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Abstract

The goal o f th is  research was to develop a controllable process to  convert a 

therm oplastic powder-coated carbon-fiber towpreg Into uniform  and consolidated 

ribbon. The approach comprised fou r prim ary activ ities. 1) The patent and 

processing literature was studied to evaluate the state o f the art. 2) A  functional 

ribbon fabrication technique was developed by scaling-up, In  a novel configuration, 

hardware components found in  the literature. 3) The exports ribbonizing process was 

characterized by calibrating equipment, determining steady state and studying cause 

and effect between process parameters and ribbon quality. 4) Process design and 

control methods were derived from heat transfer and pulling force analyses.

The ex parte  ribbonlzer process comprises a m aterial handling system, a preheat 

region, a heated sta tionary bar assembly, and a cooled n ip  ro lle r assembly. 

Appropriate tim ing o f im portant contacts is key to fabricating quality ribbon. Process 

characterization and analyses revealed key flow mechanisms. Ribbon m icrostructure 

changes most at the bars. Ribbon m acrostructure changes most at the n ip. An 

Isothermal bar contact is a practical processing constra int for ensuring uniform  

squeeze flow bar spreading. A ll bar drag force is a ttributed to shear stress in  the 

in terfacia l viscous boundary layer between the towpreg and the stationary bar 

surface. Continually sensing pulling force is a good indication of process control.

The research goal was achieved because the ex parte  ribbonlzer can be used to 

convert polymer powder towpreg Into uniform  and fully-consolidated ribbon in  a 

controllable manner.

x i
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CHAPTER 1 INTRODUCTION 2

Chapter 1 Introduction 

1.1 Research Goal

1.2 General Approach

1.3 End Notes 

Chapter 1 Introduction

To encourage continued growth in  the general technology base. U.S. and foreign 

government agencies have stra teg ica lly generated tax-funded development 

programs which Inherently require continued h ig h -risk  research (large capita l 

expenditure fo r long term or no pay-off), over a broad scope o f topics. Many such 

programs are classlffed under the guise o f national security or competitiveness 

while others, like  the U.S. space program, are w idely disseminated to achieve 

complex socioeconomic and po litica l goals. These technology growth programs, 

have provided the silicon chip. Velcro™ and countless other devices which have 

since been developed Into consumer products.

Over the last few decades, NASA and components of the U.S. Department of Defense 

have generated various research programs contributing to the development of fiber- 

reinforced polymer composites. Carbon fiber-reinforced polymer composites have 

demonstrated desirable mechanical properties and are considered useful in  a broad 

range o f applications. Access to strong, yet ligh t, bu ild ing  m aterials provides 

In tu itive ly obvious benefit to consumers who live in  a mobile society. Although 

these high-performance composite materials have existed fo r decades, the ir use has
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CHAPTER 1 INTRODUCTION 3

not been generally p ro lific  due to the complexity o f polym er m a trix  composite 

fabrica tion  and high cost. M aterials research and fab rica tion  technology 

development efforts are required to bring costs down, thereby promoting broad use 

o f polymer composites.

Background

Fiber-reinforced polymer composite m aterials enable novel structure  design and 

applications. The anisotropic properties o f these materials command a unique and 

In trins ic  paradigm sh ift In fabrication methodology. Unlike conventional m etal 

machining technology, removing m aterial from a carbon fiber composite b ille t is 

d ifficu lt and, more im portantly, lim its  the extent to which anisotropic composite 

properties may be utilized. Consequently, an entirely different fabrication process 

is often used fo r bu ild ing  polym er composite structures. One o f the more 

commonly encountered fabrication methods is to apply tacky therm oset prepreg 

lam ina, layer by layer, to a build-up a lam inate part. A fter vacuum bagging and 

autoclave cure, these parts exh ib it h igh ly engineered anisotropic m echanical 

properties. Although th is  hand ’lay-up" composite fabrication method Is enabling, 

it  Is also laborious and Inherently costly.

A  government program funded the automation o f thermoset prepreg lay-up In  an 

effort to  develop the enabling technology needed to b u ild  large and complex 

polymer composite structures. The so-called "filam ent w inding" process was 

developed to perform  automated lay-up o f carbon fiber-re inforced therm oset
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CHAPTER 1 INTRODUCTION 4

polymer m a trix  prepreg to fabricate composite structures o f closed-sectlon and 

convex shapes. "F iber placem ent" technology was developed la te r as an 

Improvem ent over filam ent w ind ing. The m ore com plex fib e r placem ent 

technology is  capable of fabricating  open-section and concave structu res In 

addition to those made by filam ent w inding. A fte r filam ent w ind ing or fib e r 

placement, lay up the thermoset lam inate Is usually vacuum bagged and autoclave 

cured, both o f which are Inherently costly.

As m ateria l requirem ents evolved w ith  new government app lication programs, 

therm oplastic m a trix  composites became desirable over therm oset m a trix  

composites fo r th e ir toughness properties. Furtherm ore, therm oplastic m a trix  

composites promised the potentia l fo r In s itu  fabrication to net shape, which is  

like the inverse o f metal machining. A fter in -s itu  lay-up, the vacuum  bag and 

autoclave processes are theoretically unnecessaiy because there is  no required cure 

fo r therm oplastics. The filam ent w inding process was enhanced to accommodate 

therm oplastic prepreg giving rise to the so called "hot-head filam ent w inding” 

technology. Closed-sectlon and convex shape lim ita tions o f the filam ent w inding 

process led to the development o f the so-called In situ  "advanced tow placement” 

(ATP) technology which, while s till in  its  infancy, purports to fabricate open- and 

closed-sectlon structures o f simple lam inate design using boardy therm oplastic 

ribbonlzed carbon fiber-reinforced prepreg. Machine constra ints and capability 

lim itations o f the In  s itu  ATP process have led to m odifications enabling In s itu  

placement o f wide bands com prising several adjacent therm oplastic ribbons. 

Research Is continuing In order to advance the state of-the-art ATP process so It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1 INTRODUCTION 5

can be used to fabricate complex open-sectlon structures o f high-perform ance 

carbon fiber-reinforced therm oplastic ribbon m aterial.

This Research Program

A  recent government program Is aimed at developing non-autoclave methods to 

fabricate high-performance carbon flber-relnforced composites. A sub-task o f th is  

government program required In s itu  ATP fabrication o f structures from  carbon 

flber-relnforced polyim ide m atrix ribbon. The In  s itu  ATP sub-task was delayed 

because ribbon o f the specified com position was not available in  research 

quantities from  either commercial, government or un iversity laboratories. For 

good reason, the ribbon was not available because, the ribbon fab rica tion  

technology had not yet been successfully developed. Consequently, developing a 

ribbonizing technique, especially one th a t could be applied to therm oplastic 

polyimides. was a critica l Issue for the program and therefore became the purpose 

o f th is  research.

Background For This Research

The fabrication o f therm oplastic ribbon requires two key steps. In  the firs t step, 

polym er Is im pregnated In to  the carbon fib e r rov ing  (tow) producing a 

preimpregnated tow (towpreg). In  the second step, the towpreg Is consolidated Into a 

uniform  ribbon. High molecular weight therm oplastic polyimides, for example, are 

not pa rticu la rly  amenable to conventional so lu tion  im pregnation o r hot-m elt
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CHAPTER 1 INTRODUCTION 6

impregnation. They tend to exhibit particu larly high m elt viscosity and many are 

Insoluble In conventional processing solvents. The high m elt viscosity, combined 

w ith  the fine diameter o f the carbon filam ents, cause particu la r resistance to  state 

of-the-art Impregnation and ribbon forming.

Conventional so lution, and hot-m elt Im pregnation technology was defined by 

several prepregglng patents I1-6J. A lternative prepregglng methods such as 

organic, and aqueous s lu rry  prepregglng technology [7,81 were developed as 

alternatives fo r m ateria ls such as polyim ides. Even sim pler, d ry  powder 

Impregnation by electrostatic fluidlzed bed [91. tu rbu len t flu ldlzed bed [101 and 

powder curta in  [11] impregnation processes were also developed and patented. 

Each novel prepregglng process exhibited the a b ility  to impregnate tow  w ith  

therm oplastic polymer powder resulting in  a flexible powder-coated towpreg. These 

towpregs were not fu lly  consolidated and were not Ideally suited fo r in  s itu  ATP. 

They needed to be ribbonized.

The body o f ribbonizing literature Is very lim ited. Some commercial Interests were 

understood to have the capability to fabricate therm oplastic towpreg ribbon but 

unfortunately, were not engaged In the government project and the ir w ork was not 

found In  the lite ra ture. Three publications presented research efforts consistent 

w ith  therm oplastic powder towpreg ribbonizing. A  1993 U niversity o f Delaware 

Ph.D. dissertation by P. Hepola [12] provided useful Inform ation and modeling 

regarding the pultruslon o f unidirectional towpreg ribbon. The pu ltrusion  process 

was combined w ith on-line dry powder Impregnation. A  1993 Georgia Institu te  o f
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CHAPTER 1 INTRODUCTION 7

Technology M.S. thesis by M. Rammoorthy [131 evaluated the p u ltrus lon  o f 

powder-coated towpreg In which the la tte r was made by electrostatic powder fusion 

Impregnation. This study also evaluated a heated ro lle r consolidation o f the 

towpreg ra the r than pu ltruslon . A  1992 Tampere U niversity o f Technology 

(F in land) s tud y by P. Peltonen et at. [14] described a cross-head 

extruder/im pregnation device used In conjunction w ith  a stationary p in  spreading 

device to fabricate polyethylene/fiberglass towpreg ribbon.

1.1 Research Goal

In  contrast to  the previously mentioned lite ra ture on ribbon fabrication lite ra ture, 

the research presented here was based on a s ligh tly  different premise. It  was 

assumed tha t good quality powder-coated towpreg could be fabricated by any of the 

known powder Impregnation methods. Rather than focusing on the impregnation 

method, the towpreg consolidation (ribbonizing) method was considered to be the 

critica l issue.

The goal o f th is  effort was to develop a controllable process which could convert 

high temperature, thermoplastic powder-coated, carbon fiber towpreg in to uniform , 

consolidated ribbon w ith  the condition tha t the ribbon exh ib it qua lity a ttribu tes 

satisfactory for in  situ  ATP fabrication o f composite structures. In  short, the goal 

was to fabricate therm oplastic polymer carbon fiber-reinforced composite ribbon 

w ith  special emphasis on polyimide m atrix composition.
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CHAPTER 1 INTRODUCTION 8

1.2  General Approach

The approach comprised fou r prim ary activities. 1) The patent and processing 

lite ra tu re  was studied to evaluate the state o f-the-art. 2) A  functiona l ribbon 

fabrication  technique was developed by scaling-up. In  a novel configuration, 

hardware components found In the literature. 3) The ex parte  ribbonizing process 

was characterized by calibrating equipment, determ ining steady state and studying 

cause and effect between process parameters and ribbon quality. 4) Process design 

and control methods were derived from heat transfer and pulling force analyses.

The firs t and second actives comprise Chapter 2 wherein the development o f the ex 

parte  ribbonizing process Is discussed. The th ird  activity comprises Chapter 3. The 

fo u rth  activ ity  comprises Chapters 4 and 5. A  sum m ary o f observations, 

conclusions and future work comprises Chapter 6.

1.3 End Notes

1 Chabrler, G.; Moine, G.: Maurlon, R ; Szabo, R  U.S. Patent 4 626 306, 1986.

2 Cogswell, F.N.; Hezzell, D.J. U.S. Patent 4 549 920, 1985.

3 Courtney. A L. U.S. Patent 3 249 484, 1966.

4 Wlckwlre, A M .. J r. U.S. Patent 2 407 335, 1946.

5 XXX. U.S.S.R Patent 422 469,1974.

6 Hashizume, S. Japanese Patent 405 050 432. 1993.

7 Johnston, N. J.; Towell, T. W. U. S. Patent 5 252 168, 1993.
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9 Muzzy, J.D .; Colton. J.S. U.S. Patent 5 295 064. 1994.

10 Baucom. R  M.; Snoha, J .; Marchello. J. M. U. S. Patent 5 057 338, 1991.
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12 Hepola, P.J. Ph.D. D issertation, The U niversity o f Delaware, Newark, DE., 

1993.

13 Rammoorthy. M. M.S. Thesis. Georgia Institu te  o f Technology, A tlanta. GA., 

1993.
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2 Ribbonizing Process Development

2.1 Related Processing Literature Survey

2.2 Prototype Equipment Evaluation

2.3 End Notes

2 Ribbonizing Process Development

The goal o f th is research was to design and bu ild  an apparatus tha t could be used to 

fabricate towpreg ribbon comprising high-temperature performance polylmlde polymer 

and carbon fiber. The general approach was to study the state of-the-art, evaluate 

prototype devices, and scale-up the optimal design configuration.

2.1 Related Processing Literature Survey

Thermoplastic towpreg ribbonizing can be classified as a component part o f the more 

general prepregglng process. A  review o f prepregglng patents and pertinent 

processing research publications delineated the Im portant issues and potentia l 

deficiencies in  the state of-the-art. Thermoset and thermoplastic prepregglng methods 

constituted most o f the related patent lite ra ture . Key therm oplastic processing 

research studies, relevant to  the present objective, were also studied to gain 

knowledge o f other ribbon fabrication efforts.

Relevant Thermoset Prepregglng Patents

The state of-the-art In  thermoset prepregglng is  defined by the patent literature. In
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1966, Courtney [1] patented an Impregnation apparatus fo r m aking fla t tapes of 

thermoset precursor coated filaments. No consolidation mechanism was mentioned 

because filam ent band spreading was achieved p rio r to Impregnation and the resin 

solution exhibited low viscosity. The importance o f filam ent tow spreading was 

however stressed by Courtney. In  1973. Avis et aL [2] patented thermoset prepregglng 

technology which made use o f solution dip pan impregnation, ro lle r consolidation and 

film  coating o f several adjacent fiber tows to produce wide tacky prepreg tapes. In  

1976, Hardwick [3] taught an impregnation method using significant spreading, a 

novel resin coating mechanism and sinuous rollers for flattening the tacky prepreg 

into a wide tape. A  1974 U.S.S.R. Patent [41 utilized Impregnation mechanisms w ith  

sinuous stationary spreader bars rather than rollers. In  1990, Dyksterhouse et aL [51 

taught a impregnation process sim ilar to  that of Avis et aL for prim arily water soluble, 

therm osetting m atrix polymer precursors which were compatible w ith  polymeric 

binding agents. From these references, the key concept of thermoset prepregglng was 

determined to be wet-out, which could be achieved best w ith  substantia l tow 

spreading p rio r to impregnation and some sort o f smoothing, nipping or spreading 

technique after impregnation.

Relevant Thermoplastic Prepregglng Patents

An object of thermoplastic prepregglng is  to evenly distribute the polymer about the 

filaments. A  common way to accomplish wet-out Is to liquefy therm oplastic polymer 

prior to impregnation. Two prim ary methods are available to soften the polymers for 

prepregglng, solvation and melting. Some thermoplastics are soluble in  conventional 

processing solvents (e.g.. PEEK™/diphenylsulphone) at elevated temperature, while
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others (e.g., most polyimides) are not particu la rly  soluble. Thermoplastics w ith  

reasonably flexible backbone structure (e.g., aliphatic) and low m olecular weight 

exhibit substantia lly lower m elt viscosity than rig id  backbone (e.g.. im ide), high 

molecular weight polymers indicating the compromise between processing properties 

and mechanical properties of the composites made from them.

In  1987, O'Conner [61 patented a prepregging process wherein fibers were 

impregnated w ith therm oplastic poly (aiylene sulfide) which consolidated to form  a 

laminate. O'Conner described a powder s lu rry  Im pregnation component w ith  a 

pultruslon consolidation component. The 15 (cm m fcr1) production rates were lim ited 

by the consolidation rather than by the Impregnation component. O'Conner also 

referred to fiber jam m ing at the die entrance which required frequent stoppages. In  

1992. a ll of O’Conners claims were canceled due to prio r art.

In  1989, O'Conner et aL [7 ] taught a complicated pu ltruslon  process wherein a 

preferred embodiment described the prepregging and pultruslon of 1 /4  Inch diameter 

carbon fiber rods from a carbon fiber tow. s lu riy  impregnated w ith poly (phenylene 

sulfide) powder. Processing rates for laminates were noted at 15 (In m ln*1) which are 

considered slow for th in  lam ina fabrication.

A  method fo r impregnation and consolidation, a ll In  one resin extrusion/pu ltrusion 

(crosshead) die. was taught In  1976 by Moyer [8]. Heated stationary spreader bars 

were situated downstream o f the crosshead die impregnation chamber. In  a preferred 

embodiment, the partia lly consolidated lam ina could exit the die and then be formed 

and solid ified by cooled n ip  ro llers. In  one example, Moyer Illu s tra ted  the
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ribbonization o f a 10K carbon fiber tow w ith Nylon™ 6,6 at 36 (ft m in -1) w hich was 

considered reasonably fast. This technique was also taught in  1993 by Hashizume [9] 

where rolling spreader bars rather than fixed bars were utilized ju s t downstream from 

the crosshead impregnation component.

In  1986, Chabrier et aL [10] taught s lu rry  powder Impregnation followed by heating 

and cooled ro lle r form ing. A  fiber tow  was pulled through a s lu rry  im pregnation 

chamber form ing a towpreg. then through a heating oven to m elt the polymer and 

after exiting the malleable towpreg was formed in to  a uniform  ribbon by contact w ith a 

cool n ip roller. The preferred embodiments of th is  patent seem In conflict w ith  those 

o f the 1992 patent by Muzzy et aL [111 wherein the preferred embodiments included 

m any variations o f d ry powder im pregnation and m any varia tions o f p a rtia l 

consolidation. Another very s im ila r patent application was awarded to Muzzy et aL 

[12] in  1994, again teaching a method for impregnating and partia lly consolidating 

high m elt viscosity m atrix composite lam ina. M elt w etting and pu ltruslon  o r n ip 

form ing resulted in  a partia lly consolidated flexible towpreg known as Towflex™.

Precedence exists fo r claim ing the novelty and u tility  o f only the im pregnation 

component of a prepregging process. In  1991, Soules [13] taught an apparatus and 

method fo r impregnation of therm oplastic polymer by drawing a fiber tow through a 

s lu rry bath to form a towpreg. Although the figures o f the patent Illustrate a heated 

pu ltrus lon  die for consolidation o f the lam ina, no claim s fo r consolidation were 

allowed.
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In  1946, WIckwire J r. [14] taught smoothing o f therm oplastic hot-m elt coatings by 

using several stationary blades, over which a hot-m elt Impregnated fiber web 

(comprising several adjacent tows) passed. This com bination impregnation and 

consolidation device was understood to work very well fo r polymer systems exhibiting 

low m elt viscosity. In  1989 Angell J r. et aL [15] taught a hot-m elt prepregging process 

w ith  a hot-m elt impregnation section and a "kneading section" comprising several 

sinuously spaced spreading rollers. In  a preferred embodiment, these rollers were 

situated in  such a manner to impose substantial wrapping o f the lam ina around the 

form ing rollers. This configuration of the kneading section was confusing since it  

appeared tha t the nip was situated In an awkward configuration such tha t if  the nip 

was cooled, the tape would be curled and, i f  the nip was heated, the polymer would 

stick and cause filament wrapping and tearing.

In  1985. Cogswell et aL [16] taught a prepregging process which took advantage o f the 

reduced melt viscosity of high-solids-content solutions compared to the high melt 

viscosity of the neat polymer. In  a preferred embodiment. Impregnation took place 

w ith in  a heated dip pan, a m odification o f those commonly used for thermoset 

prepregging. w ith  some num ber o f stationary bar spreaders. Upon exiting the 

impregnation pan. the web was forced between two metering rods forming a fixed nip 

which controlled the quantity o f solution pick-up. In  a subsequent step, the high 

boiling solvent was vaporized. Residual solvent was defined to be plasticlzer, a 

beneficial toughening modifier. This impregnation technique was especially useful for 

polymer systems w ith particularly high m elt viscosity, b u t required the polymer to be 

partia lly soluble In a conventional processing solvent. Typical processing rates were 

suggested to be near 20 (cm m in*1). This im pregnation technique was m aterial
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specific (especially forPEEKrM/diphenylsulphone) in  application, although many types 

of thermoplastics were included in  the patent claims.

In  1985. Cogswell et aL (17] taught a therm oplastic prepregging process which was 

not m aterial specific. In  a preferred embodiment, a filam ent web was drawn in to  a 

heated region where the filaments were spread between a stationary nip. A t the 

location ju s t upstream of the nip, polymer powder was dropped onto the spread fiber 

web. The polymer melted on contact and was forced into the fibers by the fixed nip 

and subsequent bars or rollers w ith in  the heated region. This process made no 

mention o f further forming or consolidation after the impregnation and spreading.

Relevant Thermoplastic Consolidation Patents

Dating back to 1955, Hartland [18] taught a pultruslon apparatus w ith two separate 

dies where the firs t was heated to cause the polymer to melt and flow and the second 

was cooled to solidify the composite to form a solid profile. In  1989, Beever et aL [19] 

taught the fu rthe r development o f th is  concept to include an improved oversized 

heated pultruslon die to aid in  the melt flow and compaction process. Precedence for 

claim ing a "consolidation only" apparatus and method was set here by Beever et aL 

The method included individual components where the firs t heated component was 

intended to partia lly consolidate "rough form ing" and a second cooling component to 

fu lly  consolidate, "final forming". Addition of an impregnation method was included 

as an alternate embodiment bu t was not claimed specifically in  the patent. This 

apparatus and method were intended fo r use in  the pu ltrus lon  o f composite 

lam inates. The process required occasional stoppage to open the cooling die to 

remove fiber ba ll slag which was considered a substantial nuisance.
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Related Process Development Research

Three publications were Identified which presented research efforts consistent w ith 

therm oplastic powder towpreg rlbbonlzlng. A  1993 U niversity o f Delaware Ph.D. 

dissertation by P. Hepola [20] provided useful Information and modeling regarding the 

fabrication o f unid irectional composites w ith  on-line d ry  powder Im pregnation 

followed by pultruslon. A  1993 Georgia Institu te  o f Technology M.S. thesis by M. 

Rammoorthy [21] evaluated the Muzzy et aL [11] process w ith  electrostatic powder 

fusion Impregnation and also evaluated a heated ro ller consolidation mechanism. A 

1992 study by P. Peltonen et a l. [2 2 ] evaluated the u tility  o f a cross-head 

extruder/im pregnation device in  conjunction w ith  a stationary p in  spreading device 

(s im ila r to  th a t taught by Moyer [8 ]) fo r the production  o f therm oplastic 

polyethylene/fiberglass ribbon. The stationary p in  spreading device provided 

substantial improvements over pu ltruslon  In terms of void content and processing 

speed, bu t was not sufficient to provide a uniform ly profiled cross-section. Each of 

these process studies Investigated methods which were Intended to Impregnate and 

consolidate on-line, which is at variance w ith  the present goal o f the present effort to 

develop a controllable method to ribbonize an already Impregnated powder towpreg.

2.2 Prototype Equipment Evaluation

Several prototype apparatus were b u ilt and evaluated to determine the ir potential for 

towpreg rlbbonlzlng. Some were sim ilar to those described by the lite ra ture, some 

were novel and others comprised various components o f several different methods. 

Based on the evaluation o f over 20 different hardware components, the optim al
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configuration was determined to  be a com bination o f a m aterial handling system 

combined w ith  a heated tool and a cooled machine located in  functional proxim ity to a 

premelting chamber.

Prototype Evaluation Summary

Heated and cooled prototype hardware were evaluated independently. A  description o f 

each prototype and its  corresponding analysis was published in  a 1994 SAMPE 

preprint [23] found in  Appendix A. A  m aterial handling system was used to p u ll 

powder towpreg through various process prototypes to evaluate the attributes o f each 

prototype. The heated apparatus evaluated by th is  study comprised both stationary 

tools (fixtures) and assemblies (machines). The cooled apparatus also comprised both 

fixtures and machines. The heated or cooled fixtures imposed sliding contact w ith  the 

towpreg whereas heated or cooled machines imposed ro lling contact.

Heated stationary fixtures were superior to heated machines due to undesirable 

adhesion between polymer coated fibers and ro lling  surfaces. Contact between the 

towpreg and the heated ro llers caused fibe r wrapping, requiring  frequent and 

prohibitive cleaning stops. Adhesion also occurred fo r stationary fixtures causing 

stray fiber stripping however, the accumulated fiber balls and "slag" were observed to 

break free periodically. This was considered a manageable nuisance.

Evaluation o f cooled hardware required preheating to soften the polymer. Preheating 

was accomplished by pulling powder-coated towpreg through a tube furnace at a 

functional speed so tha t on entering the cooled fixtu re  or machine the towpreg was 

softened. Cooled machines were superior to cooled fixtures due to the advantageous
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product release resulting from  the polymer’s rapid so lid ifica tion  on contact. In  

contrast to the heated apparatus which facilitated m elt flow, bubble expulsion and 

wet-out, the cooled apparatus facilitated cross-section shaping by solid ifying the 

polymer under constrained conditions. In  general, the heated apparatus improved the 

towpreg's m icrostructure whereas the cooled apparatus provided uniform  ribbon 

macrostructure.

The Optimal Configuration, the "Ex parte Rlbbonizer’'

The evaluations from th is  study lead to the development o f a unique therm oplastic 

towpreg processing method called the ex parte rlbbonizer comprising a preheat region, 

a heated stationary bar fixture (heated tool) and a cooled n ip  ro lle r assembly (cooled 

machine). Ex parte ILatirH is usually used in  legal context describing an argument 

"from one side or perspective only”. Here ex parte  serves m etaphorically, as an 

adjective describing, in  particular, the bar fixture region where the towpreg band Is 

contacted on only one side at a time.

The m ost In fluentia l references fo r th is  process were the patents o f Moyer [81. 

Hashizume [9], Cogswell et al. [171 and Chabrier et aL [10 ], who together, defined 

state of-the-art thermoplastic prepregging technology. The ex parte process apparatus 

and method were considered unique due to the ir u tility  and Improvement over the 

state of-the-art for rlbbonlzlng previously powder-coated towpreg. A ll o f the c la im s  in  

a U.S. patent application fo r the ex parte rlbbonizer were allowed in  1994 and the 

patent w ill issue in  1995.
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Summary

A  study of the state of-the-art In  polymer composite prepregging revealed several 

approaches for converting thermoplastic powder-coated towpreg Into consolidated and 

uniform  cross section ribbon. Towpreg band spreading was accomplished best by 

heated stationary bar fixture spreading and ribbon forming was best accomplished by 

cooled nip ro lling. A novel process called the ex parte  rlbbonizer was developed 

comprising a m aterial handling system, a premelting chamber, a stationary bar 

assembly and a cooled nip roller assembly.

The next chapter offers a detailed characterization o f the ex parte rlbbonlzlng process 

In terms o f design, u tility  and calibration. Photographs and apparatus descriptions 

are followed by discussion of the purpose of each item to develop understanding of the 

process parameters and the requirements for process control.

2.3 End Notes

1 Courtney. A L . U.S. Patent 3 249 484, 1966.

2 Avis. V A : Matthews, A J . U.S. Patent 3 737 352. 1973.

3 Hardwick, J.G. G.B. Patent 1 434 926, 1976.

4 XXX. U.S.S.R Patent 422 469. 1974.

5 Dyksterhouse R ; Dyksterhouse, J A ; Handermann. A C .: Western, E.D. U.S. 

Patent 4 919 739. 1990.

6 O'Conner. J.E. U.S. Patent 4 680 224, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2  RIBBONIZING PROCESS DEVELOPMENT 20

7 O'Conner, J.E .: Beever. W.H.; Dancer, J.W .; Beaulieu. W.B.; Selby. L.M .;

Rhodes Jr., V.H. U.S. Patent 4 883 552, 1989.

8 Moyer, R.L. U.S. Patent 3 993 726. 1976.

9 Hashizume. S. Japanese Patent 405 050 432, 1993.

10 Chabrler.G.: Molne, G.; Maurion, R ; Szabo, R  U.S. Patent 4 626 306, 1986.

11 Muzzy, J.D.; Varughese. B. U.S.Patent 5 094 883,1992.

12 Muzzy, J.D.; Colton. J.S. U.S. Patent 5 296 064, 1994.

13 Soules. D A  U.S. Patent 5 019 427, 1991.

14 Wickwire, A M .. J r. U.S. Patent 2 407 335, 1946.

15 Angell, J r., RG .; Mlchno, J r., M.J.; Konrad, J.M .; Hobbs, K.E. U.S. Patent

4 804 509, 1989.

16 Cogswell, F. N.: Staniland, PA. U.S. Patent 4 541 884, 1985.

17 Cogswell. F.N.; Hezzell. D.J. U.S. Patent 4 549 920, 1985.

18 HarUand. U.S. Patent 2 702 408, 1955.

19 Beever. W.H.: Selby, L.M. U.S. Patent 4 820 366, 1989.

20 Hepola, P.J., Ph.D. Dissertation, The University of Delaware, Newark, DE.. 

1993.

21 Rammoorthy. M. M.S. Thesis, Georgia Institu te  o f Technology, A tlanta, GA.

1993.

22 Peltonen, P.: Lahteenkorva. K.; Paakkonen. E.J.; Jarvela. P.K.: Tormala. P. J.

ThermopL Comp. M at. 1992, 5,318-43.

23 Sandusky, D A : Marchello, J.M .; Johnston, N.J. SAMPE Series, 1994 39, 

2612-25.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Ex parte Ribbonlzing Process Characterization 21

3.1 Hardware Description and Calibration

3.1.1 Material Handling System
3.1.2 Premelting Chamber

3.1.2.1 Steady State Temperature Profile
3.1.2.2 Temperature Profile Sensitivity Analysis

3.1.3 Stationary Bar Assembly
3.1.3.1 Materials Evaluation
3.1.3.2 Bar Surface Temperature

3.1.4 Cool Nip Roller Assembly
3.1.4.1 Transverse Nip Load Calibration
3.1.4.2 Product Release

3.2 Role of Process Parameters

3.2.1 Definition of Quality Attributes
3.2.2 Process Parameter Cause and Effect

3.3 Ex parte Ribbonlzation Flow Mechanism Study

3.3.1 Experimental Sample Preparation
3.3.2 Qualitative Photomicrographlc Characterization
3.3.3 Quantitative Digital Image Characterization
3.3.4 Preheating Region Discussion
3.3.5 Stationary Bar Contact Region Discussion
3.3.6 Nip Region Discussion

3.4 Summary and Conclusions

3.5 End Notes

3.6 Chapter 3 Figures

Chapter 3 Ex parte Rlbbonlzlng Process Characterization

The purpose o f th is  chapter is to characterize the ex parte ribbon fabrication process 

In broad terms. Three prim ary efforts are discussed; a hardware description, a study 

o f the control parameters’ cause and effect w ith  ribbon quality, and a study o f the 

mechanism o f m icrostructure melt-flow to  Identify potential rate determining steps.

The objective of the ex parte rlbbonlzlng process and a schematic description o f the
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overall process Is described to define some o f the vernacular used throughout the 

dissertation. The ex parte rlbbonizer comprises four prim ary hardware components: a 

m aterial handling system, a tube furnace, a stationary bar assembly and a nip ro lle r 

assembly. Each of these components Is characterized In terms o f design, u tility  and 

calibration. The role o f process control variables on ribbon quality Is established. 

Ribbon quality attributes consistent w ith  the state of-the-art ATP requirements are 

defined. A  cause and effect study o f the changes in  ribbon quality as a function o f 

process control variables Is discussed. A  photographic and d ig ita l image analysis 

experiment is conducted to investigate the cross section m icrostructure changes 

experienced by the towpreg.

3.1 Hardware Description and Calibration

The prim ary objective o f the ex parte  rlbbonlzlng process was to convert a 

therm oplastic coated towpreg into a consolidated ribbon. Figure 3.1 Is a side view 

and a top view o f the ex parte  rlbbonizer apparatus. The supply means 101 delivers 

the incoming towpreg band 102 under substantial and uniform ly distributed tension. 

The towpreg band comprises a p lu ra lity  o f contiguous towpregs. This band Is 

unconsolidated w ith some volume percentage occupied by a ir or other flu id  medium. 

