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ABSTRACT 

Zooplankton play a key role in the cycling of dissolved organic matter (DOM) 
and inorganic nutrients. The factors that affect these processes, however, are not fully 
understood. I measured the effects of various diets on DOM and inorganic nutrient 
production by the copepod Acartia tonsa and the heterotrophic dinoflagellate Oxyrrhis 
marina, and explored the mechanisms of nutrient release from copepods. Copepods 
feeding on a mixed diet, the preferred diet of most copepods, had significantly lower 
dissolved organic carbon (DOC), ammonium (NHt +), and total dissolved nitrogen (TDN) 
release rates compared to feeding on a carnivorous or herbivorous diet. Thus, copepod 
feeding strategy can control the magnitude and composition of regenerated nutrients 
supplied to bacteria and phytoplankton. Secondly, I determined the effects of non-bloom 
and bloom concentrations of non-toxic and toxic cultures ofharmful algal bloom (HAB) 
species Prorocentrum minimum and Karlodinium veneficum on grazing and production of 
DOM and inorganic nutrients by A. tonsa and 0. marina. All algal diets deterred 
grazing, which likely resulted in starvation and subsequent catabolism of grazer body 
tissue. Additionally, DOM was typically a higher proportion of total dissolved nutrients 
released by zooplankton while feeding on the toxic algal culture, suggesting algal nutrient 
quality or direct toxic effects played a role in the differential nutrient release. Low 
ingestion rates coupled with high nutrient release rates could lead to feedback 
mechanisms that could intensify HABs. Finally, the various mechanisms of A. tonsa 
nutrient release, including sloppy feeding, excretion, and fecal pellet leaching, were 
isolated. Excretion and sloppy feeding were the dominant modes of DOC and NH4 + 

release, while sloppy feeding and fecal pellet leaching were dominant modes of urea 
release. A large proportion of ingested PON was lost as dissolved NH4 + and urea from 
copepods via all release mechanisms. These results have implications for the rapidity and 
location at which the regenerated nutrients are recycled in the water column. My 
dissertation results emphasize the importance of diet and release mechanism on the 
production of nutrients, particularly DOM, by zooplankton, which are important in 
understanding the recycling and transfer of nutrients and organic matter in marine food 
webs. 

Grace Kathleen Saba 

SCHOOL OF MARINE SCIENCE 
THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA 
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CHAPTER! 

Introduction 
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Understanding the mechanisms that influence carbon and nutrient cycling in 

estuarine and coastal systems is of growing importance, particularly if we are to fully 

understand anthropogenic influences such as global climate change and eutrophication on 

ecosystem functioning. Zooplankton play a key role in the cycling of dissolved organic 

and inorganic material and the flux of particulate organic matter from the.surface to 

deeper waters (Steinberg et aL 2000, 2002, Carlson 2002, Schnetzer & Steinberg 2002); 

thus, dissolved organic matter (DOM) and inorganic nutrient release by zooplankton are 

important in understanding the recycling and transfer of nutrients and organic matter in 

marine food webs. Research on plankton dynamics and nutrient cycling has largely 

focused on cycling of inorganic nitrogen and phosphorus and flux of particulate organic 

carbon and nitrogen. However, dissolved organic carbon (DOC), dissolved organic 

nitrogen (DON), and dissolved organic phosphorus (DOP), make up the bulk C, N, and P, 

respectively, in marine systems (Nagata & Kirchman I 992). Additionally, reactivity in 

one pool may alter other dissolved pools, ultimately affecting nutrient recycling in the 

water column. Only a handful of studies, however, have investigated the importance of 

mesozooplankton ( copepods) and micro zooplankton (protozoan ciliates and flagellates) 

in the cycling ofDOM. 

Zooplankton nutrient cycling 

Mesozooplankton grazing and metabolic processes release DOM and inorganic 

nutrients into the surrounding water (Lampert 1978, M0ller 2007), which fuels the 

microbial loop (Azam eta!. 1983; M0ller & Nielson 2001). The subsequent bacterial 
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activity can convert DOM into bioavailable inorganic nutrients (NH4+, P043
-) and C02, 

which can be taken up by phytoplankton. These processes are not exclusive to the 

euphotic zone, as DOM actively transported via excretion by diel vertically migrating 

zooplankton could be utilized by deep-sea microbial communities (Steinberg et al. 2000, 

2002, 2008). 

The rate ofDOM release by zooplankton likely exceeds that by phytoplankton 

(Jumars et al. 1989, Strom et al. 1997). For example, zooplankton grazers released 16-

37% of algal cell total C content as DOC, compared to only 3-7% DOC release as direct 

exudation from the algal cell (Strom et al. 1997). While crustacean zooplankton are 

considered to be primarily ammonotelic, releasing ammonium (N~ +) as a metabolic 

byproduct (Bidigare 1983), DON can also be a significant proportion of the total N 

released by both crustacean (Miller & Glibert 1998, Miller & Roman 2008) and 

gelatinous (Condon et al. in press) zooplankton. This excreted DON is also more 

biologically available than previously thought, and may be taken up and utilized by 

bacteria and phytoplankton, including toxic species, during both N-lirnited and eutrophic 

conditions (Gram\li et al. 1999; Glibert et al 1991; Mulholland & Capone 1999). Miller 

& Glibert (1998) found Acartia tonsa copepod DON excretion (urea and dissolved 

primary amines, DPA) was between 62 and 89% of total N excreted in mesocosm 

experiments. While only a handful of studies have focused on DOC or DON production 

from grazing processes, even less is known about DOP production. An early study 

showed that up to 74% of the total P released was labile DOP (Hargrave& Geen 1968)" 

More recently the importance of copepod feeding activity on the release of bioavailable 

DOP (as deoxyribonucleic acid, DNA) has been demonstrated (Titelman et al. 2008). 
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Nutrient release rates, and the chemical composition of the nutrients produced, 

may be affected by a number offactors, including ingestion rates (Comer et al. 1976, 

Kiorboe et al. 1985) as well as the type and quality of the food source (C~ron & Goldman 

1990, Gismervik 1997, Strom et al. 1997, Elser & Urabe 1999, Besiktepe & Dam 2002, 

Frost et al. 2004, Mitra & Flynn 2007, Miller & Roman 2008, Saba et al. 2009, Ch. 3). 

Many crustacean zooplankton are omnivorous or carnivorous, and in many conditions, 

such as low phytoplankton biomass or poor algal quality, microzooplankton contribute a 

significant portion of their diet (Stoecker & Capuzzo 1990, Fessenden & Cowles 1994, 

Merrell & Stoecker 1998, Broglio et al. 2004). Additionally, recent studies show that 

some zooplankton can graze on harmful algal species and therefore may suppress the 

formation ofhannful algal blooms (HABs) (Mallin et al. 1995; Hamasaki et al. 2003, 

Dam & Colin 2005, Roman et al. 2006, Breier & Buskey 2007, Colin & Dam 2007). 

Other studies show that zooplankton either avoid or are adversely affected by feeding on 

toxicphytoplankton (Huntley et al. 1986, Carlsson et al. 1995, Colin and Dam 2003, 

Kozlowsky-Suzuki et al. 2003, Vaque et al. 2006, Cohen et al. 2007). These complex 

interactions between zooplankton and HAB species can affect zooplankton grazing and 

reproduction (Sunda et al. 2006), and may ultimately affect zooplankton nutrient 

regeneration. Little is known, however, about how diet or the influence of HAB species 

affect zooplankton metabolic processes, including the release of dissolved inorganic 

nutrients and DOM. 

Micro zooplankton (e.g., ciliates and flagellates), which graze on bacteria and 

phytoplankton, also play a significant role in DOM production due to their high rates of 

growth, feeding, and excretion, and overall high nutrient turnover rates (Andersson et al. 
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1985, Caron et al. 1985, Goldman et al. 1985, Andersen et al. 1986, Nagata & Kirchman 

1992, Gaul et al. 1999, Nagata 2000, Strom 2000). For example, Taylor et al. (1985) 

found that microzooplankton released 3-88% of ingested carbon as DOC. Using a 

sensitive 15N-label technique, Hasegawa et al. (2000) found micrograzer DON release 

accounted for 59% ofN~ +regeneration rates. Furthermore, microzooplankton grazers 

excreted 15-70% of total phosphorus as DOP (Andersen et al. 1986). However, we still 

know comparatively little about DOM and-inorganic nutrient release from 

microzooplankton, and measurements on the biochemical composition of marine 

protozoans are limited. 

Mechanisms of zooplankton DOM and inorganic nutrient release 

Crustacean zooplankton release DOM and inorganic nutrients via sloppy feeding, 

excretion, and fecal pellet leaching (Lampert 1978, Meller 2007). Most previous 

zooplankton feeding and nutrient release studies do not differentiate between nutrient 

release processes (Miller & Glibert 1998; Isla et al. 2004; Saba et al. 2009), and the few 

that have, measured only sloppy feeding or fecal pellet leaching. Furthermore, a majority 

of these studies measured release of DOC (Lampert 1978; Meller & Nielson 2001, 

Meller et al. 2003, Meller 2007), while only few have measured DON release (Roy et al. 

1989; Vincent et al. 2007). Nonetheless, these studies show that sloppy feeding and fecal 

pellet leaching can generate significant amounts of DOM. 

The amount of organic and inorganic material transported from the surface to 

deep waters is dependent upon the mechanism of release. Products of sloppy feeding and 
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excretion will likely be recycled quickly in the euphotic zone, while sinking fecal pellets 

have the potential to transfer particulate and dissolved organic material below the 
, 

euphotic zone. Separating DOM and inorganic nutrient production by different 

zooplankton-mediated release mechanisms is important in accurately determining the 

DOM supply to bacteria and the microbial loop in surface and deep waters, and the 

amount of nutrition available for transfer to higher trophic levels. 

Significance of zooplankton-mediated nutrient cycling 

Now that evidence leads us to believe a principal pathway of DOM and inorganic 

nutrients from phytoplankton to bacteria is via by-products of zooplankton feeding and 

metabolism (Lampert 1978; Jumars et al 1989, Carlson 2002), it is pertinent to 

understand the role of zooplankton nutrition on the conditions and magnitude of this 

release, as well as the various mechanisms of release, because changes in the sources and 

sin1cs of released nutrients may significantly influence other nutrient pools. Additionally, 

detennining the stoichiometry of released C, N, and Pis vital to understand how these 

pools are coupled. 
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Structure of dissertation 

This dissertation is separated into three main chapters (2-4) and presents results 

from laboratory experiments examining release rates and composition of nutrient release 

from copepods and heterotrophic dinoflagellates. Chapters 2 and 3 explore the effects of 

various diets on zooplankton dissolved organic matter and inorganic nutrient production, 

and Chapter 4 explores the mechanisms of nutrient release from copepods. 

In Chapter 2, I discuss the effects of an exclusively carnivorous diet, and 

exclusively herbivorous diet, and a mixed omnivorous diet on the release of dissolved 

organic and inorganic nutrients by the copepod Acartia tonsa. I also discuss the impacts 

of different release rates and different release ratios of dissolved carbon, nitrogen, and 

phosphorus. 

In Chapter 3, I discuss the effects of harmful algal species and food concentration 

on release of dissolved organic matter and inorganic nutrients by two grazers, the 

copepod Acartia tons a and the heterotrophic dinoflagellate Oxyrrhis marina. The 

impacts of grazer deterrence, starvation, algal nutrient quality, and direct toxic effects on 

grazer nutrient production are discussed. 

In Chapter 4, the various nutrient release mechanisms of Acartia tons a copepods, 

including sloppy feeding, excretion, and fecal pellet leaching, are examined. The relative 

importance of these modes to DOC, NH/, and urea release are estimated, and the 

impacts these various modes have on nutrient cycling and transfer to higher trophic levels 

are discussed. 
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Finally, in Chapter 5, I conclude with a summary of my results and how they 

contribute to our knowledge of nutrient cycling in estuarine and coastal systems. I 

propose directions for future research to further increase our understanding of the central 

role zooplankton play in consuming lower trophic levels, providing nutrition to higher 

trophic levels, and regenerating nutrients available for bacteria and phytoplankton. 
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CHAPTER2 

Effects of Diet on Release of Dissolved Organic and Inorganic Nutrients by the 
Copepod Acartia tonsa 
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ABSTRACT 

Acartia tons a copepods are not limited to herbivory and can derive up to half their 

daily ration from predation on heterotrophic ciliates and dinoflagellates. The effects of 

an omnivorous diet on nutrient regeneration, however, remain unknown. In this study, we 

fed A. tonsa an exclusively carnivorous diet of either (la) heterotrophic dinoflagellate 

Oxyrrhis marina or (lb) Gyrodinium dominans, (2) an ex.clusively herbivorous diet of 

Thalassiosira weissflogii diatoms, or (3) a mixed omnivorous diet. We measured the 

release rate, composition, and stoichiometry of dissolved organic carbon (DOC), 

dissolved organic phosphorus (DOP), and nitrogen (urea) in addition to the inorganic 

nutrients ammonium (NH4 +) and phosphate (Pol·). Despite similar ingestion rates 

among treatments, as well as similar C:N ratios of food items, A. tons a release rates of 

DOC and NH4 + were highest while feeding on a carnivorous diet and lowest while 

feeding omnivorously. In contrast, urea, on average, was a higher portion of total 

nitrogen released in the mixed diet treatment (32 to 59%). DOP release rates were only 

detectable in diets containing microzooplankton prey. Our results suggest that copepod 

diet plays an important role in determining the quantity and composition of regenerated 

C, N, and P available to phytoplankton and bacteria. Additionally, the uncoupling of 

ingestion and nutrient release rates and the variability in released ratios of dissolved -

C:N:P in our study suggests that stoichiometric models based solely on predator and prey 

C:N and N :P ratios may not be adequate in determining stoichiometry of total nutrient 

release. 
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INTRODUCTION 

Consumption of different food resources by zooplankton not only affects their 

growth and reproduction, but also helps structure planktonic communities and potentially 

controls biogeochemical cycling of various elements. ·It is well known now that many 

planktonic crustacean species are not limited to herbivory and will also consume other 

·zooplankton or detritus (reviewed in Steinberg & Saba 2008). Mesozooplankton 

typically have higher clearance rates for heterotrophic protozoans compared to 

phytoplankton (Stoecker & Capuzzo 1990, Fessenden & Cowles 1994, Merrell & 

Stoecker 1998, Broglio et al. 2004). For instance, the copepod Acartia tonsa was found 

to derive 3 to 52% of its daily ration from predation on ciliates and dinoflagellates > 10 

11m in a subtropical estuary (Gifford & Dagg 1988, Stoecker & Capuzzo 1990), and some 

copepods feed solely on microzooplankton during periods of relatively low 

phytoplankton biomass (Fessenden & Cowles 1994). Protozoan diets may enhance 

growth and survival of predators and also increase egg production most likely due to their 

typically lower carbon:nitrogen (C:N) ratios and higher levels of essential nutrients such 

as polyunsaturated fatty acids (PUF As including eicosapentaenoic acid [EPA] and 

docosahexaenoic acid [DHA]), sterols, and amino acids compared to phytoplankton 

(Stoecker & Egloff 1987, Stoecker& Capuzzo 1990, Gifford 1991). Some 

inicrozooplankton species, such as the heterotrophic dinoflagellates Oxyrrhis marina and 

Gyrodinium dominans, are important for trophic upgrading, possessing the ability to 

synthesize EPA, DHA, and sterols from low quality algae and thus enhancing the transfer 

of essential nutrients through the microbial food web from phytoplankton to 
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mesozooplankton (Klein Breteler et al. 1999, Tang & Taal2005). While we now know 

the importance of protozoans in copepod diets, little is known about how carnivorous or 

omnivorous diets affect metabolic processes, including the release of dissolved inorganic 

nutrients and dissolved organic matter (DOM) that support phytoplankton and bacterial · 

growth and fuel the microbial loop. 

Mesozooplankton contribute to nutrient release via sloppy feeding (the physical 

breaking of the food source), excretion, egestion, and subsequent fecal pellet leaching 

·(Meller 2007). In our study we did not differentiate between these modes of nutrient 

production; thus, our reported copepod 'release rates' incorporate nutrient production 

from all of these modes. While crustacean zooplankton are considered to be primarily 

ammonotelic, releasing ammonium (NH4 +) as a metabolic byproduct (Bidigare 1983), 

organic N can also be a significant proportion of the total N released by zooplankton. For 

example, organic N excretion (urea and dissolved primary amines, DPA) by Acartia 

tons a copepods was between 62 and 89% of total N excreted in mesocosm experiments 

(Miller & Glibert 1998). Additionally, the rate ofDOM release by zooplankton likely 

exceeds that directly released by phytoplankton (Jumars et al. 1989). Strom et al. (1997) 

found that zooplankton grazers release 16 to 37% of an algal cell's total C content as 

dissolved organic carbon (DOC) compared to only 3 to 7% DOC release as direct 

exudation from algal cells. Studies measuring phosphorus (P) release by zooplankton are 

scarce and few report dissolved organic phosphorus (DOP) release, which can be readily 

available to phytoplankton and bacteria (Hargrave & Geen 1968, Titelman et al. 2008). 

A recent study demonstrated the importance of copepod feeding activity on the release of 

bioavailable DOP (as deoxyribonucleic acid, DNA) (Titelman et al. 2008). In another 
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study, up to 74% of total P released was DOP (as opposed to inorganic phosphate, POl-) 

and was readily available to bacteria (Hargrave & Geen 1968). 

Nutrient release rates, and the chemical composition of the nutrients produced, 

may be affected by a number of factors. In many -studies, higher ingestion rates are 

correlated with higher zooplankton excretion rates (Comer et al. 1976, Ki0rboe et al. 

1985). Additionally, copepods have variable functional responses to different prey items 

(Besiktepe & Dam 2002, Mitra & Flynn 2007), potentially causing differential release of 

byproducts. Zooplankton elemental composition regulates the elemental ratio of 

nutrients released; thus, a change in the zooplankton taxa or food source may cause a 

change in the excreted nutrient quantity and composition (Caron & Goldman 1990, 

Gismervik 1997a, Strom et al. 1997, Elser & Urabe 1999). For example, a consumer 

with low N and high P body content feeding on prey with high N and low P content will 

retain the necessary P and excrete more N. Conversely, a consumer feeding on N-limited 

food would retain the needed Nand excrete more P (Sterner 1990, Touratier et al. 2001). 

Additionally, the composition ofN and P released can be indirectly affected by feeding 

strategy. For example, Comer et al. (1976) showed that NH4 +was a higher portion of the 

total N released while copepods were feeding carnivorously. In contrast, Bidigare (1983) 

suggested that herbivores may be expected to excrete more urea than carnivores, as the 

conservation of arginine (a precursor of urea) is higher in marine phytoplankton than in 

zooplankton. However, this has not been supported by laboratory experiments, as 

Acartia tonsa urea excretion rates were higher when feeding on ciliates compared to 

diatoms, and these excretion rates increased with decreasing food C:N (Miller & Roman 

2008). 
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Nearly all copepod feeding experiments that measure nutrient excretion have been 

conducted with phytoplankton as food. Only 2 studies (Strom et al. 1997, Miller & 

Roman 2008) have investigated DOM release by copepods feeding carnivorously on 

microzooplankton. Strom et al. (1997) measured DOC production, and Miller & Roman 

(2008) measured the forms ofN released. With the exception of 1 study using the 

freshwater grazer Daphnia (Frost et al. 2004), no studies have measured simultaneous C, 

N, and P release from marine zooplankton, nor how release of dissolved organic (DOC, 

DON, DOP) and inorganic nutrients are related. Additionally, no previous nutrient

release studies have included an omnivorous diet, the feeding strategy of most copepods. 

Thus, we know little about the effects of microzooplankton or mixed diets on the 

stoichiometry of regenerated nutrient pools. In the present study, we determined the 

effects of herbivorous, omnivorous, and carnivorous feeding by Acartia tons a copepods 

on the release rate of dissolved organic C, N, and P and inorganic nutrients, ammonium 

and phosphate. We also explored the stoichiometry of excretion, as well as the 

composition of the excreted Nand P. 

Understanding the role of zooplankton nutrition on the conditions and magnitude 

of DOM release is pertinent, because changes in the sources and sinks of marine DOM 

may significantly influence other nutrient pools. Additionally, determining the 

stoichiometry of released C, N, and P is vital to understand how these pools are coupled. 
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MATERIAL AND METHODS 

Collection and culture of organisms. Acartia tons a, a common coastal 

omnivorous calanoid copepod, were collected from the York River, USA, a tributary of 

Chesapeake Bay, by near-surface net tows (0.5 m diameter net, 200 11m mesh, non

filtering cod end). Copepods for the 2 experiments were collected 5 d apart, but from the 

same location and during the same tidal cycle. Upon collection, healthy, active A. tonsa 

were placed in 0.2 Jlm filtered seawater for I to 2 h until the start of the acclimation 

period (see below). The mean size of adult A. tonsa was determined from 50 randomly 

selected individuals from the tow for which we measured cephalothorax width and total 

body'length (from the top of the head to the base of the caudal rami) under an Olympus 

SZXI2 dissecting scope at 230x magnification. 

Two common estuarine heterotrophic dinoflagellates were used as prey items for 

Acartia tonsa: Oxyrrhis marina and Gyrodinium dominans (both isolated from 

Narragansett Bay). Both microzooplankton species are readily ingested by A. tonsa 

copepods (Tang & Taal2005). Dinoflagellate cultures were maintained in F/2 medium 

(20%o salinity) prepared with the 0.2 Jlm filtered seawater (FSW) used in the experiment. 

The FSW consisted of a I: 1 ratio of deep Santa Barbara Channel seawater (SBSW) to 

artificial seawater (ASW) made with sodium chloride combusted at 500°C for 2 h to 

remove organics. ASW was used in order to start the experiments with a low background 

ofDOM (Protocols for the Joint Global Ocean Flux Study [JGOFS] Core Measurements 

1994), and it was combined with low DOM, deep SBSW, to prevent the copepods in the 

experiments from becoming lethargic, as has been noted for 100% ASW (Strom et al. 
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1997). The final seawater mixture had DOC and total dissolved nitrogen (TDN) 

concentrations 23 and 2 flmol r 1
, respectively. The cultures were incubated at 20°C in 

the dark. Both 0. marina and G. dominans were maintained on a diet of the chlorophyte 

Dunaliella tertiolecta (CCMP 1320). The experiments were conducted once the 

dinoflagellate cultures reached the early stationary phase, when protozoan cell abundance 

was maximum and algal food was minimum (Tang & Taal2005). The diatom prey, 

Thalassiosira weissjlogii (CCMP 1336), was chosen as the food alga in our experiments 

due to its similar size to 0. marina and G. dominans. These cultures were grown on F/2 

+ Si medium made with 20%o FSW, incubated at 20°C on a 12 h light:l2 h dark regime, 

and maintained in exponential phase by diluting with medium every 3 to 4 d. The length 

and width of the food items were measured after the experiment on a Nikon DIAPHOT.:. 

