages.

IV. Natural predator abundance

The predators collected in this study were similar to those caught in deeper waters 

(Horwitz 1987, Hines et al. 1990), including the blue crab, Callimctes sapidus, as well as
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various demersal fishes including spot, Leiostomus xanthurus, croaker, Micropogonias 

undulatus, and hogchoker, Trinectes maculates. Hogchoker are known as abundant, 

nocturnal feeders (Dovel et al. 1969) which typically feed on epifauna and infauna such as 

mysids, cumaceans and polychaetes (Hildebrand and Schroeder 1928). Spot are dominant 

in the lower York (Mansour 1992) and also feed on infauna (Hildebrand and Schroeder 

1928, Stickney et al. 1975). Blue crabs are omnivorous (Baird and Ulanowicz 1989), and 

feeding efficiency varies significantly with prey availability, predator density and habitat 

complexity (Blundon and Kennedy 1982a, b, Arnold 1984, Lipcius and Hines 1986, West 

and Williams 1986, Hines et al. 1990, Eggleston 1990, Mansour and Lipcius 1991, 

Eggleston et al. 1992). The diet of blue crabs, however, consists mainly of bivalve 

molluscs, predominantly Mya and Macoma, and conspecifics, as well as polychaetes, other 

crabs and fish (Laughlin 1982, Alexander 1986, Hines et al. 1990, Mansour 1992,

Ebersole and Kennedy 1995). Based on this ecology, the dominant predators were 

expected to affect infauna as long as predators were present in the system.

The predator guild in Chesapeake Bay and its tributaries typically shows temporal 

variability (Hines et al. 1987, Horwitz 1987), as was true for this shailow-water study.

The numerically dominant species characteristically enter the deeper water in Chesapeake 

Bay tributaries in summer (Hines et al. 1987). Usually, when Leiostomus xanthurus is 

abundant, Micropogonias undulates will be reduced in abundance. Thus, the dominants 

may undergo seasonal or annual fluctuations in dominance, although the major species 

remain the same. The sciaenids typically show a single year class, as found in this study, 

and blue crabs typically show a bimodal size-distribution (Mansour 1991), as found here.
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Additionally, predator abundance and distribution is likely controlled by habitat 

availability, as well as food availability (Weinstein and O'Neil 1986); estuarine fish use 

marsh nurseries and remain resident there in the summer months The dominant species 

showed significant growth during the foraging period, and these species were presumably 

feeding on infauna within the system throughout the summer, as has been previously 

demonstrated in predators gut content analysis (Mansour 1992).

Some of the predators caught in the shallow-water trawls were too small to feed 

on macrofauna, however, many were large enough. Small Leiostomus xanthurus and 

Micropogonias undulatus switch to a macrofaunal diet at about 50 mm (Livingston 1980, 

Weinstein 1983, Weinstein and O'Neil 1986), Trinectes maculatus switches to a diet of 

macrofauna at 30 mm (A. Hines, unpublished data), and blue crabs feed on macro fauna at 

about 60 mm (Laughlin 1982). Given the mean predator sizes seen in the York River, 

predation pressure on infauna was greatest during the month of July when juvenile sizes 

approached those where macrofauna could be eaten. The effect of predation could be 

either by consumption of individuals or by sediment disturbance (Vimstein 1979).

Predator digging can disturb the sediment and increase suspended materials that adversely 

affect suspension feeders (sensu RJiodes and Young 1970). Additional predators, such as 

wading birds, which are known to feed on Macoma balthica, could influence infauna, but 

other birds were not likely important in this study since experimental sites were never 

exposed at low tide (Jorde and Haramis 1995). Knowing that epibenthic predators were 

in the system and large enough to feed on infauna, their effects on benthic diversity could 

be assessed.
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V. Summary

Regulation of benthic community structure has been studied extensively in marine 

systems and predation has emerged as an important regulating factor controlling species 

composition in some soft-bottom communities (Hines et al 1990, Vimstein 1979, Peterson 

1979b, Holland et al. 1980, Dayton 1984, Quammen 1994). Predation by epibenthic fish 

and crabs was important in structuring portions of the shallow water soft-bottom 

community studied along the axis of the York River.

Predation was more important in regulating the benthic community upriver, where 

predators were more abundant, as evidenced by increased diversity in cage treatments that 

attracted predators. This conclusion was based on the following major findings of this 

study: (1) all measures of benthic diversity were lower upriver, (2) abundance of predators 

was greater upriver throughout the summer, (3) the greatest effect of predator removal or 

enhancement was in upriver areas. The importance of predation has been seen in other 

sections of Chesapeake Bay both high salinity (Vimstein 1979, Holland et al. 1980, Orth 

et al. 1984) and low salinity (Hines et al. 1990). The higher stress upriver did not inhibit 

predators from entering that zone, nor did it prevent them from feeding efficiently. Based 

on these findings, this system does not fit well with the MS model of consumer stress and 

the model must be modified to for the York River benthos.

There are several alternative mechanisms whereby predation can enhance diversity. 

Though intense predation can reduce diversity (Sammarco et al. 1974), predators can 

increase diversity by feeding preferentially on competitive dominants, thus allowing 

competitively inferior species to survive (Paine 1966, 1969). In contrast, in the absence of
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predation, the competitive dominant could exploit the resources and prevent survival of 

additional species. This has been shown experimentally in the rocky intertidal where 

starfish were removed from a rocky shore and mussels increased in abundance, 

outcompeting other species (Paine 1974). In this way, predation maintains diversity in 

some rocky intertidal systems.

Predators can also increase diversity by feeding on all species to a density low 

enough that competitive exclusion is not a problem (Roughgarden and Feldman 1975). In 

this case, evenness would increase, as all species are maintained at relatively low densities. 

In the soft-bottom system of the York River, the elevated diversity was a consequence of 

both evenness and richness increasing in caging treatments that attracted predators. This 

suggests that upriver in the York, predators are non-selectively feeding on all infauna, 

reducing overall abundance and allowing more rare species to survive. The increase in 

evenness occurs across all species, not just through a competitive dominant (sensii Paine 

1966). When predation is high enough, more species survive and evenness increases.

Thus upriver, where predators are abundant, predation acts to regulate the infaunal 

community by increasing evenness, not by reducing competition.

Abundance and diversity were enhanced using exclusion cages in many soft- 

bottom caging studies (e.g., Vimstein 1977, 1979), but such studies were conducted at 

single sites and cages deployed earlier in the summer, while recruitment is occurring. In 

the present study, significant differences were only found upriver 12 weeks after cage 

deployment. The treatments that attracted predators had higher diversity (both H' and k) 

than the others due to an increase in evenness and slight (non-significant) increase in
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richness. This further suggests that, as in rocky intertidal habitats, predation may maintain 

diversity. In previous rocky intertidal studies, predators fed on a competitively dominant 

species reducing interspecific competition, allowing other species to survive. In this study, 

however, no single competitive dominant was reduced, but rather predation eliminated 

new recruits, thus reducing the abundance, and increasing evenness.

Competition has been proven important in a number of soft-bottom systems 

(Woodin 1983). Although some studies show a significant effect of competition (Woodin 

1974, Roe 1975, Peterson 1977, Peterson and Andre 1980, Levin 1981, Tamaki 1985), 

predation, recruitment processes, and environmental stress appear more important as 

structuring forces in soft-sediment communities (Dayton 1984, Wilson 1991). In this 

study, diversity was not increased through elimination of a competitive dominant, but 

rather by increasing evenness of all species.

The effect of predation was enhanced upriver in higher stress. Elevated predator 

abundance upriver in a higher stress zone may be a consequence of increased production 

of organics and associated infauna; predators aggregate where the prey are concentrated. 

Thus, predators are controlled by prey abundance, or "bottom-up" forces (Power 1992) 

and prey are controlled by predators, or "top-down" forces. This benthic system may 

therefore be driven by a combination of salinity tolerance, primary production and 

predation.

On a local scale (i.e., upriver), variation in predation pressure (i.e., enhanced 

predation in the 'roof only' and 'cage control’ treatments) significantly affected diversity. 

Diversity was increased with elevated predator density, thus, predation maintained
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diversity. On a broader scale (i.e., comparing upriver to downriver), differences in 

diversity could not be explained by predation. If predation was more important in 

downriver low stress areas compared to upriver high stress areas (as predicted by the MS 

model), then the 'full cage' treatment would have larger effects downriver than upriver.

The low predator density downriver explains why this did not occur. Differences in 

diversity upriver versus downriver are driven by physical tolerances of infauna and not by 

predation, as is typical in estuaries worldwide (Remane and Schlieper 1971, Boesch 1977, 

Wolff 1983, Day et al. 1989).

To summarize, species diversity was lowest upriver, and predator abundance was 

enhanced upriver. Predators had greatest effects upriver. Laboratory evidence was 

consistent with benthic diversity evidence showing that predators were attracted to the 

'roof only' and 'cage control' treatments where they increased diversity. The mechanism of 

increasing diversity was through reducing densities in abundant species, thus increasing 

evenness. The effect of predation was thereby increased with elevated recruitment, but 

the MS model predicts a decreasing importance of predation with increased recruitment. 

Thus, to apply the Menge and Sutherland model to this soft-bottom system, a modification 

for increased importance of predation at high recruitment levels is necessary.

Predation is important in regulating the benthic community at small local scales, 

thus a "top-down" model of community regulation is appropriate. Though predation acts 

to increase diversity upriver, predation alone is not enough to increase diversity to levels 

as high as those downriver. Physiological tolerances of estuarine species drive the larger- 

scale patterns in diversity. Additionally, organic nutrients were elevated upriver, where
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predators concentrated. Predators were not deterred by higher stress in these low salinity 

areas with fluctuating physical conditions. Rather, they were concentrating where 

augmented food was available. This suggests that the system may not be governed solely 

by "top-down" forces (i.e., a consumer stress model), but that a production model 

incorporating "bottom-up" control of the benthos may also be appropriate (Menge and 

Olson 1990). This system is influenced by both production and predation and therefore 

requires a mix of "top-down" and "bottom-up" control as has been identified in other 

systems (Power 1992). In conclusion, predation is somewhat important in regulating the 

York River benthic community, but the community is potentially governed by co

limitation of "top-down" and "bottom-up" forces.
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APPENDIX I

Species list for species found in either river zone in the York. Most common species are 
listed by phyla, rare species are identified by letters indicating phyla: P = polychaete, I = 
isopod, A = amphipod, B = bivalve, 0  = oligochaete, Ph = phoronid, G = gastropod, Ar = 
arthropod.

Polychaetes:
I. Arabellidae (Drilonereis longa)
2. Clymenella torqiiata
3. Glycinde solitaria
4. Gyptis vittata now Gyptis crypta
5. Heteromastus filiformis
6. Nereis succinea
7. Paraprionospio pinnata
8. Phyllodoce sp.
9. Scoloplos sp.
10. Spio sp.
11. Spiochaelopterns ocidata
12. Spiophanes bombyx
13. Streblospio benedicti
14. Thaiyx sp.
Molluscs:
15. Acteocinci canalicnlata
16. Macomci balthica
17. Macoma mitchelli
18. Mercenaria mercenaria
19. Mnlinea lateralis
Crustaceans:
20. Caprellidae
21. Cyanthnra polita
22. Gammarus sp.
23. Leucon americana
24. Listriella clymenellae
25. Mysidopsis bigelowi
26. Oxynrostylis smithi
Other:
27. Hemichordata
28. Lanceolet
29. Nemertina
30. Phoronida
31. Platyhelminlhes
32. Tubificidae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Appendix I Contd)
Rare Species:
33. Solelepis sp. (P)
34. Loimia medusa (P)
35. Chiridotea (I)
36. Ampeliscasp. (A)
37. Arndara transversa (G)
38. Anemone (Cnidarian)
39. Assinea saccinea (G)
40. Callinectes sapidus (Ar, Crab)
41. Corophium (A)
42. Cyclapsis varians (Ar, Cumacean)
43. Edotea triloba (I)
44. Holothurian (Sea cucumber)
45. Mediomasius ambiseta (P)
46. Monocaloides edwardsi (Amph.)
47. Mya arenaria (M)
48. Ogyrides alphaetostis (I)
49. Pinnixa sp.(Ar, Crab)
50. Polydora ligni (P)
51. Sayella sp. (G)
52. Stenolhoe m inuta (A)
53. Tagelus plebius (M)
54. Xanthidae (Ar, Crab)
55. Acorn worms (Enteropneusts)
56. Chaetozone sp. (P-cirratulid)
57. Gemma gemma (M)
58. Glycera americana (P)
59. Isopoda # / (I)
60. Macoma tenta (M)
61. Mitrella lunata (G)
62. Mysidopsis neomysis (Ar, shrimp)
63. Orbinidae (P)
64. Oxyorostylis smithi (Ar, Cumacean)
65. Pectinaria goiddi (P)
66. Polinices duplicatus (G)
67. Pseudwythoe pavcibranchiata (P)
68. Rangia cuneata (M)
69. Retusa obtusa (M)
70. Teinostoma (G)
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APPENDIX II. Mean diversity measures for each site and each time period from 3 
benthic subsamples. Measures include richness (no sp), abundance (indiv), Shannon- 
Wiener diversity (h-prime), Simpson's index (lambda), and evenness (even). For week 0, 
only 'no cage' treatement was sampled, means by site are given. Other time periods listed 
by cage type. Five caging treatments include 1 = full cage, 2 = roof only, 3 = sides only, 4 
= cage control, and 5 = no cage. Time periods include 1 = week 0, 2 = week 6, 3 = week
12. Sites include YH (York high = downriver) and YL (York low = upriver).