The towpreg band 102 is drawn through the pre-melting chamber 103 the stationary 

bar assembly 107 and the nip ro lle r assembly 104 by the take-up 105. As a 

consequence of contacting the apparatus, the towpreg 102 Is partia lly consolidated 

firs t Into a malleable band 106 and then Is formed in to  a consolidated ribbon 108.

Figure 3.2 Is a side view and a top view o f the premelting chamber and stationary bar
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assembly. The pre-m elting chamber 201 and stationary bar assembly 202 are 

integrally related w ith in  a tube furnace 203 having a steel tube line r 204. The pre- 

melting chamber Is located w ith in  and is  firs t encountered by the towpreg band at the 

entrance plane of the tube furnace 205. W ithin the pre-melting chamber, the polymer 

component o f the towpreg band 206 melts from  the solid to  a viscous liqu id  state 

causing wetting o f the filaments. This wetting phenomenon Is observed to reduce the 

overall bu lk of the band and form a neck-down region 207. Near the exit 208 of the 

tube furnace Is the stationary bar assembly 202.

Figure 3.4 Is a top view and a side view o f the stationary bar assembly. The bar 

fixture 401 comprises a p lu ra lity  o f bar templates 402, and at least two stationary 

bars 403,404 fixed perpendicular to the towpreg band. The bars each have at least 

one side w ith a curved surface. The bars are constructed o f materials which m aintain 

structural integrity at temperatures above the processing temperature of the polymer 

component of the prepreg band. The entire stationary bar assembly Is passively 

heated by the tube lin e r throughout process operation. An alternate embodiment 

would accommodate directly heated bars In place o f passively heated bars.

The towpreg band is pulled over a firs t stationary bar 404 and then under a second 

stationary bar 403. The application of these contacts facilitates the expulsion of 

bubbles and the redistribution of the polymer and filaments causing the prepreg band 

106 to become partia lly consolidated.

After exiting the stationary bar assembly, the band exits the tube furnace and cools 

under ambient conditions. On cooling the polymer m atrix  transitions between a
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viscous liqu id  to a solid state, described here as "malleable viscoelastic solid". The 

partia lly consolidated malleable towpreg band 106 next enters the n ip  ro lle r assembly 

104 which is placed in  an operable relationship to the exit plane o f the tube furnace 

near the stationary bar fix tu re  107. This positioning allows suffic ien t distance 

between the exit o f the tube furnace and nip point such tha t the partia lly consolidated 

malleable prepreg band cools yet remains warm and soft enough to be shaped on 

contact.

F igure 3.3 is a front view of the nip ro ller assembly. The n ip  assembly is a spring 

loaded, cooled n ip-ro ller apparatus and comprises two hollow, matched grooved n ip- 

rollers 301, 302 which are actively cooled under forced convection via load bearing 

shafts 303, 304. One o f the rollers 301 is loaded 305 against a fixed ro lle r 302. The 

resilien t loading allows fo r passing o f anomalies, such as filam ent balls, in  the 

partia lly consolidated malleable towpreg band. Under both the applied load from  the 

nip-rollers 301, 302 and the thermal gradient imposed by the cool ro ller surfaces, the 

malleable plastic solid transitions to solid elastic and the partia lly  consolidated band 

is sim ultaneously shaped to match the gap 306 between the two n ip-ro llers. An 

advantage to having the nip-rollers cooled rather than heated Is product release.

3.1.1 Material Handling System

A spool creel, a tensioning device (capstan), a single take-up and some alignment 

rollers comprise the m aterial handling system. Each component Is described in  th is 

section in  terms o f u tility  and calibration as appropriate.
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Take-up

The ribbon take-up shown In  Figure 3.S consists of a pu lle r m otor mounted on a 

traverse platform  driven by a traverse motor. Both motors are 1 /8  hp. Bodine™ DC 

gear motors w ith  40:1, righ t angle, single reduction, worm gear box. The two motors 

are controlled separately. This take-up does not have the capability o f level w inding 

because the traverse moves at a constant velocity, changing directions when the 

traverse platform  contacts one o f the two proxim ity relays mounted a t e ither end of 

the traverse range. The m otor controllers allows only fo r shaft speed control. Figure

3.6 is  a ca libration plot showing the linear re lationship between analog take-up 

setting and take-up speed.

Creel Rack

The spooled prepreg is mounted on a unique m ulti-station creel rack. Figure 3.7, w ith 

permanent magnet braking mechanisms on each spool shaft . The range o f tension 

for the spool brakes is between 5g and 20g which is sufficient to keep the spools form 

over spinning. A t the downstream end o f the creel rack resides a ceramic eyelet array 

through-which the towpreg ravings are arranged in  a uniform  pattern. These abrasive 

contact points cause only m inor quantities of powder to be stripped away from  the 

towpreg and therefore are considered a nuisance ra the r than  a p roh ib itive  

impediment.

Tensioning Capstans
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In  order to apply substantial back tension to the towpreg. a Century Design. Inc. 

model number CD 8820 braking capstan is  employed. In  the case where m ultip le 

towpregs are necessary to form a ribbon o f predetermined cross section dimensions, 

each towpreg Is required to experience identical back tension to reduce the potential 

fo r only one towpreg to carry most the capstan load (non-uniform  catenary effects). 

To reduce the potential fo r th is  non-uniform  catenary effect, each towpreg roving is  

afforded its  own tensioning capstan. Figure 3.8 is  a photograph o f one o f these 

capstans. The electromagnetic braking range begins at 5 (N) and increased by analog 

scale to at least 20 (N).

Alignment Rollers

Since a ll o f the apparatus are not Ideally situated, alignment rollers are employed. To 

reduce friction, 1 3 /8 " x  3” AirStar™ (model XB-24973) a ir bearings are utilized. Two 

a ir bearing assemblies are plumbed w ith "iygon™ tubing and are mounted in  custom 

fixtures of alum inum  construction. A 40 psig source of dry shop a ir Is attached to a 

custom m anifold which provides m ultip le  attachm ent points. Figure 3.9  is  a 

photograph of one o f the alignment rollers assemblies and the manifold.

3.1.2 Premelting Chamber

In  the ex parte process the purpose of the "oven" consists o f three prim ary functions. 

The oven is necessary 1) to provide a premelting chamber so tha t the polymer is  fu lly  

melted prio r to contact w ith the processing bars, 2) to passively heat the stationary 

bar assembly and 3) to provide a rig id housing into which the stationary bar fixture is
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attached.

Furnace Apparatus Description

The 6KW Lindberg™  tube furnace (model #58434-P) was designed by the 

manufacturer w ith a "spilt" clam shell configuration which can be opened from the 

front as shown In  Figure 3.10, to  reveal the functional components. The resistive 

heating elements are divided Into 3 zones consisting of Insulated heater coll arrays 

arranged In a matched sem icircular shell configuration. When the oven Is closed, 

each zone forms a cylindrical chamber. The three zones are axially situated to form 

an extended cylindrical region about 4 inches In  diameter and 45 Inches long. The 

tem perature o f each heating element zone is  m onitored by a single contro l 

thermocouple. These 3 control thermocouples extend through the Insulation material 

at the top center o f each upper semi-cylindrical shell. The control thermocouples are 

unshielded beads and therefore monitored the radiant temperature located about 1 

inch below the top center o f each zone. The controller device Is used to set and 

m aintain the temperature o f each thermocouple bead. The controller comprises three 

separate modules which m onitor and m aintain the temperature w ith in  each of the 

three corresponding zones. The power input to each heater array is  continually 

adjusted by the controller to  m aintain a steady radiant temperature at each o f the 

three control thermocouples.

A stainless steel tube line r Is situated w ith in  the furnace cavity In  a concentric 

configuration. The tube Is 48 Inches long w ith  an Inside diameter o f 3 Inches and an 

outside diameter of 3.25 Inches. The steel lin e r protrudes about 2 Inches from  the 

Inlet side of the tube furnace and 1 Inch from  the exit side. As an option, an
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essentially Inert atmosphere w ith in  the heated region can be provided when the 

nitrogen bleed assembly shown In Figure 3.11 is utilized.

3.1.2.1 Steady State Temperature Profile

The thin-walled cylindrical stainless steel tube line r Is approximately 0.125 Inch th ick. 

P rior to experim entation the tem perature o f the Inner and outer surfaces were 

expected to be sim ila r, however the tem perature along the axial d irection was 

expected to vary. Furthermore, the temperature o f the tube was expected to be 

reasonably uniform  In the theta direction fo r a given axial location, due to the 

symmetry of the heating coll arrays and good insulation o f the heating cavity.

The firs t approach for characterizing the axial tube line r temperature profile was to 

weld thermocouple beads d irectly to the tube liners external surface. Heavy gage 

glass wrap-glass braid thermocouple wire (Omega™ HH-K-20) was cut into 10 pieces 

each being approximately 10 feet long. A  Unitech™, spot welder was used to 

simultaneously form a bead and weld the wire ends to the tube liner. The 10 beads 

were distributed evenly along the tubes length.

The thermocouple wire leads were attached to a Hydra™ Data Acquisition U nit (Model 

2620AJ manufactured by John Fluke Mfg. Co., Inc. A ll w iring connections were 

attached in  the detachable Input Module which was subsequently placed Into the 

Acquisition Module. The temperature Induced bead voltages were calibrated and 

converted to degrees by the Acquisition Module and were displayed digitally. A ll o f the 

temperature values were transm itted to a Hewlett Packard ThlnkJet™  P rinter via
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were Input Into a Microsoft™ Excel spreadsheet. The steady state sample means and 

standard deviations were calculated.

The typical oven profile experiment began w ith  a ll equipment at ambient temperature. 

On the heat-up, the radiative elements were on fu ll power. This Intense heat attacked 

the thermocouple lead fiberglass insulation. The polymer sizing on the fiberglass was 

burned off. Nonetheless, temperature measurements were recorded. A fter cool down, 

the leads were inspected and were determ ined un re liab le  fo r subsequent 

measurements as the fiberglass Insulation was b rittle  and easy to rub off. Since 

many profiles needed to be evaluated, an alternative yet reliable test method was 

considered.

A thermocouple probe assembly shown In F igure 3.12 was constructed so tha t it  

could be placed inside the tube line r, thereby, shielding the thermocouple wire 

insu la tion  from  direct exposure to the furnaces rad ia ting  elements. Several 

thermocouple leads o f the same Omega™ HH-K-20 w ire were attached w ith  strapping 

wire to a 1.4 meter long by 1 cm diameter steel rod. Each bead was extended upward 

approximately 3 cm. The thermocouple probe was placed Inside the tube from the 

Inlet end and turned over so tha t each thermocouple bead contacted the Inner surface 

of the tube. A fter temperature data were taken and the furnace was cooled down, the 

thermocouple lead Insulation appeared to be only sligh tly degraded near the center 

region of the tube. This probe was considered to be reusable.

The temperature data gained from  both the previously mentioned methods under 

identical conditions are presented In  F igure 3.13. Continuous tube temperature
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profiles were interpolated between measured data. I t  is  Im portant to  note tha t 

comparison o f the profiles measured by the two different methods indicates radiation 

shielding. The horizontal axis corresponds to the axial location along the tube line r 

from the entrance plane to the exit plane. The outermost shaded regions o f the figure 

correspond to the overhang of the tube liner which extend beyond the end o f the tube 

furnace on either side. The lighter shaded regions correspond to the Insulated region 

of the furnace where there are no heating elements b u t ra ther there Is intim ate 

contact between the tube furnace Insu la tion m ateria l and the tube line r. The 

innerm ost regions, zone 1,2 and 3 correspond to the heated sections which offer 

heating colls surrounding the tube liner.

Each zone is controlled separately and so furnace set points are Identified by three 

temperatures separated by a slash (e.g.. 500/475/500°C) for zones 1,2 and 3. Note 

that zone 3 corresponds to the entrance side of the tube. This tube furnace hardware 

configuration provides a temperature profile which Is roughly parabolic when a ll three 

zone temperatures are set to the same value. The manufacturer recognized th is  Issue 

and In an attempt of level the shape o f the profile, set the controllers for zone 1 and 3 

to 0°C at room temperature while zone 2 was set to 23CC at room temperature. Note 

tha t If a furnace Is set to 500/475/500°C , the furnace Is actually m aintain ing 

523/475/523°C. explaining why some of the measured profile temperatures near the 

Inlet side of zone 3 and the exit side o f zone 1 were found to be greater than the set 

temperatures.
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Steady State Tube liner Temperature Profile

The furnace steady-state is  defined by the passively heated sta tionary bar 

temperature rather than the heater zone control thermocouples. The processing 

steady-state is monitored externally to the oven tem perature control device. The 

surface temperature o f the passively heated processing bars is  used to define the end 

of the heat-up period. Bar surface temperature is  continua lly m onitored by a 

thermocouple bead which is f it  through a cylindrica l hole through one o f the bar 

templates and pressed to the surface of a processing bar.

At steady state the temperature profile along the length o f the tube was observed to be 

reasonably constant. Figure 3.14 presents the experimental results fo r the start up 

corresponding to a tube fumace setting of 465/445/465°C . Each data curve 

represents the inner tube temperature at the noted axial distance from  the entrance. 

Of prim ary importance was the bar surface temperature as it  tended to lag the tube 

surface temperature. This was reasonable because the stationary bar assembly was 

heated passively by the tube liner. Steady-state was attained after the measured bar 

temperature reached a value not varying more than 2°C per 5 second Interval. Warm

up tim e was about 1 hour. This experiment was repeated fo r several zone 

temperature set-points. Warm-up time was not found to vary significantly between 

tria ls at sim ilar zone settings.

3.1.2.2 Temperature Profile Sensitivity Analysis

The thermocouple probe was placed w ith in  the tube to evaluate the steady state tube
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line r temperature profile for a variety of zone set points and equipment configurations. 

F igure 3.15 Illustra tes fou r different steady state profiles which correspond to 

different zone set temperatures. Mean values are plotted w ith ±3 standard deviation 

error bars. Figure 3.16 displays the effect o f Increasing the temperature In  zone 1 

relative to the others. The zone set temperatures can be altered to reflect a desired 

shape o f the steady state profile. Reassurance was obtained by recognizing the 

stab ility  o f the profile over time. These profiles were generated from  mean values 

calculated from data taken at one m inute Intervals over 30 m inutes. During tha t ha lf 

hour, outside doors were opened and closed and occasional changes In  local a ir flow 

were experienced.

The effect o f partia lly blocking the ends of the tube were characterized by conducting 

two steady state profiles at the same set point. Figure 3.17 illustrates the sensitivity 

to heat loss out the ends of the tube. Substantial change In the profiles was observed 

near the ends o f the tube, but near the middle, little  change was observed.

3.1.3 S tationary Bar Assembly

The stationary bar assembly provides a tool against which the towpreg Is generally 

flattened and debulked. The assembly Is required to be o f simple construction and to 

be reusable in  the hlgh-temperature and abrasive environment fo r its  intended use. 

The m aterials selection for each of the three prim ary components was considered 

carefully. A  sturdy fixture w ith reusable bars Is required.
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3.1.3.1 Materials Evaluation

The stationary bar fixture  was constructed o f a low alloy stainless steel sheet metal 

having good m alleability, oxidative stab ility  at elevated tem perature, strength and 

stiffness. The therm al conductivity of the steel made the external end o f the fix tu re  a 

heat sink. The Intent o f the assembles design was to passively and advantageously 

heat the bars by radiation from  the tube liner. To Insulate the bars from  the steel 

fixture, the bar templates were constructed o f a s tiff ablative ceramic m aterial which 

exhibited desirable m achlnability, stiffness and low therm al conductiv ity. The 

template material allowed for several configurations o f bar geometry since fabrication 

of new templates was simple and inexpensive.

The appropriate m aterial attributes o f the stationary bars was In itia lly  unknown, so 

several m aterials were evaluated. Figure 3.18 Is a photograph o f the silica glass, 

carbon graphite, Armalox™ machinable ceramic and alum inum  oxide ceramic bars.

Experimental Evaluation Method

The ex parte rlbbonizer was set-up w ithout the n ip  ro ller assembly. A  single polyimide 

powder-coated towpreg was pulled through the experimental apparatus a t nom inal 

processing conditions. After several m inutes o f operation the stationary bar assembly 

was removed from the tube furnace and allowed to cool. The towpreg was peeled away 

and the bars were Inspected fo r wear and slag build-up so tha t the general u tility  o f 

the material could be established. This was repeated for several different bar types.
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Glass s tir rod (10 (mm) diameter) was recovered from  a chem istry laboratory glass 

disposal. Two 70 (mm) long rods were polished w ith  a butane torch to provide a 

smooth surface. The cylindrical glass bars were press f it  Into bar templates form ing a 

subassembly which was then placed into the stationary bar fix tu re  form ing the 

stationary bar assembly. During a 10 m inute experimental rlbbonlzlng Interval only 

m in im al slag bu ild-up  was accumulated on the bars, however the bar surfaces 

showed wear. The 400°C processing temperature softened the glass enough so tha t 

some fibers cut into the glass surface. Furthermore, the load applied by the towpreg 

deformed both bars. Residual polymer and fibers, remaining adhered to the glass 

bars was d ifficu lt to remove. By prying slag o ff the bar surface, glass fragments 

broke-off. In  general, the glass bars provided a smooth ribbon b u t were not rig id, 

abrasion resistant nor reusable.

B ulk carbon graphite was machined Into two 10 (mm) diameter, 35 (mm) long rods. 

These rods were press f it  Into the same templates as the glass rod. A fter experimental 

ribbon fabrication, only m inim al slag build-up was observed. The carbon bar surfaces 

were easily rid  o f residual slag by rubbing w ith  a woven heavy gauge copper fabric. 

Close inspection o f the bar surfaces revealed grooves which had been cu t by fibers. 

This Indicated the possibility of graphite deposits on the ribbon surfaces which was 

considered undesirable. The graphite bars proved su ffic ien tly  s tif f  a t high- 

temperature. smooth and reusable but were not abrasion resistant.

Armalox™ machinable ceramic was m illed from a b ille t. Into a modified triangular 

shape w ith  a 10 (mm) diameter curvature on the top. A fter machining, the "green" 

ceramic precursor was fired at 3000°C for 8 hours. This firing  process elim inated the
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residual liqu id  In  the "green” material and consequently resulted In  a porous ceramic 

bar. Templates were prepared which matched the shape o f the bars so tha t a press fit 

was not necessary. Two powder-coated towpregs were pulled through the ex parte 

process. During the 2 hour experimental evaluation, clumps o f slag broke free about 

every 5 to 10 m inutes, and exited the tube w ith  the towpreg. The "ha ir balls" caused 

jamming difficulties at nip ro lle r and occasionally the take-up was stopped to remove 

the anomaly so tha t the process could continue. A fter the experiment was completed 

the bar assembly was removed and allowed to cool to room temperature. The towpreg 

was well adhered to the ceramic bar surface and was d ifficu lt to remove from the bar. 

A  razor was placed between the towpreg and the bar surface so tha t the towpreg was 

pried away. Once the towpreg sample was broken free, the bar surface was observed 

to have regions where the ceramic chipped away from the surface s im ila r to that 

observed for the silica glass bars. This was attributed to the mechanical bonding o f 

the polymer to the porous ceramic surface which was Inherently weak In tension. The 

Armalox™ bars were then placed Into a 1000°F turbulent convection oven fo r 3 to 5 

hours. The high-temperature cleaned a ll the polymer and fiber slag away from the 

ceramic bar surface. The pitted bar surface was sanded w ith  silicone carbide emery 

cloth. These bars were reusable several times because they could be cleaned. The 

Armalox™ bars were not ideal because there was considerable surface roughness 

resulting in  "ha ir balls" and provided a porous surface fo r bonding w ith  the polymer. 

The fabrication o f these bars was costly and complicated b u t not necessarily 

prohibitive.

Greenleaf Inc. makes high density ceramic tool b its for metal m illing  machines on a 

regular basis. An improved bar design was sent to Greenleaf where several alum inum
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oxide ceramic bars were fabricated at a reasonable cost. Rlbbonlzlng experiments 

were conducted fo r several hours. The average tim e between "ha ir balls” was on the 

order of 30 m inutes. The "Greenleaf' bars were found to be much denser than the 

Armalox™ bars and correspondingly were also observed to be more abrasion resistant, 

less porous and much stronger in  tension. A t room temperature, the towpreg material 

was m ild ly adhered to the bars surfaces and could usually be picked o ff w ith  fingers. 

No p itting  or abrasion o f the bar surfaces was observed. The m inor amount of 

polymer and fiber slag remaining on the tool surface was easily removed in  a high- 

temperature oven. The alum inum oxide bars were superior to the others because they 

were wear resistant, smooth, reusable and inexpensive.

3.1.3.2 Bar Surface Temperature

The bar surface temperature was o f particu la r interest fo r process contro l and 

modeling. The bars are passively heated by the tube line r and are Insulated from the 

bar fixture by the ceramic templates. Steady state bar surface temperature at several 

locations were measured w ith a six inch long Omega™ temperature probe (JMQSS- 

020G-6) placed onto the bar surface from  the exit side o f the tube liner. The bars 

were found to be hottest near the tube line r and coolest near the centerline of the 

tube. Figure 3.19 is  an Illu s tra tion  Indicating the b a r surface tem peratures 

measured at several locations fo r zone settings 475 /490 /465cC. Note th a t the 

measured temperature at location 1 Is sim ilar to the temperature at the center o f the 

hottest bar at location 5. The measured temperature a t location 1 was therefore 

assumed to provide a reasonable approxim ation fo r the maximum bar surface 

temperature encountered by the towpreg.
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3.1.4 Cool Nip Roller Assembly

The n ip  ro lle r assembly shown In  Figure 3.20 rotates passively. By nature o f the 

spring-loaded nip. the rollers rotate at a tangential velocity equal to the take up speed 

o f the towpreg. The nip rollers are a ir cooled to ensure sufficient cooling to solid ify the 

towpreg m atrix  on contact. The shape o f the n ip  region Is designed to facilita te  the 

form ation o f profiled ribbons. The magnitude o f the transverse n ip  load affected 

ribbon quality.

The complex heat transfer phenomenon was le ft fo r fu ture work, and therefore was 

not characterized by th is analysis. For a given set o f processing conditions, i f  the nip 

was too close to the tube liner exit plane, insufficient cooling at the n ip  would occur 

and the ribbon would exhibit non-uniform  cross section. I f  the n ip  was too far away 

(downstream) from  the tube line r exit plane, the towpreg was not hot enough to be 

able to be formed and again the ribbon would exhibit non-uniform  cross section. The 

range o f operable distance from the tube line r exit plane was usually between 2 (cm) 

and 15 (cm).

3.1.4.1 Transverse Nip Load Calibration

The transverse nip load was considered a process variable. A  firs t approximation for 

the nip load was characterized In  terms o f the compression of the nip spring. The 

load was applied to the nip region by compressing the spring which forced the top 

ro lle r onto the bottom fixed roller. This spring was compressed by tu rn ing  the load 

bo lt clockwise. The spring was assumed to s tra in  elasticity, and so there existed a
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basic relationship between the torque on the load bo lt and the transverse n ip  load. 

This relationship was linear for a dry fric tion  interface at the load bolt threads.

Special care was taken to ensure the fric tion  between the load bo lt threads and the 

nu t fixture  threads was uniform . The load cell nu t fixture was fitted  w ith  a Helicoil™ 

insert to provide a s tiff and smooth thread. The 2 1 /2 " x  l / 2 ”-21 load bo lt was 

hardened steel w ith  a 3 /8 ” hex-head and 1” shank. The com bination o f fine bolt 

threads and hard n u t fixture  threads provided a good smooth m atching surface, 

Increasing the likelihood o f a consistent dry fric tion  interface. The head o f the bolt 

was fitted w ith  a polymer washer to reduce the likelihood o f substantial fric tion  away 

from the threads.

The bottom fixed ro lle r and its shaft were removed altogether in  order to make room 

for a compression load cell made by Transducer. Load Cell Inc. (KTL-FF63-CS-50#- 

8688) The load cell provided approximately 3 (mV V*1) output signal fo r loads up to 

50 Ibf. The load cell calibration was conducted w ith  known weights and indicated a 

sensitivity constant of 0.337 ± 0.001 (lb fm V '1).

The spring was compressed by tu rn ing  the load bolt, which forced the top ro lle r 

against a load cell positioned directly below. Break-away torque was measured w ith  

an analog Snap-On™ TorqMeter™ (Model TQ 3) w ith a 3 /8 " hex-head adapter, at 

several spring compression settings. The nip loads shown in  Figure 3.21 indicate the 

linear trend as expected, bu t also indicated a sh ift to the righ t o f zero at the origin. 

This sh ift was a ttributed to the fric tio n  at the polymer washer. The break-away 

torque measurements corresponded to the amount of static torque required to start
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loosening the n ip  load, not the dynamic torque indicated on tightening. This 

measurement technique was biased toward high torque values since the break-away 

torque also Included contributions from static fric tion  between the bolt and washer 

as well as the static thread friction. Note tha t both o f these contributions were higher 

than the ir respective dynamic torque values and therefore th is  break-away method 

was more precise than the dynamic method. As long as th is  technique was used 

consistently and none of the concerned surfaces abraded significantly, th is calibration 

technique provided a good firs t approximation fo r the nip load.

3.1.4.2 Product Release

An advantage to having cooled nip rollers as opposed to heated rollers was tha t the 

contact between the hot sticlqr polymer and the metal rollers did not require release 

paper. Release papers are generally restricted in  maximum use temperatures, 

precluding the ir use in  high-temperature performance thermoplastic processing.

The release phenomenon of the cooled nip rollers was attributed to the difference in  

coefficient o f therm al expansions of the polymer and the smooth alum inum  rollers. 

The therm oplastic polymer was well above its  glass transition  temperature when 

contacted by the nip rollers so adhesion like ly occurred. The polymer was constrained 

by the adhesive bond so tha t it  could not shrink freely on cooling and so, the polymer 

bond interface retained residual therm al stresses. On cooling and changing phase 

through Tg, these therm al stresses were substantial enough to sacrifice the adhesive 

bond, and separation occurred.
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3.2 Role of Process Parameters

The prim ary processing parameters for the exports  ribbonizer are set temperatures, 

capstan tension, bar contact angle, take-up speed axial n ip load. Appropriate settings 

for these parameters are expected to cause redistribution o f the towpregs constituent 

components to form a uniform  consolidated ribbon. The extent to  which th is  

redistribution Is necessary depends on the In itia l quality o f the towpreg m aterial.

Ribbon quality was defined and analysis were performed, to understand the cause 

and effect between processing parameters and resulting ribbon quality. Ribbon 

quality was defined by th is  analysis In term s the requirements fo r In s itu  ATP. 

General ribbon quality comprised both desirable m icrostructure and m acrostructure 

attributes. A study by Peltonen et aL [11 discussing the role of process parameters on 

ribbon m icrostructure was reviewed. Photomicrographic and d ig ita l image analysis 

experiments were performed and discussed, revealing key mechanisms contributing to 

ribbon wet-out and formation.

3.2.1 Definition of Ribbon Quality

M icrostructure is usually characterized by cross section analysis to reveal wet-out, 

d is trib u tio n  o f voids, filam ents and m a trix . As an in itia l screening test, 

m icrostructure can be Indicated by "bending and snapping" a ribbon. A  "clean" 

fracture surface Indicates good wet-out, whereas dry, unbroken fibers Indicate poorly 

wet-out ribbon. Macrostructure Is often determined by dimensional tolerance, void 

and fiber volume fraction and composite density. Good m acrostructure and good
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m icrostructure are Independent and therefore, ribbon qua lity  characterization often 

considers both.

Ribbon macro structure can be characterized by measuring cross sectional dimensions 

and th e ir deviations along the axia l d irection. A  procedure was established to 

characterize ribbon m acrostructure. A t o r near the end o f each ribbon spool, a 

representative 18 foot long sample is obtained. This sample is evaluated to provide 

mean w idth, thickness, and component volume percentages. Each ribbon sample's 

mass is measured on a balance. Since the ribbon is  known to consist o f a specific 

length o f carbon fiber, the mass o f a sim ilar 18 foot length sample o f dry carbon fiber 

is obtained. This "dry versus wet" method provides the ra tio  o f fiber mass m f (g) to  

the tota l composite ribbon mass mc (g) and yields the weight fraction, w f o f fiber.

The theoretical density pct (g cm*3) o f the composite m aterial is obtained In  terms of 

the fiber density pr (g cm*3) and polymer m atrix density Pn, (g cm*3) and the ir weight 

fractions.

= IT + I3*21Pct Pf Pm

The experimental density p „  (g cm*3) Includes the bubble (void) contributions. The 

relative density o f the 18 foot long sample o f ribbon Is measured by ASTM D792. 

Isopropyl alcohol is used as the displacement m edium  Instead o f water to take
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advantage of Its superior wetting. Relative density values (commonly called specific 

gravity) fo r void free composites In  Isopropyl alcohol are corrected to  absolute 

densities. The respective volume fractions o f each volume contributing component. 

V f. Vm . and Vv fo r each ribbon sample are therefore known by the  follow ing 

equations.

W idth and thickness were measured at 1 foot Intervals along each 18 foot long 

sample. Mean values and standard deviations were calculated. The remnants o f each 

sample were acid digested via ASTM D3171 procedure as a check on the previously 

explained "dry versus wet" method. Analysis of ribbon m acrostructure can be utilized 

to characterize quality and therefore indicate process control.

3.2.2 Process Parameter Cause and Effect

The process parameters (left column o f Table 3.1) categorized In association w ith  their 

hardware systems (bold) were evaluated In  terms of some o f the more Im portant 

effects (top row o f Table 3.1) which contribute to  the fabrication o f good quality 

ribbon. A  cause and effect relationship between variations o f these parameters and

[3.31

[3.41

[3.51
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ribbon quality Is indicated by a check mark. Most of these parameters were observed 

to be interdependent. The qualitative cause and effect relationships were observed 

and noted in  th is  table because they provided a general basis fo r subsequent heat 

transfer and pulling force modeling.

Table 3.1 Ex parte Process Parameters Affecting Towpreg Ribbon Quality

Towpreg
Spread
Width

Towpreg
Wet-out

(impregnation]

Towpreg
Surface

Abrasion

Ribbon
Shaping

Material Handling System V V V
Towpreg Alignment V V
Capstan Tension V V
Take-up Speed V
Premelting Chamber i < /̂ V
Zone Set Temperatures V
Bar Surface Temperature V i
Stationary Bar Assembly ■'i V
Bar Diameter 1 < V
Centerline Angle ■\l v 1
Centerline Distance 'I V
Contact Angle V < V
Number of Bars V
Cool Nip Roller Assembly
Transverse Nip Load
Cooling A ir Flow Rate
Distance From Tube Exit 1

t Passively Controlled by Zone #3 Set Temperature and Other Processing Conditions.

Ribbon m icrostructure is most often characterized in  qualita tive terms. Good 

m icrostructure implies fu ll wet-out and even d istribution of the filaments and m atrix. 

Poor m icrostructure implies incomplete wet-out, uneven d istribution  and excessive 

void content. Cross section analysis o f the ribbon reveals the m icrostructure. A 

detailed study o f the influence of m elt impregnation processing parameters on the 

degree o f impregnation of a poly (propylene]/glass fiber prepreg [1] was conducted by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3  EX PARTE PROCESS CHARACTERIZATION 44

Peltonen et aL Their quantitative observations were s im ila r to observations o f the 

stationary bar assembly o f the ex parte ribbonizlng process and therefore, th is  section 

discusses the ir results in  detail.

A  cross-head extrusion/pultrusion Impregnation chamber w ith  one o f two adjacent 

modular pin consolidation assemblies was used to Impregnate glass fiber roving w ith 

high molecular weight polypropylene. The bench scale apparatus was sim ila r to  that 

described by Moyer [2] and to a lesser extent by Courtney 13] and Hashizume [4]. The 

key feature o f the process studied by Peltonen e t aL was the p in  consolidation 

assembly which was sim ilar to the stationary bar assembly of the exports  process. In  

the normal configuration, glass fiber tow was pulled through a cross-head extruder so 

that an annular film  of molten polymer was applied around the bundle. To wet-out 

the fibe r roving, the prepreg was drawn through several sets o f parallel pins. On 

exiting the chamber, the towpreg was drawn through a "shaping nozzle".

