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THE ROLE OF MICROBIAL FOOD WEBS IN BENTHIC-PELAGIC 
COUPLING IN FRESHWATER AND MARINE ECOSYSTEMS

ABSTRACT

A majority o f carbon in freshwater and marine ecosystems is in the form of 
ultraplankton, heterotrophic and autotrophic plankton < 5 pm including heterotrophic 
bacteria. Prochlorococcus. cyanobacteria, and autotrophic eucaryotes. However, 
ultraplankton and subsequently microbial food webs have yet to be incorporated into models 
o f benthic-pelagic coupling despite the preponderance o f macroinvertebrates with the 
capacity to feed on ultraplankton. I have examine the role of microbial food webs in benthic- 
pelagic coupling in three ecosystems: Lake Baikal. Siberia. Russia; Gulf of Maine.
Northwest Atlantic Ocean; and Conch Reef. Florida Keys. USA. Using sponges as a model 
organism and in situ measurements. I have quantified (1) suspension feeding on 
ultraplankton and (2) release o f dissolved inorganic nitrogen (.DIN) and phosphorus (DIP) 
resulting in direct evidence that benthic macroinvertebrates do occupy the level of primary 
consumer within the microbial food web.

Dual-beam flow cytometry was employed to quantified sponge suspension feeding on 
five types o f ultraplankton: heterotrophic bacteria. Synechococcus-typz cyanobacteria, 
autotrophic picoplankton < 3 .um. autotrophic eucaryotes 3-10 pm. and in marine ecosystems 
Prochlorococcus. Grazing by the freshwater sponges Baikalospongia intermedia and B. 
bucilliferia and the boreal marine sponge. Mvcale lingua, was unselective for all types of 
ultraplankton with efficiencies ranging from 63-99%. This is the first time that grazing on 
Synechococcus-V/pe cyanobacteria and Prochlorococcus by macroinvertebrates has been 
quantified in freshwater and marine ecosystems. Conversely, the coral reef sponges Ircinia 
fe lix  and I. strobilina release significant amounts o f DIN and DIP as a result of grazing on 
procaryotic plankton. Using a general model for organism-mediated fluxes, it is 
conservatively estimate that through active suspension feeding sponges in Lake Baikal retain 
1.97 g C d a y 1 m': and M. lingua retains 29 mg C d a y 1 m': while at Conch Reef sponges 
released 204 pmol DIN day'1 m': and 48 umol DIP d ay 1 m':. A majority o f the carbon retain 
at all three locations was from procaryotic cell types suggesting that ultraplankton are an 
important overlooked component o f benthic-pelagic coupling.

Adele Jean Pile

SCHOOL OF MARINE SCIENCE 
THE COLLEGE OF WILLIAM AND MARY IN VIRGINIA

Mark R. Patterson. Ph.D.
Associate Professor
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Chapter I 

General Introduction

During the past decade research, on the water-column communities o f heterotrophic 

bacteria and autotrophic procaryotes and eucaryotes less than 5 um (ultraplankton Murphy 

and Haugen 1985) has discovered a complex network o f trophic interactions between 

ultraplankton, heterotrophic nanoflagellate and ciliates. and metazoans; or the microbial food 

web (Azam et al. 1983. Sherr. H. B. and Sherr 1991). The theory concerning this discovery 

posits that in the euphoric zone o f  the water column the microbial food web shunts a 

significant fraction o f the primary production away from the traditional linear food chain into 

a microbial food web that incorporates multiple trophic links between ultraplankton, small 

non-pigmented flagellates and ciliates (micrograzers), and larger protozoans (Figure 1). The 

microbial food web is in part supported by pools of dissolved organic material (DOM) and 

inorganic material (DIM) which nutritionally support primary production by autotrophic 

ultraplankton and secondary production by heterotrophic bacteria. The guild o f primary 

consumers consisting o f organisms that graze on ultraplankton, and is currently reserved for 

micrograzers, heterotrophic nanoflagellates and ciliates. The secondary consumers feed on 

the first trophic level and the larger fraction o f the autotrophic ultraplakton. The feeding by 

both the primary and secondary consumers results in the release o f DOM and DIM which 

can support production o f autotrophic ultraplankton and heterotrophic bacteria. There are 

other additional important sources o f  DOM and DIM. such as leakage of photosvnthate from 

phvtoplankton and up welling o f nutrients, and their contributions to the pools is ecosystem 

specific. More recently the incorporation o f viruses (Murray and Eldridge 1994) and
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Figure I. Schematic diagram depicting the flow, as indicated by the direction o f the arrows, 

of particulate (solid lines) and dissolved (dashed lines) material through a microbial 

food web in the euphoric zone. Adapted from Azam et al. (1983) and Sherr and 

Sherr (1991). Relative trophic level is indicated by vertical position.
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microscopic detritus (Posch and Arndt 1996) into microbial food webs has added additional 

levels o f complexity to the food web. An organism can be considered a primary consumer 

in the microbial food web if  it grazes primarily on ultraplankton. Current models o f 

microbial food webs have excluded macro invertebrates from the guild o f primary consumers 

due to a lack of direct evidence that macroinvertebrates feed on ultraplankton (Azam et al. 

1983. Sherr. E. B. and Sherr 1991).

There is strong evidence to hypothesize that ultraplankton is an important food source 

for benthic macroinvertebrates. In theory, there are a variety o f organisms that have the 

capability to remove ultraplankton from the water that they process (Rubenstein and Koehl 

1977. Shimeta and Jumars 1991). Reiswig (1971a) found that a majority o f the particulate 

organic carbon retained by Caribbean coral reef sponges was unresolvable using the 

techniques available at the time. He hypothesized that the unresolvable paniculate organic 

carbon (URPOC) was plankton < 2 pm (picoplankton). More recently. Avukai (1995) found 

net retention of heterotrophic bacteria and Svnechococcus-tvpe cyanobacteria, up to 90%. at 

Davies Reef, the Great Barrier Reef. Australia. The resultant net flux of carbon to the 

benthos was equal to the primary production estimates o f the benthos for the same reef. He 

hypothesized that this flux was the result o f grazing by the benthic community, and suggests 

that in some shallow communities microbial plankton can be an important source o f 

exogenous carbon. This evidence is contrary to the hypothesized minimal effect of benthic 

bacterioplankton grazing at Davies Reef, which was based on a limited number of organisms 

with relatively low. typically < 5%. retention efficiencies o f heterotrophic bacteria (Sorkin 

1973. Ducklow 1990). Other researchers have found that the growth rates o f heterotrophic
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bacteria are higher than those necessary to balance the grazing pressures o f micrograzers on 

coral reefs (Moriarty 1979, Moriarty et al. 1985. Linley and Koop 1986) and in salt marshes 

(Sherr. B. F. et al. 1986. 1989) and theorized that grazing of bacterioplankton by the benthic 

community is a major contributing factor in plankton community dynamics. While pelagic 

macro invertebrates such as salps and tunicates. are known to graze on ultraplankton, the 

feeding rates have yet to be accurately quantified due to the difficulty of accurately quantify 

feeding on ultraplankton (Alldredge and Madin 1982). The unexplored role o f 

macroinvertebrates grazing on ultraplankton at the organismal to ecosystem level has further 

consequences since investigators have ignored the ultraplakton to macro invertebrate trophic 

link and excluded macroinvertebrates from the theory of the microbial food web (.Azam et 

al. 1983. Sherr. E. B. and Sherr 1991).

The missing piece o f evidence that has precluded inclusion o f  macroinvertebrates in 

the microbial food web is knowledge o f their feeding ecology. Quantifying suspension 

feeding on ultraplankton is difficult. However, recent advances that simplify the techniques 

used to quantify microbial plankton and their application to the feeding ecology o f 

macro invertebrates promise to provide new insights.

Methods employed during these studies 

This research employed novel techniques to quantify the feeding ecology of sponges 

in freshwater and marine ecosystems. Suspension feeding was directly measured in situ as 

the retention o f ultraplankton and coupled with concurrent measurements of sponge pumping 

activity. L’ltraplankton was quantified using dual-beam flow cytometry. Since this is the
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first time that these techniques have been used in combination to quantify the feeding 

ecology o f any organism on ultraplankton their choice merits some discussion.

Indirect vs Direct Measurements o f Microbial Retention 

Feeding by suspension feeders can be quantified using direct or indirect 

measurements. Traditionally, particle retention was measured indirectly by following cell 

concentrations over a fixed period o f time in a closed system. This measure is commonly 

known as a clearance rate. Clearance rates have many variants but can generally be 

calculated after Jorgenson (1943):

In Ct = -r t/V -  In C0 (1)

where r is clearance rate, t is time. V the volume o f water in the experimental container. C0 

the concentration o f cells at t = 0. and Ct the concentration o f cells at a designated time. 

Linear regression is then employed to determine r. Clearance rates o f ultraplankton have 

been conducted on bivalves with natural bacterioplankton (e. g.. Wright et al. 1982. Werner 

and Hollibaugh 1993) and with cultured bacteria and autotrophic eucaryotes < 5 jam (e. g.. 

Stuart and Klumpp 1984. Lesser et al. 1992). Clearance rates are typically determined in 

beakers ranging in volume from 0.5-1.5 I containing multiple feeding individuals, with 

samples collected every 10-30 min over experimental periods o f 1 -1.5 h (Wright et al. 1982. 

Wemer and Hollibaugh 1993). Removal o f water samples from the experimental containers 

typically results in a greater than 10% decrease in the volume of the water over the 

experimental period which can effect pumping rates o f bivalves (e. g.. Wright et al. 1982.
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Werner and Hollibaugh 1993). The calculation o f clearance rates makes the assumption that 

the rate o f particle capture is independent o f particle concentration and volume processed. 

In other words, organisms are presumed to capture particles with the same efficiency 

regardless o f concentration o f  particles, and the volume How rate of water processed by the 

organisms is assumed constant during the experiment.

The effect o f abundance and quality o f food on the suspension-feeding behavior o f 

bivalve molluscs has been well studied (e.g.. Bayne 1993). Ultimately this body of research 

has found that the rate at which water is processed by active suspension feeders is inversely 

proportional to food availability with a threshold concentration of food at which the change 

in pumping rate occurs. Thus, during measurements of clearance rates as the concentration 

o f food decreases the volume o f water that the organism processes per unit of time increases. 

During the course o f incubations for determining clearance rates the rate at which water is 

being processed changes due to the decrease in particle concentration as a result o f feeding 

by the organism. Although this phenomenon has yet to be observed in suspension feeders 

that graze on ultraplankton, it is not unreasonable to believe that these types of suspension 

feeding behaviors would be found.

Clearance rates have also been used to estimate the amount of water processed by- 

organisms. The best example of why this should not be done comes from a study by 

Riisgard et al. (1993). They directly measured pumping activity in the sponge Haliclona 

urceolus during incubations that measured clearance rates. The directly measured pumping 

rates were double those that were empirically calculated from the clearance rates. They do 

not suggest a mechanism for the differences, but conclude that pumping rates calculated from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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clearance rates are gross underestimates. An accurate measurement o f the pumping activity 

o f suspension feeders is essential for determining their feeding ecology. The amount of 

water processed by active suspension feeders can be easily quantified using a simple heated 

microthermistor flow probe designed by LaBarbera and Vogel (1976) either in situ or under 

laboratory conditions.

The calculation of clearance rates assume that the environmental changes occurring 

in the container over the study period do not affect the volume of water processed by the 

experimental organism. Suspension feeders pump at their highest rates when maintained 

under fully aerobic conditions, yet there has been no measure o f oxygen consumption during 

any of the experiments that have determined ultraplankton clearance rates (Harbison and 

Gilmer 1976. Alldredge 1981. Stuart and Klumpp 1984. Kemp etal. 1990, Lesser etal. 1992. 

Riisgard et al. 1993. Werner and Hollibaugh 1993) and only three investigators aerated their 

containers during experiments (Wright et al. 1982. Lesser et al. 1992. Riisgard et al. 1993). 

Macroinvertebrates also release large quantities of ammonium from remineralization of 

organic material which can reach toxic levels in experimental containers in a short period of 

time. As an example, consider 3-5 mussels. Geukensici demissa (2.8 g dry weight), placed 

in a I 1 container for a 90 min incubation (alter Wright et al. 1982). Geukensia demissa has 

an oxygen consumption of 0.06 ml 0 : g '1 dry weight m in'1 (Booth and Mangum 1978) and 

an ammonium release rate o f 0.30 ug g '1 dry weight min"' (Jordan and Valiela 1982). If the 

experiment was begun with oxygen at 8 ml I'1 and 20 uMol ammonium (after Jordan and 

Valiela. 1982). it would take 30 min for the level o f oxygen to reach hypoxic levels (< 3 ml 

0 ; I*1) and ammonium concentrations to become toxic. Since most organisms are placed in
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containers for a 15 min acclimation period, adverse conditions would be attained before the 

observations began if the chamber volume is too small.

More direct measurements o f retention o f particles can be conducted (1) at the 

organismal level where the concentrations o f prey cells in the water being filtered by the 

feeding organism are compared to the concentration found in the exhalent current or (2) at 

the community level by following the concentration o f plankton as it flows over a benthic 

community. At the organismal level retention efficiency can be computed following 

Palmer and Williams (1980):

R = 1 -  (S )  (2)

where R is percent retained or released. C. is concentration o f cells in exhalent current. C3 

is concentration of cells in ambient water. Positive values represent net uptake and negative 

values net release. Direct measurements have been performed in situ (Reiswig 1971a) and 

in the laboratory with cultured cells (Stuart and Klumpp 1984) and local water (Randlov and 

Riisgard 1979. Jorgensen et al. 1984).

The technique requires the isolation of the exhalent current which may be difficult 

in some organisms. Samples larger than 2 ml require passive collection whereas small 

volumes, s 2 ml. can be collected by hand (Stuart and Klumpp 1984). Samples can be easily 

contaminated by ambient water if collected faster than the velocity of the exhalent current, 

by using an apparatus for collection that has a cross sectional area larger then the size o f  the 

exhalent jet. or if  the exhalent current is not well defined due to turbulence in the overlying 

water.
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More recently, benthic boundary layer theory has been applied to quantify directly

the retention o f plankton by benthic communities (Frechette et al. 1989. ECoseff et al. 1993.

Butman et al. 1994. Savarese et al. 1996). The theory postulates that in some benthic

habitats boundary layers develop where the sum o f input o f plankton from the overlying

water column due to turbulent mixing and settling o f plankton is less than that retained by

the benthos. Relative to the benthos, the thickness o f the boundary layer is constrained by

the physical parameters of shear velocity, bottom roughness, and the organismal component

o f the ability-' o f  the excurrent jets to penetrate out o f the boundary layer (O’Riordan et al.

1995). Thickness o f the boundary layer is related inversely to shear velocity and directly to

bottom roughness. Ultimately, the benthic community onlv has access to. and can onlv w • ' • «

afreet, the water column within the boundary layer. Theoretically, changes in concentrations 

o f any measured parameter within the boundary layer have to be the result o f  the benthos. 

So. simply measuring concentration gradients coupled with simultaneous measurements of 

the boundary layer will yield a benthic community-mediated flux.

All o f the aforementioned parameters can be empirically calculated, yet the theory 

has not specifically been tested in the field or with ultraplankton. Boundary layer theory has 

been used to examine feeding by the blue mussel. Xfydlus edulis. Depletion of 

phytoplankton within the boundary layer correlated with the results o f a model o f grazing 

within experiments performed in a flume (Frechette et al. 1989. Butman et al. 1994). Also. 

XL edulis depleted phytoplankton concentrations, while not affecting bacterioplankton 

concentrations in field studies o f water flow over mussel beds (Wright et al. 1982). The lack 

o f a feeding effect by XL edulis on bacterioplankton was expected, because the mussels did
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not retain bacterioplankton in concurrent laboratory studies (Wright et al. 1982). However, 

these studies do demonstrate that under some conditions benthic communities have limited 

vertical access to water column communities, and demonstrate that horizontal flow, as 

opposed to vertical mixing, is essential for benthic communities to meet their nutritional 

requirements.

In summary, at the organismal level, direct measurements of feeding are more 

reliable for determining retention o f ultraplankton while community level fluxes are best 

directly quantified using boundary layer theory. Direct measurements of feeding place less 

stress on organisms as they are easily conducted in situ and. if  coupled with the power o f 

dual-beam flow cytometry, the small water samples can be easily collected. However, some 

organisms do not lend themselves to direct measurements o f feeding since they do not have 

defined exhalent currents or they are passive suspension feeders. For such instances 

community level fluxes, either in situ or in flumes, are the preferable measurements. 

Clearance rates should only be used as a last resort and only if environmental parameters are 

monitored carefully during the experiments by employing recirculating metabolism 

chambers (e. g.. Patterson et al. 1991).

Quantification o f ultraplankton 

Currently, there are two methods that can accurately identify and enumerate 

ultraplankton: epifluorescence microscopy and flow cytometry. The techniques are similar 

in that they rely on the autofluorescent properties of photopigments and DN'A stains to 

distinguish between the different cell types. Flow cytometry has been shown to be 40°o
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more accurate than epifluorescence microscopy, as it removes the human error o f visually 

identifying and counting cells (Karl 1994). Further. Prochlorococcus, an autotrophic 

procaryote ubiquitous to the worlds oceans (Chisholm et al. 1988. Olson et al. 1990. Li et 

al. 1992. Campbell et al. 1994). and an integral component o f  coastal water column 

communities, theoretically can be retained by any organism that can graze on 

bacterioplankton. Prochlorococcus spp. has only been identified using flow cytometry 

(Chisholm et al. 1988) as the autofiuorescence of chlorophyll a in Prochlorococcus spp. can 

not be seen with the human eye. More recently, epifluorescence microscopy coupled with 

the power o f  computer imaging systems has been used to identify and quantify' 

Prochlorococcus spp. (H. Ducklow personal communication). If traditional epifluorescence 

microscopy techniques are utilized. Prochlorococcus spp. are incorrectly identified as 

heterotrophic bacteria (Campbell et al. 1994). Prochlorococcus spp. can be identified using 

either single-beam (one laser) or dual-beam (two lasers) flow cytometry'. However, with the 

use o f DNA stains, dual-beam flow cytometry can be used to quantify heterotrophic bacteria 

and autotrophic procaryotes simultaneously (Monger and Landry 1993) whereas researchers 

who have utilized single-beam flow cytometry- to quantify suspension feeding in 

macroinvertebrates have employed the erroneous assumption that all nonautofluorescing 

panicles are detritus (Cucci et al. 1985. Shumway et al. 1985. Lesser et al. 1992). In the 

euphotic zone the most accurate way to identify and enumerate microbial communities is 

either dual-beam flow cytometry or epifluorescence microscopy with computer imaging, 

followed by the combination of single-beam flow cytometry with epifluorescence 

microscopy (sensu Li et al. 1992). The use only of epifluorescence microscopy or single-
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beam flow cytometry should be avoided as neither technique can identify all types o f 

ultraplankton.