1XH
Variable Site N Mean
N o .Spec 1 3 9.00

2 3 12.333
3 3 6.67
4 3 9.00

N o.Indiv 1 3 17.00
2 3 42.33
3 3 12.67
4 3 19.00

H-prime 1 3 2.707
2 3 3.0600
3 3 2.490
4 3 2.600

Lambda 1 3 0.2233
2 3 0.15667
3 3 0 . 2 1 0 0
4 3 0.2400

Evenness 1 3 0.8700
2 3 0.8467
3 3 0.92667
4 3 0.8300

1YL
site N MEAN

no sp 1 3 5.333
2 3 6 . 0 0
3 3 3.333
4 3 6.33

indiv 1 3 8.67
2 3 12.67
3 3 1 0 . 0 0
4 3 9.00

h-prime 1 3 2.253
2 3 2.323
3 3 1.3733
4 3 2.430

lambda 1 3 0.2367
2 3 0.2267
3 3 0.4533
4 3 0 . 2 2 0 0

even 1 3 0.9333
2 3 0.9300
3 3 0.8033
4 3 0.9333

Median TrMean StDev SEMean
1 1 . 0 0 9.00 3.46 2 . 0 0

13.000 12.333 1.155 0. 667
6 . 0 0 6 . 67 2.08 1 . 2 0
9.00 9.00 2 . 0 0 1.15

15.00 17.00 6.24 3.61
41.00 42.33 6 . 1 1 3.53

8 . 0 0 12.67 8.08 4.67
19.00 19. 00 2 . 0 0 1.15
3.100 2.707 0.806 0.465

3.0200 3.0600 0.1637 0.0945
2.410 2.490 0. 376 0.217
2.390 2.600 0. 381 0 . 2 2 0
0.1500 0.2233 0.1447 0.0835

0.16000 0.15667 0.01528 0.00882
0 . 2 2 0 0 0 . 2 1 0 0 0.0458 0.0265
0.2400 0.2400 0.0700 0.0404
0.9000 0.8700 0.0889 0.0513
0.8400 0.8467 0.0306 0 . 0176

0.93000 0.92667 0.00577 0.00333
0.8500 0.8300 0.0624 0.0361

MEDIAN TRMEAN STDEV SEMEAN
5.000 5. 333 0. 577 0.333
5.00 6 . 0 0 2.65 1.53

3.000 3. 333 0. 577 0.333
7.00 6.33 2.08 1 . 2 0

1 0 . 0 0 8.67 3.21 1 . 8 6
1 0 . 0 0 12.67 8.33 4.81
1 1 . 0 0 10 . 0 0 2.65 1.53
1 0. 00 9.00 3.61 2.08
2.320 2.253 0.266 0.154
2.250 2. 323 0. 514 0.297

1.3800 1.3733 0. 0503 0.0291
2.450 2.430 0.500 0.289

0 . 2 0 0 0 0.2367 0.0723 0.0418
0 . 2 2 0 0 0.2267 0.0702 0.0406
0.4400 0.4533 0.0321 0.0186
0.2400 0 . 2 2 0 0 0.0721 0.0416
0.9600 0.9333 0.0833 0.0481
0.9200 0.9300 0.0361 0.0208
0.8300 0.8033 0.0833 0.0481
0.9600 0.9333 0.0551 0.0318
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1 5 4

2YH1
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 13.67 13.00 13.67 2.08 1 . 2 0

2 3 10.333 1 0 . 0 0 0 10.333 1.528 0.882
3 3 15.000 15.000 15.000 0 . 0 0 0 0 . 0 0 0
4 3 5.67 5.00 5.67 2.08 1 . 2 0
5 3 14.333 14.000 14.333 0.577 0.333

n 1 3 36.67 43.00 36. 67 13.65 7.88
2 3 27.67 26.00 27 . 67 10.60 6 . 1 2
3 3 49.67 59.00 49.67 17 .04 9.84
4 3 7.00 8 . 0 0 7.00 2.65 1.53
5 3 27.67 28.00 27.67 7.51 4.33

h prime 1 3 3.363 3. 460 3.363 0.374 0.216
2 3 3.097 3.050 3.097 0.234 0.135
3 3 2.997 3. 050 2 . 997 0.492 0.284
4 3 2.370 2.160 2. 370 0. 509 0.294
5 3 3.490 3.490 3 . 490 0.230 0.133

lambda 1 3 0.1233 0 . 1 0 0 0 0.1233 0.0493 0.0285
2 3 0.1400 0.1500 0.1400 0.0265 0.0153
3 3 0.2167 0.1800 0.2167 0.1097 0.0633
4 3 0.2133 0.2500 0.2133 0.0635 0.0367
5 3 0.1133 0 . 1 2 0 0 0.1133 0.0306 0 .0176

e 1 3 0.8967 0.9200 0.8967 0.0874 0.0504
2 3 0.92000 0.92000 0.92000 0 . 0 1 0 0 0 0.00577
3 3 0.7667 0.7800 0.7667 0.1305 0.0754
4 3 0.9700 0.9800 0.9700 0.0361 0.0208
5 3 0.9100 0.8900 0.9100 0.0624 0.0361

2YH2
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 10.667 11.000 10.667 0.577 0.333

2 3 9.00 9. 00 9. 00 3.00 1.73
3 3 11.33 1 2 . 0 0 11. 33 2.08 1 . 2 0
4 3 10.33 9.00 10.33 2.31 1.33
5 3 8 . 0 0 1 0 . 0 0 8 . 0 0 3.46 2 . 0 0

n 1 3 53.0 40.0 53. 0 26.1 15. 0
2 3 48.3 53.0 48 . 3 34.2 19. 8
3 3 59.00 56.00 59.00 13.75 7 .94
4 3 33.67 29.00 33. 67 8.96 5.17
5 3 30.3 34.0 30.3 17.8 10. 3

h prime 1 3 2.663 2.830 2. 663 0.463 0.267
2 3 1.917 1.680 1. 917 0.436 0.252
3 3 2. 910 2.830 2. 910 0.259 0.150
4 3 2. 870 2.720 2. 870 0.269 0.155
5 3 2.620 2.980 2 . 620 0.694 0.401

lambda 1 3 0.2467 0.1900 0.2467 0.1343 0.0775
2 3 0.423 0.530 0. 423 0.185 0.107
3 3 0.1733 0.1700 0.1733 0.0451 0 . 0260
4 3 0.1867 0.1900 0.1867 0.0252 0.0145
5 3 0 . 2 0 0 0 0.1500 0 . 2 0 0 0 0.0954 0.0551

e 1 3 0.7833 0.8200 0.7833 0.1484 0.0857
2 3 0.643 0.520 0.643 0.258 0.149
3 3 0.8367 0.8700 0.8367 0.0757 0.0437
4 3 0.85667 0.86000 0.85667 0.00577 0.00333
5 3 0.91000 0.91000 0.91000 0 . 0 1 0 0 0 0.00577
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1 5 5

2TH3
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 6 . 333 7.000 6.333 1.155 0.667

2 3 8.67 1 1 . 0 0 8 . 67 4.04 2. 33
3 3 1 1 . 0 0 9.00 1 1 . 0 0 3. 46 2 . 0 0
4 3 9.00 8 . 0 0 9.00 1.73 1 . 00
5 3 1 0 . 0 0 9.00 1 0 . 00 2.65 1.53

n 1 3 14.00 13.00 14.00 6.56 3.79
2 3 18.33 23.00 18 . 33 10.79 6.23
3 3 22.67 17.00 22.67 9.81 5.67
4 3 20.67 2 2 . 0 0 20.67 5.13 2. 96
5 3 27.00 25.00 27 . 00 8.19 4.73

h prime 1 3 2.393 2.400 2.393 0.230 0.133
2 3 2.720 3.130 2.720 0.807 0.466
3 3 3. 063 2.820 3.063 0.421 0.243
4 3 3.040 2.940 3.040 0.312 0.180
5 3 2.767 2 . 680 2 .767 0.214 0. 123

lambda 1 3 0 . 2 2 0 0 0.2300 0 . 2 2 0 0 0.0361 0.0208
2 3 0.1967 0.1400 0.1967 0.1159 0.0669
3 3 0.1567 0.1800 0.1567 0.0404 0.0233
4 3 0.1333 0.1400 0.1333 0.0306 0.0176
5 3 0 . 2 1 0 0 0 . 2 2 0 0 0 . 2 1 0 0 0.0173 0 . 0 1 0 0

e 1 3 0.9033 0.9300 0.9033 0.0462 0.0267
2 3 0.9167 0.9100 0.9167 0.0208 0 . 0 1 2 0
3 3 0.89667 0.89000 0.89667 0.01155 0.00667
4 3 0.9633 0.9800 0.9633 0.0289 0.0167
5 3 0.8433 0.8500 0.8433 0.0306 0.0176

2YH4
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 9.00 9.00 9. 00 3.00 1.73

2 3 9.667 1 0 . 0 0 0 9. 667 0.577 0. 333
3 3 9.00 8 . 0 0 9 . 00 1.73 1 . 0 0
4 3 9.667 1 0 . 0 0 0 9. 667 0.577 0. 333
5 3 1 2 . 0 0 0 1 2 . 0 0 0 1 2 . 0 0 0 1 . 0 0 0 0. 577

n 1 3 19.33 17.00 19. 33 10. 69 6.17
2 3 2 0 . 0 0 19. 00 2 0 . 00 4.58 2.65
3 3 20.33 16.00 20.33 9.29 5.36
4 3 2 0 . 0 0 18.00 2 0 . 0 0 4.36 2.52
5 3 21. 67 2 0 . 0 0 21.67 4.73 2.73

h prime 1 3 3.013 3.120 3.013 0.459 0.265
2 3 3.1100 3.0800 3.1100 0.0608 0.0351
3 3 2.850 2.840 2. 850 0.175 0 . 1 0 1
4 3 2.973 2.890 2. 973 0.180 0. 104
5 3 3.2867 3.3100 3.2867 0.0777 0.0448

lambda 1 3 0.1333 0 . 1 2 0 0 0.1333 0.0416 0.0240
2 3 0.13000 0.13000 0.13000 0 . 0 1 0 0 0 0.00577
3 3 0.1667 0.1600 0.1667 0.0208 0 . 0 1 2 0
4 3 0.1533 0.1600 0.1533 0.0306 0.0176
5 3 0.12667 0.13000 0.12667 0.00577 0.00333

e 1 3 0.96667 0.97000 0.96667 0.01528 0.00882
2 3 0.9533 0.9600 0.9533 0.0208 0 . 0 1 2 0
3 3 0.9067 0.8900 0.9067 0.0379 0.0219
4 3 0.9100 0.9100 0.9100 0.0500 0.0289
5 3 0.9167 0.9300 0.9167 0.0231 0.0133
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1 5 6

2YL1
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 5.000 5.000 5.000 1 . 0 0 0 0.577

2 3 9.00 8 . 0 0 9.00 1.73 1 . 0 0
3 3 5.67 5.00 5.67 3.06 1.76
4 3 7.00 8 . 0 0 7.00 1.73 1 . 0 0
5 3 4. 333 5.000 4.333 1.155 0. 667

m d i v 1 3 18.33 2 1 . 0 0 18 . 33 11.24 6.49
2 3 33.33 38. 00 33.33 13.61 7.86
3 3 13.33 1 2 . 0 0 13.33 1 1 . 06 6.39
4 3 26.67 29.00 26. 67 10.69 6.17
5 3 9. 67 9. 00 9.67 5.03 2.91

hpr 1 3 2.0967 2.1300 2.0967 0.1626 0.0939
2 3 2.793 2.710 2.793 0.333 0.192
3 3 2.173 2 . 1 2 0 2.173 0.622 0.359
4 3 2.3433 2.3100 2.3433 0.0757 0.0437
5 3 1.973 2 . 1 1 0 1. 973 0.403 0.233

lambda 1 3 0.2600 0.2800 0.2600 0.0346 0 . 0 2 0 0
2 3 0.1767 0.1800 0.1767 0.0451 0.0260
3 3 0.2533 0.2600 0.2533 0.0802 0.0463
4 3 0.2533 0.2600 0.2533 0.0404 0.0233
5 3 0.2767 0.2600 0.2767 0.0764 0.0441

even 1 3 0.9167 0.9600 0.9167 0.0839 0.0484
2 3 0.8833 0.9000 0.8833 0.0379 0.0219
3 3 0.9333 0.9100 0.9333 0.0586 0.0338
4 3 0.8567 0.8100 0.8567 0.1172 0.0677
5 3 0.9533 0.9600 0.9533 0.0404 0.0233

2XL2
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 6.333 6 . 0 0 0 6.333 0. 577 0.333