TMD inverted microscope at 600x magnification (fixed in 2% Lugol's solution). Cell 

volumes were calculated according to geometric cell shapes (T weissjlogii, cylinder; 

heterotrophic dinoflagellates, prolate ellipsoid). Cell volumes were corrected for fixative 

shrinkage after Montagnes et aL (1994) for diatoms, and using athecate dinoflagellate 

shrinkage estimates for 0. marina and G. dominans from Menden-Deuer et al. (2001). 

Experimental procedure. To examine the impact of diet on Acartia tonsa 

ingestion and nutrient release, 3 food categories were used: (1) exclusively 

microzooplankton/camivorous diet (!lZ), (2) exclusively diatom/herbivorous diet 

(DIATOM), and (3) mixed omniyorous diet (MIX) in microzooplankton and diatoms 

each contributed 50% to the food carbon. Food C contents were estimated from volume 

measurements made prior to the start of the experiments using cell C to volume 

conversions from Menden-Deuer & Lessard (2000) for heterotrophic dinoflagellates 
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Oxyrrhis marina and Gyrodinium dominans and from Dam & Lopes (2003) for 

Thalassiosira weissjlogii diatoms. Two experiments were conducted using heterotrophic 

dinoflagellates as microzooplankton prey items, Expt A (0. marina) and Expt B (G. 

dominans). Both experiments used the diatom T. weissjlogii. 

Twenty-four hours prior to experimental incubations, freshly collected adult 

copepods were individually transferred from beakers into 3 separate 3.5 1 bottles, each 

with FSW and the appropriate food items for the !lZ, DIATOM, and MIX food 

categories, to a final concentration of 60 copepods r1
, which is near the maximum 

concentration that occurs in Chesapeake Bay (CBP 2000) and the lowest concentration 

for which we could detect nutrient release in preliminary trials with varying copepod 

densities and incubation times. Food items were standardized to 300 !lg C r 1
, a food 

density at which Acartia tons a shows maximum ingestion rates on Thalassiosira 

weissjlogii and Oxyrrhis marina (Besiktepe & Dam 2002), using the size to C conversion 

factors noted above. Food Cwas never depleted to <30% of the initial food 

concentration in any of the experiments. All bottles were topped off with FSW, covered 

with parafilm to remove bubbles, capped, and placed on a rotating wheel in the dark at 1 

rpm for 24 h, similar to acclimation times used in other copepod feeding studies (Merrell 

& Stoecker i 998, Tang et al. 200 1). 

At the end of the food acclimation period for each experiment, 12 incubation 

bottles (300 ml) each wen~ taken for the carnivorous, herbivorous, and mixed diet. Each 

set included 6 controls (FSW + food) and 6 treatments (FSW + food + copepod 

predators). All bottles were set up the same way as the acclimation bottles. For each of 

the sets, 3 controls and 3 treatments were set aside for initial sample collection. 
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Remaining bottles were incubated as in the acclimation period. A suite of samples was 

taken initially and at the end of the 24 h incubation. 

Sample analyses. Bacteria nutrient uptake: Because bacteria can utilize both 

DOM and inorganic nutrients, we accounted for their potential uptake during 

experimental incubations in our copepod release rate calculations. Samples for bacterial · 

enumeration were fixed with formaldehyde (final cone. 2%), stained with 4',6-diamidino-

2-phenylindole (DAPI; final cone. 0.005%), filtered onto 0.2 flm black polycarbonate 

filters with 0.45 flm cellulose backing filters, and slide mounted according to Sherr et al. 

(1983). For each sample, cells in 10 viewing fields were counted on a Nikon Eclipse 80i 

epifluorescent microscope at 1 OOOx magnification. Using bacterial abundance data, we 

calculated an average concentration ofbacteria, [C], as defined by Frost (1972). Separate 

samples were taken for bacterial production measurements using the eH]-leucine uptake 

method (Azam et al. 1983, Kirchman & Ducklow 1993). Assuming a bacterial growth 

efficiency (BGE) of 50% (Azam et al. 1983), the bacterial C demand (BCD, ng C r 1 h-1
) 

was estimated for each incubation bottle using Eq. (1a). We calculated potential daily 

bacterial DOC uptake (U, ng C r 1 d-1
) during the grazing experiments using Eq. (I b), 

such that: 

BCD BP * 3.1 

BGE 

U=BCD * T 

where BP is bacterial production (pmolleucine r 1 h' 1
), 3.1 is the conversion from 

picomoles of leucine to nanograms ofC, and Tis incubation time (24 h d-1
). 
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Additionally, using conservative estimates ofbacterial molar C:N (4.5; Goldman 

& Dennett 1991) and C:P (50; Kirchman 2000), we estimated maximum potential Nand 

P uptake, respectively. Because bacteria can utilize both organic and-inorganic N, we 

assumed 16% of theN uptake source was organic urea (calculated from Table 1 in 

-
Andersson et al. 2006) and 84% was inorganic NH4 +. Bacteria can utilize DOP under 

certain conditions (Titelman et al. 2008); however, inorganic POle is their preferred P 

substrate (Cotner & Wetzel1992, Kirchman 2000). Because Pol· was available in our 

incubation bottles, we assumed 100% of the P source was inorganic and did not correct 

DOP release for bacterial uptake. 

Feeding rates: Whole-water samples for algal and protozoan cell counts were 

preserved with acid Lugol's solution (final cone, 2%). Subsamples for algal cell counts 

were settled in 1 ml Sedgewick rafters, and 5 replicate frames each of at least 100 cells 

were counted with a Nikon DIAPHOT-TMD inverted microscope at 600x magnification. 

Subsamples (2 to 5 ml) for protozoans were settled in 5 ml Utermohl settling chambers, 

and entire contents ( 100 cells or more) were counted under an inverted microscope after 

at least a 24 h settling period (Utermohl 1931; Hasle 1978). Clearance and ingestion 

rates of Acartia tonsa on both algae and microzooplankton were calculated according to 

Frost ( 1972). The possible ingestion of diatoms by the heterotrophic dinoflagellates in 

the MIX treatment was examined by monitoring the abundance of diatoms over the 

incubation time in the control bottles. Thalassiosira weissjlogii concentration in the MIX 

controls remained constant over the incubation, similar toT. weissjlogii in the DlATOM 

controls. This suggests no significant grazing occurred by heterotrophic dinoflagellates 

in the MIX treatments. 
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Nutrient analyses: After bacterial production and all abundance samples were 

collected, the remaining volume from each bottle was prescreened through a 200 !!ill 

sieve (to retain copepods in treatments; controls were treated the same) directly into 2 

filter towers and filtered through com busted GF IF filters into acid-cleaned, com busted 

flasks. One GF IF filter was collected for fluorometric chlorophyll analysis (Parsons et al. 

1984). The second filter was collected for particulate carbon (PC) and particulate 

nitrogen (PN) (carbon-hydrogen-nitrogen elemental analyzer, EA1108). The collected 

copepods, which were all alive and active after incubation, were filtered onto a 

combusted GF/F, counted under a dissecting scope (Olympus SZX12), and analyzed for 

PC and PN content. The remaining filtrate for each replicate was analyzed for organic 

and inorganic nutrient concentrations: DOC, Shimadzu TOC analyzer 5000A (minimum 

detection limit [MDL] = 0.5 to 1.0 !!mol r 1
) after acidification and purging of dissolved 

inorganic carbon (Peltzer et al. 1996); ammonium, phenol/hypochlorite Koroleff method 

with MDL = 0.05 !!IDOl r 1 (Grasshoff et al. 1983); urea, diacetyl monoxime procedure 

with MDL= 0.05 !!mol r1 (adapted from Price & Harrison 1987); DPAs, fluorescent 0-

phthaldealdehyde (OPA) method with MDL= 0.05 !!mol r' (Parsons et al. 1984); nitrate 

and nitrite (NOx; Grasshoffmethod) (MDL= 0.05 !lmolr1
), phosphate (Pol·; Koroleff 

method) (MDL= 0.05 !!IDOl r 1
), and TDN arid TDP (persulfate oxidation; MDL= 1.0 

!!mol r' ), were determined with a QuikChem 8500 Auto Analyzer (Grasshoff et al. 1983, 

Bronk et al. 2000, Sharp 2002). Concentrations of bulk DON and DOP were calculated 

by the difference between TDN and inorganic N (NOx + NH/) and TDP and Pol·, 

respectively. Copepod release rates (in ng ind:' h-1
) were calculated according to Miller 

& Glibert (1998), but modified to include bacterial uptake, such that: 
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[(~Ct+Ut)- (~Cc+Uc)] XV 

(Nx T) 
(2) 

where ~C1 is the change in nutrient concentrations (ng r 1 d-1
) in the treatment bottles and 

~Cc is the average change in nutrient concentrations (ng r1 d- 1
) in the control bottles; Ut 

and Uc are estimated values ofbacterial uptake (ng r1 d- 1
) in the treatment and control 

bottles (see Eq. 1 b); Vis the incubation volume (l), N is the number of copepods in the 

treatment bottles, and Tis incubation time (24 h d- 1
). 

Statistical analysis. Statistical comparisons of the effects of diet on ingestion 

rates, release rates, and stoichiometry were made by 1-way ANOV A, employing the p = 

0.05 level of significance. 
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RESULTS 

Predator size and C and N content 

Acartia tons a copepods collected for Expts A and B were of similar sizes and had 

similar C:N ratios. The total body length of the population of adult A. tons a showed a 

normal size distribution, with mean values of 1085 J.lm for Expt A and 1121 J.lm for Expt 

B, and coefficients of variance (CV) of 6.4 7 and 5 .84%, respectively (Table 1 ). Copepod 

C and N contents ranged from 2.1 to 3.7 J.lg C and 0.5 to 0.9 J.lg N, respectively, yielding 

C:N ratios between 3.7 and 4.1 (g g- 1
). The averages are reported in Table 1. 

Food size, C and N content, and initial concentration 

The cell volumes of food items Thalassiosira weissjlogii, Oxyrrhis marina, and 

Gyrodinium dominans ranged from 673 to 2875, 1016 to 2228, and 520 to 2228 J.lm3
, 

respectively (averages reported in Table 2), and the CV ranged from 33 to 38%. 

Equivalent spherical diameter (ESD) was highest in 0. marina and lowest in G. 

dominans (Table 2), with a combined average CV of 11.4%. Despite being the smallest 

food item, the heterotrophic dinoflagellate G. dominans had the highest cellular C and N 

content. Cellular C contents of all food items were lower than the estimates derived from 

Menden-Deuer & Lessard (2000) and Dam & Lopes (2003), which we used to 

standardize the C in the experimental bottles. Thus, initial food concentrations were 

about half the targeted 300 J.lg C r 1 (Table 3). However, these food concentrations do not 
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fall below threshold feeding levels and are at the near-saturating levels determined for 

Acartia tonsa by Besiktepe & Dam (2002). In Expt A, the DIATOM treatment had 

significantly higher initial food C concentration compared to the MIX treatment (p < 

0.01 ). All other initial food concentrations were similar between treatments. Initial C 

concentration of G. dominans in the 11Z treatment (Expt B) was significantly higher than 

C concentrations in the DIATOM and MIX treatment (p < 0.01). 

Feeding rates 

Ingestion rates of copepods feeding on the 11Z, DIATOM, and MIX diets in Expt 

A ( Oxyrrhis marina as the microzooplankton food source, Thalassiosira weissflogii as 

the algal food source) were not statistically different from each other and averaged 1.25, 

1.58, and 1.13 11g C ind.-1 d-1 or 42, 53, and 38% of copepod body C d-1
, respectively 

(Fig. 1a). Ingestion rates for all treatments in Expt B (Gyrodinium dominans as the 

microzooplankton food source, T. weissflogii as the algal food source) were significantly 

higher than those in Expt A (p < 0.05 in 11Z and DIATOM; p < 0.01 in MIX), averaging 

1.77, 1.83, and 1.93 11g C ind.-1 d-1 or 66, 68, and 72% of copepod body C d- 1
, 

respectively. The ingestion rates for 11Z, DIATOM, and MIX in Expt B, however, were 

not significantly different from each other. In the MIX treatments, diatom C accounted 

for 52% of total C ingested in Expt A and 37% of total C ingested in Expt B. Clearance 

rates of copepods were similar between treatments in Expt A with averages ranging from 

0.63 to 0.75 ml ind:1 h- 1 (Fig. 1 b). Clearance rates of copepods in Expt B, however, were 

significantly different between all treatments, being highest in the MIX treatment, lower 
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in the DIATOM treatment, and lowest in the 11Z treatment, and averaged 1.14, 0.74, and 

0.44 ml ind. -I h- 1
, respectively (Fig. 1 b). 

Bacterial nutrient uptake 

Estimated bacterial uptake ofC, N, and P was minimal (1.4 to 27, 0.4 to 7.1, 

and 0.1 to 1.4 ng C, N, and P r 1 d-1
, respectively). Uptake was also similar between the 

controls and copepod treatments for each diet in both experiments (Table 4; p > 0.05). 

This is most likely due to the similar bacterial abundance, [C], between the controls and 

copepod treatments (Table 4; p > 0.05). Thus, there were no significant differences in 

uncorrected and uptake-corrected nutrient release rates (p > 0.05). To test this further, we 

recalculated bacterial uptake to increase the potential uptake of C, N, and P using further 

conservative conversion factors including BGE = 10% (del Giorgio & Cole 2000), C:N = 

3.8 (Fukuda et al. 1998), and C:P = 8 (Bratbak 1985). These uptake-corrected release 

rates were not significantly different from the uncorrected release rates either (p > 0.05). 

Copepod nutrient release 

DOC release rates in the J.tZ treatment for both experiments were significantly 

higher than the DOC produced by copepods feeding on an exclusively diatom or on a 

mixed diet (Fig. 2). DOC release in the MIX treatment was undetectable in Expt A and 

near zero in Expt B. Average release rates for the 11Z and DIATOM treatments ranged 

from 34 to 83 ng C ind.-1 h-1 and 4 to 15 ng C ind:1 h- 1 and correspond to 67-116 and 6-
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20% ofC ingested d'1, respectively. Additionally, DOC release rates were higher for 

copepods feeding on Gyrodinium dominans (Expt B) compared to Oxyrrhis marina (Expt 

A) in the J.lZ treatments (p < 0.05). 

Mean N~ +release rates for each treatment ranged from 1.4 to 17 ng N ind.-1 h-1 

(Fig. 3a). Similarly to DOC, NH4 +release rates were significantly higher in the J.lZ 

treatment and lowest in the MIX treatment for both Expts A and B (Fig. 3a; p < 0.05). 

Low release rates of DOC and NH/ in the MIX treatment were unexpected due to the 

combined diet as well as the similar ingestion rates in the MIX treatment compared to the 

other treatments. NH4 + release rates in the JlZ treatment were also higher in Expt B 

compared to Expt A (p < 0.01). 

Bulk DON release rates (calculated by subtracting inorganic N sources, NOx and 

N~ +, from TDN) were undetectable due to a high background ofNOx during our

_experiments (up to 80 Jlmol r 1
). DPA release rates were also below the detection limit. 

Thus, the released organic N we have reported in the_present study is urea. Contrary to 

the patterns observed in DOC and NH4 + release rates, urea release rates were highest in, 

the MIX treatment and lowest in the J.lZ treatments for both experiments and ranged from 

undetectable to 4.1 ng N ind:1 h-1
, but these differences were not statistically significant 

(Fig. 3b ). Urea was a higher portion of the total N released in the MIX treatment 

(reaching up to 59%) compared to in the other treatments (Fig. 3c; p < 0.05, Expt B). 

Release rates ofP were considerably more variable across treatments compared to 

those of other nutrients measured (Fig. 4). Phosphate release rates were mostly on the 

order of 1 to 2 ng P ind:1 h- 1 (Fig. 4a), but did reach as high as 11.5 ng P ind:1 h-1 (Fig. 

4a). In Expt A, the average Pol· release rates were highest in the DIATOM treatment 
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and lower in the J..lZ and MIX treatments (p < 0.05). The average Pol· release rates in 

Expt B were highest in the J..lZ treatment (average= 10.6 ng P ind."1 h" 1
), lower in the 

DIATOM treatment (average= 1.65 ng P ind."1 h"1
), and undetectable in the MIX 

treatment (p < 0.05). Similarly to DOC and NH/, release rates for Po/· were higher for 

copepods feeding on Gyrodinium dominans (Expt B) compared to Oxyrrhis marina (Expt 

A) in the J..lZ treatments (p < 0.01). When DOP release rates were detectable, they were · 

higher than inorganic P release rates and contributed 54 to 100% of the total P released 

(Fig. 4b ). The detectable DOP release only occurred in treatments that contained 

microzooplankton prey. 

Stoichiometry of nutrients released from copepods was quite variable (Fig. 5). 

Molar DOC:urea release ratios were highest in the J..lZ treatment (averages ranging from 

172 to 187), lower in the DIATOM treatment (averages ranging from 13 to 63), and, 

when data were available (Expt B), lowest in the MIX treatment (9.0; Fig. 5a; p < 0.05). 

These release ratios were also well above the Redfield ratio for C:N of 6.6, with averages 

ranging from 9 to 187 (mol mor1
). DOC:TDN and TDN:TDP release ratios, on the other 

hand, were all below the Redfield ratio of 6.6 and 16, respectively. Released DOC:TDN 

ratios were highest in the J..lZ treatment (averages ranging from 3.0 to 5.7) and lower in 

the DIATOM (from 0.4 to 1.8) and MIX treatments (average for Expt B = 1.3; Fig. 5b), 

but these differences were not significant. TDN:TDP release ratios, however, were 

highest in the DIATOM treatment (average= 12.5) and lower in the treatments 

containing microzooplankton prey items (3.6 to 6.6 for J..lZ, 1.3 to 8.3 for MIX; Fig. 5c; p 

< 0.01 for Expt B). 
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DISCUSSION 

Diet has been the focus of studies examining copepod feeding and reproduction 

(Stoecker & Egloff 1987, Stoecker & Capuzzo 1990, Kleppe! & Burkart 1995, Bonnet & 

Carlotti 2001, Broglio et al. 2003). The central theme in these published studies is the 

importance of protozoans in the copepod diet. The effect of a mixed diet (phytoplankton 

+ protozoans), as opposed to mono-diets, on copepod metabolic processes has not been 

previously examined. Our study demonstrates for the first time that copepod diet affects 

relative organic and inorganic nutrient release rates as well as release stoichiometry. 

Feeding and nutrient release rates 

Average copepod C ingestion rates (1.13 to 1.58 J.Lg C ind.-1 d-1
) were similar to 

those reported for Acartia tonsa in Miller & Roman (2008; 0.05 to 2.96 J.Lg C ind:1 d-1
), 

but lower than those measured in Besiktepe & Dam (2002; ca. 6 and 3.5 J.Lg C ind:1 d- 1 

for copepods feeding on Thalassiosira weissjlogii and Oxyrrhis marina, respectively, at 

prey concentrations similar to those in our study). 

Despite similar ingestion rates among treatments, as well as similar C:N ratios of 

food items, Acartia tonsa release rates of DOC, urea, DOP, NH/, and Pol· were 

extremely variable between diet treatments. Because our release rates represent not only 

excretion, but also sloppy feeding and egestion/fecal pellet leaching, the hypothesis of 

ingestion-independent rates of excretion (Miller & Landry·1984) can neither be supp.orted 

nor rejected. A. tonsa DOC release rates (as percentage of food C ingested) in our study 
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are higher than those shown by Strom et al. (1997) for Calanus pactficus copepods 

feeding on Oxyrrhis marina (67 to 100% vs. ca. 16 to 28%) and Thalassiosira weissjlogii 

(5.8 to 20% vs. undetectable). Differences in the method, as well as conversion factors, 

used to correct for bacterial uptake could be one source of variation. While we measured 

bacterial production using the eHJ-leucine uptake method, Strom et al. (1997) calculated 

potential bacterial DOC uptake using measured change in bacterial abundance, an 

estimated 40 fg C bacterial cell-1
, and an estimated bacterial growth efficiency of 50%. 

Using these conversions, bacteria utilized between 9 and 80% of the DOC produced 

according to Strom et al. (1 997), while the proportion of DOC utilized by bacteria was 

negligible in our study. 

Variation in DOC release rates between our study and that of Strom et al. (1997) 

are also likely due to the different sizes of copepods used for the experiments and the 

subsequent differences in DOC release by sloppy feeding. When copepod-to-prey ESD 

ratios are below the threshold of 55 as defined by Moller (2005), DOC release via sloppy 

feeding can occur. The copepod Cal anus pacificus, used by Strom et al. ( 1997), is much 

larger (ESD = 1060 fJm; Moller 2005) than Acartia tonsa (ESD = 432 fJm; present study). 

Thus, the calculated copepod-to-prey ESD ratios for C. pacijicus feeding on prey items 

Thalassiosira weissjlogii, Oxyrrhis marina, and Gyrodinium dominans are always above 

the threshold for sloppy feeding (76.6, 71.2, and 81.5, respectively) compared to those 

calculated for A. tonsa (31.2, 29.0, and 33.2, respectively). Thus, sloppy feeding could 

be the source of the higher DOC release in our study compared to that by Strom et al. 

(1997). Using our copepod-to-prey ESD ratios in the equation ofMoller (2005), we 

predicted the fraction of C removed from suspension and lost as DOC via sloppy feeding 
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by A. tonsa feeding on T. weissjlogii, 0. marina, and G. dominans to be 30.8, 33.7, and 

28.2%, respectively. These estimates are even lower when we use the more conservative 

sloppy feeding DOC release equation of Moller (2007). The actual DOC release (as the 

fraction of C removed from suspension) measured in our study for A. tonsa grazing on T. 

weissjlogii (8.7% in Expt A, 29% in Expt B) was within the range of release predicted by 

Moller (2007); however, it is higher and above the ranges of sloppy feeding release 

predicted by Moller (2005, 2007) for 0. marina (67.1%) and G. dominans (116%). This 

suggests that excretion, and possibly, fecal pellet leaching, were also important sources of 

DOC release in treatments with microzooplankton prey.· However, no studies to date 

have attempted to separate the modes of DOC release (sloppy feeding vs. excretion vs. 

fecal pellet leaching), so the relative importance of each mode of release in the present 

study is not known. 