In general, flow cytometry is more suited for studies using macroinvertebrates as it 

only requires small samples. 1 ml (Campbell et al. 1994). as opposed to 4-50 ml necessary 

for epifluorescence microscopy (Wright et al. 1982. Wemer and Hollibaugh 1993). Small 

samples facilitate the use of direct measurements to quantity the retention of microbial 

plankton as small samples reduce the possibility o f  contamination by ambient water (Stuart 

and Klumpp 1984). Also, flow cytometry is much faster, taking only 5 min to analyze a 

sample as opposed to 70 min with epifluorescent microscopy (H. Quinbv. personal 

communication) allowing for the large number of samples necessary for statistical analysis. 

Ultimately, for the quantification o f the diet and retention efficiencies of macroinvertebrates 

the ease of sample collection and superior accuracy makes dual-beam flow cytometry a better 

technique than epifluorescence microscopy for identifying ultraplankton.

Organism o f  choice

Sponges are the predominant suspension feeding organisms in many marine and fresh 

water communities and appear to feed primarily on ultraplankton. Sponges are second to 

corals in abundance in reef communities (e. g.. Pichon and Morrissey 1981. Wilkinson 1987. 

Wilkinson and Cheshire 1990). and can cover 21-90% of the available habitat in temperate 

marine communities (Witman and Sebens 1990). Sponges can dominate macroinvertebrate 

biomass in some freshwater ecosystems (Bailey e ta l. 1995). Although active suspension 

feeders, sponges can passively filter water via induced flow by currents (Vogel 1974. 1977)
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and in coral reef systems have been estimated to filter the entire water column over their 

communities every 24-48 hours (Reiswig 1974). Sponge pumping rates vary with changes 

in temperature and salinity in laboratory studies (Fell et al. 1989. Riisgard et al. 1993) yet 

diel and seasonal variations in in situ sponge pumping generally remain univestigated 

(Reiswig 1971b).

All sponges are heterotrophs but sponges with endosvmbiotic cyanobacteria or algae 

have a phototrophic component to their nutrition. Translocation of carbon compounds from 

endosymbionts in sponges is similar to that of corals and is a convenient analog (Wilkinson 

1979. Falkowski et al. 1993). The translocation o f glycerol from symbionts can account for 

50% of the nutritional needs of some sponge species common to the Great Barrier Reef, but 

remains generally uninvestigated for Caribbean species (Wilkinson 1979. Wilkinson and 

Cheshire 1990). However, carbon in a similar form, translocated from the endosymbionts 

o f corals, is quickly respired rather than incorporated into new biomass and is considered 

"junk food" (Falkowski et al. 1993). Additionally, new evidence suggests that the 

translocation o f glycerol-derived, small organic phosphates translocated by the symbiont to 

the sponge host (Wilkinson 1979) may be used by the host sponge as electron donors in 

oxidation-reduction reactions, similar to the 3-phosphate shuttle between chloroplast and 

cytoplasm in plants (Arillo et al. 1993).

Sponges consume a variety o f plankton, generally bacterioplankton (Reiswig 1971a. 

1975) which may supply compounds necessary for the synthesis o f animal proteins or 

nucleic acids that are required for growth and reproduction (Falkowski et al. 1993). The 

techniques utilized by previous researchers to quantify suspension feed in sponges included
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radiolabeling o f plankton, direct counts, and plating o f bacteria, and accounted for 17-100% 

o f the metabolic requirements o f the sponges (Reiswig 1971a, 1975. van de Vyver et al. 

1990). The investigators suggested that sponges may be using dissolved organic carbon 

(DOC) or picoplankton (e. g.. heterotrophic bacteria, prochlorophytes. Svnechococcus-type 

cyanobacteria) that could not be resolved with conventional methods (Reiswig 1971a).

Two studies suggest that as a consequence o f sponge heterotrophic feeding and or 

endosvmbiotic exudates, sponges are a source of dissolved inorganic nitrogen (DIN) and 

phosphorous (DIP) to coral reef communities (Corredor et al. 1988. Schubauer 1988). These 

fluxes ultimately depend on sponge pumping, which fluctuates with photoperiod and 

temperature (Reiswig 1971b). and nutritional mode (heterotrophv vs. autotrophv). 

Consequently, the magnitude of DIN flux may change on a diel to seasonal scale. The few 

estimates o f sponge contributions to local DIN standing stock suggest that dense 

assemblages o f the endosvmbiotic sponge. Chondrilla nucula. can supply in excess o f 100% 

of the local coral reef community daily DIN requirements (Corredor et al. 1988) and that 

sponges function as the dominant DIN recycling taxa and are second to nitrogen fixing reef 

algae as an overall source o f DIN to coral reefs (Schubauer 1988).

Overall, sponges are an ideal organism for studying the role o f microbial food webs 

in benthic-pelagic coupling. They are hypothesized to feed primarily on microbial plankton 

and in return release DOM and DIM which can support production o f heterotrophic bacteria 

and autotrophic ultraplankton. They are active suspension feeders with well defined exhalent 

currents that can easily be sampled. Sponges can be easily studied in situ using modem 

SCUBA techniques. Globally, sponges can be a biomass dominant in freshwater and marine
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ecosystems. These observations on sponges suggest that they are an important, under 

studied, component o f  benthic communities.

Scope o f  the dissertation 

This dissertation addresses the fundamental question Are macro invertebrates 

members o f the guild o f  primary consumers within microbial food webs? Chapters 2 and 3 

are devoted to describing the diet, retention efficiencies, and distribution of two species of 

freshwater sponge and one species o f  marine sponge. The fourth chapter details the release 

of dissolved inorganic nitrogen and phosphorus by two species o f coral reef sponges at the 

organismal and ecosystem level. Chapter 5 provides a general overview of how microbial 

food webs can be incorporated in benthic pelagic coupling.
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ABSTRACT

Endemic freshwater demosponges dominate the benthic biomass in the littoral zone 

o f Lake Baikal. Siberia. Russia. We measured in situ  sponge abundance and grazing and 

calculated sponge-mediated fluxes o f picoplankton (plankton < 2 pm) for two common 

species. Baikalospongia intermedia and B. bacilli/era. The encrusting sponge B. intermedia 

covers 38% o f the available surface area, while the globose sponge B. bacillifera covers only 

2%. Using dual-beam flow cytometry we quantified sponge suspension feeding on four 

types of picoplankton: heterotrophic bacteria. Synechococcus- type cyanobacteria, autotrophic 

picoplankton with one chloroplast (APP I), and autotrophic picoplankton with two 

chloroplasts (APP ID. B. intermedia was an unexpected net source for .APP I and .APP II. 

with exhalent cell concentrations 37 and 12 times above ambient levels respectively, while 

heterotrophic bacteria and Synechococcus-vypz cyanobacteria exhalent concentrations were 

decreased by 71 and 58% respectively. Feeding efficiencies for B. bacillifera were 

significantly higher than those o f B. intermedia for all types o f plankton except 

Synechococcus-vypt cyanobacteria, which was not statistically different (84% for 

heterotrophic bacteria. 66% for Synechococcus-xypc cyanobacteria. 99% for.APP I. and 81% 

for APP II). Using a general model for organism-mediated fluxes, we conservatively 

estimate that through active suspension feeding sponges are a sink for 1.97 g C d‘: m':. 

mostly from procaryotes, and a net source of 0.85 g C d '1 m': in the form of picoeucaryotic 

cells. Further, grazing by these extensive sponge communities can create a layer of 

picoplankton depleted water overlying the benthic community in this unique lake.
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INTRODUCTION

Planktonic cells less than 5 um in size, ultraplankton. are responsible for a large share 

of the primary and secondary production in freshwater and marine ecosystems (Stockner and 

Antia 1986. Hobbie 1988. Stockner 1988) yet the role of ultraplankton in benthic-pelagic 

coupling remains uninvestigated. Many benthic invertebrates from a variety o f phyla have 

the capability to feed on this component of the water column community (Rubenstein and 

Koehl 1977, Jorgensen 1983. Jorgensen et al. 1984). The most conspicuous component of 

freshwater and marine benthic communities that has previously been shown to feed primarily 

on ultraplankton are the sponges.

Sponges are the most common benthic invertebrates in some freshwater lakes 

(Bailey et al. 1995) and ponds (Frost et al. 1982). second to corals in abundance in reef 

communities (e. g.. Wilkinson 1987). and can cover 21-90% o f the available habitat in 

temperate marine communities (Pomponi and Meritt 1990. Witman and Sebens 1990). All 

sponges are heterotrophs but sponges with endosvmbiotic cyanobacteria or algae have a 

phototrophic component to their nutrition (Wilkinson 1983). Sponges consume a variety 

of plankton, generally bacterioplankton and autotrophic plankton < 2 um (picoplankton) 

(Reiswig 1971b. 1975. Wilkinson 1978. Huysecom et al. 1988. van de Vvver et al. 1990). 

.Although active suspension feeders, sponges can passively filter water via induced flow by- 

currents (Vogel 1974. 1977). and have been estimated to filter the water over their 

communities every 24-48 hours (Reiswig 1971a. Savarese et al. 1996).

Lake Baikal is the world's deepest (1637 m maximum depth). largest by volume 

(23.000 km:’). and oldest (ca. 25 million years) body of freshwater (Zhadin and Gerd 1963).
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Unlike most lakes, the littoral zone has extensive sponge communities and three species 

dominate the rocky substrate; Baikalospongia bacillifera, B. intermedia, and Lubomirskia 

baicalensis which have globose, encrusting, and branching forms respectively. All three 

species are brilliant green due to their endosvmbiotic relationship with zoochlorellae. 

Surprisingly, sponge abundance, diet, and the impact of sponges on water column 

communities has never been assessed.

METHODS

During August 1993. we measured sponge-mediated fluxes o f picoplankton at two 

locations in Lake Baikal (Figure 2) using an integrated set o f in situ measurements. Sponge- 

mediated flaxes of picoplankton were calculated from empirical measurements using a 

generalized model for active suspension feeders that incorporates organismal and community 

measurements and can be stated verbally as:

volume processed
organism-mediattd flux = Awater c0*™” ProPFP  « . , gmpmg mit < number of pumping units (3)

volume processed time benthic surface area

In this case, the water column property is picoplankton concentration and the pumping units 

are sponge oscula. Sponge pumping was determined using in situ measurements and is 

reported in part 1 by Savarese et al. (1996). This paper encompasses the remaining two 

components, sponge diet and abundance and examines the sponge-mediated flaxes of 

heterotrophic and autotrophic picoplankton by two species. B. bacillifera and B. intermedia.
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Figure 2. Map Lake Baikal. Siberia. Russia showing the locations o f the video transects (■) 

and the feeding studies ( • ) .
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Previous researchers have had difficulty accurately quantifying suspension feeding 

on ultraplankton using techniques such as radiolabeling o f  plankton, direct counts, and 

colony counts (Reiswig 1971b, 1975, Wilkinson 1978, Huysecom et al. 1988, van de Vyver 

et al. 1990). They accounted for 17-100% o f the metabolic requirements o f the sponges 

(Reiswig 197lb. 1975. Wilkinson 1978, van de Vyver et al. 1990) and Reiswig (1971b) 

suggested that sponges may be using dissolved organic carbon (DOC) or plankton that could 

not be resolved with conventional methods. Recent advances in laser based technologies 

have resulted in more accurate methods for the quantification o f ultraplankton. Single-beam 

flow cytometry has been used to quantify suspension feeding by macroinvertebrates on 

panicles larger than 3 pm (Cucci et al. 1985. Shumway et al. 1985. Lesser et al. 1992) 

however, the application of dual-beam flow cytometry to quantify both heterotrophic and 

autotrophic picoplankton (e. g.. Monger and Landry 1993. Campbell et al. 1994) has yet to 

be utilized to quantify suspension feeding in organisms that are known to feed primarily on 

ultraplankton. Using dual-beam flow cytometry, we elected to quantify suspension feeding 

by sponges on heterotrophic and autotrophic picoplankton since (1) it is the component o f 

the water column community that sponges are most likely to feed on and (2) all previous 

research on freshwater and marine ecosystems indicates that a majority o f the water column 

productivity is within this size range. We do not suggest that this is the only component o f 

plankton within the water column community or the only component that sponges may be 

affecting.

To quantify sponge suspension feeding. I ml water samples were collected by
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at a depth o f 12 m. Five samples were taken from water adjacent to a sponge and five from 

the exhalent current o f a sponge osculum. Additionally, five I ml were collected at the 

depths o f 0.0.5, and I m from the bottom, as well as I and 5 m from the surface by SCUBA 

divers to quantify water column picoplankton at each location. Picoplankton samples were 

preserved for flow cytometry using standard protocols (Campbell et al. 1993) and held in 

either liquid nitrogen, dry ice. or at -80° C till processing.

Plankton < 3 um were quantified at the University o f  Hawai'i Flow Cytometry 

Facility using an EPICS 753 flow cvtometer (Coulter Electronics Corporation, Hialeah. 

Florida). Samples were quick thawed, spiked with 0.57 jum Polvsciences Fluoresbrite 

standard beads, diluted 1:9 with filtered deionized water, and stained with Hoechst 33342 

following Monger and Landry- (1993). 50 ul of sample were illuminated with 1 W, o f the 488 

am line o f a 5 W argon laser, and a 225 mW UV laser focused through confocal optics. 

Orange fluorescence (from phvcoerythrin). red fluorescence (from chlorophyll a), and blue 

fluorescence (from DNA stained with Hoechst 33342) were collected through band pass 

interference filters at 575. 680. and 450 nm. respectively. The five measured parameters, 

forward- and right-angle light scatter (FALS and RALS). orange, red. and blue fluorescence 

were recorded on 3-decade logarithmic scales, sorted in list mode, and analyzed with a 

custom-designed software (CYTOPC. authored by Daniel Vaulot, CNRS and UPMC. Station 

Biologique. Roscoff. France). Picoplankton populations were identified to general cell type, 

heterotrophic bacteria. Synechococciis-typQ cyanobacteria, autotrophic picoplankton with one 

chloroplast (APP I), and autotrophic picoplankton with two chloroplasts (.APP II). and 

visually confirmed using epifluorescence microscopy.
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Differences between cellcounts from ambient and exhalent current water o f each type 

o f picoplankton were analyzed using paired r-tests for each sponge with a Bonferroni 

transformed experimentwise a  o f 0.00625 to determine the effects o f sponges on 

picoplankton (Sokal and Rohlf 1981). The mean feeding efficiency for each sponge was 

calculated as ((mean cell count ambient - mean cell count exhalent)/mean cell count ambient) 

x 100 for each type o f picoplankton and analyzed as a function of sponge species (B. 

bacillifera vs B. intermedia) using paired /'-tests with a Bonferroni transformed 

experimentwise a  o f 0.0125 (Sokal and Rohlf 1981).

Total sponge percent cover and mean number o f sponge oscula for B. intermedia and 

B. bacillifera were determined from underwater video transects (n=12). Three 8 m. 

haphazardly selected transects at a depth of 12 m were videotaped at three locations (Figure 

2) by SCUBA divers using a Panasonic V-99 video camera in an Ikelite underwater housing. 

At the fourth location three 8 m transects were videotaped using a remotely operated vehicle. 

Twenty randomly selected 1 n r  quadrants from each transect were analyzed for percent 

cover o f the bottom by the sponges B. intermedia. L. baicalensis. and B. bacillifera. a red. 

filamentous alga. rock, and uninhabitable substrate (sand). Mean number o f sponge oscula 

m': for B. intermedia and B. bacillifera was determined by directly counting oscula within 

the randomly selected quadrats thereby eliminating the effects o f size of individuals as well 

as the three dimensional nature o f hard bottom communities in the flux equation.

To determine sponge-mediated fluxes o f "living carbon" mean number o f 

picoplankton cells removed or expelled by an osculum was converted to g C using the per 

cell conversion factors o f 20 fg for heterotrophic bacteria and 470 fg for Svnechococcns-type
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cyanobacteria. These conversion factors were selected as they are for cells with mean 

diameters that are equal or greater than those found during this study. Carbon in the form 

of the eucaryotic cells o f APP I and APP [I were determined using the formula fg C= 433 x 

(biovolume (pm 3))0S66 with APP I and APP II having biovolumes of 0.35 and 0.50 um3 

respectively as determined from epifluorescence microscopy (Campbell et al. 1994 and 

references therein).

Instantaneous and diel pumping rates were determined for B. bacillifera by Saverese 

et al. (1996) and are comparable to that of other sponges (Reiswig 1971 a. 1974. Savarese et 

al. 1996). Additional pumping measurements were conducted on B. intermedia and although 

comparable to B. bacillifera. small sample sizes were not adequate for statistical comparison. 

Hence, we utilized the mean pumping rate of B. bacillifera. 0.13 ml sec'1 oscula'1 (plug flow- 

model). in flux calculations for both species (Savarese et al. 1996). In contrast to tropical 

marine sponges (Reiswig 1971a). these sponges demonstrated no diel variation in pumping 

during the period o f this study (Savarese et al. 1996). However, we used the assumption that 

all the oscula pumped actively for 12 hrs each d to obtain a conservative estimate of sponge 

activity.