2 3 6 . 000 6 . 0 0 0 6 . 000 1 . 000 0.577
3 3 6.333 6 . 0 0 0 6 . 333 0. 577 0. 333
4 3 5.33 7.00 5.33 4.73 2.73
5 3 7.333 7.000 7.333 1. 528 0.882

indiv 1 3 51.0 31.0 51. 0 38 .2 2 2 . 0
2 3 25.67 2 0 . 0 0 25.67 10.69 6.17
3 3 49.33 52.00 49. 33 4.62 2.67
4 3 22.7 31.0 22.7 19.9 11.5
5 3 29.00 28.00 29.00 8 .54 4.93

hpr 1 3 2.1267 2.1700 2.1267 0.1498 0.0865
2 3 2.3167 2.3200 2.3167 0.1650 0.0953
3 3 2.3633 2.4500 2.3633 0.1501 0.0867
4 3 1.547 2 . 0 2 0 1.547 1.373 0.792
5 3 2.407 2.320 2.407 0.290 0.167

lambda 1 3 0.2900 0.3100 0.2900 0.0436 0.0252
2 3 0.2233 0.2300 0.2233 0.0208 0 . 0 1 2 0
3 3 0.2233 0.2300 0.2233 0.0208 0 . 0 1 2 0
4 3 0.1833 0 . 2 1 0 0 0.1833 0.1716 0.0991
5 3 0.2333 0.2500 0.2333 0.0379 0.0219

even 1 3 0.8000 0.7700 0.8000 0.0608 0.0351
2 3 0.9033 0.9000 0.9033 0.0252 0.0145
3 3 0.8900 0.8700 0.8900 0.0529 0.0306
4 3 0.517 0.720 0.517 0.451 0.260
5 3 0.84333 0.84000 0.84333 0. 01528 0.00882
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2YL3
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 7.333 7.000 7.333 0.577 0.333

2 3 7.0000 7.0000 7.0000 0 . 0 0 0 0 0 . 0 0 0 0
3 3 8 . 0 0 0 8 . 0 0 0 8 . 0 0 0 1 . 0 0 0 0.577
4 3 6.667 6 . 0 0 0 6.667 1.155 0.667
5 3 7.000 7.000 7.000 1 . 0 0 0 0.577

indiv 1 3 31.67 36.00 31.67 7.51 4.33
2 3 40.33 39.00 40.33 8 . 08 4.67
3 3 39.67 42.00 39.67 4.93 2.35
4 3 38.7 33.0 38.7 18.2 10.5
5 3 34.00 40.00 34.00 10. 39 6 . 00

hpr 1 3 2.383 2.430 2. 383 0. 313 0.180
2 3 2.387 2.470 2.387 0.199 0.115
3 3 2.340 2.440 2.340 0.191 0 . 1 1 0
4 3 2.4100 2.3800 2.4100 0.0700 0.0404
5 3 2.3367 2.3200 2.3367 0.1557 0.0899

lambda 1 3 0.2433 0.2300 0.2433 0.0808 0.0467
2 3 0.2333 0 . 2 0 0 0 0.2333 0.0577 0.0333
3 3 0.2500 0.2400 0.2500 0.0557 0.0321
4 3 0.21667 0 . 2 2 0 0 0 0.21667 0.00577 0.00333
5 3 0.2467 0.2600 0.2467 0.0416 0.0240

even 1 3 0.8300 0.8100 0.8300 0.1114 0.0643
2 3 0.8500 0.8800 0.8500 0.0700 0.0404
3 3 0.7867 0.7700 0.7867 0.0862 0.0498
4 3 0.8867 0.9100 0.8867 0.0493 0.0285
5 3 0.8367 0.8500 0.8367 0.0611 0.0353

2YL4
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 6 . 0 0 5.00 6 . 00 1.73 1 . 0 0

2 3 6.333 6 . 0 0 0 6.333 0. 577 0.333
3 3 6.667 7.000 6 . 667 0.577 0.333
4 3 9.67 8 . 0 0 9.67 3.79 2.19
5 3 6.67 7 . 00 6.67 2.52 1.45

m d i v 1 3 2 1 . 00 24.00 2 1 . 00 10 . 82 6.24
2 3 2 0 . 00 2 2 . 0 0 2 0 . 0 0 4.36 2.52
3 3 31.00 2 2 . 0 0 31. 00 16.46 S. 50
4 3 28.3 17.0 28.3 22. 3 12.9
5 3 27.33 33.00 27.33 11.59 6.69

hpr 1 3 2.193 2 . 2 0 0 2.193 0.300 0.173
2 3 2.340 2.340 2.340 0.320 0.185
3 3 2.0767 1.9900 2.0767 0.1677 0.0968
4 3 2.6933 2.7300 2.6933 0.0723 0.0418
5 3 2.207 2.090 2.207 0.359 0.208

lambda 1 3 0.2600 0.2300 0.2600 0.0608 0.0351
2 3 0.2333 0 . 2 2 0 0 0.2333 0.0709 0.0410
3 3 0.3167 0.3300 0.3167 0.0709 0.0410
4 3 0.1967 0.1800 0.1967 0.0289 0.0167
5 3 0.2833 0.2800 0.2833 0.1050 0.0606

even 1 3 0.8633 0.8300 0.8633 0.0757 0.0437
2 3 0.8767 0.9000 0.8767 0.0874 0.0504
3 3 0.7633 0.7100 0.7633 0 . 1 0 1 2 0.0584
4 3 0.8533 0.9100 0.8533 0.1159 0.0669
5 3 0.8500 0.9300 0.8500 0.1652 0.0954
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3YH1
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

2 3 9.33 1 2 . 0 0 9.33 4. 62 2.67
3 3 6.33 9.00 6.33 5.51 3.18
4 3 8 . 0 0 7.00 8 . 0 0 3.61 2.08
5 3 9.00 9.00 9.00 2 . 0  0 1.15

n 1 3 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
2 3 18.00 24.00 18.00 12.17 7.02
3 3 9.33 1 0 . 0 0 9.33 9. 02 5.21
4 3 14.67 9.00 14.67 13. 43 7.75
5 3 23.67 2 1 . 0 0 23.67 7.37 4.26

h prime 1 3 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
2 3 2.747 3.040 2.747 0.652 0.376
3 3 2.06 3.06 2.06 1.78 1.03
4 3 2.810 2.730 2 .810 0 .535 0.309
5 3 2.717 2.750 2.717 0.192 0 . Ill

lambda 1 3 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
2 3 0.1867 0.1700 0.1867 0.0569 0.0328
3 3 0.0867 0 . 1 2 0 0 0.0867 0.0757 0.0437
4 3 0.1567 0.1600 0.1567 0.0451 0.0260
5 3 0.1967 0 . 2 0 0 0 0.1967 0.0351 0.0203

e 1 3 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
2 3 0.9133 0.8900 0.9133 0.0777 0.0448
3 3 0.633 0. 920 0.633 0. 549 0.317
4 3 0.9700 0.9700 0. 9700 0.0300 0.0173
5 3 0.8633 0.8900 0.8633 0.0643 0.0371

3*H2
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 12.667 13.000 12.667 1. 528 0 . 882

2 3 13. 67 14.00 13.67 2.52 1.45
3 3 12.67 14.00 12. 67 3 .21 1 . 8 6
4 3 8.33 1 1 . 0 0 8.33 5.51 3.18
5 3 1 1 . 00 1 1 . 0 0 1 1 . 00 2 . 00 1.15

n 1 3 69.67 69.00 69. 67 9.02 5.21
2 3 73.0 58.0 73.0 43.5 25.1
3 3 40.67 39.00 40.67 13.58 7.84
4 3 21.33 28.00 21.33 12 . 42 7.17
5 3 33.0 2 0 . 0 33.0 27.9 16.1

h prime 1 3 2.9033 2.9000 2.9033 0.1350 0.0780
2 3 2.960 2. 950 2. 960 0. 405 0.234
3 3 3.107 3.130 3.107 0. 386 0.223
4 3 2.270 2.850 2.270 1 . 1 1 0 0.641
5 3 2.930 2.920 2.930 0. 445 0.257

lambda 1 3 0.1900 0.1900 0.1900 0.0400 0.0231
2 3 0.1867 0.1600 0.1867 0.0737 0.0426
3 3 0.1633 0.1700 0.1633 0.0404 0.0233
4 3 0.297 0.190 0.297 0.185 0.107
5 3 0.1900 0.1500 0.1900 0.1153 0.0666

e 1 3 0.8000 0.7900 0.8000 0.0755 0.0436
2 3 0.7867 0.8400 0.7867 0 . 1 0 1 2 0.0584
3 3 0.8533 0.8500 0.8533 0.0351 0.0203
4 3 0.8800 0.8300 0.8800 0.0954 0.0551
5 3 0.8567 0.9200 0.8567 0.1644 0.0949
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3YH3
Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 7.000 7.000 7. 000 1 . 0 0 0 0.577

2 3 6.67 6 . 0 0 6.67 2.08 1 . 2 0
3 3 12.333 1 2 . 0 0 0 12.333 0.577 0.333
4 3 9.667 9.000 9.667 1. 155 0.667
5 3 9.33 8 . 0 0 9.33 3.21 1 . 8 6

n 1 3 12.67 13.00 12.67 2.52 1.45
2 3 11.67 1 0 . 0 0 11.67 4.73 2.73
3 3 35.67 38.00 35.67 1 2 . 6 6 7.31
4 3 18.67 18.00 18.67 5.03 2.91
5 3 17.00 17.00 17.00 5.00 2.89

h prime 1 3 2.6333 2.7200 2.6333 0.1589 0.0917
2 3 2.487 2.320 2.487 0.435 0.251
3 3 3.213 3.270 3.213 0.230 0.133
4 3 3.023 2.990 3.023 0.242 0.140
5 3 3.000 2.860 3.000 0. 428 0.247

lambda 1 3 0.1800 0.1800 0.1800 0 . 0 2 0 0 0.0115
2 3 0 . 2 1 0 0 0.2400 0 . 2 1 0 0 0.0608 0.0351
3 3 0.1367 0.1300 0.1367 0.0404 0.0233
4 3 0.1467 0.1400 0.1467 0.0306 0.0176
5 3 0.1400 0.1500 0.1400 0.0361 0.0208

e 1 3 0.9433 0.9500 0.9433 0.0306 0.0176
2 3 0.9233 0.9300 0.9233 0.0208 0 . 0 1 2 0
3 3 0.8867 0.9100 0.8867 0.0777 0.0448
4 3 0.9233 0.9400 0.9233 0.0379 0.0219
5 3 0.94667 0.95000 0.94667 0.00577 0.00333

3XH4

Variable treatmt N Mean Median TrMean StDev SEMean
sp 1 3 7.667 8 . 0 0 0 7.667 1.528 0.882

2 3 11. 33 1 0 . 0 0 11.33 4. 16 2.40
3 3 13.00 14.00 13. 00 2.65 1.53
4 3 9.33 1 0 . 0 0 9.33 2.08 1 . 2 0
5 3 9.67 9.00 9. 67 2.08 1 . 2 0

n 1 3 14.667 15.000 14.667 0.577 0.333
2 3 31.67 28.00 31.67 10. 97 6.33
3 3 35.33 31.00 35.33 1 2 . 10 6 . 98
4 3 24.33 2 2 . 0 0 24.33 1 2 . 6 6 7.31
5 3 19.000 19.000 19.000 1 . 0 0 0 0.577

h prime 1 3 2.727 2.710 2.727 0.325 0.188
2 3 2. 907 2.690 2.907 0.672 0.388
3 3 3.167 3.420 3.167 0. 492 0.284
4 3 2.920 2.820 2.920 0.361 0.208
5 3 3.017 2.930 3.017 0.358 0.207

lambda 1 3 0.1700 0.1800 0.1700 0.0361 0.0208
2 3 0.1933 0 . 2 0 0 0 0.1933 0.0902 0.0521
3 3 0.1533 0 . 1 2 0 0 0.1533 0.0666 0.0384
4 3 0.1567 0.1800 0.1567 0.0404 0.0233
5 3 0.1467 0.1500 0.1467 0.0351 0.0203

e 1 3 0.9300 0.9300 0.9300 0.0300 0.0173
2 3 0.8367 0.8100 0.8367 0.0643 0.0371
3 3 0.8567 0.8900 0.8567 0.0666 0.0384
4 3 0.9133 0.9300 0.9133 0.0565 0.0328
5 3 0.9233 0.9200 0.9233 0.0252 0.0145
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1 6 0

3SL1
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 9.33 1 1 . 0 0 9.33 2.89 1.67

2 3 8.333 8 . 0 0 0 8.333 0.577 0.333
3 3 6 . 33 7.00 6 . 33 3.06 1.76
4 3 6 . 0 0 7.00 6 . 0 0 2.65 1.53
5 3 4.000 4.000 4.000 1 . 000 0.577

indiv 1 3 126.0 1 2 1 . 0 126.0 87.6 50.6
2 3 109.3 81.0 109.3 50.8 29.3
3 3 38.3 41.0 38.3 29.1 16.8
4 3 63.3 77.0 63.3 47.0 27.1
5 3 8 . 0 0 9.00 8 . 0 0 1.73 1 . 0 0

hpr 1 3 1.560 1.380 1.560 0.495 0.286
2 3 1.967 1.810 1.967 0.399 0.230
3 3 1.597 1.650 1.597 0.512 0.296
4 3 1.543 1.630 1. 543 0. 407 0.235
5 3 1.630 1.790 1.630 0.358 0.207

lamb 1 3 0.5133 0.5200 0.5133 0.1501 0.0867
2 3 0.3500 0.4000 0.3500 0.0954 0.0551
3 3 0.4633 0.4800 0.4633 0.1358 0.0784
4 3 0.4833 0.5100 0.4833 0.1026 0.0593
5 3 0.4000 0.3600 0.4000 0.0964 0.0557

even 1 3 0.4933 0.5300 0.4933 0.1387 0.0801
2 3 0.6467 0.5700 0.6467 0.1415 0.0817
3 3 0.6433 0.6700 0.6433 0.1124 0.0649
4 3 0.6367 0.6800 0.6367 0.0839 0.0484
5 3 0.8267 0.8100 0.8267 0.0666 0.0384