. Ammonium release rates (1.4 to 17 ng N in d. -I h-I) were similar to those reported 

for Acartia tonsa by Miller & Glibert (1998; undetectable to 28 ng N ind.-1 h-1
) and Ikeda 

et al. (2001; 6.0 ng N ind.-1 h-1
) but slightly higher than those reported by Miller & 

Roman (2008; 1.4 to 7.0 ng N ind.-1 h- 1
) for a range of food qualities. Additionally, DOC 

and NH4 + release rates were higher for copepods feeding on Gyrodinium dominans (Expt 

B) compared to on Oxyrrhis marina (Expt A) in the JlZ treatments, most likely due to the 

higher ingestion rates on G. dominans (Fig. I) as well as the reiatively higher food 

concentration in this treatment (Table 3) and higher cellular C and N of G. dominans 

(Table 2). A. tonsa urea release rates (0 to 4.1 ng N ind.-1 h-1
) were lower compared to 

those measured by Miller & Glibert (1998; 0 to 38 ng N ind.-1 h- 1
). However, the portion 

of total N release as urea (0.6 to 6.6% in JlZ, 13 to 16% in DIATOM, and 32 to 59% in 
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MIX; Fig. 3c) is similar to that measured by Miller & Glibert (1998; 30 to 54%) and 

higher than that for copepod Pleuromamma xiphias (Steinberg et al. 2002; 2I% ). These 

results reiterate the importance of organic N in nutrient remineralization. 

Although P release rates for copepods are scarce in the literature, we did find 

similar P043
- release rates (mostly I to 2 but reaching 11.5 ng P ind.-1 h-1

) compared to 

those for the similar-sized copepod Acartia australis (Ikeda et al. 200I; 1.3 ng P ind.-1 h-

1 ), but higher release rates than those measured for the smaller cyclopoid copepod 

Oithona nana (Atienza et al. 2006; 0.34 to 0.37 ng P ind.-1 h-1
). When DOP release rates 

were detectable, they were higher than inorganic P release rates and contributed 54 to 

I 00% to the total P released (Fig. 4b ), which was similar to the adult A. tons a DOP 

release determined by Hargrave & Geen (1968; 74%). Zooplankton nutrient release 

experiments, specifically in marine environments, typically ignore P. Our results 

emphasize the importance of including zooplankton-mediated P release into nutrient 

budgets, especially in P-limited environments that depend on remineralization processes 

as the primary source of P. 

Potential diatom nutrient uptake 

Nutrient uptake by diatoms likely occurred during incubations, as evidenced by 

declines in NH/ and urea concentrations from To to T24h in the DIATOM controls. 

Although this uptake was not directly measured in our experiments using labeled isotope 

techniques, the calculation for copepod nutrient release rate (Eq. 2) does incorporate 

these nutrient declines in the controls (uptake) in the term ~Cc. 
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Effect of diet on release rates 

The highest copepod DOC, NH4 +,and TDN release rates occurred while feeding 

carnivorously. The lowest release rates occurred while feeding omnivorously, perhaps 

due to higher copepod C and N gross growth efficiencies (GGE) in the mixed diet. GGE 

is defined as the portion of nutrients from the ingested food delegated to growth and 

reproduction. A higher GGE for C and N would result in higher copepod egg production 

rates (EPR), increased biosynthesis (retention) of nutrients, and thus lower metabolic 

excretion of dissolved C and N. We did not measure EPR in the present study; however, 

previous studies support the idea that a mixed diet comprised of phytoplankton and 

microzooplankton results in higher EPR. Acartia tonsa copepods exhibited highest EPR 

and egg hatching success in treatments that included a mixed diet of Oxyrrhis marina and 

the alga lsochrysis galbana (Kleppe! & Burkart 1995). Stoecker & Egloff ( 1987) 

reported 25% higher EPR for A. tonsa, and Bonnet & Carlotti (2001) reported a 3- to 7-

fold higher EPR and survival rates for Centropages typicus, when cilia!es were mixed 

with a phytoplankton diet compared to an exclusively algal diet. Additionally, A. tonsa 

convert ingested food to eggs more efficiently in mixed diets, compared to exclusively 

algal and exclusively microzooplankton diets (Kleppe! et al. 1998). These results were 

not confirmed by Ederington et al. ( 1995) or by Dam & Lopes (2003 ). This is likely due 

to their use of the bacterivorous ciliates, Pleuronema sp. and Uronema sp., respectively, 

as this microzooplankton food source for copepods may either lack, or contain. 

insufficient, fatty acids, including EPA and DHA (Ederington et al. 1995, Dam & Lopes 

2003). The heterotrophic dinoflagellates Oxyrrhis marina and Gyrodinium dominans 
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(maintained on an algal diet of Dunaliella tertiolecta) used in our experiments, however, 

have previously been shown to be nutritionally beneficial to copepod growth, egg 

production, and egg hatching success (Klein Breteler et al. 1999, Tang & Taal2005) due 

to their high EPA and DHA contents. 

The idea of higher GGE and higher egg production in the mix diet also suggests 

that this diet may be more balanced than either of the mono-diets, as a higher consumer

resource composition imbalance results in a lower consumer GGE (Sterner & Elser 

2002). Additionally, imbalances in diet could create differential assimilation patterns in 

order for the copepod to regulate synthesis of nutrients to match its needs, thus resulting 

in differential catabolism and eventual release of C, N, and P (Sterner & Elser 2002). 

Although gut transit time, egestion rate, and assimilation efficiency (AE) were not 

measured in our study, variability in these processes may have occurred in copepods 

feeding on the different diets. For instance, Acartia clausi copepods exhibited longer gut 

transit times, and Temora stylifera had lower egestion rates, while feeding on 

dinoflagellates compared to diatoms, the latter of which typically have lower molecular 

complexity (Ianora et al. 1995, Tirelli & Mayzaud 2005). These studies suggest that 

copepods feeding on a more complex diet,(i.e. more proteins, carbohydrates, lipids, etc.) 

may need a longer time to digest their food. This may have caused lower c~pepod 

nutrient release rates in the MIX treatment compared to the mono-diet treatments. 

However, if gut transit times or AE were solely a function of food molecular complexity, 

then nutrient release rates by copepods feeding on dinoflagellates in the !JZ treatment 

would also be higher than those in the DIATOM treatment, and this did not occur in our 

study. 
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The differences in P release rates between treatments may be a result of variable 

food P composition. TDP release rates were highest in the microzooplankton diet, 

followed by the mixed diet, and lowest in the diatom diet, and DOP was only detectable 

in treatments containing microzooplankton prey. We did not measure particulate P 

contents in our food items and there are no published data on P content in 

microzooplankton. Compared to algae, however, dinoflagellates have a larger genome 

(Raven 1994) and much higher amounts of DNA in their nucleus (Rizzo 1987). Because 

DNA is rich in P (Sterner & Elser 2002), the higher release rates ofP in our 

microzooplankton prey treatments could be a result" of higher DNA contents in these 

heterotrophic dinoflagellates compared to Thalassiosira weissjlogii diatoms. 

Possible behavioral effects on release rates 

Variations in nutrient release rates could also be due to copepods exerting 

different feeding behaviors on the 3 diets. Omnivorous copepods quickly hop and seize 

microzooplankton prey in 'ambush mode', generate continuous feeding currents in the 

more passive 'suspension mode' for non-motile phytoplankton food including diatoms, 

and exhibit prey-switching behavior when feeding on a mixed diet (Saiz & Kierboe 1995, 

Kierboe et al. 1996). Although the energetic costs of each feeding mode have not been 

directly determined, the copepod Metridia pacifica displays slower swimming speeds and 

fewer high-speed bursts when feeding on an exclusively phytoplankton diet compared to 

a more active feeding mode with frequent high-speed bursts when feeding on a 

carnivorous diet of Artemia sp. nauplii (Wong 1988). If more energy is expended by 
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copepods feeding in the ambush mode compared to suspension mode, then nutrient 

release rates would also be higher in the ambush mode. This hypothesis is supported by 

our results: highest copepod DOC and TDN release rates while feeding on 

microzooplankton arid lower release rates while feeding on diatoms (when copepods are 

likely feeding mainly in suspension mode) and on the mixed diet (where the energetic 

cost of ambush feeding is potentially cut by 50%), as well as the release ofDOP in the 

only treatments containing microzooplankton. Future research is needed in order to 

determine the energetic costs of feeding behaviors and their potential effects on copepod 

nutrient release. 

Microzooplankton and nutrient release 

The nutrient release directly from the heterotrophic dinoflagellate prey in the J.LZ 

treatment was investigated by calculating the change in nutrients in these control bottles 

during incubation (using the term llCc in Eq. 2). The only detectable positive release 

calculated in any control was Pol- release by Oxyrrhis marina in Expt A. The POl' 

release by 0. marina was significantly lower than that released by the copepods (p < 

0.05); however, it most likely contributed- to the lower calculated Pol- release (Eq. 2) by 

copepods feeding on 0. marina (Expt A) compared to those feeding on (Jyrodinium 

dominans (Expt B). Due to the negligible contribution of DOC, NH/, and, in Expt B, 

Pol- from the heterotrophic dinoflagellates in the present study, we infer that the 

elevated release of these nutrients in the J.LZ treatments came directly from the copepods. 
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Inorganic versus organic N release 

Relative to inorganic N release, urea release rates were higher and accounted for a 

higher proportion of TDN released while copepods fed on a mixed diet. This could be 

due to the preferential metabolism of nucleic acids (RNA, DNA) via the 

uricogenesis/ureogenesis pathways of which urea is the primary byproduct(Regnault 

1987). Ammonia fonnation, on the other hand, is the major byproduct of the catabolism 

of amino acids (Regnault 1987). Reasons for preferential catabolism of certain molecules 

over others, as related to zooplankton diet are, however, unclear and have not been 

reported. As discussed above, it is possible that the mixed diet is more balanced and 

allows higher efficiency in metabolizing nucleic acids as opposed to the other 2 mono

diets. Variability in the types ofN released could also be due to differences in release 

processes. Both urea and NRt + can be released from the copepod body via simple 

diffusion across membrane surfaces (Pandian 1975, Bidigare 1983). However, while 

NH4 +is rapidly released to avoid its toxic properties, urea has a slower diffusive property 

compared to NH4 +, and thus disperses more slowly through the membranes (Pandian 

1975). Thus, if copepods feeding on the mixed diet are efficiently retaining N for growth 

and reproduction, then a higher portion of the N that is being released may be the passive 

leakage of urea. Conversely, if copepods feeding on the mono-diets are not efficiently 

retaining N, then more NRt +may be actively released. Diffusion ofNRt +and urea are 

most likely short-term processes and may not be reflected in release rates during the 24-h 

·incubation. 
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Stoichiometry of nutrient release 

Copepod molar DOC:urea nitrogen release ratios were well above the classic 

Redfield C:N ratio (6.6); however, when all forms of released Nand P were accounted 

for, molar DOC:TDN and TDN:TDP release ratios were either lower than or close to 

Redfield ratios (6.6 and 16, respectively). Non-Redfield remineralization has been shown 

for a variety of diel-migrating zooplankton taxa in the Sargasso Sea: DOC:DON (range 

from 5.1 to 14.9), DIC:DIN (6.1 to 12.6), and DIN:DIP (6.1 to 15.7) (Steinberg et al. 

2002), as well as for Barents Sea zooplankton, which exhibit wide ranges of ratios of 

respiration and inorganic excretion: DIC:DIN (range 4 to 44) and DJN:DIP (2 to 45) 

(calculated from Table 3 in Ikeda & Skjoldal1989). 

Released C:N and N:P ratios were also variable between treatments. High molar 

DOC:urea release ratios in the J.lZ treatment were a result of the low proportion of urea 

release (as the total percentage ofN), which ranged from 0.6 to 6.6%. DOC:urea release 

ratios, as well as the proportion of urea release in the DIATOM and MIX treatments (5.1 

to 14.9 and 21 to 40%, respectively) more closely resembled those found by Steinberg et 

al. (2002). The higher TDN:TDP ratio of the released products in the DIATOM 

treatment was most likely due to lower P contents in the diatoms relative to 

microzooplankton prey items, similar to those found for Daphnia feeding on P-limited 

prey items (Frost et al. 2004). Additionally, we cannot discuss stoichiometric imbalances 

without considering predator (copepod) P content, which, ifvariable between treatments, 

could potentially explain the different TDN:TDP release ratios. We did not measure 

copepod P content in our experiments; however, Waive & Larsson (1999) found that 
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while Acartia sp. C and N contents were stable, their P content (and N:P) varied greatly. 

These variations were seasonal, as were those for A. clausii C:P and N:P according to 

Gismervik ( 1997b ), and thus may also be a function of copepod diet composition as well 

as differences in growth rate (changes in P-rich DNA and RNA). Additional research is 

required to attain a more complete understanding of how predator and prey P content 

affects copepod P release rates and organic and inorganic N :P release ratios. 

Stoichiometric theoretical models that have been implementedto further 

understand consumer-driven nutrient recycling processes all agree that the stoichiometry 

of nutrients released from zooplankton is mainly a function ofboth prey and grazer 

elemental composition (Sterner 1990, Elser & Urabe 1999, Touratier et al. 2001). 

However, our results show the uncoupling of copepod ingestion and nutrient release 

rates, as well as variable release rates of DOC, and dissolved organic and inorganic N and 

P, on different food types (phytoplankton v~. microzooplankton vs. mix) but with similar 

prey C:N. This is most likely because these aforementioned models ardimited to 

excretion, and do not incorporate sloppy feeding and egestion/fecal pellet leaching. 

Thus, stoichiometric models based exclusively on predator and prey C:N and N:P ratios 

may not be adequate in determining stoichiometry of total release, especially when 

considering variability in diet. 

Finally, differences in the stoichiometry may also be explained by other aspects of 

food composition (i.e. relative amounts of complex lipids vs. simple protein or amino 

acid contents, differential nucleic acid content), which may have affected the rate at 

which C, N, and P were individually metabolically processed, digested, and released 

creating differential C:N and N:P release ratios. Extended models, which incorporate 
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dietary constituents such as. essential fatty acids (Anderson & Pond 2000), prey 

selectivity (Mitra & Flynn 2006), and digestion efficiency/gut transit time (Mitra & Flynn 

2007), may be more appropriate when copepods feed on a diversity of prey items. 

45 



CONCLUSION 

We have shown that copepod nutrient release rates, composition, and 

stoichiometry are significantly affected by feeding strategy. In particular, we have 

revealed key nutrient release differences in copepods feeding omnivorously compared to 

those feeding on mono-diets of either phytoplankton or microzooplankton. While we 

could not directly distinguish the source(s) of variable nutrient release, we provide a 

black box view of zooplankton nutrient release as a function of diet and discuss multiple 

factors that may drive nutrient release variability. Including mixed diets of 

phytoplankton and micro zooplankton should be an important component of future studies 

examining copepod metabolism and digestion, growth efficiency, and inorganic and 

organic nutrient release. Differences in these processes with diet, as well as the 

proportion of time copepods spend feeding herbivorously, carnivorously, and 

omnivorously, need to be accounted for in order to estimate the quantity, quality, and 

stoichiometry of regenerated nutrients available for the growth and metabolism of 

phytoplankton and heterotrophic bacteria, and to better model the role of zooplankton in 

ocean nutrient and C budgets. 
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Table 1. Acartia tonsa. Size (length and equivalent spherical diameter, ESD), 

carbon (C) and nitroge~ (N) contents of the calanoid copepod predator A. tonsa for Expts 

A and B. Values are mean± SD with n=50 (length and ESD) and n=5-8 (C and N 

contents) for each experiment 

Expt Length ESD c N C:N 
(J.tm) (J.tm) (J.tg copepod-1

) (g g-1) 

A 1085 ± 70 418 ± 59 3.1 ± 0.3 0.8 ± 0.1 3.9 ± 0.2 
B 1121 ± 65 446 ± 51 2.6 ± 0.1 0.7 ± 0.1 4.0 ± 0.1 
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Table 2. Thalassiosira weissjlogii, Oxyrrhis marina, Gyrodinium dominans. Food size (length, width, volume, and 

equivalent spherical diameter, ESD), carbon (C) and nitrogen (N) contents. Values are mean± SD with n=SO (size parameters), 

n=6 (C and N contents) for each experiment. Food size and C and N contents were measured at the start of the experiments, 

cell volumes were corrected for Lugol's-derived shrinkage (see 'Materials and methods') 

Food Length Width Volume ESD c N C:N 
(11m) (11m) (11m3) (11m) (pg ccll1

) (pg cell-1
) (g g·l) 

ExptA 
T weissflogii 12 ± 2.2 9.1 ± 1.4 15ll ± 577 14 ± 1.7 53 ± 6.6 10 ± 1.9 5.6 ± 0.6 
0. marina 23 ± 2.4 12 ± 1.5 1802 ± 624 15 ± 1.6 268 ± 63 52± 7.6 5.1 ±0.9 

ExptB 
v. 1 T v.•eissflogii 12 ± 2.0 8.8 ± 1.1 1396 ± 463 14 ± 1.5 73 ± 10 l3 ± 2.0 5.5 ± 0.3 Vl 

G. dominans 20 ± 2.0 10 ± 1.5 1209 ± 420 13 ± 1.5 329 ± 54 65 ± 9.2 5.1 ±0.3 



Table 3. Oxyrrhis marina, Thalassiosira weissflogii, Gyrodiniu~ dominans. 

Average initial food conditions. Values are mean± SD, n=3 for each treatment 

ExptA 
Oxyn·his marina 

Thalassiosira weis.~flogii 

0. marina/T weissflogii MIX 

0. marina 

T. weissjlogii 

Total 

ExptB 
Gyrodinium dominans 

Thalassiosira weissjlogii 

G. dominans/T weissflogii MIX 

G. dominans 

T weiss.flogii 

Total 

Initial food concentration 

(l.tg c r1
) 

147 ± 30 

162 ± 18 

63 ± 15 

58 ± 5.0 

121 ± 16 

233 ± 19 

160 ± 3.0 

80 ± 17 

56 ± 6.0 

136 ± 18 
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Table 4. Mean bacterial abundance, [C], and mean estimated daily bacterial C, 

N, and P demands used for uptake corrections on release rates in Expts A and B. The f.lZ 

prey in Expt A was Oxyrrhis marina, and in Expt B was Gyrodinium dominans. The 

diatom food for both experiments was Thalassiosira weissflogii, and the mixed diet is a 

combination of the f.lZ and diatom prey items. Nutrient demands (total C, N, and P) were 

calculated using 3[H]-leucine bacterial pwduction data, a bacterial growth efficiency 

estimate of 50%, and estimates of bacterial molar C:N (4.5) and C:P (50) (see 'Materials 

and methods' for details); n=3 for [C] and C, N, and P daily nutritional demands 

[C] Daily Nutritional Demand 

(cells mr1 
X 105

) (ng t·1 day·1 x 10·1) 

c N p 

ExptA 
f..lZ Control 1.8 ±. 0.1 41 ± 0.5 11 ± OJ 2.2 ± 0.03 

f.!Z+ Copes 2.3 ± 0.2 .53 ± 4.4 14 ± 1.1 2.8 ± 0.03 

DIATOM Control 0.7 ± 0.1 14 ± 0.5 3.8 ± 0.1 0.6 ± 0.03 

DIATOM+ Copes 1.3 ± 0.1 28 ± 2.8 7.0 ± 0.7 1.5 ± 0.15 

MIX Control 2.2 ± 0.1 48 ± 1.2 12 ± 0.3 2.5 ± 0.06 

MIX+ Copes 1.9 ± 0.1 42 ± 2.0 11 ± 0.6 2.2 ± 0.12 

ExptB 

f..lZ Control 11 ± 0.1 270 ± 3.7 70 ± 1.0 14 ± 0.19 

f.!Z+ Copes 10 ± 0.4 256 ± 10 66 ± 2.7 13 ± 0.53 

DIATOM Control 5.6 ± 0.5 ll5 ± 11 29 ± 2.8 5.9 ± 0.56 

DIATOM+ Copes 5.6 ± 0.2 116 ± 4.9 29 ± 1.3 5.9 ± 0.25 

MIX Control 2.4 ± 0.1 55 ± 1.2 14 ± 0.3 2.8 ± 0.06 

MIX+ Copes 3.2 ± 0.3 76 ± 5.8 20 ± 1.5 4.0 ± 0.31 
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Fig. 1. Atartia tonsa. Feeding rates on a ~amivorous microzooplankton diet (!!Z), a 

herbivorous diatom diet (DIATOM), and an omnivorous mixed diet (MIX) in Expts A 

and B. The !!Z prey in Expt A was Oxyrrhis marina, and in Expt B was Gyrodinium 

dominans. The diatom food for both experiments was Thalassiosira weissjlogii, and the 

mixed diet was a combination of the !!Z and diatom prey items. All values are mean ± 

SD (n=3). (a) Ingestion rate (I); rates were converted from cells per individual per day 

using average measured C contents of food items shown in Table 2. Ingestion rates with 

different letters were ~ignificantly different from each other (y>z; 1-way ANOVA, p < 

0.05 in !!Z and DIATOM, p < 0.01 in MIX). (b) Clearance rates (C) in ml per individual 

per hour; for the MIX treatments, rates for microzooplankton food and diatom food were 

calculated separately and then combined. Clearance rates with different letters were 

significantly different from each other (x>y>z; 1-way ANOV A, p < 0.05) 

58 



3 a Ill Expt A -'7 
"'0 

0 Expt 13 

'7 2 
'U 
.s 
(.) 
0)1 
::J.. ..._. -

0 

2 b 
:::""" 
' .$:; 

l 
'U 
-~ 1 

E -(.) 
0 

IJZ DIATOM MIX 

59 



Fig. 2. Acartia tonsa. Dissolved organic carbon (DOC) release rates in nanograms C per 

individual per hour while feeding on a carnivorous microzooplankton diet (JlZ), a 

herbivorous diatom diet (DIATOM), arid an omnivorous mixed diet (MIX) in Expts A 

and B. The 11Z prey in Expt A was Oxyrrhis marina, and in Expt B was Gyrodinium 

dominans. The diatom food for both experiments was Thalassiosira weissjlogii, and the 

mixed diet was a combination of the JlZ and diatom food items. DOC release rates with 

different letters were significantly different from each other (x>y>z; 1-way ANOVA, p < 

0.05). Values are mean± SD (n=3). nd: DOC release not dete~ted 
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Fig. 3. Acartia tonsa. N release while feeding on a carnivorous microzooplankton diet 

- (I!Z), a herbivorous diatom diet (DIATOM), and an omnivorous mixed diet (MIX) in 

Expts A and B. The 11Z prey in Expt A was Oxyrrhis marina, and in Expt B was 

Gyrodinium dominans. The diatom food for both experiments was Thalassiosira 

weissjlogii, and the mixed diet was a combination of the 11Z and diatom food items. All 

values are mean± SD (n=3). Release rates with different letters were significantly 

different from each other (v>w>x>y>z; 1-way ANOVA, p < 0.05). (a) Inorganic N 

(Nfit +) release rates in nanograms N per individual per hour. (b) Urea release rates in 

nanograms N per individual per hour. (c) Proportion of urea (organic N) release as 

percentage ofTDN (total dissolved nitrogen, Nlit ++urea) release 
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Fig. 4. Acartia tonsa. P release rates in nanograms P per individual per hour while 

feeding on a carnivorous microzooplankton diet (f.lZ), a herbivorous" diatom diet 

,(D{ATOM), and an omnivorous mixed diet (MIX} in Expts A and B. The f.lZ prey in 

Expt A was Oxyrrhis marina, and in Expt B was Gyrodinium dominans. The diatom food 

for both experiments was Thalassiosira weissflogii, and the mixed diet was a 

combination of the f.lZ and diatom food items. Values are mean± SD (n=3). nd = P 

release not detected. (a) Inorganic P (PO/-) release. Release rates with different letters 

were significantly different from each other (x>y>z; 1-way ANOV A, p < 0.05). (b) 

Dissolved organic phosphorus (DOP) release 
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Fig. 5. Acartia tons a. Stoichiometry of nutrient release while feeding on a carnivorous 

microzooplankton diet (~Z), a herbivorous diatom diet (DIATOM), and an omnivorous 

mixed diet (MIX) in Expts A and B. The ~Z prey in Expt A was Oxyrrhis marina, and in 

Expt B was Gyrodinium dominans. The diatom food for both experiments was 

Thalassiosira weissjlogii, and the mixed diet was a combination of the ~Z and diatom 

food items. All values are mean± SD (n=3). Release ratios with different letters were 

significantly different from each other (y>z; 1-way ANOV A, p < 0.05). na = data not 

available. (a) DOC:urea release. (b) DOC:TDN release, and (c) TDN:TDP release. 

