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ABSTRACT

The characteristics and effects of intrusions of estuarine outflow 
over the inner shelf were examined, based on hydrographic and 
meteorological observations obtained during the "Coastal Ocean 
Processes" (CoOP'94) field experiment located off the Outer Banks at Duck, 
North Carolina. The episodic presence of distinct low salinity water 
masses issuing from the Chesapeake Bay created an intermittent baroclinic 
coastal current along the North Carolina coast. Under low wind 
conditions, this current occupied the upper half of the water column 
within 9 km of the coast. The plume was bounded by a distinct 
southward-propagating front, a region offshore of high horizontal salinity 
and velocity gradients, and a strong pycnodine underneath. The intrusion 
traveled along the coast at a speed comparable to the linear internal wave 
speed of a two-layer system. Intrusions were generally associated with 
southward winds (downwelling conditions); however, several observed 
events opposed northward wind-driven flow.

The geometry and dynamics of the low salinity plume were strongly 
controlled by the local winds. Northward (upwelling) winds caused the 
plumes to widen offshore and thin vertically. Southward (downwelling) 
winds acted initially to speed the intrusions' alongcoast movement and 
cause them to narrow and deepen. Under strong downwelling winds, 
however, the intrusions contacted the bottom. This greatly decreased their 
speeds and caused diffusive widening . Propagation speeds of all plumes 
were seen to slow steadily through the study region. This was attributed to 
the observed mixing w ith ambient water along the path of the intrusion 
which increased its salinity, thereby reducing the buoyancy forcing.

Under the continued influence of upwelling winds, the low salinity 
intrusions moved rapidly away from the coast and formed shallow lenses 
floating over the ambient shelf water. These generally dissipated in 1 to 2 
days. The theoretical offshore transport response to wind forcing was 
investigated, illustrating two dynamical behaviors of the plumes, 
depending on whether they occupied the entire water column or were 
vertically segregated by stratification.

The meteorological control of Bay/ shelf exchange was examined to 
better comprehend the pulsed timing of the low salinity intrusions, which 
occurred every 2 to 8 days. Estimates of volume flux were derived from 
temporal variations of waterlevel measurements w ithin the Chesapeake 
Bay. The volume flux time series exhibited strong peaks of outflow, 
which preceded the low salinity events off Duck, N.C. by an average of 1.1 
days, a time lag consistent with the observed alongcoast propagation 
speeds.

xii
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Chapter 1. Introduction

The coastal ocean contains the majority of our im portant 

maritime resources and we, the hum an population, have a great impact 

on that region in turn. The high biological productivity of the coastal 

ocean is enhanced by nutrients derived from terrestrial sources. However, 

increasingly the coastal ocean ecosystem may also be stressed by 

anthropogenic inputs of pollutants. One major mode of delivery of these 

inputs to the ocean is the outflow from estuaries. Along the east coast of 

the United States, a 170,000 km 2 watershed drains portions of six states 

into the Chesapeake Bay. The Bay outflow is the largest point source of 

freshwater south of the Gulf of Maine, contributing over half of the runoff 

delivered directly to the Middle Atlantic Bight (Boicourt, 1973). This thesis 

will examine the source variability, along-coast evolution, and eventual 

dispersal of this low salinity outflow over the inner shelf.

1.1 Coastal Ocean Regimes

The Middle Atlantic Bight (Figure 1.1), being adjacent to a heavily 

populated, urbanized area, has been among the most studied of coastal 

regions, especially in the last twenty-five years. Concerns over declining 

fisheries, ocean waste dumping and shoreline erosion, as well as the needs 

of commercial shipping and recreational interests, have m otivated
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research efforts that have greatly increased our understanding of the 

complex processes controlling the circulation on the continental shelf.

Most of these efforts have focused on the middle and outer shelf 

where frictional effects are confined to surface and bottom boundary 

layers, with the much of the water column constituting an interior region 

where in viscid dynamics prevail (Allen et al.,1980). The dom inant 

dynamics of these deeper regions have fairly large horizontal scales: a 

homogeneous ocean subjected to w ind forcing adjusts to the presence of 

the coastline over the length scale given by Rext, the external Rossby

radius of deformation. In the Middle Atlantic Bight, the external Rossby 

radius is on the order of 100 km and thus encompasses the entire shelf 

width.

At the other extreme is the nearshore or surfzone where the 

physics are dominated by the effects of breaking surface gravity waves. 

The generation of longshore currents by gradients in radiation stress, and 

the cross-shore 'undertow* circulation resulting from wave-driven mass 

transport are important in regions where shoaling water depths cause 

wave steepening and dissipation. The width of this region varies with the 

sea state, but is usually confined to the shoremost several hundred meters.

Between these regimes lies the inner shelf, where, in the Middle 

Atlantic Bight, depths are less than 30 m. This region, usually within 10 

km of the coastline, has also been termed the 'shoreface' by geologists or 

the 'coastal boundary layer' by physical oceanographers. Dynamically, the 

inner shelf is an area where overlapping Ekman boundary layers interact 

(Lentz, 1995). The increasing interaction of the surface and bottom 

frictional layers with decreasing depth results in the progressive blocking 

of the Ekman transport (Mitchum and Clarke, 1986), with increasingly
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more of the surface stress transmitted directly to the bottom. The 

resulting cross-shore gradients in bed stress are identified by coastal 

geologists as an important determinant in sediment transport patterns. 

The area of maximum divergence in the cross-shore Ekman transport 

defines the location of the strongest upwelling, which is of primary 

importance to the biology of the region.

The degree of interaction between the surface and bottom Ekman 

layers depends critically on the vertical stratification within the water 

column, since that controls the thickness of each layer. Variation in  

stratification over the inner shelf is particularly sensitive to atmospheric 

inputs of wind and heat, as all the energy is absorbed into very shallow 

depths. Tidal and surface gravity wave motions can also modify the 

stratification of the inner shelf.

It is into this complex inner shelf region that the outflow from  

the Chesapeake Bay intrudes. This brackish plume generally has an initial 

salinity between 16 to 26 psu, compared with the ambient shelf salinity of 

32 to 34 psu, resulting in a density deficit of 6 to 12 kg/m 3. The density 

contrast provides a buoyancy forcing, and the plume's large scale makes 

the buoyancy-forced motion subject to the earth's rotation. These factors 

combine to produce a buoyancy current that turns to become rotationally 

trapped against the coast, flowing southward as far as Cape Hatteras, N orth  

Carolina (Boicourt, 1973). The fundamental length scale resulting from  

the balance between the density stratification and the Coriolis force is the 

internal, or baroclinic, Rossby radius, R inb resulting in a width scale for

the buoyant current of approximately 5 km. The nutrients, pollutants, 

estuarine biota or sediment carried by the plume will be delivered largely 

to this inner shelf region. And, perhaps most importantly, the stability of
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the water column will be strongly affected by the export of positive 

buoyancy from the estuary, altering the inner shelfs response to other 

forcings.

1.2 Regional Middle Atlantic Bight Circulation.

Observations by Boicourt and Hacker (1976), and Noble and 

Butman (1979), along with modeling efforts such as those of Stommel and 

Leetma (1972), established a picture of the large scale circulation over the 

eastern U.S. continental shelf. Most of the subtidal current fluctuations in 

the Middle Atlantic Bight are driven directly by the regional wind stress 

field, especially in the meteorological synoptic (3 to 10 day) time scale. 

Another contribution comes in the form of energy that appears to be freely 

propagating along the shelf. The response, which is dominantly 

barotropic, and so influences the full shelf width, is spatially coherent over 

very large distances in the alongshelf direction. These observations are 

unified in continental shelf wave theory where the sloping bottom 

topography along the continental margin acts as a wave guide. This 

theory is most applicable in the long wave form (Gill and Schumann, 

1974) which results in the across-shelf momentum balance being 

geostrophic, as has been repeatedly observed for the mid shelf (Pettigrew, 

1981). Free waves propagate with the coastline on the right (southward in  

the Middle Atlantic Bight) and have been shown to contribute up to 30% 

of the energy at times in the southern Middle Atlantic Bight (Noble et al., 

1983). However, the dominant response in the Middle Atlantic Bight is a
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frictional steady-state, where the damped ("arrested") forced wave rem ains 

in phase w ith the wind forcing (Csanady, 1978a).

In contrast to the wind-driven synoptic response, there exists a 

mean southwestward flow for time scales of longer than a month of 5 to 9 

cm /s that opposes the mean wind stress, which is north or northeastward 

during the summer, and largely offshore during the winter (Beardsley and 

Boicourt, 1981). Work by Csanady (1978a), Beardsley and Winant (1979), 

and Semtner and Mintz (1977), among others, suggest that this mean flow 

is driven by an along-shore pressure gradient imposed on the shelf by 

large scale oceanic patterns, rather than by pressure gradients produced by 

fresh water outflow along the east coast. The Chesapeake plume's natural 

direction of travel is equatorward (with the coastline on the right) due to 

Coriolis deflection, and this ambient shelf flow will enhance that 

southward tendency.

1.3 Buoyant Plumes

In order to provide a framework in which to characterize the 

Chesapeake Bay outflow, the major observational and modeling efforts 

that have shaped our understanding of buoyant plumes are briefly 

summarized here.

1.3.1 Buoyant Plumes: Observations

Among the largest freshwater discharge systems that have been studied 

extensively are the Mississippi (Wright and Coleman, 1971), and the
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Amazon (Geyer et al., 1991, Lentz and Limebumer, 1995). The Mississippi 

empties into the Gulf of Mexico, where tide and wave energy are m inim al 

and do not disturb the buoyant outflow which spreads as a distinct surface 

layer over a strong pycnocline, with lateral circulation patterns 

developing. The Amazon also forms a fresh layer which encounters 

significant semi-diurnal tidal mixing and entrains large volumes of 

oceanic water as it is swept to the northwest by the trade winds and the 

North Brazil Current. Examples of much smaller discharges which also 

remain highly stratified are the Connecticut River (Garvine, 1974) and 

Koombana Bay in Western Australia (Luketina and Imberger, 1987). 

These small buoyant plumes are observed to spread radially, with 

converging flow at the leading edge producing a deeper "roller" region.

The freshwater discharge into the South Atlantic Bight occurs not 

as a single point source, but from a series of small inlets. The resulting 

coastal current is vertically well mixed by tidal currents (Blanton and 

Atkinson, 1983). The frontal region outside of this low salinity zone is 

strongly influenced by the local winds: northward along-shore wind stress 

causes the front to slope seaward, whereas southward stress confines the 

front to a narrow zone close to the coast, w ith strong horizontal salinity 

gradients. Munchow and Garvine (1993a) describe the discharge from the 

Delaware river forming a buoyant coastal current that occupies the full 

water depth of the inner shelf. The outflow from the Rhine, which turns 

to flow northeastward for over 100 km along the Dutch coast (de Ruiter et 

al., 1992), occupies the entire water column during strong spring tides, but 

remains in a stratified surface layer during neap tides (Simpson et al., 

1993).
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Although large variations in buoyant outflow are expected on  

seasonal time scales, reflecting annual cycles of freshwater input; and also 

at high frequencies due to the control of diurnal or semi-diurnal tides, 

most of these observational studies also exhibit significant temporal 

variability from the fortnightly spring-neap tidal time scale down to wind- 

driven variations occuring over the period of a day or two.

1.3.2 Buoyant plumes: Observations of the Chesapeake Bay Outflow

The Chesapeake Bay is a large estuary that acts as a reservoir w ith in  

which the tributary inflow mixes significantly with saltier shelf water 

before discharging. This creates a brackish outflow to the shelf w ith a 

density deficit that is significant but smaller than the nearly fresh 

discharge of the Mississippi or Amazon. The classical picture of 

gravitational circulation in a partially-mixed estuary such as the 

Chesapeake Bay was established by Pritchard (1956), who described a two- 

layer pattern with the low salinity upper layer flowing seaward, underlain 

by a higher salinity return flow. Boicourt (1973) observed that the 

exchange between the Chespeake Bay and the shelf waters does not always 

exhibit a steady two-layer structure, but can be dominated by w ind-driven 

outflow surges. The outflow occurs largely through the southern portion 

of the Bay mouth, with the high-salinity inflow concentrated in the deep 

part of the main channel, or over the northern shoals. Boicourt mapped 

the Chespeake Bay plume making a wide anticyclonic turn in a bulge 

region offshore and south of the mouth. South of the turning region, the 

low salinity outflow appeared as trapped against the righthand coast as a 

high-velocity jet. This is illustrated conceptually in Figure 1.2.
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Other observational studies of the Chesapeake Bay plume, 

including SuperFlux (Campbell and Thomas, 1981) and MECCAS 

(Boicourt et al., 1987), focused largely on the near-field turning region, and 

included biological measurements to determine the export of nutrients 

and primary production from the Bay. These studies sought to clarify the 

complicated relationship between the near-field plume behavior and 

freshwater source strength, wind stress and coastal circulation conditions. 

Use of remote sensing, along with higher resolution salinity 

measurements, allowed SuperFlux researchers to map the strong front 

defining the outer edge of the plume. A sharp halocline was measured 

underlying the outflow, usually at a depth of 5 to 8 m. The MECCAS 

observations showed plumes in the turning region/coastal jet 

configuration, but also observed outflow that was spread east offshore of 

the m outh by the Ekman effect of northward winds, with higher salinity 

water upwelled between the plume and the coast. Continued observations 

showed that a plume was reestablished against the coast rapidly after the 

northward winds ceased.

A more recent field program (Berger et al., 1995) sited farther south, 

off the coast of North Carolina, included observations of the Chesapeake 

outflow which were analyzed for its contribution to the hydrography of 

the Middle Atlantic bight. They found evidence of buoyancy-driven flows 

over the inner shelf as far south as Cape Hatteras. Observations over two 

years revealed strong interannual differences, with buoyancy flows m uch 

more prevalent in the year of higher river runoff (1993). Drifters deployed 

over the inner shelf (within several kilometers from shore) showed 

enhanced southward velocities as well as convergence towards the 

offshore salinity front.
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1.3.3 Buoyant Plumes: Models

Until very recently, the Chesapeake Bay plume has inspired more 

modeling efforts than observational studies. Beardsley and Hart(1978) 

developed an analytical model to describe a steady estuarine outflow. 

They assumed linear dynamics in a one- and two-layer framework driven 

by a point mass source and sink. The solution showed two-layer 

oppositely-directed flows along the shelf. Anticyclonic turning at the 

mouth was generated only in the one-layer case and attributed to effects of 

the offshore sloping bottom. Concluding that the non-linear terms were 

im portant in the turning behavior of the exiting plume, Chao and 

Boicourt (1986) developed a three-dimensional primitive equation m odel 

set up with scales appropriate to the Chesapeake region that produced 

turning with right-bounded propagation for both flat and sloping shelf 

bottoms. Two-layer flows were confined to the bulge region immediately 

outside of the mouth, while currents in the along-coast density in trusion  

were unidirectional. The sloping shelf reduced the seaward extension of 

the bulge due to the additional potential vortidty constraint, and lim ited 

the extent of the return undercurrent due to the additional barotropic 

component (Chao, 1988a).

These non-linear numerical models, along w ith aspects of 

laboratory work from Stem et al. (1982) and Griffiths and Hopfinger (1983) 

better match the Chesapeake observations, where there are distinct near

field (turning bulge with undercurrent) and far-field (unidirectional 

coastal jet) solutions, with a sharp transition between them (Figure 1.2). 

Yankovsky and Chapman (1997) proposed that the dynamics of the
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turning region are described by a cyclostrophic balance. When the low 

salinity water occupies only the surface layers, the laboratory experiments, 

as well as Chao's numerical model, show that the plume advances along 

the righthand coast as a bore intrusion with the rear advancing faster than  

the nose. Convergence in the intruding upper layer flow forces 

downwelling, producing a nose that is deeper than the neck behind it. 

Lateral detrainment is observed along the seaward side of the nose. The 

w idth of the coastal jet is comparable to the baroclinic Rossby radius, w ith 

the current set up behind the passage of the head adjusting to a quasi- 

geostropic balance (Kao, 1978).

To focus on the importance of the plume fronts, Garvine (1982) and 

O'Donnell (1988) moved away from general circulation models and 

developed two-layer reduced gravity models that allow the inclusion of 

fronts as discontinuities with appropriate jum p conditions, including 

interfacial friction and mass entrainment. These models look at the 

dynamics of a buoyant surface layer that is shallow compared to the total 

water depth. For outflows where rotation is important, Garvine (1987) 

reveals two fronts w ith different functions: the discharge front at the 

turning region and a coastal front that changes from an interior to 

boundary front as it migrates downstream. It then evolves into w hat 

Garvine terms a depth-discontinuity type of front (where isopyncals are 

near-vertical). The extent to which the plume mixes with the inner shelf 

waters depends on the timing and mechanisms of frontal dissipation.

The extreme sensitivity of numerical buoyant plume m odel 

behavior to the parameterization of vertical mixing was examined by 

Ruddick et al. (1997). An increase in the vertical mixing coefficient in  

Chao's models removed the vertical stratification and produced a p lum e
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with smaller seaward excursion of the bulge, and a wider, slower, coastal 

flow. Chapman and Lentz (1994) explored the behavior of surface-to- 

bottom plumes as they are influenced by bottom topography. The offshore 

transport in the bottom boundary layer advects freshwater offshore. The 

plume then widens until the front reaches the isobath where the vertical 

shear through the water column is just enough to cause a change in sign 

of the across-shelf flow at the bottom. Yankovsky and Chapman (1997) 

devised a theory whereby, given information on the buoyant outflow 

velocity and density anomaly, along w ith knowledge of the bottom slope, 

one can determine whether the outflow will form a surface-to-bottom, or 

a surface-trapped plume.

Further numerical experiments with the addition of wind forcing 

allowed Chao (1987, 1988b) to examine the wind-driven motion of the 

plume front. The response was dominated by the surface Ekman drift 

with strongly asymmetric results: downwelling winds narrow the buoyant 

current against the coast, deepening and accelerating it, while upwelling 

transport moves the surface-trapped plume offshore, thinning it and 

opposing its southward momentum. However, Chao's model indicates 

that it is unlikely that upwelling winds could turn the current against its 

natural direction of propagation. Indeed, very few field surveys have 

observed plume deflection to the north of the Bay mouth.

More recent model experiments by Kourafalou et al. (1996) continue 

exploring the variation of plume behavior under differing buoyancy 

source strengths, turbulent mixing regimes, bottom slopes, and wind 

stress. These results show that while moderate to strong upwelling winds 

could induce down-wind currents w ithin the low salinity waters, the 

major transport was strongly offshore under these conditions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

1.3.4 Classification Schemes

In order to merge the information gained from these observational 

and modeling efforts into a more cohesive framework, researchers have 

proposed several classification schemes for buoyant plumes. By 

identifying the pertinent factors that strongly influence the developm ent 

of a plume, a variety of responses can be organized into a more insightful 

structure. These scalings are summarized in Table 1.1 and described 

below.

Parameter# Compares Formed from Small values 
indicate 
domination by

Rossby# Ro inertial/rotation C obs/ (f* Lobs) by rotation
Froude# F (internal) inertia]/

stratification C obs/C jnt by stratification

Froude#
(empirical)

inertia]/
gravity Cdischarge/Cobs by gravity

Burger# SBo 
=( Ro/F)2

stratification / 
rotation (Rjnt/Lobs)2 by rotation

Kelvin #
= (i/sBn)2

rotation/
stratification Lobs/Rint by stratification

Ekman# friction/rotation by rotation over 
fnction

Table 1.1
Summary of Plume Classification Parameters.

The parameter that most effectively distributes plume behavior into
 L p b s

a dynamical hierarchy has been identified as the Kelvin number, “  Rint, 

the ratio of the width of the plume (usually impressed upon the outflow 

by the dimension of the mouth of the river or estuary ) to the internal 

Rossby radius (Krauss, 1973). The ratio reveals the dynamical importance 

of the Coriolis force on the plume structure (Garvine ,1995). For plum es
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with small values of K, the path of the outflow will be controlled more by 

the ambient shelf flow, or by the influence of along-shore w ind stress. The 

ratio K can be small due to a small outflow size (e.g. the Connecticut 

River); or a large outflow constrained by a small topographic opening (e.g. 

the Mississippi, where the mouth of the river is not more than 100 m 

across). The value of K will also become small in low latitudes where the 

vanishing Coriolis force produces a very large Rossby radius (e.g. the 

Amazon). Large K plumes are dominated by rotation and will always 

travel along-shore in the down-coast direction (in the direction of K elvin 

wave propagation). Examples of these flows include the Norwegian (Rey, 

1981) and the Scottish coastal currents (Hill and Simpson, 1988).

An alternative version of the Kelvin number is the Burger number,
[R. ]2 1

SBu = r-1111 = —  • The Burger number can be formed from a com bination 
|L0bsJ K2

of the Rossby number and the internal Froude number, two non- 

dimensional parameters which are commonly used to measure the 

relative contribution of non-linear advection to rotation and to 

stratification, respectively (Cushman-Roisin, 1994). The Burger num ber 

expresses the influence of stratification relative to rotation. Garvine (1995) 

analyzed observations from a dozen plum e studies and noted that those 

with K or Sbu of 0(1), for which both stratification and rotation are 

important, have the most dynamically complex behavior.

Chao (1988b) characterized a set of modeling results for plumes with 

K = 0(1) according to two additional dimensionless parameters. The 

values of these parameters determines the plume's shape and offshore 

extent. The first is an empirical Froude num ber, defined as the ratio of the 

speed of the buoyant discharge, U D E C H a r g h /  at the estuary's m outh to the 

observed intrusion speed, Cobs/ just down-coast of the turning region.
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Chao determined that modeled plumes for which this ratio is > 1 (termed 

"supercritical") are characterized by turning regions that bulge far out from 

the mouth. The seaward extent of the bulge is much reduced for 

subcritical plumes with empirical Froude numbers less than unity. A 

second parameter, the ratio of C Qb s  t o  C i n t  (the linear internal gravity wave 

speed), describes the behavior of the coastal jet portion. For C o b s / Q n t  « 1 ,  

which Chao termed "diffusive", the coastal jet widens beyond Rint/ 

indicating increasing dissipation.

In an analysis of the Delaware coastal current, Munchow and 

Garvine (1993) proposed the use of three parameters to classify plum e 

behavior: the Burger number and a Rossby num ber (or alternatively,an 

internal Froude number) to summarize the respective importance of

stratification, rotation and non-linear inertial forces; plus the vertical
c  2 I2A

Ekman number, E = (ĵ ) , where 8 = -y —p- is the Ekman layer thickness,

to describe the frictional forces. The first two parameters determine the 

plum e's formation and evolution patterns in the source region, while the 

Ekman number performs the role of Chao's diffusive parameter in  

determining the development of the coastal jet.

1.4 Objectives and Outline of Dissertation

Using field observations taken during the summer and fall of 

1994, this thesis examines the far field characteristics and behavior of the 

Chesapeake plume as it makes its way down the North Carolina coast. 

The spatial and temporal characteristics of the low salinity intrusion are 

determined, along with the associated coastal buoyancy currents, focusing
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on patterns of variability occuring within a 1 day to 1 week time scale. 

Over this time scale wind forcing is seen to exert a major influence on the 

plume. How these observations fit into the classification schemes 

described above is considered, and an extention of the classification 

scheme to account for wind effects is discussed.