3YL2
Variable trt N Mean Median TrMean StDev SEMean
no sp x 3 8 . 000 8 . 000 8 . 0 0 0 1 . 0 0 0 0.577

2 3 8 . 0 0 7.00 8 . 0 0 2.65 1.53
3 3 8.333 9.000 8 .333 1. 155 0. 667
4 3 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 . 0 0 0 0.577
5 3 8.67 7.00 8.67 3.79 2.19

indiv 1 3 58.67 63.00 58.67 16. 92 9.77
2 3 44.33 37.00 44.33 14.47 8.35
3 3 80.3 8 8 . 0 80.3 18.7 1 0 . 8
4 3 46.33 49.00 46.33 8.33 4.81
5 3 85.33 85.00 85.33 16.50 9.53

hpr 1 3 2.280 2. 310 2.280 0.336 0.194
2 3 2.487 2.330 2.487 0.343 0.198
3 3 2.227 2.290 2.227 0.193 0 . 1 1 1
4 3 2.8333 2.8200 2.8333 0 . 0808 0.0467
5 3 2.013 2 . 2 0 0 2.013 0.359 0.207

lamb 1 3 0.2833 0.2800 0.2833 0 . 0850 0.0491
2 3 0.2233 0.2300 0.2233 0.0503 0.0291
3 3 0.2833 0.2600 0.2833 0.0493 0.0285
4 3 0.1800 0.1700 0.1800 0.0173 0 . 0 1 0 0
5 3 0.3600 0.3700 0.3600 0.1153 0.0666

even 1 3 0.7633 0.7300 0.7633 0.0945 0.0546
2 3 0.8433 0.8300 0.8433 0.0513 0.0296
3 3 0.7300 0.7200 0.7300 0.0173 0 . 0 1 0 0
4 3 0.8567 0.8500 0.8567 0.0306 0.0176
5 3 0.6700 0.6200 0.6700 0.1136 0.0656
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3XL3
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 7.333 8 . 0 0 0 7.333 1.155 0.667

2 3 7.000 7.000 7.000 1 . 0 0 0 0.577
3 3 6.333 6 . 0 0 0 6.333 1.528 0 . 882
4 3 8.333 8 . 0 0 0 8.333 1.528 0.882
5 3 6.333 6 . 0 0 0 6.333 1.528 0 . 882

indiv 1 3 53.7 53. 0 53.7 23.0 13. 3
2 3 50.0 42.0 50.0 20 . 2 11.7
3 3 26.00 28 . 0 0 26.00 13.11 7.57
4 3 23.00 23.00 23.00 4.00 2.31
5 3 33.00 36.00 33. 00 7.00 4.04

hpr 1 3 2.3600 2.3500 2.3600 0.1652 0.0954
2 3 2.297 2.380 2.297 0.333 0.192
3 3 2.233 2.320 2.233 0.242 0.140
4 3 2.650 2 . 620 2. 650 0.346 0 . 2 0 0
5 3 2.170 2.290 2. 170 0.225 0. 130

lamb 1 3 0.2367 0 . 2 2 0 0 0.2367 0.0289 0.0167
2 3 0.2633 0 . 2 2 0 0 0.2633 0.0929 0.0536
3 3 0.2700 0.2700 0.2700 0.0500 0.0289
4 3 0.2067 0.1900 0.2067 0.0666 0.0384
5 3 0.2733 0.2800 0.2733 0.0404 0.0233

even 1 3 0.8267 0.8400 0.8267 0.0907 0.0524
2 3 0.8233 0.8600 0.8233 0.1193 0.0689
3 3 0.8500 0.8400 0.8500 0.0458 0.0265
4 3 0.8700 0.9100 0.8700 0.0872 0.0503
5 3 0.8233 0.8200 0.8233 0.0551 0.0318

3YL4
Variable trt N Mean Median TrMean StDev SEMean
no sp 1 3 6.667 6 . 0 0 0 6.667 1.155 0. 667

2 3 6.667 7.000 6 . 667 0.577 0.333
3 3 6.333 6 . 000 6.333 1.528 0 . 882
4 3 7.333 7.000 7.333 1.528 0 . 882
5 3 5.00 5.00 5 . 00 2 . 0 0 1. 15

indiv 1 3 61.7 65.0 61.7 27.2 15.7
2 3 33.67 35.00 33.67 5.13 2 . 96
3 3 2 0 . 0 0 2 1 . 0 0 2 0 . 0 0 4.58 2.65
4 3 27.00 27.00 27. 00 1 2 . 0 0 6.93
5 3 18.67 18.00 18.67 1 1 . 0 2 6.36

hpr 1 3 1.9900 1.9600 1.9900 0.1277 0.0737
2 3 2.2633 2 . 2 1 0 0 2.2633 0 . 1 1 0 2 0.0636
3 3 2.057 2.150 2.057 0.516 0.298
4 3 2.313 2.440 2.313 0.453 0.262
5 3 1.823 1.720 1.823 0.386 0.223

lamb 1 3 0.3167 0.3200 0.3167 0.0252 0.0145
2 3 0.2600 0.2700 0.2600 0.0265 0.0153
3 3 0.3300 0.2900 0.3300 0.1345 0.0777
4 3 0.2700 0 . 2 0 0 0 0.2700 0.1300 0.0751
5 3 0.3500 0.3800 0.3500 0.0794 0.0458

even 1 3 0.7333 0.7300 0.7333 0.0252 0.0145
2 3 0.8300 0.8500 0.8300 0.0436 0.0252
3 3 0 .7733 0.8300 0.7733 0.1069 0.0617
4 3 0.8100 0.8500 0.8100 0.1539 0.0889
5 3 0.8300 0.8000 0.8300 0.1082 0.0624
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CHAPTER 3:

EFFECTS OF AN ESTUARINE GRADIENT UPON PREDATOR-PREY 
D YNAM1CS IN  MARINE SOFT-SEDIMENT SYSTEMS:
PREDA TION INTENSITY ON M ACOMA B ALTHICA
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ABSTRACT

This study represents a field test of the effects of a gradient in salinity on predation 
intensity on dominant macrobenthic species. The results are used to infer applicability of a 
consumer stress model on community regulation (Menge and Sutherland 1987) in this 
soft-bottom ecosystem. Specifically, I examined the effect of predation upon the survival 
of a key infaunal bivalve, Macoma balthica, that displays contrasting distribution and 
abundance patterns along an estuarine gradient. I also determined the abundance of major 
predators on M  balthica in the shallow habitats of the York River, a subestuary of 
Chesapeake Bay. Application of the consumer stress model in this system predicts that 
higher abundance of M. balthica in upriver zones is due to lower predator-induced 
mortality. Herein, I show that (1) natural abundance of shallow-water bivalves was higher 
upriver, similar to that in deep water populations, (2) both predation-induced mortality in 
field experiments as well as field measurements of natural mortality of clams were higher 
upriver, contrary to predictions of the consumer stress model, (3) predator abundance was 
greater upriver where predation intensity was higher, though size of predators was not 
significantly different between river zones, and (4) per-capita foraging efficiency on these 
bivalves was higher downriver. Hence, the observed patterns in diversity and 
environmental stress are in accord with a consumer stress model of community regulation, 
whereas the pattern in predator abundance and predation intensity (higher predation 
intensity in zones of higher environmental stress) is contrary to the model's predictions.
The patterns in this soft-bottom ecosystem appear to be explained by an integration of a 
consumer stress model with a productivity model, resulting in a community governed 
through co-limitation by predators and resources.
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INTRODUCTION

Shallow-water soft-bottom habitats are dominated by predators capable of 

consuming a variety of prey (Vimstein 1977, 1979, Peterson 1979, Levinton 1982,

Dayton 1984, Livingston 1984, Hines et al. 1990). Such predators can affect the structure 

of soft-bottom communities and persistence of populations (Peterson 1979, Schoener 

1983, Commito and Ambrose 1985, Reise 1978, 1985, Sih et al. 1985. Hines et al. 1990, 

Wilson 1991). The impact of predators varies along gradients of environmental stress in 

both hard and soft-bottom systems (Menge and Sutherland 1987, Menge and Farrell 1989, 

Menge and Olson 1990).

In terrestrial and hard-bottom marine communities, the changing influence of 

structuring forces such as predation along gradients of environmental stress has been 

noted (Hairston et al. 1960, Connell 1961a, b, Paine 1966, Dayton 1971, Menge 1974, 

Menge and Sutherland 1987). One dominant environmental stress model which posits that 

consumers are more affected by environmental stress than prey is the Menge and 

Sutherland model (1987), a consumer stress model. This model, which was developed for 

the rocky intertidal habitat, predicts that for hard-bottom marine communities the effects 

of predation are inversely proportional to environmental stress, such that predation is most 

intense and influential under low stress. In contrast, the effect of environmental stress in 

modifying the role of biological factors such as predation has not been determined 

sufficiently for soft-bottom marine communities (Peterson 1979, Wilson 1991).
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Competition and recruitment may not have as much influence upon community 

structure as predation and environmental stress in soft-bottom habitats, because of the 

three-dimensional nature of the sediment, which promotes coexistence of species and 

limits exclusion competition (Peterson 1979). Interference competition, however, can 

occur between infaunal polychaetes, affecting the foraging ability of competitors (Levin 

1982). In general, in soft-bottom systems, interspecific competition appears less 

significant than other structuring forces (Peterson 1979, Dauer et al. 1982, Peterson 

1982a, b, Wiltse et al. 1984, Peterson and Black 1988).

Environmental stress (i.e., conditions less than optimal for growth, reproduction or 

survival of individuals) can present itself either as direct physical stress, (e.g., mechanical 

force on organisms like wave shock or collisions with logs; Dayton 1971), or as 

physiological stress (e.g., abnormally high temperature, extreme salinity, reduced feeding 

time, or desiccation; Denny et al. 1985, Menge and Olson 1990). Consumer stress models 

predict that both types of stress can override a predator’s feeding, reproduction or survival 

and thereby overshadow its impact upon prey species and community structure. 

Environmental factors known to affect growth rates and survival of estuarine organisms 

include temperature, pollutants, salinity, dissolved oxygen, and disease (Cadman and 

Weinstein 1977).

Physical stress is a dominant structuring force in hard-bottom marine habitats 

(Dayton 1971, Menge and Sutherland 1987). For example, the intertidal species 

Hedophylhim sessile is typically a competitive dominant except in wave-exposed 

physiologically optimal areas where Lessoniopsis littoralis is a much stronger dominant.
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Physical forces may also be important in marine soft-bottom systems (Boesch 1977, 

Bonsdorff 1989, Mattila 1992). However, physiological stress may be more important in 

many shallow subtidal, soft-bottom systems, which are characterized by high seasonal 

variation in those abiotic factors, such as salinity, temperature and wave action, which can 

negatively impact physiological processes (Sanders 1969, Moore 1972, Menge 1975, 

Boesch 1977, Rosenberg 1977, AJongi 1990, Mattila 1992, Warwick and Clarke 1993). 

For example, in the Baltic where there are steep stress gradients (salinity, temperature, 

oxygen exposure, sediment quality), the abundance of benthos and fish are low and most 

species live toward the border of their physiological tolerance (Bonsdorff and Blomqvist 

1993). Thus, in the northern Baltic Sea, the benthic community is largely structured by 

the harsh environment, and also by biotic interactions. In other systems, a continuous 

gradient in organics may be the primary example of environmental variability, with 

physical factors additionally contributing to the relative environmental harshness imposed 

on each species (Pearson and Rosenberg 1978). Thus, stress may play an important part 

in community regulation in shallow soft-bottom systems such as the tributaries of 

Chesapeake Bay.

Estuaries have sharp gradients in physical, geological and biological processes 

(Schaffner et al. 1987b) and salinity gradients are a pervasive feature of estuaries (Boesch 

1971). In general, upriver low-salinity areas experience more extreme fluctuations in 

salinity, temperature, and turbidity than downriver high-salinity areas. For example, 

salinity changes during a tidal cycle in the upper estuary can be as high as 5 ppt within 12 

hours, whereas less than 3 ppt change is common in the down-estuary areas (Boesch
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1971). Long-term monitoring throughout Chesapeake Bay also shows that the variance in 

salinity (standard error of the mean) increases along with a decrease in salinity in the 

James, York, and Rappahannock Rivers (Dauer et al. 1989). In addition, temperature at 

the mouth of the York River is more stable than in the rest of the river because of the 

relative proximity to oceanic influence (Boesch 1971). Physical disturbance from 

sediment deposition is also greater upriver, usually near the turbidity maximum. The 

upriver areas of Chesapeake Bay tributaries have rapid sediment accumulation and 

sediments are physically structured, as compared to downriver areas that are more 

biologically reworked (Schaffner et al. 1987b). Along the gradients of salinity and 

associated stress, the role of predation has not been quantified in soft-bottom systems.

Models of structuring forces for marine benthos view 'top-down' factors (those 

factors from higher up in the food web) as most important in community regulation, i.e., 

most trophic levels below the top are predator-limited (Menge and Sutherland 1976, 

Hairston et al. I960, Fretwell 1977, 1987, Oksanen et al. 1981). Thus predation is 

predicted to be important to regulating communities and populations.

Other investigators show only 'bottom-up' forces as important. These ideas are 

incorporated into Nutrient/Productivity Models (Menge and Olson 1990). For instance, 

all trophic levels are potentially limited by resource availability, and plants are not limited 

by herbivores except during extreme drought (White 1978). Other investigators show a 

combination of top-down and bottom-up forces as important (Getz 1984, Arditi and 

Ginzburg 1989, Posey et al. 1995). Processes on large scales may be governed by 

Nutrient/Productivity models, whereas those on local scales may be influenced by
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environmental stress (Menge and Olson 1990). Therefore each system must be analyzed 

separately to determine which model is most appropriate. Although many factors likely 

affect species patterns, this study is designed to address only one of many important 

factors, predation, and to determine how the impact of predation on a population changes 

with stress.