Analysis o f the  Peltonen et a l. Study

The microscopic analysis provided useful data to Peltonen et aL regarding the role of 

the process control parameters on the degree of impregnation o f the resulting 

ribbon, measured by a cross section photographic analysis technique. As an 

approximation, D ^p was defined as the number o f wet-out fiber ends divided by the 

total number of fibers in  the cross section. The cross section area void percent or void 

content was (1-Dljnp). Processing parameters were varied from  low settings to high 

settings so tha t the roles o f tem perature, tension, speed, contact length and 

hydrostatic polymer melt pressure, could be characterized quantitatively.
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Table 3.2 is  a lis t o f the process parameter values and corresponding experimental 

D,mp values. For temperature, contact length and back tension, the Dtap increased 

asym ptotically from 70% to a maximum value approaching 95%. For increasing 

pulling speed and hydrostatic extrusion pressure the D ^p reduced asymptotically over 

a sim ilar range. Several key observations were discussed regarding each experiment.

Table 3.2 Partial List of Peltonen et aL Experimental Results

Parameter Low
Setting

Dimp High
Setting

Dimp

Length of Contact Surface (mm) 3 62% 17 94%

Resin Temperature (°C) 180 71% 230 90%

Pay-out Back Tension (N) 0 75% 60 91%

Pulling Speed (cm/s) 0.7 92% 8.6 75%

Polymer Gage Pressure (bars) 0 92% 11 71%

Every p in  was 4mm in  diameter and the distance between p in  pairs was 5mm. The 

pin pairs were rotated so tha t the contact angle was Increased and correspondingly 

the contact length was increased from  a m inim um  (3mm) to a m aximum (18mm) 

causing an increase in  D)mp from  61% to 94%. This identified several im portant 

points. A fter impregnation in  the cross-head die and p rio r to contact w ith  any 

consolidation pins, the towpreg exhibited area void content o f at least 38% , and was 

probably resin rich  around the fiber bundles periphery. Also, increasing the contact 

length provided a substantial (over 30%) improvement in  wet-out. This same contact 

length of 18mm could have been achieved by Increasing the diameter o f the pins
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rather than by rotating the p in  pa ir assemblies. Note tha t it  is unlike ly tha t the same 

increase in  Dtap would have been achieved by increasing the p in  diameters.

Two approaches to Increase m elt temperature were utilized. By the firs t method, an 

antloxldant was added to the polypropylene at 0.2 weight percent so th a t the extruder 

tem perature could be Increased. As expected. Dlrap Increased w ith  Increasing 

tem perature due to the corresponding decrease in  m elt viscosity. In  the second 

method, the pins Inside the consolidation chamber were actively heated from  210°C 

up to 300°C, yielding only modest Improvements In D,mp which were w ith in  statistical 

deviation of the measurements.

The pu lling  force was measured by m onitoring the calibrated Input current fo r the 

"haul o ff' motor. The pay-out (back) tension was provided by a resistance fric tion  

braking mechanism on the fiber spool. As expected, when the back tension was 

Increased, the wet out increased. There was no mention o f spreading or damage to 

the towpreg as a result o f increased tension. An im portant observation was tha t 

under a back tension of zero, the authors noted a drag force o f 37 (N) which.was 

attributed to the fric tiona l drag between the prepreg and the stationary pins. No 

further analysis of the pulling force was indicated.

W ith th is  processing analysis, the d ifficu lty  o f m elt flow  w et-out was clearly 

illustra ted . The cross-head Impregnation did not wet-out the bundle. The best 

consolidation was achieved by processing at slow speed, the highest allowable 

temperature, low extruder pressure, high contact length (or contact angle) and high 

pretension braking force. These observations (with the exception o f the impregnation
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pressure) were consistent w ith those observed fo r the ex parte ribbonizer process.

3.3 Ex parte Ribbonization Flow Mechanism Study

The goal o f th is  study Is to understand the red is tribu tion  and polym er flow  

mechanisms and the ir significance to forming good ribbon. The ex parte  rlbbonizing 

process consists of two c ritica l and sequential steps Involving firs t, the heated 

stationary bar assembly and second, the cool nip ro ller assembly. The firs t facilitates 

m elt flow while the la tte r results In ribbon forming. Towpreg m icrostructure changes 

resulting from  the rlbbonizing process were studied to understand the In trap ly 

consolidation flow mechanisms.

Consolidation o f the towpreg Is expected to Involve six sequential mechanisms. The 

firs t three resu lt from  contact w ith  the stationary bars. Composite squeeze-flow 

spreads the towpreg Into a wide, fla t band causing 1) gas bubble (void) redistribution, 

2) transverse, permeative melt flow (general wet-out) and 3) filam ent alignment. On 

contact w ith  the cool n ip ro lle r assembly, the towpreg undergoes 4) residual void 

compression, 5) elastic compaction o f the filam ent network and 6) net axial cross 

section shaping. The relative importance o f each of these mechanisms depends on 

material properties, process conditions and towpreg quality.

The approach was to prepare towpreg samples exhibiting various degrees of in trap ly 

consolidation and observe red istribution patterns in  the axial cross sections which 

would agree w ith an expected lnterply consolidation mechanisms. The samples were 

cross-sectioned at locations along the fiber d irection corresponding to the contacts
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w ith  the hot stationary bars and the cooled n ip . The m icrostructura l changes 

observed between sample layers were assumed to m im ic those encountered in  real

tim e ribbon fabrication. The expected consolidation mechanisms were reasonably 

validated by th is study.

3.3.1 Experimental Sample Preparation

The ex parte rlbbonizing process was set-up and operated at steady state fo r several 

m inutes. Once the process exhibited nominal steady state production, the take-up 

m otor and tube furnace were turned off. The towpreg, s till under tension, cooled 

below the polymer’s Tg, usually over a 20 to 35 m inute interval. Next, the solidified 

towpreg sample, s till adhered to the stationary bar surfaces, was peeled away and 

preserved. This sample was assumed to represent the steady state at a moment 

frozen in  time. The sample was then potted in  a transparent epoxy compound. The 

solidified potted sample was then cut and polished so tha t axial cross sections could 

be inspected. Several layers were evaluated to characterize the changes in  

m icrostructure resultant from  contact w ith  the stationary bars and nip rollers. 

Figure 3.22 illustra tes a towpreg sample at the bar assembly and indicates the 

nominal cross section layer locations A through I. This diagram is used as a locator 

key for the following analyses.

3.3.2 Qualitative Photomlcrographic Characterization

A Reichert™MeF3 metallograph was used to obtain black and white Polaroid™ photos 

o f each cross section. Several adjacent photographs were digitized to gray scale w ith
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an Epson™ color scanner and a Macintosh™ Quadra 800. The adjacent images were 

combined to form a collage w ith  an Adobe Photoshop® application.

Sample #062194A and #062194B Photomicrographs

[12KIM-7™ /  LaRCnt'IAX (4% offset stoichiometry) polyimide powder]

Powder towpreg was fabricated by the powder curta in  process [51 at NASA Langley 

Research Center. The towpreg exhibited excellent d is tribu tion  o f powder w ith in  the 

filam ent array. A  sample consisting o f two towpregs was prepared, and was later cut 

in  h a lf to form samples #062194A and B. Figure 3.23 organizes several sequential 

cross section photom icrograph collages which indicate the transform ation o f the 

towpreg from  a circu la r cross section to a wide and fla t cross section. Photograph I 

was located about 2 (cm) p rio r to the firs t bar contact and photograph V  corresponded 

to the location ju s t p rio r to contact w ith the firs t bar surface. Photographs EL IK and 

IV were equally spaced between I and V. Figure 3.24 is another series of photographs 

indicating the spreading which occurred as a result o f contact w ith  the bar surfaces. 

This high quality towpreg resulted in  a high quality ribbon.

Sample #101893 Photomicrographs

[12K flf-7™ /  AunmP^AOOA polyimide powder]

A slu rry impregnation process was utilized to fabricate a powder towpreg exhibiting 

poor powder d istribution : consequently, on m elting in  the heated section o f the ex
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parte ribbonizer, complete w et-out was not achieved. Again, two towpregs were 

utilized to prepare a sample, w ith  back tension set reasonably low. A t 10 (N) back 

tension fo r each o f the two 12K towpregs. m inim al spreading occurred. A  sample was 

prepared and several cross sections were photographed. The dark regions In  the 

m iddle o f layers F and G o f Figure 3.25 are not voids b u t ra the r are ends of 

fiberglass filaments which serve as a flag. Note the decreasing void content from layer 

B to C as a ir bubbles appear to be expelled. Layers D and E correspond to the 

locations between the bars where an apparent enlargement o f gas bubbles Is 

observed. Note th a t the perspective angle Is d ifferent fo r each photograph and 

therefore the images do not reflect the true axial cross sections. The contact w ith  the 

second bar at F and G appears to substantially reduce the bubble size. A fter exiting 

the last bar, the malleable towpreg assumes an unrestrained m icrostructure depicted 

In layer I. To the left o f center In  layer I. an area exists that was Incompletely wet-out. 

To the righ t o f center, several gas bubbles appear substantia lly larger than those 

observed In layers F and G. Furthermore, most o f the bubbles In  Layer I appear to 

reside near the center o f the cross section.

Sample # 072594 Photomicrographs

[12K jar-7™ /PELA™ polyimide powder]

Poor quality towpreg was fabricated by a s lu rry Impregnation process. Here, a sample 

was prepared w ith  a single towpreg. under low back tension 5 (N). Figure 3.26 

depicts the changing m icrostructure fo r a towpreg o f exceptionally poor powder 

d istribution as evidenced by layer A  where most of the polymer Is on the top surface of
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the fiber bundle. As this towpreg contacts the firs t bar surface (layers B, C and D), 

very little  wet-out or spreading Is apparent. In  contrast, substantial spreading occurs 

during contact w ith  the second bar surface (layers F. G and H). Jus t downstream 

from  the bar surface, the towpreg has substantial void content, most o f which Is 

attributed to the poor quality of the poorly wet-out towpreg.

Nipped Ribbon Sample Photomicrographs

IVarious Material Systems]

Figure 3.27 illustrates three characteristic ribbon cross section shapes formed by the 

present embodiment of the ex parte rlbbonizing process. The shape o f the resulting 

ribbon depends prim arily on towpreg spread w idth at the bar contact. The cross 

section labeled A Is a photomicrograph of a ribbon made from  m aterial s im ilar to 

sample #072594 (Figure 3.26) which was spread too wide at the bar contacts in  an 

attempt to  facilitate wet-out o f the poor quality towpreg. The groove w idth In  the nip 

rollers was narrower than the towpreg spread w idth. The cross sections labeled B 

resulted from  process conditions s im ilar to those described in  the preparation of 

sample #101893 (Figure 3.25), where ju s t the righ t am ount o f bar spreading 

occurred. Note tha t the apparent void content o f layer I in  Figure 3.25 is greater than 

tha t of ribbon B in  Figure 3.27, indicating bubble compression. Also, note the 

substantial change In the cross section geometry which resulted from  nip contact. 

Implying some elastic compression o f the filam ent network. The anomaly at either 

end of the ribbon cross section is attributed to squeeze-by between the sides o f the 

tongue and groove of the nip rollers. Cross sections labeled C resulted from towpreg
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sim ilar to  tha t shown in  sample #062194A and B (Figures 3.23 and 3.24) w ith  

insufficient spreading.

3.3.3 Quantitative Digital Image Characterization

The potted and polished sample was transferred to an OLYMPUS™ CUE 2 Image 

Analyzer which utilized an OLYMPUS™ BH-2-UMA optical microscope and a personal 

computer operated w ith  OLYMPUS™ Planomorphometry Software 3.0. A  quantitative 

description of the d istribution o f the samples’ constituent components was obtained. 

Each image was digitized into pixels o f various shade. Filaments, m atrix polymer, 

voids and the potting epoxy were each clearly distinguishable because each reflected 

incident ligh t differently. Sub-areas o f the cross section could be selected and 

analyzed based on threshold segregation of the digitized image.

Perspective Angle Measurement by Digital Image Analysis

Filament ends were assumed circular in  axial cross section. Figure 3.28 illustrates 

the perspective angle where the non-axlal measured areas could be corrected by the 

geometry. A portion of the cross section layer w ith several isolated filam ent ends was 

magnified 2000X and then digitized. The maximum diameter (Dmax) and m inim um  

diameter (Dmin) of each selected, oval-shaped image was measured by the analysis 

program. The average of the maximums and average of the m inim um s were utilized 

to calculate the perspective angle.
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)
[3.61

I t  Is im portant to note tha t these maximum and m inim um  diam eters were not 

necessarily vertica l o r horizontal relative to  the sample b u t ra the r the oval shapes 

were observed to be s lig h tly  skewed to one side. Th is skew suggested some 

misalignment, out o f the plane of Interest, and therefore the perspective angle did not 

reflect the true perspective relative to the axial direction. A lthough the perspective 

angle approximation was not Ideal, the application was consistently u tilized fo r a ll 

layers and so the relative trend was valid.

Total Composite Area Measurement by Digital Image Analysis

Magnification by 50X was required to obtain sufficient detail o f the cross section 

perimeter. The sub area of the digitized image which contained the to ta l cross section 

was selected by tracing the border and measuring the enclosed area. These tota l area 

measurements included some o f the potting epoxy fo r poorly wet-out regions. This 

was considered reasonable since the to ta l area was Intended to represent the bulky 

towpreg Including "voids". Care was taken to exclude from  the analysis bubbles on 

the sample surface which clearly resulted from the potting process.

Void Area Measurement Technique by Digital Image Analysis

Magnification by 100X was necessary to d istinguish void regions. The voids were 

darker than the potting epoxy, the m atrix polymer and the filam ents which were
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respectively brighter. The perimeter o f the towpreg section was outlined and Isolated 

as a subsection. By adjusting the thresholding function , only the voids were 

highlighted and the software counted the calibrated pixels and provided the void area.

Sample #101893 D ig ita l Image Analysis

[12KIM-7™ f  AurumP*-400A polyimide powder]

The perspective angle axial to ta l composite area, and axial void area were determined 

fo r several cross section layers. The nom inal location o f each layer was determined by 

visual comparison w ith  sample length measurements made p rio r to potting. F igure 

3.29 is a p lot o f the area data obtained fo r sample #101893 after being corrected fo r 

the axial perspective. Figure 3.30 is the corresponding p lot o f area void percent fo r 

the same sample. Note tha t there appeared to be a substantial void content reduction 

and recovery for both bar contacts.

Sample #072594 D ig ita l Image Analysis

112K1M-7™ /PIXAP* polyimide powder]

Sample #072594 was prepared w ith  one h a lf the back tension of the previous sample 

#101893. The perspective angle, axial to ta l composite area and axial void area were 

again determined for several cross section layers. F igure  3.31 is  a p lo t o f the 

measurements obtained fo r sample #072594 and corrected to the axial perspective. 

F igure 3.32 Is the corresponding plot o f area void percent. Note the appearance o f a
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substantial void content reduction at both bar contacts but only a void recovery at fo r 

the second bar contact.

3.3.4 Preheating Region Discussion

The preheating region provides a means to heat the towpreg p rio r to contact w ith  the 

bar surfaces. Some wetting and void reduction occurs sim ply by liquefying the 

polymer and was prim arily dependent on the quality o f the towpreg. Good quality 

towpreg exhibits even d istribution of powder throughout the entire cross section o f the 

towpreg. Poor towpreg is usually polymer deficient near the center and polymer rich 

near the surface and on melting, the towpreg exhibits high void content. Here, "void 

content" comprises two types o f undesirable attributes, (1) Incomplete filam ent wet- 

out and (2) entrapped gas bubbles.

During preheating, the towpreg assumes a nom inally cylindrical cross section shape. 

This effect is attributed to two mechanisms, wetting and a filam ent catenary effect. 

W etting by the viscous liqu id  onto the filam ents tends to promote a symmetrical 

shape which minimizes the liquid surface area, and therefore, a circu la r cross section 

is favored. The towpreg catenary effect arises because only some of the fibers carry 

the tensile load. Most filaments are simply constrained by the load carrying filaments 

and the d is tribu tion  of these non-load bearing filam ents is uniform  about the 

filaments in  tension.

Preheating alone of good quality towpreg resu lts In  nearly void-free Intra-tow  

m icrostructure. Preheating of poor to moderate quality towpreg usually results In
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only partia l wet-out o f the in tra-tow  region. Substantial cross section area void 

contents o f 55% to 40% are common fo r poor to moderate q ua lity  towpreg, 

respectively.

3.3.5 Stationary Bar Contact Region Discussion

On contact w ith the stationary bars, filam ent wetting, towpreg spreading, bubble 

expulsion and bubble compression are observed. The cross section wet-out appears 

to Improve as a result of contact w ith  the stationary bars. Since permeative flow is 

time dependent and the viscosity o f high molecular weight polyimide thermoplastics Is 

very high, wet-out by transverse permeative flow Is unlikely. The time Interval over 

which the bar contact occurs is on the order of 0.01 to 0.05 seconds, corresponding to 

sample preparation time intervals greater than 20 m inutes. Consequently, only 

moderate Improvements in  wet-out are expected at norm al processing speeds. To 

achieve fu ll wet-out o f poor quality towpreg, prohibitively slow processing speeds are 

required.

Gas bubbles appear uniform ly sized throughout each cross section layer but are 

smaller fo r layers near the center o f the bar contacts and larger fo r layers near the 

tangent points. Gas bubbles appear to be both expelled near the surfaces and 

compressed near the middle of the cross section. A fter exiting the bar surfaces, the 

residual gas bubbles are generally distributed near the center o f the towpreg and 

larger In diameter. This bubble reduction, compression and recovery phenomenon Is 

observed to be repetitive and dim inishing on successive bar contacts.
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The mechanism fo r void expulsion is  expected to be driven by the th inn ing  cross 

section rather than bubble flow. On spreading, the viscous composite is effectively 

moved away from  the bubbles. The tim e dependence fo r th is  squeeze flow  is  

dependent on the viscosity o f the composite m ixture and the forces applied. Towpreg 

spreading at the bar contact Is routine ly observed fo r nom inal processing speeds. 

Consequently, substantial bubble reduction near the towpreg surfaces Is expected, 

even a t time Intervals associated w ith nominal processing speeds.

The rate determ ining step fo r rlbbonizing poor qua lity towpreg Is the transverse 

permeative flow mechanism. The rate determining step fo r rlbbonizing good quality 

towpreg Is the squeeze flow spreading mechanism allowing release o f entrapped gas 

bubbles. The time duration required fo r the la tte r Is usually very short and therefore, 

it Is desirable to ribbonize good quality towpreg.

3.3.6 Nip Region Discussion

The towpreg does not become a fu lly  consolidated ribbon u n til after it  passes through 

the nip region. The role of the nip ro lle r assembly is to consolidate and shape the 

malleable towpreg Into a uniform  cross section ribbon. The prim ary functions are to 

compress residual a ir bubbles and shape the m acrostructure thus presenting an 

apparently uniform  composite ribbon.

Since the n ip  rollers are cooled, the malleable towpreg undergoes substantial cooling 

on contact w ith  the nip. Due to the short contact time Interval and the processing 

conditions, the surface o f the towpreg, which becomes the surface o f the ribbon.
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usually cools below Tg while In te rio r sections remain warmer. An objective during 

ribbon fabrication is to cool the entire cross section below Tg on contact w ith  the nip 

region. This constra int allows little  time fo r squeeze flow  and so only moderate 

surface shaping and in terior bubble compression can possibly be achieved before the 

composite solidifies.

Depending on the processing conditions, the size and shape o f the malleable towpreg 

cross section can vary. For poorly wet-out towpreg, the tendency is to spread as 

much as possible to attempt to Improve wet-out. In  contrast, fo r well wet-out towpreg 

the tendency is to spread the towpreg to exactly the same w id th  as the size o f the 

groove in  the nip region. When the towpreg is spread w ider than the size o f the nip 

groove, the resulting ribbon is usually th icker on one side o f the cross section than 

the other. This non-uniform ity Is considered undesirable. When the towpreg is not 

sufficiently spread, the cross section is usually th icker than desired.

3.4 Characterization Summary and Conclusions

The ex parte rlbbonizing process was characterized In terms o f hardware descriptions 

and calibration. The material handling system is o f simple construction and provides 

a means by which to p u ll the towpreg through the premelting chamber, stationary bar 

assembly and nip assembly, while m aintaining uniform  and substantial back tension. 

The premelting chamber Is characterized in  terms o f heat-up tim e and steady state 

tem perature profile  analysis. The stationary ba r assembly is  b u ilt o f abrasion 

resistant and reusable materials and contains the necessary attributes to be heated 

passively by the premelting chamber and to serve as a fixed tool, against which melt
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consolidation of the towpreg occurred. The cool n ip  ro lle r assembly Is o f rigorous 

construction and provides calibrated transverse n ip  load and appropriate product 

release to  facilitate ribbon formation. The role o f process parameters was discussed in  

terms o f macro- and m lcrostructural ribbon qua lity attributes. A flow mechanism 

study was performed to understand the red istribution  o f the towpregs constituent 

components occurring at the stationary bar assembly and the nip assembly.

Hardware Description and Calibration

The m aterial handling system control parameters: capstan tension (5 to 20 (N)) and 

pu lling  speed (0 to  50 (cm s '1)), are variable by analog setting. The premelting 

chamber control variables comprise three zone set temperatures. The tube liner heat- 

up time to the steady state tube line r surface temperature profile Is less than 1 hour. 

The stationary bar assembly control parameter constitutes the bar subassembly 

geometry . The bars are passively heated by the steel tube line r of the premelting 

chamber. The cool nip roller control parameter Is transverse nip load.

Role of Process Parameters

A ll o f the process control parameters affect ribbon quality to some extent. Ribbon 

quality Is defined to Include low void content and uniform  cross sectional shape. 

Modeling Is necessary to understand the specific contribution of each parameter.
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Ex parte Ribbonization Flow Mechanism Study

The m icrostructure analysis o f the samples cross sections revealed key phenomena 

encountered by the towpreg which were consistent w ith  the six expected mechanisms: 

gas bubble (void) redistribution, transverse, permeative m elt flow  (general wet-out) 

and filam ent alignment, residual void compression, elastic compaction o f the filam ent 

network and net axial cross section shaping. The cy lind rica l symmetry during 

preheating Is attributed to "towpreg catenary effect". Spreading at the bar contacts Is 

attributed to composite squeeze flow.

As a consequence o f contact w ith the stationary bars, gas bubbles near the towpreg 

outer surface are expelled. Bubbles not close to the surface do not escape but appear 

to compress and re-exp and. A fter exiting the last bar contact, the towpreg cross 

section is generally wide and fla t bu t usually contains some gas bubbles near the 

center plane. Since permeative m elt flow wet-out of viscous polymer melts requires 

substantial residence time and the bar contacts occurr over such short time intervals, 

only lim ited transverse flow wet-out is expected to occur at normal processing speeds. 

Filament alignment is Im plic itly observed by the towpreg band spreading and the 

uniform ity o f the perspective angles measured fo r each cross section layer. On 

contact w ith the nip rollers, voidy towpreg is formed Into lower void content ribbon by 

sequentially compressing the voids and solidifying the polymer. Elastic compaction o f 

the filament network is im plicit by observing the formation o f a profiled cross section.

The towpreg "void content" comprises two components, incompletely wet-out regions 

and gas bubbles. Fabrication of void free towpreg ribbon is observed to be dependent
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and gas bubbles. Fabrication of void free towpreg ribbon is  observed to be dependent 

on the in itia l quality o f the powder towpreg. In  general, the even d istribu tion  o f the 

powder, throughout the towpreg cross section results In ribbon w ith  even wet-out. 

The key to form ing good ribbon m icrostructure Is to maximize wet-out and m inim ize 

entrapped gas bubbles. To reduce the volum e o f compressed gasses. It Is 

recommended tha t the towpreg band be spread as wide and th in  as possible. The 

lim itation to the spreading occurred downstream o f the bars, at the n ip  region where 

excessive spreading causes undesirable overlapped m acrostructure. The key to good 

macrostructure Is to optim ize bar spread w id th  to be nearly identical to  the desired 

ribbon w idth.
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TOP VIEW

Figure 3.1 Illustration of the Ex parte Ribbonizer Apparatus
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t e a

TOP VIEW

Figure 3.2 Illustration of the Premelting Chamber and Stationary Bar Assembly
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Figure 3.3 Front View Illustration of the Nip Roller Assembly
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Figure 3.4. Illustration of the Stationary Bar Assembly
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Figure 3.8 Tensioning Capstan Photograph
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Figure 3.11 Nitrogen Bleed Assembly Photograph
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SIDE VIEW

Thermocouple

TOP VIEW
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Figure 3.19 Bar Surface Temperature Distribution Illustration
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Layer Location Designations

Figure 3.22 Towpreg Cross Section Sample Locator Key
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Sample #062194 A_____________________
2 x 12 K IM-7/LaRC-IAX powder towpreg 
V = 11 cm/s. Tc = 16N, RC = 39%
3 zones » 355/355/355° C. Tb = 340° C 
2x10  mm diameter Armalox1" ceramic bars 
Template CL = 21.75 mm. <f = -9.2°. 0 = 128°

I ' M  >t«s 0.10 mm

IV

Figure 3.23 Towpreg Sample # 0 6 2 194A Photomicrographs
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Sample #062194 B______________________
2 x 12 K IM-7/LaRC-IAX powder towpreg 
V = 11 cm/s, Tc = 16N, RC = 39%
3 zones «s 355/355/355° C, Tb = 340° C
2 x 10 mm diameter Armalox;“ ceramic bars 
Template CL = 21.75 mm. o = -9.20°, 0 = 128°

I

Figure 3.24 Towpreg Sample S062194B Photomicrographs
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2 x 12 K IM-7/Aurum-400A powder towpreg 
V = 8 cm/s. Tc = 10 (N). RC = 39%
3 zones 525/450/475° C. Tb = 350° C 
2x10  mm diameter carbon bars 
Template CL = 16.5 mm. o = 11 0 = 92°
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1

Figure 3.25 Towpreg Sample #011893 Photomicrographs
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Sample #072594 ; ; ; __
t x 12 K IM-7/PIXA powder towpreg 
V = 11 cm/s, Tc = 5 (N), RC = 37%
3 zones ■<? 500/490/525° C, Tb = 370° C 
2x10 mm Armalox'" ceramic bars 
Template CL = 21.75 mm, = -9.2°, 9 = 128°

i n«A

■w./*

r;SRWP

Figure 3.26 Towpreg Sample #072594 Photomicrographs
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4 Heat Transfer Analysis

When considering melt processing o f a therm oplastic powder towpreg, the ideal 

processing temperature can be obtained from  the flow behavior o f the neat polymer. 

Rheometric and calorimetric analytical techniques can be used to determine an ideal 

processing temperature range. There usua lly exists a lim it to  the  m axim um  

temperature for processing which is  based on the materials inherent therm al oxidative 

stab ility. A lternative temperature constraints may be applied to m aterial systems 

which exhibit labile behavior above specific activation temperatures. An example o f
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such a m aterial Is a p rim arily  therm oplastic polymer, end-capped w ith  molecules 

containing reactive moieties II I.

In  the follow ing analysis, the therm al h is to ry  o f the towpreg was evaluated 

experim entally and a quasi-steady-state (q.s.s.) towpreg heating profile model was 

developed to provide an unobtrusive means to  predict the heating. This model also 

provided an engineering design tool and a method by which to param etrically study 

the roles of the processing parameters on the q.s.s. towpreg heating profile. The 

cooling phenomenon modeling was left fo r future work.

4.1 Towpreg Thermal History Characterization

The process heating and cooling scheme fo r the ex parte  ribbonizer was expected to 

occur In  fou r sequential components. Figure 4.1 schem atically Illustra tes the 

expected steady-state heat transfer phenomena where 1) preheating, 2) bar contact 

heating, 3) ambient cooling and 4) n ip  contact cooling occurred in  series. The 

preheating occurred by radiation, w ith  the towpreg transla ting  through the tube 

furnace under tension. The preheat tem perature Tp corresponds to the average 

temperature o f the towpreg at a location ju s t p rio r to contact w ith  the firs t stationary 

bar. Next, bar contact heating occurred by conduction between the passively heated 

bars at nom inal temperature lb  and the moving towpreg. The maximum temperature 

experienced by the towpreg T mJY usually corresponded to the temperature attained by 

the towpreg, ju s t p rio r to  exiting the last bar. Am bient cooling occurred In the 

transition  region between the bar assembly and the nip. The nip contact cooled the 

towpreg by conduction. W ith the proper distance between the tube furnace exit plane
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and the nip ro lle r assembly, the towpreg could be cooled below the polymers glass 

transition  temperature on contact w ith  the n ip , to  provide a form-stable ribbon of 

uniform  cross section.

4.1.1 Average Towpreg Temperature Measurement

The enclosed geometry o f the tube furnace apparatus posed a ba rrie r to visual 

observation o f the process w ith in  the tube and also lim ited the scope o f practical 

techniques to measure the towpreg temperature. A  compact optical pyrometer probe 

could have been positioned to indicate the  towpregs rad ian t tem perature a t a 

particu la r location w ith in  the tube. Pyrometers typ ica lly offer a good means for 

process m onitoring. I f  the temperature at several locations w ith in  the tube were 

measured th is  way, a steady-state temperature profile could be Interpolated along the 

tubes length.

An alternative but obtrusive towpreg temperature measurement approach would be to 

place a very sm all thermocouple bead inside the towpreg and le t It, and the wire, 

travel through the tube as an Integral part o f the towpreg. This bead would relay the 

changing temperature of the towpreg In real-tim e. The q.s.s. towpreg temperature 

profile could be obtained by scaling elapsed time by the axial velocity.

The direct pyrometer measurement approach was considered Inappropriate, given the 

relatively hostile radiative environment w ith in  the prem elting chamber, and the 

inherent uncertainty o f pyrometer measurements on non-uniform , moving surfaces.
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The thermocouple bead approach was selected and was expected to provide a 

reasonable indication o f the average q.s.s. towpreg temperature profile.

Quasi-steady-*tate Towpreg Temperature Measurement

A  fine gage thermocouple wire was incorporated in to  the powder towpreg and was 

then pulled, as an Integral part o f the towpreg, through the ex parte  ribbonizer at a 

measured velocity. On exiting, the wire and bead remained an integral part o f the 

towpreg. This technique provided real-time measurement o f the towpreg temperature. 

Elapsed time was scaled by velocity and the resulting profile was assumed to reflect 

the q.s.s. towpreg temperature profile.

Experimental Set-up

The experimental process apparatus Included the pay-out creel, two tensioning 

capstans, the tube furnace, the take-up puller and two powder-coated towpreg yams 

of known composition.

A fine gage thermocouple wire was needed for flex ib ility  and a sm all responsive bead. 

Due to the nature o f the experimental set-up, the thermocouple wires were required to 

be approximately 20 feet long, yet flexible enough to m im ic the mechanical behavior of 

the towpreg. Small thermocouple beads having small therm al masses tend to respond 

to temperature changes very fast, but long thermocouple leads can have inhibitive 

electrical resistance. Omega™ type K 30-2-305 (chromel-alumel) glass wrap-glass
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braid thermocouple w ire was selected for its  flex ib ility , high temperature u tility  and 

reasonably fine wire gage.

E lectrica l discharge welding in  in e rt gas, resulted in  a substantia lly  spherical 

thermocouple bead w ith  0.60mm nom inal diameter. The lead wires were connected 

Into a Hydra™ Data Acquisition U nit (Model 262QA) manufactured by John Fluke Mfg. 