Ratios calculated with TDN (total dissolved nitrogen) and TOP (total dissolved 

phosphorus) represent combined dissolved inorganic+ organic forms 
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CHAPTER3 

The Effects of Harmful Algal Species and Food Concentration on Zooplankton 
Grazer Production of Dissolved Organic Matter and Inorganic Nutrie~nts 
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Abstract 

Harmful algal blooms (HABs), including toxic species, have been increasing in 

frequency, range, and duration over the past several decades. The effect of a harmful or 

toxic algal diet on zooplankton nutrient regeneration, however, has not been previously 

examined. In this study, we determined the effects of non-bloom and bloom 

concentrations of non-toxic and toxic cultures of HAB species Prorocentrum minimum 

and Karlodinium veneficum on grazing and production of dissolved organic carbon 

(DOC), nitrogen (DON), and phosphorus (DOP) and inorganic nutrients, ammonium 

(NHt +) and phosphate (Pol-), by the copepod Acartia tons a and the heterotrophic 

dinoflagellate Oxyrrhis marina. Ingestion rates of grazers were significantly higher while 

feeding on bloom algal concentrations compared to non-bloom algal concentrations, but 

were always below 1% body C d- 1 for A. tonsa (ingestion rate range of0.5-31 ng C 

individuar1 d- 1
) and below 2% body C d- 1 for 0. marina (range of0.1-8.8 pg C 

individuar1 d- 1
). However, rates of inorganic nutrient and dissolved organic matter 

(DOM) release, when detected, were always> 100% ofC, N, and P ingested. 

Additionally, the quantity and forms (organic vs. inorganic) of nutrients released by 

zooplankton were significantly different between non-toxic and toxic algal treatments, 

and typically higher grazer dissolved organic matter (DOM) release occurred while 

feeding on the toxic algal strain. DOM was the only detected fonn of nutrients released 

from 0. marina, and DON and DOP were significant portions of total dissolved Nand P 

released for A. tonsa feeding on toxic K. veneficum (69-84% and 73%, respectively). All 

algal diets used in our study, regardless of cell concentration, deterred grazing, which 
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likely resulted in starvation and subsequent catabolism of grazer body tissue. The 

potential for other factors affecting variable grazer nutrient release between toxic and 

non-toxic algal treatments, including algal nutrient quality and direct toxic effects, are 

discussed. Our results suggest these grazers may not be capable of controlling bloom 

formation of these HAB species, and that nutrient cycling dynamics in the coastal ocean 

are likely to change with increases in the presence of harmful and toxic algal blooms. 

70 



1. Introduction 

Estuarine.and coastal marine systems are sensitive to eutrophication, which can 

lead to subsequent shifts in phytoplankton comp.osition and favor the chronic occurrence 

of harmful and toxic phytoplankton (Uye eta!. 1999, Anderson et a!. 2002, Beau grand 

and Reid 2003). Harmful algal blooms (HABs), including toxic species, have been 

increasing in frequency, duration, and range since the 1970s (Sellner eta!. 2003). 

Chesapeake Bay, in particular, has experienced an increase in the number of potential 

toxin-producing algal species over the past several decades (Marshall et a!. 2005). 

Bloom-forming dinoflagellates Prorocentrum minimum and Karlodinium veneficum (syn. 

Karlodinium micrum) are common and wide spread in Chesapeake Bay (Johnson et al. 

2003) and both have been associated with fish and shellfish mortality (Luckenbach eta!. 

1993, Deeds et a!. 2002, Kempton et a!. 2002, Heil et a!. 2005, Tango et a!. 2005). HABs 

also have complex interactions with zooplankton, which can affect zooplankton grazing 

and reproduction (Sunda et al. 2006), and may ultimately affect zooplankton nutrient 

regeneration. 

Zooplankton grazers may be adversely affected by anti-grazing properties 

developed by some HAB-forming species, including toxin production, which can lead to 

grazer deterrence and starvation, decreased growth rates, increased mortality, 

regurgitation, and decreased egg production, which will likely promote HAB bloom 

formation (Huntley et al. 1986, Carlsson et al. 1995, Colin and Dam 2003, Kozlowsky

Suzuki et al. 2003, Vaque et al. 2006, Cohen et al. 2007). For example, Acartia tonsa 

copepods avoided feeding and thus starved when exposed to the toxic dinoflagellate 
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Karenia brevis (Cohen et al. 2007). The copepods A. margalefi and A. tonsa both had 

lower ingestion rates, and A. margalefi had decreased viability of eggs, while feeding on 

a toxic strain of Karlodinium compared to non-toxic strains of Gymnodinium and 

Karlodinium, respectively (Vaque et al. 2006; Waggett et al. 2008). Similarly, the 

heterotrophic dinoflagellate Oxyrrhis marina had low grazing and growth rates on toxic 

strains of Karlodinium (Vaque et al. 2006, Adolf et al. 2007), and the haemolytic 

lipophilic toxins, called karlotoxins, produced by some Karlodinium species, caused cell 

lysis and decreased grazing in 0. marina (Deeds & Place 2006; Adolf et al. 2007; 2008). 

While much emphasis has been placed on grazer-mediated control of HABs 

(feeding and growth rates, egg production, and mortality), the effects of harmful or toxic 

algae on zooplankton nutrient regeneration and the potential for feedback into the bloom 

cycle is unknown. Previous studies show that zooplankton nutrient release can be 

affected by diet (Sterner & Smith 1993, Strom et al. 1997, Frost et al. 2004, Miller & 

Roman 2008, Saba et al. 2009). These studies, however, focused on how nutrient release 

varies with food type (various algal or zooplankton prey) or prey quality (food 

carbon:nitrogen, C:N, ratios) and did not specifically examine diets with HAB species. 

Sunda et al. (2006) suggest that unpalatable HAB species reduce zooplankton grazing 

rates and thereby decrease the regeneration of nutrients by those grazers. This will 

accelerate bloom development for HAB species that are adapted to nutrient-limited 

environments. Feedback mechanisms caused by zooplankton nutrient regeneration such 

as this are vital to our understanding ofHAB dynamics. Thus, in this study, we 

determined the effects of toxic and non-toxic harmful algae and food concentration on 

copepod and microzooplankton grazer production of dissolved organic C, N, and 
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phosphorus (P), and of inorganic nutrients, ammonium (NH4 +) and phosphate (Poi-)

Because current climate change models project worldwide increases in eutrophication 

and conseque:Qtial increases in the frequency of HABs, it is critical to understand how 

zooplankton-mediated nutrient release will change with varying phytoplankton 

community composition, including harmful and toxic algal species_ 
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2. Methods 

To examine the impact of harmful algal food on ingestion and nutrient release of 

zooplankton grazers, we conducted one experiment in which Acartia tons a copepods and 

the heterotrophic dinoflagellate Oxyrrhis marina were fed non-toxic and toxic cultured 

strains of Prorocentrum minimum, and another experiment in which A. tonsa copepods 

were fed non-toxic and toxic Karlodinium veneficum. Both experiments included non

bloom and bloom algal food concentrations. 

2.1. Culture and collection of organisms 

The algal food item used in the first experiment was Prorocentrum minimum (JA-

98-0 1 ). Previous studies using P. minimum as a food source have demonstrated lethal 

and sub-lethal effects on shellfish (Luckenbach et al. 1993, Wikfors & Smolowitz 1993, 

Wikfors & Smolowitz 1995, Hegaret & Wikfors 2005). Although certain clones of P. 

minimum can produce toxins (Grzebyk et al. 1997, Denardou-Queneherve et al. 1999, 

Wikfors 2005), a specific toxin compound isolate has not yet been characterized. 

However, stationary-phase P. minimum is toxic to scallops, causing mortality within 24 

hours, while log-phase P. minimum is less toxic (Hegaret & Wikfors 2005; Wikfors 

2005). Thus, we cultured P. minimum in two separate batches, a non-toxic batch in 

which the culture was kept in exponential growth phase with fresh additions of nutrient

replete L1 media every 2-3 days, and a toxic batch where the culture was grown in low

nutrient media (Ll/20) io late stationary phase before being transferred into new Ll/20 
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media. Daily cell counts were used to monitor culture growth phases .. We tested for 

relative toxicity between the two growth phases by conducting an oyster exposure 

experiment1 the results of which indicated that late stationary phase P. minimum was 

toxic to oysters and log phase P. minimum was not (see below). Thus, the non-toxic and 

toxic cultures used for the experiment (and referred to as such below) were P. minimum 

at log phase and P. minimum at late stationary phase, respectively. 

The non-toxic and toxic algal food cultures selected in the second experiment 

(Expt. 2) were Karlodinium veneficum (CCMP 1609), which produces little to no 

karlotoxin (data presented here) and K. veneficum (CCMP 2778), which produces KmTx 

2 karlotoxin (Place et al. 2010). CCMP 1609 was isolated by A. Lewitus in 1991 from 

the Choptank River, MD and deposited in 1993. Based on the ITS sequence (see 

Bachvaroff et al. 2009) and pigment profile, CCMP 1609 is a K. veneficum strain. Both 

cultures were maintained in exponential growth phase with fresh additions of L 1 media 

every 2-3 days. All cul~res were incubated at 20°C on a 12:12 h light:dark regime. 

The heterotrophic dinoflagellate grazer used in the P. minimum experiment, 

Oxyrrhis marina (isolated from Narragansett Bay), was maintained on a diet of the 

chlorophyte Dunaliella teriolecta (CCMP 1320) in f/2 media and incubated at 20°C in 

the dark. The experiments were conducted once the dinoflagellate culture reached early 

stationary phase, when protozoan cell abundance was maximal and algal food was 

1ninimal (Saba et al. 2009). 

Acartia tonsa copepods were collected from the York River, U.S.A., a tributary of 

Chesapeake Bay, by near-surface net tows using a 0.5 m diameter net with 200 f.!m mesh 

and a non-filtering cod end. Copepod collections for the two experiments in this study 
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were conducted two weeks apart, but were from the same location and during the same 

, tidal cycle. Upon collection, actively swimming A, tonsa were placed in 0.2 11m filtered 

seawater for 1-2 hours until the start of the acclimation period (see below). 

The 0.2 11m filtered seawater (FSW) used for the experiment acclimation periods 

and incubations, and used to make the Ll, Ll/20, and F/2 nutrient medias for the 

cultures, had a salinity of 20 psu and a low background of DOM, consisting of a 1: 1 ratio 

of deep Santa Barbara Channel seawater (SBSW) to artificial seawater (ASW) made with 

sodium chloride combusted at 500°C for 2 hours (Saba et al. 2009). 

2.2. Experimental Procedures 

Feeding and Nutrient Release Experiments. Two experiments were conducted, 

each with a non-toxic and toxic algal treatment at non-bloom and bloom concentrations. 

In the first experiment, copepods (Acartia tonsa) and heterotrophic dinoflagellates 

( Oxyrrhis marina) were fed Prorocentrum minimum in the following growth 

phase/treatments: (1) log (non-toxic) non-bloom, (2) log bloom, (3) late stationary (toxic) 

non-bloom, and (4) late stationary bloom. Blooms of P. minimum are defmed as cell 

concentrations > 3000 cells mr 1; localized blooms can reach concentrations up to ~ 105 

cells mr1 in Chesapeake Bay (Tango et al. 2005). In our study, the non-bloom and bloom 

concentrations of P. minimum were 1500 and 15,000 cells mr 1
, which corresponded to ~3 

and 35 11g chl a r 1
, respectively. In the second experiment, A. tonsa copepods were fed 

non-bloom and bloom concentrations of non-toxic and toxic strains of Karlodinium 

veneficum in the same four combinations as listed above for P. minimum. Low cell 
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concentrations in situ range from 1 00 to 1000 mr1
, but K. veneficum can reach bloom 

concentrations ranging from 104 to 105 cells mr1 (Adolf et al. 2007). In our study, the 

non-bloom and bloom concentrations of K. veneficum were 1000 and 15,000 cells mr 1
, 

which corresponded to -1 and 35 j.lg chl a r 1
, respectively. Only the copepod grazer (A. 

tonsa) was used in the second experiment because in preliminary experiments, 0. marina 

did not consume K. veneficum (CCMP 1974, data not shown), and in another study, K. 

veneficum was lethal to 0. marina (Deeds & Place 2006). 

Each experiment had a 48-hour acclimation period prior to experimental 

incubations. In the P. minimum experiment, freshly collected adult copepods were 

individually transferred from beakers into four separate 3.5 1 bottles using wide-bore 

Pasteur pipettes, each with FSW and the appropriate algal food culture and concentration, 

to a final concentration of 60 copepods r 1 (Saba et al. 2009). Additionally, P. minimum 

food (in the appropriate four treatment conditions) were added to four separate 500 ml 

bottles of heterotrophic dinoflagellate 0. marina culture. All bottles were topped off 

with FSW, covered with parafilm to remove bubbles, capped, and placed on a rotating 

wheel (1 rpm), and incubated on a 12:12 h light: dark regime at 20°C for 48 hours, similar 

to acclimation times used in previous copepod feeding studies (Besiktepe & Dam 2002). 

At the end of the acclimation period for the P. minimum experiment, 72 

incubation bottles ( 500 ml, com busted borosilicate glass) were split into four sets of 18 

bottles, each set representing a food condition: log non-bloom, log bloom, late stationary 

non-bloom, and late stationary bloom. Each set included six controls (FSW + algal 

food), six copepod treatments (FSW + algal food + copepod grazers), and six 0. marina 

treatments (FSW + algal food + 0. marina grazers). The bottles were filled with FSW 
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and the appropriate algal food culture and concentration. Zooplankton grazers acclimated 

to the food conditions were then added to designated treatment bottles. Copepods were 

added to a final concentration of 60 copepods r 1
, and 0. marina grazers were gently 

added with silicon tubing affixed to a syringe to a final concentration of 100 cells mr1
, a 

density common in Chesapeake Bay (Johnson et al. 2003, Vaque et al. 2006). A suite of 

samples was taken initially and at the end of the 24-hour incubation: three controls, three 

copepod treatment bottles, and three 0. marina treatment bottles for each of the sets were 

sacrificed for initial sample collection, and the other three control and six zooplankton 

grazer treatment bottles for each of the sets were incubated similar to those in the 

acclimation period. 

In the second experiment, the acclimation and experimental incubations were set 

up as in the P. minimum experiment, but without the heterotrophic dinoflagellate 0. 

marina treatment. The four prey conditions were: (1) non-toxic Karlodinium venejicum 

non-bloom, (2) non-toxic K. venejicum bloom, (3) toxic K. venejicum non-bloom, and (4) 

toxic K. venejicum bloom. 

Oyster Exposure Experiment. To determine the potential toxicity of 

Prorocentrum minimum, we conducted a simultaneous exposure experiment using 

triploid spat of the eastern oyster, Crassostrea virginica, and the Asian oyster, C. 

ariakensis, using methods modified from those used for oyster embryos and larvae in 

Stoecker et al. (2008). Oyster spat of similar size (shell length 0.8- I mm) were 

obtained from the oyster hatchery at the Virginia Institute of Marine Science. Oysters 

were spawned in filtered natural seawater at a salinity of 20-22 psu and a temperature of 

~20°C. Upon collection, oysters were incubated in gently aerated FSW for 48 h to purge 
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any consumed algae and to acclimate to the experimental conditions (20°C, 12:12 h 

light:dark regime). Oysters were then inspected for good health by checking feeding 

activity, mantle movement when tapped with a dissecting needle, and valve closure 

ability, using a dissecting microscope (Olympus SZX12) (Shumway et al. 2006). Oysters 

that did not pass these criteria were discarded. Individual oysters were then randomly 

transferred into BD Falcon 6-well culture plates (1 oyster well-1
). The treatments used 

for this experiment are listed in Table 1. Aliquots of 15ml of either FSW, or FSW +algal 

food at the appropriate cell density, were added to each well. The cell densities of P. 

minimum cultures used for oyster exposure were equivalent to those used in the grazer 

feeding and nutrient release experiment (non-bloom = 1500 cells mr1
, bloom = 15000 

cells mr1
). Dunaliella tertiolecta (CCMP 1320) was used as a non-toxic control alga and 

was supplied to oysters at the same non-bloom and bloom concentrations. To prevent 

food and oxygen depletion during the exposure, water in each well was emptied and 

replenished daily with fresh FSW and algae. As oysters were exposed to the experimental 

algal conditions, they were assessed daily for mortality over 3 days using the criteria 

described above. Mortality was defined as lack of feeding activity, absence of response 

to mantle stimulation, and inability of the oyster to maintain valve closure ability 

(Shumway et al. 2006). 

2.3. Sample analyses 

Karlotoxin analyses. In the Karlodinium veneficum experiment, samples were 

collected at the beginning and end of the incubation to determine karlotoxin (KmTX2) 
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concentration. In the non-bloom and bloom treatments, 25-50 ml and 5-10 ml, 

respectively, of water was filtered through 13 mm PTFE syringe filters (Whatman, 0.2 

J.lm) .. KmTX2 concentrations (ng mr1
) were measured by liquid chromatography-mass 

spectrometry (LC-MS) after methanol elution of filters as described in Backvarroff et al. 

(2008). Under normal nutrient replete conditions CCMP 1609 has no detectable 

karlotoxin production. Based on our lower detection threshold for karlotoxin, we 

estimate the toxin level was <0.01 pg/cell. 

Bacterial nutrient uptake. Because bacteria can utilize both DOM and 

inorganic nutrients, we accounted for their potential uptake during experimental 

incubations in our copepod release rate calculations. Samples for bacterial enumeration 

were fixed with formaldehyde (final concentration 2%) and frozen (-80°C) until 

quantified using flow cytometry according to Bouvier et al. (2007). Briefly, fixed cells 

were stained with SYT0-13 (Invitron Molecular Probes, S7575), and abundance was 

enumerated on a Cytopeia Influx cell sorter/analyzer (488 nm argon laser) calibrated with 

1.1 J.lm microsphere bead stock using the protocol described by Bouvier et al. (2007). 

Each sample's cytogram of side scatter (SSC) versus green fluorescence (FL 1) was 

manually gated and analyzed with FloJo 8.8.6 software to determine total bacteria 

abundance (Bouvier et al. 2007). We calculated specific growth rate, 11 (d-1
), for each 

incubation bottle using the following equation ( 1 ): 

(1) 
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where T is the incubation time (1 d), and Bo and BF are the initial and final estimates of 

bacterial biomass in ng C r 1
, which were calculated by converting bacterial cell 

concentration to C biomass by assuming a bacterial cellular C content of 20 fg C cell-1 

(Lee & Fuhrman 1987) and then dividing by 106 to convert biomass from fg C to ng C. 

The potential daily bacterial uptake of DOC during the grazing experiments, (U, 

ng C r 1 d-1
) was estimated for each incubation bottle assuming a bacterial growth 

efficiency (BGE) of 50% (Azam et al. 1983) using the following equation (2): 

u ~ * Bo 

BGE 

(2) 

In treatments with negative ~ values, we assumed the nutrient demand, U, was 0. 

Additionally, using conservative estimates of bacterial molar C:N (4.5; Goldman & 

Dennett 1991) and C:P (50; Kirchman 2000), we estimated maximum potential Nand P 

uptake, respectively, as described in Saba et al. (2009). 

Feeding rates. Whole water samples for algal and protozoa cell counts were 

preserved with acid Lugol's solution (final concentration 2%). Subsamples for algal cell 

counts were settled in 1 ml Sedgewick rafters, and five replicate frames of at least 100 

cells were counted with a Nikon DIAPHOT-TMD inverted microscope at 600X 

magnification. Subsamples (2-5 ml) for protozoans were settled in 5 ml Utermohl 

settling chambers, and entire contents ( 1 00 cells or more) were counted under an inverted 

microscope after at least 24 hours (Utennohl 1931; Hasle 1978). Clearance and ingestion 

rates of Acartia tonsa and Oxyrrhis marina on algal prey were calculated according to the 

equations of Frost (1972). Due to changes in 0. marina abundances during the 
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incubation, we further adjusted clearance rate calculations according to those described in 

Bamstedt et al. (2000). Specific growth rates of the heterotophicdinoflagellates were 

calculated as in Vague et al. (2006). 

Predator C, N, and P content. Subsamples ofthe copepod Acartia tons a (for 

both Prorocentrum minimum and Karlodinium veneficum experiments) and the 

heterotrophic dinoflagellate Oxyrrhis marina were collected and analyzed for particulate 

C (PC), particulate N (PN), and particulate P (PP) content (see analytical methods below) 

before the start of the acclimation period and after the experimental incubation. 

Copepods were filtered onto combusted GF/F filters (n = 30 copepod per filter; n = 3 

filters for each food condition), and we filtered 50 ml of 0. marina culture onto each 

combusted GF/F filter (n = 3 for each food condition). Replicate blanks (n=3) for PC/PN 

and PP analysis were prepared by filtering 50 ml or 1 OOml (depending on volume filtered 

for other PC/PN samples) of0.2 11m FSW through combusted GF/F filters. All filters 

were frozen until analysis. 

Nutrient analyses. After bacteria, algal food, and Oxyrrhis marina grazer 

abundance samples were collected, the remaining volume from each bottle was 

prescreened through a 200 11m sieve (to retain copepods in treatments; controls were 

treated the same) directly into three filter towers (100 ml each) and filtered through 

combusted GF/F filters into acid-cleaned, combusted flasks. One GF/F filter was 

collected for fluorometric chlorophyll analysis (Parsons et al. 1984), a second filter was 

collected for PC and PN (Carbon-Hydrogen-Nitrogen elemental analyzer, EA1108), and 

a third for PP was muffled and extracted in hydrochloric acid (Aspila et al. 1976). The 

remaining filtrate for each replicate was analyzed for organic and inorganic nutrient 
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concentrations. Concentration of DOC was measured with a Shimadzu TOC analyzer 

5000A (minimum detection limit, MDL= 0.5-1.0 f.!mol r 1
; coefficient of variance, CV = 

2-6%) after acidification and purging of dissolved inorganic carbon (Peltzer et al. 1996; 

Sharp et al. 2002). Ammonium was measured with the phenol/hypochlorite Koroleff 

method with MDL= 0.05 f.!mol r 1 and CV = 2.5% (Grasshoff et al. 1983; Parsons et al. 