The Menge and Sutherland model (1987) (MS), a consumer stress model (CSM) 

that incorporates environmental factors, posits that consumers are more severely affected 

by environmental stress than prey. This model supports the importance of top-down 

community structuring forces. Specifically, the MS model suggests that the importance of 

predation increases with reduced environmental stress in rocky intertidal systems, because 

of an increase in predator foraging efficiency in areas of lower stress (Fig. 3.1a; Menge 

and Lubchenco 1981, Gilinsky 1984, Menge and Sutherland 1976, 1987, Menge and 

Farrell 1989). For example, in areas of low wave exposure (low stress), the predatory 

starfish Pisaster is common and limits epifaunal prey density; in areas of extreme wave 

exposure and stress, its foraging activities and impact are minimal (Menge 1975). Thus, 

this consumer stress model predicts that the effect of predation on population density 

increases with decreasing stress. Such trends in predation over varying levels of 

environmental stress may also hold for soft-bottom communities (Sih et al. 1985).

In the soft-bottom system of the York River, the salinity gradient is associated 

with a change in diversity, and predation intensity may also change along this gradient (as 

in Menge and Sutherland's 1987 diversity model). In the estuary higher salinity zones 

have greater diversity (Boesch 1971). If upriver areas experience greater environmental
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stress, then, based on diversity and stress characteristics, the York River system would be 

on the left half o f Menge and Sutherland's diversity curve (points A to B, Fig. 3.1a). In 

experiments from hard-bottom systems, as diversity increases and stress decreases, the 

importance of predation increases. In the York River system, if the upriver salinity stress 

adversely affects consumers, predation intensity is predicted to decrease upriver, where 

diversity is low. Thus, if we examine a gradient in environmental stress, there are clear 

and testable predictions regarding the importance of predation along the gradient.

In this study, salinity is used as a surrogate measure to define an environmental 

gradient and test its impact upon predator-prey dynamics in marine soft-bottom systems 

(Menge and Olson 1990). Variation in predation intensity has not been investigated along 

salinity gradients, even though such gradients are a ubiquitous feature of estuaries (Boesch 

1971).

Changes in physical characteristics are likely to have profound effects on the 

activities of resident fauna, such that lower salinity areas are more stressful (Menge and 

Olson 1990). This may be especially true in estuaries where many species are of marine 

origin (Remane and Schlieper 1971). Changing salinity requires osmoregulation which is 

costly in terms of energy expenditure, and low salinity may be additionally harsh for 

species with marine origins. Infauna are immobile and are evolutionarily adapted to their 

surrounding environmental fluctuations. Those that have evolved to endure the changing 

conditions remain resident in these low salinity areas.

Conversely, predators are able to migrate, therefore they can escape undesirable 

environmental conditions and need not be physiologically adapted to a harsh environment.
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Fig. 3.1 (a) Modification of the Menge and Sutherland (1987) consumer stress

model showing the influence of predation along an environmental gradient 

and corresponding benthic community diversity, (b) Predicted densities of 

Macoma balthica along the same environmental gradient. At the far left 

(in fresh water, for example), environmental stress is so high that M. 

balthica does not survive. Compare three points along the curve: 'A' 

where environmental stress is severe, few species survive, thus diversity is 

low and the density of Macoma balthica is high; 'B' where environmental 

stress is intermediate, allowing more species to survive thus increasing 

diversity, yet predation is of little influence; 'C' where environmental stress 

is low but predation is severe, thus reducing both diversity and the density 

of most species, including Macoma balthica
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For instance, though the blue crab has a wide salinity tolerance (Mangum and Towle 

1977), growth and feeding efficiency are higher at higher salinities (Cadman and Weinstein 

1988). Though the blue crab is characterized as euryhaline, below suboptimal salinities 

(~27ppt), respiration rate increases (Colvocoresses et al. 1974, Mangum and Towle 1977) 

and varies inversely with salinity due to higher energy demands of osmotic regulation at 

low salinity (Findley et al. 1978). Temperature stress may also affect predators migrating 

into and out of upriver areas. For instance, ventilation rates in some estuarine fish (e.g., 

Trinectes maailatus, Morone americanci, and Leiostomus xanthurns) significantly 

increased after temperature increases of 2.5 to 5°C (Burton 1979). Hence, I postulate that 

predators the impact of predation will be reduced in upriver, in higher stress.

The Chesapeake Bay Predator-Prey System

The Chesapeake Bay benthic community comprises diverse assemblages o f species 

(Diaz and Schaffner 1990). Benthic infaunal distribution and abundance are associated 

with salinity gradients in addition to other physical factors such as sediment type, oxygen 

concentration, and frequency of bottom disturbance (Boesch et al. 1976, Schaffner et al. 

1987a, Pihl et al. 1992). Predation appears to be a primary biotic factor influencing 

species abundances, at least in polyhaline-msohaline salinities (Vimstein 1977, flines et al. 

1990). Despite the extensive field and laboratory experiments conducted on the effects of 

predators on Chesapeake Bay benthic infauna (Vimstein 1977, Holland et al. 1980, 

Blundon and Kennedy 1982, Dauer et al. 1982, Hines et al. 1990, Mansour and Lipcius 

1991, Pihl et al. 1992), variation in predation intensity across environmental gradients has
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rarely been investigated in soft-bottom systems (Commito 1976), including latitudinal 

gradient effects (Vimstein et al. 1984), and oxygen gradient effects (Pihl et al. 1992).

In this study I use a dominant, benthic infaunal prey to test predation intensity 

along a salinity gradient. Macoma balthicci (Mollusca: Bivalvia: Tellinidae) is a thin- 

shelled bivalve (up to 40 mm shell length) distributed in muddy and sandy sediments along 

both sides of the North Atlantic, and in the Pacific from the Gulf of Alaska to San 

Francisco Bay (Beukema and Meehan 1985, Martini and Morrison 1987). In Chesapeake 

Bay, M. balthicci is a deposit-feeding and facultative suspension-feeding species that 

resides primarily in muddy habitats and can burrow to 40 cm in depth (Hines and Comtois 

1985, Schaffner et al. 1987a, Hines et al. 1990). Settlement occurs in two pulses, a weak 

winter pulse and a large spring pulse in May, with abundances decreasing in late summer 

in conjunction with increased predator activity (Holland et al. 1980, 1987. Blundon and 

Kennedy 1982b, Holland 1985, Hines et al. 1990). Burial to depths >15 cm (Blundon and 

Kennedy 1982b, Ebersole and Kennedy 1995) as well as residence in low-density patches 

(Mansour and Lipcius 1991, Eggleston et al. 1992) may provide a refuge from predation 

for large juveniles and adults. M. balthica can serve as a primary food item for epibenthic 

crabs and fishes.

The abundance of M. balthica differs depending on location in the estuary. This 

species is characteristic of muddy or muddy-sand habitats in 5-25 ppt salinities (Beukema 

and Meehan 1985). The deep-water clam distribution can depend on both sediment type 

and oxygen stress. Most studies in York River tributaries show increasing abundances of 

M  balthica from downriver to upriver. For example, in the James River which does not
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experience oxygen stress, few bivalves (mainly M  balthica) were found in deep-water 

lower mesohaline stations (~I8 ppt) although there were some large M  balthica buried 

below 20 cm. However, abundances were maximum in the upper mesohaline (~ 5 ppt; 

Schaffner et al. 1987a). Additionally, long-term sampling showed similar patterns in the 

York River where densities ofM  balthica were maximum in mesohaline regions, but 

dropped to zero in the polyhaline deep-water areas that suffer oxygen stress. Thus, all 

evidence from deep-water sampling show that the species is relatively rare in unvegetated 

high-salinity sites compared to low-salinity sites in the York River (Boesch 1977, Mansour 

1992). There are several factors that could account for differential distribution including 

differences in recruitment, emigration or predation.

Recruitment is important to the abundance of M. balthica. Over ten years of 

monitoring data in a mesohaline site in the Maryland portion of Chesapeake Bay shows M. 

balthica abundances are influenced heavily by recruitment, as well as dissolved oxygen in 

deep water channels (Holland 1985). Large recruitment pulses accounted for much of the 

total variation in abundance. Year-to-year shifts in abundance were also correlated with 

year-to-year salinity fluctuations. Preliminary data on shallow water recruitment (Seitz 

and Lipcius, unpublished data) shows higher recruitment downriver over two sampling 

years. Thus differential recruitment does not appear to explain distribution of M  balthica 

throughout the river, although predation may be important.

Another important factor affecting distribution could be post-settlement dispersal.

A secondary redistribution by juveniles in the plankton may lead to recolonization and 

consequent density fluctuations (Eagle 1975, Butman 1987). Juvenile M. balthica have
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the ability to extend their byssus threads (thin mucus threads) into the water column where 

they can be carried by currents (Beukema et al. 1978, Beukema and de Vlas 1989). 

Juveniles as large as 14 mm length can also migrate using a floating behavior whereby they 

inflate their foot to become buoyant (Sorlin 1988). This method of transport may allow 

juveniles to find more suitable habitat than their original settlement habitat, although they 

are subject to surrounding water flow. Thus, final distribution of clams may be due to a 

combination of habitat and predation components.

Predation is postulated to be an important factor governing distribution of M. 

balthica. Intense predation by fish and crabs rapidly decrease abundances after 

recruitment pulses (Holland 1985), thus predation may influence seasonal distribution in 

shallow water (Holland et al. 1980, 1987). Abundances may be higher upriver as a result 

of higher predation downriver. The abundance of predators in deep water areas is greater 

upriver (Lipcius and Van Engel 1990; Chap. 2 - this dissertation), but, if predators are 

more stressed than prey, foraging efficiency may be reduced due to stress associated with 

the low-salinity habitat, as predicted by Menge and Sutherland's consumer stress model 

(1987).

The epibenthic predator guild is composed of several species including blue crabs 

(Callinectes sapidus), spot (Leioslorrws xanthants), croaker (Micropogonias undulatus), 

and hogchoker ( Trinectes macidatus). The blue crab, a portunid crab, is dispersed widely 

along the Atlantic and Gulf coasts of North America, and is abundant throughout 

Chesapeake Bay (Williams 1984, Hines et al. 1987, 1990, Lipcius and Van Engel 1990). 

This species is important in energy transfer in estuaries, serving as both omnivore and prey
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(Baird and Ulanowicz 1989). Feeding efficiency and prey capture in blue crabs vary 

significantly with prey availability, predator density and habitat complexity (Blundon and 

Kennedy 1982, Arnold 1984, Lipcius and Hines 1986, West and Williams 1986, Hines et 

al. 1990, Eggleston 1990, Mansour and Lipcius 1991, Eggleston et al. 1992). The diet of 

blue crabs, however, consists mainly of bivalve molluscs, predominantly M. balthica and 

Mya arenciria, and conspecifics, as well as polychaetes, other crabs and fish (Laughlin 

1982, Alexander 1986, Hines et al. 1990, Mansour 1992, Ebersole and Kennedy 1995). 

Spot (Leiostomus xanthunis) and hogchoker (Trinectes maculaius) are common bottom- 

feeding fishes in southeast estuaries (Chao and Musick 1977). Such demersal finfish 

predators primarily browse on clam siphons, reducing the depth of clam penetration and 

making them more readily available to predators (Hines et al. 1990).

Infaunal predators are also present in this system, such as the polychaetes Nereis 

siiccinea and Glycinde solitaria, which are among the dominants in shallow water 

sampling (Chap. 2 - this dissertation). Downriver, higher salinities may allow for a greater 

diversity of infaunal predators such as nemerteans and gastropods that could potentially 

feed on newly recruited bivalves, affecting overall densities (Ambrose 1984).

Rationale and hypotheses

The consumer stress model (Menge and Sutherland 1987) posits that the effect of 

predation on the benthic community will decrease with increasing stress, and that diversity 

should have a unimodal peak along the stress gradient. A stress gradient exists in the 

York River whereby upriver, low-salinity zones have greater fluctuations in temperature.
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salinity and turbidity and are therefore more stressful (Boesch 1977, Dauer et al 1993), 

similar to wave-exposed zones of the rocky intertidal where predators are scarce (Menge 

1978). Diversity decreases with increasing stress upriver (Boesch 1977, Chap. 2 - this 

dissertation), similar to the exposed areas of the rocky intertidal where competitive 

mussels dominate in the absence of predation (Connell 1978). Predation could be similarly 

limited by stress upriver in this soft-bottom community.

M. balthica is a dominant infaunal dweller that is readily consumed by epibenthic 

predators (Diaz and Schaffner 1990, Hines et al. 1990, Pihl et al. 1992), and its abundance 

is substantially greater upriver (Mansour 1992), similar to the mussel Mytilus 

califomiamis which is a preferred prey of rocky intertidal starfish and whose abundance is 

greatest in stressful wave-exposed zones. Both the soft-bottom and hard-bottom patterns 

are consistent with the hypothesis that predation intensity is lower in more stressful areas. 

Thus, I propose that M  balthica can be used as a model species to detect differential 

predation along a stress gradient from upriver (high stress) to downriver (low stress).