In the next chapter, the field program is described, as are the 

methods of processing the recorded data. The objective of chapter 3 is to 

determine the along-coast propagation behavior of the plume. The general 

spatial characteristics of the plume are delineated, and the influence of the 

wind on its shape is investigated. Wind effects on the propagation speed 

are also estimated. Evidence for mixing between the plume and the 

ambient shelf water is quantified, as well as the effect that this dilution has 

on the along-coast propagation speed.

Chapter 4 will identify the controlling processes that determine the 

timing of the intermittent presence of low salinity intrusions observed. 

The meteorological control of the patterns of outflow of estuarine water 

from the Chesapeake Bay will be examined using both the 1994 data set 

and an additional one from 1982. In addition, an analytical modeling 

exercise allows the examination of two separate, opposing forcing 

mechanisms, whose effects are combined in the observations. Chapter 5 

focusses on the processes that cause the dispersal of the plume offshore 

during upwelling conditions, as this appears to be the main mode for the 

delivery of estuarine water to the mid-shelf.
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Figure 1.1 Site map of field location: 
Middle Atlantic Bight

Duck, North Carolina in the
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Figure 1.2 Conceptual diagram of rotationally dominated plum e 
shown in map view.
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Figure 1.2. Conceptual diagram of a rotationally 
dominated buoyant plume (dashed arrows indicate 
bottom layer return flow).
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Chapter 2 CoOF Field Program and Data processing

As part of the interdisciplinary National Science Foundation 

"Coastal Ocean Processes" (CoOP) program, a study entitled "Suspension, 

across-shelf Transport and Deposition of Planktonic Larvae of Inner Shelf 

Invertebrates" was undertaken. The field work consisted of two m onth

long intensive field expeditions in August and October of 1994, centered 

on the inner shelf off of the Outer Banks at Duck, North Carolina (Figure

1.1). This site is located approximately 85 km downstream from the 

mouth of the Chespeake Bay. The focus of this project was to understand 

the dispersal and then resettlement patterns of the larvae of 

nearshore/shoreface-dwelling benthic invertebrates (Butman, 1994). 

During their planktonic stage, which lasts on the order of a month, the 

larvae are presumed to act as passive particles carried by horizontal 

currents. However, their swimming speeds could allow them to control 

their vertical position in the water column, and thereby exploit the 

vertical segregation of the across-shelf flows over the inner shelf in order 

to control their horizontal position. The observational progam was 

designed to examine the inner shelf circulation on time scales of days to 

weeks, and to resolve vertical and cross-shore structures.

2.1 Site Location

This site was chosen because of its simple topography; the 

isobaths parallel the relatively straight shoreline out to a depth of 20 m.
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With minimal along-shore topographic variations, the study could focus 

on the across-shelf flow structure. The intermittent passage of the 

Chesapeake Bay plume water through the study region proved to be the 

most significant contribution to the along-shore structure, necessitating at 

times a three-dimensional view.

The CoOP study was centered offshore of the US. Army Corps of 

Engineers CERC Field Research Facility (FRF) at Duck, North Carolina. 

This facility provided the CoOP researchers with supplementary wind, 

tide, and wave measurements, in addition to logistical support. Previous 

research at the FRF has documented the general setting of this inner shelf 

region. The tides are predominately semi-diurnal with a spring range o n  

the order of a meter. The bottom deepens to -14 m at 2 km away from the 

coast (slope of 0.007), then slopes away more gently to reach a depth of 20 

m at -  5 km offshore. The shoreface bottom sediments are sandy, 

overlying relict lagunal peats which emerge near 20 m depth. Offshore of 

20 m there is a series of relict ridges of sand and gravel.

2.2 Instrum entation

2.2.1 Across-Shelf Moorings

Because the focus of the CoOP program was the structure of the 

cross-shore flows, the core instrumentation of the field study was an  

across-shelf array of moorings that collected time-series of physical, 

biological and meteorological data (Figure 2.1). This array crossed the 

inner shelf from the surf zone out to 25-m depth. In the nearshore region 

of the central line, current meters on towers were sited at 4-m and 8-m
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depths by the ONR Duck94 field program. Surface/subsurface m ooring 

pairs were deployed by Wood Hole Oceanographic Institute which 

supported VMCM current meters and SeaBird SeaCATs at 4 to 6 vertical 

levels. These were located in water depths of 13-m (1.5 km offshore), 20-m 

(5.3 km offshore) and 25-m (17 km offshore). In addition, a meteorological 

buoy was deployed at the 20-m mooring with Vector Averaging W ind 

Recorder at a height of 3 m above the surface. Full suites of meteoroloical 

measurements including air temperature, radiation, relative hum idity 

and barometric pressure were recorded. These instruments were also 

maintained over the intervening month of September, although a storm  

on 4 September caused the loss of the upper current meters at the 20-m 

mooring. They were redeployed at the beginning of October. On October 

12th, the upper portion of the 13-m mooring was also lost to rough 

weather. A full report of these measurements is provided by Alessi et al. 

(1996).

2.2.2 Shipboard Survey

Shipbased surveying was done aboard the R /V  Cape Hatteras to 

define the conditions in a region 50 km to the north (just south of Cape 

Henry) and 50 km to the south (just south of Oregon Inlet) of the central 

mooring line (Figure 2.2). The ship survey extended as far as 50 km  

offshore, with most stations concentrated within 20 km of the coast. The 

sampling was organized into cross-shore transects with stations positioned 

2 to 5 km apart. In addition, several times the ship was anchored at one 

location for a 24-hour period to observe temporal changes, with profiles
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taken at half-hour intervals. Over 800 stations were occupied in August 

and close to 700 in October.

The shipboard observations included Conductivity-Temperature- 

Depth (CTD) casts with simultaneous Acoustic Doppler Current Profiler 

(ADCP) sampling and pumping for nkton. The CTD data were collected 

with a SeaBird 911Plus instrument with dual temperature and 

conductivity sensors which were calibrated daily against water samples. 

The ADCP data were collected by a RDI 1.2MHz narrowband instrum ent 

supported by a catamaran that held the transducer at 0.4 m below the sea 

surface. Velocity profiles with lm  vertical resolution were recorded at 1 to 

2 Hz while the ship held a stationary position for the CTD cast. At each 

station the ADCP sampled for at least 4 minutes, usually continuing for 8 

to 12 minutes. The catamaran was held just aft of the beam of the ship by 

a 6 m rigid arm, which increased the instrument's susceptibility to ship 

roll. Therefore for 14% of the stations, rough weather prevented the use 

of the ADCP. These CTD and ADCP data are reported in Waldorf et al. 

(1995,1996).

In addition to the station data, surface water temperature and 

salinity were monitored along with position fixes at 15 second intervals 

while the ship was underway. On occasion, when this surface underway 

system revealed the presence of sharp salinity fronts typical of the offshore 

edge of the buoyant plume, the ADCP was towed across the frontal region 

at speeds of no more than 4 knots.

The R/V Hatteras data was constrained to the region offshore of 

1 km from the coast. Supplementing this was near-shore hydrographic 

data taken from the R /V  Moby Duck, a small boat launched from the 

beach at Duck. CTD transects were taken during 44 days of the three
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month study period, including during the month of September, when the 

Hatteras was not on site. A full report of this data set is presented by 

Largier and Millikan (1996).

2.2.3 Along-Shelf Moorings

Much of the information regarding the along-coast movement of 

the plume was derived from an array of five pressure/tem perature/ 

conductivity SeaGauge sensors deployed along the 5-m isobath (Figure

2.2). Instruments were located ~1 m above the bottom at sites 17 and 32 

km to the north (JO and Jl), and 16 and 25 km to the south (J3 and J4) of the 

central line. Combined with a SeaCAT mounted on the FRF pier at 4 m 

above the bottom in 8 m of water, these measurements cover 60 km along- 

coast for nearly 3 months. At the outer edge of the plume's domain were 

two surface and bottom SeaCAT/SeaGauge moorings maintained at the 

20-m isobath 30 km north (N20) and south (S20) of FRF. Most of these 

measurements were continuous from early August through the end of 

October, except for the southern two sensors which were buried during 

mid-October.

2.2.4 Supplemental Data Sources

In addition to the meteorological measurements made at the 20- 

m  mooring, the FRF maintains an anemometer at a height of 19 m on the 

end of their pier 500 m offshore. These wind measurements were used 

when the 20-m mooring ones were not available. The FRF also m onitors 

waterlevels for the NOS tide survey. Additional waterlevel inform ation
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was obtained from NOS for several stations within the Chesapeake Bay 

(see chapter 4). Freshwater flow from the tributaries of the Chesapeake 

Bay is monitored by USGS.

2.3 Data Processing

Following a protocol agreed upon by all CoOP participants, all 

velocity measurements, including currents and winds, were rotated 20° 

counterclockwise with respect to true north to an along- and cross-shore 

frame of reference. The along-shore axis y is positive towards 340° and the 

cross-shore axis x is positive towards 70°. Offshore distance at the central 

transect was referenced from a shore location of -75.7518 longitude and 

36.1865 latitude, and was adjusted for coastal curvature to the north and 

south.

All time information in this document refers to Greenwich Mean 

Time (GMT). To resolve subtidal patterns, the hourly time series were 

convolved with the low-pass filter PL64 (Beardsley and Rosenfeld, 1983). 

This has a half-power point of 38 hours.

2.3.1 Time Series from Moorings

All mooring velocity time series were sampled originally at 4 

minute intervals which were then combined into 1 hour averages. To 

produce density time series, the temperature and salinity m easurem ents 

were linearly interpolated to the vertical position of the current meters, 

and combined into density using UNESCO '81 formula (Fofonoff and 

Millard, 1983).
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2.3.2 Shipboard Data Processing

The CTD samples were processed using the SeaBird software 

which filtered out the ship roll and then averaged the data into 0.25 m 

bins. Calibration work determined the accuracy in temperature to be 

0.003°C and 0.002 psu in salinity. For comparison to the ADCP values 

(which were determined in overlapping 1 meter bins), a triangular 

weighting scheme, which mimics the RDI ADCP processing, was applied 

to produce CTD values at 1 m intervals. This assures that computation of 

the gradient Richardson number (see chapter 5) has comparable vertical 

scales for both the numerator and denominator.

The ADCP was always operated in bottom-tracking mode which, 

on the shallow inner shelf, always gave good returns. The internal pitch 

and roll corrections were not applied because of possible contam ination 

from wave accelerations. Comparisons between the internal compass and 

the ship's gyro revealed good agreement. The 1 Hz data were averaged 

over 15 seconds, a period longer than most of the wind wave and swell 

energy. These 15 second averages were then passed through a quality 

control algorithm before being combined into 4 minutes averages. Our 

data quality analysis revealed that extreme velocity values were not 

related to high "error" velocities (computed from the redundant vertical 

velocity of the 4-beam solution), but rather were correlated with a low 

"percent good" condition (where the acoustic return fell below a set signal- 

to-noise threshold). Therefore we adopted a post-processing scheme that 

screens out all data with a "percent good" of less than 85%. For stations
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recording more than 4 minutes, an algorithm was developed that searched 

for the window of 4 consecutive minutes that had the fewest number of 

rejected samples. If fewer than 2.5 minutes out of 4 had acceptable 

conditions, the velocity vector at that depth was omitted from further 

analysis.

When the lower frequency circulation patterns were of prim ary 

interest, the tidal signal was removed from the ADCP m easurem ents 

using a least-squares fit to the tidal constituents as determined from the 

mooring time series. The M2 semidiurnal and K1 diurnal constituents 

were found to be the dominant contributors to tidal motion (Shay et al., 

1997). The two tidal constituents were allowed to vary linearly in the 

across-shelf direction only, as the alongshelf tide wavelength was 

determined to be extremely large (Carr and Lentz, 1996). The amplitude of 

cross-shore component of the total tidal velocity ranged from 1 cm /s near 

the coast to 4 cm /s at 20 km offshore. The along-shore component was 

slightly larger, ranging from 4.5 cm /s nearshore to over 6.6 cm /s offshore.
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Figure 2.1. Cross-shelf mooring array w ith instrumentation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

13-m 20-m 25-m
mooringmooring mooring

□Te & Sal 

0 U & V 
•U,V & Te

iliiiill

Distance offshore (Km)

Figure 2.1. Diagram of the across-shelf mooring array 
(adaptedfrom Alessi etal (1996), Figure 5.)



28

Figure 2.2. Instrument Location Map.
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Chapter 3. Along-coast Propagation of the Plume

The arrival of low salinity water along the N orth Carolina coast 100 
km south of the m outh of the Chesapeake Bay was observed during the 
summer and fall of 1994. The presence of the plum e was episodic, w ith a 
new pulse occurring every 2 to 8 days. The low salinity intrusions 
propagated along the coast at speeds comparable to linear internal wave 
phase speed, except when strong downwelling wind conditions affected 
the intrusions and caused them to be in contact with the bottom. W hen  
not affected by upwelling winds, the fresher water was confined to w ith in  
7-9 km of the coast and constituted a surface layer about 8 m deep. 
Downwelling winds caused the plume to narrow and deepen whereas 
upwelling winds caused it to thin and spread offshore, eventually 
detaching from the coast. This buoyancy source was balanced by an along
shore current with a southward velocity of 30 to 70 cm /s, bounded by a 
region of high horizontal velocity shear at the offshore salinity front. The 
intrusions slowed during their passage through the study region, as 
mixing with ambient shelf water reduced the density contrast. The 
currents at the time of the intrusion arrival were consistent w ith 
properties of an internal gravity current under rotation.

In this chapter the along-coast propagation behavior is determ ined 
from detailed observations of the plume's density and velocity structure. 
The spatial characteristics of the low salinity intrusion are delineated and 
the influence of the wind on its shape is considered. Wind effects on the 
propagation speed are also estimated. Evidence for mixing between the 
plume and the ambient shelf water is presented, as well as the effect that 
this dilution has on the along-coast propagation speed. The last section 
focuses on the currents that are accelerated by the arrival of this buoyant 
water mass, and the velocity structure of its associated coastal current.
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3.1 Introduction

The presence of estuarine water along the North Carolina coast is 

an episodic phenomenon. Figure 3.1 shows the complete hourly salinity 

time series from the 5-m isobath bottom-mounted SeaGauges along with 

the FRF pier salinity measurements and the local winds. The coordinate 

conventions used are positive northwards (towards 340°, v, y) and 

offshore (u, x). The salinity measurements alternately indicated values of 

32 to 34 psu, which are representative of the Middle Atlantic Bight shelf 

waters (Boicourt, 1973), and those with a significant percentage of fresher 

Chesapeake Bay water included (26 to 30 psu). The times of lowest 

salinities were associated with periods of winds towards the south. There 

is variation at the semi-diurnal tidal frequency (e.g., JO & J1 during 19-22 

September) and at the 20-hour inertial frequency (e.g., 12-15 September); 

however the focus here is on sub-inertial variability - particularly on the 

meteorological synoptic time scale.

Over the three month study about 15 distinct low salinity events 

were observed, occuring at an average interval of 5 (+/- 2.6) days. This 2 to 

8 day variability in the delivery of estuarine water to the North Carolina 

inner shelf is not explained by variations in tributary inflow to the Bay, 

which will be discussed in chapter 4. Pulses in the low salinity intrusion 

relate to fluctuations in the wind direction. In particular, Figure 3.1 shows 

that southward (downwelling) winds are associated with the presence of a 

low salinity plume, whereas northward (upwelling) winds are associated 

with the absence of low salinity water along the coast. The manner in  

which the Bay-shelf exchange is controlled by meteorology is explored in
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chapter 4, while the wind-forced cross-shore movement of the intrusions 

is the subject of chapter 5.

The arrival of a new pulse of low salinity water moving southward 

along the coast is signaled by an abrupt drop in salinity at successive 

sensors. The time lag in arrivals at successive along-shore sensors is 

clearly illustrated in Figure 3.2. There are 6 discernible low salinity events 

(labeled A-F) during this August time period. These low salinity water 

masses are observed at the FRF pier 7 to 9 hours after their arrival at the J1 

sensor, 17 km to the north. The initial appearance of the southward 

propagating front is manifest as a sudden drop of 2 to 3 psu within an  

hour. Subsequent freshening continued for a day or two, resulting in a 

total lowering of 4 to 6 psu from ambient shelf salinities.

Most of the low salinity intrusions which arrived during 

downwelling winds were preceded by a small drop in salinity. As soon as 

the winds turned to southward, there was a gradual lowering of salinity 

(about 0.2 psu h r-1) due to downwelling of fresher surface water. This 

small drop in salinity due to onshore advection contrasted with the rapid 

2-3 psu hr-1 drop in salinity due to the along-shore movement of a new  

pulse of plume water. A few substantial drops in salinity (the m ost 

noticeable one on 12 September) were determined, by an examination of 

timing, to be due to onshore movement of a previous plume rather than  

due to the arrival of a new pulse.

The upper panel of Figure 3.2 shows the along-shore component of 

the local winds as recorded at the 20-m mooring on the central line. In  

these examples it is clear that some low salinity pulses traveled southward 

against opposing winds (event B, latter parts of A and E), while others 

were dispersed or pushed offshore before reaching the southern part of the
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study region (event D). The strength and duration of the presence of 

fresher water was controlled by the wind, with downwelling conditions 

resulting in a sustained low salinity plume against the coast (event C).

In contrast to the progression in time of salinity decreases, large 

increases in salinity occurred simultaneously at all sensor locations. These 

salinity increases are interpreted as being due to upwelling. Ekman 

transport resulted in shoaling and offshore movement of the low salinity 

water, and will be examined in chapter 5. This Ekman transport appears to 

be the most effective mechanism by which the estuarine water is m oved 

offshore and mixed with the shelf water. This is described further in the 

following section, where the anatomy of typical upwelling and 

downwelling scenarios is presented through a sequence of events in late 

August.

3.2. Description of Typical Upwelling and Downwelling Events

In Figure 3.3 the salinities and currents observed across the central 

line are detailed for a no-wind plume (event B), and a downwelling event 

(C), separated by a period of upwelling. Moderate winds blew for several 

days before 18 August, after which the wind relaxed through 20 August 

(Figure 3.3 middle panel). Late on 19 August, 11/2 days after the 

northward winds relaxed, a sudden salinity decrease was recorded at the J1 

sensor located on the 5-m isobath, 16 km north of the FRF at Duck. Eight 

hours later, this low salinity water mass arrived at the FRF pier. Salinity 

dropped simultaneously at the pier and at the near-surface and m id-depth 

recorders of the 13-m mooring (1.5 km offshore), indicating a surface- 

trapped intrusion with a defined salinity front and a blunt shaped head.
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The low salinity water did not extend out to the 20-m mooring 5.3 km  

offshore of Duck, although it did reach the 20-m mooring found 30 km to 

the north (see N20 in Figure 2.2). This buoyant surface layer m oved 

southward rapidly. Current velocities as high as 0.8 m /s  were recorded by 

the near-surface instrum ent on the 8-m tower and the 13-m m ooring. 

Near-bottom currents were less than 0.3 m/s. No salinity or velocity 

signal associated with the plume were observed at the 20-m mooring on 20 

August. Panel A of Figure 3.4 is a contoured salinity section from CTD 

profiles taken across Transect 50 located 20 km south of Duck. Overlaid 

are velocity vectors from simultaneous ADCP profiles, with the vectors 

oriented in plan view. The nearshore low salinity region has the same 

shape and velocity structure as that inferred from the moorings above. 

This narrow and shallow low salinity plume was continuous through the 

60 km along-shore array of coastal sensors and, presumably, northward to 

its source at the m outh of the Chesapeake Bay.

Later in the afternoon of 20 August, the light winds became 

northward at 5 m /s  and surface water velocities began to decrease 

immediately. A few hours later, surface salinities at the 20-m m ooring 

dropped suddenly, indicating that the outer salinity front of the coastal 

plume had moved offshore beyond 5.3 km. The plume was shallower 

here, with no signal observed at the 7.6 m depth. The simultaneous, but 

gradual, increase in nearshore salinity (top panels of Figure 3.3) is 

consistent with this low salinity surface layer detaching from the coast and 

moving offshore. Panel B of Figure 3.4 from a CTD transect across the 

central line shows this thinner plume reaching 11 km offshore early on 21 

August, with the lowest salinity water in the outer portion. By mid-day 

on 21 August, the near-surface salinity at the 25-m mooring decreased (not
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shown), indicating that the plume water had moved over 17 km offshore. 

Late on 21 August, nearshore waters were destratified (Figure 3.4, panel Q  

and low temperatures indicated that this water had upwelled as the 

plume moved offshore. Consistent with an upwelling scenario, 

northward velocities were observed nearshore.

The onset of southward (downwelling) winds on 23 August 

produced a low salinity intrusion with somewhat different characteristics: 

a southward current was set up with the wind and an immediate small 

decrease in nearshore salinity occurred. This salinity decrease was 

observed also at depth on the 13-m mooring and is due to the onshore 

movement and downwelling of lower salinity surface water left a short 

distance offshore by the previous mild upwelling conditions. This 

downwelling circulation, which can be seen clearly in the cross-shore 

velocity components presented in the upper panel of Figure 3.5, led to a 

decrease in near-bottom salinity at the 20-m mooring later on 23 August.

Shortly after noon on 23 August (over a day after the northw ard 

winds ceased) a much larger and more sudden decrease in salinity 

occurred as a new intrusion of low salinity water propagated down-coast 

from the Chesapeake Bay. As before, the salinity dropped sim ultaneously 

at the pier and the 13-m mooring. In this case, however, the low salinity 

water extended to the bottom at the 13-m isobath. At the same time, the 

southward current accelerated suddenly, attaining a speed of 90 cm /s near

surface. The downwelling circulation pattern seen in the cross-shore 

velocities (Figure 3.5) was disrupted at the arrival of the plume, as 

buoyancy-driven dynamics dominated the flow. The arrival of new low 

salinity water re-established stratification that had been eroded by the 

previous downwelling circulation (Figure 3.3, upper panels). Low salinity
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water was not observed at die 20-m mooring until 24 August following a 

decrease in the southward wind. A number of salinity increases and 

decreases were observed at the near-surface sensor on the 20-m m ooring 

and at the near-bottom sensor on the 13-m mooring over the next two 

days. These fluctuations in shape of the plume may have been directly 

forced by the wind, or they could be symptomatic of the meandering of the 

outer edge of the plume as the wind forcing decreased. During these two 

days, with persistent southward winds, the nearshore salinity steadily 

decreased, reaching a minimum of 28 psu. With the reversal in w ind 

direction on the morning of 26 August, the southward currents decreased 

rapidly and the nearshore salinity increased. In this case there was a 

definite lag between salinity increases (and in the velocity reversal) 

recorded at the 8-m, 13-m and 20-m isobaths.

3.3. Cross-shore Spatial Structure

Summarizing from analyses of each event, similar to those 

described above, an estimate is made of the cross-shore dimensions of the 

plume off Duck, a distance of 84 km south of the source. The near-surface 

salinity sensor on the 13-m mooring nearly always showed a freshening 

very similar in intensity and timing to that on the pier. However, the 

sensor at 7.6-m depth on this mooring usually recorded a weak to 

moderate freshening , unless the low salinity intrusion was backed by 

downwelling conditions. The near-surface sensor on the 20-m m ooring 

seldom recorded a strong lowering of salinity until a later stage Thus 

there is a general picture of a low salinity water mass that, at the time of its 

arrival, was confined to less than 8 m depth and 5 km width, unless
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significantly modified by the wind. Downwelling winds act to narrow and 

deepen the plume whereas upwelling winds tend to w iden and thin this 

plume, eventually detaching it from the coast.