Co.. Inc. Each bead was tested at room temperature and 32°C after fabrication to 

check the lead connection. The bead end of the 20 foot long thermocouple wire was 

Incorporated into the powder-coated towpreg by sim ply placing the about 5cm o f the 

wire Into the towpreg and helically wrapping (or serving) another fine w ire around the 

bundle at approximately 3 revolutions per cm. The serving wire was retrieved from  

other discarded thermocouple wire. The tightly wrapped section o f towpreg remained 

flexible due to the fine gage o f the serving wire. The bead was positioned about 1cm 

downstream of the served section which constrained the w ire and encapsulated the 

bead w ith in  the bundle. Note tha t the diameter of a bu lky 24K IM -7 powder towpreg 

under tension was usually about 2mm while the thickness o f a ribbon was usually 

near 0 .15mm. This bead f it  nicely w ith in  the bulky tow b u t was larger than the usual 

thickness of the resultant wide, fla t ribbon.

The experimental temperature data were recorded w ith a Honeywell™ Om nilight 8M36 

therm al chart recorder to provide real-time temperature measurement. Thermocouple 

voltage was stepped-up and calibrated to  1 (mV °C '1) w ith  a Fluke™ 80TK 

Thermocouple Module. The take-up speed was measured w ith  a Computak™ 

speedometer made by Jones Corporation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4 HEAT TRANSFER ANALYSIS 99

The fastest response rate fo r the bead (approximately 500 (°C s '1) was obtained by 

dunking the room temperature bead into a container of boiling water and measuring 

the maximum slope o f the temperature versus elapsed tim e curve. As long as the 

measured towpreg heating rates were less than the fastest response rate o f the 

measurement technique, resu lts were va lid . In  other words, fo r the  range o f 

temperature encountered in  the experiment, the ra tio  o f therm al masses had to be 

biased in  favor of the towpreg. in  order fo r the measurements to be meaningful.

The heating rates w ith in  the premelting chamber were usually below 30 (°C s '1), and 

could therefore be considered valid. In  contrast, heating rates were s im ila r to, or 

higher than, the measured response time o f the thermocouple bead, a t the bar contact 

and the nip regions. This s im ila rity between the bead response rate and the heating 

rates, tended to substantially bias the q.s.s. profiles for the bar contact heating and 

the nip cooling regions, and therefore, measurements at these locations were not 

considered valid, bu t did nonetheless, provide a general Indication o f the therm al 

h istory phenomenon.

Experimental Procedure

The tube furnace was tum ed-on and allowed to warm-up to steady-state. The chart 

recorder was cued and the take-up m otor was engaged. The tow was pulled through 

the apparatus w ith  the thermocouple wire attached. The served section proceeded 

through the tube furnace premelting chamber. When the served section contacted the 

take-up spool, the take-up and the data logging equipment were disengaged. The 

consumed m aterial was inspected to determine whether o r not the bead remained
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encapsulated. To ensure repeatability, th is  experiment was repeated up to 5 times for 

each experimental variation. As long as care was taken In the serving operation, there 

was a reasonable certainly (>85%) tha t the bead would remain vis ib ly encapsulated 

w ith in  the tow.

4.1.2 g.S.S. Thermal History for Overall Process

The ex parte process was set-up fo r operation w ith  each component In its  norm al 

configuration. The various polymer and liber materials used throughout the analysis 

are listed in  Appendix B. A typical overall process therm al h istory data set Is 

illustrated by Figure 4.2. The chart speed o f the data logger was set to  L (cm s_1) so 

tha t the horizontal axis corresponded to elapsed tim e. The vertical axis reflected 

thermocouple voltage, stepped-up and calibrated to 1 (°C m V 1). The firs t 

distinguishable deviation from room temperature was assumed to correlate to position 

z = 0 (m) and time t  = 0 (s) at the tubes entrance plane. This benchmark assumption 

did introduce some qualitative uncertainty In  the experimental data however, was 

considered practical and reasonable since the assumption was utilized consistently.

The bending required fo r the served section o f towpreg to translate through the 

stationary bar assembly was prohibitive for th is  experiment. Although m aintaining 

fu ll encapsulation of the thermocouple bead throughout contact was interm ittent, the 

experim ent was repeated many tim es u n til a t least 3 fu lly  encapsulated 

measurements were obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4 HEAT TRANSFER ANALYSIS 101

"The towpreg temperature, fo r the experimental data shown In  Figure 4 .2 . was 

observed to increase a total o f 50°C in  two barely distinguishable steps corresponding 

to the two bar contacts. As the towpreg le ft the bar assembly behind, the tow 

temperature cooled accordingly. On contact w ith  the cool n ip rollers, the towpreg 

temperature dropped about 50°C. Note in  the figure how the temperature after 

nipping was above the 250°C glass transition temperature Tg o f the polymer. In  th is  

case, the ribbon was not fu lly  cooled. Ideally, the nip would have been moved further 

down-stream so tha t p rio r to nipping the temperature would have been lower and 

therefore after nipping the towpreg temperature could have been below Tg.

The variance o f these measurements in  the region of the bar assembly and nip ro ller 

were characterized by comparing five independent sets of experimental data for 

sim ilar processing conditions. The average heat-up at the contact w ith the stationary 

bars was 45°C w ith standard deviation o f 14°C while the average cool-down a t the nip 

was 55°C w ith standard deviation of 7°C. The relative magnitudes of these standard 

deviations reflected the tendency o f the bar contact to force the thermocouple bead 

out o f the bundle while the nip did not.

4.1.3 Q.S.S. Towpreg Temperature Profiles for Preheating Only

The nip was disengaged and removed. The bar assembly was also removed, so that 

the towpreg passed freely, suspended under tension, from the tensioning capstans to 

the take-up. Steady-state tem perature measurements were again obtained by 

Incorporating the thermocouple wire in to  the towpreg. The q.s.s. profiles were
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obtained fo r only the heat transfer between the towpreg and the tube liner. These 

measurements indicated what was called "preheating only" q.s.s. profiles.

Figure 4.3 presents four sets of data converted to q.s.s. towpreg temperature profiles. 

Note the variance between samples C. D, E and F which were a ll obtained fo r Identical 

tube furnace setting (500/490/500°C) and take-up speed (v = 5.08 (cm s '1)). Mean 

temperatures were calculated for several positions and were overlaid onto the towpreg 

profile data w ith  error bars corresponding to ±1 standard deviation. A lthough the 

average uncertainty was about 20°C over the range o f measurements, the shape o f 

these profiles was shown to be consistent and repeatable. O f these fo u r 

measurements, sample F matched the mean most closely. Sample F was also the best 

sample In terms o f qualita tive inspection because the bead appeared to rem ain 

encapsulated; there did not appear to be any slip of the wire relative to the towpreg 

and the experiment proceeded otherwise nom inally. Independent o f the variance 

analysis, qualitative experimental observation o f repeated samples Indicated sample F 

to be clearly the most representative.

The q.s.s. towpreg temperature profile shape was expected to reflect a dependence on 

take-up speed. Data at various speeds were obtained and converted to q.s.s. in  

Figure 4.4. Since experiments were repeated u n til clearly representative samples 

were obtained for each speed, and the variance of the measurements was not expected 

to depend on take-up speed, mean and standard deviation values were not calculated 

for a ll data.
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O f particu la r importance was the towpreg tem perature at position z = lm  which 

corresponded to the axial location ju s t p rio r to  contact w ith  the firs t stationary bar. 

This temperature corresponded to the previously defined preheating temperature Tp. 

Doubling the take-up speed was observed to decrease Tp by 100°C.

Another im portant process parameter was furnace zone tem perature set points. 

Figure 4.5 represents an overlay p lot o f a tube lin e r surface temperature for profile 

(455/450/455°C) and measured q.s.s. towpreg temperature profiles fo r two take-up 

speeds. The towpreg temperatures were assigned uniform  error bars o f ±10°C based 

on previously described variance observations. Comparison o f Figure 4.4 and Figure

4.5 illustra ted how lowering the average oven set point by 50°C reduced the preheat 

temperature by 60°C fo r sim ilar take-up speed. This phenomenon was attributed to 

the independent contro l o f the three zones of the tube. Th is observation re

emphasized the Importance o f the tube lin e r steady-state tem perature pro file  

characterizations discussed in  Chapter 3.

4.2 Towpreg Temperature Profile Modeling

The entire heat transfer process was characterized experimentally, b u t only the firs t 

two heat transfer components were modeled by th is  analysis. The purpose o f 

modeling the heating phenomenon was to better understand the role o f take-up speed 

and furnace temperature set points on the heating scheme.

As a m atter o f convenience, scalar representations of the heat transfer phenomenon 

were evaluated and were considered reasonable approxim ations. Symmetry was
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utilized advantageously to sim plify the analysis o f both components, such tha t the 

preheating, heat transfer was considered in  cylindrical coordinates and the contact 

w ith  the stationary bars was molded in  rectilinear coordinates. The two model 

solutions were superimposed in  a scalar representation to Indicate the role of 

processing speed, bar temperature, and void content on the towpreg therm al heating 

history.

4.2.1 Relevant Heat Transfer Principles

Suppose tha t mass A, at a higher temperature than mass B, is placed in  a closed 

system near B. When thermal equilibrium  has been reached. A  w ill be found to have 

undergone a temperature decrease and B, a temperature Increase. When an energy 

transfer takes place by virtue of a temperature difference exclusively, It Is heat flow. 

A t one time th is phenomenon was thought to be a flow o f an invisible weightless flu id  

called caloric, but the work of Count Rumford (1753-1814) and S ir James Prescott 

Joule (1818-1889) established firm ly tha t heat flow Is an energy transfer.

Heat transfer w ith in  a control volume can occur via three prim ary modes; conduction, 

convection and radiation [2,3,4,5]. Conduction is  the transfer o f heat from one part 

o f a body to another part o r to  another body by short-range Interaction of molecules 

and electrons. Convection is the transfer o f heat by the combined mechanisms of 

flu id  m ixing and conduction. Radiation Is the emission o f energy in  the form of 

electromagnetic waves from one body to another. Radiation Incident on a body may 

be absorbed, reflected and transm itted.
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Thermal Energy Stored by a Mass

Consider a sm all quantity o f heat which is  transferred between a mass and its  

surroundings. The therm al energy dQ (J) needed to increase the temperature of the 

mass m (g) by an amount dT (IQ w ith constant pressure heat capacity Cp (J g '1 K '1) is 

known.

The time dependent form of th is relationship defined the therm al state o f the mass at 

any time t  (s) during the heating or cooling process.

Conduction and Convection Heat Transfer

Fourier stated in  1822 tha t conduction heat transfer through a solid object was 

proportional to the normal area A and the temperature gradient VT to which the 

object was exposed. The scalar heat flow rate Q was expressed in  energy per un it 

time or power (W).

The proportionality constant k  (W n r1 K '1) is called the therm al conductivity and was 

a material constant which was actually temperature dependent itself.

dQ = m cp dT 14.11

14.21

[4.3]
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Convection Is simply an extension o f conduction where heat transfer occurs between 

solid body and a flu id  in  motion. The scalar rate equation for convective heat transfer 

was firs t expressed by Newton in  1701, and is referred to as Newton's law o f cooling.

where AT was the temperature difference between the surface and the m ain body of 

the flu id . Values o f h (W n r2 K 1) are determined experimentally and are known to 

depend on temperature and boundary layer flow conditions.

Electromagnetic Radiation Heat Transfer

Thermal energy flow rate from a radiating surface was shown to be proportional to  the 

surface area A and to the fourth power o f the absolute temperature T. This relation 

was deduced by Joseph Stephan on the basis o f experimental measurements made by 

John Tyndall and was la te r derived from  theoretical considerations by Ludwig 

Boltzmann. Radiative energy flow from an em itting surface Is given by the Stephan- 

Boltzmann Law.

The universal physical constant a = 5.6699 E-8 (W n r2 K-4) was called the Stephan- 

Boltzmann constant. Em isslvity e is the ratio of the to ta l emissive power o f a surface 

to the total emissive power o f an ideally radiating blackbody at the same temperature.

Q = h A  AT, [4.4]

Q = A e o T 4 14.5]
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Therefore, the radiative nature o f a real surface Is described by emisstvity, which is 

between zero and un ity. The effect o f surface roughness on to ta l hemispherical and 

specular reflectance of m etallic surfaces was studied 16] In  great detail in  the 1960's. 

Emlssivlty Is generally larger fo r dark, rough surfaces than fo r ligh t, smooth ones. A t 

room temperature [7], the emlssivlty o f a smooth polished copper surface Is about 0.3 

while heavily oxidized steel Is about 0.95.

Spectral hemispherical em lssivlty o f real bodies Is a function o f radiation wavelength 

and direction. A m aterials emlssivlty Is often characterized in  terms o f hemispherical 

em lssivlty which considers only the energy em itted Into the hem ispherical space 

averaged over a ll wavelengths. Opaque bodies have the characteristic th a t the 

hemispherical reflectivity plus absorptivity equal un ity . To sim plify the analysis of 

radiative heat transfer here, the spectral radiative properties were assumed uniform  

over the entire wavelength spectrum. KlrchofTs Law states tha t fo r a gray body 

system In therm al equilibrium , a surface's em lssivlty Is equal to its  absorptivity. This 

relationship Is not applicable fo r steady-state conditions generally. Steady-state 

means tha t the time derivatives of temperature are zero while equilibrium  refers to the 

equality o f tem peratures. However, fo r most m aterials In  the usual range o f 

temperature encountered In  practice (room temperature to about 2000°F) the simple 

equality holds w ith  good accuracy.

Em lssivlty describes the fraction o f energy which can be emitted by one body, bu t 

does not address the Issue o f what percentage of tha t energy Is Incident on another 

body. The geometrical considerations o f the apparatus may be Included In  the 

dimensionless view factor F. The view factor between two surfaces represents the
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fraction of the radiative energy leaving one surface th a t strikes the other surface 

directly. There exists a reciprocity relationship between view factors o f two surfaces i  

and j  [8 .9 ,10 .11 ], such tha t the surface areas A j and Aj determine the relative 

significance of each view factor.

A,FArAJ = AJFAfJlf [4.6]

4.2.2 The Preheat Heat Transfer Model Development

Figure 4.6 offers an illustra tive  representation o f the geometry o f the preheating 

region. The un it towpreg volume o f length dz translated through the fixed tube line r 

in  the positive z-direction at a constant speed v (m s '1). Symmetry in  the r-dlrection 

was assumed so th a t the tube furnace lin e r and the towpreg were modeled as 

concentric cylinders w ith  the tube line r having inside diameter D r (m) and the towpreg 

having diameter D (m). Heating by radiation and convection occurred as the towpreg 

passed through the tube liner. The heat sources increased the temperature of the 

towpreg element by conduction in  the negative r-direction. Axial conduction w ith in  

the towpreg flowed In the negative z-dlrection and therefore opposed the relative 

velocity o f the element.

4.2.2.1 The Rigorous Preheat Temperature Model

The prim ary objective o f th is  modeling effort was to characterize in  scalar format, the 

q.s.s. heating profile  for the towpreg as a function o f processing variables. The
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preheat, heat transfer component was firs t considered In  terms of the anisotropic heat 

conduction equation In  cylindrical coordinates.

kr  3T\ k9 f a M  [a2^  3T

r  ZU 2 J + P3t

Two assumptions and one boundary condition of the second k ind  were utilized to 

simplify and reduce the order o f the heat conduction equation . The heat generation 

term g (W m '3) was assumed negligible. The temperature gradient In  the «j» direction 

was also considered negligible based on uniform  heating resulting from the concentric 

symmetry. The conduction in  the r-dlrectlon was assumed to be equal to  the sum of 

heat supplies at the towpreg surface. The heat conduction in  the r-d lrectlon was 

assumed equal to the sum o f convection from the hot gas w ith in  the tube and net 

radiation from the Interior tube line r surface. This Imposed an adiabatic constraint 

for the system, which was considered appropriate and reasonable.

Assumption# 1 g = 0 [4.81

Assumption #2
3T
tty =  0 [4.91

B.C. #1
k r a ( 3 T l  i  
r iSrlr a r)= r qconv- r  fin e tra d .l

r .D /2  I r * D/2
[4.10]

S im plification provided the rigorous two dimensional tim e dependent conduction 

equation at steady-state.
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r .D /2
r  Q netrad.

r .D /2

4.2.2.2 Equivalent Scalar Energy Flow Balance

The q.s.s. experimental measurements were scalar and therefore a scalar model was 

required fo r comparison. The analogous and rigorous scalar representation o f this 

same preheating process was derived by general energy flow rate balance o f a control 

volume. Figure 4.7 illustra tes the energy flow balance o f the d ifferential control 

volume. A ll of the energy transfer was again assumed adiabatic. The energy balance 

fo r the cylindrical differential control volume, w ith  previously described assumptions 

and boundary condition, was defined in  terms of energy flow rates dQ (J s '1)-

The elemental mass, dm (g), was represented by the product o f the composite towpreg 

density p (g m '3) and a differential volume dV (m3).

The energy storage rate dQstored fo r the u n it mass was defined In  term s o f T2 , 

representing the average tem perature (K) throughout the cross section of the 

differential volume.

dd a to red  =  ^ Q c o n d . l— ^Ocond.-R"*- ^ 6  conv.
r«D/2

^ ^6ndnd.
r .D /2

[4.121

dm = pdV  = p ^ D 2 dz [4.13]
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d Q  stored =  d m C p ^ j p [4.14]

Substitution provided the rate a t which the differential towpreg u n it could absorb and 

store therm al energy.

Axial Conduction

The downstream Geft) u n it In  Figure 4.7 would have slightly higher temperature than 

the upstream (right) u n it. Again, th is analysis assumed tha t a t any time or radial 

location, a towpreg yam  element had an average temperature T2 throughout the entire 

radial thickness o f the element and so the axia l conduction energy flow rate was 

defined.

[4.15]

[4.16]

The normal area fo r axial conduction was known from the geometry.

[4.17]
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Hot Gas Convection Mechanism

Conduction and convection occur In  series during heat transfer between two different 

solids through a flu id . I f  the flu id  were in  m otion, convection would be a very 

im portant heat transfer mechanism. The experimental prem elting chamber was 

designed so tha t a low flow-rate bleed o f bottled nitrogen gas was introduced into the 

chamber to m inim ize elevated temperature oxidation of the equipment and towpreg 

polymer. The gas w ith in  the tube at temperature T! was therefore an a ir m ixture rich 

w ith nitrogen. Convection between the heated gas inside the chamber and the 

towpreg yam  element was defined by the differential form o f Newton’s law of cooling.

d Q c o n v  = h (T, -T 2)dA2 [4.181

where the differential surface area dAa, was given by the geometry.

d A ^ J tD d z  [4.19]

The convection coefficient h characterized the boundary layer where buoyant, viscous 

and gravitational forces affect heat transfer. Boundary layer flow can be turbulent or 

lam inar and its  analysis and modeling require very Involved flu id  mechanics. Since 

there was no fan or blower to force convection, the gas flow rate w ith in  the premelting 

chamber was assumed to be low, so tha t free or natu ra l convection was a good 

approximation.
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Radiation Mechanism

The towpreg yam  was suspended w ith in  the tube by the braking tension applied by 

the pay-out capstan. The towpreg yam  element was assumed to  be centered 

substantially evenly w ith in  the tube line r and therefore exposed equally to  the entire 

cylindrical em itting surface.

Radiation from the tube line r was incident onto the yam . S im ilarly, radiation was 

emitted by the yam.

For radiation between two long coaxial cylinders, a two-zone enclosure approach 

provided the relationship in  terms of an equivalent radiation network of potentials and 

therm al resistancances in  series [5,12,13,14]. The net radiant heat flow rate dQnd 

from  the stainless steel tube liner differential u n it at temperature T i to the towpreg 

yam  differential un it at T2 was defined. The numerator o f th is  expression was the 

driving therm al potential while the components o f the denominator represented the 

pertinent thermal resistance.

dQnd — dQ radiation 1 .2  - dQ radiation 2.1 [4.20]

d0rad= 1-e, 1 l-Ea
[4.21]

dAj Ej + dAj F1;2 + dAj Ej
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The Incremental radiating surface area dAj of the steel tube lin e r w ith  in terior surface 

diameter DT was known by the geometry.

dA j = 7t DT dz [4.22]

4.2.2.S Quasi-Steady-State Scalar Preheat Model

The energy balance was expanded to represent each component. [4.23]

s. * -(§ )=   1 1-^2
dAj Ej dAj F j^ dA j £3

Division of both sides by dz allowed for the application o f the fundamental definition 

o f the second derivative to  the conduction term. On sim plifica tion , the tim e 

dependent integral form o f the model was defined.

, hD (r,-Ti) , _ l t'1? -^ )  [4.241

D r Ej Dj. F1S D £3

The tim e dependence o f the equation was reduced to a quasi-steady-state by 

m ultip lying the le ft hand side by dz/dz and again recognizing the processing speed v. 

The sign o f the conduction term was changed to negative to reflect the observation 

tha t the axial conduction heat flow occurred in  the negative z-direction. The scalar 

quasi-steady-state energy balance fo r the system was therefore defined.
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4.2.3 The Bar Contact Heat Transfer Model

W ith in  approximately a 2cm length ju s t p rio r to the bar In itia l point o f contact w ith  

the bar surface, the towpreg transformed from a prim arily cylindrical cross section to 

a rectangular cross section as described in  Chapter 3. This symmetry transition was 

considered Insignificant to the preheat heat transfer and was simply treated as though 

the transform ation from  cylindrical to rectilinear were instantaneous at the in itia l 

contact w ith the firs t bar. This approximation required a d iscontinuity between the 

heating process model components.

Unlike the preheat model. In  cylindrical coordinates, the conduction w ith  the bar 

surfaces lent Itse lf to rectilinear coordinates. Figure 4.13 Illustrates the preferred 

geometry.

[4.26]

Assumption #1 g = 0 CWm 3) [4.271

Assumption #2 [4.28]
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The heat generation term  was assumed to be zero. As a firs t approxim ation, 

symmetry was advantageously Interpreted such tha t the temperature varia tion across 

the w idth o f the towpreg (x-direction here). In the rectilinear conduction equation, was 

considered insignificant.

The towpreg temperature Just p rio r the firs t bar contact was uniform  and known by 

the previous preheat model. A  boundary condition o f the th ird  k ind  was assumed 

such tha t the heat flu x  at the free boundary surface was by convection w ith  the 

ambient gas flu id . The radiation at the surface was Ignored as an approximation. 

This imposed a lim itation to the model's validity, however, based on precedence In the 

literature [13], th is  approximation was not expected to affect the overall bar contact 

conduction process significantly.

The heat transfer which occurred at the bar contacts was modeled by the two 

dimensional equation In which the q.s.s. towpreg temperature profile was obtained by, 

again, reducing the time dependence by application o f the axial velocity v  to the 

conduction equation.

B.C. #2

B.C. #1 [4.29]

[4.301

(** h «“  th ic b c a  ) [4.311
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The heat transfer which occurred at the bar contact region was considered in  two 

spatial dimensions rather than scalar since 1) composites are known to exhibit non

isotropic therm al conductivity and 2 ) the tim e interval of contact was usually less 

than l/2 0 th  o f a second. The resulting temperature gradients through the height of 

the axial cross section (y-direction here), were expected to be significant and therefore 

an equivalent scalar representation for the heating was not considered appropriate. 

Later in  th is chapter, the q.s.s temperature distributions were solved at four, equally 

spaced locations throughout the height of the cross section, and were subsequently 

averaged to represent mean scalar towpreg temperatures at q.s.s.

4.3 Model Evaluations

The restated goal o f th is evaluation was to solve fo r the q.s.s. heating profile as a 

function of processing variables. The prim ary control parameters fo r the premelting 

chamber heat transfer included take-up rate v, and tube line r surface temperature T ,. 

The velocity was set by an analog dial and the steady-state Tj temperature profile was 

measured as a function of posltion-z. Material specific variables were determined by 

experimentation or were obtained from the literature. Geometrical considerations 

were measured. Models were evaluated num erically as the exact solutions fo r the 

relationships were considered beyond the scope o f th is  analysis. The preheat model 

solution was approximated by iteration while the bar contact model was approximated 

by fin ite  difference representation. The preheat model was compared to 

experimentally obtained q.s.s. profiles for sim ilar processing conditions and a good 

correlation was observed.
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4.3.1 Parameter Evaluation

Several m aterial parameters (e.g. D, Dr, p. eIt e2, cp, h, k* and ky) were determined 

experimentally or by comparison w ith published values.

Tube Liner Surface Temperature Profile Tt = f  {z}

The temperature of the tube is a function o f the heat transfer relationships between 

the heater elements and the tube. As discussed in  Chapter 3 thermocouple leads 

were welded directly onto the tube surface and temperature profile experiments were 

conducted which characterized the tube line r surface fo r a given set o f oven control 

zone set temperature values. For most zone set values, the temperature profile of the 

tube lin e r was hottest near L /2  and coolest at z = 0 and z = L. The typica l 

experimentally measured temperature profile could be approximated by a 5th order 

polynomial relationship w ith  z as the operator.

Conductivity of the Towpreg

The axial conductivity of the towpreg was known to be dependent on the mass fraction 

of the constituent components according to the ru le  o f m ixtures [1 5 ]. The 

conductivity o f carbon fibers is more than 1 0 0  times that o f the polymer and therefore 

dominated conductivity [16]. The temperature dependence o f composite conductivity 

was expected to be weak w ith in  the area o f interest (20-500°C). Thermal conductivity 

of the voldy towpreg was assumed constant and equal to published values, Iq  = 6.0 (W
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m ^ K 1) and ky = 0.72 (W m ^K '1), fo r APC-II® prepreg of fibe r volume 60% a t room 

temperature [171.

Free Convection for an Enclosed Cylindrical Annulus

For horizontal pipe openly exposed to a ir at atmospheric pressure, the convective 

coefficient could be approximated by 1.00E-4 (AT/D) 1/4 in  term s o f (cal s' 1 cm*2 K '1) 

[31. The coefficient of free convection h In  enclosed spaces has been studied In detail 

and Is at substantial variance w ith  the previously stated approximation. For an 

enclosed cy lind rica l annulus, the isotherm al free convection coefficient was 

determined [5] to be a function of the mean heat transfer coefficient hm and the Am 

mean area.

The mean convection was defined as a function o f the Nusselt num ber Nu5 the gas 

conductivity k  (W n r 1 K 1) and the thickness o f the flu id  layer 8 (m).

h = h A [4.321

For a cylindrica l annulus the mean area was known where Ao (m2) and At (m2) 

represented the surface areas o f the outer and Inner cylinders respectively.

[4.331

[4.341
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For an annulus the flu id  layer thickness is  known to be a function o f the geometry 

where D0 (m) and D, (m) represented the diameters of the outer and inner cylinders.

Here, the height o f the flu id  layer H (m) was assumed equal to the thickness o f the 

flu id  layer in  the annulus 8. The Rayleigh num ber Is the product o f the Grashof 

Number and the Prandtl Number.

For a ir, the Prandtl number is 0.72, representing the ratio  o f molecular d iffusivity of 

momentum to the m olecular d iffu s iv ity  of heat. The m olecular d iffus iv ity  o f 

momentum v (m2 s '1) is the ratio of the gas viscosity to  density. The acceleration due 

to gravity g (m s2) is a known constant. The film  temperature Tf (K) was assumed to 

be the mean value between the hottest temperature Th (K) (on the tube liner surface) 

and the coolest Tc (K) temperature (on the towpreg surface).

[4.35]

The Nusselt number is an empirical function o f the Rayleigh number Raj.

[4.361

Raj = Grs Pr [4.371

r r  g  P(Th- T c) 8 3
Gr* ~ ------ y2------ [4.38]

[4.39]
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Tf = •iCTh+'y . [4.40]

The empirical coefficients n and c are determined by the geometry. Rayleigh Number 

and Prandtl Numbers. For air. where the uniform  gas temperature was 793K and the 

cooler body was 293K. the literature 15] values fo r conductivity k  and kinem atic 

viscosity v were obtained at the film  temperature. The isothermal convectMty at the 

film  temperature, fo r concentric cylinders sim ilar to those modeling the heat transfer 

In th is analysis, were calculated near 0.2105 (W m ^K '1).

View Factor for Concentric Cylinders and F2 4

The view factor Is defined by the ratio o f Dy to D and L. For a tube furnace liner

where 2L/E>p Is greater than about 3, the view factor value Is linear w ith  the ratio of 

the diameters [51. Here 2L/D t  = 32.9 and D /D p = 0.002, so tha t F21 = 0.002. The 

view factor o f the tube liner to Itself Is the compliment to F2a such that Fj j = 0.998. 

The view factor of the towpreg yam  to the tube liner Is the same as Fu .

Emlssivity of the Tube Liner and Towpreg Ej and ê .

The tube line r emlssivity can be found by comparison w ith  published values for 

sim ilar materials at sim ilar temperatures. The tube line r was constructed of a non

magnetic. low 300 series stainless steel which "stained" from oxidation at elevated 

temperatures but did not build-up a heavy oxide layer. A  published curve [5] fo r the 

hemispherical emlssivity, w ith in  the temperature range [400°C-500°C] o f norm al
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premelting chamber operating conditions. Indicated a nom inal range o f ex = 0.21 to 

0.23 for 301 stainless steel.

The dry powder towpreg consisted prim arily of black carbon filam ents so the towpreg 

em lssivity e2 was assumed to be constant w ith  respect to  any phase change 

experienced by the powder. This assumption allowed fo r the direct measurement of 

from the consolidated ribbon product rather than from the powder towpreg.

McDonnell Douglas A ircraft (MDAJ Company Is a consumer o f these towpreg ribbons 

and utilizes C02 and YAG laser technology as the prim ary heat source for robotic 

placement of thermoplastic ribbon. Consequently, MDA is concerned w ith  the ribbon 

spectral properties at the corresponding wavelengths. Since the samples were opaque 

at the wavelengths measured, the KlrchofTs law em lssivity curve fo r a typical 

polylm lde, carbon-flber ribbon was generated. Total hem ispheric reflectance 

measurements were performed by B. Shawgo. on an IBM IR-38 FTIR w ith  a Labsphere 

Integrating sphere fo r the 2.5-14 pm band and a Perkln-Elmer Lambda-19 fo r the 

0.200-2.5 pm band. Both measurements were performed using the 8-degree, angle- 

of-lncidence port o f the Integrating sphere. Em lssivity was equal to  one m inus the 

reflectance over the range of the experiment.

An independent verification for both the em lssivity o f the tube lin e r and tha t o f the 

ribbon was performed by R  W right at NASA Langley Research Center. Ambient 

temperature measurements of spectral specular and diffuse reflectance over the 2.5- 

16.4 mm range were taken w ith  a custom grating spectrophotometer. Em lssivity o f 

the composite ribbon was found to be 0.81 and 0.78 a t wavelengths corresponding to
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450°C and 145°C respectively. The tube lin e r sample exhibited emisstvitles o f 0.32 

and 0.30 at wavelengths corresponding to  450°C and 300°C. The uncertainties in  

these data were estimated to be ±0.03 based on comparison w ith  calibrated 

standards. W right’s measurements were only s ligh tly  at variance w ith  Shawgo's 

ribbon em issivity and the published values fo r the tube line rs em lssivity. This 

comparison gives reasonable confidence In the measured emlssivity values.

The approximately linear dependence, shown in  Figure 4.8, o f em issivity % on 

wavelength was moderate w ith in  the range o f 1 to 10 (pm) dropping from 0.92 to 0.80. 

The corresponding relationship for em issivity o f the towpreg yam  as a function of 

towpreg tem perature T2  was assumed constant over the range o f norm al use 

temperatures.

Specific Beat of the Towpreg Cp

The composite specific heat was measured d irectly w ith  a DuPont 910 D ifferential 

Scanning Calorimeter. Figure 4.9 is the differential calorim etric p lot o f a sample o f a 

neat polyimide powder (Aurum™-400A). while Figure 4.10 is  the corresponding plot 

of the composite towpreg (Aurum™ -400A/lM-7 @ resin content approximately 35% by 

weight in  each case). The heat flow of the sample was compared to the heat flow o f an 

empty reference pan. In  accord w ith  the m anufacturer’s recommended method, the 

heat capacity was defined [181.

_ 60 E Aqs a y  f4 411
'T* -  Hr m
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E was the calorimeter cell ca libration coefficient at the average temperature o f the 

range (dimension]ess). Aqs was the y-axis range scaling in  (mW cm '1). H r was the 

heating rate In  (°C m ln '1), AY was the difference In  y-axis deflection between sample 

and blank curves at the temperature of interest (cm), m  was the sample mass (mg). 