RESULTS

Both sponges were highly efficient at removing picoplankton by active suspension 

feeding with efficiencies ranging from 58-99%. B. bacillifera significantly reduced 

concentrations o f all types o f picoplankton (Figure 3A). In contrast. B. intermedia 

significantly reduced heterotrophic bacteria and Synechococcus-typQ cyanobacteria from
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Figure 3. (A) Concentration o f each type of picoplankton in the ambient water and water 

from the exhalent currents o f the globose sponge Baifcalospongia bacillifera and the 

encrusting sponge B. intermedia and (B) feeding efficiencies (x = s. n=lO). HBac= 

heterotrophic bacteria. Svn= Svnechococcus-type cyanobacteria. APP 1= autotrophic 

picoplankton with one chloroplast. and .APP 11= autotrophic picoplankton with two 

chloroplasts. (A) White bars denote ambient water, and black bars, water from the 

exhalent current (x = s. n=50). All cell concentrations between ambient water and 

exhalent current water within cell types were significantly different as determined using 

paired r-tests with a Bonferonni transformed experimentwise experimental a= 0 .00625 

( * * ) •
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ambient levels while both APP I and APP II were significantly increased by 37 and 12 times 

above ambient levels, respectively (Figure 3 A). The feeding efficiency for B. bacilli/era on 

heterotrophic bacteria was 84% and significantly higher than the feeding efficiency of 71% 

for B. intermedia (r-test. fI7=-2.82. P=0.011). The mean feeding efficiencies o f 66% and 

58% respectively on Svnechococcns-type cyanobacteria were not significantly different (r- 

test, rI7=-0.95. P-0.36). The contribution o f  APP I and APP II by B. intermedia was 

significantly different than the respective removal efficiencies o f  99% (r-test. r,7=-40.3. P < 

0.001) and 8l%(r-test. -33.7. P < 0.001) by B. bacilli/era (Figure 3B).

Uninhabited substrate, or rocks, was the most common component o f the benthos, 

comprising 45% of the surface area whereas sand only accounted for 11%. B. intermedia 

was the most abundant sponge, covering 36%. followed by L. baicalensis with 6%. and B. 

bacillifera covered only 2% o f the benthos. The only other noncryptic component o f the 

benthic community was a filamentous red algae and it coverd 2% of the benthos ( Figure 4). 

None of the three noncryptic sponges were found living on any portion of the bottom not 

covered by hard substrate, thus sediment is considered an area uninhabitable by sponges. 

When percent cover was recalculated to that o f habitable benthic surface area, total sponge 

cover rose to 47%. Mean oscula m‘; for B. intermedia was 154.9 and for B. bacillifera 21.4.

Both B. bacillifera and B. intermedia obtained a majority of the carbon in their diet, 

an integrated removal o f 1.87 g C d '1 m': . from procaryotic cell types (Table 1). Although 

eucaryotes were removed by B. bacillifera. the addition of APP I and APP II to the water 

column by B. intermedia resulted in a net production o f 0.75 g C d '1 m‘: . During this study 

we were unable to determine whether the APP I and APP II coming from B. intermedia were
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Figure 4. Mean percent cover at 12 m of the sponges Baikalospongia intermedia. B. 

bacillifera. Lubomirskia baicalensis. a red. filamentous alga. rock, and sand.
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Table I . listimaled mean daily g C removed from (-) or added to (+) the picoplankton community by the globose sponge Baikalospongia 
bacillifera and the encrusting sponge B. intermedia occupying 1 n r  o f the benthos in Take Baikal's littoral zone at naturally occurring 
densities. Estimates were computed assuming that sponges were actively pumping for 12 hrs each day. integrated effect is the net 
effect of B. bacillifera and B. intermedia on the picoplankton community, na-not applicable

Sponge-mediated flux (g C d '1in'2)

Picoplankton component Baikalospongia bacillifera
%

diet B. intermedia
%

diet
Integrated

effect

Procaryotes

1 lelerotrophic bacteria -0.04 8 -0.03 2 -0.07

Synechococcux-ly pc cyanobac te ria -0.37 72 -1.43 98 -1.80

Total procaryotes -0.41 80 -1.46 100 -1.87

Tucaryoles

Autotrophic picoplankton with 1 
chloroplast -0.08 15 +0.32 n/a +0.24

Autotrophic picoplankton with 2 
chloroplasts -0.02 5 +0.53 n/a +0.51

Total eucaryotes -0.10 20 +0.85 n/a +0.75

Total o f all cell types -0.51 100 -0.61 100 -1.12
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viable, or nonviable organisms that would contribute to the detrital biomass. Our results 

suggest that relative to the water column, sponges are a carbon sink for procaryotes, but a 

carbon source for eucaryotes.

Water column profiles at the two study sites reflect the net decrease and increase in 

cell types (Figure 5) creating food-depleted (or enhanced) layers overlying these extensive 

suspension feeding communities. Both heterotrophic bacteria and Synechococcus-type 

cyanobacteria were depleted within 1 m o f the benthos at both locations despite the 

dramatically different topography o f the benthic communities. Olkhon Island has a gentle 

sloping littoral zone while Ushkani Island is a steep, almost vertical wall. Further, the 

Olkhon Island location was dominated by B. intermedia (Pile and Patterson, personal 

observation) and there is a resultant increase in APP II near the bottom.

DISCUSSION

The application o f dual beam flow cytometry to quantify picoplankton proved to be 

a powerful new tool for the quantification o f suspension feeding by macro invertebrates on 

heterotrophic and autotrophic picoplankton. This is the first record of grazing by freshwater 

macroinvertebrates on Synechococcus-typz cyanobacteria. Both B. bacillifera and B. 

intermedia were highly effective at grazing on picoplankton with efficiencies ranging 

between 58-99%. These efficiencies are comparable to that of other freshwater and marine
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Figure 5. Water column profiles for two locations overlying sponge communities. HBac 

( • )=  heterotrophic bacteria. Syn (■)= Synechococcns-type cyanobacteria. APP I (A) = 

autotrophic picoplankton with one chloroplast. and APP II (▼) = autotrophic 

picoplankton with two chloroplasts ( x = s. n=5). Benthic topography at Olkhon Island

(53° 3.99' N. 107° 18.99' EXFigure 2A), located on the western shore, is characterized 

by a gentle slope away from shore; Ushkani Island (53° 52.46' N. 109° 00.94' E) (Figure 

2B). on the eastern shore, is a wall. Both locations have a decrease in HBac and Syn 

within 1 m o f the benthic community. At Olkhon Island (B), a site dominated by B. 

intermedia, there is an increase in .APP II within 0.5 m o f the benthic community.
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source (Huysecom et ai. 1988. van de Vyver et al. 1990, Riisgard et al. 1993). The in situ  

techniques we employed are preferable to laboratory experiments using artificial food 

sources as they accurately reflect the organisms' ability to graze on natural assemblages o f 

picoplankton.

B. intermedia was an unexpected source for two types o f picoeucarvotes. APP I and 

APP II. While pelagic organisms have been found to be a source of bacterial plankton 

(Nealson et al. 1984. Lee and Ruby 1994) this is the first evidence that a benthic 

macro invertebrate is a source o f autotrophic plankton to the water column. Nealson et al. 

(1984) found that release o f symbiotic luminescent bacteria by shallow-water species of 

monocentrid and anomalopid fishes had an irregular pattern while Lee and Ray (1994) found 

that release of episymbiotic luminescent bacteria from the light organs o f squid occurred at 

dawn when they were no longer needed by their hosts. Since the doubling times of bacteria 

in the light organs o f  the host can be one half of that in seawater they suggest that expulsion 

is a form of population regulation. Additionally. Lee and Ray (1994) found that the 

luminescent bacteria. Vibrio fischeri. were a component o f bacteria plankton communities 

only in areas with populations on the host squid.

Like many sponges B. intermedia is covered by a thick mucus coating that can either 

inhibit or enhance the growth of episymbionts (Becerra et al. 1994). Given the magnitude 

o f the increases above ambient levels, we suggest that .APP I and .APP II may be expelled by 

the sponge after living within the mucus layer on the exterior or within the aquiferous system 

of the sponge via the exhalent currents, similar to a mechanism described by Ducklow and 

Mitchell (1979a. b) for bacteria and coral. They demonstrated that bacteria living within the
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external mucus coating o f corals utilize the mucus as a source o f nutrients and can be 

released from the corals to the water column community. Unfortunately, it is impossible to 

tell from this study if the APP I and .APP II expelled from B. intermedia are living cells that 

would enter the carbon pool associated with the water column or dead cells that would 

contribute to the detrital biomass or if there is any periodicity in production. However, we 

recently found two species o f sponge common to coral reefs that are also a net source o f 

autotrophic eucarvotic picoplankton and neither exhibited any diel variation in expulsion 

(Pile 1996'). This suggests that expulsion o f episvmbiotic autotrophs is most likely mediated 

by the pumping activity o f the sponge.

Sponges dominated the littoral zone of Lake Baikal, covering 47% o f the available 

surfaces. A percent cover of 47% for sponges is unusual for a freshwater ecosystem and 

difficult to compare to reported sponge biomass and occurrence for freshwater ecosystems 

(Frost et al. 1982. Bailey et al. 1995). However, it is comparable to some coral reef 

(Wilkinson 1987). temperate marine (Witman and Sebens 1990). and near shore .Antarctic 

benthic communities (Dayton et al. 1974).

Our estimates o f sponge-mediated fluxes of picoplankton. which incorporated in situ 

measurements of sponge grazing, sponge abundance, and sponge pumping, found that 

sponges in Lake Baikal’s littoral zone are a net sink for procaryotic cells types while a net 

source for eucarvotic cell types. Sponges removed 1.97 g C d '1 m‘: from the water column, 

mostly in the form of procaryotic cell types. Although all types o f picoplankton contributed 

to the daily sponge-mediated flux. Synechococcus-v.rpe cyanobacteria was by far the largest 

component, contributing 91% of the total daily flux. Previous estimates for tropical marine
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sponges found that 0.80-1.80 g C d '1 m‘2 were necessary to meet metabolic carbon demands 

(Reiswig 1971b). Further, he found that 80% of the carbon flux by marine sponges was from 

"unresolvabie particulate organic carbon", most likely heterotrophic and autotrophic plankton 

which could not be identified using methods available at the time. By using dual-beam flow 

cytometry to accurately quantify picoplankton and converting direct counts o f cells to carbon 

using standard conversion factors, we estimated a slightly higher sponge-mediated flux of

1.97 g C d '1 m :. Baikal sponges are grazing on a water column dominated by procaryotic 

cell types, similar to that o f coral reef ecosystems (Stockner and Antia 1986. Hobbie 1988. 

Stockner 1988. Ayukai 1995). but they comprise more o f the benthos than sponges on coral 

reefs ( Reiswig 1971b) and thus they have a higher estimated sponge-mediated flax.

The grazing rates o f these sponges were so high that food-depleted layers developed 

over the benthos. Food-depleted layers have been previously identified in a variety o f other 

communities dominated by suspension feeders (Glynn 1973. Buss and Jackson 1981. 

Peterson and Black 1987. Frechette et al. 1989. Butman et al. 1994). vet the ability' o f 

organisms that feed primarily on picoplankton to create food-depleted or enhanced layers had 

been undocumented. Food-depleted layers develop when removal o f plankton by suspension 

feeders exceeds input of plankton from higher in the water column from turbulent vertical 

diffusivity and sinking (Frechette et al. 1989. Butman et al. 1994. Savarese et al. 1996). We 

found picoplankton depleted and enhanced layers overlying both communities where feeding 

studies were conducted. Both days were calm, with little wind mixing of the water column, 

suggesting that horizontal flow of picoplankton rich water over the community is necessary 

to provide a heterotrophic food source for the sponges.
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The extensive sponge communities in Lake Baikal's littoral zone significantly impact 

local picoplankton communities through active suspension feeding. Due to the large volume 

of water in the lake it is unlikely that the sponge communities will affect the total 

picoplankton community. More importantly, in this study we have demonstrated that 

extensive macrobenthic communities can be supported by heterotrophic and autotrophic 

picoplankton. We recommend in situ measurements coupled with the power o f dual-beam 

flow cytometry as a new tool for quantifying the grazing by macroinvertebrates on 

picoplankton. This technique promises a better understanding of the flow of carbon within 

closely coupled benthic-pelagic ecosystems such as those in shallow, near shore communities 

in marine and freshwater ecosystems.
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ABSTRACT

Ultraplankton, heterotrophic and autotrophic plankton < 5 pm, are the most abundant 

food source in the world's oceans, yet their role as a food source for macroinvertebrates is 

largely unexamined. We quantified in situ feeding on heterotrophic and autotrophic plankton 

<10 um. by the boreal sponge Mvcale lingua using measurements that quantified sponge 

feeding efficiencies, pumping rates, and abundance to determine the contribution of plankton 

< 10 pm to sponge carbon intake. Using dual-beam flow cytometry we identified 5 

populations o f plankton < 10 pm: heterotrophic bacteria. Prochlorococcus. Synechococcus- 

tvpe cyanobacteria, autotrophic eucaryotes < 3 pm. and autotrophic eucaryotes 3-10 pm. 

Mycale lingua nonselectivelv grazed on all types of plankton < 10 pm. Prochlorococcus was 

filtered with the highest efficiency (93%). followed by Synechococcus-type cyanobacteria 

(89%). autotrophic eucaryotes 3-10 pm (86%). heterotrophic bacteria (74%), and autotrophic 

eucaryotes < 3 pm (72%). We conservatively estimate that M. lingua at naturally occurring 

densities can obtain 29 mg C d a y 1 m': feeding on plankton <10 pm. with 74% resulting from 

ultraplankton, suggesting that ultraplankton are an important overlooked component o f 

benthic-pelagic coupling.
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INTRODUCTION

Planktonic cells less than 5 jam in size, ultraplankton, are responsible for a large share 

o f the primary and secondary production in marine ecosystems (Stockner and Antia 1986. 

Hobbie 1988) yet the role o f ultraplankton in benthic-pelagic coupling remains 

uninvestigated. .Although there are a variety o f macroinvertebrates that have the capability 

to feed on ultraplankton (Rubenstein and Koehl 1977. Jorgensen 1983. Jorgensen et al. 

1984), the most conspicuous component o f marine benthic communities that has previously 

been shown to feed primarily on ultraplankton are the sponges (Reiswig 1971b).

Sponges are ubiquitous to both freshwater and marine ecosystems, constituting the 

dominant active suspension feeding macroinvertebrate in many communities from freshwater 

streams to the world's oldest, deepest lake (Lake Baikal)(e. g.. Frost and Williamson 1980. 

Sand-Jensen and Pedersen 1994, Pile et al. 1996), tropical to Arctic waters (e. g.. Reiswig

1973. Dayton et al. 1974. Wilkinson 1987). and from the deep sea to estuaries (e. g.. Koltun 

1970. Pomponi and Meritt 1990. Vacelet et al. 1994). The unique ability o f these organisms 

to adapt to all ecosystems by utilizing a variety of food sources ranging from dissolved 

organic material (DOM: Reiswig 1990) to small crustaceans (Vacelet and Boury-Esnault

1995) suggested that they may be able to exploit ultraplankton as a primary food source.

Globally sponges feed primarily on picoplankton (plankton < 2 ,«m) with efficiencies 

as high as 99% (Reiswig 1971b. 1990. Huvseccm et al. 1988. van de Vyver et al. 1990. Pile 

et al. 1996). Yet. we are aware o f  only three studies that utilized in situ techniques to 

determine the natural diet of sponges (Reiswig 1971b. 1990. Pile et al. 1996). one o f which 

was conducted in temperate marine communities (Reiswig 1990). Accurately quantifying
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ultraplankton make such studies difficult. These difficulties have been recently overcome 

with the application o f laser-based technologies, such as dual-beam flow cytometry, to 

accurately identify and enumerate heterotrophic and autotrophic ultraplankton 

simultaneously (Campbell et al. 1994). Single-beam flow cytometry has been employed to 

quantify suspension feeding in bivalves, tunicates, and gastropods on autotrophic plankton 

greater than 3 urn rn laboratory studies (Cucci et al. 1985. Shumwav et al. 1985. Lesser et 

al. 1992). Yet. many macroinvertebrates in a variety o f taxa have the capability to remove 

particles much smaller than 3 um and dual-beam flow cytometry is a more effective tool to 

accurately identify and quantify suspension feeding on both heterotrophic and autotrophic 

plankton in all size classes (Campbell et al. 1994. Pile et al. 1996).

Considering that freshwater sponges have removal efficiencies of ultraplankton up 

to 99% (Pile et al. 1996) coupled with sponges' ability to process copious volumes of water 

(Reiswig 1971a. Gerrodette and Flechsig 1979. Riisgard et al. 1993. Savarese et al. 1996) 

suggests that under some conditions sponges can substantially reduce the ultraplankton 

components o f the water column community. We investigated the grazing o f the boreal 

sponge Mycale lingua on plankton < 10 ,um using a series o f  in situ measurements coupled 

with the power o f dual-beam flow cytometry to identify plankton < 10 um and found that 

this macro invertebrate is extremely efficient at removing ultraplankton during active 

suspension feeding.
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METHODS

Sponge-mediated "living" carbon flux was calculated from empirical measurements 

employing the following model that can be used to determine organism-mediated fluxes for 

active suspension feeders and stated verbally as:

volume processed
organism - mediated flux = Aw atecohm n property , _pumping_ un i^  < number of pumping units (3)

volume processed time benthic surface area

where A water column property is the change in cell number as a unit volume is filtered by 

the organism and the pumping unit is one osculum. We conducted in situ measurements on 

six Xlycale lingua at Ammen Rock Pinnacle, in the G ulf o f Maine (northwest Atlantic 

Ocean: 42°51’25" N. 68°57'11" W). from September 15-19. 1994 that quantified (1) sponge 

feeding on plankton <10 am using dual beam flow cytometry. (2) instantaneous sponge 

pumping rate using a heated microthermistor flowmeter, and (3) sponge abundance using 

photo quadrats.

Xlycale lingua is a vellowish-white sponge with a pillow like shape that is common 

on rock walls at .Ammen Rock Pinnacle (Witman and Sebens 1990). Individuals are 

multioscular and. when fully expanded, oscula have diameters ranging from 13-23 mm. 