The spatial resolution of the mooring time series can be im proved 

by incorporating the shipboard CTD and underway system data. In Figure 

3.4a&b the salinities from nine CTD casts taker; across plume 'B' are 

shown. The plume is delimited in the vertical by a pycnocline (halocline) 

region where the stratification is several times stronger (here buoyancy 

frequency N=0.12 s*1) than either in the low salinity intrusion above, or in  

the ambient water underneath. The offshore extent of the plume was 

similarly delimited by a maximum in the horizontal density (salinity) 

gradient, recorded in the underway surface data. These fronts were often 

visible owing to surface expressions such as foam lines. The low salinity 

water inshore of the front and above the pycnocline exhibited strong 

southward velocity, as recorded by the concurrent ADCP m easurements. 

The variation of density at the inshore stations was controlled completely 

by salinity; the plume showed no thermal signal.

The average thickness of the plume was determined by the depth of 

the pycnocline for all CTD casts that had a surface salinity less than 

S m a x p l u m e /  the maximum salinity associated with the plum e intrusions. 

S m a x p l u m e  had a decreasing value with time, being defined as 

Smaxplume =  3 1 .8  -  0 . 0 1 8 * ( d a y s  s in c e  A u g l st) 

which averages 3 1 . 5  psu in August, decreasing to 3 0 . 5  psu in October. 

Only profiles from transects where low salinity water was present at the 

shore-most station were used, i.e. occasions when the plum e was attached 

to the coast (lenses of detached low salinity water separated from the coast, 

e.g. Figure 3.4c, were not included). There was a weak tendency for
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shallower plumes to prevail in the northern (upstream) part of the study 

area; however all CTD casts from the 100 km along-shore survey region 

are combined and presented in Figure 3.6a. This clearly shows a tendency 

for the plumes to be thicker nearer to the coastal boundary.

These buoyant intrusions occupy the upper water over the inner 

shelf only part of the time. How commonly this structure occurs can be 

determined by the percent of time that the instruments on the cross-shore 

moorings record salinities less than Smaxplume (Figure 3.6b). During the 

entire three month study period, a low salinity plume was present in the 

surface layers of the very inner shelf (within 5km of the shore) over half 

the time. Deep plumes, reaching close to the bottom, occured only a 

quarter of the time.

A seasoned difference in the plume thickness is revealed in Figure 

3.6a, with deeper pycnoclines evident in October. Approximately 20% of 

the October profiles indicate that the low salinity plume filled the water 

column inshore, as opposed to less than 10% in August. The average 

plume thickness was 6.4 m  in the summer (August) and 8.2 m in the fall 

(October). The effectiveness of wind control on the plume thickness is 

reflected in Figure 3.7a. Under upwelling conditions, the plume is 

generally less than 8 m deep, whereas under downwelling conditions the 

plume is typically thicker than 10 m. Also during upwelling, the 

stratification in the underlying pycnocline is enhanced, as shown in  

Figure 3.7B, where the buoyancy frequencies of the pycnoclines are plotted 

against recent along-shore wind stress. The increased pycnocline strength 

for the thinner plumes indicates that during this stage, w ind-driven 

advection is dominating over mixing in determining the disposition of
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the plume. Weak downwelling wind stress both deepens the plume and 

weakens the stratification.

These wind effects suggest that seasonal difference in plum e 

thickness could be attributable to the seasonal difference of the winds: the 

Middle Atlantic Bight experiences southwesterly (upwelling) winds 

during the summer, switching to stronger northeasterlies (downwelling) 

in the fall. Figure 3.8 is the histogram of winds recorded at the FRF during 

the CoOP program, where the magnitude within directional (true) bins is 

weighted by frequency of occurrence. The wind is polarized in a NE-SW 

manner, so that winds from the north tend to have an onshore 

component, while those from the south are associated with offshore 

winds. These cross-shore components reinforce, through direct frictional 

effects, the Ekman-driven downwelling and upwelling patterns.

The width of the plume was determined from the position of the 

seaward salinity front which was crossed repeatedly during ship surveys. 

Transects taken in the southern reaches of the study region; or those taken 

across the head of an arriving intrusion indicated narrower plumes than 

those sampled farther to the north, or well behind the leading portion. In 

Figure 3.7c, attention is given to the control of the plume width by the 

wind. During upwelling winds the plume widens substantially, attaining 

widths of well over 15 km, even for mild upwelling winds. Note from 

Figure 3.7a that all these wide plumes were also relatively thin (< 8 m). 

Again, only plumes that were still in contact with the coastline (have not 

separated to form a lens) are included in this plot. During downwelling 

winds the plume is typically less than 9 km wide. The plume width 

response to the input of along-shore wind stress will be modeled in  

sections 5.3 and . Note that the tendency for narrower plumes under
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stronger downwelling winds reverses as the wind stress increases over -0.1 

Pa. These plumes had likely been downwelled to contact the bottom and 

have entered a diffusive phase.

Under weak downwelling conditions a wide range of pycnocline 

depths were recorded (Figure 3.7a). This variability in thickness could 

have been due to a variation in upstream source strength (see chapter 4). 

Under strong downwelling conditions, however, all plumes were deep 

and narrow, frequently reaching to the bottom. The average cross- 

sectional area implied by all the depth-width pairs was about 64,000 m2.

The pycnocline marking the lower boundary underlying the plum e 

had an average stability frequency of Nmax =0*1 s-1 in August (period of ~1 

minute) and Nmax =0.08 s_1 in October, comparable to a salinity increase of

1.5 psu across one meter depth. While this is not as strong as highly 

stratified plumes such as those of the Amazon or Mississippi, it may be 

sufficient to consider this as a two-layer system, in spite of the shallowness 

of the region. In that case the theoretical width scale of the plum e, 

indicating a inviscid balance between buoyancy and rotation, would be the 

internal radius of deformation, Rint (Gill, 1976),
/  gAp Hpiume (Htotal-Hplume)~ j_

V P Htotal f  (eq. 3.1)

where Hpiume is the plume thickness and f is the Coriolis parameter. An  

alternate formulation more appropriate to the deeper plumes (where 

Hpiume > Htotal/2), would be Rint=(Nav/f)*Htotal/ with the buoyancy 

frequency N av computed from the top to bottom density difference,

( Nav = \  j   ̂ ^  )
av V p Htotal . The average Rint computed from the CTD profiles

(one estimate for each cross-plume transect) indicates a 4.1 km e-folding
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width, which compares reasonably with the total average observed width, 

based on concurrent offshore frontal measurements, of 9.1 km.

The ratio (squared ) of the internal radius R int to the observed 

w idth forms the Burger num ber Sbu = Mnt
.L obs.

2
— -L-, described in section

K2
1.3.4 as a measure of the influence of buoyancy in a rotating system. 

Garvine (1995), using a form of the Burger number to classify coastal 

plumes, points out that those with Sbu of order unity have the m ost 

complicated dynamics, both stratification and rotation being im portant. 

The CoOP observations yielded an average Sbu =0.37, ratios having been 

computed individually for each transect. The Chesapeake plume observed 

here was moderately stratified, with Burger numbers about twice as large 

as those calculated for the downstream coastal jet region of the Delaware 

plume (Miinchow and Garvine, 1993). Miinchow and Garvine conclude 

that the Delaware plume is continually widened by the diffusion of 

relative vorticity through bottom friction, whereas the CoOP width 

measurements indicate a tendency for narrower plumes to be observed in  

the farthest downstream region of the study area. An examination of the 

range of Sbu in CoOP shows that the lower values are correlated w ith 

upwelling winds, consistant with the observation that it is the surface 

stress which modifies the width of the plume off Duck. This relationship 

is explored further in section 5.3.

3.4. Along-coast Propagation Speed and Wind Effects.

Over the 3 months of observations, 15 low salinity fronts were 

tracked traveling down the coast (Figure 3.1). The along-shore positions of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



41

these intrusions are plotted in Figure 3.9 as a function of time, using as t=0 

the m om ent of arrival of the initial large drop in salinity at sensor JO. 

From the frontal travel times between successive sensors, the along-coast 

propagation speed over ground, Cobs, can be calculated. In order to 

estimate the rate of frontal movement relative to the ambient water, the 

concurrent shelf flow velocities, measured just outside of the plum e 

region, are subtracted from Cobs to estimate the relative propagation speed, 

Cadj. The ambient shelf flow was estimated taking 6 hour averages from 

the current meter in the middle of the water column at the 13-m m ooring 

(prior to any acceleration due to the buoyancy). The hypothetical position 

of a front traveling at a steady speed of 55 cm /s is also plotted in Figure 3.9.

h "
The linear internal wave speed (Cint= N av * Htotal or a  V p ) was 

calculated for each event, based on the density differences Ap observed at 

the 13-m mooring during the passage of the intrusion front. Cint estimates 

were also made by assuming that the Ap recorded during a front arrival at 

the 5-m sensors was a reasonable representation of a top to bottom Ap , as 

well as from the pycnocline Ap measured by a few CTD profiles taken in  

the head of an intrusion (eq 3.1). These estimates of Cint are compared 

with the observed Cadj in Figure 3.10. The observed along-coast relative

velocities and range from 50% to 120% of the Cint magnitude. From the 

mooring estimates, an average Cint of 55 cm /s was obtained. This is 

compared with the observed Cadj between J1 and J3 of 38 cm /s (49 cm /s in  

the northern region and 28 cm /s in the southern region). The ratio of 

Cadj/Cint, proposed by Chao (1988a) as a measure of dissipation, has an 

mean value of 0.7. As for the Burger Number, this ratio can indicate the

propagation speeds, Cadj, appear to scale with the predicted
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relative importance of frictional effects. Within Chao's plum e 

classification scheme, the plume observed at Duck would fall in the non- 

diffusive category. However, in the southern, downstream portion of the 

study region, the observed propagation speed becomes an increasingly^ 

smaller fraction of the internal wave phase speed, indicating that the 

buoyancy terms are losing their dominance to frictional terms (note J3 and 

J4 locations in Figure 3.9).

The observed intrusion speeds, Cadj , do not agree well with the 

numerical experiments of Chao (Chao and Boicourt, 1986, Chao 1987, 

1988a), or with Kourafalou et al. (1996). All these models show 

progression of the low salinity intrusion along the shelf at speeds no 

greater than 10 to 17 cm /s, even for plumes with fresher salinities than 

were observed here, and for the full range tested of vertical mixing and 

bottom friction parameterizations. These model plumes would take over 

4 days to reach Duck from the mouth of the Chesapeake Bay, rather than  

the 1 1 / 2  to 2 day travel time implied by the CoOP'94 observations. This is 

most likely due to the models' inability, given limited vertical resolution, 

to reproduce the strong pycnocline that was commonly observed 

separating the plume from the underlying waters. This intense 

stratification probably insulates the intrusion from the effects of bottom 

stress, allowing the nearly inviscid propagation speeds observed in the 

northern part of the study region, where the observations indicte that 

Cadj/Cint is dose to unity. For most of the plumes modeled by Chao, that 

ratio is less than 0.25 (Chao, 1988a), indicative of a diffusive character.

An additional possibility is that the meteorologically-controlled 

surge-like nature of the Bay-shelf exchange, which is examined in chapter 

4, produces intermittent periods of enhanced buoyant discharge larger
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than the moderate levels tested by the modelers. These num erical 

experiments also do not include the effects of wind on the plume, w hile 

the majority of the observed events experienced southward directed w ind 

stress. Adjusting the measured propagation speeds by the ambient shelf 

flows corrects for this to some extent, but there could be preferential 

acceleration of the surface-trapped plume layer by the wind (see section 

5.3).

Downwelling winds should accelerate the plume both through 

direct frictional effects and by the increased layer thickness contribution to 

the buoyancy forcing (larger Hpiume)- The additional southward velocity 

produced by an assisting wind would be sheared, providing enhanced 

delivery of the surface-most water towards the front, where it can 

replenish the density deficit that drives the gravity current, which is 

continually being eroded by detrainment near the nose (Stem et al., 1982). 

To examine the wind effects on Cobs, Figure 3.11 presents the over-ground 

velocities of the intrusion front against the effective wind stress 

(calculated according to Large and Pond, 1981). For low to moderate w ind 

stress (< 0.1 Pa), the water column remained stratified, as was seen in  

Figure 3.7b. The magnitude of Cobs increased with southward directed 

wind stress, and decreased with opposing winds, as was expected. 

However, for strong southward directed winds, the frontal propagation 

speeds were noticeably slower. As discussed in section 3.3 above, these 

strongly downwelled plumes fill the water column; they are not as 

decoupled from the bottom stress by stratification and consequently their 

dynamics are more controlled by friction. A two-layer model scenario is 

not appropriate for these cases. Looking at the relative propagation speeds, 

Cadj, these intrusions travel at less than 20 cm /s above ambient shelf flow
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speeds, indicating the diminished importance of the buoyancy. During 

these events the fresher water appears less as a sharp front, its m ore 

gradual arrival due partly to southward advection by wind-driven flow in  

high-energy conditions.

If one examines the relative along-coast propagation speeds as they 

proceed through the study region (Figure 3.12A), leaving out the strong 

downwelling events dominated by bottom friction, there is a clear slowing 

trend as the intrusion moves farther away from its source. This tendency 

appeared in Figure 3.9 as increasing travel times for the southern sensors, 

J3 and J4. Damping by bottom friction is a possible explanation for the  

observed decrease in speed. This behavior was noted in Chao's models 

(1988a), where he related it to the exponential decay of intrusion speeds 

observed in laboratory gravity current studies (Griffiths and Hopfinger, 

1983) which attributed the m om entum  loss to inertial wave radiation for 

small Ekman number intrusions, and to frictional dissipation for larger 

Ekman numbers. These laboratory studies also report on the mixing along 

the gravity currents' path, indicating the concomitant dilution and 

reduction in buoyancy forcing as the intrusion slows.

The evidence for dilution of the plume's estuarine water with shelf 

water is presented in Figure 3.12B. The minimum salinity observed at 

each 5-m isobath sensor for each event is plotted. These salinity 

measurements reveal that the m inim um  plume salinity observed for 

most events increases with distance down-coast. The average rate of 

increase was 0.052 psu per km (±0.027ct). Since the sensors are 1 m from  

the bottom, it is possible that they are measuring a turbulent layer that is 

more subject to mixing than the core of the plume proper; however, this 

does not appear to be a large effect as surface observations from the along
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shore mooring array show similar increases. The salinity deficit of the 

intrusions entering the study area has a wide range which could be due 

both to differences in freshwater flux from the Bay and to mixing 

conditions encountered upstream. However the rate of increase w ithin 

the Duck region is steady. Over the 1 1 / 2  day passage through the study 

area, a typical plume rises from a salinity of 25.5 to 29 psu. With an 

ambient shelf salinity of 33 psu, this indicates a dilution of 1:1 over the 60 

km path. The relationship between salinity contrast and propagation 

speed for the observations are shown in Figure 3.13. In spite of the scatter, 

the trend shows slower Cadj corresponding to increasingly diluted plum e 

intrusions. Overlaid on Figure 3.13 is the theoretical phase speed of a 

linear internal wave in a two-layer system where the density difference is 

due solely to the salinity contrast ^ int — v S p*3 HPlume where Ap = |3 ASal 

and P = 0.764 is a representative value of the contraction coefficient of 

salinity for this range of temperature (Fofonoff and Millard, 1983). Note 

with regard to the next section, that this is also the velocity scale exhibited 

by baroclinic gravity currents (Benjamin, 1968).

During downwelling, the erosion of stratification by this dilution 

would be enhanced both by the more energetic wave regime associated 

w ith the onshore wind component and by bottom-generated turbulence 

where the low salinity layer deepened to reach the bed. Strongly 

downwelled plumes have lower dilution rates than the other events, 

perhaps having been more strongly mixed upstream of the study region. 

In some moderate downwelling events, the plume appears to shift 

between the two dynamical modes (from two layer to an unstratified 

plum e in contact with the bottom) during its passage through the study 

region. During the event of 22-25 August (Event C in Figure 3.2) relative
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propagation speeds decrease from nearly 40 cm /s in the northern part 

down to less than 4 cm /s by J4 - barely faster than the ambient shelf flow . 

The decrease in salinity observed at J4 is noticeably more gradual than at 

sensors farther north for this event. The front presumably had been 

eroded by the enhanced mixing of increased downwelling conditions.

To estimate the varying relative contributions of terms in the 

along-shore momentum balance one might start with the assumption that 

on the inner shelf the dominant balance will be between wind stress, Ts, 

and bottom stress, Tb- Indeed, estimates for these terms calculated from  

local winds (Large and Pond, 1981) and near-bottom currents (using a 

quadratic formulation with Cd=0.002) are correlated with an r2 = 0.61, w ith  

a best fit if Tb is lagged 5 hours behind the wind. This relationship was 

stronger during times that the plume is not present: the r2 increases to 

0.74 when we exclude pairs corresponding to times when FRF salinity is 

less than Smaxplume- To examine the relative contribution of the plum es' 

buoyancy, we estimate the baroclinic pressure gradient as w ith

Hpiume fixed at 8 m . The density time series from the sensors at J1 and FRF 

was used to calculate the along-shore density gradient, using their along- 

coast separation (16 km) as the length scale. While the absolute 

magnitude of these dynamical terms are dependent on several poorly 

known parameters, one can compare how the friction and buoyancy term s 

vary during the field study (Figure 3.14). The friction terms are dom inant 

and the expected balance between surface and bottom stress is clear in  

September and especially in October. However, there are events when the 

buoyancy term is making a comparable contribution, and even times (23 

Aug., 2 Sep.) when the bottom stress appears to be balancing a combination
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of wind and buoyancy (downwelled plume "C" and the first part of event 

"F"). The surface-trapped plumes (e.g. 16, 20 & 31 Aug.) show no response 

in bottom stress and are balanced by acceleration (Figure 3.5, lower panels). 

These m om entum  balances are examined in greater detail by Lentz et al., 

(1998).

3.5. Currents

Having established the characteristics and structure of the low 

salinity water mass, I now focus on the details of the current associated 

with its presence. When the gravitational spreading of a buoyant water 

mass under rotation is constrained by a lateral boundary, a boundary 

current m ust develop in which the offshore pressure gradient is balanced 

against the onshore Coriolis term (Gill, 1976). The presence of the 

coastline to the right of the flow (in the northern hemisphere) results in a 

coastal jet that can transport the estuarine outflow long distances from its 

source (Csanady, 1976). During the CoOP'94 field work, strongly enhanced 

southward currents were commonly observed at the inshore stations and 

were associated with low salinities. Figure 3.15 is a map of ADCP and CTD 

data during a late October survey where the velocities inshore of the 30 

psu surface isohaline are 2 to 3 times faster than the ambient shelf flow. 

Winds during the preceding day had been moderate towards the 

southwest; throughout the survey they were light and variable. This 

survey highlights the inability of ship-based measurements to capture, 

synoptically, the rapidly evolving plume behavior — this plume event 

entered the study region while the ship was in the southern portion, and 

was not encountered until the middle transect. Figure 3.4B presents an

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



48

example where southward flow is maintained within the plume while the 

rest of the inner shelf is turning to the north under the influence of 

upwelling winds. The horizontal shear across the offshore frontal region 

was frequently as high as 40 cm /s per km.

In Figure 3.5 are plotted the hourly along-shore and cross-shore 

components of velocity measured at the 13-m mooring located on the 

central line at Duck and the along-shore component from the 8-m tow er 

during the same 3 week period as in Figure 3.2, where the salinities are 

shown. For clarity, only the surface and bottom current meters are 

displayed. The arrival of the head of each low salinity intrusion (marked 

as events labeled A-F as in Figure 3.2) was associated with accelerating 

southward surface velocities growing by 30 to 40 cm/sec within an h o u r 

time. These strong accelerations were also observed inshore at the 4-m 

tower (not shown). The enhanced southward velocities continue 

throughout the periods of low salinities.

The flow during the plume arrival displays non-linear features 

consistent w ith an along-shore momentum balance at the nose between 

inertia and buoyancy (Griffiths and Hopfinger, 1983). The m axim um  

hourly average velocities measured by the 8-m and 13-m surface current 

meters on the central line during the plume arrivals commonly exceeded 

the over-ground along-shore frontal propagation speeds Gabs by 15 to 30%. 

In Figure 3.16 two example patterns in velocity and salinity are show n. 

Fluid velocities greater than the rate of advance of the feature im ply 

convergence towards the front which initially deepens the head, form ing 

the head wave or roller region identified in numerical gravity curren t 

models (Kao et al., 1977) and in field observations (Luketina and Imberger, 

1987). These higher velocities were confined to the very surface and near
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coast region. For a few shallow and narrow plume events, the high 

velocities were observed only at the 8-m isobath. They persisted for over 1 

to 3 hours, or, at average propagation speeds, for a distance of several 

kilometers behind the nose, implying an extensive convergence zone. 

This surface convergence requires downwelling w ith flow reversal at the 

bottom (the "top-spin" at the nose described by the Chao and Boicourt 

(1986) model), in addition to lateral detrainment and widening. The 

gravity current laboratory experiments show this lateral detrainm ent 

taking place largely in the form of billow and eddies shed from the 

seaward side of the nose (Stem et al. ,1982). The vertical resolution of the 

mooring time series does not allow us to evaluate whether a head wave 

deeper than the following plume was a common feature of these 

intrusions, however, several ADCP/CTD transects recorded a deeper faster 

plume in earlier downstream crossings of an arriving plume, compared to 

those taken an hour or so later slightly farther upstream. Widths inferred 

from both the moorings and underway system indicate that the head has a 

somewhat narrower cross-shore extent than the coastal current behind it, 

consistent with the laboratory observations.

Other evidence in support of this model of behavior is the reverse 

deeper currents excited by the passage of the head of the intrusion. In 

contrast to the southward acceleration of the surface velocities observed in 

Figure 3.5, the bottom sensors record a brief northward pulse at the 

moment of passage. These "backwards" accelerations were clearest for 

depths that showed a slight freshening, in keeping with the top-spin 

model of nose advancement. At or just before the frontal passage, an 

offshore pulse of flow was recorded at all depths. This is qualitatively 

consistent with a model of seaward lateral detrainment at the nose. Both
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the offshore and deeper northward flow are observed only at the m om ent 

of frontal passage — once the head has passed, a southward current 

exhibiting strong vertical shear is set up.

Several cross-sections of the along-shore jet associated with a plum e 

event were recorded during a ship survey in late October (Figure 3.16). 

The middle panel (Transect 35) is located approximately 14 km behind the 

southward-propagating nose; the bottom panel (Transect 30) is taken 

farther north and several hours later when the nose would be about 29 km 

to the south. The salinity contours are based on CTD profiles (positions 

marked with arrows). The velocity contours in the lower panel are from 

an ADCP tow averaged to 1 minute intervals, which gives a horizontal 

resolution of 0.25 km. In the upper panel, ADCP profiles were taken at the 

CTD locations. In the transect closer to the head (middle panel) the 

velocity maximum was found at the innermost profile. Farther upstream  

(bottom panel), the current broadened and the core was located between 2 

to 3 km offshore, coincident with the freshest portion of the plume. The 

core of the southward-flowing jet remained inshore of the frontal region 

as defined by either the CTD or surface salinities (Figure 3.16, top panel). 