The heat capacity Cp was expressed in  terms o f (J g '1 K '1). The experim entally 

determined heat capacity was conveniently approximated by a linear f it  w ith  absolute 

temperature.

Towpreg Density and Diameter

Void content had an im portant effect on the towpreg density and the nom inal 

diameter of towpreg during the heating process. A  sim plistic approach was utilized 

where the values for density and diameter were corrected fo r void volume fraction vv 

by comparison to the void-free composite values. The density o f a void-free ribbon 

sample pQ could be measured via ASTM D-3171.

p = p0 (1—vv) (4.42)

The cross sectional area o f a void-free ribbon of w idth x  (m) and thickness y  (m) was 

defined here as A^n- The cross section of a void-free towpreg would have a sim ilar 

area, so the theoretical diameter of a cylindrical void-free towpreg would therefore be 

defined.

[4.431
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By applying a void volume, the nominal diameter o f the towpreg was defined In terms 

o f the void content, which also Indicated the bulk o f the towpreg.

D ^ l d + v j A ^  [4.44]

4.3.2 Numerical Solution of the Models

The tem perature dependent heat capacity, void content dependent density and 

diameter, and the non-isothermal tube line r temperature profile were a ll included in  

the preheat model solution. Two approximations were made which lim ited  the 

accuracy o f the model. Axial thermal conductivity o f the voldy towpreg was assumed 

independent o f temperature and the view factor was assumed independent o f positlon- 

z. The isotherm al conductivity approximation tended to sligh tly overestimate the 

cooling due to axial conduction while the constant view factor approximation tended 

to over-predlct heating near the tube exit and entrance regions. Fiber volume fraction 

was neglected as a triv ia l variation o f the model, since the heat capacity of the 

composite towpreg was utilized rather than a "rule o f m ixtures approach".

The exact solution to the premelting model ordinary differential equation did not need 

to be evaluated. A numerical algorithm was utilized to solve the model by Iterative 

approximation. A  commercially available software package called M athem atical and a 

Macintosh 960 w ith  36MB of RAM provided a convenient tool to solve fo r the 

approximate solution o f the scalar ordinary differential equation by the NDSolve 

command. The NDSolve function was restricted to ordinary differential equations and 

required "in itia l conditions” for the operator and its derivatives. Appendix C Is a copy
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of a typical Mathemaiica® file  which lis ts  the code fo r the q.s.s. preheat model on the 

firs t two pages and the solution for a take-up speed o f 25 (cm s '1) plotted on the th ird .

Comparison Between Theoretical and Experimental

Theoretical heating profile predictions were generated num erically fo r several different 

throughput velocities. These profiles, the experimental tube lin e r temperature profile 

and the experimental data o f Figure 4.S were superposed in  Figure 4.11. A  constant 

towpreg void content of 50% was assumed. Note tha t th is  void content was a little  

higher than the 40% to 45% void fraction observed in  the m icrostructure analysis o f 

Chapter 3. However, the thermocouple wire and its  insulation took-up space w ith in  

the tow and effectively contributed to the void content. The correlation between the 

theoretical scalar q.s.s. profiles and the measured q.s.s. temperature profiles was 

good. An Increase In throughput velocity from 2.5 (cm s '1) to 25 (cm s '1) was 

predicted to result In nearly a 250°C difference In  the towpreg preheat temperature Tp 

which corresponded to the location z = 1 (m).

Experimental observations indicated the presence o f a neck-down or debulking 

phenomenon occurring as a result o f polymer softening. This effect confused the 

assignment of a constant towpreg void content vv because It suggested a more 

complicated dependence of the thermodynamic state o f the m atrix m aterial. Rather 

than attem pt to predict the void content directly, a param etric comparison o f 

experimental towpreg temperature and model values were superposed In  Figure 4.12. 

Near the entrance of the furnace, the data seemed to match more closely w ith  the 70% 

void volume model. An apparent transition  of void content was observed as the
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material heated and translated through the tube where near the bar contact position, 

the data matched more closely the 50% void volume curve. This was consistent w ith 

experimental observations and made sense since as the polymer softened, local m elt 

flow occurred and wet-out the fibers and therefore void content was reduced.

4.3.3 Bar Contact Temperature Model Solution and Evaluation

The heat transfer which occurred at the bar contact region was approximated by 

simple conduction. In  situations where the preheat temperature Tp was sufficiently 

different than the bar surface temperature Tb, substantial temperature gradients were 

expected in  the thickness direction (y-dimenslon). F in ite difference approximations 

for the solutions provided the two-dimensional temperature d is tribu tion  w ith in  the 

towpreg. The mean temperatures for each z-position were considered to represent the 

average scalar towpreg temperature at q.s.s.

Node Array Definition

The two bar contacts were modeled as a single continuous contact length Lz (m).

Lz = D 0 /2  [4.45J

In  terms o f heat transfer, the w idth in  the x-direction and the thickness o f the towpreg 

In the y-dlrection were assumed constant fo r the duration of the contact. Figure 4.13 

Illustrates surface nodes and boundaries fo r the model. The towpreg moved In  the 

positive z-direction from nodes w ith  m = 0 to m = M. The thickness o f the towpreg
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was also divided Into an Integer number o f nodes ranging from 1 = 0 to 1 = I. The cell 

array (M by I) was divided into convenient Increments o f (thickness)/M = Ay and Lz/I 

= Az.

The numerical approximation fo r the q.s.s. bar contact differential equation solution 

could have been obtained by an explicit flnite-difference method or an im p lic it Crank- 

Nicholson method. Here, the exp lic it methods were u tilized w hich provided 

reasonable solutions provided the stab ility criterion were met for each calculation.

Conducting Nodes

For the boundary nodes in  contact w ith  the bars and each o f the Interior conducting 

nodes O S m < M  and 0 5 1< I ,  approximate solutions were obtained in  terms o f 

non-iso thermal conductivity’s k z and ky. The fin ite  difference representations o f the 

firs t and second derivatives of temperature in  the two spatial directions z and y  were 

known.

The anisotropic therm al d iffusivltles a were known in  term s o f other m ateria l 

properties. The fin ite  difference approximations fo r the firs t and second derivatives 

were substituted into the q.s.s. bar contact heating model.

Az (4.46]

[4.47]
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1 ,) cty r
^  - v (Azf  + v  (Ay)2 14,481

where, a* = [4.491

and oty = [4.50

The previous equation was rearranged and simplified to provide the approximation for 

the temperature of the node at location m .l+ l under q.s.s. constraints.

( £  ”  M ’ 11 ** ^ - 2 'C) + *y C&-1 + “C l  "2  tL )] 14.51]

where. X, = -J * - *  [4.52Jv(Az)
and *y = - ? 4 2 [4.531

v (Ayr

These relationships were subject to stab ility  constraints and a rational solution 

constraint.
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Convecting Nodes

The finlte-difference approximation fo r the boim dary nodes m  = M which were a ll 

subject to convection, was sim ila rly derived from  the boundary condition w ith  the 

additional consideration fo r the effects o f heat capacitance.

The approximation for the surface boundary node temperature at a location one un it 

forward in  the z-direction T jj1 , was obtained In terms o f the q.s.s. assumption.

Simultaneous Node Temperature Evaluation Method

A Microsoft™ Excel spread sheet was utilized to evaluate the solutions w ith Increasing 

m  and i step values corresponding to Increasing y  and z positions respectively. As a 

matter of convenience the thickness was divided Into 3 u n it cells. Since nodes were 

on cell boundaries, th is required M = 3. Nodes w ith  m = 0 corresponded to the bar 

contact surface nodes and nodes w ith  m = 3 = M corresponded to the free surface 

nodes. The other nodes were experiencing pure conduction . F igure 4.14 Illustrates 

the q.s.s. temperature profiles for each set of m nodes. The material parameter values 

for th is analysis are listed In Table 4.1.

hgas(Tgaa- 'IM} + ̂ ( ' IM-l “ ”Im) =  ̂ ^  ^ (̂ M‘ “ m̂) [4.561

(4-571
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Table 4.1 Conduction Model Constant Values Utilized in Analysis

Conduction Model Variables

__________

11,^ = 0.2105 (;& )

p = 1.104 ( ^ )  @ 20% void content

The contact length was known to be a defined by the bar template geometry. The 

towpreg thickness during a ll o f the contact was assumed to be 2.13E-4 m. The 

s tab ility  criterion for a ll nodes was satisfied by appropriate selection of Az and Ay 

values which were not necessarily equal to each other. The temperature of the gas 

Tgas was assumed equal to the measured bar surface temperature Tb = 663K.

The average q.s.s. towpreg tem peratures were calculated from  the fo u r node 

temperatures corresponding to each i-location. and were then plotted In  Figure 4.15 

as a function of take-up speed. The preheat temperatures calculated fo r each 

throughput velocity, by the preheat temperature model, were Indicated at location lm . 

The maximum attainable temperature Tmax was shown Just p rio r to  the towpreg 

exiting from the bar. The average towpreg temperature was predicted to change as 

the contact occurred.
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A t higher throughput speeds, not only was the preheat temperature lower, b u t the 

maximum temperature experienced by the towpreg was lower. For a throughput 

velocity of 12.19 (cm s '1), the bar contact temperature model predicted approximately 

50°C increase in  average towpreg tem perature, w hich was consistent w ith  

experimental observations for the same processing parameters.

4.3.4 Scalar Overlay of Heating Process

Figure 4.16 provides an example o f theoretical tem perature profiles at several 

processing rates. These processing conditions could be useful fo r a therm oplastic 

polylm ide powder towpreg w ith  a glass transition  temperature above 250°C and a 

desired processing temperature between 300 to 350°C. Theoretical q.s.s., preheat 

towpreg temperature profiles, for an oven setting o f 455/450/455°C, were calculated 

between 0 and 1.2 meters. Next, the preheat temperature at lm  was utilized as the 

starting temperature fo r the bar contact model w ith in  the range o f contact (1 < z < 

1+Lz). As an Illustrative approximation, the q.s.s. towpreg temperatures correlating to 

positions downstream from  the last bar contact and upstream from  the tube exit 

plane were obtained by simply shifting the residual preheat profile values upward to 

reflect the bar heating.

4.4 Observations and Suggestions 

Temperature Measurements
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The therm al h istory o f the towpreg m aterial was measured by Incorporating a 

thermocouple lead Into the towpreg. The time scale o f the measurement technique 

was such tha t the measured changes In towpreg temperature were s tric tly  valid at 

heating or cooling rates below 500 (°C s '1) only. The preheating phenomenon met th is 

criterion. Under nominal processing conditions, w ith a substantial difference between 

the preheat temperature Tp and the bar surface temperature, Tb. the measured bar 

contact heating rates were not valid.

Preheat Modeling

The preheating heat transfer phenomenon was modeled and evaluated In scalar form. 

The scalar representation correlated well w ith  measurements. Preheating was 

prim arily driven by radiation from the tube liner and axial conduction opposing the 

relative velocity of the towpreg. Processing speed and fumace set temperatures were 

the most Important variables for determining the q.s.s. preheat temperature profile. 

This heat transfer analysis has characterized the heating of the towpreg in  terms of 

basic material properties, processing parameters and geometrical considerations. The 

approximations and assumptions did not substantia lly lim it the accuracy of the 

theoretical model solutions.

The scalar preheat temperature model reasonably mimicked the observed preheating 

phenomenon. Process control could be Implemented by u tiliz ing the model to predict 

the q.s.s. profiles up to lm  and therefore would be useful fo r determining Tp. The
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preheating temperature was not, however, s tric tly  equal to the maximum temperature 

normally attained by the material.

Bar Contact Heat Transfer Modeling

The bar contact heat transfer phenomenon was modeled and evaluated firs t In  two 

spatial dimensions. Several temperatures through the thickness were averaged to 

provide a scalar representation of the q.s.s. mean towpreg temperature profile. The 

scalar representation of the towpreg temperature increase, caused by contact w ith  the 

stationary bars, provided a reasonable firs t approximation. Heating was driven by 

conduction w ith  the bar surfaces. The two dimensional analysis revealed the 

potential for substantial temperature gradients throughout the towpregs thickness. 

This observation Implied potential for non-lsothermal bar contact squeeze flow at high 

or low processing speeds. Non-lsothermal squeeze flow was considered undesirable In 

terms of steady-state operation and process control. An isotherm al squeeze flow 

process control constraint was considered.

Overall Heating Profile

The two model components were Integrated as an illustrative firs t approximation to 

demonstrate potentia l process therm al h istory scenarios. For a given set o f 

processing conditions, velocities were considered too low i f  Tp »  Tb and too high lfT p 

« T b -
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Analysis o f the heating models provided insight on the notion o f process control a t the 

region o f the bar contact. A t the bar contact, the towpreg was widened, flattened, 

voids were expelled and compressed, and some local flow  occurred to provide lim ited 

wet-out o f previously m atrix-poor regions. A  constraint fo r the process was chosen to 

impose the ideal processing situation. For the complex squeeze flow  to occur under 

steady conditions, the entire cross section should Ideally be Isotherm al. The 

Isothermal preheating would ensure uniform  viscosity throughout the cross section 

which was in tu itive ly  superior to having a viscosity d is tribu tion . F igure 4 .17 

illus tra tes such a q.s.s. profile. The constra in t would be defined so th a t the 

preheating temperature, the bar temperature, the maximum tem perature and the 

desired processing temperature (from neat polymer rheometry) T* were a ll equal.

Tp = Tb = T max = T ' [4.581

In  order to  implement th is  process constraint, one needs to sample the tube lin e r 

temperature temperatures, interpolate the steady-state tube line r temperature profile, 

sense the bar surface tem perature, and evaluate the model to  determ ine the 

appropriate processing speed.

The u tility  of the heat transfer models extended beyond process control issues and 

contributed to process engineering and design. For a given set o f process conditions, 

under the Isothermal bar contact constraint, the process speed could be increased 

only by lengthening the tube liner or increasing the set temperature o f the oven zones 

upstream o f the bar contact location. The suggested processing speed subject to  the 

previously described isothermal bar contact constraint (See F igure 4.16) would be
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approximately 6.5 (cm s '1). The model Illustrates how by doubling the length o f the 

tube furnace from  1.2 to 2.4 (m) nearly trip les the processing speed. The oven zone 

set temperatures could be Increased to allow fo r faster speeds, however, the ris k  of 

overheating during a momentary stoppage or slow-downs, would p ro h ib it th is 

approach in  the extreme. The model also points out why actively heating the 

stationary bars would not increase processing speed under the Isothermal bar contact 

constraint.

4.5 Future Heat Transfer Modeling

Continual on-line sensing of the tube line r surface tem perature would provide a 

method to obtain a real-tim e preheat temperature prediction ra ther than actually 

sensing the towpreg tem perature. I f  the heating models were integrated in to  a 

continuous coordinate system and a unified solution algorithm  were developed, the 

real-time q.s.s. towpreg temperature profile could be utilized as a process control 

means.

As the towpreg approached and proceeded beyond the tube exit plane, cooling 

occurred because the towpreg was warmer than its  surroundings. This cooling was 

prim arily radiative and could be modeled sim ilarly to the preheating model approach. 

Upon contact w ith  the nip rollers, the towpreg was cooled and solidified. As a firs t 

approximation, this cooling could be modeled by the two dimensional heat conduction 

equation and analyzed by a fin ite  difference approach.
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Figure 4.1 Expected Steady State Towpreg Temperature Profile
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Figure 4.6 Isometric Illustration of Towpreg and Tube Liner in  Cylindrical Coordinates
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Figure 4.11 Effect o f Velocity on Q.S.S. Towpreg Temperature Profile.
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5 Pulling Force Analysis

8.1 Goal: Identify Important Flow Mechanisms

5.2 Pulling Force Measurement

5.2.1 Motor Power Draw Technique
5.2.2 Load Cell Technique
5.2.3 Measurement Evaluation
5.2.4 Experimental Characterization of Pulling Force

5.3 Pulling Force Modeling

5.3.1 literature Review
5.3.2 Stationary Bar/Towpreg Interface Modeling

5.4 Pulling Force Model Evaluations

5.5 Pulling Force Observations and Suggestions

5.6 End Notes

5.7 Chapter 5 Figures

8 Pulling Force Analysis

The aggregate pu lling  force In ex parte  ribbonlzlng consists o f three prim ary 

components: capstan tension Tc. bar drag force Td. and axial n ip tension Tn. The 

capstan tension Is Independent o f processing parameters and m aterial properties due 

to the nature of the magnetic capstan braking mechanism. The capstan tension Is set 

between 2 and 10 (N) per towpreg. The bar drag force Is a consequence o f the friction 

between the stationary bar surfaces and the moving towpreg. The axia l n ip tension 

constitutes the added pulling force required to p u ll the ribbon through the nip. The 

n ip  rollers are not driven by external means, so the axial nip tension represents the 

compaction o f the towpreg Into a consolidated ribbon and the associated bearing 

friction.
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The axial nip tension is less substantial than the capstan tension and the bar drag 

force. The bar drag force is 10 to 20 times greater than the axial n ip force. The bar 

drag force Is usually 5 to 10 (N) per bar contact, w ith in  the most like ly  range of 

processing conditions. By comparing experimental pulling force measurements w ith 

theoretical models, the boundary layer condition Is determined. The u tility  of sensing 

bar drag force to indicate process control is discussed.

5.1 Goal: Identify Important Flow Mechanisms

The microscopic cross-section analysis o f Chapter 3 illustra ted  how the towpreg 

lam ina was substantially consolidated on contact w ith  the stationary bars. Voids 

were expelled In the transverse direction as a consequence o f the towpreg flattening. 

Most o f the redistribution of the towpregs constitutive components (filaments, m atrix 

polymer and gas bubbles) occurred on contact w ith these bar surfaces.

Note tha t the observed redistribution of components o f the m icrostructure analysis In 

Chapter 3 were only valid over the time scale o f the experiment. The towpreg samples 

were cooled over 20 to 30 m inute time Intervals In  which case, transverse flow could 

certainly occur. Normally, the contact w ith the bars actually occurred over l/3 0 th  to 

l/1 0 th  o f a second. Determ ining the "flow" mechanisms fo r tim e Intervals 

corresponding to  nominal fabrication. Is paramount to understanding the process. 

Determining the boundary condition at the bar contacts Is the present objective. A 

defined boundary condition Is required to understand the flow  potentials and 

therefore Is useful as a starting point for future flow modeling and analysis.
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How can bar drag contribute to the characterization of the flow mechanism?

Based on the pultrusion modeling literature, several possible mechanisms fo r the 

component redistribution at the bar contact were considered. 1) I f  the contact at the 

bars imposed a pressure gradient through the thickness (in the transverse direction), 

buoyant forces could drive gas bubbles outward and transverse permeative flow by the 

viscous polymer m elt could wet-out dry regions w ith in  the towpreg. 2) I f  an axial 

pressure d istribution were imposed, polymer and bubble flow "plug flow” could occur 

in  the axial direction. In  contrast. 3) i f  the contact at the bars imposed a uniform  

pressure through the thickness, the polymer could not obtain a velocity relative to the 

flbers. and therefore transverse and axial polymer flow could not occur. In  the th ird  

case, some other flow mechanism would be required to explain wet-out and bubble 

expulsion.

How can bubbles be expelled without imposing a transverse flow potential to the 

bubbles relative to the polymer melt?

Consider the possibility that the bubbles do not actually move relative to the bars, but 

rather the entire composite towpreg spreads w ider and th inner and consequently 

moves away from the bubbles. A  "multiphase, anisotropic squeeze flow" can occur 

wherein the towpreg is flattened and bubbles are consequently released. This means 

that the in  the ideal extreme, the towpreg should be flattened a t the bars so tha t the 

entire band is one fiber diameter th ick. In  this ideal and unfortunately, im practical 

case, only the bubbles significantly smaller than the fiber diameter could possibly 

remain w ith in  the towpreg.
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This squeeze flow  phenomenon may contribute to the understanding of the flow 

mechanisms contributing to  the conversion o f a towpreg to a ribbon, b u t is  not 

expected to contribute to the pulling force directly. It  is considered a consequence o f 

the capstan tension. I f  the boundary condition at the bar contacts do not perm it axial 

o r transverse polymer m atrix flow potentials, th is  m ultiphase anisotropic squeeze flow 

mechanism is more like ly  than not.

Bar Drag Force M odeling

The drag force caused by drawing the viscous towpreg over the stationary bar surfaces 

was considered from two distinct perspectives; a slip o r a no-slip boundary condition. 

The slip condition is  the simpler o f the two, because the drag force is independent o f 

the relative velocity between the towpreg and the bar surface. The no-slip condition 

requires a viscous boundary layer borne by an Increasing drag force w ith  increasing 

velocity and viscosity. For flexible and homogeneous materials, both boundary layer 

conditions do not ord inarily occur simultaneously. Since powder-coated towpreg is 

anisotropic, th is mixed boundary condition is even possible. P rior to experimental 

evaluation, no compelling boundary condition preference was obvious.

The slip condition Implies sliding friction  where the drag force is dissipated as heat. 

In  this case, pulling force would not be a substantially useful process control indicator 

because the pulling force would be independent o f processing speed and temperature.

The no-slip condition suggests a viscous boundary layer where most o f the drag force
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Is dissipated fay viscous flu id  shear. A  no-sllp viscous boundary layer .flow condition 

defines the shear stress In  a viscous boundary layer as the sole contributor to the bar 

drag force Tb. W ith a viscous boundary layer, the lim itin g  processing rates are 

described In terms of the flu id  viscosity, and therefore describe the Interdependence o f 

material properties and processing parameters.

5.2 Polling Force Measurement

O ff-line dynamometry techniques are often used to calibrate the performance o f 

rotating machinery by measuring shaft work. In  th is  method, several known masses 

are lifted  at measured velocity and m otor arm ature power draw, to  provide a 

fundam ental relationship, known em pirically, w ith in  the range o f measured w ork 

loads. This off-line take-up motor calibration approach was inappropriate fo r the ex 

parte rlbbonizer because it  elim inates the capability o f real-tim e process m onitoring. 

O ff-line dynamometry offered no potential fo r dosed-loop sensing for process control. 

Consequently, on-line measurement of the pulling force is a p rio rity  fo r th is  analysis. 

The ideal pulling force measurement technique Is one tha t Is on-line and unobtrusive. 

Two on-line pulling force sensing methods were considered: 1) the take-up m otor 

power draw was measured and converted to yield pu lling  force, and 2) a custom 

designed load cell was utilized as a take-up m otor p latform  to  provide the norm al 

reaction force experienced by the take-up motor.

5.2.1 Motor Power Draw Technique

The electric power required fo r the m otor to p u ll the yam  through the apparatus
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under a steady-state condition was defined in  terms o f potential E (V dc), current I (A) 

and some motor efficiency f. This power was also considered in  terms of the to ta l 

pulling force Tt  (N) and the axial velocity v (m s '1) of the towpreg.

P ow er= fE I = T j.v [5.1]

The analog controller which delivered current to  the puller m otor armature was fitted 

w ith  a Amphenol™ (model 14S-9P) electrical port so tha t the armature voltage and 

current could be measured continually. The pu lle r m otor field supported a constant 

115 volts DC and 0.13 amperes. The motor armature supported a constant 115 volts 

DC but drew current according to load and speed. Again, the shaft speed and load 

were both integrally related to armature current draw. A t low loads, the armature 

consumed 10 Watts while at high loads 200 Watts.

Motor efficiency data was obtained from  the m anufacturer o f the motor. The m otor 

performance was characterized by an off-line dynamometer technique. Figure 5.1 

Illustrates the motor manufacturers data [1] obtained via a common brake te s t.' The 

motor was in itia lly  wanned up and set to  a known shaft speed. Load was applied to 

the shaft. For increasing load, a decrease In  shaft speed was observed. Sim ilarly, as 

the power draw Increased, the m otor efficiency Increased to a plateau value of 

approximately 75%. As the m otor was overloaded, the efficiency decreased. The 

im portant observation here was that both shaft load and speed were interdependent 

w ith  respect to efficiency. Furthermore, the nature o f DC motors was such tha t 

application o f the previously described linear relationship between shaft w ork and 

motor power draw did not apply generally.
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The m anufacturer suggested tha t the actual efficiency o f the take-up m otor also 

included a 50% knock-down for the 40:1 gear box which constitu ted a single 

reduction, righ t angle power take-off. Unlike the motor, the reduction gears were 

expected to be more efficient at lower loads. The efficiency o f the motor and gear box 

were considered in  series so tha t the nominal take-up efficiency, w ith in  the normal 

range of operation of the take-up motor, was 37.5%.

5.2.2 Load Cell Technique

A custom load-cell was designed and b u ilt to indicate the bar drag force experienced 

by the m otor and to serve as a permanent motor mount. The load cell was flxtured 

between the take-up motor base and the traverse platform  o f the take-up apparatus. 

This dual role allowed for unobtrusive, real-time measurement o f bar drag force.

Under normal operation of the ex parte process, the take-up traversed regularly. The 

loading o f the take-up motor base plate was transient in  a ll directions except the 

"normal". The transient moments applied to the base-plate needed to be eliminated 

from the pulling force measurement as they would sim ply provide extraneous load 

information.

The four post load-cell design was sim ilar to those used fo r drag and lif t  analysis of 

aerodynamic structures in  w ind tunnel experiments. This particular load cell design 

[2J was unique due to the specific nature of its  application. Since only normal force 

was desired, a ll other moments were eliminated by the combined design o f the posts
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and the stra in gauge array.

A  b ille t o f 7075-T6 alum inum  was w ire E.D.M. m achined and flx tu red  w ith  

Wheatstone bridge stra in  gage assemblies. Figure 5.2 illustrates the load cell and the 

norm al force (NF), axia l force (AF). side force (SF) and p itch  moment (PM), yaw 

moment (YM) and ro ll moment (RM) of interest. The design o f the fou r load bearing 

beams was such tha t the stiffness (Young's Modulus times Area Moment o f Inertia) 

was lowest in  the (NF) direction o f the desired measurement. The p itch stiffness was 

over 5.000 tim es greater than the norm al stiffness. The ro ll stiffness and yaw 

stiffness were respectively 60 and 11,400 times greater than the norm al stiffness. 

This provided a load cell which elastically deflected most, in  the normal direction.

The w iring diagram fo r the stra in gauges o f the load cell is shown In Figure 5.3. A 

10.000 VDC bridge potential was specified so a Hewlett Packard 6205C Dual DC 

Power Supply was utilized. A  balanced bridge was designed which isolated the normal 

load voltage. When pitch, ro ll or yaw moments were induced, the bridge received both 

positive and negative voltage signals for each unwanted stra in. Each o f the voltage 

signals for these moments, canceled out. Only the normal force signal prevailed.

Load Cell Calibration

The load cell was calibrated w ith known weights. The linear interpolation between the 

signal voltage and the weights, provided the sensitivity constant 1.753 (lb m V'1) fo r a 

10V DC inpu t. The load cell was then calibrated w ith  known norm al loads in  

combination w ith  known pitch moments. Next, another calibration was conducted
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w ith known normal loads and known ro ll moments. The maximum error between the 

three calibration techniques was found to be ± 0.26%.

As a free standing load ceil, the electrical zero voltage -0.357 (mV) was measured w ith 

a d ig ita l Hewlett Packard 3478A Multimeter. A fter the load cell was installed onto the 

traverse platform , the electrical zero increased to -0.531 (mV). When the m otor was 

installed, the load cell indicated approximately 134 (mV). This was expected since the 

center o f gravity of the motor could not possibly be perfectly aligned w ith  the moment 

center o f the load cell. In other words, the table was slightly slanted. A fter the motor 

had been operated approxim ately 10 m inutes and had reached its  steady-state 

temperature, the load cell indicated approximately 136mV varying less than 0.1 (mV). 

The sensitivity constant was independent o f the electrical zero, the axial load and 

therm al stra in  load. The normal load voltages were positive so the 136 (mV] steady- 

state voltage was subtracted from the measured load voltage.

To view load cell pulling force voltage signal in  real-tim e a Honeywell™ Om nilight 

8M36 Thermal Chart Recorder was utilized. Since the signal from  the bridge was on 

the order o f (mV), a Stanford Research Systems™ SR560 Low Noise Preamplifier was 

utilized at lOOgain and 3Hz filte r cut-off to boost the signal to  a range compatible w ith 

the chart recorder.

5.2.3 Measurement Evaluation

An on-line calibration experiment was conducted to determine the u tility  o f the two 

different pulling force measurement techniques. Only the m aterial handling system
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was utilized. There was no contact w ith  the stationary bars or the nip rollers and 

therefore th is  was a pure calibration exercise. Four different b raking loads were 

applied at four different take-up rates to identify arty dependence on speed or load for 

either the capstan brake or the take-up motor. The load cell voltage and the m otor 

armature amperage were measured simultaneously.

The take-up motor speed was measured by a hand-held Jones® CT-2000 tachometer 

made by Computak™. The capstan tensions were both set to a s im ila r load which 

was measured w ith a hand-held SAXL™ Tension Meter (Model TM-2000 w/scooped 

roll) made by Tensitron®. The nominal motor armature amperage was indicated by a 

Fluke™ -87 m ultim eter connected to the Amphenol™ access port o f the m otor 

controller. The load cell pulling force signal was monitored via a previously described 

technique.

The take-up motor and the traverse motor were engaged at maximum speed and were 

le ft unrestrained fo r several m inutes to allow warm-up. The take-up motor armature 

current draw and the load cell voltage signal were recorded fo r four different linear 

take-up speeds. A  zero load was guaranteed by performing th is firs t experiment w ith 

the unrestrained take-up m otor which was allowed to spin freely. The remaining 

experiments were conducted w ith  two 12K IM-7™ carbon fiber tows and known 

capstan loads o f 14, 21 and 27 (N) respectively.

Figure 5.4 illustra tes the resulting load values determined by the ca libra tion 

experiment. The results of armature method were unexpected. The load cell method 

on the other hand, indicated a pulling force which was both uniform  and reasonably
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accurate and a barely distinguishable deviation of load w ith  increasing speed. This 

slightly upward sh ift in  the load cell signal was attributed to unavoidable bearing 

friction and non-ideal braking.

Im portant knowledge was gained by th is experiment in  addition to the demonstration 

of the u tility  o f the load cell fo r on-line pulling force sensing. The transient moment 

loading caused by the traverse mechanism did not effect the axia l pu lling  force 

measurements which served as testimony to the load cell design. Also, the capstan 

tension, measured by the load cell, was shown to be reasonably Independent of 

pulling rate. Capstan tension was Independent o f any m aterial properties, and a ll 

other process control parameters.

5.2.4 Experimental Characterization of Pulling Force

Pulling force experiments were conducted to determine the relative Importance of the 

three pulling force components, capstan tension Tc, bar drag tension Td and axial nip 

tension Tn. The axial nip tension was expected to increase w ith increasing transverse 

nip load.

TT = TC + Td + Tn [5.2]

Two powder towpreg yams were ribbonlzed w ith the ex parte process under normal 

operating conditions. Figure 5.5 is  an overlay plot o f experimentally obtained load 

cell output voltage fo r two configurations; 1) n ip rollers disengaged fTd + Tc) and 2) 

the n ip  rollers engaged (Tn+Td+Tc). Note the vertical axis voltage Is scaled by a
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sensitivity constant to indicate pulling force and the horizontal axis corresponds to 

elapsed time. The firs t experimental configuration provides a steady signal over time. 

The to ta l load signal indicates a sinusoidal force measurement w ith  a regular 

am plitude and period. This is a ttributed to nip ro lle r bearing m isalignm ent or 

eccentric n ip  ro lle r shape.

Figure 8.6 illustra tes measured pulling force as a function o f transverse nip load. 

Neither capstan load nor bar drag were affected by transverse nip load since they were 

both applied upstream of the nip assembly. O f particu la r interest was the pulling 

force at 175N transverse nip load, which corresponded to the load under normal 

operational conditions. This indicated a measured bar drag force about 10 times 

greater than the resultant axial nip load contribu tion  under norm al processing 

conditions.

Experimental to Determine Contact Interface Boundary Condition

Several bar templates were fabricated w ith  the in ten t to  characterize the role of 

contact angle on pu lling  force. The values fo r bar curvature diameter D (m). 

centerline distance between diameters CL (m) and the relative centerline angle $ were 

laid-out on the template m aterial prio r to template construction and were therefore 

known. The geometrical deflection angle p shown in  Figure 5.7, was known from  

measurable quantities.