This experiment therefore addresses the following hypotheses examining natural 

abundance of clams, the effect of predator-induced mortality on the clam M. balthica, and 

predator abundance in various zones in the York River differing by salinity. I predict that 

densities of M  balthica along a gradient from fresh water to oceanic water will follow a 

humped-shaped curve (Fig. 3.1b) as seen in deep-water densities (Dauer et al. 1989). In 

completely fresh water, where physiological stress is severe for marine species, only 

freshwater species thrive, and few M. balthica are present. The density of M. balthica is 

greater at slightly higher salinity, as they do well in low salinity. As environmental stress
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decreases, predation increases, and the abundance of M. balthica decreases. Where 

environmental stress is low but predation is severe (at high salinity), the density of most 

species, including M. balthica is further reduced. In deep-water areas, the abundance of 

M. balthica is greater upriver than downriver (Schaffner et al. 1987a, Dauer et al. 1989, 

Mansour 1992), suggesting that the distribution throughout the system (in shallow-water 

areas) may follow the same trend, leading to Ha,:

• Ho,: There are no trends in shallow water abundances of M. balthica,

Ha,: The natural abundance of clams in shallow water habitats is 

greater upriver (Fig. 3.1b);

The consumer stress model predicts that the influence of predation decreases in areas of 

higher stress where diversity is relatively low (Boesch 1977, Holland et al. 1980, Chap. 2 - 

this dissertation), leading to Ha, and Ha3:

• Ho2: There is no difference in the abundance of epibenthic predators upriver 

and downriver,

Ha2: The abundance of epibenthic predators in shallow water is lower 

in upriver zones (as predicted by a consumer stress model);

• Ho3: There is no difference in efficiency (per-capita consumption of prey) of 

epibenthic predators in shallow water upriver vs. downriver

Ha3: The efficiency (per-capita consumption of prey) of epibenthic 

predators in shallow water is lower upriver, in higher stress zones;
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and therefore Ha4:

• Ho4: There is no difference in predator-induced mortality of M. balthica 

upriver vs. downriver,

Ha4: Predator-induced mortality of M. balthica is lower in upriver 

zones.

To test these hypotheses. I quantify natural abundance of M. balthica and its predators, 

natural mortality of M. balthica, and employ field experiments utilizing transplanted clams 

to assess predator-induced mortality forM. balthica in York upriver and downriver 

habitats.
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METHODS AND MA TERIALS

Study area

This study was conducted in muddy-sand sediments o f the shallow subtidal zone 

(1-2 m depth) in the York River, a tributary of Chesapeake Bay. Eight sites were set up 

randomly in each of two zones differing by location and salinity, the lower-mesohaline 

zone at about 5-10 ppt (upriver), and the upper-mesohaline zone at about 15-20 ppt 

(downriver). Upriver sites were approximately 40 km from the mouth of the York River 

and located near West Point, whereas the downriver sites were approximately 8 km from 

the mouth, near Gloucester Point (Fig. 3.2). Measured salinity varied significantly 

between the two zones (ANOVA, P < 0.001), upriver had lower salinity (mean = 8.8 ppt, 

range 5.0-10.0 ppt) and downriver had higher salinity (mean = 16.1 ppt, range 15.0-19.0 

ppt). Particulate organic carbon was significantly higher upriver than downriver 

(ANOVA, df = 9, F = 6.24, P = 0.037 - Chap. 2 - this dissertation).

Natural clam density

I quantified clam abundance in each of the eight sites per zone at the start of the 

first transplant experiment (week 0 and 1). At the time of clam transplanting (week 0), a 

PVC frame was placed on the sediment surface at each site marking a 0.25m2 plot where 

natural clams were excavated to 30 cm depth using a suction dredge (Orth and van 

Montfrans 1987, Hines et al. 1990, Eggleston et al. 1992). This was placed approximately
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Fig. 3.2. Map of the Virginia portion of Chesapeake Bay with experimental sites 

along the York River Upriver and Downriver denoted with black circles.
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two meters away from the experimental plot at each replicate site. All bivalves in the 

suction samples were removed, identified, enumerated and total length was measured.

After seven days (week 1), when experimental plots were excavated, the frame 

was again deployed approximately two meters away from the experimental plots and 

another suction sample of natural clams was taken. Clam abundance between upriver and 

downriver zones was compared each time period using an Analysis of Variance (ANOVA) 

model with river zone as a fixed factor. Clam density between time periods was compared 

separately for upriver and downriver zones using a paired t-test with the difference in clam 

density at each site between time periods as the dependent variable. Dependent variables 

were log-transformed to meet assumptions of normality and homogeneity of variance 

(Underwood 1981).

Natural clam mortality

The best measure of natural mortality comes from following a group of individuals 

over time. To estimate natural mortality concurrent with the manipulative experiments, 

natural clam abundance between time periods (week 0 and week 1) was compared 

separately for upriver and downriver zones. The finite mortality rate ranges from 0 to 1 

and was determined using the following equation (Krebs 1989):

m = 1- (N,/N0) (1)
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The instantaneous mortality rate ranges from 0 to negative infinity and was also 

determined:

/ = In (N /N J (2)

where N, = number of individuals at end of time period t

N0 = number of individuals alive at start of time period, N, /N„ = finite survival rate.

Experimental clam mortality

I tested the effect of predation by epibenthic crabs and fishes on Macoma balthica 

in two river zones in the field with three sets of experiments using transplants of clams in 

the summer of 1995. Large adult clams were used in transplant trial I (size range = 24.6 

mm - 32.10 mm, mean 25.5), whereas small (range 10.1-16.8, mean 13.7 mm) and large 

(range 22.1-31.3, mean 24.5 mm) clams were transplanted at each site in subsequent trials. 

Clam sizes used in the experiments were based on random samples of clams collected from 

sediments in the area of the experimental plots.

Clams were collected from the upriver zone using a suction dredge, and slowly 

acclimated in the laboratory (over a 2-day period) to a salinity midway between that o f 

upriver and downriver sites (approximately 10 ppt) at room temperature (~20°C). Before 

transplantation, the shell was dried and marked with an "x" using a permanent magic 

marker. At each site (Fig. 3.2), clams were carefully buried, foot down just below the 

sediment surface, relatively evenly-spaced, and taking care to leave the surrounding 

sediment intact. Salinity was recorded at each site.
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After clams were transplanted, all plots were then covered with a predator 

exclusion cage (mesh size 13 mm) for an acclimation period of 48 h; previous laboratory 

trials indicated that 24 h was sufficient time for clams to achieve a stable burial depth 

(Mansour and Lipcius 1991, Eggleston et al. 1992). After acclimation, cages were 

removed from half of the plots (uncaged treatment), left on the other half (caged 

controls), and all plots were left intact for 7 days.

A the end of the exposure period, contents of all caged and uncaged plots were 

extracted to a depth of 30 cm using a suction dredge with a 1-mm mesh collection bag 

fitted to the outflow. Both marked and unmarked M. balthica and other clams were 

enumerated. Marked broken shells were noted as indicative o f crab predation. Marked 

shells with no live individual were noted as evidence of physical/physiological or handling 

mortality. Physical/physiological mortality was significantly higher at the downriver sites 

(ANOVA, df = 40, F = 9.49, P < 0.005). Physical/physiological mortality did not differ 

not by time period (ANOVA, df = 40, F = 3.33, P < 0.05).

For each transplant experiment, I compared two river zones (upriver and 

downriver) with 8 sites divided among two treatments (caged control and uncaged 

experimental), and four replicates for Transplant 1 ( 2 x 2 x 4  = 32 plots). Half the sites 

were used for Transplants 2 and 3 and each site was either control or experimental. 

Transplants 2 and 3 had two replicates of each of two sizes ( 2 x 2 x 2 =  16 plots). Each 

plot consisted of a 0.5m x 0.5m (0.25m2) area of sediment where 10 M  balthica were 

marked, measured and planted in the sediment. The plot was marked off with a frame 

deployed over two PVC stakes. After planting of the clams, the frame was removed to
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minimize predator attraction. Transplant 1 was conducted on 17-24 July, Transplant 2 on 

9-18 August, and Transplant 3 on 17-25 August.

For Transplant 2 and 3, two size classes of clams were planted at each site, small, 

and large. Of the 16 sites used in Transplant 1, cages were tampered with, and 

physical/physiological mortality was high at some sites. Of the better sites, four sites were 

chosen upriver and four downriver; two experimental and two control. There was no 

difference in ambient clam densities between those sites used and those discarded 

(Upriver. ANOVA, df = 7, MS = 145, F = 0.37, P = 0.57; Downriver: ANOVA, df = 7, 

MS = 2, F = 1.00, P = 0.36), thus clam abundance and mortality at sites chosen should be 

representative of all sites. At each site a plot of both large and small clams was established 

to allow paired comparisons.

In the plots with marked clams, at retrieval some marked clams were found live, 

some were found dead from physical/physiological mortality with two whole valves and 

umbo (handling + physical/physiological mortality), and some were missing (predation 

plus emigration). The 'missing' from the controls should account for emigration. Thus, 

the mean 'missing + physical' from the controls was subtracted from each 'missing' 

experimental to get predation-induced mortality.

The number of clams suffering predation did not differ by clam size (paired t-test, 

df = 7, d = 0.02 mm, 95% C.I. = -0.21 - 0.24), thus both size classes were pooled to give 

four replicates of each treatment (control and experimental) in each river zone. These 

replicates were used to compare mortality due to predation and physical factors by river 

zone. Additionally, to increase the power of the tests by elevating sample size,
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Transplants 2 and 3 were pooled to compare effects of clam size. When predation was 

not significant by clam size, all three transplant experiments were pooled in an ANOVA 

with time as a blocking factor, and river zone as a fixed factor.

Natural predator abundance

Predator abundance in shallow water was quantified by trawling on 21-22 July, 

1995 (though this was conducted over a short time frame, patterns are consistent 

throughout the summer; VTMS trawl survey). At each of the eight upriver and downriver 

sites, demersal fishes and crabs were collected with a 4.9-m semi-balloon otter trawl (3-m 

wide mouth, 5-cm-mesh net body, and 7-mm-mesh cod end). Two 2-min tows were taken 

parallel to shore at each site, one with the tidal current, and one against the tidal current. 

Both trawls were pooled and analyzed as one sample. Thus, four replicate samples were 

taken in each of the upriver and downriver zones. Although the estimate of predator 

abundance from trawling can be low due to gear avoidance by the predators (trawl 

efficiency for most predators is -22%; Homer et al. 1980), all sizes of predators are 

caught with approximately equal efficiency except for extremely small individuals which 

can escape through the mesh (Homer et al. 1980). Animals in each trawl were identified, 

counted and measured (fish: total length, crabs: carapace width).

In addition to Pearson's correlations, a Multivariate Analysis o f Variance 

(MANOVA) model was used to analyze predator abundance with species of fish or crabs 

defining the set of multivariate dependent variables, and river zone as a fixed factor 

(Underwood 1981). Because of significant heterogeneity in raw abundances, abundance
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data was Log(x+l)-transformed for analyses. Variances in the Log(x+I)-transformed 

abundance data were homogeneous between river zones. Predator size between river 

zones was compared using multiple ANOVA models set at experiment-wise error rate of 

0.05.
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RESULTS 

Natural Clam Density and size structure

Three clam species were collected within the 16 sites— Macoma balthica, M. 

mitchelli, and Tagehts plebeins. Total natural clam density was significantly higher 

upriver than downriver (Fig. 3.3; Table 3.1). The Baltic clam, M. balthica, comprised 94- 

98% of all clams collected upriver, where its density declined from week 0 (mean 

abundance±SE = 128.0/nr+ 63.2) to week 1 (92.5/m2 + 22.0) (paired t-test; t = 2.39, d f= 

7, P = 0.024). From these differences in abundance across weeks, finite survival rate for 

M  balthica upriver was calculated as 0.72 (72%), yielding a finite mortality of 28% per 

week. The corresponding instantaneous mortality rate (ln(N/N0) was -0.32 for A/. 

balthica upriver. There was no difference in abundance of clams other than M. balthica 

upriver (paired t-test, t = -0.55, df = 1,P = 0.70). Few clams were collected downriver 

during either time period; there was no difference in the abundance of total clams between 

time periods downriver (paired t-test, t = -0.62, df = 7, P = 0.72; Fig. 3.3).

There was a bimodal distribution in the mean size of ambient M  balthica collected 

in the eight upriver sites. At initial sampling, week 0, the mean length was 14.2 + 0.3 mm 

for cohort 1 and 26.0 mm ± 0.4 mm for cohort 2 (Fig 3.4a), and at week 1 the mean 

length was 15.4 + 0.2 mm for cohort 1 and 26.9 + 0.6 mm for cohort 2 (Fig. 3.4b) though 

this difference in size was not significant (paired t-test, t = 0.28, df = 7, P = 0.79).
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Fig. 3.3. Mean abundance of all natural clams/m2 in Upriver and Downriver zones at 

Week 0(17-19 July 1995) and Week 1 (22-24 July). Significant 

differences (P < 0.05) are indicated with the asterisk, and means that are 

not significantly different (P > 0.05) are indicated with ns.
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Table 3.1. Density of all clam species between zones in the York River. ANOVA used 

River zone (upriver and downriver) as a fixed factor; Time as a blocking factor using week 

0 (July 17-19) and week 1 (July 24-26). The dependent variable was number of clams/m2.