Observations o f sponges indicate that individual oscula respond negatively to touch by 

closing. Care was taken during all sampling to avoid touching the sponges with the 

experimental apparatus. During this study we observed periods when all the oscula o f an 

individual closed and water transport through the sponge, visualized with fluorescein dye. 

was at a minimum indicating periods o f pumping inactivity. These events were rare and 

asynchronous between individuals and locations.
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Sponge feeding on plankton <10 fim  was quantified using dual-beam flow cytometry 

at the University o f Hawai'i Flow Cytometry Facility with an EPICS 753 flow cytometer 

(Coulter Electronics Corporation, Hialeah, Florida). I ml water samples collected by 

SCUBA divers with 1 cc tuberculin syringes from 6 Mycale lingua at a depth of 30 m at two 

locations at Ammen Rock Pinnacle. Five samples were taken from the exhalent current of 

different oscula within a sponge (n=28) and five from ambient water at 0 m and 0.25 m 

(n=20) from the bottom at each location with the average at these two depths comprising the 

ambient water concentrations and preserved for flow cytometry using standard protocols 

(Campbell et al. 1994). Samples were spiked with 0.59 and 0.98 jam polystyrene beads and 

50 ul o f sample illuminated with 1 W. o f the 488 nm line o f a 6 W argon laser, and a 225 

mW UV laser focused through confocal optics. Orange fluorescence (from phycoervthrin ). 

red fluorescence (from chlorophyll a), and blue fluorescence (from DNA stained with 

Hoechst 33342) (Monger and Landry 1993) were collected through band pass interference 

filters at 575. 680. and 450 nm. respectively. Samples were then spiked with 10 am 

polystyrene beads and the discriminators reset to include the 10 um beads, and another 50 

ul o f sample processed as previously described so that larger plankton could be quantified. 

The five measured parameters, forward- and right-angle light scatter (FALS and RALS). 

orange, red. and blue fluorescence were recorded on 3-decade logarithmic scales, and sorted 

in list mode. Plankton populations were analyzed and enumerated with custom-designed 

software (CYTOPC. Vaulot 1989). Plankton populations were identified to the general cell 

types o f heterotrophic bacteria. Prochlorococcus. Synechococcus-type cyanobacteria, 

picoeucaryotes (autotrophic eucaryotes 2-3 am diameter), and nanoeucaryotes (autotrophic
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eucaryotes 3-10 pm  diameter) (Figure 6) because there is limited information on the 

identification o f picoplankton using dual-beam flow cytometry from the G ulf of Maine. Cell 

types were visually confirmed, except for Prochlorococcus. and cell diameters measured for 

picoeucarvotes and nanoeucaryotes using epifluorescence microscopy.

Differences between cell counts from ambient and exhalent current water of each type 

o f picoplankton were analyzed using two sample t-tests with a Bonferroni transformed 

experimentwise experimental a  o f 0.01 to determine the effects of sponges on picoplankton 

(Sokal and Rohlf 1981). The mean feeding efficiency for each sponge was calculated as 

[(mean cell count ambient water - mean ceil count exhalent current water)/mean cell count 

ambient water] x 100 for each type o f picoplankton and analyzed as a function of type of 

plankton using one-way analysis o f variance (ANOVA) models and Ryans Q-Test employed 

to determine differences between means (Underwood 1981. Day and Quinn 1989). The 

assumption o f homogeneity o f variance was tested with Bartlett's test. In order to maintain 

homogeneity of variance for the test of the effect of sponges on picoplankton. all cell counts 

for ambient and exhalent water were Iog(x -  1) and data back transformed for graphical 

representation. In all other instances, either the variances were homogeneous, or the 

hypotheses were rejected at a  values lower than the R-values o f the test for homogeneity of 

variance when homogeneity o f variance could not be achieved using any type of 

transformation (Underwood 1981).

Instantaneous sponge pumping was quantified using a heated microthermistor 

flowmeter (modified from LaBarbera and Vogel 1976). 45 second records were obtained 

by placing the microthermistor within the exhalent current perpendicular to the flow after
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Figure 6. Contours o f cell abundance in ambient water from Ammen Rock Pinnacle in 50 

ul samples. Red fluorescence results from chlorophyll a excitation and blue 

fluorescence from DNA stained with Hoechst 33342. A. Picoplankton with HBac = 

heterotrophic bacteria. Pro = Prochlorococcas. Svn = Svnechococcus-typz 

cyanobacteria. Peuc = autotrophic eucaryotes 2-3 urn cell diameter. B. Pico- and 

nanoeucarvotes with Peuc = autotrophic eucaryotes 2-3 ixm cell diameter, Neuc = 

autotrophic eucaryotes 3-10 ,um cell diameter and Picos = all types of picoplankton from 

panel A. Note that in panel B the blue and red fluorescence have relative higher 

settings, shifting the relative position o f the 0.98 um beads and clustering all o f the 

types o f picoplankton together. a.u. arbitrary units.
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water samples were collected for the feeding study (n=28). The output o f the flowmeter was 

encoded on a tape recorder using a frequency to voltage converter. Recordings were later 

converted to voltage and sampled at 10 Hz using a GW Instruments Model 411 A/D 

converter connected to an Apple Macintosh Plus. Mean velocity tor 10 second segments 

was determined from the recordings using a program written in the software Mathematica 

(Wolfram Research. Inc. Champaign. Illinois. USA). Sponge oscula were videotaped 

immediately following the use o f the heated microthermistor flowmeter and oscular area 

determined from digitized images using NIH Image 1.52. Volume processed per unit time 

was calculated using Q = uA where Q is volume flow (ml sec'1), u is velocity (cm sec'1), and 

A is the oscular area (cm:). This estimate o f volume processed assumes a model o f plug 

flow, or that the velocity profile o f exhalent current is rectangular, rather than laminar pipe 

flow in which the velocity profile is parabolic. This assumption is supported by the shape 

of exhalent currents in ascidians (Fiala-Medioni 1973. 1978) and it is most likely true for 

sponges (Savarese et al. 1996).

Sponge percent coverage and mean number o f sponge oscula n r  were determined 

from 4 permanent transects consisting of 92. 0.25 m: photo quadrats at 30-35 m depth. The 

percent cover of sponges in the photo quadrats was determined by projecting each 

photographed quadrat onto a grid of 200 random dots (2 mm diameter). Sponges with dots 

falling on them were identified, summed per quadrat, and expressed as percent o f 200 dots. 

Oscula of Mycale lingua were enumerated within each quadrat. Mean percent cover and 

number of sponge oscula m: were then calculated as the average of 92 quadrats.

To obtain a conservative estimate o f "living carbon" fed upon by sponges, mean
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number o f cells removed ml'1, as determined using flow cytometry, was converted to mg C 

for each o f the 5 types o f plankton <10 fim using standard cell conversions. Cellular 

conversions to carbon were 20 fg C cell'1 for heterotrophic bacteria (Ducklow et al. 1993), 

53 fg C cell'1 for Prochlorococcus (Morel et al. 1993), and 470 fg C cell'1 for Synechococcus 

(Campbell et al. 1994). These conversion factors were selected as they are for cells with 

diameters less than those found during this study thereby most likely underestimating the 

carbon available in the forms of heterotrophic bacteria. Prochlorococcus. and 

Synechococcus-tvpe cyanobacteria. Values for eucaryotes were computed using pg C = 

0.433 x (biovolume)0866 (Verity et al. 1992) with the mean biovolumes of 10.3 and 82.4 um ' 

respectively as determined from measurements o f the cells using epifluorescence 

microscopy. Further, we assumed that \lycale lingua was actively pumping at the mean 

instantaneous rate for 12 h a day. Some tropical marine sponges have a diel periodicity in 

pumping activity that results in 18 h day ' o f active pumping while some freshwater and 

marine sponges do not demonstrate any periodicity in pumping activity (Reiswig 1971a.

1974. Gerrodette and Flechsig 1979. Riisgard et al. 1993. Savarese et al. 1996). Further, by 

assuming a 12 h pumping period we are most likely under estimating the volume processed 

daily by Xfycale lingua.

It is o f interest to determine if Mycale lingua is selectively grazing on any o f the 

components o f the plankton community < 10 um. Selectivity indices require the probability 

that a particle in a given size category will be retained by the filtering apparatus and ingested 

(Vanderploeg and Scavia 1979). This is generally empirically calculated from microscopic 

measurements o f the filtering apparatus and is unavailable for .V/. lingua. Therefor, to
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determine if M. lingua is grazing selectively on any proportion o f the plankton community 

< 10 pm the percent o f carbon in the diet o f sponges was compared to the percent o f  carbon 

in the plankton component using a Kolmogorov-Smimov two sample test (Sokal and Rohlf 

1981).

RESULTS

Heterotrophic bacteria were the most abundant food available followed by 

Prochlorococcus. Synechococcus-type cyanobacteria, picoeucarvotes. and nanoeucarvotes 

(Table 2). Mycale lingua significantly decreased all 5 types o f plankton <10 um (Table 2. 

Figure 7A) from ambient concentrations at feeding efficiencies ranging from 72-93% (Figure 

7B). .V/. lingua was most efficient (93%) feeding on Prochlorococcus. Synechococcus-V; pe 

cyanobacteria (89%). and nanoeucarvotes (87%). Although not statistically different from 

each other, feeding efficiencies on Prochlorococcus. Svnechococcus-type cyanobacteria, and 

nanoeucarvotes were significantly higher than the feeding efficiencies on heterotrophic 

bacteria (74%) and picoeucarvotes (72%) which were not different from each other (ANOVA 

F4.:? = 14.27. P<  0.0001).

The mean velocity o f the exhalent currents was 14.0 cm sec'1 (s = 9.7 cm sec ') with 

a mean oscular diameter o f 0.12 cm: (s = 0.07 cm:) resulting in a mean sponge pumping rate 

of 1.6 ml sec'1 oscula'1 (s = 1.4 ml sec'1). Sponges on rock walls at 30-35 m depth at 

Ammen Rock Pinnacle cover 21% of the available benthic surface area with Mycale lingua 

covering only 8.9% of the benthic surface area, resulting in 7.6 oscula m': (s = 33.6 oscula 

m'2).
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Table 2. Summary of the effect o f individual Mycale lingua on the 5 types of plankton < 10 
fim. Mean cells ml'1 (std) in the ambient water and the exhalent current and t-values 
from two sample t-tests employing a Bonferroni transformed experimentwise a  = 0.01.

Type o f plankton Ambient Exhalent t

Heterotrophic bacteria 6.79 x 105 1.79 x 105 g

(1.81 x 105) (0.72 x 105)

Prochlorococcus 5.16 x 104 0.34 x 104 5.09***

(3.28 x 104) (0.15 x 104)

Synechococcus-type cyanobacteria 3.15 x 104 0.33 x 104 3.24**

(3.00.x 104) (0.16 x 104)

Autotrophic eucaryotes < 3 um 6.68 x 103 1.86 x 103 2.85**

(5.82 x t03) (0.77 x 103)

Autotrophic eucaryotes 3-10 um 832 113 4.45***

(55 7) (71)
** P < 0 . 0 \ .  *** P<  0.001. **** P <  0.0001.
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Figure 7. The effect o i Mycale lingua on plankton <10 um. (A) concentration o f each type 

o f picoplankton in the ambient water and water from the exhalent currents o f the sponge 

M. lingua and (B) feeding efficiencies. The abscissa is the same for both graphs with 

HBac = heterotrophic bacteria. Pro = Prochlorococcus. Syn = Synechococcus-type 

cyanobacteria. Peuc = autotrophic eucaryotes 2-3 um cell diameter. Neuc = autotrophic 

eucaryotes 3-10 um cell diameter. A. Pooled cell concentrations of ambient water and 

water from the exhalent current. Sponges significantly reduced concentrations o f all 

types o f  plankton < 10 um White bars denote ambient water ( x i s ,  n=20) and black 

bars denote water from the exhalent current (x ±  s. n=28). Y-axis for Neuc in la  is on 

the right. B. Back transformed mean feeding efficiencies (x = s. n=6) of .V/. lingua on 

plankton < 10 um. Bars sharing a symbol are not significantly different.
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Employing the model for organism mediated fluxes (1) and the carbon equivalent o f 

the mean number o f cells eaten ml'1, mean sponge pumping rate per oscula, and mean 

number o f oscula per n r , we conservatively estimate that for this benthic environment, 29 

mg C d '1 m': is captured by Mycale lingua through active suspension feeding. Carbon 

acquisition is evenly distributed between procaryotic and eucaryotic plankton <10 um (Table 

3) and not statistically different from those o f the water column community (Kolmogorov- 

Smimov two sample test. D5J = 36. P < 0 .01 ) . We are aware o f the limitations o f making 

such calculations and the data are presented in such a manner that should better cell 

conversions become available sponge-mediated fluxes can be recalculated.

DISCUSSION

Mycale lingua is highly efficient at grazing on heterotrophic and autotrophic plankton 

< 10 jam with feeding efficiencies comparable to those of other marine (Reiswig 1971b.

1975. Stuart and Klumpp 1984) and freshwater demosponges (Huysecom et al. 1988. van de 

Vyver et al. 1990. Pile et al. 1996). More importantly, the use of dual-beam flow cytometry 

has allowed us to accurately quantify the diet o f M. lingua. including the previously 

undocumented feeding of any macroorganism on Prochlorococcus.

Prochlorococcus are photoautotrophic. procaryotic picoplankton typically <0.8 um 

in diameter that can be easily anc accurately distinguished from heterotrophic bacteria using 

flow cytometry (Chisholm et al. 1988. Olson et al. 1990. Li et al. 1992. Veldhuis and Kraay 

1993. Campbell et al. 1994). Although they are extremely abundant (c. 10J m l'1), 

contributing up to 35% of the total biomass o f plankton <20 um. and found in all of the
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Table 3. Estimated mean mg C removed from the picoplankton community daily by the 
sponge M. lingua occupying 1 n r  o f the benthos at Ammen Rock Pinnacle at naturally 
occurring densities. Estimates were computed assuming that sponges were actively 
pumping for 12 hrs each day. % diet was calculated assuming all cells removed were 
consumed and % plankton component was calculated as the proportion of total "living 
carbon" o f plankton < 10 pm in the ambient water.

Sponge-mediated flux

Picoplankton component mg C d '1 m':
%

diet1
%

plankton component1

Procaryotes

Heterotrophic bacteria 5 18 20

Prochlorococcus 1 5 5

Synechococcus-type cyanobacteria 6 19

Total procaryotes 13 45 44

Eucaryotes

picoeucarvotes (2-3 am) 8 29 32

nanoeucarvotes (3-10 am) 8 26 24

Total eucaryotes 16 55 56

Total o f  all cell types 29 100 100

'Kolmogorov-Smimov two-sample test indicates distributions are not significantly different
(?< o.on.
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world's oceans, their abundance and distribution is highly variable (Chisholm et al. 1988, 

Olson et al. 1990, Li et al. 1992, Veldhuis and Kraay 1993, Campbell et al. 1994). They 

appear to increase in abundance at lower latitudes and with distance from land margins 

(Chisholm et al. 1988. Olson et al. 1990. Li et al. 1992. Veldhuis and Kraay 1993. Campbell 

et al. 1994).

Prochlorococcus is an integral component of the picoplankton in coral reefs (Pile

1996) and other ecosystems (Chisholm etal. 1988. Olson etal. 1990. L ieta l. 1992. Veldhuis 

and Kraay 1993. Campbell et al. 1994) dominated by pelagic and benthic macroorganisms 

with filters designed to capture particles 0.8 um or smaller (Rubenstein and Koehl 1977. 

Jorgensen 1983. Jorgensen et al. 1984). The diet of these taxa may have been incorrectly 

identified using conventional methods and total carbon-flux underestimated using traditional 

methods to identify plankton. Grazing on Prochlorococcus by both micro- and 

macroorganisms needs to be further quantified using dual-beam flow cytometry to resolve 

the flow of carbon in marine ecosystems.

Instantaneous pumping rates for Mycale lingua are on the higher end of the range of 

those o f other sponges (Reiswig 1971a. Gerrodette and Flechsig 1979. Riisgard et al. 1993. 

Savarese et al. 1996). Previous researchers have estimated the affect o f sponges on water 

column communities by determining the time for a community of sponges to process the 

entire overlying water column (turnover rate) (Reiswig 1974. Gerrodette and Flechsig 1979. 

Savarese et al. 1996). The have extrapolated the pumping rates with the fictitious 

assumption of a well mixed water column. Despite the inherent problems with these types 

o f calculations we estimate that at Ammen Rock Pinnacle M. lingua at naturally occurring
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densities processes a column of water 0.532 m high each day, taking 56.2 days to turnover 

the entire 30 m water column. A turnover rate o f  56.2 is much higher than previously 

determined near daily turnover times for other shallower sponge dominated communities 

(Reiswig 1974. Savarese et al. 1996). However, it is highly unlikely that sponges can affect 

the water column community more than I m from the substrate and that shear velocity, 

bottom roughness, and the strength o f  horizontal flow plays an important role in providing 

unfiltered water to the benthic community.

The extensive sponge community o f  Lake Baikal's littoral zone can create 

picoplankton depleted layer of water within I m o f  the benthos (Pile et al. 1996) while other 

benthic communities dominated by suspension feeding macroinvertebrates result in similar 

food depleted layers (Glynn 1973. Buss and Jackson 1981. Peterson and Black 1987. 

Frechette et al. 1989. Butman et al. 1994). Mean flow speeds during this study period were

0.20 m sec'1 (Witman and Patterson unpublished data) which were 3 times as high as those 

found in Lake Baikal (Savarese et al. 1996) and would most likely preclude the development 

of a food depleted boundary layer over Ammen Rock Pinnacle. To understand the effect of 

sponges on ultraplankton communities a more accurate descriptor is to determine the 

percentage of water that passes over the Ammen Rock Pinnacle daily that can be filtered by 

Mycale lingua. Ammen Rock Pinnacle has benthic surface area of 160 m: (Witman 

unpublished data), and a volume of 1730 m;' d a y 1 passes over the pinnacle that is available 

to sponges. Using the assumption that the sponges are only actively pumping for 12 h day1. 