1984), urea was measured with the diacetyl monoxime procedure with MDL= 0.05 f.!mol 

r 1 and CV = 2% (adapted from Price & Harrison 1987), and DPAs were analyzed using 

the fluorescent 0-phthaldealdehyde (OPA) method (MDL= 0.05 f.!mol r 1
; CV = 2-4%) 

(Parsons et al. 1984). Concentrations of nitrate and nitrite (NOx; Grasshoffmethod) and 

Pol- (Koroleffmethod) (MDL= 0.05 ,_.mol r 1
; CV = 2-3%), as well as TDN and TDP 

following persulfate oxidation (MDL= I .0 f.!mol r 1
; CV = 2-3%), were determined with 

a QuikChem 8500 AutoAnalyzer (Grasshoff et al. 1983, Bronk et al. 2000, Sharp 2002). 

Concentrations of bulk DON and DOP were calculated by the difference between TDN 

and inorganic N (NOx + NH4 +)and TDP and Pol-, respectively. Copepod release rates 

(in ng individuar1 hour-1
) were calculated according to Saba et al. (2009): 

[(~Ct+Ut)- (~Cc+Uc)] XV 

(Nx T) 
(3) 

where ~C1 is the change in nutrient concentrations (ng r 1 day"1
) in the treatment bottles 

and ~Cc is the average change in nutrient concentrations (ng r 1 day- 1
) in the control 

bottles; U1 and Uc are estimated values of bacterial uptake (ng r 1 day- 1
) in the treatment 

and control bottles (see equation I b); Vis the incubation volume (1), N is the number of 

grazers in the treatment bottles, and Tis incubation time (24 hours day- 1
). Nutrient 
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uptake by algae likely occurred during the incubations, and this nutrient decline is 

incorporated in this equation in the controls as L1Cc. 

Statistical analysis. Statistical comparisons of the effects of diet on ingestion 

and release rates, were made by one-way ANOV A, employing the p = 0.05 level of 

significance, using Mini tab 15. 
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3. Results 

3.1. Oyster exposure experiment 

All Crassostrea virginica and C. ariakensis oyster spat survived and actively fed 

by the end of day 3 in the FSW treatment (no food) and in the treatments with non-bloom 

and bloom concentrations of Dunaliella tertiolecta and log phase Prorocentrum minimum 

(Table I). However, both oyster species experienced mortality after being exposed to 

late stationary phase P. minimum at non-bloom and bloom concentrations. All mortalities 

occurred between days 2 and 3 of exposure. The percent survival of C. ariakensis 

feeding on non-bloom and bloom densities, and of C. virginica feeding on bloom 

densities, were 87, 80, and 93%, respectively (Table I). The oysters that lost valve 

closure ability (considered dead) also appeared to have little internal tissue compared to 

healthy oysters. 

3.2. Karlotoxin concentration 

Concentrations of KmTx 2 in Karlodinium veneficum (CCMP I609) and K. 

veneficum (CCMP 2778) at the start of the experimental incubation are shown in Fig. 1. 

The average initial KmTx 2 concentration in the bloom treatment of K. veneficum CCMP 

2778 (I 05 ng mr1
) was significantly higher than in the non-bloom treatment ( 4 ng mr1

; 

Fig. I). Average cellular concentrations were 9 and 6 pg cell-1 for this strain in the bloom 
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and non-bloom treatments, respectively. K. veneficum CCMP 1609, however, had no 

measureable quantity ofKmTx2 (Fig. 1). 

3.3. Algal C, Nand P content 

Log and late stationary phase Prorocentrum minimum cells had similar C 

contents, averaging 290 and 313 pg C individuar1
, respectively (Table 2). However, 

while Jog phase cell molar C:N and C:P (7.6 and 93.9, respectively) were near the 

Redfield molar ratio (6.6 and 106, respectively), late stationary cells were deficient in 

both Nand P, yielding significantly higher average molar C:N and C:P ratios of 13.5 and 

277, respectively (p < 0.05). 

Toxic Karlodinium veneficum had slightly higher cellular C, N, and P contents 

compared to those of non-toxic K. veneficum (Table 2), however these differences were 

not significant. Toxic and non-toxic K. veneficum had similar C:N and C:P ratios that 

were close to the Redfield ratio. 

3. 4. Grazer C, N, and P content 

The Acartia tons a copepod grazers used in the Prorocentrum minimum 

experiment (Expt. 1) had slightly higher initial C, N, and P contents compared to A. tonsa 

used in Expt. 2 (Table 2), but these differences were not significant. While the C:N ratios 

of A. tonsa in both experiments were lower than the Redfield ratio, C:P atomic molar 

ratios were well above Redfield (235 in Expt.l, 199 in Expt. 2), suggesting that copepods 
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may have been P deficient at the start of the acclimation period. After 3 days of exposure 

to experimental algal diets (acclimation+ experimental incubation), decreases in copepod 

body C ranged from 30-38% in Expt. 1 and 19-30% in Expt. 2 (Fig. 2). Losses in 

copepod body N and P were also significant in both experiments, ranging from 8-51% 

and 2-37%, respectively (data not shown). 

The cellular C, N, and P contents of Oxyrrhis marina, the heterotrophic 

dinoflagellate grazer used in the P. minimum experiment, yielded average molar C:N and 

C:P ratios of 5.7 and 57.8, respectively (Table 2). We were unable to measure elemental 

contents of heterotrophic dinoflagellate Oxyrrhis marina at the end of the experiment due 

to interference of algal cells remaining on the filters. 

3.5. Feeding rates 

Algal food C was never grazed below 50% of the initial algal concentration 

during any experiment. Ingestion rates of all grazers in both experiments were 

significantly higher in the algal bloom treatments, compared to algal non-bloom 

treatments (Fig. 3; p < 0.05). Ingestion rates of Acartia tonsa copepods feeding on non

bloom densities of non-toxic and toxic Prorocentrum minimum were not statistically 

different from each other and averaged 0.8 and 0.5 ng C ind-1 day-1
, respectively (Fig. 

3a). Ingestion rates of copepods in the toxic P. minimum bloom treatment were slightly 

lower than those in the non-toxic bloom treatment, averaging 25 and 31 ng C individuar1 

day- 1 or 0.6 and 0.7% of copepod body C day-1
, respectively, but these differences were 

also not significant (Fig. 3a). The heterotrophic dinoflagellate Oxyrrhis marina had low 
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growth rates (0.3 d-1
) while feeding on both log and late stationary phases of P. minimum 

bloom treatments, but exhibited mortality in the non-bloom P. minimum treatments 

(mean mortalities= 32 ± 19% feeding on log phase and 21 ± 13% feeding on late 

stationary phase). Ingestion rates of 0. marina on non-bloom densities of P. minimum 

were significantly lower while feeding on the non-toxic culture compared to the toxic 

culture (p < 0.05), averaging 0.1 and 0.6 pg C individuar1 day-1
, respectively (Fig. 3b ). 

Ingestion rates of 0. marina feeding on bloom densities of non-toxic and toxic P. 

minimum were not statistically different (mean= 8.2 and 8.8 pg C individuar1 day-1 or 

1.6 and 1.8% of body C day- 1
, respectively) (Fig. 3b). Ingestion rates of A. tonsa 

copepods feeding on toxic Karlodinium venejicum (mean non-bloom vs. bloom= 1.4 vs. 

16.2 ng C ind-1 day- 1
) were slightly higher compared to those for non-toxic K. venejicum 

(mean non-bloom vs. bloom = 1.1 vs. 11.7 ng C ind-1 day- 1 
), but these differences were 

not significant (Fig. 3c ). 

3. 6. Bacteria nutrient uptake 

Initial bacterial abundance was higher in the bloom treatments compared to non

bloom treatments for all algal strains used in our study (Table 3). In Expt. 2, bacterial 

abundances were significantly higher in the toxic Karlodinium venejicum non-bloom and 

bloom treatments compared to their non-toxic K. venejicum counterparts. However, in 

Expt. 1 bacterial abundances were similar in Prorocentrum minimum non-toxic log vs. 

toxic late stationary phases. In the P. minimum experiment (Expt. 1 ), bacterial specific 

growth rate, f.l, was less than 0.2 d-1 in all treatments (Table 3). The highest bacterial 
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abundance and specific growth rates were in non-bloom treatments with the grazer 

Oxyrrhis marina. Bacterial growth was higher in non-toxic K veneficum treatments in 

Expt 2, compared to negligible growth in all treatments containing the toxic K 

veneficum, and there were no differences in !! between non-bloom and bloom treatments. 

Due to variability in bacterial specific growth rate in the two experiments, estimated 

average daily bacterial demand ofC, N, and P ranged from 0-52.2, 0-13.5, and 0-2.7 !!g 

C, N, and P r 1 dai 1
, respectively (Table 3). The highest nutritional demands were in 

treatments with higher initial bacterial biomass and!! (see equation 2). 

3. 7. Grazer nutrient release 

Acartia tonsa DOC release rates were significantly higher in the toxic vs. non

toxic treatments for both non-bloom (11 ng C ind- 1 h-1
) and bloom (42 ng C ind- 1 h-1

) 

Prorocentrum minimum densities in Expt 1 (Fig. 4a). Oxyrrhis marina DOC release was 

detectable only in the toxic P. minimum bloom treatment, ranging from 2-20 

pg C ind-1 h-1 (Fig. 4b). Similarly, DOC release by A. tonsa copepods in Expt 2 occurred 

only when feeding on toxic Karlodinium veneficum, with average DOC release rates in 

non-bloom and bloom treatments of 14 and 28 ng C ind-1 h- 1
, respectively (Fig. 4c). 

In contrast to DOC release, copepods in Expt 1 had significantly higher inorganic 

N (NH4 +) release rates while feeding on non-toxic P. minimum at non-bloom and bloom 

algal densities compared to those densities of toxic P. minimum (Fig. 5a). Release rates 

of NH4 + were also significantly higher in copepods feeding on non-bloom densities of the 

non-toxic culture of P. minimum, averaging 2.4 ng N ind-1 h- 1
• There was no detectable 
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NH/ release by the grazer 0. marina in any P. minimum treatment. Similar to Expt. 1, 

NH4 +release rates by copepods in Expt. 2 were significantly higher when feeding on non

toxic K. veneficum compared to toxic K. veneficum (Fig. 5b). Copepod NH/ release 

rates were also higher in Expt. 2 than those in Expt. 1 (p < 0.05). 

When grazer DON release was detected, it was typically a significant portion of 

total N released (Fig. 6). Although variable, release rates of DON by copepods feeding 

on P. minimum were only detected in the non-toxic bloom treatment, averaging 12.3 ng N 

ind-1 h- 1 and accounting for 94% of the total N released (Fig. 6a). DON was the only 

form of released N detected for grazer 0. marina (Fig. 6b ). DON release rates were 

significantly higher while feeding on the toxic P. minimum at bloom concentrations 

(mean= 10.3 pg N ind-1 h-1
) compared to those feeding in any other treatment. In 

contrast to NH4 + release, copepods in Expt. 2 had significantly higher DON release rates 

while feeding on toxic K. veneficum compared to non-toxic K. veneficum (Fig 6c). 

Additionally, unlike DOC release in Expt. 2, DON release was higher in non-bloom 

compared to bloom densities (p < 0.05, toxic). 

Inorganic P (Pol·) release rates by A. tonsa in Expt. 1 occurred only when 

feeding on non-toxic P. minimum at bloom densities, and averaged 1.7 ng P ind-1 h1 (Fig. 

7a). There was no detectable P04
3

- release by the grazer 0. marina in any P. minimum 

treatment, as noted above for NH/. Release rates of Pol· were only detectable for 

copepods feeding on toxic K. veneficum at bloom densities, and averaged 0.4 

ng P ind-1 h-1 (Fig. 7b). 

Similar to DON release, when DOP release was detected, it was typically a 

significant portion of total P released (Fig. 8). Release rates ofDOP by A. tonsa 
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copepods and 0. marina (Expt. 1) were only detectable in treatments with the non-toxic 

P. minimum culture (Fig. 8a and 8b ). Additionally, DOP release rates were higher when 

grazers fed on non-bloom vs. bloom P. minimum densities. In contrast to Expt. 1, 

"detectable DOP release by copepods in Expt. 2 occurred only in the toxic bloom K. 

veneficum treatment, and averaged 1.2 ng P ind-1 h- 1 (Fig. 8c). 
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4. Discussion 

Prorocentrum minimum and Karlodinium veneficum form widely distributed 

annual blooms in Chesapeake Bay (Johnson et al. 2003). In our study, we report low 

feeding rates of copepod Acartia tons a and heterotrophic dinoflagellate Oxyrrhis marina 

on all algal species, regardless of food concentration or toxicity, which suggests these 

grazers may not be capable of controlling formation of these blooms. Compared to these 

low feeding rates, however, inorganic nutrient and DOM release rates were often higher 

and, in addition to nutrient composition, were quite variable with food concentration and 

between toxic and non-toxic treatments. 

4.1. Toxicity of algal cultures 

The Prorocentrum minimum in late stationary growth phase in our experiment 

appeared to be toxic (although a toxin was not directly isolated and quantified), as 

mortality occurred in oyster spat of Crassostrea virginica and C. ariakensis only when 

exposed toP. minimum in this growth phase. The Asian oyster, C. ariakensis, may have 

been more sensitive to this algae, as it had 80% survival compared to 93% survival of the 

native oyster, C. virginica after 3 days of exposure to bloom concentrations. In 

comparison, juvenile C. virginica oysters had a mean survival of 53% after 11 days of 

exposure to bloom concentrations of P. minimum (Luckenbach et al. 1993). No mortality 

occurred in either oyster species when exposed to non-bloom and bloom concentrations 

of Dunaliella tertiolecta, log phase P. minimum, or when starved, indicating that late 
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stationary phase P. minimum caused a specific adverse reaction in oysters that was 

unrelated to food concentration. 

Karlotoxin (KmTx2) was undetectable in Karlodinium veneficum (CCMP 1609) 

but was present at non-bloom and bloom concentrations of K. veneficum, reaching levels 

shown to be acutely toxic to fish (100 ng mr 1
; Deeds et al. 2006). 

There were no lethal toxic affects from the algae on the zooplankton grazers used 

in the experiments. All copepods in both experiments were alive and active after 

incubation. The heterotrophic dinoflagellate Oxyrrhis marina had low mean specific 

growth rates of 0.3 d-1 in the log and late stationary phases of P. minimum bloom 

treatments, and an overall mean mortality of 0. marina of 26% occurred in non-bloom 

treatments with both P. minimum growth phases. These results suggest that growth 

phase, and thus toxicity, of P. minimum had no direct effect on grazer 0. marina growth, 

but that instead 0. marina may have been food limited at all algal concentrations (see 

below). 

4.2. Low grazer ingestion rates 

Low growth and ingestion rates of Oxyrrhis mm:ina could be caused by factors 

unrelated to food quality. 0. marina can ingest up to 560% body C d- 1 of certain HAB 

species (Jeong et al. 2001, 2003a; calculated using our estimated 500 pg C cell-1 for 0. 

marina), but in our study 0. marina ingestion rates were below 2% body C d- 1
• 

Threshold prey concentrations of 0. marina range from 80 cells mr 1 (Jeong et al. 2003a) 

to 105 cells mr 1 (Goldman et al. 1989) depending on the algal food offered. Initial 
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Prorocentrum minimum concentrations in our study were 1500 and 15,000 cells mr1
, and 

may have been below 0. marina feeding threshold levels. Additionally, because algal 

densities were possibly below 0. marina threshold feeding levels causing food limitation 

during the acclimation period, 0. marina could have started the experimental incubation 

in stationary or early senescence, phases when low growth and ingestion rates may occur 

(Goldman et al. 1989). 

In contrast, algal concentrations offered in our study were well above known 

threshold ingestion levels for Acartia tons a copepods (Houde & Roman 1987, Besiktepe 

& Dam 2002). While copepod grazing rates on P. minimum in our study (0.5-31 ng C 

ind·1 d"1
) were similar to those found for A. tonsa on non-toxic P. minimum in Cohen et 

al. (2007; 5-21 ng C copepod·1 d- 1
), they were low (:S 2% body C d-1

) compared to 

ingestion rates reported in other studies (Besiktepe & Dam 2002, Colin & Dam 2002, 

Miller & Roman 2008, Waggett et al. 2008, Saba et al. 2009). For example, A. tonsa can 

ingest >100% of its body C d- 1 (Kiorb0e eta!. 1985, Durbin & Durbin 1992, Besiktepe & 

Dam 2002), and A. tonsa reached its maximum ingestion rate of 10 Jlg C ind-1 d-1 
( ~200% 

body C) while feeding on P: minimum at concentrations of300-800 Jlg C r 1 (Besiktepe & 

Dam 2002). Additionally, the critical N ingestion rate, the minimum ingestion rate 

required to balance endogenous metabolism (Gardner & Scavia 1981 ), of A. tonsa was 

10% body N copepod-1 d-1 (Miller & Roman 2008). Our ingestion rates were below this 

critical ingestion rate (:S 2% body N d-1
), suggesting the copepods in our study were 

feeding well below potential despite being offered sufficient food concentrations during 

experimental incubations. 
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4.3. Similarity in ingestion rates between non-toxic and toxic strains 

Grazer ingestion rates in our study were also generally similar between non-toxic 

and toxic strains at both non-bloom and bloom algal densities. Dam and Colin (2005) 

also reported no difference in ingestion rates of Acartia tonsa feeding on actively 

growing Prorocentrum minimum cells versus cells in the stationary growth phase. In 

contrast, lower ingestion rates of A. tonsa feeding on toxic Karlodinium strains compared 

to a non-toxic strain of K. veneficum (CSIC1; Waggett et al. 2008) or Gymnodinium sp1 

(Vaque et al. 2006) have also been reported. The source of reduced grazing rates on non

toxic strains as well as toxic strains is unclear, but there may have been other factors that 

made the non-toxic strains equally unpalatable to grazers. The non-toxic strain of K. 

veneficum used in our study (CCMP 1609) did not produce karlotoxins, but it did have 

lower C, N, and P contents and slightly higher C:P ratios compared to toxic K. veneficum 

(CCMP 2778), which could have decreased its nutritional sufficiency and palatability to 

the copepods, resulting in similar grazing rates on both toxic and non-toxic forms. 

Additionally, the strain of P. minimum used in our study (JA-98-0 1 ), regardless of growth 

phase or nutrient content, could have contained unidentified feeding deterrents or toxic 

compounds that caused ingestion rates to be low in all treatments. Rosetta & McManus 

(2003) reported that ciliates feeding on P. minimum (clone Exuv) had high growth rates 

compared to those feeding on P. minimum (JA-98-01). The toxins associated with 

French strains of P. minimum act by blocking sodium channels (Denardou-Queneherve et 

al. 1999), which would act to decrease ingestion rates (Colin & Dam 2003, Dam & Colin 

2005); however, toxins were not identified in our study or in Rosetta & McManus (2003), 
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so the exact cause of low feeding rates is unknown. Despite low feeding rates, inorganic 

nutrient and DOM release rates, when detected, were always> 100% ofC, N, and P 

ingested and were quite variable with food concentration and between toxic and non

toxic treatments. 

4. 4. Potential causes of variability in nutrient release rates 

Signal:noise ratio. Nutrient release rates were highly variable both within 

individual treatments and between algal food treatments. Variability within treatments 

could be a result of a low signal:noise ratio. For example, the signal:noise ratio for DOC 

release was 1-8, the lower end of which is near the MDL. The large error associated with 

DOC release rates (see error bars, Fig. 4) led to difficulty in closing the C budget. Thus, 

even after accounting for C ingestion, the observed C lost as DOC is at least two times 

higher than the decrease in copepod body C content. 

Copepod sex ratios. Variability within treatments could also be caused by the 

presence of both male and female adult copepods in the grazer treatment bottles. Most 

studies measuring feeding or nutrient release from copepod use only females. However, 

the male:female ratio of Acartia tonsa copepods in situ is about 1:1 (Ki0rboe 2006). 

From a subsample of 100 adult copepods used in our study, 44% were male, yielding a 

male:female ratio of 0.8. Although male copepods typically eat ~50% less than females 

(Conover 1956; Saage et al. 2009), females may have lower nutrient release rates due to 

their higher energy requirements for egg production. Thus, variation in the ratio of 

male:female copepods between replicate experimental bottles in our study may have 
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caused variations in nutrient release rates within treatments. However, our average 

release rates are likely closer to those of natural field assemblages than previous studies 

using females only. 

4. 5 Effects of starvation on grazer nutrient release 

All algal diets used in our study, regardless of toxicity or cell density, deterred 

grazing by A. tonsa and Oxyrrhis marina, which likely resulted in starvation and affected 

the amount and type of nutrients released. When zooplankton are starved, they typically 

reduce respiration and excretion (Mayzaud 1973, Mayzaud 1976, Fenchel 1982, Ki0rboe 

et al. 1985). In our study, however, when release rates were measurable, they were 

nearly always greater than what was ingested, and in some cases were three orders of 

magnitude higher. Because of these variable high nutrient release rates during a time 

when grazers were not meeting critical C, N, and P requirements, grazers were likely 

catabolizing body tissue for survival (Mayzaud 1973, Mayzaud 1976, Miller & Roman 

2008), specifically proteins (DOC, DON, and NH/ release), amino acids (P release via 

gluconeogenesis), and possibly RNA (P release). For example, starvation in 

heterotrophic micro flagellates leads to digestion of mitochondria and RNA (Fenchel 

1982), which could potentially result in released C, N, and P byproducts. Catabolism of 

body tissues in our study was also indicated by the loss of copepod body C, N, and P. 

Differences in reserves within individual copepods likely affected their degree of 

starvation and subsequent catabolism of material, contributing to variation within 

treatments. 
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If nutrient release rates were solely based on catabolism ofbody tissue due to 

starvation, however, we might expect to see less variable nutrient release because 

ingestion rates were low (:S 2% body C d- 1
) and copepod C, N, and P composition was 

similar in all treatments regardless of toxicity. However, nutrient release rates and the 

forms of nutrients released (organic vs. inorganic) in our study were significantly 

different between non-toxic and toxic treatments. This suggests that, in addition to 

starvation, other factors, including algal food quality and the presence of toxins, may 

have caused the differences in grazer nutrient release between treatments. 