Source of variation SS df MS F

River zone 5852.3 1 5852.3 39.67****

Time 139.2 1 139.2 0.94"*

Error 4278.2 29 147.5

**** p  < 0.001; ns/> >0.05.
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Fig. 3.4. Size-frequency of ambient Macoma balthica from (a) sampling period 

week 0 (17-19 July 1995) and (b) sampling period week 1 (22-24 July 

1995). Size classes are at 2-mm intervals between even numbers.
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Experimental clam mortality - Size effects

Only large clams were used in Transplant 1; marked clams transplanted in upriver 

vs. downriver sites did not differ in size (ANOVA, F = 1.16, df = 159, P = 0.28). The 

mean size of clams planted within experimental plots for Transplant 1 was 27.2 ±  0.1 mm, 

near the mode of the larger cohort identified in ambient clams (Fig 3 .4). The mean size of 

surviving marked clams (mean = 26.8 mm) did not differ significantly from that o f the 

initial marked clams (mean = 27.2 mm) (paired t-test, t = 1.82 , df = 21 ,P  = 0.083).

In Transplants 2 and 3, proportional mortality due to predation did not differ 

significantly by size (Fig. 3.5a, c, e; P = 0.668, Table 3.2a) nor did proportional mortality 

due to physical/physiological or handling stress (Fig. 3.5b, d, f; ANOVA, df = 24, F =

0.15, P = 0.70).

Experimental clam mortality - Predation effects

Because there was no significant difference in bivalve mortality by size, and no 

significant interaction of Size x Zone, data from both size classes were pooled. For all 

transplants, predation-induced mortality was significantly higher upriver (29%) than 

downriver (10%) (Fig. 3.6; Table 3.2). The mean predation-induced proportional 

mortality for experimental clams upriver was nearly equivalent to the finite mortality rate 

determined for natural clams (28%). Time as a blocking factor was not significant.
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Fig. 3.5. Proportional mortality (mean/week + SE) of transplanted Macoma balthica

from predation (a. c, e) and physiological factors (non-predatory 

mortality) (b, d, f) for three experimental trials. To arrive at predation- 

induced mortality, mean physiological mortality was subtracted from total 

mortality for each plot.
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Table 3.2. Proportional mortality of transplanted clams due to predation between zones in 

the York River. ANOVA with (a) pooled data from Transplants 2 and 3, and (b) pooled 

data from all three Transplants with large and small clams pooled. Clam size (small and 

large -- for (a) only) and River zone (upriver and downriver) were fixed factors; time 

(Transplant 2 or 3) was a blocking factor.

Category Source of variation SS df MS F

Predation Mortality Clam Size 0.005 I 0.005 0.19“

(a) Transpl. 2 & 3 River Zone 0.192 1 0.192 6.69*

Size x Zone 0.010 1 0.010 0.35“

Time 0.000 1 0.000 0.00

Error 0.344 12 0.029

Predation Mortality River Zone 0.212 1 0.212 8.65**

(b) All Transplants Time 0.040 2 0.040 0.82“

Error 0.493 20 0.024

**P< 0.01; * P < 0.05; ns P >0.05.
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Fig. 3.6. Proportional mortality (mean mortality/week + SE) of transplanted

Mcicomci bcilthicci due to predation Upriver and Downriver for three trials: 

Trial 1, 17-24 July; Trial 2, 9-18 August; and Trial 3, 15-25 August. Mean 

experimental mortality across all three trials and predator-induced mortality 

o f natural clams are indicated with horizontal dashed lines.
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Natural predator abundance

Epibenthic predators collected in shallow water trawls included the blue crab, 

Callinectes sapidus, various finfish including spot, Leiostomus xanthurns, croaker, 

Micropogonias undulatus, hogchoker, Trinectes maailaius, and white perch, Morone sp. 

A total of 799 epibenthic predators were caught, with hogchoker comprising 75.6% of the 

total, croaker 11.7%, crabs 6.8% , spot 3.2% , and other species 2.7%.

Significantly more blue crabs, spot, croaker and hogchoker were caught upriver 

than downriver (Fig. 3.7a; MANOVA, Table 3.3). There was a significant positive 

correlation in abundance between crabs and spot, croaker and hogchoker, and croaker and 

other uncommon epibenthic predators such as white perch (Table 3.4).

Predator size did not differ significantly between upriver and downriver zones for 

blue crabs (ANOVA df = 31, F = 0.58, P=0.452), spot (ANOVA df = 22, F = 1.13, /> = 

0.301), and croaker (ANOVA, df = 90, F = 3.54, P = 0.063)(Fig. 3.7b). Downriver, 

however, hogchoker were significantly larger than those upriver (Fig. 3.7b; ANOVA d f= 

616, F = 24.37, P < 0.001 for log-transformed data). Individuals of each predator type 

were pooled across river zones and examined for patterns in size-frequencies. Crab and 

hogchoker populations showed a bimodal distribution of sizes (Fig. 3.8a, d), whereas there 

was a unimodal size-ffequency histogram for both spot and croaker populations (Fig.

3.8b, c).

Per-capita predator foraging efficiency (sensu Paine 1992) was determined by 

quantifying the mean number of clams eaten per area (m2) over the mean number of 

predators per area (trawl). Since crabs are the only predators able to consume whole
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Fig. 3.7. (a) Mean Abundance (Number per 4-min trawl + SE) and (b) size of the

common epibenthic predators blue crab. Ccillinectes sapidus, spot, 

Leiostomus xauthums, croaker, Micropogonias undulaius, and hogchoker. 

Trinectes maculatus. Significant differences (P < 0.05) between samples 

are indicated with *. Means that are not significant are without an asterisk 

or indicated with ns.
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Table 3.3. Log(x+l)-transformed epibenthic predator abundance data between zones in 

the York River for data from four replicate 4-minute trawls in each zone (MANOVA). 

Multiple ANOVA models comparing predator size between zones (raw data). In 

parentheses is the total number of individuals collected, or the mean size in mm (SL or 

CL) at downriver (D) and upriver (U) zones.

Analysis Predator Source of 

variation

SS df MS F

MANOVA Crabs Salinity Zone 4.84 1 4.84 30.45***

Abundance (D: 5, U: 47) Error 0.95 6 0.15

Spot Salinity Zone 3.28 1 3.28 30.45*

(D: 3, U: 20) Error 2.01 6 0.34

Croaker Salinity Zone 14.52 1 14.52 37.94***

(D: 2, U: 89) Error 2.29 6 0.38

Hogchoker Salinity Zone 23.63 1 23.63 63.92****

(D: 18, U: 599) Error 2.29 6 0.38

ANOVA Crabs Salinity Zone 4.41 1 4.41 0.58"*

Size (D: 6.7, U: 7.7) Error 382.8 50 7.66

Spot Salinity Zone 1.3 1 1.3 1.13“

(D: 11.9, U: 11.6) Error 2.01 6 0.34

Croaker Salinity Zone 4.38 I 4.38 3.54ns

(D: 13.4, U: 11.9) Error 110.2 89 1.24

Hogchoker Salinity Zone 69.53 1 69.53 26.70****

(D: 8.7, U: 6.7) Error 1601 615 2.6
****/>. 0.001; *** P • 0.005; * P < 0.05; ns P >0.05.
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Table 3.4. Pearson correlation coefficient matrix for epibenthic predator abundance from 

otter trawls in the York River 1995.

Crabs Spot Croaker Hogchoker

Spot 0.81*

Croaker 0.36“ 0.63“

Hogchoker 0.48“ 0.61“ q 9 4 * * * *

Other 0.24“ 0.48“ q  g y * * * * 0 9 i * * *

o.OOl; *** P ■ 0.005; ns P >0.05.
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Fig. 3.8. Size frequency histograms of major epibenthic predators (a) blue crab, 

Callinectes sapidus, (b) spot, Leiostomus xanthunis, (c) croaker. 

Micropogonias undulatus, and (d) hogchoker. Trinecies maculatus.
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clams, per-capita foraging efficiency was calculated separately for them. For crabs 

upriver, the mean number o f clams was 2.9, and predators was 11.75, yielding a foraging 

efficiency of 0.25 clams/predator. In contrast for crabs downriver, 1 clam per 1.25 

predators was eaten, yielding an efficiency of 0.8 clams/predator. Although epibenthic fish 

do not directly consume clams, their siphon-nipping may reduce clam burying depth and 

indirectly cause clam mortality. If we use the total number of predators to estimate 

foraging efficiency, upriver there are on average 3 clams eaten per 188.8 predators, 

yielding an efficiency of 0.016 clams/predator. Whereas downriver, there is an average of 

1 clam eaten per 7 predators, yielding an efficiency of 0.143. Though these data are 

limited in that estimates were made over a few months in one summer, either method used 

exhibits a higher per-capita foraging efficiency downriver where there are fewer predators.
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DISCUSSION

This study represents a field test of the effects of predation on clam survival along 

a salinity gradient. The results are used to infer applicability of a consumer stress model 

on community regulation (Menge and Sutherland 1987) in this soft-bottom ecosystem. To 

examine the applicability of a consumer stress model, I quantified the effect of predation 

upon the survival of Macuma balthica a key infaunal bivalve that displays contrasting 

distribution and abundance patterns along an estuarine gradient. I also determined the 

abundance of major predators in the shallow habitats of this subestuary of Chesapeake 

Bay.

Application of the consumer stress model in this system predicts that the 

importance of predation is lower in areas of higher stress (upriver, in this system) and 

consequently, higher abundance of M. balthica in upriver zones is due to lower predator- 

induced mortality. Although the observed patterns in diversity and environmental stress 

are in accord with a consumer stress model of community regulation (Table 3.5), the 

pattern in predator abundance and predation intensity (higher predation intensity in zones 

of higher environmental stress) is contrary to the model's predictions. The patterns of 

infaunal abundance across a broad geographic scale (-20 km) in this soft-bottom system 

cannot be explained by a consumer stress model. Higher stress upriver does not restrict 

predators from upriver areas, thus the system is probably only moderately stressed.
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Table 3.5. Theoretical comparison of two benthic systems at two levels of environmental 

stress. Agreement between observed diversity, bivalve abundance (Mytilus californianus 

and Macoma balthica, for hard and soft bottoms, respectively), predator abundance, 

predator efficiency and prey proportional mortality. The hard bottom example comes 

from the rocky intertidal mid-tide exposed and protected areas which both have Mytilus 

californianus populations of varying densities. The soft bottom example comes from the 

York River shallow subtidal upriver and downriver zones where Macoma balthica is 

present in varying densities. Notice the discrepancies between hard and soft bottom 

systems for both Predator abundance and Proportional mortality of prey.

Environmental stress 

System

High

Hard bottom 

(Exposed)

Soft bottom 

(Upriver)

Low

Hard bottom 

(Protected)

Soft bottom 

(Downriver)

Diversity LOW LOW HIGH HIGH

Bivalve abundance HIGH HIGH LOW LOW

Predator abundance LOW HIGH HIGH LOW

Proportional mortality LOW HIGH HIGH LOW

of prey

Per-capita foraging LOW LOW HIGH HIGH

efficiency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



222

Because of this, it may be appropriate to look to other models of community regulation 

such as nutrient/productivity models.

The significant differences in nutrient availability point to nutrients as an important 

factor influencing distribution of benthos and associated predators (though this study was 

not designed to specifically address the effect of nutrient availability on marine benthos). 

Although the nutrient data presented here are limited in scope, the trend of increased 

carbon upriver agrees well with other, more comprehensive studies. For example, in 

deeper waters in the York River, percent of volatile solids increased with distance from 

the mouth of the York River (Dauer et al. 1989). A similar increasing trend in volatile 

solids was seen from downriver to upriver stations in the James River (Schaffner et al. 

1987a). Thus, across the large geographic scale of this study, predators and prey may be 

heavily influenced by productivity. This is in accord with Menge and Olson's (1990) 

predictions that Nutrient/Productivity Models may govern systems on large scales, and 

that areas without extreme environmental stress may be governed by forces besides stress.

Predator abundance was observed to correlate with carbon productivity, thus 

predators may aggregate in productive areas where food is more plentiful. Predators are 

known to reside in habitats where food and refuge are available (Weinstein 1983). In this 

system, predation on infauna is important, yet predation does not drive the abundances of 

clams in this system. Regulation of benthos in this soft-bottom system, therefore appears 

to be explained by an integration of an environmental stress model (Menge and Sutherland 

1987) with a productivity model (Oksanen et al. 1981, Getz 1984) resulting in a 

community governed through co-limitation by predators and resources (Power 1992).
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A co-limitation model indicates that both top-down forces (limitation of low 

trophic levels by higher trophic levels) and bottom-up forces (limitation by production or 

resources) are responsible for community dynamics. Both nutrient enrichment and 

predation can be important in controlling communities as in an intertidal flat where 

nutrient addition increased the numbers of surface deposit feeders and predation altered 

the response of the benthos to enrichment (Posey et al. 1995). Plants provide the 

"bottom-up template", determining the number of trophic levels in a community (Hunter 

and Price 1992), then predation acts secondarily. Though reduced by exploitation, prey 

can increase with increases in their resources (Getz 1984, Arditi and Ginzburg 1989).

Thus, in real food webs, a multitude of both biotic and abiotic factors regulate the relative 

control of communities by resource limitation versus predators (Hunter and Price 1992).

Application o f the consumer stress model to a soft-bottom system

Natural shallow water densities of clams were higher upriver, similar to 

distributions documented for deep water (Boesch 1977. Holland et al. 1980, Mansour 

1992) thus the first null hypothesis (Ho,: There are no trends in shallow water abundances 

o fM  balthica) was rejected and the alternate hypothesis retained (Ha,: The natural 

abundance of clams in shallow water habitats is greater upriver, in low salinity zones).

The explanation is not simply salinity preference because some downriver areas (e.g..