Mycale lingua can conservatively process 5% o f the water that passes over Ammen Rock 

Pinnacle. The integrated feeding efficiency on ultraplankton (all procaryotes -
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picoeucarvotes) is 76%. Mycale lingua has a gross daily grazing effect o f removing 4% of 

the ultraplankton from the near bottom water. The incorporation o f  the remaining suite o f 

benthic invertebrates that feed primarily on ultraplankton that are common at Ammen Rock 

Pinnacle (Witman and Sebens 1988), such as the remaining sponges, ascidians (Riisgard et 

al. 1980, Stuart and FCJumpp 1984). juvenile and adult bivalves (Riisgard et al. 1980. Stuart 

and Klumpp 1984). and brvozoans (Winston 1978). will substantially increase the percentage 

of water that is grazed by suspension and filter feeders and most likely significantly impact 

near bottom, water column communities. More importantly, in shallower near shore 

ecosystems the effect o f grazing by benthic invertebrates on water column communities will 

be greater.

Previous estimates o f tropical sponge, daily carbon metabolic requirements range 

between 80 and 1800 mg C d '1 m : . which was met by a diet that consisted of bacteria and 

unresolvable particulate organic carbon (most likely other types o f picoplankton) (Reiswig 

1971b). Sponges in Lake Baikal's littoral zone can obtain 1970 mg C d‘‘ m'2 through active 

suspension feeding on both heterotrophic and autotrophic plankton < 3 um (Pile et al. 1996). 

Our estimates of areal carbon flux o f 29 mg C d‘‘ m': for Mycale lingua are lower than that 

previously described and this sponge is less abundant by an order o f magnitude (Reiswig 

1971b. Pile et al. 1996). Considering this. M. lingua is obtaining carbon from plankton <10 

,um at rates similar to other sponges.

Mycale lingua obtained carbon in nearly equal proportions from procaryotic and 

eucaryotic plankton < 10 um. This is in contrast to the freshwater sponges in Lake Baikal's 

littoral zone where a majority o f carbon was obtained from Synechococcus-type
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cyanobacteria (Pile et al. 1996) and tropical marine sponges where 80% o f captured carbon 

was obtained from bacterioplankton and unresolvable particulate organic carbon (Reiswig 

1971b). None o f the sponges examined with flow cytometry were selectively feeding on any 

component o f the plankton community (Pile et al. 1996. this study) suggesting that the 

composition o f the plankton community is an important factor in a sponge's ability to meet 

it’s metabolic carbon requirements. Ultimately, variability in water column community 

composition at many temporal scales (e. g.. seasonal, diurnal, and short term physical events 

such as internal waves and storms) can affect sponge nutrition.
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Chapter IV

The coral ree f sponges Ircinia felix  and I. strobilina as a source o f  dissolved
inorganic nitrogen and phosphorus:

Im plications for the role o f the m icrobial food web 
in benthic-pelagic coupling
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ABSTRACT

Sponges are an abundant, ecologically important member of Caribbean coral reefs 

yet their function in the cycling o f  dissolved inorganic nitrogen (DIN) and phosphorus (DIP) 

is largely unexplored. Employing short, in situ  incubations in recirculating metabolism 

chambers. I found that the tropical sponges Ircinia felix  and I. strobilina are a significant 

source o f ammonium, nitrate, and soluable reactive phosphate. Release rates of all species 

o f DIN and DIP was higher for I. fe lix  than I. strobilina. Total DIN and DIP release were 

calculated using in situ measurements o f sponge pumping rate (volume flux) and abundance. 

At naturally occurring densities for Conch Reef. Florida Keys. USA /. fe lix  released 186 

umol DIN d '1 m': and I. strobilina released 18 fimol DIN d '1 m ': . DIP release rates were 43 

and 5 umol d '1 m'; respectively. These release rates are an order of magnitude greater than 

those reported for coral reef sediments suggesting that regeneration of macronutrients by- 

sponges may be an important component in the cycling o f nutrients in coral reefs.
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INTRODUCTION

Coral reef ecosystems are characterized by extremely low concentrations o f dissolved 

inorganic nutrients in the overlying waters (Webb et al. 1975, Andrews and Muller 1983, 

Entsch et ai. 1983). Water that flows over coral reefs generally shows a net increase in 

dissolved inorganic nitrogen (DrN) and no net change in dissolved inorganic phosphorus 

(DIP) (see review by D'Elia and Wiebe 1990) despite some o f the highest levels o f gross 

primary production in the world (Lewis 1977). Researchers have explained the paradox of 

extremely high productivity within oligotrophic waters as due in part to the efficient 

recycling o f limiting macronutrients, such as nitrogen and phosphorus, by the benthos. 

Current theory postulates that a complex suite o f interactions between microbial and reef 

macrofaunal communities results in areas o f the reef that are net sources or sinks of DIN and 

DIP (e. g.. Pomeroy et al. 1973. Capone and Carpenter 1982. Atkinson 1987. Boucher et al. 

1994. Atkinson et al. 1995).

The highly productive benthic communities o f coral reefs are supported by 

endogenous and exogenous sources o f dissolved and paniculate organic material. 

Endogenous sources include the fixation o f carbon via primary production and of nitrogen 

via microbial processes. These are important sources of carbon and nitrogen in biologically 

available forms to the reef community (e. g.. Lewis 1977. Capone and Carpenter 1982). 

Primary production by symbiotic zooxanthellae support scleractinian corals that provide the 

carbonate framework for the reef. However, for coral reef organisms that do not have an 

autotrophic component to their diet an exogenous source of carbon and nitrogen is required 

for growth.
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There is strong evidence to hypothesize that ultrapiankton (heterotrophic and 

autotrophic procaryotes and eucaryotes < 5 pm) is an important exogenous source of 

particulate organic material for coral reefs. In the late 1960's Reiswig (1971) found that a 

majority o f the particulate organic carbon retained by Caribbean coral reef sponges was 

unresolvable using light microscopy, the technique available at the time. He hypothesized 

that the unresolvable particulate organic carbon (URPOC) was heterotrophic and autotrophic 

plankton less than 2 um (picoplankton). More recently. Ayukai (1995) found that as water 

traverses two Pacific coral reefs up to 90% o f the ultraplankton was retained by the reefs. 

He hypothesized that this was the result o f grazing by the benthic community. The resultant 

net flux o f carbon from the water column was equal to the benthic primary production 

estimates for the same reef. The role o f the microbial food web in benthic-pelagic coupling 

may be more important in the Caribbean, where sponges are second to corals in abundance 

and are primarily heterotrophic (Wilkinson 1987. Wilkinson and Cheshire 1990).

Coral reef sponges graze primarily on ultraplankton through active suspension 

feeding (Reiswig 1971. Pile 1996). Sponge communities can processes copious amounts 

o f water, with estimated turnover times o f the water column on some Caribbean reefs as 

short as 1 day (Reiswig 1974). Sponges have complex associations with epi- and 

endosymbiotic micro- and macroorganisms (Riitzier 1990. Vicente 1990. Duffv 1992. 1996. 

Shieh and Lin 1994. Duarte and Nalesso 1996) that make it difficult to differentiate between 

processes mediated by the host and the symbiont. Activity o f photosvnthetic symbionts o f 

sponges can result in net primary production in some species (Wilkinson 1983). Processes 

o f the microbial symbionts o f sponges, such as nitrification (Corredor et al. 1988) and
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nitrogen fixation (Wilkinson and Fay 1979, Shieh and Lin 1994), result in sponges being a 

net source o f DIN within the complex reef community. Therefore, for the purpose o f this 

study sponges and their associated assemblages are considered a single entity and function 

as net sources or sinks of material. The remineralization o f organic nitrogen to ammonium 

and its subsequent export or processing by sponges and their microbial symbionts has yet to 

be investigated.

Previous research on the flow of macronutrients within coral reefs has focused on the 

contribution o f various microbial processes within coral reefs to DIN pools (Webb and 

Wiebe 1975. Webb et al. 1975. Capone 1977. Capone et al. 1992). Yet the few studies 

available on the release of DIN and DIP by macroorganisms, such as fish (Meyer and 

Schultz 1985a) and sponges (Corredor et al. 1988), suggests that the benthic macrofaunal 

community can be a significant source o f DIN and DIP. It can be hypothesized that the 

extensive biomass o f sponges on Caribbean reefs, combined with their ability to graze on 

microbial plankton, and process copious amounts of water gives sponges the potential to 

contribute significantly to the overall flow o f  nitrogen through coral reef ecosystems.

I investigated rate of release of DIN and DIP in two sponges. Ircina felix  and /. 

strobilina. common to Conch Reef. Florida Keys. USA. Using short. 30 min. in situ 

incubations in recirculating metabolism chambers both sponges were found to be a 

significant source o f ammonium, nitrate, and soluable reactive phosphate. Sponge-mediated 

fluxes o f DIN and DIP were empirically calculated at the organismal and community level 

to estimate the contribution o f these sponges to the coral reef nitrogen budget. Further, 

sponge-mediated fluxes of DIN and particulate organic nitrogen (PON) are developed into
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a conceptual model to show that microbial food webs are an integral component o f  benthic- 

pelagic coupling.

METHODS

This study was conducted at Conch Reef. Florida Keys. USA (24°57' N and 80°27' 

W). Conch Reef has been the location o f the NOAA Aquarius underwater habitat described 

by Leichter et al. ( (Leichter et al. 1996)1996) for 5 years, and has served as a study site for 

many coral reef investigations. Ircinia felLx and I. strobilina are common sponges at this 

location comprising 0.73 and 0.12% o f the benthic surface area respectively, whereas total 

cover o f  noncrvptic sponges is 7% o f the benthic surface area (Pile 1996). They are both 

black in color and have an endosymbiotic relationship with the photosvnthetic 

cyanobacterium Aphanocapsa feldmanni (Vicente 1990). Both sponges are multioscular: /. 

felix  has a pillow like morphology whereas /. strobilina has a globose shape with the oscula 

located at the top o f the sponge. Sponges were carefully removed from the substrate by 

SCUBA divers and held near the Aquarius habitat in mesh bags 12-24 h prior to use. Before 

incubations sponge health was visually assessed by divers and only healthy sponges, as 

indicated by an intact sponge with fully expanded oscula. were used.

Incubations were conducted in recirculating flow chambers (Patterson et al. 1991) 

which were deployed in situ. In situ studies are favored over laboratory studies since there 

is less stress on the organism and environmental parameters, such as light and temperature, 

closely simulate those in nature. Additionally, this study employed a recirculating system 

that mimics horizontal flow commonly found in nature. Horizontal flow is very important
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to sponges as it can induce flow through the sponge (Vogel 1974, 1977). While it is not 

known if  Ircinia fe lix  or I. strobilina can take advantage o f induced flow, the system 

employed mimicked to some extent the flow environment o f the reef and replicated the 

thermal and light environment very closely. During this study the chambers were deployed 

on the sand near Aquarius at a depth o f 18 m to utilize the power supply from the habitat. 

Dives were made from the saturation habitat to monitor the chambers and take samples. 

Recirculating flow chambers were slightly modified from the original design to 

accommodate this study (Figure 8). Chambers were fined with a 500 GPH submersible bilge 

pump, resulting in a horizontal flow speed of c. 5 cm sec'1. Horizontal flow speed of near 

bottom water was measured daily during the study near sponges on Conch Reef and daily 

means ranged from 3 to 5 cm sec1. Each chamber has a volume o f 7 1 and was fitted with 

a YSI polarographic oxygen sensor. A 4rc Li-Cor irradance meter was set up on one of the 

chambers and connected to a Li-Cor LI-1000 sensor datalogger in the habitat.

Changes in DIN and DIP were measured over 30 min in 6 recirculating metabolism 

chambers with the haphazardly assigned treatments o f I Ircinia fe lix . I /. strobilina. or no 

sponge (water control). Incubations were conducted on 26. 27. and 29 May 1995 resulting 

in six replicates for each treatment. Sponges were placed in the chambers, the base plate was 

secured, and the horizontal flow was initiated. 60 ml water samples were taken by SCUBA 

divers using sterile syringes with stopcocks at 0. 5. 10. 15. and 30 min. Samples were sent 

to the surface and 30 ml of each were immediately filter-sterilized (Gelman. Supor Acrodisc. 

0.2 pm) into a 50 ml sterile centrifuge tube and held on ice until returning to the lab. 

Samples were then frozen until analysis for ammonium, nitrate, nitrate ^nitrite, and soluable
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Figure 8. Diagram of recirculating metabolism chamber as designed by Patterson et al. 

(1991) and modified for this study.
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reactive phosphate at Florida International University, Miami, FL using an Alpkem 4 channel 

RFA 300 Rapid Flow Analyzer as described by Leichter et al. (1996).

After completion o f each experiment the sponges were removed from the metabolism 

chambers, frozen, and returned to the Virginia Institute o f Marine Science, Gloucester Point. 

VA for combustion. Sponges were repeatedly rinsed in freshwater to remove any salts and 

meticulously dissected to remove any associated macrofauna. One Ircinia felix  had 3 brittle 

stars associated with it. Release rates o f DIN and DIP from this sponge were within the 95% 

confidence interval o f the mean o f the 5 other individuals. Thus, it was deemed appropriate 

to include the results for statistical analysis. Sponges and the 3 brittle stars were dried at 100 

JC until attaining equilibrium, which was defined as no change in weight over a 12 h 

interval. They were then combusted at 550 °C for 4.5 h to obtain ash free dry weight 

(AFDW). Prior to dissection, the number o f oscula for each sponge was enumerated.

Release o f ammonium, nitrate, nitrite, and soluable reactive phosphate were 

normalized to both g AFDW o f sponge and number of oscula:

£  = Vc(C ,-C .) (4)

where R = amount released. Vc = volume of the chamber. C, = concentration o f the treatment 

chamber at time = t. Cc = concentration o f the control chamber at time = t, and N = 

normalizing parameter (g AFDW or number o f oscula per individual). Release in control 

chambers was normalized using C, = concentration at time = t. Cc = concentration at T0, and 

N = 1. Release during the incubation was analyzed as a function o f sponge species ( Ircinia 

fe lix  vs. I. strobilina vs. control) using analysis of covariance with time as the covariate
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(ANCOVA, Sokal and Rohlf 1981). Simple linear regression was employed to determine 

the rate of release (Sokal and Rohlf 1981). Concentrations o f nutrients in one o f the control 

chambers were greater than all o f  the other control chambers by three orders of magnitude 

due to an unknown error. Rather than have these values bias statistical analysis the mean 

control values were substituted, the error degrees o f freedom were reduced, and F  values 

adjusted (Sokal and Rohlf 1981). Variances were found to be homogeneous using Cochran's 

C test (Sokal and Rohlf 1981). Residuals were visually examined and appeared randomly 

distributed.

Sponge-mediated fluxes o f all species of DIN and DIP were empirically calculated 

employing the following model o f  organism-mediated fluxes that can be verbally stated as:

volume processed
organism - mediated flux = A w ^ w lu m n  jropgry  x _pumpmg_unit < number of pumping units

volume processed time benthic surface area

where the A water column property is the net rate of ammonium, nitrate, nitrite, and soluable 

reactive phosphate released per osculum. volume processed is 1 ml. time is 1 day. pumping 

unit is 1 osculum. and benthic surface area is I m:. This will result in a sponge mediated flux 

in umol d '1 m': . Additional in sicu measurements o f sponge pumping rate, using heated 

microthermistor flowmeters, and sponge abundance, using video transects, were obtained 

during the study (Pile 1996). Mean pumping rates for Ircinia fe lix  during the period of the 

study were 6.4 x 104 ml osculum'1 d '1 and 4.9 x 104 ml osculum'1 d '1 for I. strobilina (Pile 

1996). At Conch Reef there is a mean o f 5.9 oscula m': for I. felix  and a mean of 2.7 oscula
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in'2 for I. strobilina (Pile 1996).

A conceptual model o f sponge-mediated fluxes o f DIN and PON was developed 

using additional data on sponge feeding from a concurrent study (Pile 1996). Ambient 

concentrations o f DIN were determined from the control chambers for the entire 18 m water 

column overlying a n r  benthos, 18.000 I. Concentrations, [imol. were convert to mg N using 

atomic ratios o f all species of DIN. Fluxes o f particulate nitrogen were calculated from 

sponge-mediated flaxes of ultraplankton. Sponge-mediated carbon flaxes ( Pile 1996. Table 

3) were converted to mg N m': d ay 1 using a C:N ratio o f 4:1 for heterotrophic bacteria: 6:1 

for Prochlorococcns. Synechococcus-type cyanobacteria, and picoeucaryotes: and 8:1 for 

nanoeucaryotes (Wheeler and Kirchman 1986). Standing stocks of PON in the form of 

ultraplankton were calculated from cell concentrations in the ambient water at Conch Reef 

for an integrated water column of 18 m ( Pile 1996. Table 1).

This study has employed the most conservative values so that any errors will result 

in an underestimate o f the reported flaxes. It is most likely that the cell to carbon and 

nitrogen conversion factors will change as the techniques to estimate cellular carbon and 

nitrogen become better and the data have been presented in such a manner that should more 

accurate conversion factors be reported the flaxes may be recalculated. Further, the 

estimated flaxes of DIN and PON utilize only the data collected during this study, late May 

o f 1995. and will most likely vary within and between years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

RESULTS

Ircina fe lix  released significantly greater amounts o f ammonium, nitrate, nitrite, and 

soluable reactive phosphate than did water controls during the 30 min incubation in the 

metabolism chambers (Figures 9-10). I. strobilina released significant amounts o f 

ammonium, nitrate, and soluable reactive phosphate while not affecting nitrite (Figures 9- 

10). As a function o f both .AFDW of sponge (Table 4) and number of oscula (Table 5) rates 

o f release by /. fe lix  were significantly higher than those o f I. strobilina for all species o f DIN 

and DIP. Release rates for I. fe lix  were nearly four times those of I. strobilina for ammonium 

and nearly double those o f I. strobilina for nitrate and soluable reactive phosphate when 

normalized to either g .AFDW of sponge or osculum (Table 6). 73% of the DIN released by 

/. fe lix  was in the form of ammonium. In contrast, the DIN released by I. strobilina was 

evenly divided between ammonium and nitrate.

Environmental conditions were constant during the 30 min incubations. Dissolved 

oxygen levels varied < 5%. Irradance did not vary within or between incubations. 

Temperature, collected by an S4 InterOcean current meter deployed near the Aquarius 

habitat recording 1 min averages, did not indicate any significant temperature changes (= 0.2° 

C) during the incubations.