"•“ ‘PaHsF) • |5-31
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Note tha t i f  the sign o f $ Is negative the relation holds. As a m atter o f convenience, 

templates w ith  positive centerline angle are designated Z and those w ith  negative 

centerline angle are designated S configurations. From geometiy, the to ta l contact 

angle 0 fo r the bar assembly was obtained. For two bars o f e ithe r Z o r S 

configuration, the tota l contact angle is known to be 0 = 4 p. as illustra ted by Figure 

5 .8 . For three bars, the contact angle Is doubled 0 = 8 p.

Table 5.1 Bar Template Geometry Specifications

Template 0  (mm) CL (mm) <t> (°) p n 0(p) 0(°)

Gr. A (2Z) 10.0 18.66 12.0 18.5 4 74

Gr. B (2Z) 10.0 27.16 8.4 12.7 4 51

Gr. C (2S) 10.0 25.00 -26.5 43.4 4 174

Gr. D (2S) 10.0 25.00 •13.7 33.3 4 133

Gr. E (3S) 10.0 21.63 -3.7 27.8 8 223

Gr. F (3S) 10.0 20.62 -28.3 47.4 8 380

CB A(2Z) 10.0 16.50 11.0 23.0 4 92

CB B (2S) 10.0 16.50 -8.8 40.0 4 150

MC A (2S) 10.0 21.80 -9.2 32.1 4 128

MC B (2Z) 10.0 20.14 3.0 23.9 4 96

MC C (2S) 10.0 21.00 -19.3 40.5 4 162

Table 5.1 lis ts the specifications o f each template designated Gr. A  ("Greenleaf A") 

through Gr. F, "Carbon Bar A ” (CB A  and CB B) and "Machinable Ceramic bar A" (MC 

A, MC B and MC C). The Inform ation w ith in  the parentheses o f the "Template" 

colum n indicate the num ber o f bar surfaces contacted and the w rapping 

configuration
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Based on previous experience, nom inal zone temperatures 500/490/525°C  were 

selected. The tube furnace was allowed to heat-up to steady-state. The low quality 

towpreg m aterial (32% powdered PIXA™/IM-7™ towpreg, slurry-im pregnated by 

CYTEC Engineered Materials. Anaheim. CA) was observed to have non-uniform  resin 

content such tha t the surface o f the towpreg was resin rich  while the in te rio r was 

resin poor. The two towpregs were set-up adjacently fo r normal ribbonizatlon o f 1 /4  

Inch wide ribbon.

A  temperature profile experiment was conducted to determine the steady-state tube 

line r temperature profile. For convenience, the tube surface temperature d istribution 

T i (z) was characterized by a polynomial expression in  terms o f z-positlon (m) from 

the entrance plane of the tube liner.

Ti(z) = 2942 z5 - 12484 z4 + 18484 z3 - 12517 z2 + 4006 z + 300 (KELVIN) [5.4)

The steady-state bar surface tem perature was measured. The preheating heat 

transfer model, described In Chapter 4, was utilized to Interpolate the optimum take- 

up speed so tha t the preheat temperature at position z = l(m ), was w ith in  5°C of the 

measured steady-state bar surface temperature. A  speed of 11 (cm s*1) ensured an 

Isothermal boundary layer fo r the duration of bar contacts because 11 (cm s '1) was 

the speed which corresponded to a preheat temperature nearly equal to the measured 

steady-state bar temperature o f 370°C.

Only one of the listed bar assemblies could be evaluated a t a tim e. A t least 50
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minutes o f heat-up tim e was allowed for evaluation o f each assembly configuration. 

The role o f contact angle on the bar drag force was evaluated by disengaging the nip 

rollers and setting the temperature, speed and capstan tension constant. The two 

capstans were both set by checking the towpreg tension w ith  the hand-held 

tenslometer and adjusting the brake to provide a common tension to both towpregs. 

The capstan braking tension was then recorded by the load cell at 11 (cm s '1) take-up 

rate. Next, the bar drag plus capstan pulling force measurements were recorded.

The measured capstan tension was subtracted from the measured pu lling  force. 

Figure 5.9 illustrates the bar drag force components (Td), In  Newtons, for each of the 

11 templates. The bar drag force was observed to Increase almost linearly w ith 

contact angle. The error bars reflect the average variation In the measured load cell 

output. The tota l error appeared to increased w ith increased load. This was expected 

since load cell sensitivity increased w ith normal load magnitude, and the maximum 

load for the cell was about 45 (N). Note linear trend did not vary substantially for any 

of the three different bar materials and bar types.

The role o f capstan tension on pulling force was evaluated by u tiliz ing  only template 

"Gr. A" and the same temperature settings and take-up speed as the previously 

described experiment. The capstan tension was Increased from a minimum o f 16 (N) 

to ju s t under 26 (N). The bar drag component was observed to be reasonably 

Independent o f capstan tension in  Figure 5.10.

The role o f pulling speed or temperature could not be Isolated fo r experimental 

evaluation as the two parameters were Interdependent. Observations did. however.
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suggest tha t bar drag force Increased w ith  increasing speed and the corresponding 

decrease in  temperature. This dependence on tem perature suggested th a t the 

polymer viscosity contributed to pulling force.

5.3 Polling Force Modeling

Modeling of the pulling force of ex parte  rlbbonizing provided a means to interpret and 

analyze the experimental measurements. The objective here was to understand the 

stationary bar contact phenomenon in  terms o f fundamental principles so tha t the 

role o f pulling force fo r process control could be determined. The interface between 

the towpreg and the bar surfaces was recognized as the prim ary contributor to the 

pulling force. Prior to modeling, the boundary condition of th is  contact region was 

unknown. Two Independent boundary condition models were developed. The "slip 

model" was based on simple Coulomb friction, while the "no-slip model” b u ilt upon 

viscous Trlbology principles [31, sometimes referred to as hydrodynamic friction. The 

no-sllp model, which incorporated the geometrical considerations o f the apparatus, 

m aterial properties o f the towpreg and the process control parameters such as 

temperature and take-up rate, was therefore useful for indicating process control.

5.3.1 literature Review

The ex parte rfbbonlzer has been shown to be novel In terms o f U.S. patent records 

and, a as a result, lim ited pertinent process science literature presently exists. The 

closest analogue to the ex parte  ribbonlzer, therm oplastic pu ltruslon , has been 

addressed by the research community fo r some time. Many im portant phenomena
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such as permeative flow [4,5,6,7,81, axial capillary (plug) flow or back flow [9,10,11], 

squeeze flow  [1 2 ,1 0 ], e lastic filam ent netw ork deform ation [1 3 ], have been 

investigated and are in  the literature.

Three key processing models provided the background to understanding consolidation 

mechanism for the pultruslon process. One model fo r thermoset pu ltrusion  and two 

thermoplastic pultrusion models are discussed in  the following paragraphs.

Pulling Force Model * 1 Bibbo; Gutowski (M.I.T.), (1986)

Pultrusion processes have h istorica lly been treated as supporting both viscous 

boundary layer forces and frictional forces simultaneously. Bibbo and Gutowski [11] 

described the pulling force of thermoset pultrusion to include three mechanisms: 1) 

friction  of the fibers on the pultrusion die wall, 2) viscous flow in  a very th in  layer o f 

resin between fibers and the die wall, and 3) the drag resistance on the fibers due to 

the back flow in  a contracting section. The authors im plied tha t both fiber fric tion  

and viscous flow occurred simultaneously at the interface between the part and the 

pu ltrusion  die w all. Such an assum ption was in tu itive ly  appropriate given the 

inherently low viscosity o f m olten therm osetting polymer precursors. A  practical 

analogy to th is  approach is found by considering a soapy steel wool pad scrubbing a 

stainless steel frying pad. The contact was both abrasive and lubricating. Most o f the 

fric tion  between the abrasive pad and the pan surface can be attributed to the contact 

between the two solids; and, therefore, in  modeling the phenomenon, dry fric tion  

would be the dominant mechanism.
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The Coulomb fric tio n  drag force was obtained from  a fric tio n  coefficient and the 

effective normal stress caused by flu id  pressure and elastic filam ent network stress 

[14,15]. The Newtonian hydrodynamic fric tion  forces were obtained by assuming a 

uniform  viscous boundary layer o f thickness equal to the distance between fibers 8 (m) 

of a hexagonal array of fiber volume Vf (%) and fiber radius rr (m ).

The "back Dow” forces were attributed to the shear stress o f the resin moving in  the 

opposite direction to the fibers. This relationship was determined by force balance on 

an in terior differential volume element. The relative velocity between the fibers "u” (m 

s '1) and resin V  (m s*1) was related to resin viscosity "q ” (Pa s). a modified 

permeability constant ”S" (m2). and resin pressure gradient "Pr" (Pa n r 1) in  the axial 

direction "x” (m). The permeability constant was given as a function o f fiber radius 

and volume, and the empirical Darcy’s Law permeability "k" constant.

The model predicted the fric tion  forces to be 2 to 4 decades more im portant than the 

viscous forces fo r composites w ith  fiber volume near 50% and a fric tion  coefficient of 

0.50. This prediction was expected given the magnitude o f the norm al stress 

approximation. The back flow forces (opposing the prepreg axial velocity) caused by

[5.5)

u - v  = S dg- 
dx [5.6]

_ r f2(l~v f)3 
4k v? 15.7)
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the contracting die were predicted to be w ith in  a decade b u t not as substantial as the 

fric tion  forces. These predicted pu lling  forces corresponded favorably to  measured 

values obtained by Price and Cupshalk [161. The pulling force for pultruding epoxy

carbon fiber prepreg into a rectangular cross section die (w ith exit geometry 20 mm 

wide, 2 mm high and 50 mm long) was calculated to vary between 10 (N) and 1000 (N) 

depending on the compaction ra tio  o f the die. This corresponded to shear stresses 

between 5 (MPa) and 500 (MPa). Since th is  analysis involved an epoxy thermoset 

polymer precursor flu id  which characteristically exhibited low m elt viscosity, it  was 

not surprising tha t the viscous forces were negligible by comparison to frictional 

forces.

The fundamental criticism s o f th is  model focus on the dependence on a permeability 

constant and the guess at the fric tio n  coefficient. Both o f these em pirical values 

affected the load predictions substantially. Thermoplastic pultrusions are usually 

different than thermosetting pu ltrusion  for a couple o f key reasons. F irst Is the 

difference in  flu id  viscosities. Thermoset pultrusion begins w ith  very low molecular 

weight mer units which polymerize downstream from the tapered section of the die. 

Thermoplastic pultrusion begins and ends w ith  high polymer. Second, thermoset 

pultrusion advantageously benefits from the part constriction away from the die walls 

which occurs on polymerization, while thermoplastic pultrusion does not.

Pulling Force Model #2 Hepola ( U. Delaware C.C.M.), (1993)

P ultrusion of unidirectional therm oplastic polym er prepreg required modified 

modeling scenarios w ith  substantia l dependence on polymer viscosity and flu id
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mechanics. A  detailed study [9] was conducted by Hepola to categorized the pulling 

force o f thermoplastic pultrusion In terms o f axial plug flow induced by fiber drag and 

back flow resultant from the axial pressure gradients caused by the pultrusion  die 

taper. This model also Included a detailed description of polymer m elt viscosity, 

including Carreau shear rate dependence and viscous dissipation heating effects.

A  detailed flu id  mechanics based analysis o f the pu lling  force In  therm oplastic 

pu ltrus io n  was conducted wherein the prim ary pu lling  force component was 

hypothesized to be comprised of the axial flow o f viscous polymer relative to the 

filam ents. A ll o f the pu lling force was a ttribu ted  to counter flow in  the Interior 

sections o f the unidirectional . The boundary layer drag was assumed to be 

Insignificant.

This modeling approach overestimated pu lling  forces and did not exhibit substantial 

validation by experimental comparison. The shear stress fo r uniform  viscous flow 

(throughout the thickness) along the very large surface area required pulling forces 

greater than the measured values. Uniform  "plug flow" did not likely occur fo r high 

molecular weight thermoplastic unidirectional composites during pultrusion.

Pulling Force Model #3 Lee; Springer (Stanford); Smith (ALCOA), (1991)

Lee, Springer and Smith published a p u llin g  force model 110) fo r pultrusion of 

unidirectional thermoplastic semicrystalline poly (arylene ether) prepreg. The model 

describes four factors contributing to the pu lling  force o f thermoplastic pultrusion; 1) 

"pretension” o f the prepreg. 2) pressure exerted by the composite (polym er/fiber
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viscous mixture) on the die, 3) Coulomb fric tion  between the "solid” composite and the 

die wall and 4) hydrodynamic friction  resulting from  shearing o f the th in  "flu id" resin 

layer contained between the composite and the die wall.

This modeling attempt cast aside the notions o f permeable flow and axial plug flow, in  

favor o f a transverse composite squeeze-flow concept. A  "saw tooth" representation 

defined the surface roughness of a unidirectional p ly where the rectangular "teeth" 

were a (m) ta ll and b (m) wide In the £ -direction.

The transverse flow velocity u (m s 1) o f the m atrix-flber m ixture w ith  viscosity ' 

(Pa s) was defined in  term s of the pressure gradient In  the £ -direction. This 

composite viscosity and the geometrical considerations were u tilized  w ith  a 

conservation o f mass relation under a lam inar flow  constraint to provide the drag 

force due to squeeze-flow during unidirectional therm oplastic pultrusion. The to ta l 

pu lling  force per u n it w id th  was defined in  term s o f three components and a 

"pretension" Ft (N) applied at the pay-out supply.

The average pressure Pav (Pa) was a function o f the continu ity model. The fric tion  

drag was defined by an em pirical parameter f c and the normal component o f average 

pressure, and the hydrodynamic friction  contribution was a function of the processing

15.9)
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speed V (m s '1) and the composite squeeze flow viscosity.

I t  Is Im portant to  note tha t the authors referred to a two-section pu ltrusion  die, 

commonly used fo r therm oplastic processing where the tapered section was 

maintained above the m elt temperature of the polymer and the subsequent straight 

section was maintained below the glass transition temperature of the polymer. The 

hydrodynamic fric tion  was applied as the boundary condition fo r the heated section 

and the Coulomb fric tion  was applied as the boundary condition o f the cooled section.

The tapered section had an exit height o f 0.086 (In) fo r 20 consolidated piles o f APC- 

2™ prepreg w ith  constant taper angle and a 10 (In) long stra ight section o f sim ila r 

height. The w idth o f both sections was 10 (In). This heated and cooled die design 

provided a form stable composite article.

In  the analysis o f a sample problem, pu lling  forces o f 500 to 2.000 (lbf) were 

calculated fo r speeds o f 0.5 to 2 (In s '1). The maximum transverse pressure at the die 

walls of the tapered section reached 1.000 to 2.000 (psi). The m ajority of the pulling 

force was attributed to the tapered section axial component of force required to debulk 

and consolidate the laminate. By an unexpected assumption, the pretension and the 

shear th inning flu id  layer were both considered negligible. I f  the entire pulling drag 

force were attributed to the heated taper section of the die. shear stress values would 

have been expected between 4 to 17 (MPa). The boundary condition o f the tapered 

section was neglected altogether. This model predicted substantia l pu lling  force 

contribution by the contact Interface and tha t suggested the Coulomb fric tion  in  the 

cooled section was more Important than the hydrodynamic fric tion  In the hot section.
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Comments on the Pertinent Literature

Each of these three thermoplastic pultrusion pulling force models identified sim ilar 

contributions to pulling force. For pultrusion pretension was generally disregarded as 

it  was usually sm all by comparison to the to ta l pu lling  force. Each model 

development considered the remaining pulling components and characterized the ir 

contributions uniquely. Although each pulling force model was sensibly derived and 

In tu itive ly  sound, none o f the pu lling  force models was broadly validated by 

experimentation. It is like ly tha t the lack of experimental data speaks to the challenge 

of measuring pulling force and the particularly d ifficu lt task o f isolating Individual 

contributions to the total pulling force for complex processes.

The two therm oplastic pu ltrusion  models (#2 and #3) neglected the pu lling  force 

contribution by the viscous boundary layer between the composite and the heated die 

surfaces altogether. For thermoplastic pultrusion th is assumption was o f particular 

concern because high molecular weight polymers tend to be very viscous in  the melt, 

and therefore tend to sustain high shear stresses at viscous shear Interfaces. In 

pultrusion , these shear stresses are usually aligned axia lly and therefore can 

contribute to pulling force. The significance o f these shear stress loads would be 

greatest for pultruded articles w ith a high surface area to cross section area ratio, and 

would be less im portant fo r large cross section annular articles. The shear forces 

would also be greater at higher processing speeds. The pultruded article o f the 

sample problem In model #3 was a part w ith  high surface area and was pulled 

through the die at over 100 (cm m h r1). Ignoring the shear stresses a t the part-dle 

interface was a fundamental lim ita tion  bu t did not Invalidate the models altogether.
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By way of example. In  the analysis of model #3, dry fric tion  between the solidified 

composite article and the straight section o f the cooled pultrusion die was proposed to 

contribute to pu lling  force w ith  fric tio n  coefficients greater than  un ity . This Is 

expected to have been an Inappropriate compensatory adjustment. The model should 

be reanalyzed by Including the hydrodynamic shear Interface contribu tion  and 

reducing the fric tion  coefficient below unity.

Many im portant concepts were demonstrated by these model studies. 1) In  

unid irectional pu ltrusion . significant elastic stresses were encountered by the 

compaction o f the non-unlform ly aligned filam ent array. The squeeze-flow o f the 

fibe r/m atrix  viscous prepreg was an im portant contributor to  the pu lling  force In 

pultrusion and was shown to be prim arily a consequence o f the enclosed tapered 

section. 2) I f  a dry friction Interface existed between the straight cooled section of a 

pultrusion die and the prepreg m aterial, the contribution to pu lling force would be 

defined In terms o f the transverse component o f residual elastic stress w ith in  the 

filament array, bu t would be Independent of the hydrostatic pressure In  the viscous 

Quid. 3) If. on the other hand, a viscous boundary layer existed between the fibers 

and the pultrusion die walls, viscous shear could substantially contribute to the 

required pulling force under high pulling speeds or high surface area ratio.

Fundamental Modeling Differences Between Pultrusion and ex parte Rlbbonizing

It was expected tha t the prim ary contributor to the pu lling  force In  the ex parte  

ribbonizer was Imposed by the bar contact Interface. The ex parte  rfbonizer did not 

clearly support the boundary conditions fo r axial pressure gradient and therefore, it
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was expected tha t axial plug flow  could not possibly occur. Furthermore, the flow 

fie ld boundary condition (a source o f flu id  w ith  a well defined pressure gradient) did 

not exist to support a Darcy's law, permeation-type flow in  any direction. Permeative 

polym er flow  and plug flow  in  pu ltrusion  o f therm oplastics requires high pu lling  

forces. The flow potential constraints for plug flow and permeative flow are met by the 

contracting section o f a pu ltrusion  die b u t can not be m et by the one sided bar 

contacts o f the ex parte ribbonizing process.

5.3.2 Stationary Bar/Towpreg Interface Modeling

The type of Interface was unknown bu t was expected to contribute entirely to the bar 

drag force component o f pu lling  force. An objective o f experim entation was to 

characterize the interface as a dry fric tion , viscous boundary layer, or a combination 

o f both. Models for the s tric t slip and stric t no-slip were formulated w ith  the in tent of 

determining the extremes.

Slip Condition (Coulomb Friction) Drag Force Model

I f  a slip  condition applied between the towpreg and the bar surfaces, the Coulomb 

fric tio n  drag force could be characterized by an em pirical dynamic coefficient of 

fric tion  p and the normal reaction force N (N). This slip  model was based on the 

premise that the flu id  boundary layer between the towpreg yam  and the surface o f the 

bars could be continually wiped away by the abrasion of the filam ent array.

The representative diagram o f the bar contact region is illustra ted  in  Figure 5.11.
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The tension on the tigh t side Is equal to  the tension on the slack side T(0) (N) plus an 

Increment dT(0). The bar is  pressing outward on the towpreg band w ith  a normal 

reaction force dN (0). Assum ing a s lip  condition at the Interface, the dynamic 

coefficient o f fric tio n  p. and the norm al reaction force component describe the 

Increment of drag tension dT (0).

dT(0) = p dN(0) [5.111

Since the angle d0 Is very small, the Inward component from  the tangential forces Is 

H0) d0.

dT(0) = pT(0)d0 [5.121

The tension varied from  the capstan tension Tc (N) to the bar drag force plus the 

capstan tension Td + Tc (N) and the angle varied from 0 to 0. The exact solution for 

the bar drag force T j (N) Is known.

Td = Tc [ e ^ - l ]  [5.131

As expected, th is solution Is Independent o f processing speed and temperature. A ll of 

the various contributing m aterial properties were lumped together Into a fric tio n  

coefficient.

No-Slip Condition (Hydrodynamic Friction) Drag Uodel

I f  the no-sllp boundary condition applies, the bar drag force could be modeled by
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viscous boundary layer flow [17] between the filam ent array and the stationary bar 

surface. The most obvious Indication o f the no-sllp condition would be evident If the 

bar drag force Increases w ith  Increasing velocity. The modeling of viscous boundary 

layer flow required development from fundamental principles.

Polymer melt viscosity is known to exhibit dependence on molecular weight, molecular 

weight d istribution, temperature, and chain branching fo r both Newtonian and non- 

Newtonian shear rate regimes [181. As a firs t approximation th is  model neglects all 

but the temperature and shear rate dependence o f viscous flow. This imposes a 

substantia l lim it such th a t the pu llin g  force model can only apply w ith in  a 

predetermined range of temperatures and shear rates, wherein the molecular weight 

and polydlspersity are Invariant over the duration o f the contact. The physical 

Interpretation o f th is assumption imposes a constraint on the reactivity and thermal 

oxidative s tab ility  o f the polymer itse lf. To account fo r th is  lim ita tion , careful 

rheometrlc characterization [19,20,21] of the neat polymer Is required.

Shear Rate Dependence of Viscosity

When a viscous flu id  Is subjected to shear forces, it  deforms [22] at a stra in  rate 

Inversely proportional to its coefficient of viscosity ij.  The resultant shear stress can 

be defined by a viscosity term and a linear velocity gradient or velocity distribution.

[5.14]
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Many flu ids such as water (r| = 10E-3 Pa s) and glycerol f t  = 1 Pa s) exhibit Newtonian 

flow behavior [23], such tha t viscosity Is Independent o f shear rate. For Newtonian 

liquids, q Is often called the coefficient of viscosity bu t it  Is more commonly referred to 

sim ply as the Newtonian viscosity. In  contrast, polym er processing m elt flow 

situations often involve non-Newtonian behavior called pseudoplastlc, where shear 

forces change the polymers structure. Figure 5.12 Illustrates the shearing effect on 

molecular structure 124J. Higher shear rates reduce polymer chain entanglements 

(reduce molecular entropy) and therefore reduce the polymer melt viscosity.

Polymer melt flow at high shear rates y (s '1) is usually non linear and Is often modeled 

by a power law variation of Newton's postulate.

The power law index n is the parameter which indicates the shear sensitivity of the 

polymer. A flu id  that exhibits viscous shear th inning is  called a power law flu id . The 

viscous constant m (sometimes referred to as "consistency”) and the power law index 

n are material-specific empirical values which are dependent on m olecular weight, 

polydispersity, chain connectivity, and temperature. The values o f m and n  can be 

obtained by the expanded linear relationship for isothermal steady mode rheometry.

As the value o f n  approaches 1, (Newtonian fluid) the flu id  is  less shear sensitive, and 

i f  n  approaches 0. (ductile yielding material) it  is more shear sensitive. Values o f n < l

q = mTn'1 [5.15]

log q = (n-1) log y + log m [5.16]
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Indicate pseudoplastic (shear thinning] flu ids, whereas n > l defines d ila tan t (shear 

thickening) materials. A t predetermined processing temperatures, sem icrystalline 

(PEEK™) exhibits moderate shear th inn ing  behavior [23 ] w ith  n  = 0.80, while 

sem icrystalline polypropylene (PP) exhibits a particu la r a ffin ity  n  = 0.43 fo r shear 

th inning response to high shear rates.

The Newtonian equation can be utilized over the range o f shear rates from  very low up 

to the point where deviation w ith  linear behavior corresponding to the relaxation time 

of the polymer begins. The power-law equation can be used to describe the shear 

th inning behavior for very high shear rates. Between these two models a substantial 

range of transition behavior can be neglected. The prim ary lim ita tion  of the power-law 

relationship Is found In th is transition region between linear and non-linear behavior. 

The Carreau description o f viscosity Is a three-param eter re la tionsh ip  w hich 

Incorporates both Newtonian and shear-thinning flow behavior.

The time constant X (s) Is a material parameter which Is the reciprocal o f the shear 

rate corresponding to the relaxation time of the polymer. The linear viscosity p rio r to 

tha t key shear rate (Pa s) Is scaled by the power law Index to provide a uniform

transition from  Newtonian to power-law behavior at high shear rates.

(5.17)
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Viscous Dissipation of Heat

A ll substances undergoing flow dissipate viscous forces Into heat. The act o f shearing 

generates heat w ith in  the liqu id  and may thus change the temperature enough to 

decrease the viscosity, unless steps are taken to remove the generated heat. The rate 

of work energy dissipated Into heat energy per u n it volume o f a sheared Newtonian 

liqu id Is the product o f shear stress and shear rate or, equivalently, the product o f the 

viscosity and the square o f the shear rate. For low viscosity flu ids the resulting 

temperature rise can be negligible. For polymer melts and other high viscosity flu ids 

(lubricants), viscous flow heating can be an Im portant factor. This rate o f viscous 

heat dissipation per u n it volume 0V (W m*3) fo r non-Newtonian flu ids depends on

shear rate.

0v = XY = m 7n+1 [5.18]

The non-adiabatic rate of temperature rise In  a polymer material which Is subjected to 

shear, is obtained by energy balance.

15.19]d t pcn

A fter Integration and substitu tion the Increase in  temperature AT (K) o f a power-law 

flu id , caused by Irreversible viscous dissipation Is related to shearing time ta (s). heat 

capacity Cp (J g-1 K '1) and density p (g n r3).
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AT = [5.201

Polymer flu ids which are cyclically loaded over long time duration (fatigued) are most 

susceptible to such heating. Viscous dissipation heating Is very im portant fo r 

continuous large amplitude vibrational damping applications.

Temperature Dependence of Viscosity

Another im portant aspect o f polymer m elt flow  behavior, is  the tem perature 

dependence o f viscosity. In  general, liqu id  viscosities decrease and gas viscosities 

increase w ith  Increasing temperature. For processing temperature below Tg+100°C, 

the polymer exhibits behavior well predicted by the fam ilia r tlm e-tem perature 

superposition WLF relationship.

The fam iliar constant at is  the WLF sh ift factor, and a and b are constants given by 

fitting  data o f a glass form ing substance onto a viscosity-temperature plot. The

An Arrhenius relationship more accurately models the temperature dependence of 

polymer melt viscosity at processing temperatures greater than Tg+100°C. A shear

log (at) = log
afT-Tg)

[5.21]b + T - T.

viscosity a t the glass trans ition  temperature qg is about 1 0  *3  poise fo r many 

polymers.
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rate may be a rb itra rily  chosen, bu t here the theoretical zero shear rate m elt viscosity 

q0 is defined.

Here the absolute temperature T  Is given in  Kelvin and R is the universal gas constant 

(8.314 (J m ol'1 K '1)). H ie  f r e q u e n c y  factor a J =“  (Pa s) is the theoretical m inim um

value o f viscosity at in fin ite  temperature, and usually at a known low shear rate o f 1 

Hz. The activation energy term (AE/R) is usually obtained by the slope o f the curve 

defined by a p lot o f natural logs.

The slope is positive fo r conventional treatm ent o f th is  relationship: when the 

horizontal axis is defined to be reciprocal temperature. The larger value o f flow 

activation energy increment AE (J m ol'1) In a certain region o f temperature, the greater 

the temperature dependence of viscosity.

Interpretation of the Physical Contact

The arc length £ (m) for bar contact Is mapped out by the bar contact angle 8 and the 

bar surface diameter D as discussed in  section 5.2.4.

Ho = Ar~e| (5.22]

(5.23]

15.24]
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The shear stress Is known in  terms o f viscous drag force applied over the contact 

area. The tota l shear area A§ (m2) Is defined by the bar contact curvature £ and the 

average bar contact w idth w  (m). The shear stress z (Pa) In  the boundary layer Is 

therefore defined.

x=Ii=jL. [5 25]
1 A, 2 ; *

The shear rate is equal to the quotient o f the linear take-up rate v and the average 

thickness o f the viscous polymer boundary layer h (m), between the stationary bar 

surface and the towpreg filam ent array.

Y = f 15.26]
h

Modeling Assumptions

Figure 5.13 illustrates the expected viscous boundary layer between the towpreg and 

the stationary bar surface. The boundary layer shape and d istribution  was unknown 

but was expected to resemble a d istribution thinnest near the middle o f the contacted 

length and thickest at the entrance and exit regions. Cross-section photographs 

discussed In Chapter 3 Indicated distinguishable viscous slag layers only near the 

entrance and exit contact locations. In  accordance w ith the pultrusion pu lling  force 

model o f Blbbo and Gutowski. a uniform  boundary layer Is approximated by the 

spacing between fibers o f a close-packed hexagonal array.
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E = 8 [5.27]

Note tha t the fiber volume fraction V f is not necessarily equal to  the fiber volume of 

the composite, bu t rather is the fiber fraction of the boundaiy layer. This distinction 

is  considered Im portant since 1) viscous slag Is never observed to drip o ff o f the bars 

during processing and 2) viscous flu ids tend to m igrate toward shear fields. The 

boundary layer is possibly experiencing a control volume type o f steady flow and there 

exists the possibility fo r causing a slightly resin rich surface as a result o f th is shear 

field. The fiber volume fraction of the boundaiy layer Is expected to be slightly lower 

than tha t o f the towpreg itself.

Power-law shear-dependent flow behavior was assumed since the area o f Interest for 

processing was usually w ith in  a 100°C range and the shear rates o f the boundary 

layer were expected to be very high. Based on the previous assumptions fo r the 

boundaiy layer thickness, normal processing shear rates ranged from 104 to 2 X  105 

(Hz) fo r velocities corresponding to 2.5 to 50 (cm s '1). Shear deform ation was 

assumed to be a consequence o f the relative motion o f the towpreg yam  filam ent array 

to the stationary bar surfaces. Viscous dissipation heating effects were considered 

negligible since the shearing time t^ of contact was very small. Arrhenius temperature 

dependence was assumed to characterize the polymer m elt flow  behavior since 

processing temperatures were normally higher than Tg + 100°C.
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Viscous Drag Model Definition

The two governing relations for the shear stress were set equal to each other which 

provided the fundamental relationship.

Substitution and addition of the capstan tension, yielded a fundam ental model 

equation to predict the bar drag force.

5.4 Polling Force Model Evaluations

The two types of drag models were evaluated under conditions most like ly to occur 

during normal operation of the ex parte process. An Increase In pu lling force w ith 

Increased pu lling  velocity would provide a clear indication tha t there existed a 

hydrodynamic fric tio n  Interface, however the experim ent could no t be easily 

accomplished In under Isothermal conditions. As shown In the previous chapter, the 

pulling speed and the heat transfer (towpreg temperature) were Interdependent. 

Geometrical considerations and capstan tension were Independent parameters which 

could be set to  constant values. The only Independent processing parameters 

common to both models were contact angle 0 and capstan tension Tc. Accordingly, 

the ir contributions to bar drag force were o f particular Interest. For Coulomb friction, 

the bar drag force was expected to Increase linearly w ith capstan tension and increase

[5.28]

Td = w D e ftoy>) [5.29]
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exponentially w ith  contact angle. The hydrodynamic viscous fric tio n  drag was 

expected to Increase linearly w ith  contact angle b u t was independent o f capstan 

tension.