Kings Creek), also have high and persistent clams abundances, similar to those seen 

upriver (R. Seitz, personal observation).
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Predation (measured as number of clams killed per week) was most intense 

upriver, where both predators and prey abundances were highest. The mortality estimates 

from transplant experiments appear unbiased as they were nearly equivalent to the 

estimates o f natural mortality (~28%/wk.). Thus, the fourth null hypothesis (Ho4: There is 

no difference in predator-induced mortality o fM. balthica upriver vs. downriver) was 

rejected and the proposed alternate also rejected (Ha4: Predator-induced mortality o fM  

balthica is lower in upriver zones). Thus, a second alternate, Ha4B: predator-induced 

mortality o f M. balthica is higher in upriver zones, is maintained. Combining the two 

results, there is an inconsistency between abundance and survival o fM. balthica; 

abundance is highest where survival was lowest during the study period. Furthermore, 

these experimental results were not consistent with the consumer stress model which 

predicts that predation intensity is higher in areas of decreased stress.

Based on the stress gradient, observed diversity values and predictions from the 

consumer stress model, the York River system lies on the high to moderate end of 

environmental stress (Fig. 3.1a; A = upriver, B = downriver). Downriver, diversity is 

greater, the effect of environmental stress is less, and that of predation should be greater 

than upriver (as is true for hard-bottom marine systems, Table 3.5). In contrast, predation 

intensity is higher upriver, refuting Ho4. Thus, either my prior assumptions about a stress 

gradient are mistaken (as is evidence in Boesch 1977 and Dauer et al. 1993), the Menge 

and Sutherland model does not fit this system, or a force other than predation is most 

important in governing community dynamics in this system. I conclude that consumer 

stress is not the major factor governing community structure in this soft-bottom system.
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nor is prey stress (since abundances are greatest upriver) and that other factors such as 

freshwater inflow (Montagna and Kalke 1992), production, or nutrient availability 

(Fretwell 1987, Oksanen et al. 1981, Power 1992, Menge et al. 1996) must be recognized.

Higher predation intensity upriver, in low salinities, was unexpected based on both 

the observed clam densities and predictions of the Menge and Sutherland Model (1987). 

Because previous studies have shown that in deep water habitats M. balthica is more 

abundant upriver (Boesch 1977, Holland 1985, Hines et al. 1989, Dauer et al. 1989, 

Mansour 1991), it is counter-intuitive that predation would also be higher there. Though 

this study was done in a single summer, it strongly suggests that higher abundances of 

clams upriver during this time period are not due to lower predation by large epibenthic 

crabs and fishes, so other explanations must be sought.

An attractive explanation for higher predation upriver is that the timing of this 

predation experiment was after a large portion of predation occurred in the downriver 

areas. During the winter, predators migrate out of the system or become inactive, and re

enter the rivers as temperatures increase in the spring (Lipcius and van Engel 1990). It is 

possible that intense predation pressure in downriver zones occurs early in the summer 

when the predators first move into the shallows to feed, and before my transplanting 

experiments began. To support this hypothesis, evidence needs to be found that predators 

migrate from high salinities to low. consuming and possibly depleting the supply of clams 

along the way.

Existing evidence for predator migration throughout the summer months, the 

intense predation period, do not substantiate the predator migration theory. Temporal
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sampling for predators in the major tributaries of Chesapeake Bay, both deep and shallow, 

have not shown a slow migration upriver (Mansour 1992; Chap. 2 - this dissertation); 

there appears to be little seasonal effects on predator abundance from June through 

October (Hines et al. 1990). Predator abundance in the shallows is higher upriver as early 

in the summer as May (Chap. 2 - this dissertation), as predators typically enter the system 

quickly and move upriver immediately. Sixteen years of monitoring data in the York 

James and Rappahannock Rivers showed consistently higher blue crab densities upriver 

from May through November (Lipcius and Van Engel 1990) and many other predators 

follow this same pattern (VIMS trawl survey, unpublished data). Thus, differential 

feeding of predators early in the summer of 1995 is not probable, but is a possible 

explanation for the observed clam densities that remains to be tested.

Higher recruitment upriver is an additional alternative explanation of higher upriver 

clam abundances. Differential recruitment of invertebrate larvae can be highly dependent 

on currents in estuaries (Minello et al. 1989, Montagna and Kalke 1992). If upriver low 

salinity zones have increased larval supply, this may account for the increased observed 

abundances of clams there later in the summer. This hypothesis remains to be tested in the 

York River system. Preliminary observational sampling of juveniles within the sediment, 

immediately after the spring recruitment pulse in 1996 (the spring following these 

experiments) indicated that recruitment downriver was at least as great or greater than 

upriver (Seitz and Lipcius, unpublished data). If these patterns hold from year to year, 

recruitment does not explain the observed densities of M  balthica. Further examination 

of recruitment patterns may firmly refute a recruitment hypothesis. In addition, a complex
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hydrodynamic model o f the York River has been developed and may be instructive to 

determination of the influence of larval supply on adult abundances.

An additional explanation for higher abundances of M. balthica upriver is 

secondary dispersal or migration to higher quality habitats. Clams are able to move 

through the water column and redistribute from the area initially occupied by the recently 

metamorphosed larvae (Armonies 1992). It is postulated that active habitat selection 

occurs following postlarval migrations (Armonies 1994). Because upriver areas have 

higher detrital input and more food for deposit- or suspension-feeders (see below), these 

areas may be chosen preferentially as residential habitats. Under this scenario, clams settle 

in equal abundances upriver and downriver, but then redisperse to inhabit higher quality 

habitats upriver. This hypothesis could be tested by quantifying secondary dispersal or 

movement of juvenile clams through the water column.

An examination o f the predator's per-capita foraging efficiency (number of clams 

killed per predator) over the limited scope of this study suggests that the consumer stress 

model may apply to this system. Over the weeks examined, the per-capita predator 

foraging rate was higher downriver with lower stress, suggesting that predators are more 

efficient downriver, and consistent with the idea that environmental stress can modify 

predation. This refutes Ho3 and supports the alternate hypothesis (Ha3: The efficiency of 

epibenthic predators in shallow water is lower in upriver zones). Increased foraging 

efficiency downriver suggests either that (1) consumers are more stressed upriver and thus 

are inefficient foragers, or that (2) mutual interference between predators reduces 

predation efficiency upriver (Mansour and Lipcius 1991, Mansour 1992). Thus, in accord
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with the consumer stress model, consumers are potentially less efficient in higher stress, 

upriver zones. However, their overall impact on prey species is greater upriver, resulting 

in a greater importance of predation in higher stress, which conflicts with the model 

predictions.

The predator guild in York River shallow water was composed of mainly blue 

crabs, spot, croaker and hogchoker, similar to that in deeper areas (Holland et al. 1990, 

Mansour 1992). These dominant predators are all known to forage on clams or clam 

siphons, though some caught here may be too small to feed on macrofauna (Weinstein 

1983). Gut content analysis of epibenthic predators from previous work shows that 

clams are a primary food item for crabs (Alexander 1986, Hines et al. 1990, Mansour and 

Lipcius 1991), and other epibenthic predators browse on clam siphons (Zwartz and 

Wanink 1989); thus, epibenthic predators clearly reduce abundances of clams. Abundance 

of these predators was higher upriver, leading to rejection of the second null hypothesis 

(Ho,: There is no difference in the abundance of epibenthic predators upriver and 

downriver), and also refuting the alternative Ha,. The abundance of epibenthic predators in 

shallow water is lower in upriver zones, because the opposite is true. Callinectes sapidus, 

Leiostomus xanthurus and Micropogonias undulatus aggregate in areas o f high prey 

density (Hines et al. 1987, 1990), and were likely concentrating upriver in areas of 

increased prey abundance. The higher predation intensity upriver was therefore due to 

higher predator abundance upriver, rather than differences between zones in predator size 

composition (since this did not differ significantly between river zones).
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Models o f  co-limitation by predation and resources

Predators and prey were both more abundant in upriver, low salinity, high stress 

areas. A probable explanation for the increase of both trophic groups in the same area 

may be related to productivity (Fretwell 1977, Oksanen et al. 1981, Power 1992, Menge 

et al. 1996). Recent data suggest that higher primary production or phytodetrital 

sedimentation could account for such anomalies as higher predators and prey in a certain 

habitat (Marsh and Tenore 1990). Menge et al. (1996) recently showed a similar pattern 

in some rocky intertidal communities. At one experimental site, there was higher 

productivity, wave stress, and abundances of both predatory starfish and their major prey, 

mussels, as compared to another experimental site with lower stress. Data were consistent 

with the notion that differences in phytoplankton productivity generated between-site 

differences, suggesting that bottom-up factors (prey recruitment, growth , and abundance) 

determined variation in the strength of a top-down factor (predation).

Nutrient loading and transformation into food for marine benthos can lead to 

increases in abundance and biomass of infauna (Montagna and Yoon 1991). Freshwater 

inflow may have negative effects such as sedimentation, resuspension and advection, and 

losses due to low-salinity tolerances of organisms, or positive effects such as enhanced 

productivity, and recruitment gains (Montagna and Kalke 1992). When two Gulf coast 

estuaries were compared, macrofauna densities increased with increasing freshwater 

inflow (Montagna and Kalke 1992). Thus, freshwater inflow is important to those species 

that can survive in low salinity. The few species that can tolerate low salinity take 

advantage of high inflow for increased productivity
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Nutrient and Productivity models have been developed for various systems 

(Fretwell 1977, Oksanen et al. 1981, Power 1992). In these models, plants in relatively 

unproductive systems do not produce enough energy to support the herbivores in the 

community, and the community is thereby controlled by interspecific competition. In 

productive systems, energy is sufficient to support both herbivores and carnivores, 

consequently increasing the importance of predation in community regulation. In this 

case, nutrient or productivity levels determine trophic complexity rather than 

environmental stress (Menge and Olson 1990). The prediction is that increased 

productivity will increase the importance of predation in herbivore regulation (Oksanen et 

al. 1981).

In the York River, upriver habitats may offer more food and therefore may be 

higher quality habitats. Sedimentary carbon is significantly higher upriver (Chap. 2 - this 

dissertation) and standing stock phytoplankton, chlorophyll a is higher upriver (Rennie 

and Nielson 1991), suggesting that these areas may provide abundant food. Although chi 

a and production are not the same, higher chi a in the water column typically means more 

production reaching the benthos (Valiela 1984). High predator density occurred where 

prey abundances were greater. Perhaps a difference in primary productivity, or a "bottom- 

up" factor (Menge 1992, Power 1992), associated with riverine inflow can account for the 

higher abundance of both predators and prey upriver in the York River system. These 

potentially interesting effects of primary production on predator and prey abundance 

provide the cornerstone for future studies on predator-prey interactions in the York River 

looking at the influence of both top-down and bottom-up forces on population dynamics.
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DISSERTATION SUMMARY

In summary, this investigation compiled existing theoretical models of community 

regulation, experiments on species diversity and changes due to predator exclusion, as 

well as experiments on survival of the clam Macoma bcilihica along an estuarine salinity 

gradient. The investigations herein resulted in a modification of the MS model, to 

incorporate soft-bottom systems, an understanding that the effects of predation on benthic 

diversity are stronger upriver than downriver in the York, and, consistent with results for 

community diversity, the effects of predation on transplanted M. bcilthicci were greater 

upriver than downriver

Experiments on controlling forces in soft-bottom systems have advanced our 

knowledge substantially but still haven't resulted in a unifying model of community 

regulation that can be applied to all benthic systems — hard substrates and soft substrates 

alike. The Menge and Sutherland (1987) model can be modified to incorporate all 

systems if we include the notion that all habitats do not have equivalent resource 

availability, thus the effect of recruitment will be different depending on whether or not 

there is competition for a limiting resource. This concept can be incorporated into the MS 

model by changing the recruitment axis to a recruitment to resource ratio. In soft 

bottoms, where the space resource is plentiful, the recruitment to resource ratio will 

typically be low, and competition of little importance. In contrast, in hard-bottom
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habitats, where space is limited, when recruitment is high, the recruitment to resource ratio 

is also high, leading to competition. The different recruitment to resource ratios lead to 

different predictions for the importance of structuring forces.

Though baseline benthic diversity was driven by salinity (with higher diversity 

downriver, closer to oceanic influence), higher stress upriver did not effect the ability of 

consumers to feed, as the effects of predation on benthic diversity were greater upriver 

where predator abundance was also greater. Sedimentary carbon and nutrients were also 

greater upriver, leading to greater benthic production that could be transferred through 

higher trophic levels. The stress imposed by a salinity gradient is not great enough to 

adversely effect predators, but instead, the effect of a production gradient overrides the 

physical stress. The system appears to be driven by 'bottom up' forces that allow higher 

abundances of both prey and predators in areas of higher productivity (e.g., upriver).

At the population level, the effect of predation was greater upriver, similar to that 

seen for diversity. Elevated predation upriver was due to higher quality food availability 

upriver (e.g., abundant clams). The distribution of the dominant clam, M. bcilthica, was 

driven by the availability of its food, subsequently increasing benthic production and 

biomass available to consumers. The predators appear to follow the prey, thus the system 

is driven by primary production, not physical stress. Therefore, when physical stress is 

low to moderate, it does not control community structure, but instead, the system is driven 

by food availability which increases the interactions in the food chain at higher 

productivity. As productivity increases, the complexity of the food chain increases, 

heightening the importance of predation. Mutual interference of predators allows
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inefficient predation upriver, allowing some prey to survive, hence, the system is driven by 

a combination of top-down and bottom-up forces.
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