DISCUSSION

Although it is most desirable to measure the release rate o f DIN and DIP directly 

from water collected from the exhalent current o f the sponge, current analytical techniques 

require too large of a sample to be accurately collected. Instead, short incubations within
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Figure 9. Time course o f release of ammonium, nitrate, nitrite, and soluable reactive 

phosphate normalized to AFDW (x ± std. n=6) by Ircinia fe lix  (A), I. strobilina 

(■) compared to empty chamber controls ( • )  during the 30 min incubations. 

Lines represent linear regressions, which were all significant at a  < 0.05, and r  

values are adjacent to each regression.
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Figure 10. Time course o f release o f ammonium, nitrate, nitrite, and phosphorus 

normalized to number of osculum (x ± std. n=6) by Ircinia felix  (A). I. strobilina 

(■) compared to empty chamber controls ( • )  during the 30 min incubations. 

Lines represent linear regressions, which were all significant at a  < 0.05. and r  

values are adjacent to each regression.
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Table 4. Results o f analysis o f covariance for ammonium, nitrate, nitrite, and soluable 
reactive phosphate release g*1 AFDW as dependent on species o f  sponge {Ircinia fe lix  
vs I. strobilina vs controls).

Nutrient Source o f variation df MS F

.Ammonium Covariate (time) 1 8.964 4.1 O'*

Species o f  Sponge 19.293 8.83****

Error 74 2.185

Nitrate Covariate (time) I 0.520 1.46“

Species o f  Sponge 2 3.985 11.19****

Error 74 0.356

Nitrite Covariate (time) 1 0.002 0.951*

Species o f  Sponge 0 0.017 7.98**

Error 74 0.002

Phosphate Covariate (time) 1 0.819 1.79"5

Species o f Sponge -I 1.647 3.60*

Error 74 0.458
* p  < 0.05. **p < 0 .0 1 . **** p  < 0 .0001 .ns not significant
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Table 5. Results o f analysis o f covariance for ammonium, nitrate, nitrite, and soluable 
reactive phosphate release osculum'1 as dependent on species o f sponge (Ircinia fe lix  vs 
I. strobilina vs controls).

Nutrient Source o f variation df MS F

Ammonium Covariate (time) I 15.740 3.73“

Species o f Sponge 2 37.642 8.92****

Error 74 4.222

Nitrate Covariate (time) 1 0.352 1.60“

Species o f Sponge T 4.611 ~ii (p****

Error 74 0.219

Nitrite Covariate (time) 1 0.002 0.77“

Species o f Sponge 0.024 g ^ 1****

Error 74 0.003

Phosphate Covariate (time) 1 1.555 1.77“

Species of Sponge "> 3.015 3.44*

Error 74 0.877
* p  < 0.05. **** p  < 0.0001. “ not significant
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Table 6. Mean Ircinia felix- and I. strobilina-me&aL&i fluxes o f  dissolved inorganic nitrogen 
and soluable reactive phosphate. Values in parentheses are the percent o f the total DIN 
flux. Rates individual'1 were calculated using the mean number o f  oscula individual'1 
from video transects taken at Conch Reef (Pile 1996) and mean pumping rates, nc - no 
c h a n g e . _______________________________________________________________

Sponge Ammonium Nitrate Nitrite Phosphate

Ircinia felix

nmol g’1 AFDW d '1 14.7 (73) 5.3 (26) 0.3(1) 4.4

(imol osculum'1 m l'1 3.7 x 10-* 9.1 x lO'5 6.4 x 10-° 1.1 x 10-4

pmol individual'1 d '1 147 37 2.6 46

I  strobilina

umol g '1 AFDW d '1 3.6 (54) 3.1 (46) nc !J
 

o

umol osculum'' m l'1 8.5 x 10-5 4 .0x  lO'5 nc 3.3 x 10'5

umol individual'1 d '1 49 23 nc 19
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recirculating metabolism chambers provide a satisfactory alternative to measuring release 

rates. Previous researchers who employed metabolism chambers to measure DIN or DIP 

release in sponges had exceptionally long incubations o f 4 h (Corredor et al. 1988, Schubauer 

1988) compared to this study with incubations o f 0.5 h. D'Elia (1977) points out many o f 

the advantages of using short incubation periods for studies with organisms. Ultimately, he 

suggests that incubations should be ended as soon as a measurable change in the substance 

is detected.

One must remember that the "organism" responsible for nitrogen transformation in 

this study might be better considered a community or consortium of sponge and its microbial 

symbionts. This sponge community is likely to be highly sensitive to changes in supply o f 

particulate organic material and oxygen. In situ pumping rates of these sponges indicated 

that they would process the 7 1 volume of the chamber in c. 30 min. At the time of the study 

we did not know the filtration efficiencies o f these two sponges, but some sponges have 

filtration efficiencies as high as 99% on natural ultraplankton communities (Pile et al. 1996a. 

b). The creation of a food-depleted environment within the metabolism chamber, and the 

cessation o f sponge grazing, could affect DIN and DIP release in two ways. At the 

organismal level, reduction in the food supply would reduce the rate o f remineralization of 

organic nitrogen and phosphorus to ammonium and soluable reactive phosphate and 

concurrently affect sponge pumping rates. Second, reducing the supply o f dissolved organic 

carbon to the associated microbial community might affect processes such as heterotrophic 

nitrogen fixation or denitrification which require a labile carbon source. .Another potential 

source of error can result from a change in the oxygen levels within the chamber. Nitrogen
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cycling processes in microorganisms are extremely sensitive to dissolved oxygen levels and 

the pathways o f  nitrogen regeneration will change with decreased oxygen levels, ultimately 

changing the species o f nitrogen released. During the 30 min incubations there were 

negligible changes in oxygen levels within the metabolism chambers. More importantly, it 

was possible to measure significant increases o f DIN and DIP and compute a mean rate o f 

release for all species o f DIN and DIP during a 30 min incubation.

At the organismal level Ircinia felix  and I. strobilina were significant sources of DIN 

and DIP regardless o f the normalizing biomass parameter. Statistically, either way of 

normalizing the release o f DIN and DIP to biomass resulted in the same interpretation. 

Researchers typically normalize release o f macronutrients to AFDW. which is impossible 

to extrapolate to an ecological scale without destroying the habitat. By normalizing the 

release rates o f  DIN and DIP to the number o f oscula (i.e.. pumping units) a nondestructive 

and ecologically relevant rate o f release is easily obtained. Number of oscula on a sponge 

can easily and reliably be obtained using nondestructive methods, such as video or 

photographic surveys. Furthermore, by presenting rates of release normalized to .AFDW' and 

osculum it is easier to compare to other fluxes from a variety o f sources. However, r  values 

for the rates o f release osculum'1 for all species o f DIN and DIP were higher than r  values 

for the rates o f release g '1 AFDW* in I. felix. which suggests that the number o f oscula may 

be a better predictor of release rates. Values o f r  for I. strobilina were better for ammonium 

when normalized to oscula and for nitrate and soluable reactive phosphate when normalized 

to g AFDW. which suggests different microbial processes in I. strobilina than I. felix. 

Further evidence that the microbial processes are different between these sponges is found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

in the composition o f DIN release. Ircinia strobilina released proportionately more DIN as 

nitrate than I. fe lix . These trends are consistent with the hypothesis that I. strobilina hosts 

nitrifying bacteria which were responsible for the conversion of ammonium to nitrate.

Although it was not within the scope o f this study to determine the pathways o f 

nitrogen release, it appears that the source of the net release o f DIN and DIP from Ircinia 

fe lix  and /. strobilina results from remineralization o f organic matter by the sponge and 

subsequent transformations by microbial symbionts. Both of these sponges graze selectively 

on ultraplankton, feeding on heterotrophic bacteria. Prochlorococcns. Synechococcus-type 

cyanobacteria, and autotrophic eucaryotes < 10 um. obtaining an average o f 10 and 9 mg C 

d '1 m': respectively during this study period (Pile 1996). Ammonium and soluable reactive 

phosphate are most likely remineralized from these organic sources and released by the 

sponge as metabolic byproducts. In turn, the ammonium released is less than that taken up 

by the cyanobacterial and heterotrophic bacterial symbionts and that by nitrifying bacteria 

to be used for nitrification. The release o f nitrate and nitrite by I  fe lix  most likely results 

from nitrification, as this sponge does not appear to be fixing nitrogen (I. .Anderson, 

unpublished acetylene reduction data). The same is most likely true for I. strobilina.

Release o f  ammonium by Ircinia fe lix  and I. strobilina contrasts with studies done 

on the sponges Chondrilla nucula and Anthosigmella varians. which showed that both 

species were a source o f nitrate and nitrite and a sink for ammonium (Corredor et al. 1988). 

Rates o f nitrate and nitrite release g '1 AFDW for I. fe lix  and I. strobilina are one fifth of 

those o f C. nucula and an order o f magnitude greater than those of A. varians (Corredor et 

al. 1988). In addition. Schubauer (1988) determined that 5 species o f coral reef sponges
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were sources o f DIN with some release o f DIP; however, he did not normalize his rates o f 

release to biomass and thus comparisons are impossible. Since coral reefs are generally 

found to have a high diversity o f sponges (Wilkinson and Cheshire 1990), and there is no 

detectable pattern between the four species that have been examined in their function as net 

sinks or sources, further studies are merited to examine how the total sponge community may 

be affecting DIN and DIP over the reef.

Organism-mediated fluxes o f DIN and DIP have been examined for other reef 

organisms demonstrating that the reef community is comprised of organisms functioning as 

net sinks and sources. During daylight, corals with symbiotic zooxanthellae are net sinks for 

ammonium and nitrate while symbiotic corals at night and aposymbiotic corals are net 

sources (D'Elia and Webb 1977. Muscatine and D'Elia 1978). A similar trend is true for 

phosphorus, with symbiotic corals being a sink and aposymbiotic corals a source (D'Elia 

1977. Atkinson 1987. Sorokin 1992). Aposymbiotic giant clam (Tridacna gigas) larvae and 

newly settled recruits release ammonium until acquisition o f their symbionts when they then 

become a sink for DIN (Fitt et al. 1993). Haemulid fishes also release ammonium and 

phosphorus over the reef (Mever and Schultz 1985a).

Locally, individuals release large amounts of DIN and DIP (Table 6) and may create 

a microenvironment within the reef o f increased levels o f macronutrients. Meyer and 

Schultz (1985b) found that grunts that school over corals at night released DIN and DIP 

which enhanced coral growth. This seems unusual, since coral uptake of ammonium and 

phosphate decreases during dark conditions (D'Elia 1977. Muscatine and D'Elia 1978). In 

contrast, sponges are releasing large amounts o f nutrients as long as they are pumping.
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Ircinia strobilina does not demonstrate a diel pattern in pumping rate, but I. fe lix  decreases 

pumping activity at night (Pile unpublished data). The fact that these sponges are releasing 

macronutrients at rates comparable to those o f the grunts, but during the day when uptake 

by organisms with phototrophic symbionts is greatest, is testimony to the importance of these 

processes to the coral reef ecosystem.

At the community level these two sponges are also a significant source o f DIN and 

DIP to Conch Reef (Table 7). Release rates o f nitrate+nitrite are 25% o f  those reported for 

Chondrilla nucula (Corredor et al. 1988), but this is due to the greater biomass of C. nucula. 

which is 14 times greater than that o f Ircinia felix  and I. strobilina at Conch Reef. This 

clearly demonstrates the importance of community structure in the types and amount of DIN 

released over the reef. Release rates o f ammonium by I. strobilina are comparable to those 

resulting from microbial transformations in the unconsolidated sediments within and 

surrounding coral reefs in the Caribbean and the Great Barrier Reef (Corredor and Morell 

1985. Williams et al. 1985. Capone et al. 1992). Release rates for /. fe lix  are comparable to 

those found in the sediments associated with the coral reefs o f New Caledonia (Boucher et 

al. 1994) which are an order o f magnitude greater than those o f the Caribbean and Great 

Barrier Reef. This is remarkable considering that these two sponges comprise < 1% of the 

benthic surface area whereas sediment estimates are for 100% coverage. Sponges release 

ammonium at a rate one order o f  magnitude greater than release rates for zooplankton and 

microheterotrophs. the major sources o f ammonium within the water column over coral reefs 

(Hopkinson et al. 1987. Bishop and Greenwood 1994).

Net rates o f community release o f DIN and DIP have been measured at Gray's Reef.
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Table 7. Summary o f (luxes o f inorganic nitrogen and phosphorus pmol day 1 m 2 by coral reef organisms, reef sediments, and reef 
communities. Positive values represent release and negative values uptake relative to the water column.

Source N il ;  NO;
N O ; + 

NO; N O ;
Total
DIN P O ;3 Reference

Organism

Sponges

Ircinia felix 138 37 2 39 186 43 This study

I. strobilina 12 6 0 6 18 5 1'his study

Chomlrilla nucula -269 11520 11251 (Corredor et al. 1988)

A nlhosi^mella varians -366 48 -318 (Corredor et al. 1988)

1 lacmulid fishes, Porites“ 3845 246 (Meyer and Schultz 1985a)

Acropora palamutaa 9584 630 (Meyer and Schultz 1985a)

Zooplankton 12 (Bishop and Greenwood

Microheterotrophs 41 (Uopkinson et al. 1987)

Sediment-Water Column

Mona Island, Puerto Pico1’ 20 (Corredor and Morell 1985)

Tague Bay, St. Croix 72 (Williams et al. 1985)

New Caledonia, mud -176 (Boucher et al, 1994)

grey-sand 276 (Boucher et al. 1994)

white-sand 360 (Boucher et al. 1994)

(heat Barrier R eefc 55 (Capone et al. 1992)
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Red'Community

dray's Reef, low density 526 240 766 215 (Hopkinson et al. 1991)

medium density (day) 13700 4800 18500 1600 (llopkinson etal. 1991)

medium density (night) 21500 6400 27900 2000 (Hopkinson et al. 1991)

linewelok Atoll, Transect II 2592 1590 (Webb etal. 1975)

linewetok Atoll, Transect III -415 -708 (Webb etal. 1975)

Temperate estuaries, sediment11 22000 730 90 820 22820 -21000 (Fisher etal. 1982)
a Studies were conducted on fish schooling over Parties or A. palumula.

Mean of 4 locations with a range o f 0.7-0.96 pmol m 2day '.
L Mean of 4 locations with a range o f 26-93 (.mini nv2day'‘.
J Mean of 8 locations.
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Georgia, USA (Hopkinson et al. 1991) and Enewetok Atoll (Webb et al. 1975) (Table 7); a 

proportion o f this release probably resulted from sponges. Hopkinson et al. (1991) 

conducted in situ incubations by enclosing portions o f the reef. They found a net release o f 

DIN and DIP from the community comprised o f algae, soft corals, sponges, other 

macroinvertebrates, and adjacent sediment. Sponge cover in the low density treatment at 

Gray’s Reef was 0.8% and it was comparable to the sponge cover o f Ircinia fe lix  and I  

strobilina at Conch Reef. If the total sponge community at Gray’s Reef is releasing DIN and 

DIP at comparable rates to I. fe lix  and I. strobilina. 70% o f  the net release could have 

resulted from sponges.

Grazing by Ircinia fe lix  and I. strobilina on heterotrophic bacteria and autotrophic 

procaryotes and eucaryotes < 5 um can support the rates o f release o f DIN (Figure 11). 

Sponges are an estimated net sink for 3.2 mg N m‘: d a y 1 in the form o f PON. 2% o f the 

standing stock, while releasing 2 mg N m': d ay1 in the form o f DIN. Therefore, ca. 30% of 

the total PON retained by the sponges from ultraplankton can be incorporated into growth 

or released as dissolved organic nitrogen (DON) and detritus. The assimilation efficiency 

o f ultraplankton PON by sponges is not known. However, bivalves maintained on a diet of 

bacterioplankton have assimilation efficiencies near 50% (Langdon and Newell 1990. 

Werner and Hollibaugh 1993). These efficiencies are higher than suggested here, but all o f 

the potential nitrogen sources have not been accounted for in this study and for the order o f 

magnitude type o f calculations employed this is a reasonable assimilation efficiency.

It is interesting to note that on a daily basis, the amount o f DIN released by Ircinia 

fe lix  and /. strobilina. 2 mg N m ': d ay :. is 1% of the DIN. 320 mg N m ': . in the overlying
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Figure 11. Schematic diagram o f the daily flow of nitrogen between the water 

column and the sponges Ircinia fe lix  and I. strobilina at Conch Reef. Florida 

Keys. USA in May of 1995. Arrows indicate the direction o f the flow, with solid 

arrows representing particulate nitrogen and dashed arrows dissolved nitrogen. 

Values, mg N m':. are adjacent to each line and standing stocks are indicated in 

boxes for an integrated water column of 18 m. Ambient levels of DIN are for 

18.000 1. the volume of water overlying 1 m2 o f benthos. Question marks are for 

a hypothesized flow that has not been quantified. Position in the vertical 

indicates trophic level. Note that sponges are a sink for heteroptrophic and 

autotrophic ultraplankton and a source o f DIN which can support production by 

heterotrophic and autotrophic ultraplankton. Ircinia felix  and I. strobilina have 

a mean trophic level of 2.08 indicating that they are members o f the guild of 

primary consumbers of this microbial food web.
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water column at Conch Reef. It is unrealistic to expect the benthos to affect the entire 18 m 

water column, and employing an integrated water column o f 1 m, or near bottom water, 

release o f DIN by I. felix  and I. strobilina is 15% o f the DIN available. An alternative way 

of looking at how the amount o f  DIN being released could effect the benthos is to estimate 

the concentrations o f DIN above the benthos. A useful concept for making these estimates 

is fill time (Dinnel and Wiseman 19861.

Fill time is the amount o f time it takes to change a water column property in a volume 

of water. They are useful for understanding how inputs maybe affecting an ecosystem and 

can provide perspective on the magnitude o f inputs. However, they are limited since they 

assume that there is no loss o f the material entering the volume of water and homogenous 

mixing o f the volume of water. Fill time. T. for DIN at Conch Reef was determined after 

Dinnel and Wiseman (1986) where:

t

V (t)  (R  -  P -  E ) d t (5 )

t-T(t)

where V(tl is the ambient concentration of DIN. R is the sponge-mediated flux o f DIN. P is 

precipitation, and E is evaporation. Precipitation and evaporation are zero so the equation 

can be rewritten as:

t

V (t)  = J* R  dt (6 )

t-T(t)
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and solved to determine the height o f  a volume of water, with a base o f  one n r, at which DIN 

concentrations were doubled. Fill time o f DIN estimates that water column DIN levels could 

be doubled within 10 cm o f the bottom as a result o f I. felix- and I. strobilina-mediated 

fluxes. It may be hypothesized that the benthic community is blanketed by a water mass that 

is dramatically different than the remainder o f the water column. Ultimately mixing near the 

benthos will determine if the DIN and DIP released is utilized by the benthic or water 

column community.