For a fully geostophically-adjusted coastal current, the fastest velocities 

would be in the frontal region where the horizontal gradients are 

strongest. This pattern was frequently observed in the CoOP'94 transects 

that recorded arriving plumes: the velocity maximum would be located 

well inshore of the front, closest to the minimum salinity .

The observed southward velocities were maintained over the inner 

shelf in the low salinity water mass until the salinities rose as the plum e 

moved. Even after the plume detaches from the coast, southward 

m om entum  persisted within the low salinity water mass for up to a day.
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In Figure 3.4C this is detected as a region of depressed northw ard 

velocities.

When the plume arrives during winds from the north (e.g. events 

C and F), the pronounced downwelling pattern in the cross-shore 

components is disrupted (Figure 3.5, top panel). The new plume re- 

imposes strong stratification on the water column that had been vertically 

mixed by the previous downwelling circulation. It should be noted that 

the presence of a large source of fresher surface water, as was provided by 

the previous plume event B, caused the inner shelf to destratify very 

rapidly at the onset of downwelling winds, and resulting in the strong 

bottom currents observed on 23 August (Figure 3.3). The largest 

resuspension event in August was observed at this time.

CTD transects taken during strong plumes that oppose upwelling 

winds (e.g. event A or B) display upraised isotherms just offshore of the 

salinity front,which then flatten shoreward under the plume water 

(Waldorf et al., 1995, p 177,237). Thus the arrival of a plume intrusion is 

seen to modify the cross-shore circulation patterns, as well as the along

shore, displacing both upwelling and downwelling flows over the inner 

shelf.

3.6. Summary and Conclusions

Field observations recorded during the sum m er and fall of 1994 

show that the episodic presence of low salinity water masses from the 

Chesapeake Bay created an intermittent baroclinic coastal current along 

the North Carolina coast. Under low wind conditions, this current
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occupied the upper half of the water column within 7 to 9 km of the coast. 

The plume was bounded by a distinct southward-propagating front, a 

region offshore of high horizontal salinity and velocity gradients, and a 

strong pycnocline underneath. The intrusion traveled along the coast at a

speed proportional to the linear internal wave speed or V p This is 

also the pertinent velocity scale for baroclinic gravity currents (Benjamin, 

1968). The w idth of the arriving head of the intrusion was som ewhat 

narrower than the coastal current region behind it. Southward winds 

acted to narrow and deepen the intrusion, causing it then to contact the 

bottom. This contrasts with the Delaware plume, which Miinchow and 

Garvine (1993) concluded filled the entire water column unless significant 

northward winds forced it to shoal. Comparison of observed widths and 

speed to theoretical values indicate that the Chesapeake plume here is n o t 

as subject to dissipative bottom friction or mixing as either the Delaware 

plume or numerically modeled low salinity intrusions of the Middle 

Atlantic Bight.

The inner shelf flow is largely controlled by wind forcing, as is the 

shape, position, and propagation speed of the plume. Within this wind- 

dominated context, the buoyancy forcing associated with the arrival of a 

low salinity intrusion makes a significant contribution to the surface inner 

shelf currents. Several events in August and September displayed 

buoyancy currents which prevailed against the ambient wind-driven flow. 

Increased wind and wave energy in later autum n result in a dim inished 

role for the buoyancy forcing. The plume events generally last for 1 to 4 

days and occur at intervals of 2 to 8 days; accordingly, low salinities were 

recorded near shore during 50% of the field program.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



53

Propagation speeds were seen to slow during the passage of each 

intrusion through the study region. It is proposed that this is due to the 

mixing with ambient water along the path of the intrusion which steadily 

increased its salinity, thereby reducing the density contrast that drives it. 

Deep, downwelled plumes had particularly slow propagation speeds due 

to increased control by bottom friction.
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Figure 3.1. Complete hourly salinity time series from sensors along the 
5 m isobath, with wind vectors from FRF (vector pointing 
up indicates stress directed towards 340° true).
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Figure 3.1. Complete salinity time series from sensors along 5 m 
isobath, with wind vectors from FRF in direction of stress.
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Figure 3.2. Hourly time series of (upper panel) along-shore wind 

measured at a height of 3 m on the surface buoy of the 20 m 

isobath mooring, and (lower panel) salinity measurem ents 

from SeaCATs mounted at 1 m above the bottom along the 5 

m isobath, along with salinity from 4 m depth at the FRF pier
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salinity measurements from SeaCATs mounted at 1m above the bottom along 
the 5m isobath, along with salinity from 4m depth at the FRF pier.
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Figure 3.3. Surface and bottom salinity and along-shore current from the

8-m, 13-m, and 20-m moorings. Winds from meteorological 

buoy on 20-m mooring.
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Figure 3.4. Vertical cross-shore sections of CTD salinity (colorscale) 

overlaid with detided ADCP velocity vectors from Transect 

50 (panel A) and Transect 40 (panels B and C). Velocity 

vectors are oriented as in plan (map) view, w ith the velocity 

scale indicated by the arrow in the lower left-hand comer of 

each plot.
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Figure 3.5. Hourly currents from same 3 week period as Figure 3.2 
measured at the 8-m tower and 13-m mooring: Cross-shore 
components from surface and bottom (top panel), along
shore components (lower two panels).
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Figure 3.6. A) Thickness of plume (depth of maximum pycnocline from 

all CTD profiles where the surface salinity < S m a x p l u m e ) -  B) 

%time plume water is present at moorings.
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Figure 3.7. A) Thickness of plume as determined by depth of m axim um  

pycnocline (from stn 2) and B) strength of the stratification in 

the underlying pycnocline (maximum buoyancy frequency) ; 

and C) width of plume as determined by offshore locations of 

high surface salinity gradients from shipboard underway 

observations versus recent along-shore wind stress (average 

of previous 6 hours).
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Figure 3.8. Histogram of FRF wind direction (true) 

magnitude. The coastline near Duck 

approximately 340° -160°.

weighted by 

is oriented
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Figure 3.9. Position of southward propagating front of low salinity 
intrusion versus time in days since reaching sensor JO. 
Travel times were computed as relative to ambient flow. 
Solid line indicates position of a disturbance traveling at a 
constant phase speed of 55 cm /s. Dashed lines indicate 
ranges for phase speeds of 75 cm /s  and 35 cm /s.
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Figure 3.10. Observed propagation speed (Cadj) compared with theoretical 

linear internal wave phase speed (Cint)
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Figure 3.11. Velocity (over-ground) of low salinity intrusion versus 

recent wind stress (average of previous 10 hours). Symbols 

indicate pairs of sensors between which the intrusion speeds 

were determined: box = JO to Jl; circle = J1 to FRF; triangle = 

FRF to J3; diamond = J3 to J4.
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Figure 3.12. A) Observed propagation speed Cadj (determined 

incrementally between pairs of salinity sensors and adjusted 

for ambient shelf flow) versus alongshelf distance from 

Chesapeake Bay. B) Minimum observed salinity for each 

event at each along-coast sensor.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

50
80-

60 70 80 90 100 110 120

t
§
€
a8a.

60-

40-

8a>co
3
occ

20 -

JO J1

!

X
I

«
x

FRF J3

i
I

JL
J4

29

100 120
Distance along coast km

Figure 3.12. A) Observed propagation speed Cadj versus alongshelf distance from 
Chesapeake Bay. B) Minimum observed salinity for each event at each alongcoast sensor.



66

Figure 3.13. Relative along-coast propagation, speed versus ASal, the 
decrease in salinity observed at the arrival of the plume.

Solid line is linear internal wave speed ^ tnt “  p HpIum̂  
where Ap = p ASal and 3 = 0.764 is the contraction 
coefficient of salinity. (The average Hpiume of 7m was used.)
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Figure 3.14. Time series of surface stress, bottom stress and along-shore 

baroclinic pressure gradient.
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Figure 3.15. Map of ADCP surface velocities and 30 psu isohaline from  

shipboard tmderway surface mapping system, October 22, 

1994.
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Figure 3.16. Upper panel: surface salinity cross-shore profiles from 

Transect 35 (dotted) and Transect 30 (solid). Middle panel: 

Along-shore component of ADCP velocity (greyscale 

contours) overlaid with salinity contours from Transect 35. 

Lower panel: same as middle panel for Transect 30.
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Chapter 4 Flume Source

An investigation is made into the possible sources of the 2 to 8 day 

variability observed in the plume along the coast of North Carolina as 

described in the previous chapter. Inflow to the Chesapeake Bay from its 

tributaries fluctuates little on the time scale of a few days. However, 

volume flux across the Bay entrance (derived from waterlevel variations 

within the Bay) is strongly energetic in the meteorological synoptic or 

'weather' band between 3 to 6 days. Peak periods of outflow are shown to 

precede most plume events by a lag of 1 to 2 days. Additional variation in  

the Bay volume is seen at periods of 2-3 days which corresponds to the 

natural seiche frequency of the Bay. Data from a 1982 NOAA current 

meter deployed at the mouth of the Bay is used to verify the method of 

computing volume flux.

Volume flux through the Bay mouth is driven by both the 

alongshelf and cross shelf components of the wind, but via different 

mechanisms depending on the time scale. At periods greater than 3 to 4 

days, changes in coastal sea level driven by Ekman transport on the shelf 

control the volume flux across the Bay mouth, so that downwelling w inds 

force a shoreward flux of water which results in the filling of the estuary; 

while upwelling-favorable winds cause a depression of coastal sea level 

and a decrease in estuary water volume. At higher frequencies the surface 

flow is frictionally driven in the local wind direction. An analytical 

barotropic model is used to examine the time scales and basin geometries 

over which these different responses can interact.
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4.1 Introduction

The interm ittent presence of the Chesapeake Bay plume along the 

North Carolina coast invites questions about the variations in the 

processes that control this low salinity water upstream of our study region. 

The moored salinity data indicate that a new plume intrusion arrived 

roughly every 2 to 8 days. Is the outflow from the Chesapeake Bay itself 

pulsed on a similar time scale and if so, what causes this? Alternatively, is 

a continuous estuarine outflow being at times diverted away from its 

downstream course? The Chesapeake plume has seldom been observed 

on the shelf north of the mouth, so an upstream path is unlikely. 

However, modeling studies (Chao, 1987, Kourafalou et al., 1996) indicate 

that upwelling winds could drive offshore flow of the plume waters. It is 

possible that strong mixing conditions could disperse the low salinity 

signal before it is seen in the down-coast CoOP study area. Another 

possible scenario involves the temporary accumulation of the outflow in  

the inertial turning or 'bulge' region outside of the Bay mouth, which was 

suggested by Oey and Mellor (1993) to trigger intermittent meanders along 

the outer edge of the plume. The CoOP '94 field program took very few 

measurements in the region near the Bay, so these latter scenarios cannot 

be examined.

Unfortunately, there were also no direct measurements of 

freshwater flux or currents at the Bay mouth during the 1994 field 

program. Surface salinities were profiled through the mouth at intervals 

no more frequent than every two weeks when the ship entered or left 

port. Therefore, to attempt to answer these questions, additional sources
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of data were acquired. Daily values for freshwater inflow to the Bay were 

obtained from USGS offices in Maryland and Virginia. Hourly 

waterlevels in the estuary, from which the volume of water in the Bay 

was estimated, were available from NOS data centers. The winds recorded 

at the Chesapeake Light Tower, just outside of the m outh of the Bay, were 

used to represent coastal wind conditions. To further explore the 

proposed relationships between winds and Bay/shelf exchange, data were 

obtained from a year-long monitoring study done by NOAA in 1982 that 

included direct current and salinity measurements in the Bay mouth.

4.2 Freshwater Inflow to the Chesapeake Bay

Stream inflow to the Chesapeake region is monitored by the USGS 

on 3 major tributaries: the Susquehanna, which supplies 50% of the 

freshwater; the Potomac; and the James. The daily values are routinely 

adjusted by USGS for diversions of freshwater for municipal uses and the 

total inflow was computed by the method of Bue (1968) which accounts for 

the ungauged portions of the watershed. The inflow remained close to its 

seasonal mean of 1350 m3/ s  for most of July through October, 1994 (Figure 

4.1). There were three noticeable inflow events, the largest of w hich 

occured in mid-August, w hen the flow peaked at over 8000 m3/s. This 

resulted in the 1994 August monthly average of 2376 m3/s, which is 

almost three times the climatological mean for August of 850 m3/s  (USGS, 

1994). Flows in September and October were 900 and 1100 m3/s, which are 

average for that season. There was no significant variation in inflow 

occurring on the time scale of 2 to 8 days.
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The Chesapeake Bay is a very large estuary, with a length of 290 km  

and an average width of 22.5 km. The average depth of the Bay proper is

8.4 m, giving it a volume at mean low water of approximately 50 km3 

(Cronin, 1971). For a reservoir of this size, the depth change due to one 

day's average inflow of 1350 m3/s  would be less than 2 cm, contrasted to a 

tidal range in the Bay proper of 30 to 80 cm (Fisher, 1986). Thus several 

days inflow could be stored before release without noticeable change in 

surface elevation.

4.3 Meteorological Control of Bay/Shelf Exchange

A num ber of studies have determined that atmospheric forcing 

exerts a strong control on the exchange of water between an estuary and 

the adjacent coastal ocean (Wang, 1979, Wong and Garvine,1984). The 

most energetic and effective forcing occurs on the meteorological 

mesoscale, or synoptic, time scale between 3 and 7 days, which matches 

well with our plume event timing. Many studies of subtidal exchange rely 

on sea level variation within the estuary to infer volume flux, based on 

the continuity requirement. Measuring outflow directly is challenging 

largely because the tidal currents are an order of magnitude larger than the 

residual flows in which we are interested. There can also be strong 

vertical and lateral variations (Valle-Levinson and Lwiza, 1995) which 

would require a large number of instruments to sample adequately the 

outflow.
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4.3.1 Meteorological Control of Bay/Shelf Exchange: Observations

Measurements of waterlevel, T |, for the summer and fall of 1994 

were obtained from NOAA for three gauges located within the 

Chesapeake Bay (Figure 4.2) : Baltimore (BALT), Lewisetta (LWST) and 

the Chesapeake Bay Bridge Tunnel (CBBT) and used to estimate the 

volume of water within the Bay. Tidal and higher frequency variations 

were removed from the hourly time series with a low-pass filter (see 

section 2.3). The transport of water through the mouth of the Bay was 

computed as

transport = -inflow + (eq. 4.1)

where inflow is the total runoff from the tributaries. Outflow is 

negatively-directed transport. In a manner similar to that used by 

Goodrich (1988), the subtidal volume flux was computed from

dVol _ A  dt|BALT , A dt|LWST , A dTJcBBT , A
— — —  —  A b a l t — -J - --------- 1- A l w s t — t : ----------- F  A c b b t — — —  (eq. 4.2)dt dt dt dt ^

where d t is 1 hour. Agauge is the Bay area that each gauge is assigned to 
represent (Table 4.1), as illustrated by the shaded regions shown in Figure 
4.2. Again, falling sea level implies negative volume flux (outflow).

Gauge Length(km ) Width (km) Area (km2)
BALT 131.5 10 1315
LWST 111.1 33 3667
CBBT 46.3 33 1528
T o t a l 2 8 9 m ean=22 .5 6 5 0 9

Table 4.1.
Size of Chesapeake Bay surface area assigned to each waterlevel 

gauge in order to calculate volume flux.
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The resulting volume flux time series is plotted in panel a of

Figures 4.3 TTII for August, September and October of 1994. The power 

spectrum of this time series (Figure 4.4) indicates that the most energetic 

fluctutations in volume flux occur on time scales of 2 to 6 days, peaking at

2.5 to 3 days. The volume flux, which does not include the river inflow, 

has a mean near zero ( < 0.07xl03 m3/s) with an rms amplitude of 8.5xl03 

m3/s. This is four times the rms amplitude of the river runoff. The 

spectrum of the river runoff, overlaid on Figure 4.4, shows no high- 

frequency energy. Therefore the flow through the mouth on the 

dominant time scale of the volume flux (2 to 6 days) should be controlled 

by barotropic fluctuations, rather than freshwater flow.

Volume of water in the Bay is calculated by integrating the vo lum e 

flux (exclusive of inflow) over time (Figure 4.3 I-m, panel c), arbitrarily 

setting the initial value to zero. The volume showed a small increasing 

trend during the study period of about 1%, or an overall rise of 8 cm in the 

Bay surface elevation. A similar volume increase was observed by Elliott 

and Wang (1978) who attributed it to the steric effect of seasonal warm ing 

of the coastal ocean. The average water temperature on the inner shelf off 

North Carolina increases from July through September, falling in October 

(Austin and Lentz, 1998). However, a rising overall trend in coastal sea 

level during this time period could also be explained by the seasonal 

difference in average wind stress, with summer upwelling winds 

changing to predominantly downwelling winds in the fall (see section 3.3).

During the study period, volume flux amplitudes of over 15xl03 

m3/s  occurred at least weekly. The resulting total volume change for 

these larger flows (over an average period of 4 days) was 1.6 km 3,
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approximately equal to the tidal prism. The largest observed volume flux 

occurred during the waning phases of the northeaster of mid-October, 

w ith a transport of over 25X103 m3/s. Preceeding that outflow, the rise in  

volume resulting from this entire storm was close to 3 km3, which is 

about 6% of the total volume of the Bay. Storm-driven volume exchanges 

of up to 10% of the total Bay volume have been reported by Boicourt (1973) 

and Goodrich (1988).

Note that some level of barodinic exchange driven by the 

gravitational circulation pattern at the m outh of the estuary can be 

occuring at all times, and not be reflected in this barotropic calculation of 

volume flux. It would be preferable to be able to identify freshwater flux, 

which occurs preferentially towards the surface and the southern side of 

the Bay m outh (Valle-Levinson et al., 1994). The purpose here is to 

identify moments of large barotropic outflow events from the Bay; assum e 

that this estuarine water will be significantly fresher than the shelf water; 

and determine if these events correlate with plumes observed far to the 

south.

The time series of salinity recorded at the J1 sensor (or the FRF pier

for the time period before 7 August) is repeated in the panel b  of Figures

4.3 I-m  with the plume events labeled as in chapter 3. Nearly all sharp

decreases in salinity, which indicate the arrival of an intrusion, follow a 
peak in ^Vd of at least -7xl03 m3/s. These moments of strong outflow are

marked in Figures 4.3 I-IH with arrows. With the exception of the outflow  
prior to event "J", all the peaks in ^Vol which preceed plum e events have

a magnitude larger than 7x10s m3/s, and average over 14xl03 m3/s. 

Outflows of this size occurred approximately every 3 to 4 days. The tim e 

interval between the drop in the salinity signal at J1 and the preceding

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7 7

large peak in outflow from dYpL averaged 1.1 days, or 27 (+/_ 8) hours,

comparable to the lag anticipated from the observed along-coast 

propagation speeds of the intrusions (see section 3.4). This relationship 

was clearest for the August events, and became more complicated in the 

faU.

In Table 4.2 the time of each peak outflow that precedes a plum e 

event is given, and the lag in hours is determined. From this the average 

intrusion speed from the Bay to the northern part of the study region can 

be computed (column 5).

E vent

(date.of 
arrival 
at FRF)

Peak of
dVoI

dt
(decimal
day)

Peak of
. dVol 

dt
(decimal
day)

A rr iv a l  
® J1
(decimal
day)

H ours 
to  J1

in tru s io n
Speed
( c m / s )

A m bient
S h e lf
c u r r e n t
( c m / s )

P 8 /0 7 218.05 218.05 218.71 16 -117
A 8 /1 6 227.34 227.34 228.33 24 -79 4.7
B 8 /2 0 230.83 230.83 231.84 24 -78 -8.0
C 8 /2 3 234.58 234.58 235.38 19 -98 -15.9
D 8 /2 8 238.96 238.96 240.41 35 -54 1.7
B 8 /3 1 241.88 241.88 243.00 27 -69 7.6
F 9 /0 2 244.67 244.67 245.54 21 -89 -8.5
G 9 /0 9 250.54 250.54 251.63 26 -72 3.6
H 9 /1 9 261.46 261.46 262.46 24 -78 -6.2
I  9 /3 0 271.38 271.38 272.91 37 -51 12.5
J  1 0 /0 4 275.08 275.08 276.66 38 -49 -4.1
K 1 0 /1 1 283.38 283.38 284.12 18 -105 -31.6
L 1 0 /1 8 289.88 289.88 290.96 26 -72 -27.5
M 1 0 /2 2 292.88 292.88 294.66 43 -44 8.1
N 1 0 /2 6 297.13 297.13 298.50 33 -57 1.1

average = 27 -7 4 - 4 .9
Table 4.2.

Times in decimal Julian days of peak in volume flux and 
arrivals of low salinity intrusion at the northern-most sensors 

along the 5-m isobath in the CoOP study region.
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The salinity decrease on 13 September, which was attributed 

previously to an onshore movement of fresher water, rather than an 

intrusion moving along-coast, was not preceded by a strong outflow peak. 

On the other hand, several cases of strong outflows, such as those 

observed on 29 July, 25 August, and 23 September, did not result in any 

expression in the downstream salinity signal. These counter-examples 

will be discussed in section 4.3.7.

In Figure 4.5 this data is used to extend the comparison of frontal

position versus time which was previously shown in section 3.4 (Figure

3.9). In this case the observed speeds over ground, C0bs, are considered,

rather than the speeds adjusted for ambient shelf flow, Cadj (as were used

in Figure 3.9), which reduces the scatter. The average Cobs between sensors

J1 and the FRF pier for all plume events was 55 cm/s. A linear

extrapolation of this intrusion speed back in time is a good predictor of a

peak in outflow, although the best prediction speed (average observed 
intrusion speed between peak in ^91  and arrival at Jl) is higher (average

of 74 cm/s), as expected from the results in section 3.4 that show the 

intrusion slowing as it moves farther from its source.

In comparison to these intrusion speeds, the ambient shelf water 

moved substantially more slowly. The ambient flow is represented in the 

right-most column in Table 4.2 by the along-shore current measured at the 

20-m mooring @ 6m depth, averaged over the time interval from colum n 

2 to 3. Considered over all plume events, the shelf water m oved 

southwards at less than 5 cm/s, and indeed for some events, flowed to the 

north. Such low ambient speeds would seem to preclude the possibility 

that the observed low salinity outflow could have been carried southwards
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by the general shelf circulation, but must be traveling as a baroclinic 

current as proposed in the previous chapter.

As noted in section 3.6, the general inner shelf circulation is 

primarily wind-driven. The currents' response to the wind in these 

depths is fully established within 6 to 7 hours, as seen in the lag of the 

maximum correlation between along-shore wind stress and along-shore 

flow at the 13-m mooring (Figure 4.6). However, the lag of the m axim um  

correlation between wind stress and salinity occurs at 31 hours (see Figure 

4.6), a time scale more compatible with that previously determined for an  

the intrusion propagating down from the Bay mouth at linear internal 

wave speeds. This suggests that the salinity signal is probably m ore 

related to the baroclinic plume events, rather than advection.