4. 6. Effects of algal growth phase and quality on grazer nutrient release 

Because zooplankton maintain a relatively stable body nutrient content, changes 

in the quality of their food source (as regulated by body C:N and C:P ratios- poorest 

quality having highest C:N and C:P), will generate changes in the relative amounts of 

DOC, N (NH/, DON), andP (Pol·, DOP) excreted (Caron and Goldman1990; Elser 

and Urabe 1999). In our study, Prorocentrum minimum had lower N and P contents, and 

thus higher C:N and C:P ratios, in the late stationary growth phase compared to the log 

phase. These differences in algal food chemical composition could have contributed to 

the differential release of nutrients from grazers by increasing limitation ofN and Pin the 

late stationary P. minimum treatment. This is supported by the lower release rates 

(conservation) ofNH/ and DON by copepods, and P by copepods and heterotrophic 

dinoflagellates, while feeding on late stationary P. minimum. However, the opposite 

occurred with Oxyrrhis marina DON release, which was higher in the late stationary 
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· compared to the log P. minimum treatment. Thus, interactions of starvation and algal 

quality most likely had ·varying effects on the catabolism of the copepod and 

heterotrophic dinoflagellate grazers. Additionally, because late stationary P. minimum 

caused mortality in oysters in our exposure study, we cannot rule out possible.toxic 

effects on the zooplankton grazers. However, because a toxin was not isolated and 

characterized from this algae in our study, we can not establish if and how a toxin could 

impact the behavior, neurology, or biochemical composition of the grazers. 

Grazer-mediated sloppy feeding could also have caused nutrient release. Meller 

(2005) shows that copepod DOC release via sloppy feeding is enhanced when the 

copepod-to-prey equivalent spherical diameter (ESD) ratio is< 55. In our study, Acartia 

tonsa/P. minimum and A. tonsa!Karlodinium veneficum ESD ratios averaged 32 and 35, 

respectively. Additionally, there was typically higher C, N, and P release (Figs. 4-8) 

when zooplankton fed on algae with higher C, N, and P contents (Table 2), suggesting 

that differential release from copepods feeding on non-toxic and toxic P. minimum and K. 

veneficum with variable elemental compositions could be due to sloppy feeding. 

4. 7. Effects of karlotoxin on copepod nutrient release 

Karlotoxins are lipid-soluble toxins that can negatively interact with membrane 

sterols, including cholesterol, causing cell lysis in Oxyrrhis marina (Deeds & Place 

2006), damage to fish gill epithelia (Deeds et al. 2002, Deeds et al. 2006), and increases 

in ionic penneability of vertebrate membranes (Deeds 2003). Although these interactions 

have not been examined specifically in copepods, karlotoxin interaction with copepod 
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cholesterol likely causes similar responses. Thus, upon exposure and ingestion of toxic 

Karlodinium veneficum, the copepods in our study perhaps became "leaky" and suffered 

increased membrane pem1eability and subsequent loss of organic material from the 

cytosol. This is supported by higher Acartia tonsa DOC, DON, Pol·, and DOP release 

rates in the toxic K. veneficum treatment compared to the non-toxic K. veneficum 

treatment. Furthermore, DOC, Pol·, and DOP release was highest when exposed to the 

highest KmTx 2 concentration (K. veneficum toxic bloom treatment). 
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5. Conclusion 

Many HAB species produce toxins or are unpalatable to grazers. All cultures of 

Prorocentrum minimum and Karlodinium veneficum used in our study caused grazer 

deterrence and illustrate the inability of Acartia tonsa and Oxyrrhis marina to control 

blooms of these algal species, regardless of toxicity. However, starvation and subsequent 

catabolism of body tissue caused grazer nutrient release, at rates higher than they 

ingested. Furthermore, the forms of nutrients released (organic vs. inorganic) varied 

between non-toxic and toxic strains, with typically higher grazer DOM release occurring 

in the toxic treatments. Our results are contrary to the previous hypothesis that grazer 

deterrence caused by HABs will decrease grazer-mediated nutrient recycling (Sunda et al. 

2006), the consequences of which are important in understanding nutrient feedback 

interactions in HABs. Low ingestion rates coupled with high nutrient release rates by the 

grazers could intensify HABs, especially HABs with high uptake affinities for organic 

forms of nutrients, or alternatively lead to feedback mechanisms by which non-harmful 

algae are able to outcompete HABs. Additionally, toxin production by certain HAB 

species, which may increase under nutrient limitation or in the presence ofDOM 

(Anderson et al. 2002), may be affected by changes in zooplankton grazer nutrient 

regeneration. In any case, ingestion of HAB species and subsequent nutrient release by 

zooplankton may drastically affect nutrient cycling dynamics in estuarine and coastal 

areas with localized, dense HABs. Nutrient release rates will likely vary dependent upon 

whether zooplankton can ingest alternative, preferred prey during harmful algal blooms; 

therefore, future studies examining grazer-HAB nutrient dynamics should include mixed 

diets containing HAB and non-HAB species, or mixed toxic and non-toxic forms of the 
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same species. Understanding the mechanisms that influence HABs and marine coastal 

nutrient cycling is of increasing importance, particularly if we are to understand and 

predict the effects of climate change or enhanced eutrophication on plankton dynamics. 
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Table 1. Crassostrea ariakensis and C. virginica oyster spat exposure experiment 

treatments with varying algal food and food density and their percentage (%) survival 

after a 3-day incubation. Non-bloom and bloom food densities are described in the 

methods. n=30 oysters for each treatment listed. 

Oyster spat Algal Food Algal Density Survival(%) 
C. ariakensis None 100 
C. virginica None 100 

C. ariakensis D. tertiolecta Non-Bloom 100 
C. ariakensis D. tertiolecta . Bloom 100 
C. virginica D. tertiolecta Bloom 100 

C. ariakens is P minimum (log) Non-Bloom 100 
C. ariakensis P minimum (log) Bloom 100 
C. virginica P minimum (log) Bloom 100 

C. ariakensis P minimum (late stationary) Non-Bloom 87 
C. ariakensis P. minimum (late stationary) Bloom 80 
C. virginica P minimum (late stationary) Bloom 93 
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Table 2. Chemical composition (individual C, N, and P content, C:N, and C:P) of algae, heterotrophic dinoflagellates, 

and calanoid copepods used in this study. n=8-18 for Prorocentrum minimum cultures, n=5-12 for Karlodinium veneficum 

cultures, n=3 for Oxyrrhis marina and Acartia tonsa grazers. C:N, C:P ratios converted from weight (g g-1
) to atomic molar 

(mol mor') according to fonnulas: C:N (molar)= (C:N- weight) x (14/12); C:P (molar)= (C:P -weight) x (31/12). 

c N p C:N C:P 
(pg individual"1

) (molar) 
Expt.l 
P. minimum (log) Algae 290 ± 38 46 ± 7 7 ± 1 7.6 ± 1.8 93.9 ± 20.6 
P. minimum (late stationary) Algae 313 ± 61 27 ± 5 3 ± 0.4 13.5 ± 2.0 277 ± 48.3 
0. marina Grazer 500 ± 34 103 ± 13 19 ± 6 5.7 ± 0.8 57.8 ± 6.6 

..... ..... 
Expt. 2 N 

K. veneficum (CCMP 1609) Algae 207 ± 22 35 ± 2 6 ± 0.3 7.0 ± 0.9 77.1 ± 10.2 
K. veneficum (CCMP 2778) Algae 254 ± 27 47 ± 5 7 ± 0.4 6.3 ± 0.9 80.6 ± 12.0 

c N p C:N C:P 
Calanoid copepod (J.tg individual-1

) (molar) 
A. tons a (Expt. 1) Grazer 4.2 ± 0.5 1.2 ± 0.3 0.045 ± 0.007 4.1 ± 0.6 235 ± 21.3 
A. tonsa (Expt. 2) Grazer 3.4 ± 0.6 0.8 ± 0.2 0.038 ± 0.006 4.8 ± 0.4 199 ± 26.1 



Table 3. Initial bacterial abundance (BA), mean specific growth rate (!l), and mean estimated daily bacterial C, N, and 

P demands used for uptake corrections on release rates in experiment (Expt) 1 and 2. Nutrient demands (total C, N, and P) 

were calculated using a bacterial growth efficiency (BGE) estimate of 50%, and estimates of bacterial molar C:N (4.5) and C:P 

(50) (see methods section for details). n=3 for BA, J!, and C, N, and P daily nutritional demands. 

Daily nutritional demand 

.BA f.t c N p 

(cells ml·' x 1 06
) (d"') (ng J"1 d" 1 

X 103
) 

Expt l 
P. minimum (log) 

Non-bloom Control 1.59 ± 0.01 0.03 ± 0.01 1.7 ± 0.9 0.4 ± 0.2 0.09 ± 0.04 
Non-bloom+ A. tonsa 1.55 ± 0.05 O.o7 ± 0.04 4.6 ± 2.2 1.2 ± 0.6 0.24 ± 0.11 
Non-bloom + 0. marina 1.67 ± 0.04 0.19 ± O.o7 12.9 ± 5.0 3.4 ± 1.3 0.67 ± 0.26 
Bloom Control 9.35 ± 0.82 -0.05 ± 0.()3 0 0 0 
Bloom +A. tonsa 8.34 ± 0.09 O.o2 ± 0.01 6.4 ± 4.9 1.7 ± 1.3 0.33 ± 0.25 - Bloom + 0. marina 8.36 ± 0.11 -0.01 ± 0.04 0 0 0 w 

P. minimum (late stationary) 
Non-bloom Control 1.92 ± 0.09 0.07 ± 0.02 5.2 ± 7.3 1.3 ± 1.9 0.27 ± 0.38 
Non-bloom+ A. tonsa 1.82 ± 0.09 O.o7 ± 0.05 5.2 ± 3.6 IJ ± 0.9 0.27 ± 0.18 
Non-bloom + 0. marina 1.91 ± 0.02 0.18 ± 0.05 13.4 ± 3.8 3.5 ± 1.0 0.69 ± 0.20 
Bloom Control 8.93 ± 0.16 0.09 ± 0.09 33.0 ± 33.1 8.6 ± 8.6 1.70 ± 1.71 
Bloom+ A. tonsa 8.91 ± 0.09 O.o3 ± O.o3 ll.l ± 12.2 2.9 ± 3.2 0.57 ± 0.63 
Bloom+ 0. marilla 9.60 ± 0.64 -0.05 ± O.o7 0 0 0 

.Expt 2 
K. veneficum (CCMP 1609) 

Non-bloom Control 0.05 ± 0.01 1.03 ± 0.12 2.0 ± 0.2 0.5 ± 0.1 0.10 ± 0.01 
Non-bloom+ A. tonsa 0.05 ± O.ot 2.34 ± 0.13 4.4 ± 0.3 1.1 ± 0.1 0.23 ± 0.01 
Bloom Control 0.64 ± 0.02 0.90 ± 0.04 22.8 ± 1.0 5.9 ± 0.3 1.18 ± 0.05 
Bloom + A. tonsa 0.72 ± 0.17 1.81 ± O.D3 52.2 ± 0.8 13.5 ± 0.2 2.69 ± 0.04 

K. ven~ficum (CCMP 2778) 
Non-bloom Control 2.45 ± 0.03 -0.04 ± 0.08 0 0 0 
Non-bloom+ A. tonsa 2.48 ± O.o3 0.06 ± 0.02 6.0 ± 2.2 1.5 ± 0.6 0.31 ± 0.11 
Bloom Control 17.8 ± 0.97 -0.01 ± 0.04 0 0 0 
Bloom + A. tonsa 18.9 ± 0.64 0.00 ± 0.02 6.5 ± 6.3 1.7 ± 1.6 0.34 ± 0.32 



Fig. 1. Initial karlotoxin (KmTx 2) concentrations of non-toxic and toxic Karlodinium 

veneficum used in this study. x andy denote significance (x>y, one-way ANOVA, 

p < 0.05). Mean ofn=3, error bars= 1 standard deviation. 
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Fig. 2. Acartia tonsa C contents in a) experiment 1 with Prorocentrum minimum and b) 

experiment 2 with Karlodinium veneficum before the start of the acclimation period (T 0) 

and after 3 days of exposure to non-toxic and toxic algal cultures of each algal species at 

non-bloom and bloom algal densities. x andy denote significance (x>y, one-way 

ANOVA, p < 0.05). Mean ofn=3, error bars= 1 standard deviation. 
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Fig. 3. Ingestion rates (I) of a) copepod Acartia tons a and b) heterotrophic dinoflagellate 

Oxyrrhis marina fed non-toxic (log phase) and toxic (late stationary phase) Prorocentrum 

minimum (Expt. 1), and c) A. tonsa fed non-toxic (CCMP 1609) and toxic (CCMP 2778) 

Karlodinium veneficum (Expt. 2) at non-bloom and bloom algal densities. Ingestion rates 

were converted from cells individuar 1 day-1 using average C content of food items shown 

in Table 2. x andy denote significance (x>y, one-way ANOV A, p < 0.05). Mean of 

n=3, error bars= 1 standard deviation. 
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Fig. 4. DOC release rates of a) copepod Acartia tons a and b) heterotrophic dinoflagellate 

Oxyrrhzs marina fed non-toxic (log phase) and toxic (late stationary phase) Prorocentrum 

minimum (Ex pt. 1 ), and c) A. tons a fed non-toxic (CCMP 1609) and toxic (CCMP 2778) 

Karlodinium veneficum (Expt. 2) at non-bloom and bloom algal densities. x andy denote 

significance (x>y, one-way ANOV A, p < 0.05). Mean of n=3, error bars = 1 standard 

deviation. nd = DOC release not detected. 
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Fig. 5. Inorganic N (NH4 +)release rates of a) copepod Acartia tons a fed non-toxic (log 

phase) and toxic (late stationary phase) Prorocentrum minimum (Expt. 1 ), and b) A. tons a 

fed non-toxic (CCMP 1609) and toxic (CCMP 2778) Karlodinium veneficum (Expt. 2) at 

non-bloom and bloom algal densities. x, y, and z denote significance (x>y>z, one-way 

ANOV A, p < 0.05). Mean of n=3, error bars = 1 standard deviation. nd = NH4 + release 

not detected. 
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Fig. 6. DON release rates of a) copepod A cartia tons a and b) heterotrophic dinoflagellate 

Oxyrrhis marina fed non-toxic (log phase) and toxic (late stationary phase) Prorocentrum 

minimum (Ex pt. 1 ), and c) A. tons a fed non-toxic (CCMP 1609) and toxic (CCMP 2778) 

Karlodinium veneficum (Expt. 2) at non-bloom and bloom algal densities. x and y denote 

significance (x>y, one-way ANOVA, p < 0.05). Mean ofn=3, error bars= 1 standard 

deviation. nd = DON release not detected. Numbers in parentheses are the average 

proportion of DON release as % of total dissolved nitrogen (NH4 + + DON) release. 
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Fig. 7. Inorganic P (P04
3
-) release rates of a) copepod Acartia tons a fed non-toxic (log 

phase) and toxic (late stationary phase) Prorocentrum minimum (Expt. 1 ), and b) A. tons a 

fed non-toxic (CCMP 1609) and toxic (CCMP 2778) Karlodinium vene.ficum (Expt. 2) at 

non-bloom and bloom algal densities. Mean of n=3, error bars = I standard deviation. 

3 . 
nd = P04 - release not detected. 
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Fig. 8. DOP release rates of a) copepod Acartia tons a and b) heterotrophic dinoflagellate 

Oxyrrhis marina fed non-toxic (log phase) and toxic (late stationary phase) Prorocentrum 

minimum (Expt. 1), and c) A. tonsa fed non-toxic (CCMP 1609) and toxic (CCMP 2778) 

Karlodinium vene.ficum (Expt. 2) at non-bloom and bloom algal densities. x denotes 

significance (one-way ANOV A, p < 0.05). Mean of n=3, error bars = 1 standard 

deviation. nd = DOP release not detected. Numbers in parentheses are the average 

proportion ofDOP release as% of total dissolved phosphorus (POl-+ DOP) release. 
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CHAPTER4 

The Relative Importance of Sloppy Feeding, Excretion, and Fecal Pellet 
Leaching in the Release of Dissolved Carbon and Nitrogen by 

Acartia tonsa Copepods 
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Abstract 

Crustacean zooplankton produce dissolved organic matter (DOM) and inorganic 

nutrients via sloppy feeding, excretion, and fecal pellet leaching. These different release 

mechanisms of metabolic products, however, have never been individually isolated. Our 

study was designed to determine the relative importance of these different modes on 

release of dissolved organic carbon (DOC), ammonium (NH4 +), and urea from Acartia 

· tonsa copepods feeding on the diatom Thalassiosira weissjlogii. Excretion and sloppy 

feeding were the dominant modes of DOC production ( 11 and 5% of particulate organic 

C ingested, respectively) and N~ + release (34 and 8% of particulate organic nitrogen, 

PON, ingested, respectively). Urea, however, was predominately produced via sloppy 

feeding and fecal pellet leaching (10% and 6% ofPON ingested, respectively). Urea 

release via sloppy feeding accounted for 54% of total measured nitrogen (TMN; NH/ + 

urea) release. TMN release was > 100% of copepod body N d"1
, resulting in low 

DOC:TMN release ratios (2.2 for sloppy feeding, 2.1 for cumulative release of sloppy 

feeding, excretion, and fecal pellet leaching). Our results suggest that the mechanism of 

release plays an important role in the amount of different fonns of DOM, NH4 +, and urea 

available to bacteria and phytoplankton. 
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Introduction 

Zooplankton play a key role in the cycling and transfer of nutrients and organic 

matter in marine food webs (Miller & Landry 1984, Steinberg et al. 2000, 2002, Carlson 

2002, Schnetzer & Steinberg 2002, Steinberg & Saba 2008). The products of zooplankton 

grazing and metabolism are either recycled and available for uptake by bacteria and 

phytoplankton or transferred to higher trophic levels (Azam et al. 1983, Cushing 1989, 

Moller & Nielson 2001 ). Crustacean zooplankton release dissolved organic matter 

(DOM) and inorganic nutrients via sloppy feeding, excretion, and leaching from egested 

fecal pellets (Lampert et al. 1978, Moller 2007). Few studies have attempted to tease 

apart these different mechanisms of nutrient production by zooplankton. These studies 

focused only on sloppy feeding (Roy et al. 1989, Moller & Nielson 2001, Moller 2005, 

Moller 2007) or fecal pellet leaching (Roy & Poulet 1990, Urban-Rich et al. 1998, 

Urban-Rich 1999; Thor et al. 2003), but demonstrate that these processes can generate 

significant amounts ofDOM. Most measured release of DOC (Lampert 1978; Moller & 

Nielson 2001, Moller et al. 2003, Moller 2007), while only few measured dissolved 

organic nitrogen (DON) release (Roy et al. 1989; Roy & Poulet 1990, Vincent et al. 

2007). Excretion has been extensively reported in the literature (reviewed in Steinberg & 

Saba 2008). The tenn "excretion" or "release" used in these studies, however, is 

typically inclusive of all the release processes cumulatively (Miller & Glibert 1998; Isla 

et al. 2004; Saba et al. 2009, Ch 2). Our study was designed to isolate the three 

mechanisms of release: sloppy feeding, fecal pellet leaching, and excretion, to determine 

their relative importance in C and N release at different time scales. 
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Release of DOM via sloppy feeding, the physical breakage of the food source, is 

greatest when cells are too large to be ingested whole and lowest when small 

phytoplankton cells are ingested whole (Lampert 1978, M0ller & Nielson 2001, M0ller 

2005, M0ller 2007). For example, DOM release occurred when the copepod Calanus 

hyperboreus fed on Thalassiosira jluviatilis but not when C. hyberboreus fed on a 

smaller prey item, T weissjlogii (Strom et al. 1997). DOC released via sloppy feeding 

(as a fraction of food POC removed from suspension) was 54--69% for Acartia tonsa 

copepods feeding on diatom Ditylum brightwelli and dinoflagellate Ceratium lineatum 

(M01ler & Nielson 2001 ), 49% for Cal anus spp. feeding on natural plankton assemblages 

(M0ller et al. 2003), and 7-36% for three species of copepods feeding on differently 

sized phytoplankton (M0ller 2007). DON release via sloppy feeding was about 28% of 

total DON release of Calanus helgolandicus copepods feeding on Thalassiosira 

weissjlogii diatoms (Vincent et al. 2007). Sloppy feeding causes losses ofuningested 

particulate material; thus, detennining loss of DOM and inorganic nutrients to sloppy 

feeding is important in preventing overestimations of ingestion and assimilation (Dagg 

1974, Roy et al. 1989). 

DOM loss from egested fecal pellets has been argued to be on time scales of 

minutes for pellets with permeable membranes (Jumars et al. 1989) to hours or even days 

for pellets with incompletely permeable membranes (Strom et al. 1997; Urban-Rich 

1999). Urban-Rich (1999) and Thor et al. (2003) found that Calanus spp. and Acartia 

tonsa fecal pellets, respectively, can leach between 34 and 50% of the total C content of 

the fecal pellet as DOC within the first 48 hours of egestion. Similarly, Roy & Poulet 

(1990) found a rapid decrease in copepod fecal pellet total dissolved free amino acid 
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(DFAA) concentration within the first 3 to 5 days. The amount ofDOC leaching from 

fecal pellets can be a function of food concentration and type. Leaching of DOC from 

fecal pellets is likely higher when copepods are fed high food concentrations (Jumars .et 

al. 1989, M0ller et al. 2003) due to higher egestion rates and decreased assimilation 

· efficiencies (Landry et al. 1984; Besiktepe & Dam 2002), higher C:volume ratios of 

pellets (Urban-Rich et al. 1998), and faster gut-passage times, yielding more dissolved 

solutes in pellets (Jumars et al. 1989). Additionally, copepod fecal pellets leached more 

DOC when copepods fed upon dinoflagellates compared to diatoms (Thor et al. 2003), 

and on heterotrophs compared to phytoplankton (Urban-Rich et al. 1998). Copepods may 

also enhance DOC release from fecal pellets by ingesting the outer membrane of the fecal 

pellets (coprophagy), fragmenting pellets via swimming activity (coprorhexy), and 

morphologically loosening pellets (coprochaly), which leaves the pellet vulnerable to 

physical and microbial degradation (Lampitt et al. 1990; Noji et al. 1991, Iversen & 

Poulsen 2007). In addition to passive leaching, DOC and DF AA can be rapidly released 

from fecal pellets due to bacterial degradation processes and hydrolysis of proteins (Roy 

& Poulet 1990; Urban-Rich 1999). 