More importantly, there is a direct transfer o f PON in the form of heterotrophic 

bacteria. Prochlorococcas. Synechococcns-type cyanobacteria, and picoeucaryotes from the 

water column to the benthos and a subsequent remineralization and release of PON to DIN.

These two sponges are clearly members of the guild of primary consumers within a 

microbial food web since a majority o f their diet is autotrophic plankton < 5 jim (Azam et 

al. 1983. Sherr and Sherr 1991). A good descriptor an organisms trophic position within a 

microbial food web is the mean trophic level. Mean tropic levels for /. felix  and /. strobilina 

were determined following Baird and Ulanowicz (1989) with values from Figure 11 and are 

2.07 and 2.08 respectively. Further, the grazing activity o f these two sponges results in the 

release o f dissolved inorganic and organic material that can support production of 

heterotrophic and autotrophic ultraplankton thereby helping to close the microbial loop 

(Azam et al. 1983).

The cycling o f DIN and DIP within coral reefs involves a complex suite o f processes 

from the organismal to the community level. These processes will vary from reef to reef and 

are dependent on the community structure and physical environment o f the reef. Flow over
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a coral reef can greatly affect the rates o f metabolism and photosynthesis of corals (Patterson 

et al. 1991) and photosynthesis in algae (Carpenter et al. 1991) with concurrent effects on 

the uptake and release o f macronutrients by the benthic community (Carpenter et al. 1991, 

Atkinson and Bilger 1992. Bilger and Atkinson 1995). Additionally, physical events such 

as internal waves (Wolanski and Delesalle 1995). tidal bores (Leichter et al. 1996), and 

geothermal endo-upwelling (Rougerie et al. 1992) can enhance DIN and DIP levels over 

reefs and the role that these events play in the cycling o f nutrients is only beginning to be 

examined. Clearly the microbial food web is an important source o f exogenous nitrogen to 

Conch Reef and most likely other coral reefs. Further studies are required to determine the 

full extent o f the role o f the microbial food webs as sources o f exogenous materials via 

benthic-pelagic coupling not only on coral reefs but in other aquatic environments.
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The incorporation o f  m acroinvertebrates 

into the  m icrobial food web paradigm
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ABSTRACT

The current paradigm o f microbial food webs postulates that a majority o f  the 

primary production in freshwater and marine ecosystems is shunted away from traditional 

linear food chains through a complex web that incorporates multiple trophic links between 

heterotrophic and autotrophic plankton less than 5 um. small non-pigmented flagellates and 

ciliates, and large protozoans. There is compelling new evidence that benthic and pelagic 

macroinvertebrates can be primary consumers within microbial food webs. Some freshwater 

and marine macroinvertebrates. that can dominate the benthic biomass in some systems, feed 

primarily on plankton less than 5 um and in return release dissolved organic and inorganic 

material which supports primary production by heterotrophic and autotrophic plankton less 

than 5 pm. This often over looked microbial-macroinvertebrate trophic link is responsible 

for a significant transfer of carbon from the water-column communities to the macrobenthos 

in some shallow water ecosystems.
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INTRODUCTION: SCOPE OF THE REVIEW AND DEFINITIONS

Research on benthic-pelagic coupling has concentrated on the interactions between 

organisms that generally feed on plankton greater than 10 pm  (Graf 1992). This has resulted 

in an incomplete view since, except for periods when diatom blooms are present, a majority 

o f the pelagic primary and secondary production in freshwater and marine ecosystems is 

from autotrophic and heterotrophic plankton less than 5 um (ultraplankton) (Stockner and 

Antia 1986. Stockner 1988). It is unlikely that some suspension-feeding macroinvertebrates 

would not utilize the most abundant food source in aquatic ecosystems and while the direct 

evidence is limited, in theory there are a variety o f organisms that have the capability to 

remove ultraplankton from the water that they process (Rubenstein and Koehl 1977. Shimeta 

and Jumars 1991).

There is strong evidence to suggest that ultraplankton is an important food source for 

benthic macroinvertebrates. Reiswig (1971) found that a majority o f the particulate organic 

carbon retained by Caribbean coral reef sponges was unresolvable using the light 

microscopic techniques available at the time. He hypothesized that the unresolvable 

particulate organic carbon (URJPOC) was plankton that could not be quantified using the 

techniques available at the time of the study. More recently. Avukai (1995) found up to 

90% retention o f microbial plankton by Pacific coral reefs and hypothesized that this was 

the result o f grazing by the benthic community. Other researchers have found that growth 

rates o f heterotrophic bacteria are higher than necessary to meet the grazing pressures of 

micrograzers (heterotrophic nanoflagellates and ciliates less than 20 pm) on coral reefs 

(Moriartv 1979. Moriartv et al. 1985. Linlev and Koop 1986) and in salt marshes (Sherr. B.
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F. et al. 1986, 1989) and speculated that grazing of bacterioplankton by the benthic 

community is a major contributing factor to plankton community dynamics. The largely 

unexplored role o f macroinvertebrate grazing on ultraplankton has further consequences as 

the microbial to macroinvertebrate trophic link has been excluded from microbial food web 

paradigm (Azam et al. 1983. Sherr. E. B. and Sherr 1991).

During the past decade research on the water-column community o f ultraplankton has 

resulted in an understanding o f a complex network o f  trophic interactions between 

procaryotic and small eucarvotic plakton. the microbial food web (Azam et al. 1983, Sherr. 

E. B. and Sherr 1991). In the euphotic zone o f the water column, the microbial food web 

theoretically shunts a significant fraction o f the primary production away from the traditional 

linear food chain, where each consumer occupies a single trophic level, into a microbial food 

web that incorporates multiple trophic links between heterotrophic and autotrophic 

ultraplankton, small non-pigmented flagellates and ciliates. and larger protozoans (Figure 

12). The microbial food web is based on pools o f dissolved organic material (DOM) and 

inorganic material (DIM) that nutritionally support primary production by autotrophic 

ultraplankton (photosynthetic procaryotes and eucaryotes less than 5 um) and secondary 

production by heterotrophic bacteria. The primary consumers o f the microbial food web 

graze on ultraplankton and heterotrophic bacteria which results in a release o f DOM and 

DIM. Primary consumers may be thought o f as a functional group of micrograzers that is 

currently considered to consist o f  heterotrophic nano flagellates and ciliates. The secondary 

consumers of a microbial food web. currently consisting o f metazoans. typically feed 

primarily on the primary consumers and the larger size fraction o f autotrophic ultraplankton
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Figure 12. Schematic diagram depicting the flow, as indicated by the direction o f the arrows, 

of particulate (solid lines) and dissolved (dashed lines) materials through a microbial 

food web in the euphoric zone. Adapted from Azam et al. (1983) and Sherr & Sherr 

(1991). Relative trophic level is indicated by position in the vertical.
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which results in the release o f DOM and DIM which can support production o f 

ultraplankton. More recently researchers have incorporated viruses (Murray and Eldridge 

1994) and microscopic detritus (Posch and Amdt 1996) into microbial food webs has added 

additional levels of complexity to the food web. Pelagic and benthic macroinvertebrates 

have not been incorporated into the current models o f  microbial food webs due to a lack of 

direct evidence as to their function and position.

As previously described, an organism belongs to the guild o f primary consumers in 

a microbial food web if it grazes primarily on ultraplankton. The subsequent release o f DOM 

and DfN that results from grazing activity is important as it serves to help close the microbial 

loop by supporting production o f ultraplankton. Current models o f microbial food webs 

have excluded macroinvertebrates from the guild of primary consumers. There is compelling 

new evidence from freshwater and marine ecosystems that certain macroinvertebrates do 

occupy this niche. This chapter presents a brief overview of the evidence that in some 

ecosystems the microbial food web is an overlooked exogenous source of carbon for the 

benthic community. In such communities, grazing by the benthos can significantly reduce 

ultraplankton communities. Further, the inclusion o f benthic grazing on bacterioplankton 

into models o f the flow o f materials within shallow ecosystems can balance the production 

of bacterioplankton with community grazing demands.

Definition o f  terms

The terminology used to describe plankton, suspension feeding, and trophic levels 

within microbial food webs can be confusing. Researchers have employed the same terms
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interchangeably to describe plankton or the same term for different processes in suspension 

feeding. It is beyond the scope o f this review to redefine plankton, the suspension feeding 

process, or trophic levels within microbial food webs but it is desirable to present the 

information using a consistent language. Therefore, conventional terms from the most recent 

literature will be employed and care has been taken to summarize carefully the studies 

reported using these standardized terms.

Microbial plankton includes tree living heterotrophic bacteria, autotrophic 

procaryotes, heterotrophic microflagellates. ciliates. and autotrophic eucaryotes < 20 um. 

Populations o f  autotrophic eucaryotes ranging in size from 0.2 to 5 um will be referred to as 

picoeucarvotes. unless the species o f plankton has been identified (Stockner and Antia 1986). 

Ultraplankton is defined as organisms less than 5 pm and consists o f heterotrophic bacteria, 

the phototrophic procaryotes (Prochlorococcus sp. and cyanobacteria), and picoeucarvotes 

(Murphy and Haugen 1985).

Suspension feeding is a broad term used to describe the process of grazing on 

suspended material, usually plankton but sometimes including detritus. It is frequently used 

interchangeably with filter feeding which is capture of particles with a filtering mechanism. 

Filter feeding can be passive, in that the filtering apparatus is exposed to the environment for 

particle capture, or active, in which the organism creates a current to draw water across a 

filtering mechanism. In this review, the broad term suspension feeding will be employed and 

further distinguished as either active or passive. Active suspension feeders usually employ 

pumping by the organism and the volume processed is a function o f pumping rate which is 

expressed as volume per unit time (e. g.. ml sec'1).
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Trophic position within a food web can be determined as a function of the trophic 

levels at which an organism feeds. Trophic positions are easily identified in linear chains; 

primary producers occupy the first trophic level, herbivores the second, the third trophic level 

are the carnivores, etc. (Lindeman 1942). But most heterotrophic species are omnivores, and 

simultaneously occupy multiple trophic levels. Hence, a mean trophic level is a useful 

descriptor o f the position o f an omnivorous heterotrophic organism within a food web. The 

mean trophic level is calculated as the sum o f the proportion o f the diet at each trophic level 

(Levine 1980). For example, if 60% o f an organism's diet comes from the second trophic 

level (0.6 x 2). and 40% from the third trophic level (0.4 x 3) then the organism’s trophic 

level is 2.4. These noninteger values are more representative of the feeding modes of 

organisms within food webs (Baird and Ulanowicz 1989). However, they make the use of 

conventional terminology such as primary and secondary consumer more difficult.

It can be argued that the aforementioned hypothetical organism with a trophic level 

o f 2.4 is a primary consumer. Consider that noninteger trophic levels ± 0.5 o f a whole 

number trophic level represent feeding a majority o f  the time at the integer value. 

Therefore, within food webs organisms that have trophic levels ranging from 1.5-2.49 are 

members o f the guild o f primary consumers. Secondary consumers have trophic levels 

ranging from 2.5-3.49. The primary producers within microbial food webs (trophic level=l) 

are autotrophic ultraplankton less than 5 pm. Heterotrophic bacteria are at the second trophic 

level. Clearly, in most ecosystems food webs extend farther than primary and secondary 

consumers but since the focus of this chapter is to demonstrate that macroinvertebrates 

occupy the level o f primary consumer and that microbial food webs are an important source
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of exogenous material to benthic communities conceptualized flows o f materials are limited 

to the components o f the microbial food web.

TECHNIQUES USED TO QUANTIFY SUSPENSION FEEDING IN 
MACROINVERTEBRATES

Researchers have had limited success in identifying the diet o f macroinvertebrates 

that feed on ultraplankton. Concurrently, the quantification o f the grazing pressure of 

macroinvertebrates on ultraplankton has generally been limited to indirect evidence or 

hypotheses. This is because the techniques that allow researchers to quantify the feeding 

ecology of macroinvertebrates on ultraplankton directly have only recently become available.

Currently there are two methods that can identify all types o f ultraplankton, dual

beam flow cytometry and epifluorescence microscopy coupled with computer image 

analysis. Flow cytometry has been used by biological oceanographers to quantify 

heterotrophic and autotrophic ultraplankton for the past 10 years (Campbell et al. 1994). The 

more traditional technique o f epifluorescence microscopy can also quantify all types of 

ultraplankton if coupled with the power o f computer image analysis (H. Ducklow personal 

communication). Since flow cytometry requires only I ml o f sample and is more accurate 

and faster than all other techniques currently used to quantify ultraplankton (Karl 1994) it 

is better suited for the study of macroinvertebrate grazing of ultraplankton. Dual-beam flow 

cytometry has been successfully employed to quantify grazing on ultraplankton by both 

freshwater and marine macroinvertebrates and was instrumental in the first quantification of 

the feeding ecology o f freshwater and marine macroinvertebrates that graze on
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Synechococcus-type cyanobacteria and Prochlorococcus (Pile et al. 1996a, b). It is a 

powerful tool that has only recently been utilized by benthic ecologists and further 

application will undoubtedly provide additional insight into the dynamics of carbon flow in 

aquatic ecosystems.

Suspension feeding by macroinvertebrates has traditionally been quantified at the 

organismai level in the laboratory with indirect measurements o f food depletion in closed 

volumes (i.e. clearance rates), as opposed to direct measurements that compare cell 

concentrations of ambient water to water from the exhalent current (Stuart and FClumpp 

1984). There have been numerous studies on a variety o f organisms that have measured 

indirectly the retention o f  ultraplankton both in situ and in the laboratory. Typically, 

researchers measured the concentrations o f monocultures o f bacteria and algae (e.g.. Stuart 

and Klumpp 1984), radiolabeled bacteria (Sorkin 1973). or natural uitraplankton 

communities (Harbison and Gilmer 1976. Alldredge 1981. Wright et al. 1982. Kemp et al. 

1990. Lesser et al. 1992. Wemer and Hollibaugh 1993) over time, and clearance rates were 

calculated as a function o f the change in cell concentration in the container over time. These 

types of studies were very important as they suggested that macroinvertebrates, such as salps 

(Alldredredge and Madin 1982. Michaels and Silver 1983). could substantially reduce 

ultraplankton communities in the water that they processed and inspired researchers to 

develop methods that could directly quantify suspension feeding of ultraplankton by 

macro invertebrates.

Direct measurements o f suspension feeding compare the concentrations of 

ultraplankton in ambient water to those in water processed by the organism, with that being
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retained considered eaten. Water processed is easily collected in active suspension feeders 

from the exhalent current. Direct measurements o f feeding by passive suspension feeders 

is quantified by comparing cell concentrations in water that is collected before and after 

traversing the organism or community. Direct measurements o f suspension feeding by 

macroinvertebrates on ultraplankton are much less common (Reiswig 1971, 1975, Stuart and 

Klumpp 1984. Fabricius et al. 1995. Pile 1996. Pile et al. 1996a. b) and have been conducted 

in situ as well as in the laboratory. Direct measurements of suspension feeding are preferred 

since, unlike indirect measurements o f feeding, direct measurements o f grazing can be 

combined with direct measurements o f the amount o f water processed by suspension feeders 

and abundance to calculate suspension feeder community-mediated fluxes o f ultraplankton 

(Pile et al. 1996a). Also, community-mediated fluxes can be determined by comparing 

concentrations o f ultraplankton in water as it flows past a community o f active or passive 

suspension feeders (Wright et al. 1982). There is only one study that examined suspension 

feeding on bacterioplankton with this method and found no retention o f heterotrophic 

bacteria by a bed o f blue mussels. Mvtilus edulis (Wright et al. 1982). Quantification of 

macroinvertebrate-mediated fluxes o f ultraplankton are essential for determining the role and 

function of macroinvertebrates within microbial food webs and have only just begun to be 

examined ( Stuart and Klumpp 1984. Pile et al. 1996a).

MACROINVERTEBRATES AS SINKS FOR ULTRAPLANKTON

Surprisingly little information exists describing feeding by benthic 

macroinvertebrates on ultraplankton. The first direct measurements of macro invertebrates
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grazing on uitraplankton were in situ  studies performed by Reiswig in the late 1960's on 

three species o f tropical sponges. He found that ultraplankton could meet the metabolic 

requirements of these sponges (Reiswig 1971). Since this pioneering work, a majority o f the 

research that has directly quantified retention o f ultraplankton has been done in the 

laboratory with particles or pure cultures, followed by laboratory studies with natural 

plankton assemblages, and then in situ studies. Organisms from many phyla, including 

Porifera. Cnidaria. Mollusca. and Annelida, retain uitraplankton and are often common, 

dominant species in benthic communities (Table 8).

There are numerous studies where the retention o f uitraplankton by- 

macro invertebrates was measured indirectly under carefully monitored environmental 

conditions. The Atlantic ribbed mussel Geukensia demissa. a ubiquitous component o f the 

salt marshes of the east coast of the United States, readily removes natural bacterioplankton 

from the water that it filters (Wright et al. 1982). .An additional study provides evidence that 

ribbed mussels can retain Synechococcus-type cyanobacteria (Kemp et al. 1990). 

Unfortunately the lack o f replication during the study (n=l) prevents the inclusion o f 

Synechococcus-type cyanobacteria in the known diet of Atlantic ribbed mussels until more 

studies are completed. Pelagic macroinvertebrates have also been found to retain 

uitraplankton. The salps Cyclosalpa Jloridana. C. ajfwis. and C. polae all retain 

uitraplankton (Harbison and McAlister 1979). A majority o f the particles found on the 

filtering apparatus of the appendicularians Oikopleura dioica and Stegasoma magnum  are 

bacterioplankton and uitraplankton (Alldredge 1981) and the pelagic tunicate Pegae 

confederata can retain Synechococcus-type cyanobacteria (Harbison and Gilmer 1976).
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Table 8. Summary of retention efficiencies of benthie macroinverlebrates on uitraplankton from freshwater (T) or marine (M) ecosystems 
(H). Direct measurements were conducted (C) either in situ (I) or in the laboratory (L). Negative values indicate retention and positive 
values are release of cells.