Model Comparison with Experimental Data

The previously described bar drag force measurements were compared to calculated 

values obtained from  each o f the two theoretical models. The experimental 

parameters and material properties of the experiment were listed in  Table 5.2.

Table 5.2 Nominal Processing Parameters for PIXA™/IM-7™ ex parte 

Ribbonizing

Parameter Value
D (m) 0.01

rf (m) 2.5E-6

v (m/s) 0.11

AE (J/m ol K) 1.30E5

A (Pa s) 2.70E-8

n 0.42

T(K) 643

v f 0.45

TC (N) 17.63

Plots o f the theoretical bar drag force as a function o f contact angle are compared to 

the experimental data In Figure 5.14. The experimental bar drag force clearly
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increased linearly, however, it  was only at high contact angles where the distinction 

between boundary conditions was obvious. These high bar contact angles 

corresponded to larger contact areas. Although not presented here, the corresponding 

shear stress plot versus bar contact angle would be a line o f 70 (KPa) magnitude and 

zero slope as expected for a viscous boundary layer.

It Is Interesting to note tha t by assuming a very low fric tion  coefficient, the shape o f 

the Coulomb friction  model tended to be more linear and therefore mimicked the data 

more closely. This p lot alone was not sufficient to define the boundary condition as 

dry friction, or viscous friction, or a combination o f the two.

The bar drag force was calculated as a function  o f the capstan tension. The 

processing parameters listed in  Table 5.2 were utilized again except where noted on 

Figure 5.15. Again, the hydrodynamic model predictions mimicked more accurately 

the bar drag force data.

5.5 Pulling Force Observations and Suggestions

The measured viscous boundary layer shear stress fo r th is  ribbonizing process was 

near 10 (KPa) for 400°C bar temperature and 20 (cm s-1) take-up speed. The viscous 

boundary layer model predicts a sim ilar shear stress value. The previously discussed 

model #3 fo r therm oplastic pultrusion, predicts shear stresses 1000 times higher. 

This observation Indicates a fundamental difference between pultrusion and ex parte 

ribbonizing.
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Viscous flu ids tend toward shear fields and therefore It Is reasonable to expect a 

s lig h tly  resin -rich  region near the tow preg/bar Interface. The m lcrostructure 

photographs o f Chapter 3 offer tangible evidence o f a polymer boundaiy region of 

about one fiber radius in  thickness. The actual fiber volume fraction of the towpreg 

used to generate the data In  Figure S. 14 was near 60%. In  order to f it  the model to 

the data a theoretical fiber volume fraction o f 45 to 50% are required. The fiber 

volume fraction used In  the calculation o f the boundaiy layer thickness 8 Is not the 

overall ribbon fiber volume fraction b u t rather Is the fiber volume fraction o f the 

boundary layer.

As Tc was Increased, towpreg spreading at the bar contacts firs t Increased, then 

encountered a maximum and then decreased. This phenomenon Is attributed to the 

competition between the towpreg catenary effect which tends to draw the m aterial Into 

a cylindrica l cross section and the squeeze-flow at the bar contacts which tends to 

spread the m aterial Into a wide fla t cross section. The hydrodynamic model required 

tha t the shear stress in  the boundary layer be Independent of capstan tension, bu t 

the data presented In Figure 5.15. Indicated a clear maximum o f Tb w ith  Increasing 

capstan tension. This was attributed to the changing surface area presented to the 

shear field w ith  changing band w ith. A t maximum spreading, maximum pulling force 

was encountered. This observation did suggest a potential optimum value for capstan 

tension such tha t maximum spreading was achieved.

M ateria l Considerations

The bar drag force model relied profoundly on accurate description o f the polymer
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viscosity. Polymer melt viscosity is related to molecular weight, polydispersity, chain 

branching, temperature and shear rate. For polymer processing, th is  very complex 

secondary m aterial property is typically characterized in  terms o f only the la tte r two. 

The assumption o f constancy among polymerization batches is considered reasonable. 

As mentioned In  a previous section of th is chapter, the difference in  m elt behavior for 

different thermoplastic polymers is significant Just as im portant, the flow behavior of 

a polymer m elt varies significantly w ith temperature and shear rate. The complication 

here is tha t the shear rate and temperature effects are Interdependent.

The recent lite ra ture  on polymer m elt processing science has consistently utilized 

Arrhenius values, power-law index, relaxation time and even zero shear rate viscosity 

values to evaluate processing models. Most o f the thermoplastic composite processing 

science has made use of the m atrix polymer PEEK™ w ith  carbon fibers. Table 5.3 is 

a com pilation o f published viscosity relationships fo r PEEK™ and several different 

types o f therm oplastic polymers. The published viscosity relationships fo r PEEK™ 

were variant.

It is suggested tha t the Arrhenius frequency factor A<, and flow activation energy AE, 

be obtained via cone and plate, steady-mode rheometiy. The frequency factor should 

be considered to represent the theoretical viscosity at in fin ite  temperature and 1 Hz 

shear frequency. The power law index and relaxation tim e o f the polymer m elt are 

both dependent on temperature and so the like ly  temperature range should be 

established. The values fo r power law index n should be obtained fo r several 

isothermal frequency sweeps w ith in  the established temperature range. An average 

value fo r the power law Index should be sufficient w ith in  a narrow processing
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temperature range.

Table 5.2 literature Values for Temperature and Shear Rate 

Dependence of Polymer Melt Flow

Polymer AE/R (K1) ■Ao (Pa s) n Ho (Pa s) @°C X(s)

PEEK5 16,260 6.6E-9 0.916 N /A N /A

PEEK 150P12 19,100 1.13E-10 N /A N /A N /A

PEEK25 N/A N/A 0.787 2808 375 0.038

PEEK26 N/A N/A 0.8 280 © 400 0.04

PEEK27 N/A N/A N /A 3.500 @ 390 N /A

PEEK 150P28 5,523 N/A 0.71 1,090 @ 380 N /A

PEEK 380P28 5,523 N/A 0.67 3.600 © 380 N /A

PEEK 450P28 5.523 N/A 0.63 5.870 © 380 N /A

APC-210-29 2,969 133 N /A N /A N /A

APC-212 26,300 1.14E-12 N /A N /A N /A

PP30 5,600 2.6E-3 N /A 528© 185 1.0

PPS31 N/A N/A N /A N /A 0.1

PA27 N/A N/A N /A 33 0  215 N /A

PPS27 N/A N/A N /A 2.500 @315 N /A

PEI27 N/A N/A N /A 2,000 © 350 N /A

PIXA32 15,600 2.7E-8 0.42 N /A 0.01

PS27 N/A N /A N /A 2.000 © 350 N /A

PEKK33 12,000 1.42E-6 0.35 N /A 0.003

The expected shear rate range for processing should be approximated. Polymer melts 

can exhibit s tric tly  Newtonian, power-law or Carreau-type flow. PIXA™ and PEEK™ 

are s tric tly  power-law flu ids w ith in  the nominal temperature and shear rate ranges
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encountered In  ribbonizing. I f  the polymer rheom etry indicated Carreau flow 

behavior, the hydrodynamic model should be adjusted to Incorporate the relaxation 

time.

Sensitivity Analysis of the Hydrodynamic Boundary Layer Model

The relative importance o f speed and temperature was evaluated w ith in  the range of 

probable processing conditions. Figure 5.16 is an Isometric representation o f the 

hydrodynamic bar drag force model fo r two 12K, PEXA™/IM-7™ powder towpregs w ith  

both take-up speed and boundaiy layer film  temperature increasing simultaneously. 

To process at moderate pulling force, th is curve suggests processing at the maximum 

temperature and m inim um  speed. Temperature appears to be more im portant than 

the speed. For an increase In temperature o f 40°C at 20 (cm s 1), the bar drag was 

reduced by at least 75%. A t 400°C the bar drag force leveled-off qu ickly w ith  

Increasing take-up speed. This curve suggests tha t at high processing temperatures, 

there Is no fundamental pulling force lim itation on processing speed.

Summary of Pulling Force Analysis Observations

The pu lling  force fo r ex parte  ribbonizing Is comprised o f 3 m ajor components, 

capstan tension, bar drag tension and axial nip tension. Capstan tension is a process 

control variable. Bar drag tension Is a complex function o f processing conditions. 

The axial nip tension Is observed to Increase w ith  Increasing transverse nip load and 

is also expected to be a function of processing conditions. Under nom inal processing 

conditions, bar drag Is more significant than the axial n ip load.
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As capstan tension is  increased, spreading at the bar contacts encounters a 

m axim u m  w idth, which was attributed to the competitive mechanisms o f squeeze-flow 

spreading and catenary effect narrowing. The shear stress in  the boundary layer is 

independent o f capstan tension, bu t the ba r drag tension exhibits a secondary 

dependence on capstan tension related to the spread w idth.

The bar drag force is entirely attributed to hydrodynamic fric tion  between the towpreg 

and the stationary bars. This implied tha t axial plug flow was not possible. The bar 

drag tension increases linearly w ith  contact angle. Since the ba r drag force 

component was found to be dependent on m aterial properties, temperature, process 

geometry and take-up speed, sensing the bar drag force could be useful fo r indicating 

process control.

5.6 End Notes

1 Bodine Electric Company. 1975, Brush Motor Test Report, 32DSBEPM.

2 Stokes, T. (Modem Machine & Tool Co. Inc.), Newport News. VA.; Rhew, R.

(NASA LaRC), Hampton, VA.. 1994, NASA CONTRACT NAS1-19369 Report.

3 Suh, N.P. "Tribophysics'', Prentice-Hall: Englewood Cliffs, New Jersey, 1986.

4 W illiam s. J.G.; Morris. C.E.M.: Ennis. B.C. J. Polym. Eng. Set 1974 14 (6),413.

5 Seo. J.W .: Lee, W.I.. J. Camp. M a t1991, 25.1127.

6 Yang, H.; Colton, J.S. Preview Copy for J. Polym. Comp. 1993.

7 Ahn, K.J.; Seferis. J.C.; Price, J.O.: Berg, A.J. SAMPE Journal 1991, 27(6), 19.

8 Hou, T.H. Soc. Plast. Eng. Tech. Papers, ANTEC'86, 1986, 1300.

9 Hepola. P.J., Ph.D. D issertation. The U niversity o f Delaware, Newark, DE.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTERS PULLING FORCE ANALYSIS 198

1993.

10 Lee, L.I.; Springer, G.S.; Smith, F.N. J. Comp. M at, 1991, 25. 1632.

11 Blbbo, M A ; Gutowski, T.G. Soc. Plast. Eng. Tech. Papers. ANTEC'86, 1986,

1430.

12 Mantell, S.C.; Springer, G.S. J. Comp. M at 1992, 26, (16), 2348.

13 Gutowski. T.G.; Cal, Z.; Bauer, S.; Boucher, D.; Kingeiy. J.; Wineman, S. J. 

Comp. M at 1987, 21,650.

14 Gutowski. T.G. SAMPE Series, 1985, 3 0 .925.

15 Gutowski, T.G. SAMPE Quarterly, 1985, 16 (4).

16 Price, H.L.; Cupschalk. S.G. In "Polymer Blends and Composites in  Multiphase 

Systems". C.D. Han, ed. ACS Advance in Chemistry Series 1984, 206.

17 White, F.M. "F luid Mechanics” , 2nd Ed., M cGraw-Hill: New York. 1986; 

Chapter 1.

18 Bames. HjA; J.F. Hutton; Walters. K. "An Introduction to Rheology”. Elsevier: 

New York, 1989; Chapter 1.

19 Walters, K, "Rheometiy", Chapman and Hall: New York, 1975, p.52.

20 Rosen. S.L. Fundamental Principals o f Polymeric M aterials fo r Practicing 

Engineers, Bames and Noble: New YorkJC.

21 Kumar, N.C. J. Polym. ScL MacromoL Rev. 1980, 15, 255-325.

22 Sears, F.W.; Zemansky M.W.; Young H.D. "U niversity Physics", 6 th ed.; 

Addlson-Wesley: Reading Massachusetts, 1983, Chapter 13.

23 Avallone E.A.; Baumeister T. "M arks’ Standard Handbook fo r Mechanical 

Engineers", 9th ed.; McGraw-Hill: New York, 1987.

24 Cheng. J.T. "Applied Rheology and Polymer Processing", from Cheremlslnoff. X. 

"Encyclopedia o f F luid Mechanics", Vol. 7, G ulf Publishing: Houston, 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTERS PULLING FORCE ANALYSIS 199

25 Bums, J.S. J. ThermopL Camp. M at, 1994, 7, 100-.

26 Carpenter, C.E.; Colton, J.S. SAMPE Series, 1993, 38, 205-.

27 Iyer, S.I.; Drzal, L.T. J. ThermopL Comp. M at, 1990, 3 .325-.

28 Qizian. L.; Ziaomlng, Z. SAMPE Series, 1993, 38, 1594-.

29 Ranganathan, S.: Advanl, S.G.: Lamoniia, M A  SAMPE Technical Series, 1993, 

25,630.

30 Ye. L.; KUnkmuller, V.; Freidrich, K., J. ThermopL Comp. M at, 1992, 5. 32-.

31 Baird, D.G.; Sun. T.; Done. D.S.; Wilkes. G.L. J. ThermopL Comp. Mat., 1990, 

3, 31-.

32 Personal Correspondence w ith  Y. Suglta, M itsui Toatsu, 1993.

33 Personal Correspondence w ith  J. Pratt, DuPont Advanced Materials, 1993.

5.7 Chapter 5 Figures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



200

0.8

S 0.6
eo
•c«
g

Motor Efficiency

Normalized Shaft Speed

Normalized Load
0 .2 -

0.0 0.5 1.0 1.5 2.0

Motor Armature Current (Amps)

Figure 5.1 Take-up M otor Performance fo r a Steadily Increasing Load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



201

TAA7AA

4 -

tAAAAA

CO

m m V777AX

4 -

r I s

4 -  0 i l l
- 3 -

. r
-4-1 rfsr

+ 
|

□i 
. i.... I 

^

1

r-ss*-
3 -  ?

4- 0 i l l

7 Y  I -  - ........... -

T j  jj

i t
M £

iCO

a*
8

4
¥

i

t

H H t

TO

?

O

*1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

5.2
 

P
ul

lin
g 

Fo
rc

e 
Lo

ad
 

C
el

l 
D

es
ig

n 
Ill

u
st

ra
tio

n
.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

NF4NF8.

NORMAL FORCENFSNF7

+NF

NF

+8F

NF5, NF1
NF6

NF6 NF7
NF7 NF3

NF2 NF3
+AFNF6 NF2

+NF

NF8 NF4
NF5 NFS,

NFS NF1
NF1 NF4

F igure 5 .3  P u lling  Force Load C ell W iring  Illu s tra tio n .

202



203

200

27 N Armature (mA) Method 

Load Cell (mV) Method21 N

150
14 N

Efficiency = 37.5%as

0 N

■aV■ua
aa
m
O

50

27 N 
21 N 
14 N
J U L .

0.00 0.05 0.150.10 0.20

Take-up Speed (m/s)

Figure 5.4 Comparison o f Two Different Pulling Force Measurement Techniques 
at Four Different Capstan Loads and Four D ifferent Speeds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

I

CH 4 
|mV]
1000 i

N ote: 1 .7 8  d b ./lO O  m V ) -  7 .8  (N /lO O m V ) 
V „  m 133m V  O no  n o rm al load90 0  ;

800

/ —  T ransverse N ip  Load -3 1  N  
. ; N ip  Engaged (T c + T j  + T n  )

600

N ip  D isengaged (Tc ♦ T d  )

' - y500

400

300 ;

200  : B00/400/82B°C  
V  -  11 cm /s
2 x  12K lM-7™ /PIXA™  Towpreg 
T c -  16 N100 ,

1710

E lapsed T im e  (sec)

Figure 5.5 Typical Pulling Force Data for the Nip Engaged and Disengaged

204



M
ea

su
re

d 
A

xi
al

 
Pu

lli
ng

 
Fo

rc
e 

(N
)

205

35

3 0 -

25

20 -

15-

Total Pulling Force (Tn+Td+Tc)

Bar Drag and Capstan Load (Td+Tc)
10-

Capstan Load (Tc)5 -

Note: 2 X 12KPDCA™/IM-7™, 6 = 74°. ▼ = llc m /s

0 100 200 400300

Transverse Nip Load (N)

Figure 5.6 Relative Importance of the Three Pulling Force Components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



206

Z-conflguratlon
* 1!

#2
BAR TEMPLATE

S-conflguratlon

Figure 5.7 Template Geometry and Wrapping Configurations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



207

Figure 5.8 Geometry of Bar Surface Contact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ba
r 

Dr
ag

 
(T

d)
 

Fo
rc

e 
(N

)

208

4 ° (
Note: Two 12K IM-7™/PIXA™ @ 500/490/525°C  and v = llcm /a

35- 1

30 1» AlamihnmngBdc "Greeiffeaf "Ceramic"
■ Armalox™ Machinable Ceramic
A Bulk Carbon Graphite

1

25-

20 -

15

T
-J.-

10-

5

▲ 
i  1

A =

*n ---------------1-------------- 1-------------- 1---------------1---------------1--------------1-----------
50 100 150 200 250 300 350 400

Bar Contact Angle 9 (°)

Figure 5.9 Bar Drag Force vs. Contact Angle fo r Three D ifferent Stationary 
Bar Materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ea

su
re

d 
Ba

r 
D

ra
gT

en
sto

n 
(N

)

209

n T
x ^T T X T 

□ □ □ 
■L X X

10 15 20 25 30

Set Capstan Tension (N)

Figure 5.10 Bar Drag Force Data as a Function o f Capstan Tension

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



210

Total Contact Angle * 6

T(0]T(0) + dT

Tc
,Td + Tc

■D/2'
Velocity « v

Stationary Bar

Contact Length = 6 D/2 

f l* f  (D,CL,$)

Figure 5.11 Representative Diagram of Towpreg Section Under Dry Friction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



211

Polymer Melt Boundary Layer

Total Contact Angle * 8

Velocity « v ^

Length* 0D/2 

Approximation 6 * 2 rf

= W D 0 T| Y n

Y * v/S 8 « f (D.CL.tf n * A exp(AE/RT)

Figure 5.12 Viscous Boundaiy Layer Illustration and Drag Force Model Definition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



212

•oar

Figure 5.13 Effect of Shear Rate on Polymer Melt Shear Stress. Viscosity and 
Molecular Entropy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



213

40

35

30
i
Vo
5 25 
fc
'a

t t  20
mu
a

S 15

10

500 350100 150 200 250 400300

Bar Contact Angle 0 (°)

•  Td Data for "Greenleaf ’ © 0 = 74°

---------- Dry Friction © p. = 0.5
............  Dry Friction © n ■ 0.3
---------  Dry Friction © = 0.25

— —  ' Hydrodynamic Model © Vf = 50%
■ ■■■■>■ Hydrodynamic Model © Vf = 45%

Figure 5.14 Bar Drag vs. Contact Angle Data Compared to Two Types o f 
Bar Drag Force Models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ea

su
re

d 
(T

d)
 

Ba
r 

Dr
ag

 
(N

)

214

20

15-

10-

5 -

10 15 2520 30

Measured (Tc) Capstan Tension (N)

•  Td Data for 0 = 74°

- ■■in— i. coulomb Model @ p = 0.3

............  Hydrodynamic Model @Vf = 45% and w = 5mm

---------- Hydrodynamic Model @Vf = 45% and w = 6mm

--------- Hydrodynamic Model © Vf = 45% and w s  7mm

Figure 5.15 Bar Drag Force Data as a Function o f Capstan Tension 
Compared to Two Types o f Drag Force Models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



215
2 X 12KIM-7/PIXA Powder Towpreg © Nominal Processing Conditions

Bar Drag Force (Td)

(0 - 16 N)

A

Take-up Speed
(0 - 20 cm/s)

Temperature
(360 - 400°C)

T d = w  D 0 r) y n  

> v/8 6 -  fCD.CL.0) ti * A exp(AE/RT) 5 ■ 2 rf - 1]

Figure 5.16 Typical No-Slip Boundary Layer Model Isometric Plot.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



216

Chapter 6 Summary o f Conclusions

The goal of th is  research was to develop a controllable process to convert a 

therm oplastic powder-coated carbon-fiber towpreg in to  uniform  and consolidated 

ribbon. The approach comprised fou r prim ary activities. 1) The patent and 

processing lite ra ture  was studied to evaluate the state of-the-art. 2) A  functional 

ribbon fabrication technique was developed by scallng-up. in  a novel (ex parte) 

configuration some of the hardware components found in  the literature. 3) The ex 

parte ribbonizing process was characterized by calibrating equipment, determ ining 

steady-state and studying cause and effect between process parameters and ribbon 

quality. 4) Process design and control methods were derived from  heat transfer and 

pulling force analyses.

The ex parte  ribbonizer process comprises a m aterial handling system, a preheat 

region, a heated stationary bar assembly, and a cooled n ip  ro lle r assembly. 

Appropriate tim ing of important contacts is key to fabricating quality ribbon. Process 

characterization and analyses revealed key flow mechanisms. Ribbon m icrostructure 

changes most at the bars. Ribbon m acrostructure changes most at the nip. An 

isotherm al bar contact is a practical processing constra int fo r ensuring uniform  

squeeze flow bar spreading. A ll bar drag force is  attributed to shear stress in  the 

in terfacia l viscous boundary layer between the towpreg and the stationary bar 

surface. Continually sensing pulling force Is a good indication of process control.

The research goal was achieved because the ex parte  ribbonizer can be used to 

convert polymer powder towpreg in to  uniform  and fully-consolidated ribbon In  a
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controllable manner.

Summary o f Observations

A  study o f the state of-the-art In  polymer composite prepregglng revealed the key 

approaches for converting thermoplastic powder-coated towpreg Into consolidated and 

uniform  cross section ribbon. For th is  objective, towpreg band spreading was 

accomplished best by heated bar spreading and ribbon form ing was accomplished 

best by cooled nip ro lling . A  novel process called the ex parte  ribbonizer was 

developed comprising a material handling system, a premelting chamber, a stationary 

bar assembly and a cooled nip ro lle r assembly.

The ex parte  process was characterized in  term s o f hardware description and 

calibration. The material handling system control parameters: capstan tension (7.5 to 

20 (N)) and pulling speed (0 to 50 (cm s '1)), were variable by analog setting. The 

premelting chamber control variables comprised three zone set temperatures. The 

stationary bar assembly control parameter was the to ta l contact wrap angle (50 to 

400°). The stationary bars were passively heated by the steel tube lin e r o f the 

premelting chamber. The cool nip ro lle r control parameter was transverse n ip  load 

(10 to 25 lbf.). A ll o f the process control parameters affected ribbon quality to  some 

extent.

A  m icrostructure analysis revealed key phenomenon encountered by the towpreg 

which were 1) gas bubble (void) redistribution, 2) transverse, permeative m elt flow 

(general wet-out), 3) filam ent alignm ent, 4) residual void compression, 5) elastic
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compaction of the filam ent network, and 6) net axial cross section shaping. The least 

significant o f these mechanisms Is transverse m elt flow due to the high shear stress 

and the short time-scale o f the perturbation. Axia l m elt flow is not like ly  a key 

component o f the flow phenomenon because the axial viscous flow  potential only 

exists at the tangent point o f In itia l bar contact

The towpreg "void content” comprises two components, incompletely wet-out regions 

and gas bubbles. The cylind rica l symmetry assumed by the towpreg during 

preheating is  attributed to "towpreg catenary effect". Spreading at the bar contacts Is 

attributed to composite squeeze flow. A fter exiting the last bar contact, the towpreg 

cross section is generally wide and fla t bu t usually contains some gas bubbles near 

the center plane. Filament alignment and elastic compaction of the filam ent network 

are im p lic it by towpreg band spreading. Fabrication o f void-free towpreg ribbon Is 

dependent on the In itia l qua lity o f the powder towpreg. The key to form ing good 

ribbon m icrostructure Is to maximize wet-out and m inim ize entrapped gas bubbles. 

The key to good macrostructure Is to optimize bar spread w idth to be nearly identical 

to the desired ribbon w idth.

The heat transfer phenomenon of the ex parte process comprises 1) preheating. 2) bar 

contact heating, 3) ambient cooling and 4) n ip cooling. The firs t two components were 

modeled to predict heating therm al h istory up to the maximum tem perature 

experienced by the material.

The preheating phenomenon was modeled and evaluated In  scalar form. The scalar 

representation correlates well w ith  measurements. Preheating Is prim arily driven by
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radiation from the tube liner and axial conduction opposing the relative velocity o f the 

towpreg. Processing speed and furnace set temperatures are the most Im portant 

variables fo r determining the q.s.s. preheat temperature profile In  terms o f basic 

m aterial properties, processing parameters and geometrical considerations. The 

model Is useful for predicting the q.s.s. towpreg temperature profiles up to the bar 

contact location.

The bar contact heat transfer phenomenon was modeled and evaluated firs t In  two 

spatial dimensions. Several temperatures through the towpreg bands thickness were 

averaged to provide a scalar representation of the q.s.s. mean towpreg temperature 

profile. The scalar representation o f the towpreg temperature increase, caused by 

contact w ith the stationary bars, provides a reasonable firs t approximation. Heating 

Is driven by conduction w ith the bar surfaces. The two dimensional analysis revealed 

the potentia l fo r substantia l tem perature gradients throughout the towpregs 

thickness. This observation Implies potential fo r non-lsothermal bar contact squeeze 

flow at high or low processing speeds. Non-lsothermal squeeze flow Is considered 

undesirable In terms o f steady-state operation and process control. An Isothermal 

squeeze flow process control constraint Is considered practical.

The two heat transfer model components were Integrated as an Illu s tra tive  

approximation to demonstrate potential process therm al h istory scenarios. For a 

given set of processing conditions, velocities are considered too low if  Tp »  Tb and too 

high i f  Tp «  Tb- An isothermal constraint Is imposed on the bar contact region such 

tha t the preheating temperature, the bar temperature, the maximum temperature and 

the desired processing temperature are a ll equal This constraint ensures uniform
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viscosity throughout the cross section. In  order to Implement th is process constraint, 

the previously established steady-state tube line r temperature profile, and continual 

sensing of the bar surface temperature, are used to evaluate the heat transfer model 

providing the appropriate processing speed.

The u tility  o f the heat transfer models extends beyond process control Issues and 

contributes to process engineering and design. For a given set of process conditions, 

under the isothermal bar contact constraint, the process speed can be Increased by 

lengthening the tube lin e r or Increasing the set tem perature o f the oven zones 

upstream of the bar contact location. The oven zone set tem peratures can be 

Increased to allow fo r faster speeds, however, the ris k  o f overheating during a 

momentary stoppage or slow-down, prohibit th is approach in  the extreme.

The pulling force fo r ex parte  ribbonizing comprises 3 m ajor components; 1) capstan 

tension. 2) bar drag, and 3) axial n ip tension. The capstan tension is a process 

control variable. As the capstan tension is  increased, the spreading at the bar 

contacts encounters a maximum w idth , which is  a ttribu ted  to the competitive 

mechanisms o f squeeze-flow spreading and towpreg catenary effect narrowing.

Under nominal processing conditions, the bar drag force is  more significant than the 

axial n ip  load. The axial n ip  tension was observed to increase w ith  increasing 

transverse nip load. The bar drag force is entirety attributed to hydrodynamic fric tion  

between the towpreg and the stationary bars. The bar drag tension Increases linearly 

w ith contact angle. The shear stress in  the boundary layer is  independent of capstan 

tension, but the bar drag tension exhibits a secondary dependence on capstan tension
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related to the spread w idth. Since the bar drag force component Is dependent on 

m aterial properties, temperature, process geometry and take-up speed, sensing the 

bar drag force Is useful for indicating process control.

The novel ex parte ribbonizer together w ith  the mechanism study, heat transfer model 

and pu lling force model provide a controllable process which Is useful fo r converting 

therm oplastic powder-coated towpreg Into h igh-qua lity  ribbon fo r use In ATP 

fabrication of composite structures.

Future W ork

Continued process development is necessary to fu lly  exploit the ex parte  ribbonizer. 

The take-up should be redesigned so tha t a separate w inder and pu ller exist. The nip 

design should be redesigned fo r better ribbon dimensional tolerances. An automatic 

slag removing and bar cleaning mechanism Is necessary to allow fo r long duration 

(over 2 hour) fabrication runs. A  ribbon splice tool is  necessary to jo in  continuous 

ribbons allowing the operator to remove poor quality ribbon which can result In  the 

middle of a fabrication run. A variable bar contact angle mechanism Is necessary to 

allow for analog settings as a readily variable control parameter.

Continued process control development is necessary to  gain a closed-loop control 

mechanism for the ex parte ribbonizer. Permanent thermocouple attachments to the 

tube line r surface should be put In place to sense, in  real-tim e, the driving potential 

for heating so tha t the q.s.s. towpreg profile could be evaluated continually. A  method 

fo r determining the natural tolerance o f pulling force should be developed fo r common
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fabrication conditions to establish the process control range. A  closed-loop process 

control mechanism should be developed by integrating the q.s.s. towpreg temperature 

profiles and the pulling force natural tolerance, along w ith  the appropriate control 

logic, into an interactive platform.
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ABSTRACT

Dry powder prcpregglng of thermoplastics is efficient in distributing solid 
polymer particles throughout continuous filament tows. The resulting 
towpreg yam is flexible, bulky and abrasive. Robotic placement material 
handling systems are generally designed to utilize stiff, preconsolidated 
ribbons with consistent cross-section. The research Included herein 
summarizes efforts toward developing a bcnch-scale processing method to 
convert a single powder coated towpreg yam into a fully preconsolidated 
ribbon. A comprehensive study of debulking techniques revealed a variety of 
issues critical to effective ribbonlzing. Including towpreg material quality, 
transverse squeeze flow, appropriate timing for heating and pressure 
application, and tool contact/release.

Several processing techniques have been designed, built and experimentally 
evaluated to serve as a basis for understanding the unique characteristics of 
the towpreg ribbonlzing process. Use of reactive plastlcizers or solvents was 
excluded altogether. Due to availability, three powder towpreg yam  
materials. Aurum (5001/IM-8 (prepregged by BASF). LaRC-lA/IM-7 and 
PEEK/AS-4 (prepregged by NASA LaRC), were used in the evaluation of these 
processes.

By utilizing desirable attributes of several of the experimental processes, a 
novel processing technique was developed. This powder coated towpreg 
ribbonizer was comprised of two primary components. The hot bar fixture 
facilitates transverse melt squeeze flow while the cool nip-roller assembly 
solidifies the ribbon Into a preconsolidated ribbon with consistent cross- 
section. The process has been shown to provide quality ribbon from various 
high-temperature performance thermoplastic powder-coated towpreg yams. 
The observed experimental rates and temperature ranges Indicate that this 
technique could be readily integrated as a final step in the powder prepreg 
manufacturing process. The resulting process has been scaled-up to 
simultaneously convert multiple powder coated yams into multiple ribbons 
and has also been used to produce a single 3 Inch wide prepreg tape.

KEYWORDS: Thermoplastic Powder Towpreg, M elt Processing,
Prepreg Tape. Polyimides. Ribbonlzing.
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INTRODUCTION

High Temperature Performance, Fiber Reinforced Thermoplastics

Future aircraft arc being designed to flv faster, resulting in increased air 
frame surface lemperaturos. If fiber reinforced polymeric matrix materials 
arc to be utilized in structural components, they must exhibit high 
temperature stability in addition to high strcngth-to-weight ratios. NASA is 
conducting research efforts to develop high temperature performance, fiber- 
reinforced. thermoplastic composites for use in future aircraft. Material 
development research has provided a number of thermoplastic polymers 
which have the potential to qualify under high performance conditions. In 
order to properly characterize these polymers as matrix materials, an 
extensive evaluation of the composite parts is required.

Robotic Composites Manufacture

Automated robotic placement of fiber reinforced thermoplastics (ATP- 
Advanced Tape Placement) is generally known to offer important advantages 
for in-sftu composite manufacturing. Many commercial research efforts arc 
developing the robotic hardware and software to bring tills technology Into 
widespread use in building aircraft parts. Ambitious projects arc attempting 
to push the limits of the robotic technology by building complex curvature 
parts. Simultaneously, the robot manufacturers and users are learning how 
to reduce the size and bulk of the placement equipment [l|. As time 
progresses and the technology develops, this manufacturing method 
promises opportunities for thermoplastic composites assembly and repair in 
commercial composites shops as well as In the vacuum of earth orbiting 
space.