The amount of C and N transported from the surface to deep waters is dependent 

upon the mechanism of release. Products of sloppy feeding and excretion will likely be 

recycled quickly in the euphotic zone, with the exception of diel vertically migrating 

zooplankton, which also actively transport dissolved inorganic and organic C and N 

below the euphotic zone (Steinberg et al. 2000, 2002). Sinking fecal pellets will not only 

export POC and PON, but also will leach interstitial DOC and DON below the euphotic 

zone. Separating DOM and inorganic nutrient production by different zooplankton-
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mediated release mechanisms is thus important in accurately determining ingestion and 

assimilation, DOM supply to bacteria in surface and deep waters, stoichiometry of 

recycled DOM, and will ultimately help us to understand the dynamics of DOM fluxes 

and standing stocks. 
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Methods 

In order to isolate the three different ~ooplankton-mediated mechanisms of 

dissolved C and nutrient release, we conducted this study in two parts. The first 

experiment was designed to measure sloppy feeding (SF) and total release (TR). Sloppy 

feeding was assumed to be the only form of nutrient release during a 20 minute 

incubation with previously starved Acartia tonsa copepods feeding on Thalassiosira 

weissflogii diatoms, as 20 minutes is short enough to avoid release via defecation or 

excretion (Maar et al. 2002, M0ller et al. 2003). Total release in this experiment included 

nutrient release from sloppy feeding, excretion, and fecal pellet leaching after a 3-hour 

incubation with A. tonsa feeding on T weissflogii. In the second experiment, we 

measured nutrient release directly from fecal pellets (FP) produced by A. tonsa copepods, 

fed T weissjlogii, in short (20-minute) and longer (3-hour) incubations. Excretion was 

then calculated as the difference between total release and the combined sum of sloppy 

feeding and fecal pellet release, nonnalized to the 3-hour incubation. 

Collection and culture of organisms- Acartia tonsa, a common, coastal, 

omnivorous calanoid copepod, was collected from the York River estuary, U.S.A., a 

tributary of Chesapeake Bay, via near-surface net tows using a 0.5 m-diameter net with 

500 11m mesh and a non-filtering cod end. Healthy, active A. tonsa were placed in acid

cleaned buckets with gently aerated 0.2 11m filtered seawater (FSW). Copepods were 

then fed a diet of Thalassiosira weissfloggii diatoms for 2-3 days before the start of the 

experiments. 

Thalassiosira weissjlogii (CCMP 1336) was cultured using f/2 + Si medium 

made with the same FSW used in the experiments (salinity= 20 psu). The cultures were 
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incubated at 20°C on a 12:12 h 1ight:dark regime and maintained in exponential phase by 

transfers every 3-4 days into fresh media. The FSW used in experiments and nutrient 

media had a low background of DOM, consisting of a 1: 1 ratio of deep Santa Barbara 

Channel seawater (SBSW) to artificial seawater (ASW) made with sodium chloride 

combusted at 500°C for 2 hours (Saba et al. 2009). 

Experimental Procedure: Sloppy Feeding and Total Release (SF/TR)- The 

experiment conducted to measure SF and TR contained controls with 450 ml of 

Thalassiosira weissflogii diatoms standardized to 300 J.lg C r 1
, and treatments with 36 

adult Acartia tonsa copepods added to 450 ml of the food described in the control (final 

concentration of60 copepods r 1
). The polycarbonate incubation bottles were each fitted 

with a 100 11m mesh screen insert near the bottom to keep copepods separated from their 

fecal pellets and prevent coprophagy. Copepods were individually placed into FSW and 

allowed to empty their guts for 3-4 hours prior to being placed into the incubation bottles. 

Bottles were incubated in the dark at 20°C, and three control and three treatment bottles 

were sacrificed at each time point [initial (T 0), 20 minutes (T 20min; only sloppy feeding 

release), and 3 hours (T3h; total release)] for analyses. To measure excretion/fecal pellet 

leaching from non-feeding copepods, an additional triplicate set of treatment bottles with 

copepods was incubated for 3 hours with T weissjlogii, after which the copepods were 

gently transferred to FSW for another 3-hour incubation. Triplicate bottles filled with 

FSW served as the controls. All these 'post-incubation bottles' were treated the same as 

those in the feeding experiment. 

Fecal pellet production- Fecal pellets became stuck underneath the mesh inserts 

inside the incubation bottles during the SF /TR experiment; thus we were unable to 
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accurately enumerate fecal pellets produced during the incubations. Thus, we conducted 

a separate fecal pellet production experiment immediately following the SF/TR 

experiment, with feeding bottles (n=6) set up as in the SF/TR experiment. The only 

difference was instead of the 100 11m mesh disc inserts placed near the bottom, the bottles 

contained removable 500 11m mesh sieves to retain the copepods and allow fecal pellets 

to fall through. After the 3-hour incubation, the sieves with copepods were removed, and 

fecal pellets in each bottle were counted under a dissecting scope. Fecal pellet 

production was calculated (mean= 2.8 pellets copepod-1 hour-1
), and this value was 

applied to fecal pellet nutrient release rates (below) to estimate the nutrient leaching from 

fecal pellets in the total release component (T311) of the SF/TR experiment. 

Experimental Procedure: Fecal Pellet Leaching- The experiment conducted to 

determine nutrient release from fecal pellets (FP) contained controls ( 190 ml FSW), a 

'biotic' treatment with 38 A. tonsa fecal pellets added to 190 ml FSW, and an 'abiotic' 

treatment of 38 fecal pellets, which were pre-soaked in mercuric chloride (HgCb) to kill 

associated bacteria, added to 190 ml FSW. A suite of samples were taken initially (To), 

after incubating for 20 minutes (T 20min), and 3 hours (T 311); three replicate bottles were 

sacrificed at each time point for controls and treatments. Before the start of the 

experiment, copepods were fed Thalassiosira weissjlogii for 12 hours. Then, in small 

batches, copepods were gently concentrated using 500 11m sieves placed in shallow 

dishes to retain a small volume of water above the mesh, and individually placed into 20-

m! well plates. Using a dissecting scope and an acid-clean, combusted Pasteur pipette, 

fecal pellets were collected immediately (within 1-2 minutes from evacuation from the 

copepod) and, for the biotic treatment, placed into appropriate incubation bottles with 
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FSW. For the abiotic treatment, fecal pellets were gently placed in a concentrated HgC12 

solution (20 g HgCh r 1
; Urban-Rich, pers. comm.) and allowed to soak for I 0 minutes 

before being placed into the incubation bottles containing FSW. Samples forT o were 

taken immediately after each bottle was set up. The T 20min and T 3h bottles were incubated 

at 20°C in the dark. 

Sample a?alyses 

Bacterial nutrient uptake - Because bacteria can utilize both DOM and inorganic 

nutrients, we accounted for potential nutrient uptake during experimental incubations in 

our release rate calculations. Samples for bacterial abundance were fixed with 

formaldehyde (final concentration 2%) and frozen ( -80°C) until analysis. Fixed cells 

were stained with SYT0-13 (Invitron Molecular Probes, S7575), and abundance was 

enumerated on a Coulter Epics Altra flow cytometer (488 nm argon laser) calibrated with 

1.1 1-1m microsphere bead stock using the protocol described by Bouvier et al. (2007). 

We calculated bacterial specific growth rate, ll (h-1
), for each incubation bottle 

using the following equation (1): 

In (Bp/Bo) 

T 

(1) 

where Tis the incubation time (h),.and B0 and BF are the initial and final estimates of 

bacterial biomass in nmol C L-1
• Bacterial biomass was calculated by converting bacteria 

cell concentration to C biomass by assuming a bacterial cellular C content of 20 fg C celr 

1 (Lee & Fuhrman 1987), dividing by 106 to convert biomass from fg C to ng C, and 

dividing by 14.01 to convert ng C to nmol C. 
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The potential hourly bacterial uptake of DOC during the experiments, (U, nmol C 

L- 1
) was estimated for each incubation bottle assuming a bacterial growth efficiency 

(BGE) of 50% (Azam et al. 1983) using the following equation (2): 

u !! * Bo* T 

BGE 

(2) 

Additionally, using conservative estimates ofbacterial molar C:N (4.5; Goldman 

& Dennett 1991 ), and assuming 16% of the N uptake source was organic urea (calculated 

from Table 1 in Andersson et al. 2006) and 84% was inorganic NH4 +, we estimated 

maximum potential N uptake (Saba et al. 2009). 

Feeding rates - Whole water samples for Thalassiosira weissjlogii diatom cell 

counts were preserved with acid Lugol's solution (final concentration 2%). Subsamples 

for algal cell-counts were settled in 1 ml Sedgewick rafters, and five replicate frames each 

of at least 100 cells were counted with a Nikon DIAPHOT-TMD inverted microscope at 

600X magnification. Clearance and ingestion rates of Acartia tons a on diatoms were 

calculated according to the equations of Frost (1972). 

Nutrient analyses - Prior to filtering for nutrient analysis, bacteria (FP, SF/TR 

experiments) and diatom abundance (SF/TR experiment) samples were collected directly 

from each incubation bottle. In the SF/TR experiment, the remaining volume from each 

bottle was prescreened through a 200 f.!m sieve (to retain copepods; controls were treated 

the same) directly into two filter towers (90 ml each) and filtered through combusted GFF 

filters into acid cleaned, combusted flasks. One GF/F filter was collected for 

fluorometric chlorophyll analysis (Parsons et al. 1984), and the second filter was 
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collected for particulate organic carbon (POC) and particulate organic nitrogen (PON) 

analysis (CHN elemental analyzer, EA1108). The collected copepods were filtered onto 

a combusted GF/F, counted under a dissecting microscope (Olympus SZX12), and 

analyzed for POC and PON content. For each incubation bottle in theFP experiment, the 

entire content (190 ml) was filtered onto a combusted GF/F filter, and pellets were 

counted under a dissecting scope and analyzed for PC and PN content. Replicate blanks 

(n=3) for PC/PN analysis were prepared by filtering 90 ml (SF /TR) or 190 ml (FP) of 0.2 

Jlm FSW through combusted GF/F filters. All POC/PON samples were dried at 55°C and 

desiccated with 6 N HCl to remove inorganic C prior to measurement (Condon & 

Steinberg 2008). The remaining filtrate for each replicate was analyzed for organic and 

inorganic nutrient concentrations. Concentration of DOC was measured with a Shimadzu 

TOC analyzer 5000A (minimum detection limit, MDL= 0.5-1.0 Jlmol r 1
; coefficient of 

variance, CV = 2-6%) after acidification and purging of dissolved inorganic carbon 

(Peltzer et al. 1996; Sharp et al. 2002). Ammonium (NH/) was measured with the 

phenol/hypochlorite method with MDL= 0.05 Jlmol r 1 and CV = 2.5% (Grasshoff et al. 

1983; Parsons et al. 1984) and urea was measured with the diacetyl monoxime procedure 

with MDL= 0.05 Jlmol r 1 and CV = 2% (adapted from Price and Harrison 1987). The 

sum ofNH4 +and urea was defined as total measured nitrogen (TMN). 

All release rates (sloppy feeding, total release, and fecal pellet leaching; in nmol 

ind·1 or peller1 h- 1
) were calculated according to Saba et al. (2009): 

[(~Ct+Ut)- (~Cc+Uc)] XV 

(Nx T) 
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where ~C1 and ~Cc are changes in nutrient concentrations (nmol L-1
) in the treatment 

(food+ copepods or FSW +fecal pellets) and control (food or FSW only) bottles, 

respectively; U1 and Uc are estimated values of bacterial uptake (nmol L- 1
) in the 

treatment and control bottles (see equation 2); Vis the incubation volume (L), N is the 

number of copepods or fecal pellets in the treatment bottles, and T is incubation time 

(hours). Release rates in the post-incubation bottles were also calculated using this 

equation, but the controls were bottles with FSW and the treatments were bottles with 

FSW + copepods. Because these copepods were not feeding, post-incubation release 

rates incorporate only that from excretion and fecal pellet leaching. In order to compare 

relative amounts of each mode of release, all rates were converted from nmol ind- 1 or 

pellef1 h-1 to nmol h-1 by multiplying by the number of copepods in the SF/TR or post

incubation experiment bottles (36) or number of fecal pellets in the FP experiment 

bottles, respectively. 

Release due to fecal pellet leaching in the SF/TR experiment, FP0_3h, was 

estimated using release rates calculated from the FP experiment according to equation 3, 

and converted from nmol pellef1 h-1 to nmol h-1 by multiplying by 101, the mean number 

of pellets 36 copepods produced in 1 hour at our measured fecal pellet production rate of 

2.8 pellets copepod-1 h- 1
• 

In theSF/TR experiment, we made two key assumptions. First, sloppy feeding 

was the only fonn of release by copepods between the To and T2omin time points. This 

incubation time was short enough to avoid production of fecal pellets and excretion of 

nutrients from previously starved copepods that had just begun feeding. Secondly, based 

on the linear relationship of sloppy feeding DOC release and C ingestion of Calanus spp. 

142 



(M0ller et al. 2003), we assumed the release of DOC, or ofNH/ and urea, from sloppy 

feeding is proportional to Acartia tons a copepod ingestion rate of C or N, respectively. 

Thus, reduced feeding rates will yield proportionally lower sloppy feeding release rates. 

We then estimated sloppy feeding release rates between Tzomin and T3h (SFzomin-3b, 

nmol h-1
) using the following equation: 

SFzomin-3h = (SFo-20min X Izomin-3h) (4) 

Io-20min 

where SFo.zomin is the sloppy feeding release rate (nmolh-1
) between To and Tzomin, and Io. 

20min and Izomin-3h are copepod ingestion rates (f.lg ind-1 h-1
) between To and Tzomin and 

between Tzomin and T3h, respectively. Finally, we calculated the overall sloppy feeding 

release rate that occurred in the total 3-hour incubation (SF0_3h, nmol h-1
) using the 

following equation: 

SFo-3b (SFo-20min X 0.333 h)+ (SFzomin-3h X 2.67 h) 

3h 

(5) 

where 0.333 and 2.67 hare the amounts of time copepods spend sloppy feeding at release 

rates of SFo-zomin and SFzomin-3h, respectively. The term SFo-3h was used to calculate 

excretion rates (nmol h-1
) in the SF/T experiment: 

Excretion rate Total Releaseo-3h - SFo-3h- FPo-3h ... (6) 
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Statistical analysis - Statistical comparisons of the effects of diet on ingestion 

and release rates, were made by one-way ANOV A, employing the p = 0.05 level of 

significance, using Mini tab 15. 
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Results 

C and N content of prey, predators, and fecal pellets - The average C and N 

content of the prey diatom species Thalassiosira weissjlogii was 68.6 pg C and 11.2 pg N 

celr1
, with an average molar C:N of 7.1 (Table 1 ). The initial concentration ofT. 

weissjlogii in the incubation bottles for the sloppy feeding/total release experiment was 

249 ± 41 11g C L- 1
• Acartia tonsa copepods averaged 5.9 flg C and 1.2 11g N copepod-1

, 

yielding a molar C:N ratio of 5.7. Fecal pellets produced by A. tonsa contained an 

average of 17.7 ng C; PON content was below detection level for the number of pellets 

analyzed. 

Feeding rates- Carbon ingestion rates of copepods feeding on T. weissjlogii in 

the SF /TR experiment were significantly higher for the first 20 minutes of the incubation 

(T o-20min) compared to rates from 20 minutes to 3 hours (T 20min-3h) and those calculated 

over the entire 3-hour incubation (T0_311 ; p < 0.05; Fig. 1), averaging 24.6, 5.2, and 6.6 11g 

C ind-1 d- 1
, respectively. Nitrogen (N) ingestion rates, which were calculated using the 

average molar C:N ratio ofT. weissjlogii (7 .1 ), followed a similar pattern, and averaged 

4.0, 0.8, and 1.1 flg N ind-1 d- 1
, respectively (Fig. 1 ). Average ingestion rates for C and 

N, calculated over any time period, were all::::_ 100% copepod body CorN d- 1
• 

Release rates- Copepod release rates of DOC and NH4 +in the SF/TR 

experiment were highest between the 20 minute and 3 hour time points, reaching 

averages of71 ng C and 30 ng N ind-1 h-1
, respectively, lower in the first 20 minutes 

when sloppy feeding was assumed to be the only form of release, and lowest in the post

incubation during which copepods were not feeding (Fig. 2). However, release rates of 

urea by Acartia tonsa were highest in the first 20 minutes (mean= 20 ng N ind-1 h- 1
) 
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compared to all other time periods, but were only significantly higher than the post

incubations (Fig. 2c ). Urea accounted for 22% of TMN (N~ + +urea) released from 0-3 

hr. and 23% ofTMN in the post-incubations. Molar C:N ratios ofDOC:urea-N released 

from 0-3h. were above the Redfield ratio of6.6 (10.8 ± 5.1), while DOC:TMN ratios 

were below the Redfield ratio of 6.6 (2.1 ± 0.5). 

Copepod sloppy feeding -DOC, N~ +, and urea sloppy feeding release rates 

were highest in the first 20-minutes, compared to the normalized sloppy feeding release 

rates (see methods) calculated over other time periods (Fig. 3). Cumulative sloppy 

feeding release (SF0.3h) ofDOC averaged 13.8 ng C ind-1 h- 1
, or 5.0% ofC ingested (Fig. 

3, Table 2; Fig. 4). Rates of urea release via sloppy feeding were higher than those for 

NH/; however, these differences were not significant (Table 2). Urea averaged 54% of 

TMN released from sloppy feeding. , The molar ratio of released DOC:urea-N and 

DOC:TMN averaged 5.4 (± 3.3) and 2.2 (± 0.1 ), respectively. 

Cope pod excretion -Excretion rates of DOC and N~ + were a higher portion of 

C and N ingested, respectively, compared to release rates of sloppy feeding and fecal 

pellet leaching (Table 2) but was only significantly higher for NH4 + (p < 0.05, one-way 

ANOVA). However, the sum of urea release from sloppy feeding and fecal pellet 

leaching exceeded total (0-3h) urea release, yielding a slightly negative excretion rate 

(Eq. 6). Theoretically, excretion rates cannot be negative; thus, we assumed the negative 

urea excretion rates were 0 (Table 2; Fig. 3). 

Fecal pellet release- DOC and N~ +release from fecal pellet leaching in the FP 

experiment were below detection at all time points (minimum detection limit, MDL= 0.5 

to 1 J.lM DOC, 0.05 11M NH/). Urea release was below detection in the first 20 minutes 
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(MDL= 0.05 J.tM), but averaged 1 ng N pellef1 h- 1
, or 6% ofN ingested, over the 3-hour 

incubation in both the biotic and abiotic (HgCh-soaked) pellet treatments (Table 2). 

Relative importance of various modes of release- Excretion was the greatest 

proportion of total DOC and NH4 + released (EXC0_3h) in the SF /TR experiment, 

averaging 68% and 81% ofthe total, respectively (Fig. 3); this was followed by sloppy 

feeding (SFo-3h) averaging 32% and 18% of the total, respectively. However, sloppy 

feeding and fecal pellet leaching were the dominant modes of urea release. Release of 

DOC, NH/, and urea during the post-incubation are likely derived mostly from 

excretion, as fecal pellet production and subsequent leaching will be minimal, and sloppy 

feeding absent, for non-feeding copepods. 

Copepod C and N budgets - The average estimates of ingestion, sloppy feeding, 

excretion, and fecal pellet egestion and subsequent leaching were used to model C and N 

budgets of Acartia tonsa copepods (Figs. 4 and 5). The relative amount of C allotted to 

respiration and growth/egg production, and N allotted to growth/egg production, were 

calculated by subtracting the sum of estimated excretion and egestion from C or N 

ingestion, respectively. Fecal pellets produced by A. tonsa contained an average of 17.7 

ng C, which was used to estimate C egestion (Fig. 4). Fecal pellet N content was below 

detection in this study due to sample size; thus, we assumed a pellet mass C:N ratio of 4.3 

detennined by Butler & Dam (1994) for A. tonsa feeding on exponential phase 

Thalassiosira weissjlogii at 2405 cells mr1 in order to estimate N egestion (Fig. 5). The 

C budget illustrates that 5% of C removed from suspension was released as DOC via 

sloppy feeding, 18% POC was egested, and 77% was assimilated (Fig. 4). From the 

assimilated C, 13% was released via DOC excretion and 87% was allotted to respiration 
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and growth/egg production. In theN budget, 15% ofN removed from suspension was 

lost as NH4 +and urea by sloppy feeding, 23% PON was egested, and 62% was 

assimilated (28% excreted, 34% allotted to growth/eggs). The assimilation efficiency for 

C and N, calculated as (I-E)/I, where I= ingestion and E = egestion, 82% and 74%, 

respectively. When we included sloppy feeding, assimilation efficiencies decreased to 

81% and 69%, respectively. 
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Discussion 

The present study is the first to tease apart all mechanisms of zooplankton grazer

mediated release (sloppy feeding, excretion, and fecal pellet leaching) simultaneously. 

Additionally, we compare simultaneous release of DOC, NH/, and urea. Until now, 

, previous studies have been limited to measuring only one or two release mechanisms at a 

time or measuring only DOC or DON, and most studies measuring DOM and inorganic 

nutrient release from zooplankton typically report total release or assume excretion is the 

main mode of release. We demonstrate that the relative importance of the mechanism of 

release is different for DOC, NH4 +, and urea. Additionally, our study is the first to report 

urea release via sloppy feeding and fecal pellet leaching. 

C and N contents of copepods and diatoms - Acartia tons a copepod C and N 

contents and C:N molar ratios are within the range of those found for A. tons a copepods 

in Miller & Roman (2008; 2.5-5.5 f.lg C, 0.50-1.5 Jlg N, and 4.1-5.8 mol:mol, 

respectively). The average C and N content of the food item, diatom Thalassiosira 

weissjlogii, were also within range of those measured by Saba et al. (2009; 46-83 pg C 

and 8-15 pg N, respectively). The initial concentration ofT weissjlogii in the incubation 

bottles for the sloppy feeding/total release experiment, 249 ± 41 Jlg C ~-I, was near the 

prey concentration for which maximum ingestion rates of A. tonsa feeding on T 

weissjlogii were found by Besiktepe & Dam (2002). 

Fecal pellet production rates and C and N content- The fecal pellet production 

rate of A. tonsa feeding on diatom T weissjlogii in the present study, 2.8 pellets ind-1 h-1
, 

is within range of A. clausi (syn. A. hudsonica) feeding on a variety of prey items ( 1.0-4.1 

pellets ind-1 h-1
; Honjo & Roman 1978) and slightly lower than A. tonsa feeding on 
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exponential-phase T weissjlogii at 2405 cells mr1 (3.5 pellets ind-1 h- 1
; Butler & Dam 

1994). POC content offecal pellets produced by A. tonsa in our study (18 ng C peller1
) 

were near the minimum of the range of C contents of pellets produced by larger copepods 

Calanus hyperboreus and C.finmarchicus (20 to 80 ng C pellef1
) reported in Urban-Rich 

(1999) but were lower than those measured by Honjo & Roman (1978) for A. clausi (syn. 