The time scale of the observed volume fluctuations (2 to 6 days) 

falls largely within the synoptic band, indicating that meteorological 

variations could be the forcing mechanism, although additional energy is 

being supplied in the higher (T < 3 days) frequencies. The power spectra of 

the coastal wind stress components (overlaid on Figure 4.4) indicate that 

over 80% of the wind stress variance is contained in periods longer than 4 

days. The synoptic weather patterns over the Middle Atlantic Bight 

during the summer and fall of 1994 have been characterized by Austin and 

Lentz (1998) as dominated by the passage of atmospheric low pressure 

centers to north of the region. These low pressure systems occurred every 

6 to 7 days, and propagated in an east-northeast direction, so that the 

trailing cold front passed over the study site. This caused a rapid change in 

wind direction from predominately north-northeastward to 

southwestward behind the front. This pattern is consistent with the 

conclusions of Mooers et al. (1976), who described the regional
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meteorology as a succession of extra-tropical cyclones on about a 5 day 

interval.

In the observations, the energy in the north-south component of

the wind stress was larger than in the east-west (Figure 4.4) as expected

from the patterns described above. An examination of the wind vectors

during the study period (Figures 4.3 I-IH, panel d) shows that periods of

downwelling winds (south or southwestward) are associated w ith  
increasing volume within the Bay (panel c); while peaks in outflow (-^ j~ )

can be seen to occur at times of decreasing along-shore wind stress (where

positive stress is directed northward). The time rate of change of the

north-south component of the wind (dW indV/dt) is overlaid on the

volum e flux plot in Figure 4.3 I-EH panel a, where the strong

correspondence between the two time series, particularly for large negative

peaks, is evident. These moments of rapid decrease in along-shore wind

stress can be due to a complete reversal of wind direction, as the frontal

passage seen on 6 August; or to a transitory let-up during northward

winds (e.g. 29 August). The Bay outflow responds very quickly to the

dim inution of northward wind stress, with peak outflow lagging

dW indV /dt by 3 hours. The time relationship between along-shore wind

stress and salinity at the mooring off Duck noted above (Figure 4.6) can

now be seen as indicative of the same process as that producing the 
observed lag between and downstream salinity (Table 4.2), i.e., the

release of estuarine water which propagates down the coast as a buoyancy 

current.
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4.3.2 Meteorological Control of Bay/Shelf Exchange: Background

The downstream arrival of low salinity water is likely related to 

meteorologically-forced events of barotropic outflow from the Chesapeake 

Bay. But how exactly does the wind control the exchange between an 

estuary and the adjacent coastal ocean? The waterlevel inside the estuary 

can be forced remotely by variations in the coastal sea level, which is 

driven by Ekman transport due to the along-coast component of the wind. 

Through this mechanism, fluctuations in estuary/shelf exchange are 180° 

out of phase with the wind: upwelling winds (positive wind stress) would 

cause an emptying of the estuary (negative volume flux), w hile 

downwelling conditions (negative wind stress) fill it up (positive vo lum e 

flux). Alternatively, winds blowing directly into and up the estuary could 

cause it to fill through frictionally-driven currents. Given the geometry of 

the Chesapeake Bay basin, which, except for the lower 30 km, is nearly 

aligned w ith the coastline north of the mouth, remotely-forced flow will 

be in the opposite direction of locally wind-driven flow (Figure 4.7).

Previous work by Elliott and Wang (1978) and Wang (1979), suggest 

that these different mechanisms dominate within the Chesapeake Bay at 

different time scales. Their results showed that at low subtidal frequencies 

(periods of 6 or more days) the remote forcing dominated, so that coastal 

sealevel controlled the direction of the exchange across the mouth. For 

shorter tim e scales (T<4 days) the Chesapeake Bay was seen to respond 

directly to surface stress in the local wind direction.

A barotropic analytic model was developed by Garvine (1985) to 

examine the coupled system of a 1-D estuary and 2-D coastal ocean under 

varying geometry and forcing frequencies. The angle of the estuary to the
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coastline can be varied in the model, which allows the local forcing to 

either enhance or oppose the remote (coastal) forcing. Evidence for 

opposing effects was observed in Delaware Bay, which is the similarly 

aligned to the Chesapeake, (Wong and Garvine, 1984) where energetic 

subtidal currents were observed flowing against the local wind. The key

parameter that emerges from Garvine's analysis is a comparision of the
time that it takes a barotropic signal to propagate through the system (—==,

Ygh

where L is the estuary length) versus the time scale of the atmospheric 
forcing, 2s..where co is the frequency of the wind variation. The barotropic

response time of most estuaries is less than half a day, much shorter than 

the synoptic wind scale. Garvine's solutions show that the local w ind

effect on the surface elevation and, thereby on the barotropic current
variations, is smaller than the remote effect by 0 (—®^=). Therefore, for

2nfgh

low subtidal frequencies, the barotropic waterlevel fluctuations in m ost 

estuaries will be dominated by the remote shelf response.

This conclusion was verified in the Chesapeake Bay by Valle- 

Levinson (1995) using data from moorings deployed during the sum m er 

of 1993. Surface-to-bottom inflow was measured following strong 

upwelling periods, as the depressed waterlevel in the lower Bay 

rebounded. Barotropic outflow occurred during the waning phases of 

several downwelling events, which had caused elevated waterlevels in  

the lower Bay. No evidence for flow in the direction of the wind was 

discerned, and given the rapid response observed for the lower Bay 

waterlevel to along-coast wind forcing, Valle-Levinson suggests that the 

remote effect is dominant at all subtidal time scales. This contrasts to the 

study of year-long records of wind and waterlevels by Wang (1979), whose 

analysis separated out the contributions of the wind components and
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coastal sea level in different frequency bands for different seasons. Wang's 

analysis concluded that the local wind effect in the Chesapeake Bay should 

be even more prevalent than the remote during the summer for time 

scales between 3 and 7 days. Wang emphasized the direct frictional 

driving role of the lateral (east-wind) wind which was coherent with Bay 

waterlevels at all frequencies.

Wang also pointed out the peak in volume flux energy at about 2.5

days (which is present in the 1994 data, see Figure 4.4), and identified it 
w ith the first mode of the ^  -wave seiche present in the Bay. With the

node at the mouth, and anti-node at the head of the 290 km-long basin, 

the natural period of oscillation would be (Pond and Pickard, 1983, p.271). 

The effective long wave phase speed C0 has been determined, by observing 

the phase propagation of the M2 tide within the basin, to be approximately 

6.2 m /s  (Elliot and Wang, 1978), which is about 70% of the in viscid phase 

speed C = Vgh • This yields a period of about T=52 hours or 2.2 days.

A study presented by Chuang and Boicourt (1989) analyzes two 

events of oscillatory barotropic outflow that were measured at the m outh  

of the Chesapeake Bay in the spring of 1986. The first event appeared to be 

straightforward: locally forced seiche motion correlated with fluctuations 

in the north-south wind at a similar 2-day period. The second set of even 

larger oscillations had a somewhat higher frequency and were correlated 

only with the latitudinal wind component This suggested a more 

complicated model where the lower reaches of the Bay, being oriented at 

45° from the north-south coastline, is frictionally forced by the east-west 

wind, which can then excite a free seiche in the upper (north-south 

oriented) portion of the basin. When the east-west forcing is in resonance 

w ith the natural frequency of the upper portion, strong oscillatory flows
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can occur. If the longitudinal wind turns southward during the falling 

half of a seiche oscillation, the combined effect produces a large surge of 

outflow.

4.3.3 Meteorological Control of Bay/Shelf Exchange: Spectral Analysis

The literature in summary presents a complex and occasionally 

contradictory picture of the relationship between Bay/shelf exchange and 

the wind. It is an interaction that varies with the time scale of the forcing 

and possibly with the season. For the CoOP study period from August 

through October of 1994, the coherence and phase from the cross spectra 

between the wind stress components and volume flux are presented in  

Figure 4.8. The volume flux is coherent with the east-west component of 

the wind for all frequencies (Figure 4.8, panel b), whereas it is m ore 

coherent w ith the north-south component (panel a) for shorter periods 

(T< 3.5 days). Note that the two w ind components are themselves 

coherent (not shown), especially for long periods ( T > 7  days). For the low 

frequencies, the north-south wind leads the volume flux by 200 to 210°, 

meaning that northward (positive) w ind stress produces outflow (negative 

volume flux) after a 25° lag (about 12 hours at a period of 7 days). This is 

the relationship expected for a remotely forced response, where upwelling- 

or downwelling-favorable winds cause a sea level change at the m o u th  

which then propagates up the Bay. In contrast, the north-south wind is 

approximately in quadrature with the volume flux within the "seiche" 

band (3 >T> 2 days). This matches the proposed locally forced seiche 

scenario where wind would be in phase with the surface slope, and lead
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the current by 90°. This relationship was noted in section 4.3.1 in the tim e

series of Figures 4.3 I-EHa, where the time rate of change of the along-shore 
wind (dWindV/dt) is seen to predict the volume flux (^Vol) very well for

much of the study period. Almost all peaks in outflow (negative vo lum e 

flux) are aligned with a similar peak in decreasing wind stress during 

August and September, whereas in October, the time series are m ore 

frequently misaligned. At low frequencies, the cross-shore wind and the 

volume flux were also out of phase (Figure 4.8, panel b): offshore 

(positive) w ind stress forces outflow. This is most likely a local, 

frictionally-driven response, as the cross-shore wind is ineffective at 

causing coastal setup or setdown.

To explore these relationships further, there is available data from a 

long-term mooring that was maintained by NOAA at the Bay mouth from  

1981 into 1983. This mooring 'Stn40' was sited directly between the Capes 

(see Figure 4.2) on the north flank of the main deep channel through 

which much of the volume exchange should flow. Current meters and 

CTDs were mounted at 4.6 m below the surface and 1.6 m above the 

bottom in 13 m of water. The component of the current that lies along the 

principal axis of the flow (upper meter = 128°, lower meter = 132°) was 

extracted (outflow being negative). Goodrich (1988) analyzed this data set 

in his study of meteorologically induced flushing of the estuary, and 

established the direct response of the salinity at the mouth to subtidal 

volume in the Bay. He did not, however, attempt to specify the 

mechanisms or time scales of the response.

A section of the sub-tidal currents from this mooring data taken 

during the summer of 1982 is shown in Figure 4.9. This site displays a net 

outflow (negative in this orientation) with a subdued baroclinic nature —
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the bottom current being more directed into the Bay. On top of that

baroclinic pattern is superimposed large fluctuations producing times

when both surface and bottom currents are strongly in the same direction,

illustrating how the gravitational circulation is modulated by the

meteorologically-forced barotropic variations. A look at the original

hourly currents showed that during these periods of very strong outflow,

even the flooding tide was outward directed. Estimates of volume flux

were computed for 1982 in the same manner as described in section 4.3.1,

using the same waterlevel gauge locations as for 1994. Then the implied

average exchange current was computed simply by dividing the volum e

flux by the cross-sectional area of the Bay mouth (estimated to be 1.85*105

m by Boicourt (1973)). The patterns in this estimate of current (Figure

4.9) match remarkably well with the measured flows, especially during

times of large outflow, confirming that the simple volume flux estimates

can be a reasonable proxy for actual total exchange through the m ain

channel of the mouth.
In Figure 4.10, the spectrum of volume flux (^ ° * ~) computed for the

late sum m er/early fall for 1982, is compared to that of the measured

currents and salinity from that time. The very high coherence between

volume flux and measured current (panel b) again supports the m ethod 
used to compute (eq. 4.2). The current and salinity at the mouth are

coherent for all but the lowest frequencies (panel c), and current leads with

a phase difference near 90°, as would be expected for variations that are

due to advection of a longitudinal salinity gradient. Both the surface

(solid line, panel b) and bottom (dashed line) currents respond together 
with dVol for periods shorter than T<5 days. This would imply that the

flow through the main channel of the mouth appears locally barotropic,
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with outflow occuring from the surface to the bottom of the water

column. At lower frequencies, the bottom current is less coherent w ith  
the top and with and becomes less in phase with the top current, as

the response on longer time scales displays a more baroclinic nature, 

recovering the gravitational circulation pattern classically associated w ith  

partially-mixed estuaries.

The energy (Figure 4.10, panel a) for both current and volume flux 

suggests a separation into two peaks: one at T=4 days (the ’cyclone' band) 

and one centered at T=2.5 (the 'seiche' band), a separation that was less 

noticable in the 1994 spectra for the same season (Figure 4.4). This is m ost 

likely due to enhanced energy for those frequencies in the w ind 

components for 1982 (Figure 4.11, panel a). The phase difference described 

above for the 1994 data shows up more clearly here: there is a change from 

an inverse relationship for the low frequencies, to one nearly in  

quadrature for higher subtidal frequencies. The change occurs abruptly at 

a period of 3 days (Figure 4.11, panels b & c).

The spectra of the individual waterlevel gauges (Figure 4.12) at the 

head (BALT) and m outh (CBBT) of the Bay help us understand how the 

volume flux behaves so differently in the two frequency bands. Variations 

in CBBT are seen to be much stronger at low frequencies, which confirms 

Wang's (1979) finding that the sea level at the m outh is relatively 

unresponsive to high frequency forcing. The amplitude of these low 

frequency fluctuations, which are driven by changes in coastal sea level, 

diminishes as they propagate up the Bay, so that the variation in BALT is 

damped at low frequencies. On the other hand, the amplitude of higher 

frequency fluctuations are much larger at BALT than at CBBT,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



88

demonstrating the effectiveness of wind at these shorter time scales to

drive setup towards the head of the Bay.
For higher frequencies, then, as CBBT fluctuates little, is

controlled largely by the variation of waterlevel at the head of the Bay.

This behavior allowed Boicourt, in Berger et al..(1995), to use a simple

height difference between BALT and CBBT ( or surface slope) as a proxy for

volume in the Bay. They found a relationship between the time rate of

change of the Bay's surface slope (which they termed a "surge index") and

currents measured on the inner shelf of the North Carolina coast, which

they interpret as evidence of significant buoyancy forcing. In a sim ilar 
finding for the 1994 observations, the outflow index used here is

significantly coherent with the salinity signal recorded at the N orth  

Carolina study site J1 (Figure 4.13) for periods between 2.2 to 3 days. Over 

this frequency range, the phase between the two signals exhibits a positive 

linear slope indicative of a 15 hour lag of the J1 salinity to the outflow 

index.

4.3.4 Barotropic Linear Model of Estuary/Ocean Interaction

With two mechanisms proposed as dominant at different time 

scales, there must be interaction occurring at intermediate frequencies. An 

exploration of this interaction is made here through the use of the analytic 

model developed by Garvine (1985) and discussed in section 4.3.2. This 

model incorporated a variable 0C that describes the angle between the 

estuary main axis X and the coastline, which allows the interaction 

between the remote and local mechanisms to vary (Figure 4.14). W hen 0C
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is close to 90°, they are nearly independent. For estuaries whose axis is 

nearly aligned with the coastline, both effects will be proportional to the 

along-shore wind. The remote and local effects will combine for a sm all 

angle, and oppose each other at angles close to 180°. The Chesapeake Bay 

geometry is an example of the latter case. The interaction of these effects 

creates complex varying behavior in spite of the underlying simplicity of 

the 1-layer linearized physics of the model. Garvine focused on the 

behavior of the solutions for wind forcing with a period of 7 days within a 

basin of 100 km length, and concluded that the remotely forced m otions 

dominated. Here parameters representative of the Chesapeake Bay 

geometry and meteorology will be used to examine how the behavior 

varies with the frequency of the wind forcing CO and with 0C.

The governing equations of the model assume a linear and 

barotropic system for the subtidal current u and subtidal sea level T |:

3u 3n x^-xg 3u i^ l  , , o-^- = -g-=rL+ , ° and = - f ^ r  (eq. 4.3 a,b)3t 63x ph dx h 8t v n '

where the bottom stress xg is represented by xg = p ru . The linear bottom

friction parameter r is set to 0.0003 m /s, a value similar to that used by

Garvine, which results in an elevation response at the head of the basin

consistent with the level of variation observed at the BALT gauge. The

surface wind stress is imposed as x$, = xcos0ehot with the wind blowing at

an angle 0 from the estuary axis and varying over frequency CP. In this

section note that the x axis is along-estuary (see Figure 4.14).

The remote effect of coastal sea level is imposed by the boundary

condition at the mouth (x=0) by
T|(0,t) = ep. c o s ( 0 - 0 c ) e i c o t  (eq. 4.4)
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where a  is an empirical parameter that gives the sensitivity of coastal sea 

level to the along-shore component of the wind. Garvine uses a value of 

a  = 5X10"4 m2s/Kg/ citing a sea level response of 0.5 m to a wind forcing of 0.1 

Pa (Wong and Garvine, 1984). Sea level data from the CoOP study period 

from both the mouth of the Bay (CBBT in Figure 4.12) or from the coastal 

gauge at the FRF indicate a much less responsive system, with 0.1 Pa

causing only a 0.1 m rise or fall. Theoretically, the elevation at the coast
should grow linearly in time as T | ( t )  = ?-—C. (Csanady, 1982, p.44) until a

PYgh

balance is reached between the along-shore current and bottom friction.

Given a frictional time scale of 10 hours (Beardsley and Boicourt, 1981),

and an average shelf depth of 30 m, the resulting sea level change for a 0.1

Pa wind would be about 0.2 m, a 2:1 transfer relationship, being equivalent 
to 3- = ̂ - or a  =1.8xl0'4 m2s/Kg for local value of f = 9xl0-5 s’1. This will be

the value for a  used below.

The other boundary condition is that of no flow at the head of the 

estuary (x = L). The non-dimensionalized equations were then solved by 

Garvine, yielding solutions that can be separated into the remote and local 

contributions. These are, when restored to dimensional units, the real 

parts df:

q(0,t)Kcosh(Kf<L-x))
Tlrem(x’t) --------------------  610)1 (eq- 4.5a)

K cosh(K <|L)

W cos(0) sinh(K®x) .
TllocCx*1) = ---------------tt— —elCOt (eq. 4.5b)

Kcosh(K^L)
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.Ti(P.t)Ksinh(Kffl(L-x)) ,  c ,
uRem(x’t) = t j   ----------^ ------- eie* (eq. 4.5c)

h K2 cosh(K ffl-L)

.Wcos(0)(cosh(K^L)-cosh(K^x))
uioc(x.O = i r ------------- ~------ Q-—---------- Q----eio* (eq. 4.5d)

h K2 cosh(K ®L)

where L is the estuary length; c = Vgh ; W = ; and K contains the

bottom stress parameterization as K = y  -1 + i^-^.

In Figure 4.15, the elevations and currents due to the remote and

local effects of an along-shore harmonic wind stress of am plitude 0.1 Pa

with a period of T = 7 days on an estuary whose main axis is oriented at

160° from the coastline are shown for two different estuary lengths. Case

A (the top panels of each set) has a length of 100 km, the dim ension used

by Garvine (1985). Case B (the bottom panels) has a basin length of 290 km,

closer to the true length of the Chesapeake Bay. The ratio between the 
local and remote effects changes from approximately ~ “c- = 0.25 for the

shorter estuary, to ~ g£- — 0.73 for the longer. The change is due not so

much to the equivalent change in the ratio of the time scales, as proposed

in section 4.2.2, but that the longer basin allows a larger local setup TJioc to

develop. Theoretical wind driven setup in a narrow basin, ignoring

bottom friction, should be
Tiloc(x) = X. (eq. 4.6)

P g h
Therefore setup at the head for case B would be 2.9 times larger than case 

A. The remote coastal sea level effect (shown in blue in the upper panels 

of Figure 4.15) is the same for both basins; and, for such long time scale 

forcing, there is little phase or amplitude difference between the head and 

the mouth. Since the setdown due to the coastal sea level does not vary
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much over the length of either estuary, the surface slope is due alm ost 

entirely to the local wind setup (show in green). Flow (u) driven by 

continuity considerations alone will be dominated by the larger temporal

f  cchanges of I TJiocdx and I Tjremcix , or, over the period T, the area 
Jo Jo

bounded between the solid and dashed lines for each color. Given the 

basin geometry and assumptions for the value of a , these terms are of 

nearly the same magnitude for case B, the longer estuary. So, for the 

Chesapeake Bay, it appears that the opposing effects of local and rem ote 

forces tend balance each other. If the basin was either shorter, or aligned 

more perpendicularly to the coastline, the remote forcing due to coastal 

sea level would dominate. And for an estuary sited so that the local effects 

combined w ith the remote forcing, one would expect significantly 

enhanced exchange across the mouth.

4.3.5 Model Behavior with Varying Parameters

The effect of varying the time scale of the forcing is examined in  

Figure 4.16, again using a wind stress am plitude of 0.1 Pa. The am plitude 

of the surface elevation (Figure 4.16a) at the head of the Bay increases as 

the forcing frequency approaches seiche resonance. For low frequencies 

the remotely-forced surface elevation at the head of the Bay is in phase 

with the wind (Figure 4.16b), i.e. changing in phase w ith the elevation at 

the mouth. The locally forced surface elevations at the head are, of course, 

out of phase w ith the wind (Figure 4.16b green line - note second y axis), 

given this alignment of the estuary axis (Figure 4.14). Since these 

oppositely directed responses are in near anti-phase, they balance, and the
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amplitude of the total resultant current (Figure 4.16c) is low. W ith

increasing forcing frequency, the head elevations increasingly lag behind

the wind, with the remotely-forced elevation lagging further than the

locally-forced (Figure 4.16b). They become increasingly imbalanced, so that

the amplitude of the resulting combined flow (Figure 4.16c) grows w ith

frequency more rapidly than required to account for the volume exchange

over shorter periods, especially where the seiche-enhanced amplitudes 
amplify a small mismatch in phase. The ratio , overlaid on Figure

Ur pm
4.16c, shows that the contribution of the local forcing changes from about 

three-quarters that of the remote, to almost equal within this subtidal 

frequency range.

So, while the contribution from local forcing increases somewhat 

with higher frequencies, there is no strong shift in dominance displayed 

between the two mechanisms. However, here the model was ru n  

assuming that a  (the parameterization of the effectiveness of an along

shore wind in causing coastal sea level changes) was invariant w ith 

frequency. Given the large dropoff in energy in the coastal sea level 

spectrum at shorter periods (see Figure 4.12, CBBT), one could propose a  as 

a decreasing function of frequency. This is represented in the transfer 

function of the cross-spectrum of the along-shore wind stress and the 

coastal sea level CBBT (Figure 4.17), which decreases by about half 

between the 10-day and 4-day time scales. The response of waterlevel at 

the head of the Bay (BALT) is similar to the coastal response at long 

periods, at a value of approximately 2:1, confirming the original choice for 

a  . But in contrast to CBBT, BALT is increasingly sensitive to the north- 

south component of the wind at higher frequencies, with its transfer 

function peaking in the seiche frequency range. To simulate this
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behavior, the model was rerun, using an a  that decreased linearly w ith

frequency (as illustrated by the dotted line in Figure 4.17) up  to a period of

3 days, after which it was held steady at a value that is one half the original

a. Figure 4.16d shows the results of this experiment: the increasingly

smaller remote contribution leaves the local effect unbalanced, resulting

in an exchange at the mouth over twice as large (note the expanded y 
scale). In this case the ratio of - loc shows that the flow regime changes

Ur pm
from being controlled by the remote effect to a regime where the locally-

forced flow is twice that of the remote. The values of utotal=uRem+ulocaI,

the parameter that can be compared with a measured index of exchange
dVol

through the Bay m outh (either dt or Utop from 1982), increases as the 

forcing period shortens from the longer synoptic periods towards the 

seiche frequency (see Figure 4.4 or 4.8). The amplitude of utotal ranges 

from 8 to 20 cm /s for periods shorter than 3 days. This matches well w ith 

the subtidal flow through the Chesapeake Bay mouth observed during the 

1982 NOAA deployment, which had an rms fluctuation of 9 cm /s, w ith 

peak flows occasionally over 20 cm /s.