As these ATP developmental research efforts succeed and fall. Important 
limitations and "bottle-neck" issues have been discovered. Examples include 
open section residual stresses, turning radius limitations, autohesion 
requirements, compliant roller issues, prepreg material quality and post 
processing annealing of crystalline polymers. Most basic of these is the 
requirement for high quality thermoplastic prepreg ribbon.

Figure I. This LaRC-TPI-1500/T-800 hot-mell prepreg tape exhibits poor wet-out
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Dry Powder Prepregglng:

Many high-temperature performance thermoplastics (e.g.. fully-imidizcd 
polvituides with Tg=250"C) are not particularly amenable to dissolution in 
organic solvents due to their stiff back-bone structure and arc therefore not 
well suited for conventional solution (dip-pan impregnation) prepregging 
methods [2|. The high melt viscosity of these same polymers precludes 
conventional liot-mrit prepregging methods. E'igurc ! shows a Scanning 
Electron Micrograph cross-section of hot-melt prepreg tape which appears as 
a bundle of dry carbon filaments covered by a polymer sheath. This prepreg 
was not "wet-out" because the viscosity of the polymer was far too high for 
the melted polymer to penetrate the fiber bundle. Melt viscosity could be 
reduced, and therefore wet-out could be promoted, by adding a flow 
enhancing additive (plasticizer) to the polymer prior to prepregging. Residual 
plasticizer |3| has been shown to effect matrix dominated composite part 
properties .

In response to these concerns, powder prepregging technology |-1| continues 
at NASA Langley Research Center. In contrast to the previously mentioned 
conventional prepreg forms, dry powder prepregging docs not include the use 
of solvents or plasticizers. As a consequence, the typical dry powdcr-coatcd 
towpreg is more likely to retain maximum matrix dominated composite 
properties. Contemporary commercial research compliments NASA's efforts 
in the development of towpreg yam anti ribbon material. CYTEC Engineered 
Materials [formerly liASK) offers a high-quality dry powder towpreg yarn 
made via their slurry impregnation processing |5|. CYTEC is currently 
evaluating ribbonizing methods for the conversion of towpreg yarn into 
preconsolidatcd ribbon. Similarly. Quadrax Advanced Materials Systems 
inc. has a powder slurry process '[61 followed by pultrusfon. which is being 
used to develop ribbon for automated placement research.

Figure 2. The surface topology of a typical thermoplastic powder coated towpreg yam 
(PEEK/AS-4) exhibits powder particles trapped within the filament array and/or partially 
fused polymer which is adhered to the filaments.
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Typically, powder towpreg yarn is bulky and voidv [7| compared to its 
solution-coated towpreg counterpart. Figure 2 is a photograph of a typical 
powder coated towpreg yam made at NASA LaRC’s Composites Laboratory. 
In tliis bulky state, high Tg. thermoplastic powder towpreg yarns are not well 
suited for conventional robotic ribbon placement.

Many powder towpreg yarns generally exhibit these characteristics:

• Abrasive surface texture below the glass transition temperature.
• Even filament/polymer distribution.
• Accurate fiber volume percentage.
• Peripheral broken filaments and inconsistent surface characteristics 

varying with fiber type, sizing and modulus.
• Bulky and flexible characteristics (ranging from 50% to 80% voids).
• Inconsistent thickness and width due to variable "bulk " of yam.

High guality  Prepreg Ribbon Manufacturing

Commercial prepregging technology is being elevated to meet the stringent 
material specifications required by automated robotic placement. Some 
commercial prepreg suppliers already have technologies which arc capable of 
providing high quality ribbons (e.g.. PEEK/AS-4, PEKK/AS-4 and PPS/AS- 
4). Some of the NASA funded robotic placement research efforts require the 
use of polymer matrix systems which arc not commercially available in 
ribbon form. The term "Tibbonizing"’ is used here as an analog to 
manufacturing a prepreg tape that is less than about 10 mm wide. Once a 
reasonable ribbonizing method is developed, the scalc-up to making multiple 
ribbons or a more conventional prepreg tape, is a natural progression. The 
prim ary goal of this research was to develop a process which converts 
powder towpreg yarn in to  ATP quality ribbon. Secondly, this activity 
intends to provide technological opportunities to suppliers of other material 
systems so as to broaden the scope of the available materials for robotic 
placement of thermoplastic composites.

In order for the towpreg yarns described above to be considered for 
utilization in automated tow placement operations, the yarn must be 
converted to discrete cross-section ribbons with the following characteristics.

• Surface texture of the ribbons must be uniform and smooth to the touch. 
This eliminates the allowance of "hair-balls" and irregular surfaces.

• Filaments must be evenly distributed within the polymeric matrix.
• The fiber volume of the towpreg ribbon must be equal to that which is 

required for the finished part, since no squeeze-out or "flash" is removed 
in robotic placement processing.

• Ribbon must be reasonably void-free (1% to 3% maximum) for most high 
performance applications.

• Ribbons must have precise width (e.g. 0.125 in. to 0.250 in.).
• Ribbon must not be unevenly tapered or rounded on ends.
• Thickness is specified within some tolerable range but is not typically 

considered a critical dimension for thin ribbons.

Experim ental Evaluation of Ribbonizing Techniques

Each of (lie following processing methods were thoroughly evaluated. Two 
major categories of techniques were chosen: Heated and Cooled Apparatus.
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I  Heated Tools and Machines

Pitll Dry Powder Towpreg Yam:

1 Through a Conventional Thermoplastic Melt Pultruder.
2 Through an Over-Sized Die Melt Pultruder.
3 Through an Ultrasonically Enhanced Melt Pultruder. *
4 Through a Preheated Ultrasonically Enhanced Melt Pultruder. *
5 Over a Heated. Stainless Steel Roller.
6 Over a Heated. Grooved S.S. Roller.
7 Over a 1 Icatcd. Grooved Ceramic Roller.
8 Over a Heated. Grooved. Silica-Glazed. Ceramic Roller.
9 Through Matched Set of Hot. Flat. S.S. Nip-Rollers.
10 Over and Under Stationary Hot S.S. Rods (3/8 inch o.d.).
11 Over and Under Stationary. Hot. Ceramic or Bulk Graphite Bars.
12 Over and Under Stationary. Hot. Glass Rods.
13 Over a Heated. Curved. Ceramic Shoe.

’btj Thermoplastic Composites Inc.. Bartlesville. OK.

I I  Cooled Tools and Machines

Pull D ry Powder Towpreg Yam  Through a  4 Foot Long Tube Furnace lo Sojlen 
the Polymer, then After Exiting:

14 Over an Ambient Air-Cooled, Chrome Rod (I inch o.d.).
15 Through a Cooled. Grooved. Silica-Glazed. Curved. Ceramic Shoe.
16 Over a Cooled. Stationary. S.S. Tube Array (3/8 inch o.d.).
17 Through Cooled. Spring-Loaded. Nip-Rollers.
18 Through Cooled. Grooved. Spring-Loaded. Nip-Rollers.

IH  Combination Processes

19 Process 8 12 and 8 18.
20 Process 8 11 and ft 18.

Figure 3 on the following page, arranges qualitative attributes associated 
with each of the 20 listed processing techniques. The heated apparatus 
typically facilitated melt flow and therefore promoted polymer/filament 
redistribution and void expulsion. The cooled apparatus typically provided 
good product release and consistent cross-sections. The combination 
processes take advantage of the beneficial attributes of the others and 
consequently provide a novel approach to consolidating prepreg yams |8|.

EXPERIMENTAL DISCUSSION

I  Heated Tools and Machines

Ribbonizing techniques 81.82.83 and 84 above refer to a group of variations 
on the common theme of pultrusion: the dry towpreg yam is pulled through 
a stationary tapered die having an inlet area greater than the exit area, 
which is heated at the entrance and may or may not be cooled at the exit. 
Manufacture of thermoplastic composite parts via pultrusion techniques is 
commonly known to be useful for a variety of products. Large cross-section 
pultruded (fiberglass/epoxy) parts (9.10| routinely make use of random 
short-fiber mats which surround the major load bearing unidirectional 
filaments inside. One of the purposes for the random mat. shown in Figure
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A ttrib u te s

General Q uality o f Resulting Ribbon
Uniformity of Polymer Distribution 
Transverse Melt Flow 
Longitudinal Melt Flow 
Uniformity of Fiber Alignment 

Ribbon Custom ization Capability 
Surface Texture Smoothness 
Custom Cross-SecUon Shape Control 

N> Response to Defects in  Powder Yarn  

"  Fiber "Hair" Balls
Broomed Filament Ends 
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4 is to facilitate a desirable surface contact between the part and the interior 
walls of the pultrusion die. much like a cotton sock provides a comfortable 
interface between the foot and shoe. More importantly, the random surface 
mat acts as a bleeder ply. for transverse polymer flow. Unfortunately, when 
pultruding ATP ribbon, use of a random mat is inappropriate. Without the 
mat. pultrusion typically exhibits an exaggerated sensitivity to surface 
irregularities (e.g. broomed or dry fiber ends) of the incoming towpreg yarn 
material. Barring use of release coalings or extravagant surface 
preparations, high temperature performance thermoplastics were observed 
to stick to just about any surface above Tg.

The time required to melt the dry polymer powder was naturally dependent 
upon the method of heat application. Per practical reasons, the towpreg 
yarn was preheated (melting the polymer) before it contacted the die 
entrance. Benefits included entrance lubrication, reduction of required 
tension and enhanced processing speed. Most importantly, due to the 
mechanics of the process and the lack of a bleeder ply. pultrusion and its 
derivatives promoted only limited melt flow transverse to the fibers while the 
primary (low was longitudinal (axial). For high mcll-viscosity thermoplastic 
polymers, this characteristic is detrimental since it tends to limit processing 
rates.

Ribbon pultrusion of these polymers on carbon fibers is typically very slow 
(near 2 to 10 ft/min). Polymer slag build-up was common and tended to 
complicate processing.

Woven

Figure 4. This is a cross-section of a commercially available S-Glass/Vinyl ester, 4 inch 
tall, puitrudcd beam. Close inspection o f the beam reveals the "lay-up". Note the thickness 
and heavy polymer content o f the chopped fiber mat surrounding the pan.

Although state-of-the-art powder coated towpreg is reasonably uniform and 
consistent, occasional anomalies exist, such as "fiber-balls" and broomed 
fiber ends. These irregularities routinely cause failure of the pultrusion 
process. Ultrasonic augmentation has been shown to reduce the sensitivity 
of the pultrusion process to these material irregularities [ I I !  but it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



230

impractical, on such a small scale, to expect the pultrusion process to 
survive ingestion of a fiber-ball without "lamming" the entrance. When the 
throat of a pultrusion die was plugged with fibers and polymer slag, tension 
was observed to build-up and sometimes jeopardize the integrity of the 
towpreg yam. It is expected that pultrusion of individual carbon fiber 
towpreg yams is particularly sensitive to adjacent fiber crossing during 
dcbulking. There is a relatively small size ratio (approx. 20 to 1) of the mold 
cavity’s smallest dimension to the filament diameter. Smaller diameter 
filaments reduce this ratio and likely change the consequential filament 
crossing effects.

Alternatives to the pultrusion process (techniques #5 through “91 were built 
and evaluated [I2 | with the objective of I) full wct-out of the fibers. 2) a 
reasonable degree of melt squeeze flow transverse to the fibers. 3) smooth 
ribbon surface character and 4) a "robust" process which would allow for 
incidental fibcr-balls and other towpreg yam anomalies. Upon experimental 
evaluation, adhesion between the melted polymer and most heated tool 
surfaces was observed for all rotating (e.g. heated roller) apparatus.

; 7 7 7 7 7 7 7 7 ;7 ? ; ; ; / ; ; ; ; ; / ; ; /> ;7 7 /7 y ? /~,

{7777/77,
=  MELTING : 
== OVEN

~\ZZZZZZZL

777777777777777/ 777777777777777/ /

Figure 5 . This is a schematic diagram o f the heated box assembly used to evaluate 
techniques #5 through If*): "the heated roller machinery ".

The process shown in Figure 5 was relatively unsuccessful. The heated 
roller process evaluation did contribute the notion that when melted towpreg 
yam was passed over any heated roller (regardless of the surface finish) 
stray fiber ends tended to become wrapped around the circumference of the 
roller. This eventually resulted In a filament stripping and process failure in 
every trial. It became very clear that no heated roller shaping device was 
going to be capable of converting towpreg Into fully preconsolidated ribbon.

Processes #10 #11 and #12 Involved drawing a pre-melted towpreg yarn over 
and under two stationary rods which were fixtured near the exit of a tube 
furnace. Upon exiting the tool, an operable distance was provided to the 
Take-up" puller so that the ribbon was allowed to cool below Tg in ambient 
conditions prior to being taken-up onto a 3 inch cardboard spool (Figure 6). 
The rod fixture geometry was varied between a classic "S-wrap” to a much 
gentler under and over pattern. Filament buckling and excessive adhesion 
between the melted polymer and the heated rods were observed to contribute 
to process failure under the "S-wrap" configuration but became less 
detrimental as the yarn was routed through a gentler trajectory. 
Furthermore, the effect of filament buckling with the "S-wrap" was observed 
to be more pronounced for larger diameter filaments (AS-4) than for smaller 
filaments (114-7) and was casually attributed to the differences in the bending 
stiffness [Young's Modulus * Area Moment oflnertia) of each type of filament.
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•Fire-Polished Glass Rods

Towpreg Yam

4 Foot Long 3 Inch DIa. Tube Furnace

Figure 6. Processes #11 &  #12- The incoming yarn passes sequentially, over the first 
bar and under the second. Void expulsion and polymer (low result in a wide and fiat ribbon 
whose dimensions are a function o f rod diameter, fixture geometry and the feed spool tension.

By reducing Ihc angle of wrap, the total yarn surface area contacting the 
liars was reduced and therefore the ribbon take-up tension required to draw 
the yarn through the device was correspondingly reduced. (Axial drag force 
must be optimized to reduce the detrimental processing effects caused by 
filament/tool adhesion.! The gentler rod configuration used in process ft 12 
was observed to effectively facilitate flow transverse to the unidirectional 
fibers (wet-out), while causing reasonable values (approximately 150 g) of 
pulling force. The reaction tension measured just prior to take-up, was 
observed to change with wrapping area defined by the fixture, but was found 
to be independent of take-up rate within the range of 5 fpm to 50 fpm. 
Ribbon width was observed to vary with the processing temperature, amount 
of wrapping and take-up speed. An example cross-section of the ribbon is 
shown in Figure 7.

Figure 7 . Several representative cross-sections o f ribbon made from process #12 are 
shown to have even polymer distribution and reasonable void content. A urum -500/IM -8  
powder coated towpreg was processed at 50 fpm. The large dark region between the second 
and third ribbon is a void which resulted during sample potting.
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After a typical 45 minute experimental ribbonizing run. the take-up was sht. 
down and the oven was turned off. After the polymer was solidified, produt 
was cut and removed so that the fixture containing process 3 12 wa 
withdrawn front the tube furnace with a section of product adhered within 
The rod assembly was then dismantled. The two glass rods were observed I 
remain adhered to the product. The rods were removed from die polvmc 
material by lightly twisting the rod and holding the rigid ribbon stationary 
Hie glass rods exhibited abrasion and wear. Efforts to remove the residua 
polymer and filament slag included soaking the rods in organic solvents anc 
fire-polishing techniques. Polar aprotic solvents removed the polymer anc 
revealed carbon filaments which had rut through and stuck into the surfaci 
of the glass rods. Fire-polishing compromised the dimensional stability o 
the glass. The abrasion of the glass rods revealed that silica glass would no’ 
be useful for long duration processing runs nor could the glass be routinely 
reused. Wear resistant materials have replaced the glass rods, both bulk 
graphite and fired ceramic and have been used in repeated long-duralion 
ribbonizing runs.

The section of ribbon which was attached to the glass rods was potted in 
epoxy and polished for microscopic evaluation. Sectioning along the length 
of the sample revealed the motion of voids to be transverse to the filament 
array. Void size and shape varied from small spheres to large slugs. 
Transverse void expulsion [per unit length) is known to require a larger 
pressure gradient than axial void expulsion. Fortunately, this process 
flattens the towpreg to a thickness near 10 to 100 filament diameters so that 
the voids do not have far to travel before they escape. As a consequence of 
the thinning cross-section, the pressure gradient was compounded. The 
eross-scclions also revealed the movement of (he filaments within the 
polymer matrix. As the yarn passed over the first bar. the filaments were 
pulled upward toward the bar surface, relative to the viscous polymer melt. 
Upon contact with the lower surface of the second bar. the filaments were 
observed to move upward toward the second bars surface. These 
observations suggest that the polymer is being redistributed within the 
filament array via melt squcczc-tvpe flow. The photomicrograph of the

Figure 8. A um m -500/lM -8 powder coated towpreg was processed via #12 at 30 fpm
take-up speed. The ribbon cross-section exhibits many desirable attributes including low void 
content, smooth surface character and good wet-out.
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resulting ribbon further revealed an enhanced, even distribution of the two 
components. By slowing process #12 down from 50 fpm to 30 fpm. (Figure 
8). void content was observed to be reduced. Similar effects were observed 
when the temperature was increased or wrapping angle was increased, 
instead of slowing the process from 50 fpm. The contact time required for 
processing is limited by complex two-phase viscous fluid flow and is the 
matter of future process modeling research activities.

Since the fibers carried 100% of the tensile load, the matrix was cooled 
under approximately ambient conditions. To make a ribbon of uniform 
cross-sectional shape along its length, the ribbon must have been 
constrained in the form of that desired shape until below Tg (reformed). 
Otherwise, surface energy effects, thermal stresses, and uneven tension on 
the filament ends, had the opportunity to alter the intended shape of an 
otherwise smooth, flat ribbon.

I I  Cooled Tools and Machines

Several alternative techniques (previously designated #14 through #181 were 
evaluated with the goal of providing full product release front the tool as well 
as uniform net shape. Process #14 was accidentally discovered. In attempts 
to divert the softened yarn exiting apparatus #12. it was discovered that the 
polymer did not adhere to a cool chrome rod. Furthermore, the polymer 
solidified quite evenly on the side which contacted the rod. This led to an 
attempt to use the ceramic shoe in an altered configuration so that it could 
be healed on the inlet side and cooled on the exit side. Figure 9 illustrates 
the salient aspects of process #15. Experimental evaluation of the polished 
cross-section, revealed that the ribbon made from the tool was insufficiently 
wet-out and was unevenly shaped along its length.

PRECONSOLIDATED 
TOWPREG RIBBON

POWDER
TOWPREG

Figure 9. This schematic diagram illustrates the configuration o f the apparatus #15. The 
front half o f the die was passively heated by a hot air gun while the hollow back half was 
cooled with a steady stream o f air.

The next apparatus involved pulling prc-mclted towpreg yam through a 
stationary, cooled tube array IS 16). Unexpectedly, a steady low frequency 
"hum" could be heard emanating from the machinery. This hum was 
observed to vary with take-up speed within a limited range. The melted 
towpreg yam instantly stuck to the tube. As the polymer cooled well below 
Tg It shrank according to the difference in the thermal coefficient of 
expansions for the two different materials. Within a very short period of time 
(approximately 1/20 th of a second) the melted polymer adhered to the tube
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and solidified. While the polymer contracted, the take-up winder tension 
overcame the adhesive bond so that the polymer ''popped-off' the tube 
allowing the melted section directly behind to impact the cool tube and 
instantly stick. This set of simultaneous events caused the hum. The 
resulting ribbon surfaces were "scaled" and rough. Upon observation of the 
polished ribbon cross-sections, techniques #14. #15 & #16. were determined 
to be mostly ineffective at facilitating melt squcczc-flow transverse to the 
fibers. The most Important benefit of these three cooled processes was 
consistent product release from the tool. This was known to be a critical 
issue for scale-up production. Due to the elevated temperatures used for 
melt processing of polviinidcs. conventional release papers (or cloths) were 
predetermined to be impractical.

Next, the #17 apparatus involved pre-melting the yam in a long oven and 
then drawing it through cooled, nip-rollers. This apparatus was placed 
approximately I inch from the exit of the melting oven. At a moderate take- 
up rate of approximately 15 ft/m in. and proper temperature setting for the 
melting oven, (he molten polymer was observed to cool to below Tg upon 
contact with the nip rollers. Product release between the polymer and the 
cool metal surfaces was observed to be consistent. No vibration hum was 
heard. Incidental towpreg yarn defects were allowed to pass freely through 
the die by the nature of the spring-loaded nip. Given a conduction mode of 
heat transfer from the towpreg yarn to the contacting tool surface, the rate of 
heat removal was subjectively observed to be a function of the processing 
rate, the thickness of the yam and the respective material heat capacities. 
In one example. Aurum-500/lM-7 was prc-mcltcd (above Tni = 375’C long 
enough to melt crystalline regions) then entered the nip point at 300X  and 
exited at 100'C which corresponded to a roller surface temperature increase 
from 49’C to SS’C. The nip roller temperature was observed to be effected 
by I he (low rate of cooling fluid (pressurized dry air) through the hollow roller 
shafts as well as the temperature difference between Tg and the steady-state 
roller nip surface temperature. Process 3 18 and. was shown to be effective 
as a means of constraining the moving towpreg yam in a specific rectangular 
shape while it solidified.

Although process #18 was successful in constraining the moving yam under 
pressure while its temperature was lowered below Tg. the overall goal of a 
void-free, consistent shaped ribbon was not realized. By inspecting the 
polished ribbon cross-section, incomplete wet-out (via melt squeezc-flow 
transverse to the fibers) was observed. Changing the nip-pressure 
(approximated 10 psi to 400 psi) was observed to result in only minor 
improvements in the wet-out. Inspection of the polished cross sections of 
the ribbon revealed residual voids within the bundle. Additional pressure 
would normally compress these voids in the neat resin, but further 
evaluation of the ribbon revealed that the limited dcbulking could be 
attributed to extensive fiber cross-over within the towpreg yam itself. This 
detrimental processing effect is expected to be more pronounced with higher 
fiber volume and larger diameter fibers {e.g.. AS-4 compared to IM-8). 
Studies of squceze-flow from a "closed" mold containing viscous oil and long 
fibers 1131. have shown the platen movement to be ultimately halted: not by 
impermeable network viscous flow limitations, but by the compounded 
occurrences of fiber cross-over contact (14J. Prior to the cool nip in process 
#18. some filament alignment as well as filament/polymer redistribution was 
clearly required.
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I l l  Combination Processes

Approach # 19 was arranged to utilize the beneficial attributes of processes a 
12 and # 18 simultaneously.

235

Take-Up
Spool

Ribbon

Incoming 
Towpreg ^arn

Process # 17 
Spring-Loaded 

Nip-Rollers

Process# 12 
Fire Polished Glass 

Rod Assembly

Figure 10. Schematic for process# 19 and #20 . Yarn movement is right to left.

As illustrated in Figure 10. the oven was retrofitted with fixLurirtg which held 
two fire-polished glass rods in an optimized pattern which caused the 
incoming incited towpreg yam to contact the under surface of the first rod 
and the upper surface of the lower rod. As observed previously, the material 
which exited tool #12 was dcbulkcd and exhibited low void content. Due to 
physical interference of the apparatus, approximately one inch of linear 
distance was required between the exit of the melting oven, and the entrance 
to the spring-loaded nip-roller assembly tt 18. Exposure to ambient cooling

z3xtS2CSfi)al

Figure I I .  Representative cross-sections of Aurum-500 /  IM-8 ribbon made via process 
#19 at 40 fpm on a table-top experimental scale. This ribbon exhibited desirable attributes 
such as good polymer/filament distribution, low void content, highly consistent cross- 
sectional dimensional integrity, and smooth surface texture.

2 6 2i
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through this space was a direct function of take-up speed. Upon entering 
the nip-point. the "malleable" softened towpreg was solidified into a uniform 
0.121 in. wide by 0.0085 in. thick ribbon (Figure 11).

Process # 20 is similar to process #19 with the exception that the glass rods 
were replaced by a wear resistant ceramic material. The critical control 
variable was found to be back tension rather than pulling tension or take-up 
rate. An advanced material handling system was implemented to ensure 
accurate control of the process variables. Uninterrupted experimental 
processing (120 minutes at 30 fpm linear take-up) indicated that process 
#20 was the best candidate to scale-up for manufacturing multiple ribbons 
and broad tapes.

SUMMARY

A systematic Investigation of powdered towpreg ribbonizing has provided the 
following experimental observations:

1 Melted towpreg will stick to surfaces which arc above the polymers Tg.
2 To expel voids from a towpreg yarn, a process must contact the 

viscous melt, without excessive adhesion.
3 To fully preconsolidate towpreg yams a process must provide fiber 

alignment and polymer/filament redistribution.
4 Melted towpreg cannot be roller processed unless rollers are cooled.
5 To make a ribbon of uniform cross-sectional shape along Its length, 

the ribbon must be partially constrained in the form of that desired 
shape as it is changes from the viscous melt to the solid phase.

6 Ribbonlzing is sensitive to intra-yam fiber crossing.
7 Ribbonizing may be sensitive to fiber volume and diameter.
8 Thinning the yam reduces the transverse void travel distance.
9 Stationary hot bar processing requires bar material which resists 

abrasion of carbon fibers at elevated temperatures.

Process (#19 or #20) can be readily integrated as a final step in state-of-the- 
art powder prepreg manufacturing techniques to convert high temperature 
performance powder towpreg yam into fully preconsolidated ribbon. The 
nip-roller groove can be customized to form many alternative cross-sectioned 
115) ribbons. With appropriate treatments, derivatives of process # 20 
promise to be cost-effective and robust for long duration ribbonizing runs.
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Appendix B

PAN-Carbon Fibers

AS-4™(Herculese)

IM-7™(Herculese)

D iam . (pm) M odulus (Msi)

7

5

33

40

Strength (Ksi)

580

785

Polyimlde Powders

LaRC™-IAX (4%)

Aurum™ -400A

PIXA™

Tg (°C)

235

250

252

Tm (°C) 

285 

none 

361
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APPENDIX C

El=0.8 
0 . 8

£2=0.3  

0.3

<T=5. 6 7 *  I 0 A-8

5 .6 7  t o ' 8 

F 12 = 0 .004  

0.004  

V v = 0 .5  

0 .5

p=(l.38*J.0A6)*(l-Vv)
690000.

d = S q r t (  (9.7326*10A -8)*(1fVv)J 
0.000382085  

dT“ 0 .072  

0.072  

L=1 . 2 

1 .2 

kll=6 
6

h ~ 0 .2105  

0 .2106

Tl=4 5 L + 1 0 5 4 * x - 5 5 5 * x A2 - 1 9 6 0 * x A3 » 3 1 0 0 * x A4 - 1 4 0 2 * x A5

451 I 1064 x - 555 v2 - 1QR0 x^ I 3100 x* - 1402 X^ 

c p ~ 0 . 0 0 2 8 9 3 * T 2 ( x l ' 0 . 2 2 1 6  

0 .2216  ( 0 .002803 T 2 [x ]  

v - 0 .250

0 .25

S 2 - { p * v * c p * ( d A2 ) ) / 4

0 .00620578 (0 .2 21 6  ' 0 .002803  T 2 | x l )
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z i p - ( l - f l ) / ( d T * e l )

3 . 4 7 2 2 2

d e e = l / ( d T * F 1 2 )

3 4 7 2 .2 2

d o o = ( l - f 2 ) / ( d * c 2 )

6 1 0 6 .8 4

£ - ( o / ( z i p i d e e + d o o ) )

6 .9 1701  1 0 * 12 

d o n - ( ( d A2 ) * k l l ) / 4

2 .100R4 1 0 * 7 

j e n - ( h * d )

0 . 0000R04 289 

rh s~£ 2* T2 ' ] x ]

0 . 0 0 6 2 8 6 7 8  ( 0 . 2 2 1 6  f 0 . 0 0 2 R 9 3  T 2 [ x 1) T 2 ' [ x ]  

l h s - - d o n * T 2 ' ' [ x ] t l * ( T l A4 - T 2 ] x ] A4 )

5 .9 1701  1 0 * 12 ( ( 4 6 1  i 1054 x - 556 x 2 - I 9 6 0  x 3 *  3100  x 4 - 1402 x 5 ) 

4 - T 2 | x l 4 ) - 2 . 1 8 9 8 4  1 0 * 7 T 2 "  [ X 1

Sol 0 2 5 - N P S o l v e | ( r h s “ ~ l h s , T 2 [ 0 ] = ~ 2 9 3 , T 2 ' [ 0 ] = = 0 } , T 2 r { X , 0 , 1 . 2 ] ]

[ {T2 -> Tnt ot pol .it i nqFnnei ion | f 0 . ,  1 . 2 ] ,  <>111

S o l O 5 5 9 - N D S o l v o ] ( r h s — l h s , T 2 ] 0 ] = = 2 9 3 , T 2 ' [ 0 ] = = 0 } , T 2 , [ x , 0 , 1 . 2 ] ]  

f f TP -> I n t e r p o l  .it i nqFnnct ion  [ ( 0 . ,  1 . 2 ] ,  < > ] ) 1  

S o l 0 7 5 “ M D S o l v e ] [ r h s “ - l h s , T 2 l 0 ] - = 2 9 3 , T 2 ' | 0 ] = * 0 J , T 2 , [ x , 0 , 1 . 2 ] ]  

f f TP -> T n t e r p o l . i t  i nqFnnot ion  [ {0 . ,  1 . 2 ] ,  <> ] ] ]

Sol  1 2 1 9 - N D S o l v e ] { r h s - = l h s , T 2 [ 0 J - - 2 9 3 , T 2 ' [ 0 ] = ~ 0 ] , T 2 , { x , 0 , 1 . 2 } ]

( { T2  -> I n t e r p o l n t  i n q F u n o t i o n [ ( 0 . ,  1 - 2 ] ,  < > ] ] ]

S o l l 7 5 - N D S o l v e [ { r h s - ~ l h s , T 2 [ 0 ] - = 2 9 3 , T 2 ' 1 0 ] = = 0 } , T 2 , [ x , 0 , 1 . 2 ] ]  

f J TP -> T n t e r p o l . i t  in q F n n H  i o n ]  ( 0 . ,  1 . 2 1 ,  <> 111 

S o l 2 5 0 ~ N D S o l v e [ { r h s = ~ l h s , T 2 { 0 ] - = 2 9 3 , T 2 ' [ 0 ] = = 0 } , T 2 , [ x , 0 , 1 . 2 ] ]

I I T 2  -> I n t e r p o l n l i n q F n n o l i o n ( { 0 . ,  1 . 2 ] ,  < > ] ] ]
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S o l 2 5 0 B = N D S o l v e  [ { r h s = = l h s , T2 [ 0 ] ” 29 3 ,  T2  ' [ 0 ] ==0 ] , T 2 , [ x ,  0 , 1 .  2 J ]

{fT2 -> IntorpolatingFunction[[0., 1.2), <>]]]

mps025-Plot[Evaluate[(T2[xl-273)/.Sol025], [ x ,0,1.2},
PlotRange -> [0,500] ,GridTJines->Automatic]

ion

0 . 2 n .4o o.r. o.n

-Graph i c s -

mps025all=Plot[Evaluate](T2[x]-273)/.Sol025Bj, [x,0,1.2}, 
PlotRange -> [ 0, 500 }, Gritlr,ines->Automatic]

ion

o n . 7 0 .4 o.n 1 . 2

-Gra pl i i  r s -
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mps250all=Plot[Evaluate[(T2[x]-273)/.Sol250Bl,(x,0,1.21, 
PlotRange -> [0,500],GridLines->Automatic]
500

400

300

200

100

0 . 6 0 . 8 1 1.20 . 2 0.40

-Graphics-

mps250-Plot[ Evaluate[(T2[xj-273)/.Sol250J,(x,0,1.2 J, 
PlotRange ->[0,500],GridLines->Automatic]
500

4 00

300

200

1 . 20 . 6 0 . 8 10 . 2 0.40

-G ra p h ic s -
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