A. hudsonica) feeding on coccolithophores (133-276 ng C pellef1
) or natural seawater 

(96-187 ng C pellef1
) and also for A. tonsa feeding on Tweissjlogii (ca. 30-375 ng C 

peller1
, Butler & Dam 1994; 121 ng C peller1

, Hansen et al. 1996). The inclusion of 

inorganic C in fecal pellet total C estimates by Honjo & Roman (1978) and Butler & 

Dam (1994) may partially account for the comparatively lower pellet C content in the 

present study (POC only). Additionally, fecal pellet C estimates by Butler & Dam (1994) 

and Hansen et al. (1996), which were converted from ng um-3 tong peller1
, may be 

artificially high due to their determination of pellet volume using linear two-dimensional 

measurements (Hansen et al. 1996). 

Feeding rates- The average copepod C ingestion rate from 0-20 min (24.6 11g C 

ind-1 d- 1
) was higher than any previously reported ingestion rate for Acartia tonsa feeding 

on Thalassiosira weissjlogii or any food item at concentrations used in our study (250 Jlg 

C L-1
). This is likely because ingestion rates are typically measured from longer 

incubation times (hours to days). Copepods in our study were starved for 3 to 4 hours 

prior to experimental incubations, which likely resulted in the large grazing and sloppy 

feeding signal observed at the beginning of the incubation (Fig. 1, Fig. 3). The ingestion 

rate calculated for the remainder of the incubation (20 min- 3 hr) and the overall 

ingestion rate during the entire incubation (0-3 hr) (3-7 Jlg C ind-1 d-1
) were similar to 
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rates previously reported (ca. 6-9flg C ind-1 d- 1
) for A. tonsa copepods feeding on T 

weissflogii at food concentrations similar to those in our study (Besiktepe & Dam 2002). 

Relative importance of various modes of DOC and NH4 + release- In studies 

conducted by M0ller et al. (2003) and M0ller (2007), sloppy feeding played a major role 

in copepod DOC production. Although sloppy feeding by copepods resulted in release of 

DOC and NH/ in our study, excretion was the dominant mode of release during the 3-

hour incubation (11% C ingested; 10% C removed from suspension). Total DOC release 

of Acartia tons a feeding on Thalassiosira weissjlogii in our study (15% of C ingested) 

was within range of that previously reported (6 to 20% ofC ingested) (Saba et al. 2009). 

NH/ excretion rates in our study (mean= 15.4 ng ind-1 h-1
) are within range of those 

previously reported for Acartia tons a (1.4 to 17 ng N ind-1 h-1
, Saba et al. 2009; . 

undetectable to 28 ng N ind-1 h- 1
, Miller & Glibert 1998). 

Sloppy feeding release ofDOM is dependent upon the size of the prey relative to 

the predator (Lampert 1978, M0ller & Nielson 2001, M0ller 2005, M0ller 2007). As 

such, the ratio of copepod-to-prey equivalent spherical diameter (ESD) has been used as a 

predictor of release of DOM by sloppy feeding, with significant release occurring below 

a certain threshold value (M0ller 2005, M0ller 2007). By applying our calculated 

copepod-to-prey ESD ratio of31.8, we predicted the fraction oftotal C removed from 

suspension lost as DOC via sloppy feeding by A. tonsa feeding on T weissflogii to be 

30.1 and 8.2% using the predictive equation by M01ler (2005) and M0ller (2007), 

respectively. The actual DOC release by sloppy feeding (as the fraction of total C 

removed from suspension) measured in our study for A. tonsa feeding on T weissflogii 

was higher for the first 20 min (10%) compared to the entire 3 hr experiment (5%), 
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resulting from the decline in ingestion rate after the first 20 min. Similarly, high release 

ofDOC via sloppy feeding (as percentage ofPOC removed from suspension) reported in 

Moller et al. (2003; 49%) and Moller (2007; 7-36%) was likely due to starving their 

copepods for 3-6 hours and running their experiments for only 20-30 min. Our 

normalized rate of sloppy feeding release calculated over the entire 3 hr experiment (SF0. 

3h), as opposed to the sloppy feeding release rate in the first 20 min of the incubation 

(SF2omin-3h), is more likely to occur in situ where copepods that are exposed to a relatively 

constant food supply and are feeding at lower, less variable constant rates. However, 

rapid rates of sloppy feeding and subsequent nutrient release may occur in the surface 

waters during nighttime feeding of diel migrating zooplankton after periods of reduced or 

no feeding activity (and reduced release of metabolic byproducts) during the daytime. 

Because we did not use a more sensitive method for detecting DOC release, such 

as 14C isotope tracer methods (Urban-Rich 1999; Moller et al. 2003; Thor et al. 2003), we 

likely underestimated the significance of fecal pellet leaching to the total DOC pool. 

Although DOC release rates from fecal pellets were below lower detection limits, 

leaching likely occurred. Fecal pellet leaching of urea, which contains organic C and N, 

was detectable in our study. If we assume 1 mole of DOC (urea-C) is released from fecal 

pellets with every 2 moles ofurea-N, DOC release is< 1% oftotal C ingested. Likewise, 

if we apply a maximum pellet DOC release rate of0.22 ng DOC peller1 h-1 measured in 

copepods by Urban-Rich (1999) to estimate DOC leached from pellets in our study, DOC 

release would still be < 1% of total C ingested, a significantly low contribution to the 

total DOC pool compared to excretion and sloppy feeding (Fig. 4). These low rates of 

DOC release from pellets may be due to the diatom prey used in this study. Previous 
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studies have shown that pellets derived from diatoms have slower rates of DOC release 

and decomposition compared to pellets derived from cryptophytes, nanoflagellates, or 

dinoflagellates (Hansen et al. 1996; Thor et al. 2003). 

Relative importance of various modes of urea release- Urea release did not 

follow the same patterns as DOC and NH4 + release. Instead, sloppy feeding and fecal 

pellet leaching were the dominant modes of urea release, and the contribution of 

excretion to total urea release was negligible. In contrast, sloppy feeding accounted for a 

lower portion of total DON release (21%) compared to excretion (79%) in estimates by 

Vincent et al. (2007) for Acartia discaudata feeding on the diatom Skeletonema costatum. 

However, their "excretion" term includes fecal pellet leaching, as the two were not 

experimentally separated. We further discuss sloppy feeding release of urea below. 

Previous studies have measured significant DF AA content in copepod fecal 

pellets (Poulet et al. 1986) as well as release of DF AA from leaching of fecal pellets 

within 3 to 5 days of production (Roy and Poulet 1990). Our study is the first to report 

urea release from fecal pellets, which was an estimated 60% of the total urea released in 

the 3-hour incubation. Furthermore, urea release rates from fecal pellets were similar in 

the biotic and abiotic treatments, suggesting that direct leaching, and not active bacterial 

degradation, was the mechanism of urea release from fecal pellets in our ~tudy. This is 

likely due to pellet type, as diatom-based pellets are poor substrates for pellet-associated 

bacteria (Hansen et al. 1996). These results suggest that fecal pellets can be a significant 

source of urea, and thus sinking pellets may be important in exporting urea below the 

euphotic zone. 
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The rate of total urea release (0-3 hr; Fig. 3c) should equal the sum of the release 

from sloppy feeding, excretion, and fecal pellet leaching in the same time frame. 

However, the sum of urea release in the latter three tenus exceeds the total, suggesting 

uptake of urea by bacteria during the 3-hour incubation that was unaccounted for. 

Lampert (1978) also found lower cumulative DOC release in a 3-hour incubation 

compared to a shorter 15-minute incubation, and also argued that this was due to bacterial 

uptake as well as reingestion of previously broken cells (causing decreased release via 

sloppy feeding) in the longer incubation. The estimate we used for bacterial uptake of 

urea was 16% of total N uptake; however, bacteria could have utilized more urea relative 

to NH/ in this study. For example, bacterial urea uptake of~ 50% total N, or a lower 

BGE (::::; 40%, compared to the 50% used in uptake calculations), would have accounted 

for the discrepancy between total urea release and the sum of sloppy feeding, excretion, 

and fecal pellet leaching. 

Sloppy feeding release of NH4 + and urea - Sloppy feeding by copepods also 

resulted in the release ofNH4 +and urea at surprisingly high proportions of particulate N 

ingested, 8 and 10%, respectively. This suggests that diatoms contained intracellular 

pools ofNH4 + and urea that comprised 8 and 10% of their cellular N. Diatoms contain 

storage vacuoles (Lomas & Glibert 2000) and possess a complete urea cycle which may 

cause accumulation of urea in the cytosol (Annbrust et al. 2004), however, Thalassiosira 

spp. accumulate low to undetectable internal pools ofN& +(Conover 1975; Lomas & 

Glibert 2000) and urea (Conover 1975; Price & Harrison 1988). Thus, there were likely 

other causes of high release ofNH/ and urea during the first 20 minutes of the 

incubation. Bacterial activity, upon breakage of the algal cells, could have caused rapid 
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transfonnation ofN, yielding NH/ and urea as byproducts. Bacteria have a strong 

growth response in the presence of Acartia tonsa copepod feeding byproducts (Vargas et 

al. 2007), and exhibit increases in enzymatic hydrolysis in the presence of feeding 

zooplankton (Wambeke 1994; Richardot et al. 2001). In addition, although we assumed 

that sloppy feeding was the only mechanism of release in the first 20 minutes of the 

incubation, basal excretion ofNH/ and urea could have occurred and accounted for a 

· portion of the released N. 

Nutrient release by feeding and non-feeding copepods - Release via excretion 

and fecal pellet leaching was consistently lower in non-feeding copepods compared to 

feeding copepods. This was also demonstrated by significantly higher NH4 + excretion in 

feeding Antarctic krill compared to those in FSW (Ikeda and Dixon 1984; Atkinson and 

Whitehouse 2000). Thus, zooplankton excretion rates measured in the absence of food 

will likely underestimate excretion. 

Implications for copepod C and N budgets -While molar DOC:urea-N release 

ratios were near or above Redfield C:N, DOC:TMN release ratios were below Redfield 

C:N. This is because unlike N release, where we included organic and inorganic forms, 

the C tenn only contains organic dissolved C released (DOC) and excludes inorganic C 

respired (C02). Nonetheless, more N was released as NH/ and urea (via sloppy feeding, 

excretion, and fecal pellet leaching) or egested as PON than accumulated into growth/egg 

production (PON). Similarly more N was released than accumulated in a variety of 

copepod species feeding mainly on diatoms, suggesting reduction in transfer ofN to 

higher trophic levels (Hasegawa et al. 2001). Consequently, the variable partitioning of 

C and N by copepods results in different fluxes of DOC, NH/, and urea, and increases 
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the amount of dissolved forms ofN in the water column, which may be readily available 

to bacteria to fuel the microbial loop (Daly et al. 1999). 
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Summary and Conclusion 

The relative importance of different mechanisms of zooplankton-mediated release 

(sloppy feeding, excretion, fecal pellet leaching) varied for DOC, NH/, and urea. 

Excretion and sloppy feeding were the dominant modes of DOC and NH4 + release, while 

sloppy feeding and fecal pellet leaching were dominant modes of urea release. Urea 

release via sloppy feeding and fecal pellet leaching has not been reported previously in 

the literature. The transformation ofhigh proportions of ingested PONto dissolved NH/ 

and urea, may shunt more ofthe available N to the microbial food web and less to higher 

trophic levels. Products of sloppy feeding and excretion (DOC, N~ +,urea) will be 

rapidly released during feeding activity in the euphotic zone or actively transported via 

diel vertically migrating zooplankton, and sinking fecal pellets can potentially transfer 

POC, PON, and urea below the euphotic zone. Released products will support bacterial 

growth and fuel the microbial loop. Additional studies of the relative magnitude and 

timing of the various release mechanisms, including how these are affected by diet and 

how C, N, and P are coupled within the individual mechanisms of release, will be key to 

our understanding of nutrient dynamics throughout the water column. 
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Table 1. Individual carbon (C) and nitrogen (N) content and molar C:N of 

' 
Thalassiosira weissjlogii diatoms, Acartia tons a copepods, and A. tonsa fecal pellets in 

this study. C:N ratios converted from weight (g: g·1
) to atomic molar (mol: mor1

) 

according to fonnulas: C:N (mol: mol: 1
) = (C:N in g: g·1

) x (14/12). bd =below 

detection. All values are averages (n=2), standard deviation in parentheses. 

C:N 
Species c N Unit (molar) 
T. weissjlogii (diatom) 68.6 (7.0) 11.2 (1.0) pg 7.1 (0.2) 
A. tons a ( copepod) 5.9 (0.2) 1.2 (0.1) !!g 5.7 (0.1) 
A. tonsa (fecal pellet) 17.7(8.2) bd ng 
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Table 2. Acartia tonsa release rates of dissolved organic carbon (DOC), 

ammonium (N~ +), and urea from sloppy feeding (SF0,3h), excretion (EXCo-3h), and fecal 

pellet leaching (FP0_3h) during the 3-hour sloppy feeding/total release experiment 

(SF/TR). Release rates are averages (n=3) ± 1 SD. (%)=release rate as the proportion of 

C or N ingestion rate. bd = below detection. 

DOC NH
4
+ Urea 

Source of release (ng C ind·1 h"1
) (ng N ind-1 h"1

) (ng N ind-1 h"1
) 

Sloppy feeding 13.8 ± 13.3 3.4 ± 2.5 4.5 ± 4.8 
(5%) (8%) (10%) 

Excretion 29.2 ± 15.2 15.4 ± 7.3 0 
(11%) (34%) (0%) 

(ng C pellet·1 h"1
) (ng N pellet·1 h"1

) (ng N pellet·1 h"1
) 

Fecal pellet leaching bd bd 1.0 ± 0.1 
(0%) (0%) (6%) 
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Figure 1. Ingestion rates (I) of Acartia tonsa copepods fed Thalassiosira weissjlogii 

diatoms in the sloppy feeding/total release experiment (SF/TR) between time points 0 and 

20 minutes (T o-20min), 20 minutes and 3 hours (T 20min-3h), and 0 and 3 hours (T o-3h)

Ingestion rates were converted from cells individuar1 day·1 (cells ind-1 d- 1
) using average 

C and N contents ofT. weissjlogii shown in Table 1. x, y, and z denote significant 

differences between rates (x>y>z; one-way ANOV A, p < 0.05). Mean of n=3, error bars 

= 1 standard deviation. 
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Figure 2. Release rates of a) dissolved organic carbon (DOC), b) ammonium (NH/), and 

c) urea by the copepod Acartia tons a between time points 0 and 20 minutes (T o-20min), 20 

minutes and 3 hours (T 20min-3h), 0 and 3 hours (T o-3h) while feeding on Thalassiosira 

weiss.flogii in the sloppy feeding/total release experiment (SF/TR), and by non-feeding A. 

tonsa during the post-incubation in filtered seawater (FSW) (Post-Inc). x andy denote 

significant differences between rates (x>y; one-way ANOV A, p < 0.05). Mean of n=3, 

error bars = I standard deviation. 
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Figure 3. Rates of various modes of a) dissolved organic carbon (DOC), b) ammonium 

(NH4 +), and c) urea release by the copepod Acartia tons a, including sloppy feeding 

between time points 0 and 20 minutes (SFo-20min), 20 minutes and 3 hours (SF2omin-3h), and 

0 and 3 hours (SF0_3h); fecal pellet leaching (FP0_3h); excretion (EXCo_3h); total release in 

the sloppy feeding/total release experiment (SF/TR) (Totalo-3h), and during the post

incubation in FSW (Post-Inc). SF2omin-3h rates were normalized according to ingestion 

rates (Eq. 4), and sloppy feeding rates over the 3 hour SF/TR experiment, SFo-3h, were 

calculated according to Eq. 5. FP0_3h was estimated using release rates calculated from 

the FP experiment according to equation 3, and converted from nmol pe11ef1 h- 1 to nmol 

h-1 by multiplying by 101, the number ofpe11ets 36 copepods wi11 produce in I hour at 

our measured fecal pellet production rate of 2.8 pellets copepod-1 h-1
• EXCo-3h is 

calculated by subtracting the sum ofSFo-3h and FPo-3h from Totalo-3h· Values in 

parentheses are molar ratios of DOC:total measured nitrogen (TMN; N~ ++urea). bd = 

below detection. 
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Figure 4. Acartia tonsa carbon (C) flow during feeding on Thalassiosira weiss.flogii in 

the sloppy feeding/total release experiment (SF/TR). The sloppy feeding (SF) and 

excretion (EXC) estimates were based on normalized release rates during the 3-hour 

incubation, or SF0_3h and EXC0_3h, respectively. Egestion estimates were calculated from 

measured fecal pellet carbon content and production rates. Respiration and growth/egg 

production was calculated by subtracting excretion and egestion from particulate organic 

C (PO C) ingested. The first value shown is the calculated average rate of release or 

assimilation (ng C individuar' h- 1
) from which the percentage of C removed from 

suspension was calculated (second value). Modified from Moller et al. (2003) and 

Steinberg & Saba (2008). 
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Figure 5. Acartia tonsa nitrogen (N) flow during feeding on Thalassiosira weissjlogii in 

the sloppy feeding/total release experiment (SF/TR). The sloppy feeding (SF), excretion 

(EXC), and fecal pellet leaching (FP) estimates were based on nonnalized release rates 

during the 3-hour incubation, or SFo_3h, EXC0_3h, and FP0_3h, respectively. Egestion of 

particulate organic N (PON) was calculated using carbon (C) egestion rates and applying 

a fecal pellet C:N ratio of 4.3 (g g-1
) measured by Butler & Dam (1994) for A. tonsa 

feeding on exponential phase T. weissflogii at 2405 cells mr 1
• Growth/egg production 

was calculated by subtracting excretion and egestion from PON ingested. The first value 

shown is the calculated average rate of release or assimilation (ng N individuar1 h- 1
) from 

which the percentage ofN removed from suspension was calculated (second value). 

Modified from M0ller et al. (2003) and Steinberg and Saba (2008). 
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CHAPTERS 

Summary and Future Direction 
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Zooplankton play a central role in marine food webs as grazers of primary 

production, as prey for higher trophic levels, and in the cycling of organic and inorganic 

material (Miller & Landry 1984, Steinberg et al. 2000, 2002, Carlson 2002, Schnetzer & 

Steinberg 2002, Steinberg & Saba 2008). Via feeding on phytoplankton and other 

zooplankton, zooplankton recycle DOM and inorganic nutrients that become available for 

uptake by bacteria and phytoplankton. The effects of different food sources on copepod 

feeding rate and reproduction has been the focus of a number of studies (Stoecker & 

Egloff 1987, Stoecker & Capuzzo 1990, Kleppe! & Burkart 1995, Bonnet & Carlotti 

2001, Broglio et al. 2003). My research demonstrated that copepod nutrient release rates, 

composition, and stoichiometry are significantly affected by diet (Ch. 2, Ch. 3). Despite 

similar ingestion rates while feeding on an exclusively carnivorous diet, an exclusively 

herbivorous diet, and an omnivorous mixed diet, all. with similar C:N ratios, DOC, urea, 

DOP, N~ +, and Pol· release rates of Acartia tonsa copepods were extremely variable 

(Ch. 2). The highest DOC, NH4 +,and TDN release rates occurred while copepods were 

feeding carnivorously, while the lowest release rates occurred while feeding on a mixed 

omnivorous diet, likely due to higher copepod C and N gross growth efficiencies (GGE) 

in the more 'well-balanced' diet (Ch. 2). Additionally, dissolved organic phosphorus 

(DOP) release was only detectable when copepods were feeding carnivorously on 

heterotrophic dinoflagellates. Because microzooplankton are an important component of 

the diet of many mesozooplankton, future studies examining copepod metabolism, 

growth efficiency, and inorganic and organic nutrient release should include mixed diets 

consisting of phytoplankton and micro zooplankton in order to better model the role of 

zooplankton in nutrient and C budgets. 
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Zooplankton also have complex interactions with HABs, which can affect 

grazing, reproduction, and ultimately, nutrient regeneration (Sunda et al. 2006). Contrary 

to the previous hypothesis that grazer deterrence caused by HABs will subsequently 

decrease grazer-mediated nutrient recycling (Sunda et al. 2006), my study showed that 

grazer deterrence of all cultures of HAB species Prorocentrum minimum and 

Karlodinium veneficum by the copepod Acartia tons a and the heterotrophic dinoflagellate 

Oxyrrhis marina led to starvation, which subsequently caused higher DOM and inorganic 

nutrient release rates via catabolism of body tissues (Ch. 3). Additionally, I suggest the 

enhanced nutrient release of A. tonsa feeding on karlotoxin-producing K. veneficum was 

due to direct disruption of copepod membranes from the toxin. Low ingestion rates 

coupled with high nutrient release rates by the grazers could intensify HAB bloom 

proliferation, especially HAB species with high uptake affinities for organic forms of 

nutrients, or alternatively lead to feedback mechanisms by which non-hannful algae are 

able to outcompete HABs. These complex feedbacks have the potential to cause 

substantial changes in nutrient cycling dynamics in estuarine and coastal systems, and 

thus, warrant further investigation. Additionally, because certain zooplankton can 

selectively feed on alternate food sources during harmful algal blooms, future studies 

examining grazer-HAB nutrient dynamics should include mixed diets containing HAB 

and non-HAB species. 

Finally, previous studies have demonstrated that sloppy feeding and fecal pellet 

leaching are important mechanisms for the release ofDOM (Jumars et al. 1989, Roy et al. 

1989, Roy & Poulet 1990, Urban-Rich et al. 1998, Urban-Rich 1999, M0ller & Nielson 

2001, M0ller et al. 2003, Thor et al. 2003, M0ller 2007; Vincent et al. 2007), yet no 
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previous studies have attempted to simultaneously isolate all mechanisms of 

zooplankton-mediated release (sloppy feeding, fecal pellet leaching, and excretion). 

Thus, little is known of the relative importance of each process to carbon and nitrogen 

production. Through a series of experiments and calculations, I isolated the individual 

release mechanisms and found that the relative importance of sloppy feeding, excretion, 

and fecal pellet leaching varied for DOC, N~ +,and urea (Ch. 4). Excretion and sloppy 

feeding were the dominant modes of DOC and NH/ release, while sloppy feeding and 

fecal pellet leaching were dominant modes of urea release. These results have 

implications for the rapidity and location at which the regenerated nutrients are recycled 

in the water column. Additionally, copepods transformed a high proportion ofPON to 

dissolved NH4 + and urea, yielding low molar ratios of released DOC:TDN, which may 

ultimately provide more of the regenerated N to the microbial food web and less to higher 

trophic levels. Additional studies of zooplankton-mediated nutrient release mechanisms, 

including how these are affected by food quantity and quality and how C, N, and P are 

coupled within the individual mechanisms, would be beneficial to our understanding of 

nutrient dynamics throughout the water column. 

The results of this dissertation emphasize the importance of diet and release 

mechanism on the regeneration of nutrients, particularly DOM, by zooplankton. DOM 

was a significant proportion of total dissolved nutrients released by zooplankton in 

multiple experiments reported here. Future studies measuring organic release, as well as 

what factors regulate the composition and bioavailability of the organic material released, 

would provide valuable additional infonnation on the role of zooplankton in ocean 

carbon and nutrient budgets. 
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