4.3.6 Contribution of the Cross-shore Wind Component.

Results from previous studies, together with the high coherence 

found between TauX and volume flux in the CoOP data (Figure 4.8b), 

suggest that the cross-shore wind component can play an im portant role 

in promoting Bay/shelf exchange. We have seen that the along-shore 

wind provokes opposing (nearly balancing) motions for this model 

geometry (estuary axis offset 20° from the coastline). If the estuary basin is 

not exactly aligned with the coast, it will experience an additional local
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(frictional) response due to the cross-shore component of the forcing. This 

cross-shore component does not contribute effectively to the rem ote 

coastal setup. Examining the model response under varying w ind 

directions can help illustrate the possible interactions between remote and 

local, along-shore and cross-shore forcing. Figure 4.18a shows the 

resultant total current at the estuary mouth for a fixed a  = 1.8e-4. The 

remote effect is at a maximum for a purely along-shore wind and is zero 

for a purely cross-shore. ; the locally forced maximum is of a sim ilar 

amplitude, but is offset 20°, peaking at a purely along-estuary wind and 

disappearing when the wind is cross-estuary. In this case, the total current 

resulting from a combination of these two competing effects turns out to 

be at a maximum (amplitude = 14 cm /s) at shorter periods when the w ind 

is close to directly cross-shore, i.e, when the seiche-enhanced local flow is 

not opposed by any coastal sea level effects. These model examples 

illustrate the unexpected possibility of maximum exchange under the less 

effective cross-shore winds. And in reality, the more complicated basin 

geometry of the Chesapeake Bay, where the lower Bay axis is angled from  

that of the upper Bay, could increase the effectiveness of cross-shore 

winds. For the scenario where a  decreases with frequency (as proposed in  

the last section), which emphasizes the local response, the resultant total 

current is larger (amplitude of 25 cm /s) and at a maximum when the wind 

is directed nearly along the estuary (Figure 4.18b).

The wind-forced exchange across the m outh is seen to be 

controlled by the particular size and orientation of the Chesapeake Bay: the 

angle of the Bay axis to the coastline creates opposing effects, and the 

length of the Bay produces a local response of the same order of 

magnitude as the remote response, allowing them to nearly cancel out.
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The most effective forcing frequency is that approaching the natural seiche 

frequency of the basin, where a small phase mismatch in the increasing 

elevations can allow a large amplitude in the total current. It is interesting 

to consider that a similarly sized estuary, sited at right angles to the 

coastline, where the effects would be independent, would regularly 

experience flows at the mouth 3 times that of the model solution 

illustrated in Figure 4.16. Furthermore, for an estuary angled so that the 

effects reinforced each other (e.g. downwelling winds could cause local 

setup ) the model predicts exchange flows of over 80 cm /s for a wind stress 

of 0.1 Pa.

4.3.7 Meteorological Control of Bay/Shelf Exchange: Summary

In the preceeding sections, it has been shown that barotropic 

exchange across the Bay mouth, as inferred from fluctuations of the 

volume of water within the Bay, is dominated on the synoptic time scale 

by meteorological forcing, rather than gravitational circulation or tributary 

input. The timing of the arrival of low salinity intrusions off of N orth  

Carolina was significantly related to patterns of large barotropic outflow 

events, as shown in Table 4.2. The spectral analysis revealed that the 

volume exchange due to long period synoptic winds displayed a response 

indicative of remote control by coastal sea levels. Shorter period 

fluctuations, which were more energetic due to enhancement by the 

natural seiche reponse of the Bay, appeared to be related directly to 

frictional driving by the local north-south winds.

For bay/shelf exchange induced by coastal sea level, the time of peak 

outflow would follow a downwelling event, or coincide with the
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beginning of an upwelling period. The low salinity plume released at this

moment could be transported offshore by these upwelling winds (see next

chapter) and would not be observed along the inner shelf to the south.

The peak in volume flux noted on 23 September (Figure 4.3IIa) is an

example of this scenario. If this were the most common mode of

producing a large outflow from the Bay, then low salinity intrusions

would be rarely observed along the North Carolina coast.

However, both the spectra and the time series from 1994 indicate

that the Bay/shelf exchange is most efficiently forced directly by the north-

south wind. The analytical model, using a decreasing a , produced the

largest total exchange flow for a nearly along-estuary (10° to 20° off north-

south) wind. Peak flow is best observed when a waning northward w ind

allows the along-Bay setup to relax, as shown by the correspondence 
between negative peaks in dW indV/dt and in (Figure 4.3, panel a).

This often occurs as an upwelling wind reverses to downwelling, a

condition that was shown in the previous chapter to be optimal for the

sustained presence of a buoyant jet over the inner shelf. The periods of

intense outflow are brief, being cut off by the rising coastal sea level or the

seiche rebound. At times, a relaxation in the northward wind can occur

w ithout complete reversal, producing an outflow surge while

maintaining upwelling conditions. If the outflow is strong enough, or the

northward wind weak, a southward-propagating plume can still form (see

Figure 4.31a, events A,B ; Figure 4.3IIa, event G ; Figure 4.3IHa, event M).

But w ith strong continued northward winds, the outflow must be

dispersed offshore, as happened to the outflow of 29 July (Figure 4.31a). On 
occasion, a peak in ^Vol occurs without an accompanying decrease in

along-shore wind stress, e.g. on 25 August and 4 October, perhaps due to a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



98

free seiche ocdlation. In both these cases, no evidence of a low salinity 

water mass is seen, suggesting that both volume flux and wind changes 

must occur together to allow the formation of an  intrusion.

W hen the Bay is stratified into a two-layer system, as during the

summer, one would anticipate a baroclinic response with the longer tim e 
scale, ^z==, closer to that of the atmospheric forcing. From the model

solutions, it is clear that that local response would be enhanced (larger W 

in eq. 4.5b & d, section 4.3.4). In addition, in a stratified bay, the local wind- 

forced setup and relaxation should preferentially store and release the 

fresher water held above the seasonal thermocline. It has been shown that 

the lateral pycnocline across the Bay normally tilts upwards towards the 

eastern shore in geostrophic response to the typical estuarine circulation of 

down-Bay flow in the surface waters and up-Bay in the deeper part. 

However, the pycnocline can reverse its slope during periods of strong 

north-northeastward winds, indicating a reverse pattern of flow in the 

vertical (Frizzell-Makowski, 1996). That study included current profile 

observations from the upper Chesapeake Bay from June, 1993 that showed 

a reverse pattern of along-estuary flow during up-Bay winds, which 

changed to outflow throughout the water column as the northward wind 

stress diminished. This down-Bay flow of 30 to 40 cm /s was m aintained 

for over 10 hours. With this scenario, the above-pycnocline source of the 

surging outflow would enhance its buoyancy. This may explain the better 

relationship between the volume flux and the observed plume events 

during August, before the autumn destratification of the Bay.

The simple modeling exercise illustrates how the opposing 

mechanisms create a complex response to changing wind frequency and 

direction. In particular the flow patterns at the m outh undergo dramatic
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changes as the seiche frequency is approached as the phase difference 

between the remote and local responses increases while the elevations are 

enhanced. A cross-shore wind component is seen to enhance the 

exchange by affecting the local response.

Wind components produced by coherent mesoscale meteorological 

patterns are themselves correlated (see section 3.3), making it difficult to 

separate out the responses in observations. On the east coast of the US, 

northward wind pattern tend to rotate clockwise (see Figure 4.I:IHd) as 

cyclonic lows formed along the juncture of warm land and cool ocean 

propagate north or northeastward (Austin and Lentz, 1998). This causes 

decreasing northward wind stress to be usually accompanied by an 

increasing offshore wind component. Under these circumstances, both 

w ind components reinforce each other, producing the enhanced outflows 

observed following most upwelling periods.

4.4 Down-coast Freshwater Flux

The tim ing of occurrences of low salinity plumes observed off the 

North Carolina coast is clearly controlled by the meteorological patterns 

that control the variability of the source estuarine exchange. The question 

remains how much of the freshwater flowing out of the Bay is delivered 

directly southward over the inner shelf by these distinct intrusions. There 

are several possible approaches that would provide a rough estimation of 

the freshwater flux present in the plume intrusions off of Duck. First the 

prevailing ambient shelf salinity with which the intrusions are mixing 

m ust be established. This is best represented by the mid-water colum n 

salinities observed at the 25m mooring, which were not directly
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influenced by distinct low salinity water masses. These series all displayed 

a similar decrease with time, and the ambient shelf salinity is adequately 

represented by

Sam bient = 34.77 - 0.025*(days since A ugIst) 

determined as described for S maXpiume in section 3.3. The ambient salinity 

averages from over 34 psu in August, down to 32.5 psu by the end of 

October. The percentage of freshwater is then computed as

%Fresh =  1 -  ^observed .

CTD transects were taken at least once across most of the p lum e 

events. A contoured salinity cross section of this data (e.g. Figure 3.4) 

allows the quantification of freshwater volume per unit coastline. This 

was done with all events for which a transect was available (Table 4.3).

E vent Area m2 FreshVol
m 3/m

Cobs
c m /s

F re sh F lu x
m 3/ s

P 8 /0 7 4 5 3 7 5 5 5 1 0 5 8 3 1 9 6
A 8 /1 6 2 1 2 5 0 2 8 5 4 5 9 1 6 7 0
B 8 /2 0 3 1 0 6 2 3 5 4 5 5 6 1 9 8 5

C 8 /2 3 6 1 3 7 5 6 3 5 9 7 2 4 5 7 8
D 8 /2 8 no transect 4 6
E 8 /3 1 1 6 1 2 5 2 8 2 9 5 2 1 4 5 7
F 9 /0 2 no transect 6 8
G 9 /0 9 3 0 5 0 0 3 4 9 6 5 0 1 7 3 1
H 9 /1 9 no transect 6 0
I 9 /3 0 no transect 5 7
J 1 0 /0 4 1 3 5 5 0 0 1 0 7 4 4 4 6 4 8 8 9
K 1 0 /1 1 1 3 5 0 0 0 9 1 1 0 4 8 4 3 7 3
L 1 0 /1 8 4 5 1 2 5 4 2 6 5 6 7 2 8 3 6
M 1 0 /2 2 3 2 3 7 5 3 3 5 0 4 3 1 4 4 1
N 1 0 /2 6 1 2 0 0 0 0 1 1 7 8 0
AVERAGES 61 2 4 4 5 8 0 4 5 6 2 8 1 5

Table 4.3
Estimation of freshwater flux based on CTD transects across

each plume event.
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The average cross sectional area (column 3) of the regions w ith  

salinities less than S maxpium e was 61244 m2, consistent with that determ ined 

in section 3.3 based on pycnocline depths and surface salinity front 

locations. Using the observed along-coast propagation speed of each 

intrusion as the velocity with which this water mass is traveling, an  

estimate for freshwater flux is reached (column 5).

Alternatively, based on the cross-shore structure described in  

section 3.3, cross sectional areas can be assigned to each time series of 

salinity available from the moorings, from which, along with the co

located velocity measurements, an hourly series of freshwater flux across 

the central mooring line can be computed. A reasonably complete 

coverage of the plume region is possible only when both the 13-m and 20- 

m surface moorings were available, confining this method to the tim e 

period between 6 August and 4 September. This time series is compared 

in Figure 4.19 with the above estimates from the CTD transects. The two 

methods agree fairly well, with the CTD transects tending to give a slightly 

larger value. Since the velocities are expected to be highly sheared (see 

section 3.5) and surfacemost current meters are at a depth of 4 m, one 

would expect the flux from the mooring data to be som ewhat 

underestimated. The average southward flux of freshwater recorded by 

the moorings for this time period is 1110 m3/s. The average flux observed 

by the CTD transects for events w ithin this time is 2600 m3/s, w hich 

would then imply that these events were present just over 40% of the 

time, which is reasonably consistent with the results in Figure 3.6B. The 

tribuaries had a mean flow of 1253 m3/s  during July and 2312 m3/s  during 

August. The exact time lag between tributary inflow and Bay/shelf 

exchange is not well known, but is estimated to be on the order of several
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weeks to a month. It would appear then that between 50 and 80% of the

freshwater input from the Chesapeake tributaries can be accounted for by

the observed freshwater flux within the low salinity intrusions along the

N orth Carolina coast.

Another estimate of freshwater flux out of the Bay can be derived

from our estimates of volume flux, if a representative salinity at the Bay

m outh is assumed. The shipboard underway salinity mapping system

recorded values of 22 to 23 psu while transiting through the Bay m outh

area during August. A similar salinity range was observed by Valle-

Levinson et al. (1994) during their July and August m onthly Lower 
Chespeake Bay surveys. Using this %Freshness of one-third, —fol was

transformed into a time series of freshwater flux, which was then lagged 

by 42 hours for the best match to the mooring-based flux estimates in  

Figure 4.19. This comparision shows that some of the freshwater outflow 

events are not seen at the moorings, and the mean flux determined by this 

m ethod (2156 m3/s) implies that 50% of the freshwater outflow from the 

Bay was not observed along the inner shelf, confirming the lower end of 

the range given above.
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Figure 4.1. Streamflow into the Chesapeake Bay during the summer 

and fall of 1994.
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Figure 4.2 Location of water level stations and NOS current m eter 

station 040 (1982) within the Chesapeake Bay. Shaded regions 

indicate area assigned to nearest water level gauge for 

volume flux calculations.
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Figure 4.3 Low pass time series from I: August; II: September; HI: 

October 1994. a) Subtidal volume flux from waterlevels in  

the Chesapeake Bay overlaid by time rate of change of the 

north-south wind component, b) Salinity recorded at FRF 

pier, c) Total volume (integrated volume flux), d) w inds 

from Chesapeake Light Tower.
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Figure 4.4. Power spectrum of volume flux as calculated from  

waterlevels in the Chesapeake Bay for August through early 

October 1994; plus the spectra of the coastal wind stress 

components; and the spectrum of the tributary inflow.
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Figure 4.5. Along-coast position of southward-propagating low salinity 
intrusion versus time in days measured from the m om ent 
of passage by sensor Jl. Solid line: frontal position acheived 
at steady propagation speed of 55 cm /s; dashed line: 75 
cm /s; dotted line: 35 cm /s.
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Figure 4.6. Correlation between along-shore wind stress and a) along

shore current or b) salinity at the uppermost instruments o n  

the 13-m mooring versus lag in hours.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



cor
rel

ati
on

 c
oe

ffi
cie

nt
s

0.45
TauY x 13mSal0.4-j
TauY x 13mV0.35 — •

0.3^

0.15-

0.1
0.05-|

-48 -42 -36 -30 -24 -18 -12 -6 0 6 12
Lag in hours

Figure 4.6 Lagged correlation coefficients (squared) between 
hourly alongshore wind stress and (dotted line) alongshore current 
at 4m depth and (solid line) surface salinity at the 13m mooring.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 4.7

109

Diagram of remote vs local effect of meteorological forcing on 

the Chesapeake Bay.
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Figure 4.8. Coherence and phase relationships for cross-spectra between 
coastal wind stress components and volume flux as 
calculated from waterlevels in the Chesapeake Bay for 
August through early October 1994.
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Figure 4.9. Time series of measured and estimated sub-tidal current 

through the Bay mouth (1982).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

20- 

16- 

12- 

8 

4 

0

w -4 

o  -8 

-12 

-16 
-20 

-24 
-28 
-32

25-Jul 29-Jul 2-Aug 6-Aug 10-Aug 14-Aug 18-Aug 22-Aug 26-Aug 30-Aug

Figure 4.9. Currents from main channel at Bay mouth measured in summer, 1982 
compared with estimated flow derived from volume flux divided by area of Bay entrance.

Near-Surface Current 

Near-Bottom Current 

estimate from dVol/dt



112

Figure 4.10. a) Spectra of volume flux computed from waterlevel 

variations and measured current and salinity from Stn40 for 

July to October, 1982. b) Coherence and phase between 

volume flux and top current (solid line) and bottom current 

(dashed line) . c) Coherence and phase between current and 

salinity.
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Figure 4.11. a) Spectra of volume flux and w ind stress components from 

July to October, 1982. b) Coherence and phase between north- 

south wind and volume flux. c) Coherence and phase 

between east-west wind and volume flux.
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Figure 4.12. Power spectra of waterlevels from the head (BALT) and 

mouth (CBBT) of the Chesapeake Bay for August through 

early October 1994.
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Figure 4.13. Coherence and phase of cross spectrum between volume flux 

(dVol/dt) and the salinity recorded along the 5m isobath at 

location Jl. Number of degrees of freedom is 30.
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Figure 4.14. Diagram of analytical model geometry (after Garvine (1985), 

Figure 1).
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Figure 4.15. Upper panels: Amplitudes of surface elevations due to along

shore wind of amplitude 0.1 Pa in a basin length of a) 100 km  

and b) 290 km for a forcing time scale of T=7 days at tim es 

when wind is maximum: t =0 (dashed) and t = 1/2*T (solid). 

Response is separated into remote (blue) and local (green) 

effects. The combined total response is shown in red. Lower 

panels: Current in the two different length basins. Flow 

shown is maximum, occuring at one quarter cycle before 

maximum elevation.
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Figure 4.15. Upper panels: Amplitudes of surface elevations due to 
alongshore wind = 0.1 Pa in a  basin length of a) 100 km and b) 290 km 
for a  forcing time scale of T=7 days at times when wind magnitude is 
maximum: t =0 (dashed) and t = 1/2*T (solid). Response is separated into 
remote (blue) and local (green) effects. The combined total response is 
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Figure 4.16. a) Amplitude of surface elevation at head of 290 km Bay due to 
remote and local forcing from purely along-shore wind stress 
Ty = 0.1 Pa. b) Phase relationship between wind forcing and 
surface elevation, c) Amplitude of resultant total current at 
mouth due to remote + local forcing, overlaid with ratio of 
local to remote contributions, d) same as c for linearly 
decreasing a  from a  = 1.9e-4 @ T=15 days to 0.9e-4 @ T<= 3 
days.
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Figure 4.17. Amplitude of transfer function computed from cross-spectra 

of along-shore wind stress Ty with a) waterlevel from m outh  

of Bay (CBBT) and b) waterlevel from head of Bay (BALT). 

Dotted line represents best fit of linearly-decreasing a(freq)/f 

used for 0.05 < freq <= 0.32; a  = constant for freq>0.32.
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Figure 4.18. Amplitude of resultant total current at mouth of 290 km  
estuary due to combined remote + local forcing from w ind
stress of 0.1 Pa varied over direction 0. 0 = 0 °  is along- 
estuary; 0 = 20° is directly along-shore, a) fixed a  = 1.8e-4 ; 
b) case for decreasing a .
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Figure 4.19. Freshwater flux estimates from mooring time series of 
salinity and along-shore velocity (blue); volume flux and 
Bay entrance salinity (red) lagged 42 hours; and salinity 
contoured from CTD transects plus observed along-coast 
propagation speeds (green).
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Chapter 5. Plume Dispersal

The outflow from the Chesapeake Bay arrived along the N orth 

Carolina coast as distinct intermittent intrusions traveling as rotationally- 

trapped gravity currents. After the onset of upwelling winds, the 

nearshore salinities rose simultaneously all along the coast, indicating that 

the plume had moved offshore. The low salinity intrusion detached from 

the coast and formed a shallow lens floating over the ambient shelf water, 

which dissipated in 1 to 2 days. The lens was rarely observed to re

establish contact with the coast before considerable dilution takes place. 

Measurements from both the moorings and the shipboard surface 

mapping system show offshore motion occurring at speeds greater than 20 

cm /s under very mild upwelling conditions. The theoretical response to 

this wind forcing is explored: Ekman dynamics in the shallow waters of 

the inner shelf are strongly affected by the local depth and strength of 

stratification. Along-shore wind stress Ty acting on the portion of the 

plume occupying the entire water column, and therefore subject to bottom 

friction, generates more along-shore flow than cross-shore. However, 

where the plume is separated from the ambient shelf water by an intense 

pycnocline, Ty forcing will be completely converted to across-shelf 

movement in the steady state. Deformation of the plume with elongation 

of the stratification-limited portion is expected and was observed. 

Additional mechanisms that aid the offshore movement of the plume, 

such as tides, density gradients and inertial motions are considered.
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5.1 Offshore Movement of Buoyant Plumes : Background

The initial configuration of a low salinity intrusion is trapped 

against the coast by the Coriolis force due to its along-shore flow. W hat 

are the mechanisms that can cause the plume to spread away from the 

coast and mix w ith the offshore water? It is then that the plume delivers 

to the shelf at large the remainder of its lower salinity, along with any 

estuarine-derived biota, nutrients or possible contaminants it m ay 

contain. As was seen for the analysis of the along-shore propagation in  

chapter 3, the dispersal behavior of the intrusions will group into two 

dynamical regimes, determined by whether the plumes are in contact w ith  

the bottom, or are vertically delineated by stratification.

In the absence of wind stress, a surface trapped plume achieves and 

maintains geostrophic equilibrium in the cross-shore dimension, with the 

plume width on the order of the internal Rossby radius. The plumes that 

occupy the entire water column have been shown to be subject to 

continued widening due to the offshore advection of the fresher water by 

deflection of the along-shore flow in the bottom Ekman. An analysis of 

the non-linear effects of this density advection on the velocity led to the 

proposal by Chapman and Lentz (1994) that an equilibrium state could be 

reached after the plume front has moved offshore to the critical isobath 

depth where the geostrophically-balanced shear in the along-shore flow 

produces a change in sign in the cross-shore flow within the bottom  

boundary layer. However, in  the analysis of Chapman and Lentz, it took a 

substantial period of time to reach this trapped equilibrium state; m u ch  

longer than the synoptic meteorological time scale over which The M iddle 

Atlantic Bight experiences large variation in the wind forcing. Therefore
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stable plume w idths for surface-to-bottom plumes are not expected due to 

bottom boundary-layer trapping. Garvine (1996) suggested that a stable 

frontal boundary could be achieved for frictionally controlled plum es 

w hen downwelling wind stress is present to balance this offshore flow.

The onset of upwelling winds can produce offshore advection in  

the upper water column, forcing the more buoyant plume water to detach 

from the bed and spread away from the coast, as modeled numerically by 

Chao (1987,1988), who concluded that plume movement was dom inantly 

controlled by Ekman drift. However, other researchers have observed that 

more stratified plumes travel largely in the direction of the w ind stress 

(Stumpf et al., 1993).

An alternate approach involves the treatment of the w ind as a 

m om entum  im pulse into a geostrophically controlled frontal adjustm ent 

process. This model was developed analytically by Csanady (1978b) 

building on earlier investigations of two-layer coastal upwelling dynamics 

(Csanady, 1977, Cushman-Roisin, 1985). These models identify the 

m inim um  upwelling wind impulse needed to cause the pycnocline to 

surface on the inshore edge. This creates a detached lens of fresher water — 

a situation frequently observed in the CoOP data. The m om entum  

impulse approach was extended by Ou (1984) in a num erical 

im plem entation that allowed consideration of the non-linear effects of 

larger pycnocline displacements. His results highlighted the asymmetry of 

the response in frontal movement to along-shore wind stress of different 

signs: downwelling impulses produce a deformation of the offshore front 

which can relax back to its original location; however upwelling causes an  

irreversible loss of freshwater from the coastal zone.
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The process of offshore transport of coastal buoyancy over a shallow 

shelf has been extensively documented for observations from the South 

Atlantic Bight by Blanton and others (Blanton and Atkinson, 1983). They 

conclude that dispersal of low salinity water from the nearshore region 

occurs as a diffusive process during downwelling; whereas, during wind 

relaxation or reversal, the process involves advection of the surface 

waters. This advective process was elucidated by the results from a 

numerical model of that region developed by Kourafalou et al. (1996) 

where significant removal of fresher coastal water occurs as jetlike 

"streamers", or tongue-shaped regions of intensified offshore surface flow. 

It is such transient plume dispersal events of a largely advective nature on  

which I will focus within the CoOP observations.

5.2 Timing and Patterns of Offshore Movement

During the previous examination of the 5-m salinity time series 

displayed in Figure 3.2, the successive occurence of decreases in salinity 

observed in the sensors deployed north to south was contrasted to the 

near-simultaneous increases in salinity at all along-coast locations. This 

suggested that the shoaling and movement away from shore occurred in a 

two-dimensional manner, with little along-shore variation.

5.2.1 Offshore Movement: Moored Salinity Time Series

In Figure 5.1 the upper salinity time series from the cross-shore 

array of moorings at the central line of Duck are presented for part of the
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example time period from Figure 3.2, with the plum e events labeled as 

before. Concurrent wind and coastal sea level measurements are show n 

in the upper panel. Again the simultaneous decreases at the pier and the 

13-m mooring (1.5 km offshore) are noted, both being within the dom ain 

of the plume in its coastal configuration. The time lags in salinity 

decreases are seen in an cross-shore sense, with the outer edge of the 

plume encompassing the 20-m mooring (5.3 km offshore) a half-day or 

more after its arrival at the pier. The freshest water is seen at this location 

after the salinities inshore have risen, indicating that the plume has 

detached from the coast. When the plume water reaches the 25-m 

mooring (17 km offshore), between 1 / 2  to H / 2  days after it separates from  

the coast, the freshness is considerably diluted, indicating that mixing has 

occured. During the continued period of northward wind stress, the 

salinities close to the coast are higher than the surface waters offshore, as 

shelf water under the plume is upwelled in the nearshore zone.

The time lag of 5 or 6 hours between when the salinity rises at the 

pier and at the 13-m mooring could be due both to the shoaling of the 

halocline as the spreading plume thins (the pier sensor is 2.5m deeper 

than the surface sensor on the 13-m mooring); and also to offshore 

movement of an upwelled halocline now defining the inshore edge of a 

detached plume. Estimates of cross-shore plume translation speeds were 

estimated using several approaches: the time between the m in im u m  

surface salinities observed at each mooring (going cross-shore) gave 

average speeds over time intervals of a half-day or more. When a CTD 

transect was available, the cross-shore salinity gradient could be combined 

with the temporal salinity gradient at the 20-m mooring to infer a plum e 

translation rate. These speeds are presented in Table 5.1 along with the
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prevailing wind conditions. The failure of the surface portion of the 20-m 

mooring in September and then the 13-m mooring in October limit the 

across-shelf information for the autum n intrusions.

Plume Event decimal
day

speed  
(m oorings 
or dS/dt) 
(cm /s)

over
interval

(hours)

speed  
from sur 
fro n ts  
(cm s)

Along
Shore
wind
(Pa)

C ross
Shore
wind
(Pa)

A (T30) 229 .46 1 5 3 0.03 0 .00
A ->20m 229.53 1 9 5.5 0.08 -0 .0 2
A ->25m 229.89 28 11.5 0.10 0.00
B (T45) 232.95 31 3 23 0.04 0.00
B ->20m 232 .96 26 5 37 0.05 0 .02
B (T40) 233 .13 21 1 55 0.06 0 .04
B ->25m 233.19 46 5 0.04 0 .04
C (nearshore) 238.21 1 6 1 0.02 0 .00
C ->20 m 238.26 35 3 0.01 -0 .0 0
C ->25m 239.39 1 2 27 0.00 0.00
E (nearshore) 244 .17 1 2 2 0.02 0 .02
E ->20m 244.21 1 1 1 0 0.02 0 .02
E ->25m 244.80 23 1 4 0.00 0.01
F ->25m 249.70 1 4 32 0.01 0.03
H->25m 266.00 1 0 41 0.01 0 .02
1 ->25m 275 .04 25 1 7 0.04 0.05
J (T40 @m25) 282.70 30 3 0.01 0.00
L (LN5) 291 .90 22 2 mean of 0.01 0.00
L ->25m 292.78 20 17 1 6 0.02 0 .02
M (T35) 296 .00 1 3 3 0.03 0.00
M->25m 297.08 1 4 32 0.01 0.01
N (T40 @m25) 303 .59 1 4 4 0.00 -0 .01

Table 5.1
Speed of across-shore movement of low salinity plume based on minima 

or temporal gradient in salinity records from the moorings (column 3) and 
on observation of the location of the high gradient region in the underway

surface salinity system (column 5).
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The fresh water appears to move offshore at speeds larger than 

those commonly observed for cross-shore velocities on the inner shelf, 

with the estimates in column 3 averaging 21 cm /s. The cross-shore 

currents recorded during the entire field experiment at the 20-m m ooring 

exceeded 15 cm /s less than 4% of the time. During these times w hen 

offshore movement of the plume was observed, the cross-shore 

component of velocity measured at 4.2 m depth at the 20-m mooring often 

do not agree with the translation speed estimates, being much smaller (or 

even directed onshore). This implies very high shear in the upperm ost 

meters of the water column, a condition that was recorded during an 

anchor station on 26 August, as Event C moved offshore (Figure 5.2). The 

plume water is in the top 4 meters and velocities at 2m depth are double 

those at 4m. The ADCP velocities in Figure 3.4 also show high near

surface shear at the outer edge of the plume, with the cross-shore 

component reversing sign at 5m depth in Transect 50 (panel A).

The effective wind stress components at the time, computed using a 

surface drag coefficient from the bulk formulation of Large and Pond 

(1981), are shown in the two rightmost columns. Nearly all separations of 

the plume from the shore occur at times of northerly-directed wind stress 

(positive values in column 6), fitting the upwelling-driven proposal. In 

general, the near-shore salinities rise about 7 or 8 hours after the wind has 

turned northward. The observed stress is fairly mild, corresponding to 

wind speeds generally less than 6 m /s. The offshore movement of the 

plume is almost always aided by positive (offshore-directed) across-shore 

wind stress (column 7). The rise of inshore salinities occurs during falling 

coastal sea level for events (e.g. plume 'C') which are characterized by
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downwelling and coastal setup, but the relationship to sea level variation 

is not noticeable for the offshore movement of the other intrusions.

5.2.2 Offshore Movement: Shipboard Salinity Observations

To validate the offshore speed estimates from the mooring records, 

several events are examined where the ship repeatedly surveyed a p lum e 

during its movement away from the coast. One such event was 'B' in  

Figure 5.1, for which the vertical cross section of salinity was shown 

previously in chapter 3 (Figure 3.4). This small-volume intrusion was 

always underlain by a strong pycnocline, and was seen to spread out from  

its coastal configuration (panel A, Figure 3.4) to a thin, elongated p lum e 

(panel B) which then separated from the shore to form a lens (panel C). 

The surface expression of the outer edge of the plume was observed as a 

high gradient region in salinity recorded by the shipboard underway 

mapping system. The cross-shore profiles of surface salinity are shown in  

Figure 5.3 for seven successive transects across the inner shelf, along w ith  

the cruise track. The front remained sharp, with salinity rising over 3.5 

psu in less than 2 km, as it translated offshore. An interesting effect was 

the increasing freshness at the inshore side of the front. This tendency of 

the freshest water to gather at the outer edge of the spreading plume was 

noted in the vertical cross sections (Figure 3.4). It suggests that the very 

surface waters moved offshore most rapidly, consistent w ith the h igh  

near-surface shears noted in the previous section. Offshore translation 

speeds estimated from pairs of these surface frontal crossings are show n
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in the fifth column of Table 5.1, and are consistent with the estimates 

based on the mooring observations.

Another plume that was well sampled by ship surveys occurred in  

mid-October and displayed a different initial configuration. Event L 

traveled down the coast under moderate winds towards the south, was 

pushed against the coast and deepened to contact the bottom as seen in a 

salinity section across the central line (Figure 5.4, panel A). Six hours later 

a survey profiled across the plume 20 km upstream (panel B). The winds 

a t this time were light towards the northeast, and the plume has doubled 

its offshore extent. Sixteen hours later the central line was crossed again 

and the low salinity water was stretched out to over 15 km offshore and 

occupied only the very surface waters (panel C). Surface salinity traces 

(Figure 5.5) show the same fast offshore movement of the front as 

observed during the August event, but with evidence of increased mixing 

occurring. The salinity contrast across the front diminished from over 4 

psu to less than 0.5 psu. In spite of extensive mixing, the sharpness of the 

front was maintained, implying, as above, that the very surface (freshest) 

water was supplied preferentially to the frontal region due to vertically 

sheared cross-shore flow within plume layer. The speed estimate based o n  

frontal position matches reasonably well w ith the ones from the moorings 

(Table 5.1).

The individual speed estimates from these successive crossings 

show a rapid acceleration, then slowing over a time frame of less than a 

day (Figure 5.6), suggesting that processes such as tides or inertial 

oscillations may play a role in initially separating the low salinity water 

from the coast. The possibility of along-shore variation in the form of 

m eanders of the front complicates the small scale analysis. However
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estimates from repeated crossing of the central line allow us to be 

confident of the general trends.

5.2.3) Offshore Movement: Overall Statistics

Figure 5.7a extends the plot of the relationship between all observed 

surface salinity fronts and the along-shore wind seen previously in Figure 

3.8b, by including those fronts determined to be the outer edge of a 

detached lens of plume water. There is a dramatic increase in w idth  

associated with positive wind stress. The position of the front observed 

during upwelling winds (defined by the mean of previous 6 hours of 

along-shore wind being > 0) averages 12.9 km offshore compared w ith a 

w idth of 7.1 km during winds towards the south. A comparison of frontal 

position w ith the cross-shore component of the wind (Figure 5.7b) reveals 

a less strong relationship over all, although separated plumes are found 

almost exclusively with offshore wind stress. Since the wind com ponents 

are themselves correlated (section 3.3), it is difficult to determine if these 

are evidence of direct frictional cross-shore wind forcing or related to 

times of enhanced along-shore stress.

5.3. Theory for wind-driven offshore movement of coastal surface waters

The CoOP observations show that a rapid offshore movement of 

the low-salinity water always occurs after the local winds have turned  

northward. The magnitude of the winds is moderate: not usually greater 

than 7 or 8 m /s , and often less than 5 or 6 m /s  (Table 5.1) . The wind has 

generally been northward for 8 to 12 hours when the low salinity water is
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seen to move offshore. Given the constrained nature of cross-shelf flows 

very near to the coast, how are we to understand the forcings and 

responses that bring about this movement? The short time periods over 

which the offshore translation were estimated (less than 12 hours on 

average) indicates that short time scale motions such as tidal flow as well 

as the time-varying aspects of wind-driven flow should perhaps be 

considered, rather than just the steady circulation patterns. To separate 

the effects, each mechanism can be examined theoretically to estimate the 

magnitude of its expected contribution. The inner shelf environm ent, 

with its shallow depths and proximity to the coast, is controlled strongly by 

the presence of these boundaries, yet our intuition of the behavior of each 

mechanism can be enhanced by reviewing simplified analytical solutions 

which may temporarily set aside some of these constraints.

5.3.1. Response to along-shore winds: Shortest time scales:

When the wind begins to blow upon the water, the initial 

acceleration is of the surface water in the direction of the wind. Over time, 

the response evolves such that the frictional layer deepens and the cross- 

wind component grows. The localized time-evolving solution, illustrated 

in Figure 5.8, is derived here from Fredholm's equations (Ekman,1905) for 

a wind stress of Ty=0.5 Pa where a constant vertical eddy viscosity is

assumed. For the first several hours, the flow is contained above the
V

" 2 A ~ where Av is the vertical eddy viscosity;

and f the Coriolis parameter. After six hours have passed, the cross-wind 

component has grown to be as large as the component in the direction of 

the wind, approaching the familiar deep-water steady Ekman solution
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where the surface flow is 45° to the right of the wind. However, by this 

time, the wind-driven flow has deepened below the surface layer, so that 

the local bottom boundary condition on the flow will begin to control its 

behavior.

Since the inner shelf here is quite shallow, the total water depth, 

when the water column is homogeneous, is usually less than the Ekman 

layer thickness D^. In this case, the requirement that the flow go to zero at 

the bottom imposes a different distribution of the resultant motion, w ith  

nearly all of the flow remaining in the direction of the wind.

However, the presence of the plume, where it is not in contact w ith 

the bottom, imposes a stratification across some portion of the inner shelf 

that strongly affects the local response to the wind. The top two panels of 

Figure 5.4 are clear examples of how the cross-shore configuration of the 

plume can separate the inner shelf into distinctly homogenous and 

stratified regions. Within the stratified region, the surface layer is 

insulated from bottom effects by the extremely diminished vertical eddy 

viscosity in the pycnocline. This results in depth layer of no stress. The

solution with a no stress bottom boundary condition results in the total
u! 2 Ty

U  u S. U*e =  —Ekman transport elc f , for P , confined above the pycnocline

and flowing perpendicular to the wind direction. Figure 5.9 illustrates an

example cross-shelf transect where the flow patterns within the stratified

portion of the plume contrasts sharply with the circulation occurring

elsewhere on the inner shelf. At this moment, a mild upwelling wind of

3 to 5 m /s  has been blowing for about 18 hours: the shelf water offshore of

the plume is flowing northward at 15 to 20 cm /s, while the surface plum e

waters are directed offshore at about the same speed. Note that at the
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shallowest station, in depths less than 13 m, the flow is nearly all in the

direction of the wind, indicating that it is largely depth-limited, inspite of

some salinity gradients still measured in that profile.

The time-varying transport for the stratification-limited solution

oscillates about Uek over the inertial period, these oscillations being

theoretically undamped due to the absence of bottom friction for this layer

(Figure 5.10A). If the surface layer depth is on the order of Dek/ there is

very little depth variation in the cross-wind component velocities

(Fig5.10B), which remain close to the average cross-shore velocity w ithin 
the surface layer, r^ - -  So the cross-wind velocities vary inversely w ith

“pyC

the thickness of the spreading plume, speeding up as the plume thins.

The flow pattern below the pycnocline is not specified by this 1-D 

solution. There is a velocity discontinuity at the pycnocline, since the 

frictional transfer of momentum has been 'short-circuited' by the presence 

of the frictionless ideal pycnocline. Of course, in this region close to the 

coast, any net cross-shore transport will set up a pressure gradient in a very 

short time, generating flow throughout the water column.

5.3.2 Response to along-shore winds: Intermediate time scales:

During the developing coastal setdown caused by the offshore

transport in the surface Ekman layer, the cross-shelf pressure gradient

accelerates compensating onshore flow. The pressure gradient-induced

return flow is to Oth order evenly distributed throughout the water
Uek

column w ith velocities of ht0tai- This flow both opposes the offshore 

movement of the surface waters and creates onshore flow in the lower
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layers. The return flow, or "adjustment drift", is in turn acted upon by the 

Coriolis force to generate an along-shore current that adjusts to a 

geostrophic equilibrium with the pressure gradient. The formation of this 

coastal jet was analyzed by Csanady (1982 p.90) for the two-layer case, 

which is analogous to the stratification-limited scenario discussed above, 

in that a strong pycnocline is postulated which confines the direct surface 

stress effects to the upper layer and allows separate responses in the top 

and bottom layers. This model attempts to describe the non-oscillatory 

portion of the flow patterns when the surface layer has achieved 

equilibrium with the wind stress, but before there is significant bottom 

friction induced by the developing along-shore flow in the bottom layer.

Csanady found the solutions for the top and bottom layer velocities

to be for the cross-shore components:
2 2 2 

,, u*s r (-=*-) hbot u*s _(-^-) , u*s
“ topUvl c t, e  Rext u f i ,  e  R in t + f L

1 “ total “ pyc r  “ total r  “ pyc eq(5.1.a)

Ubot(x) = - f ^ S- e(R'ext) + h b0tfh*S e(Rî ) 
* “ total “ pyc r  “ total eq(5.1.b)

and for the along-shore components:

v  rx 'l -  U* s t  e (- ^ ~ ) +  hho t U* s t  e ( - ^ - )  v top(x l — . e  Rext l u e  Rint
l l f n r a l  I l n v r  l l r n f a lpyc “ total eq(5.2.a)

“l ct / _ ^ x _ i  u ict ,  -X,  ( -x.)

V htouT “  hmoT eq(5.2.b)

The last term in the top layer cross-shore flow (eq 5.1a) can be
UeL

recognized as the steady stratification-limited solution, hpyc, discussed in
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the previous section, which in this model is approached far offshore

(beyond the external Rossby radius Rext)- The first term in eq 5.1, w hich

both layers have in common, represents the barotropic return flow

mentioned above. The second terms, which are oppositely directed in the

two layers, allow the total flow to adjust to zero towards the coast (over the

internal Rossby radius Rint)- The cross-shore flows resulting from a 0.05 Pa

wind stress are illustrated in Figure 5.11A for a scenario where the

pycnocline (with a typical density difference of 2.3 a) is located at 5m in a

total water depth of 20 m, resulting in an internal Rossby radius of Rint=

3.2km. By 2* R ^  offshore, the cross-shore velocity in the upper layer
Uek _ Uek

approaches the zero-order value suggested above of hpyc htotai .

The net cross-shore flow, which causes the sea surface setdown 

across the shelf, is quite small: less than 1 cm /s even for the case w here 

the top and bottom layer depths are equal. The flow which effects the 

barotropic relaxation of previous coastal setup due to downwelling is the 

same magnitude, much too small to be an important contributor to the 

observed offshore translation of the plume water.

The along-shore velocities of this model (eq. 5.2) again share a 

barotropic term which is the portion of the along-shore current in balance 

with the developing barotropic pressure gradient generated by the surface 

elevation. This flow is in the direction of the wind and decays offshore 

over the w idth of the external Rossby radius. The second term represents 

the baroclinic flow in balance with the developing slope of the pycnocline 

which acts in the same direction as the barotropic part in the top layer, but 

opposes the barotropic flow in the bottom layer. These terms are 

important only over the width of the internal Rossby radius. Therefore, 

close to shore in a stratified system, in addition to the Ekman drift
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discussed above, an along-shore wind generates along-shore flow that is 

sheared in the vertical. This along-shore current as modeled here, 

continues to increase linearly in time: in actuality, the developing bottom  

friction would soon become dynamically important, eventually balancing 

the surface stress. The time scale in which this was achieved on the inner 

shelf at Duck was in the range of 6 to 9 hours, based on the observed lags 

between the pressure or velocity measurements at the 20-m mooring and 

the along-shore wind forcing. Top and bottom layer along-shore flows 

representative of an along-shore wind of 0.05 Pa after seven hours are 

shown in Figure 5.11B. Note the level of negative shear in the along

shore current: near Rint offshore, the northward top layer velocities are 

over twice those in the lower layer.

The behavior of the flows closest to shore are not represented well 

by this simple model. The along-shore acceleration in the bottom layer 

has been achieved by Coriolis force acting on the bottom layer cross-shore 

flow. The assumption of small pycnocline displacement and of a flat 

bottom in this model cause the cross-shelf velocity in the bottom layer to 

drop rapidly to zero close to shore. For the case of a sloping bottom, hbot = 

s*x (where a representative slope for the shelf inshore of the 20-m 

mooring is s = 0.003), an extension of this model (Csanady, 1977) shows 

that inflow in the bottom layer, required to match the rising pycnocline, 

forces an onshore velocity equal to the vertical velocity divided by the 

bottom slope, with a resulting increase in the lower-layer along-shore flow 

over the sloping portion of the bottom, and correspondingly, increased 

bottom friction.

Over the innermost portion of the sloping shoreface there w ould 

often be an unstratified water column, either because a deep plume had

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



138

intersected the bottom; or resulting after the separation of the plum e from  

the coast. In this case the along-shore flow would approach the 

homogeneous solution, shown as x's in Figure 5.11B.

5.3.3 Response to along-shore winds: Frictional equilibrium time scales:

For times longer than 6 to 9 hours, a frictional balance should be 

achieved on the inner shelf between the surface and bottom stress. The 

along-shore current no longer accelerates: its Coriolis force completely 

balances the steady cross-shore pressure gradient. A bottom along-shore 

flow has been established, leading to a frictional bottom boundary layer 

whose net Ekman transport will be directed onshore. In classical deep- 

water solutions for fully-established upwelling, the surface frictional layer 

is separated by an inviscid interior region from the bottom frictional layer : 

the full Uek transport occurs in opposite directions within those boundary 

layers. In our inner shelf scenario , the pycnocline underlying the p lum e 

substitutes for the inviscid region, allowing oppositely directed balancing 

cross-flows to co-exist in a shallow water column. As with the surface 

Ekman solutions, modifying the boundary conditions for the bottom  

Ekman layer changes the distribution of flows, as illustrated in Figure 

5.10C. The classical solution (shown in magenta) requires that the Ekm an 

layer flow match the interior at the top of the boundary layer. In our inner 

shelf case, a level of no stress is imposed at some depth above the bottom  

before that can occur, resulting in increased cross-shore transport w ith in  

the boundary layer (shown in red).
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A deep plume over the shore-most portion of the inner shelf, 

where it fills the entire water column, would be subject to the zero flow 

condition at the bottom, and experience no cross-shore acceleration from 

an along-shore wind. In the cases where there is some stratification 

within the plume layer itself, the effective Ekman depth could be reduced 

to less than the water column depth. The response of this case, where the 

surface and bottom Ekman layers overlap and interact with each other, has 

been examined by Mitchum and Clarke (1986). Their "blocking" region of 

Ekman layer interaction, discussed as the region of water column depth 

variation between 0.2 and 2.5* Dek , could be in this case defined by the 

control that the plume's stratification exerts on D^. The shore-most 

profile in Figure 5.9 is an example of this intermediate region.

The above examination of the generation of cross-shore flow due to 

along-shore wind forcing, with the stratifying presence of the plum e, 

shows that during the initial response, only small velocities should be 

reached in the region less than 1 to 2 internal Rossby radii within the 

coast; increasing to moderate velocities farther offshore. Where the 

plume reaches to the bottom in shallow water, almost no cross-shore 

current is generated. Figure 5.12 summarizes the approximate range of 

velocities calculated for a 6 m /s  along shore wind acting over the inner 

shelf. This divergence in cross-shelf flows should lead to an elongation 

offshore of the stratified portion of the plume : a plume configured like 

those in Figure 5.4A or Figure 3.4A would be deformed as the portion not 

in contact with the bottom moved offshore more rapidly. As noted above, 

the velocities increase in the stratification-limited portion as the p lum e 

thins, since the unvarying Ekman transport is distributed through a 

smaller layer, increasing the elongation of the offshore thinning edge of
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the plume. The evolution from panel A to B shown in Figure 5.4 may be 

an example of this process.

After the full along-shore response to the coastal setdown becomes 

established, offshore surface layer velocities are balanced by the shoreward 

flow within the bottom frictional layer. Then, the surface flow is no 

longer moderated by the pressure-driven return flow, increasing to the
U ek

full steady hpyc value. For the moderate winds observed (Ty ~ 0.05 Pa), 

this value starts to exceed 10 cm /s when the plume layer thins to less than 

5m deep. When the overlying inertial oscillations are considered, as 

shown in Fig5.10A, the rate of offshore movement for this scenario 

reaches a maximum of over 20 cm /s, matching the average velocity from 

the observations in Table 5.1. (see Figure 5.12). Note that the timing of the 

maximum offshore velocity occurs between 8 to 10 hours after the onset of 

the wind — the same time range that was observed in section 5.2.1. The 

importance role that inertial oscillations may play in plume separations 

can also be noted in Figure 5.13. Here the time-series of the amplitude of 

the complex-demodulated inertial frequency is shown along with the 

times of separations : the correspondance is particularly noticable in  

October.

5.3.4 Role of cross-shore winds:

In all cases discussed above, the cross-shore motion generated by 

along-shore wind was extremely small for the shoremost region: the area 

less than Rint from the coast, or in depths less than the plume thickness. 

The analysis above noted that the portion of the plume in contact with the
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bottom will experience wind-driven flow aligned largely with the w ind 

direction. In this case, the cross-shore component of the wind stress 

would be more effective at producing offshore transport. In over 80% of 

the examples, offshore winds were observed during the plume separations 

(column 7 in Table 5.1). Conversely, onshore winds were rarely recorded 

during these times.

Again, any offshore motion near the coast is opposed by the 

barotropic return flow due to the cross-shelf pressure gradient. Net cross

shore flows can occur where the wind-driven flow is sheared in the 

vertical, so there is an imbalance at that level with the essentially 

vertically-constant return flow driven by the pressure gradient body force. 

This is illustrated in Figure 5.14 for a 6m /s offshore wind, where the 

mismatch near the surface results in an offshore current of over 4 cm /s in  

the upper few meters. The actual vertical shape of the wind-driven flows 

will be determined by the vertical variation of the eddy viscosity, w hich 

heretofore has been assumed to be constant. A constant eddy viscosity 

produces a linearly sheared along-wind flow (as was seen in Figure 5.14). 

The use of a more realistic form of the eddy viscosity, such as the bilinear 

profile suggested by Madsen (1977), results in even more highly sheared 

flow near the surface in the direction of the wind. The velocities are still 

moderate, compared to the speeds seen in the stratification-limited cases 

discussed above, and confined to the upper few meters of the water 

column.

It is important to note that the wind stress levels used throughout 

this analysis have been based on the Large and Pond (1981) form ulation 

for the surface drag coefficient Cds = 0.0011, which was derived from open- 

ocean studies. Several studies have suggested that a larger Cds is
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appropriate in shallower water where short period, steeper waves 

predominate (Geemaert et al., 1987). The increase in Cds is particularly 

enhanced for offshore winds due both to the increased turbulence from  

flow over land and also to the large wind-wave angle. A recent study 

using observations from Duck (Friedrichs and Wright, 1997) determ ined 

that the surface drag coefficient for offshore-directed winds could be four 

times larger than onshore winds. This alternative magnitude of cross

shore forcing is shown in Figure 5.14 where the surface current is now  

over 16 cm /s. This could make even a small offshore-component of the 

wind a significant contributor to the cross-shore flow of the near-shore 

water. The relationship between offshore wind strength (positive stress) 

and plum e width (Figure 5.7b) does appear to be stronger than for the 

onshore winds. The shore-most (depth-limited) portion of the p lum e 

may be aided by the cross-shore wind component which move the 

surfacemost waters offshore, creating a newly stratified region. This 

strain-induced stratification then allows the along-shore wind effects that 

are pynocline-limited to predominate.

5.4 Geostrophic Adjustment

In the previous sections the plume water mass has been treated as 

passive, being advected solely by the action of wind. But the defining 

characteristic of the coastal configuration of the plume is a strong cross

shore density gradient that will have an offshore-directed force of its ow n 

in the surface waters. Below the m idpoint of the buoyant layer, the 

pressure gradient becomes directed onshore, making an cross-shore 

density forcing similar to the gravitational pattern in estuaries. However,
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on the shelf, the gravitational circulation can be balanced by the Coriolis

term of the sheared along-shore flow. This basic geostrophic balance is
f  9v g 9p

revealed by the "thermal wind" relationship, dz P 3x , which appears 

to be the dominant cross-shore balance in the plume's domain, as show n 

in Figure 5.15. Close to 70% of the observed vertical shear in the 

alongshelf current is predicted by the measured cross-shelf density 

gradient in the upper part of the water column between the 13-m and 20- 

m moorings. This indicates that the geostrophy is still important on the 

inner shelf inspite its shallow depths. In Lentz et al. (1998) this therm al 

wind balance is shown to be important even in at the 8m tower.

As discussed in Chapter 3, when there is no wind forcing applied 

and the along-shore current is due solely to buoyancy, the density deficit 

dp is distributed so that Rint defines the cross-shore width scale 9x, and the 

along-shore velocity v is strongly positively sheared (with depth z 

considered as increasing downwards). Any reduction in this shear should 

result in an increase in 9x (i.e. widening of the plume). This reduction in  

shear could come about in several ways: section 5.3 discussed several 

mechanisms whereby northward wind input negatively sheared along

shore velocities (especially note eq. 5.2 and Fig5.11B in section 5.3.2). In 

addition, the overall slowing of the southward baroclinic current, under 

the influence of bottom friction, would reduce this shear.

Csanady (1978b) developed a simple 2-layer analytic model of the 

geostrophic adjustment of a horizontal density front that initially reaches 

from the surface to the bottom. In the absence of any wind forcing, the 

width, as described before, scales with R int : this equilibrium is illustrated 

in Figure 5.16, where the frontal half w idth ap is found to be ap = 1.2Rjnt.
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An. input of negative shear to the along-shore flow equivalent to the total 

wind stress u*s* accelerating only die top layer is then envisioned. This 

vertical shear is equivalent to vtop(x)-vbot(x) in eq 5.2 (for x<Rim). During 

the subsequent geostrophic adjustment, the front will widen out, with the 

new half w idth ai being found as the root of

^ +d f e 2 - COth(̂ ,=0 ^
(Csanady, 1978b). The new position of the front between the two densities 

is illustrated in Figure 5.16 (dotted line) for a wind impulse of u*s* 

equivalent to a 0.1 Pa wind blowing for 10 hours, using a density difference 

of 2.3 <j  units in a total water depth of 16 m). The input of positive 

(upwelling-directed) wind stress causes the front to surface at a distance of 

over 2*Rint offshore of its non-adjusted position. Conversely, the 

superposition of southward (negative) wind stress on the baroclinic flow 

will increase the vertical shear in the along-shore current, steepening the 

front and decreasing the frontal half width, as was shown in Figure 3.7c. 

When the southward wind ceases, a previously downwelled plume (such 

as shown in Figure 5.3A) will widen offshore as it relaxes back to the 

equilibrium state.

The geostrophically adjusted w idth of the low salinity water mass 

reached after a wind impulse duration of 10 hours is overlaid on Figure 

5.7a for a range of wind stresses. Times of separation of the plume were 

observed at Duck following wind impulses of no more than +1.8 m2/s (or 

about 10 hours of a wind stress of 0.05 Pa). Again considering a plum e 

with a density difference of 2.3 sigma units, occupying half of a 16 m water 

column, the geostrophic adjustment model predicts that the front location 

will move only 2 km offshore in response to such an impulse. As can be
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seen in Figure 5.7a, the observed widths are far larger for mild upwelling 

wind stress than the theoretical geostrophically adjusted widths.

The geostrophic adjustment model allows the computation of the 

m inim um  wind impulse necessary to cause the separation of the lighter 

water from the coast and the formation of a surface lens. By volum etric 

arguments Csanady (1978b) found that the minimum impulse is the root 

of

Imin t a n h f  Imin \  . a I _  a
Cint *htotai/2 Cint *htotal/2 Rint (eq. 5.9)

when the unforced surface-to-bottom front intersected the coastline at 

htotai- In this case the solution implies that Imin > 8, or a 0.05 Pa wind 

blowing for almost two days, would be required to cause the separation. 

Clearly, the CoOP observations indicate that much less forcing is required. 

The use of the wind impulse approach, which allows the analytic solution, 

neglects the thinning of the top layer over the time that the wind is 

blowing, and also distributes the velocities evenly over the top layer. 

Previous discussions in section 5.3 showed that the elongation and 

thinning of the plume layer by the higher velocities at the very surface 

and in the stratified portions is an essential part of the rapid offshore 

m ovem ent.

5.5 Tides

Given the short time periods over which these low salinity lenses 

have been observed to form, one might investigate the role that tidal 

flows could play. A harmonic analysis (using a least-squares technique) of 

the 3 month time series of currents from the moorings separates the 

contribution of the astronomical tidal constituents to the flow on the
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inner shelf at Duck. The amplitude and phase of the largest 3 constituents 

are reported in Table 5.2 for the upper sensor from the outer two 

moorings, and confirm that the local tides are dominantly sem i-diurnal. 

The tides in this region are increasingly damped towards the shore and 

towards the bottom. A more complete analysis of the tides during this 

study was described by Shay et al. (1997).

The resulting across-shore tidal flow due to these com bined 

constituents could reach an maximum amplitude of slightly over 6 cm /s 

w ithin the offshore region of the plume, with this amplitude decreasing 

towards the coast. The phase timing was examined for many of the p lum e 

separation periods. In some cases, offshore movement occured during ebb 

tide, as might be expected in a straightforward way (see examples in Figure 

5.6). However, more frequently, a rising tide was associated w ith the 

accelerating offshore phase. Given the importance of the location of the 

vertical stratification within the water column to the response to w ind 

forcing, the role that the tides play in raising or lowering the pycnocline 

m ay be their primary contribution to the timing of the plume separations.

Tidal Period Cross-shore Cross-shore Along-shore Along-shore
Const (hours) Amp (cm/s) Phase (hrs) Amp (cm/s) Phase (hrs)
2 5 - m
M2 12.42 4.27 3.39 5.31 -1 .3 2
S2 12.00 0.47 4.09 1.00 -0 .5 2
K1 23 .93 2.48 4.19 1.79 -0 .5 2
2 0 -m
M2 12.42 2.04 3.06 4.26 -2 .0 8
S 2 12.00 0.66 3.93 1.28 -0 .9 7
K1 23 .93 1.32 2.95 1.60 2.26

Table 5.2
Amplitudes and phases of tidal currents at the 4m current meter 

on the 25-m and 20-m moorings.
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5.6. Summary

After determining that observations from the CoOP field program 

regularly revealed offshore movement of the plume waters at rates of 20 

cm /s, a number of possible causal mechanisms were considered. An 

examination of the theoretical response of shallow coastal water reveals 

that offshore surface movement, as a response to moderate wind forcing, 

will be constrained, both by bottom friction and the coastal presence, to 

speeds of less than 5 cm /s. A similar magnitude was seen from the cross

shore component of the tides, as well as the additional offshore 

movement caused by the geostrophic adjustment of a density front in 

response to the input of negative along-shore shear (Figure 5.12).

Faster speeds were computed only when strong stratification, such 

as that provided by the halocline underlying the plume, traps all the wind 

m omentum in the surface layer. During an intermediate time period, 

while the coastal jet is growing, the offshore flow speeds are reduced by the 

pressure-gradient return flow (Figure 5.12, green bar). However, once 

frictional equilibrium has been established, theoretically the entire Ekman 

transport can occur in the surface layer. As this plume thins, the speeds 

increase inversely with the depth of the layer (compare purple bar w ith 

orange in Figure 5.12). The large magnitude of the observed offshore 

movements can only be explained by Ekman transport in these highly- 

stratified, thinning plume layers. Eventually, the increasing speed and 

thinning must lead to mixing (note Figure 5.5) and a breakdown of the 

pycnocline. The offshore lenses observed a day or two after the onset of 

upwelling exhibited a salinity contrast of less than 1 psu and generally 

were mixed away prior to the next downwelling event.
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The contribution of the inertial cycle overlying the steady values 

computed above, is highlighted by the observed timing of the plum e 

separations, which were noted to occur between 8 to 12 hours after the 

onset of northward winds: the peak inertial overshoot (yellow bar in

Figure 5.12) occurs after 10 hours.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



149

Figure 5.1 Lower panel : near-surface salinities at 4 moorings across 
the central line during the same time period as Figure 3.4. 
Upper panel : wind components with waterlevel overlaid.
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Figure 5.2. Salinity and cross-shore velocity profiles from CTD and 
ADCP measurements taken during anchor station 4, 00:30 
to 10:00 on August 26.
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Figure 5.3. Upper panel: Surface salinity traces from shipboard 
underway mapping system from successive crossings of the 
inner shelf made 20-21 August, 1994. Lower panel: Ship 
Track.
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Figure 5.4 Salinity Transects from LN5 and SSB2, Oct 18 and 19.
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Figure 5.5 Surface salinity from shipboard underway mapping system 
taken on successive across-shelf transects taken October 18 and 19, 1994.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3 3

rn 29

27
8 10 

Distance Offshore km

Ship Track

20

16

E
<Di_O
-Cmasc
o
<<DOc«w
b

-12
8 12 16 

Distance Offshore km
20

—  LN5 00rH■PUo 20:00

— LN5-T30 0ctl8 21:54
—  T30 0ctl9 01:26

T30-T35 0ctl9 03:33
—  T35 0ctl8 05:35

— T35-T45 0ctl9 08:20
—  T45 0ctl9 10:15
—  T45-T40

—  T40 Oct 19 17:40
* front

Figure 5.5 Surface salinity from shipboard underway mapping system 
taken on successive across-shore transects, October 18 and 19,1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



154

Figure 5.6. 20-21 August (upper panel) & 18-19 October (lower panel)
offshore movement of salinity front speed estimates from 
shipboard underway mapping system. Diamonds indicate 
frontal speed estimates from mooring observations. Cyan 
line is calculated tides from section 5.5.
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Figure 5.7. Offshore position of high-gradient region of salinity 
observed by shipboard underway surface m apping system 
versus a) recent along-shore wind stress and b) recent 
cross-shore wind stress.
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Figure 5.8. Time-evolving solution to along-shore wind (initial flow at 
time < 6 hours).
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Figure 5.9. Salinity and ADCP velocities from transect 1 across central 
line, during mild upwelling winds on October 9-10. Color 
scale is salinity (psu). ADCP velocity vectors are oriented as 
map view.
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Figure 5.10. a) Inertial oscillations in stratification-limited flow, b) steady 
stratification-limited flow, c) flow in bottom Ekman layer.
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Figure 5.11. Two-layer coastal jet solution: a) cross-shore flows
b) along-shore flows.
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Figure 5.12. Summary of theoretical offshore velocities.
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Figure 5.13. Amplitude of complex demodulated inertial frequency 

27t/Tinertial extracted from cross-shore component of 

velocity at 4 m from 25-m mooring. Bars mark times of 

plume separations from the coast.
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Figure 5.14. Sheared cross-shelf wind-driven flow compared w ith 

pressure-gradient flow.
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Figure 5.15. Observed shear versus predicted shear due to cross-shore 

density gradient (thermal wind relationship).
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Figure 5.16. Solid line: The shape of the density front after geostrophic 
adjustment from an initially vertical position (dashed line) at 
xO. Dotted line : shape of the density front after upwelling- 
directed wind stress impulse (after Csanady, 1978b).
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Chapter 6. Synopsis

The characteristics and effects of intrusions of estuarine outflow 

along the inner shelf have been examined, based on hydrographic and 

meteorological observations from the late summer and autum n of 1994 

obtained during the "Coastal Ocean Processes" (CoOP'94) field experiment 

sited off the Outer Banks at Duck, North Carolina. A synthesis of moored 

and ship-based measurements reveal the intermittent passage of distinct 

low salinity intrusions issuing from the Chesapeake Bay that initially 

travel southward down the coastline. These plumes of fresher water were 

observed every 2 to 8 days, remaining in the study area for 1 to 4 days. 

Under the influence of upwelling winds, these low salinity water masses 

were seen to spread offshore, separating from the coast to form shallow 

lenses of fresher water that eventually mixed away. The salinity of the 

ambient shelf water was decreased by 2 psu over the 3 month study.

6.1 Along-coast Propagation

The arrival of an intrusion was observed as a sudden decrease in  

salinity of between 1 and 4.5 psu in less than an hour. The density deficit 

between the average plume and the shelf water was between 2 and 3 kg 

m'3, and was due entirely to the difference in salinity, with no contribution 

from temperature. Analysis of the successive times of arrival of the low
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salinity water masses at salinity sensors moored north to south along the 

inner shelf allowed the determination of the along-coast propagation 

speeds of the intrusions. When corrected for the ambient shelf flow, these 

propagation speeds averaged 38 cm /s, about three-quarters of the 

theoretical linear internal wave phase speed based on the average density 

difference.

The plumes were thicker towards the coast and thinned farther 

out. The underlying pycnocline surfaced approximately 9 km offshore and 

created a sharp front that was frequently visible to shipboard observers. 

The shape of the plume was strongly controlled by the wind: during

upwelling winds the plume thinned vertically and widened offshore; 

while downwelled plumes were deep and confined to near the coast. 

However, the plumes influenced by strong downwelling wind stress 

(magnitude >0.15 Pa) contacted the bottom and displayed different 

behavior, propagating much more slowly and widening offshore.

The low salinity intrusion sets up a barodinic coastal current, 

accelerating strong southward currents in the surface waters inshore of the 

20-m isobath. High horizontal velocity shears were observed across the 

offshore front. The cross-shore flows inshore of this front were quite 

different from those just offshore, as the up- or downwelling inner shelf 

circulation patterns were interrupted by the imposition of the plume's 

strong vertical stratification. In spite of this stratification, the dilution 

observed during the plumes' passage through the study region indicate 

that about half the plumes' volume was exchanged with the ambient 

water. This portion of the estuarine water, and its associated nutrients and 

biota, is delivered to the inner shelf within 10 km of the coastline 

throughout a region extending over 100 km south of the source estuary,
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the Chesapeake Bay. The remaining part of the estuarine outflow is mixed 

with the shelf waters as the plumes disperse offshore.

The innerm ost shelf was subject to the influence of low salinity 

water up to half the time during this study. The frequent presence of the 

plumes' baroclinic coastal current increased the net southward flow of the 

surface waters w ithin 5 km of the coast to over 14 cm/s, whereas farther 

offshore the net flow was only 6 cm /s to the south. The proximity of such 

different flow regimes within relatively small spatial scales could be of 

importance to the biology in the region, where inner shelf larvae may 

manipulate their behavior to exploit the contrasting environments.

6.2 Source Variability

The episodic nature of the observed intrusions invited an  

exploration of possible mechanisms for pulsed outflow from the 

Chesapeake Bay on the time scale of several days to a week. Estimates of 

barotropic Bay/shelf exchange, as derived from temporal variations of 

water level measurements w ithin the Bay, exhibited strongly peaked o r 

surge-like fluxes occurring every 3 to 4 days, which preceded most low 

salinity intrusions observed off the North Carolina coast by an average of 

1.1 days.

Two approaches for the meteorological control of these exchanges 

were considered: the rise or fall of coastal sea level due to the down- or 

upwelling conditions over the shelf; and the direct forcing of set up or set 

down within the estuary by local winds. Through a simple modeling 

exercise, the Chesapeake Bay was shown to be uniquely situated, given its
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basin length, alignment, and regional shelf response, to have these two 

control mechanisms oppose each other with similar magnitudes, 

implying a moderated level of barotropic Bay/shelf exchange. The 

implications of this, contrasted with other basins, may shed some light on 

the notable characteristics of the Chesapeake Bay region as compared to 

other estuary systems, and would be an interesting topic of future research.

While the analytical model used here had an over-simplified 

basin geometry, and an inadequate representation of the effects of bottom 

friction, it hinted at the complex variation of the volume flux response to 

varying wind patterns. A frequency analysis of the observations showed 

that the local set-up responded more effectively to shorter period forcing 

than did the coastal sea level. The volume flux peaked at a period 

between 2 and 2.5 days, which was identified as the natural seiche 

frequency of the Chesapeake basin. The larger outflow peaks in volum e 

flux occured at times of diminishing northward wind stress; the largest 

outflows happened when the reversing wind stress direction coincided 

with the falling edge of a seiche oscillation. The fact that Bay water can be 

output in concentrated barotropic pulses, rather than only as a continual 

lower volume surface flow, may be an important contributor to the 

observed bore-like nature of the intrusions' propagation, and to the 

gravity currents' ability to disperse the Bay effluent over farther distances 

downstream.

Several surges out of the Bay were not detected as subsequent low 

salinity intrusions along the North Carolina inner shelf. It is assumed 

that they were transported offshore by upwelling winds. Roughly half of 

the volume of freshwater input gauged from the Bay's tributaries was 

recorded as freshwater flux through the inner shelf study region: offshore
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dispersal in the area closer to the Bay entrance must account for the rest. 

The question as to whether plume water that had been blown offshore of 

the Bay mouth could move back onshore and re-establish a coastal current 

could not be considered with this particular data set. In a very few cases 

previously separated lenses of plume water were seen to re-coalesce 

against the coast within the downstream CoOP study area. However, their 

salinity signal was weakened and no resurrection of the coastal current 

was discerned. A study designed specifically to examine the plume 

behavior in the upstream region, such as the recent ONR Chesapeake 

Outflow Plume Experiment (COPE), will be able to address questions 

concerning the plume near the mouth.

6.3 Offshore Movement of the Plume

In the last chapter, the mechanisms that cause the plume to spread 

offshore were considered: tides, density gradients, inertial motions, and, 

frictional driving by the wind. The wind forcing was determined to be the 

most important, while the other mechanisms contributed a smaller 

fraction of the observed offshore translation speeds. Once the intrusion's 

initial southward momentum, which kept it rotationally trapped against 

the shore, was overcome, the low salinity water moved offshore very 

rapidly, although the observed northward winds were very light. An 

investigation into the theoretical response to the wind forcing showed 

that, again, the plumes grouped into two dynamical regimes, determined 

by whether they filled the entire water column, and the wind energy could 

be transmitted to the bottom, or whether they were vertically stratified.
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The structure of the solutions to a steady balance between friction and 

rotation, based on the different bottom boundary conditions, was 

contrasted. The motion anticipated by the theory for such small surface 

stresses was close to those recorded only for an extremely thin, highly 

stratified layer. This seems compatible with the shallow lenses that were 

formed by the separating plume. However, it appeared that a combination 

of the other forcing mechanisms, acting together in the same direction as 

the wind, would be required to explain the full offshore motion observed.

The presence of low salinity intrusions from the Chesapeake Bay 

are revealed to be an important influence on the inner shelf processes 

along the coast of North Carolina. The results were obtained during the 

late summer and early fall, when freshwater input to the Bay is at its 

annual minimum: spring and early summer conditions on the inner

shelf would be subject to an increased volume of low salinity water. The 

offshore front formed by the surfacing of the plumes' pycnocline partially 

segregates the flow regime of the innermost shelf from that just offshore. 

This front is a region of high horizontal gradients, not only of salinity, but 

also of currents and stratification. The resulting gradients in bottom stress 

and vertical transport will be important in determining the small-scale 

patterns of such processes as sediment transport and biological distribution 

on the inner shelf.
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