O rg a n ism H C 1 Iclciolrujiliii: 
bacteria I'ru cM u ru co ccu i (y a n u lta c lc t ia I’icocucaryu tcs  U llraplaiiklim

Source

S p o n g e s

My calc sp. M 1 -9 8 % “ Reiswig 1971

Verongia gigantca M 1 -9 8 % “ Reiswig 1971

Tet/iya crypla M 1 -9 8 % “ Reiswig 1971

Haticlana pci mollis M 1, -7 7 % Reiswig 1975

11. anonyma M 1. -8 5 % -9 9 % “ Stuart and Klumpp 1984

Baikalospongia bacillijcra !•’ 1 -8 4 % n/a -66% -99% File et al. 1996a

B. intermedia T 1 -7 1 % n/a -5 8 % 2 8 0 % P ilee ta l. 1996a

Mycalc lingua M 1 -7 4 % -93% -8 9 % -7 2 % P ilee ta l. 1996b

trcinia fclix M 1 -3 0 % -2 6 % -4 8 % 9 1 % Pile 1996

I. slrohilina M 1 -5 6 % -5 2 % -5 3 % 3 8 % Pile 1996

Soft Corals

fh ’iulroncphlfiya hcmprichii M 1 re ta in e d -1 .7 -4 .5 % “ Fabricius el al. 1995

vO
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I’olychuctcs

Subclta jiciitcilliis M  i ,

( 'haclopicnts variapcdalus (VI I, -3 0 %

Bivalves

Mania squama fVl 1,

( 'anlitun giaucum M [,

1‘clricaht phaotadifonnis (VI I ,

Druisstima polymorpha 

Unio pic t arum 

Anodola cyy/iea 

Choramyiitus meridionutis M  | ,  -4 2 %

Ascidiuns

Ascidiella aspcrsa M  1,

Molyttlu manhattensis M I,

( 'lavclina Icpadi/armis M  1,

Ciona inleslinalis M  1,

Ascidia viryinia M 1.

> -90%d

> -90%d

> -90% J

> -90%d

> -90%d

> -90%J

> -90%d

> -90%d

-94%b

-70-99%c 

-70-99%e 

-  -1 0 0 % c 

-  -1 0 0 % e

> -90%d

Jorgensen et a). 1984 

Jorgensen et al. 1984

Jorgensen et al. 1984 

Jorgensen et al. 1984 

Jorgensen et a). 1984 

Jorgensen et al. 1984 

Jorgensen cl al. 1984 

Jorgensen et al. 1984 

Stuart and Klumpp 1984

Kandlov and Riisg&rd 1979 

Randlov and Riisg&rd 1979 

Randlov and Riisg&rd 1979 

Randlov and Riisg&rd 1979

Jorgensen et al. 1984
 £

©
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A. ohhgua M 1. > -90%d Jorgensen et al. 1984

A metulu M 1. > -90%d Jorgensen et at. 1984

Slylcla chtva M 1. > -90%d Jorgensen et al. 1984

1‘yuni stolonijcru M 1. -94% -99%b Stuart and Klumpp 1984

n/a -  not applicable, Prochlorococcus lias not been found in freshwater ecosystems.
“Studies were conducted prior to the discovery of cyanobacteria and prochlorophytes and uitraplankton is the combination of Reiswig's 
categories o f bacteria, unarmored cells, and unresol vable particulate organic carbon (IJRPOC).

’’Measurements employed monocultures o f bacteria and picoeucaryotes of different sizes.
“Measurements determined plankton retention. A majority of the plankton retained determined by examining gut contents as
picoeucaryotes 1-3 pm while cyanobacteria was retained it was not quantified. Retention is (low dependent.
dMeasuremenls were conducted using natural plankton assemblages to quantify the size o f particles at which a 90% retention efficiency 

was attained and did not quantify the composition o f the plankton community.
“Measurements were conducted using natural plankton assemblages and the size o f the particles retained, not the type o f plankton, 
determined.
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Pelagic larvae o f  macroinvertebrates also consume uitraplankton. Larvae of the Northern 

quahog, Mercenaria mercenaria (Gallager et al. 1994) can graze on and assimilate 

Synechococcus-type cyanobacteria and the pelagic larvae o f crown of thorns starfish. 

Acanthaster plancu readily utilize Synechococcus-type cyanobacteria and picoeucaryotes 

(Avukai 1994). Pelagic larvae and newly settled juveniles of the blue mussel. Mytilus edulis. 

retain uitraplankton with the highest efficiencies as compared to other plankton components 

in natural water (Riisgard et al. 1980). In freshwater ecosystems, the larvae of the mosquito. 

Anopheles quadrimaculatns. preferentially consume uitraplankton (Merritt et al. 1992).

Retention does not prove that assimilation occurs in these suspension feeders, but 

retention does remove the uitraplankton from the water column community and consequendv 

it is no longer available for consumption by other grazers. A majority of the carbon 

consumed by macroinvertebrates is quickly respired and released as inorganic carbon from 

the benthos. Therefore, the flow of carbon from the water column to the benthic community 

may constitute an important flux in providing metabolic maintenance of benthic communities 

dominated by macroinvertebrates that graze on uitraplankton.

SUSPENSION FEEDING MACROINVERTEBRATES AS SOURCES OF 
DISSOLVED ORGANIC AND INORGANIC MATERIAL

Originally, the closure of the microbial loop relied primarily on the leakage o f 

dissolved organic carbon (DOC) from phvtoplankton cells and the release o f dissolved 

organic and inorganic nitrogen (DON and DIN respectively) by micrograzers (Azam et al. 

1983). DOC leakage rates from picoeucaryotes are typically between 10 and 25% of primary
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production (Wood et al. 1992). More recently, Jumars et al. (Jumars et al. 1989) concluded 

that DOC released as a result o f incomplete ingestion, digestion, and absorption by animals 

can theoretically contribute significantly to bacterial nutrition. However, this route o f 

assimilation has yet to be quantified as it is most likely occurring over very short time scales 

(less than 5 min). Until recently, the technical difficulty o f quantifying DOC in natural water 

samples has prevented the measurement o f  DOC release by macro invertebrates. However, 

one study found that bacterial doubling times in the laboratory are significantly shorter when 

cultured in a medium enriched with the dissolved materials (DOC. DON. and DIN) released 

by the blue mussel, \fvtilus edulis (Tupas and Koike 1990). This suggests that DIM and 

DOM released by macroinvertebrates is in a form that is readily usable by bacterioplankton.

DIN and DON are also required by uitraplankton and necessary for closure o f  the 

microbial loop. In marine ecosystems, nitrogen is considered often to be the limiting nutrient 

and heterotrophic bacteria and phototrophic uitraplankton may compete intensively for DIN 

and DON (e. g., Wheeler and Kirchman 1986. Gilbert 1993. Kirchman 1994). DIN 

(ammonium, nitrate, and nitrite) and DON (usually amino acids) are released by 

macro invertebrates as metabolic byproducts (e. g.. Hammen 1968). At the organismal 

level, measurements of DIN and DON release by macroinvertebrates have been conducted 

indirectly as current analytical techniques require too large o f a sample to be accurately 

collected from exhalent currents for direct measurements. O f the organisms that have been 

found to graze on uitraplankton through direct measurements (Table 8). only five have also 

had DIN or DON release quantified and all have been found to release significant amounts 

of DIN into the environment (Table 9). Release o f DON by the Atlantic ribbed mussel.
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Table 9. The rates o f  release o f dissolved inorganic nitrogen (DIN) by macroinvertebrates 
that feed primarily on uitraplankton. DIN can result from remineralization (R) or
nitrification by endosymbionts (N).

Organism DIN Process Source

Sponges

Ircinia fe lix1 15 p.g DIN hr'1 R. N Pile in preparation

I. strobilim t 1 ug DIN hr'1 R. N Pile in preparation

Bivalves

Geukensia demisscP 42 fig NH4-N h r ' R Jordan and Valieia 1982

Ascidians

Ciona intestinalisb 192 ug NH4-N hr'1 R Vlarkus and Lambert 1983

Stvlela clavab 64 ug NH4-N hr'1 R Markus and Lambert 1983

1 g-1 AFDW. 
b g '1 dry weight.
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Geukensia demissa. was not detected during three hour in situ incubations (Jordan and 

Valiela 1982) but was found during longer laboratory incubations (Hammen 1968). The lack 

o f detection during the in situ incubation could have been due to the immediate uptake o f 

DON by water column communities or epibionts o f the mussels. Ultimately, turbulent 

mixing near the benthos will determine if the DIN is utilized by benthic community or 

available to the water column community for closure o f the microbial loop.

The contribution o f benthic community mediated fluxes of DIN and DON have been 

empirically calculated from measurements made at the organismal level and indirectly 

measured with in situ enclosures o f the benthos. Coral reef sponges have been found to be 

a significant source o f ammonium and nitrate, with sponge-mediated fluxes being an order 

of magnitude greater than those of unconsolidated sediments (Corredor et al. 1988. Capone 

et al. 1992. Pile in preparation). A temperate reef community composed o f sponges, soft 

corals, and other macroinvertebrates which can graze on uitraplankton released significant 

amounts o f DIN and DON that resulted in their net export from the reef (Hopkinson et al. 

1991). The Atlantic ribbed mussel, a biomass dominant in salt marshes along the eastern 

United States, is responsible for 31% o f the ammonium flux in a salt marsh (Jordan and 

Valiela 1982). The net exports o f organism-mediated fluxes of DIN and DON from benthic 

communities make the DIN and DON available to the water column community and thus 

help close the microbial loop.

Dissolved inorganic phosphorus (DIP) is considered the primary limiting nutrient for 

uitraplankton in freshwater ecosystems and parts o f some estuaries (Kirchman 1994). 

Releases o f DIN. DON. DIP and dissolved organic phosphorus (DOP) by freshwater
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macroinvertebrates have yet to be quantified but if they are comparable to the fluxes found 

in marine macroinvertebrates they may contribute significantly to the nutrition o f the 

uitraplankton community. Marine macroinvertebrates that graze on uitraplankton release 

significant amounts o f DIP as a result o f remineralization o f organic matter (Pile in 

preparation). Benthic macroinvertebrate-mediated fluxes o f  DOP and DIP can result in the 

net export o f DOP and DIP from a temperate reef (Hopkinson et al. 1991). Overall, the 

contribution of macroinvertebrate-mediated fluxes o f DOM and DIM to the nutrition of 

uitraplankton is unresolved and should be a research priority.

EXAMPLES OF MICROBIAL FOOD WEBS IN 
BENTHIC-PELAGIC COUPLING

Many benthic communities are dominated by macroinvertebrates that are potential 

members o f the guild of primary consumers within the microbial food web. However, the 

role o f the microbial food web in benthic-pelagic coupling has historically been overlooked 

because the role o f microbial food webs as a source o f carbon for the macrobenthos and the 

concurrent impact o f the benthos has been considered minimal in marine ecosystems (.Azam 

et al. 1983. Ducklow 1990). More recently direct evidence from two ecosystems: Lake 

Baikal. Siberia. Russia, and the salt marshes surrounding Sapelo Island. Georgia. USA. 

indicate that the incorporation o f microbial food webs in models o f benthic-pelagic coupling 

results in the transfer o f a significant amount o f  microbial biomass through the benthos.
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Lake Baikal

Lake Baikal is the world's oldest lake (ca. 25 million years) and contains over 1000 

endemic species. The benthos o f  the shallow areas o f Lake Baikal (mean depth 12 m) is 

dominated by three species o f sponge. Baikalospongia intermedia. B. bacillifera, and 

Lubomirskia baicalemis. that cover over 54% o f the benthic surface area (Pile et al. 1996a). 

As is typical o f most lakes, the plankton community o f Lake Baikal is dominated by 

uitraplankton; including heterotrophic bacteria: Synechococcus-type cyanobacteria and 

autotrophic picoeucaryotes. which contribute 80% of the total primary production within the 

water column (Nagata et al. 1994). The homogenous composition o f a benthic community 

dominated by three sponge species that feed primarily on the highly abundant uitraplankton 

makes the littoral zone of Lake Baikal an excellent location for the in situ study of the role 

of microbial food webs in benthic-pelagic coupling.

Active suspension feeding by the extensive sponge community in Lake Baikal can 

significantly reduce uitraplankton near the bottom. Measurements taken at both the 

organismal and community level resulted in the first in situ evidence that freshwater 

macroinvertebrates graze on Synechococcus-type cyanobacteria as well as heterotrophic 

bacteria and picoeucaryotes (Pile et al. 1996a). At the organismal level retention efficiencies 

ranged between 58-99% of the uitraplankton m i'1 processed (Table 8) resulting in a trophic 

level o f 2.01 (calculated from Figure 13). Therefore, sponges in the littoral zone of Lake 

Baikal are members o f the guild o f primary consumers. The suspension feeding activity o f 

the benthos o f the littoral zone is further evident by the formation of a food depleted layer 

ca. 1 m thick overlying the benthos. The water column within 1 m of the benthos had cell
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Figure 13. Conceptualized daily flow of carbon between the water column and the benthos 

in the littoral zone o f Lake Baikal. Siberia. Russia. Arrows indicate the direction o f 

flow with dashed lines representing dissolved carbon and solid lines particulate carbon. 

Values, mg C m‘\  in boxes are standing stocks and near arrows are fluxes. Water 

column values represent an integrated water column o f 12 m. Trophic level within the 

food web. as indicated by position in the vertical, was determined following Baird and 

Ulanowicz (Baird and Ulanowicz 1989). Unknown fluxes are indicated by ? next to 

an arrow.
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concentrations nearly an order o f magnitude less than the remainder o f the water column 

(Pile et al. 1996a). Development o f  the food depleted layer is supported empirically by the 

boundary layer conditions present when the measurements were made (Savarese et al. 1996).

The flow o f carbon between the benthos and water column can be conservatively 

estimated for the littoral zone o f the lake (Figure 13). Calculations o f carbon flow employed 

some general assumptions of uitraplankton dynamics when actual values for Lake Baikal 

were unavailable: carbon assimilation by heterotrophic bacteria is 20% (Hobbie and 

Crawford 1969) and DOC leakage from phvtoplankton is 10% (Wood et al. 1992). Sponges 

serve as a sink for 70 mg C d a y 1 m ': in heterotrophic bacteria and 1900 mg C day'1 m': in 

autotrophic uitraplankton (Pile et al. 1996a). The sponges removed nearly 25% of the 

production by bacteria. 288 mg C m': (growth rate x standing stock: Nagata et al. 1994. Pile 

et al. 1996a). that occurs in an integrated water column 12 m deep. More importantly, they 

consume 10% of the standing stock of 70 mg C d a y 1 m': out o f  720 mg C m ': available, 

which is equivalent to a water column ca 1 m high or the thickness of the food depleted 

layer. Sponges in the lake function as a net sink for autotrophic uitraplankton. 1900 mg C 

day1 m': are retained by sponges which is 90% of the production within the water column 

during a day. A majority of this is Synechococcus-type cyanobacteria (Nagata et al. 1994. 

Pile et al. 1996a). If we consider the carbon production of photosvnthetic uitraplankton to 

be the sum o f that from the water column and the benthos (2120 + 850) then the sponges are 

consuming only 60% o f the production per day in the shallow part of the lake.

Productivity o f heterotrophic bacteria requires 1440 mg C d a y 1 m': in the form of 

DOC. A small portion. 15%. is leakage of DOC from primary producers, and the remainder
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most likely results from grazing activity and leaching of DOC from detrital material. 

Release o f DOC by sponges has not been quantified but is highly likely. The contribution 

of sponges to the DOC and DIC pools is further complicated since the assimilation efficiency 

of carbon, as well as the release o f DIC through respiration, is unknown for these sponges. 

Unfortunately this lack of information makes it impossible to estimate the flow of carbon 

through the sponges. However, it does not prevent closure o f the microbial loop.

Closure o f the microbial loop is unique in this system as the sponges release 

picoeucaryotes at a rate that actually results in the benthos being a net source o f carbon in 

the form of picoeucaryotes (Pile et al. 1996a). the primary producers of the food web. It is 

not known whether the picoeucaryotes being released by the sponges are viable organisms 

that would contribute to the biomass o f the water column or dead organisms that would 

contribute to the detrital biomass. If the cells are living, then the sponges are contributing 

directly to the biomass o f the primary producers, who in turn leak DOC. If the cells are dead. 

DOC will leach from them and they will most likely be colonized by bacteria to form 

aggregates. Whether the cells are living or not is unimportant since the overall affect is the 

same: these cells contribute to the DOC pool that supports production o f heterotrophic 

bacteria and close the microbial loop. Ultimately, the microbial food web is an important 

exogenous source o f carbon to the benthos o f the littoral zone o f Lake Baikal.

Salt Marshes

Sapelo Island. Georgia, is located off the mid-Atlantic coast of the United States. 

The marshes o f the region have been well studied during the past 15 years (e. g.. Pomeroy
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and Wiegert 1981). Grazing within the water column by flagellates and ciliates does not 

balance bacterial production (Sherr, B. F. et al. 1986, 1989). This leads to a general 

hypothesis that grazing by the benthos can significantly impact the water column community 

and that the microbial food web is an important exogenous source o f material to the benthic 

community. I must reiterate that it is only a hypothesis as the data on grazing by the benthic 

community lacks experimental replication and some assumptions on the rates of processes 

were assumed from literature values from other ecosystems.

As is typical of the east coast of the United States, the intertidal Spartina alterniflora 

marshes of Sapelo Island have extensive communities o f the Atlantic ribbed mussel 

(Geukensia demissa) (Kemp et al. 1990). Atlantic ribbed mussels can retain uitraplankton 

(Wright et al. 1982) and in situ organism mediated fluxes have been estimated in the marsh 

but lack replication (n=l) (Kemp et al. 1990). However, if  these flaxes are combined with 

estimates o f the release o f nitrogen by the mussels (Hammen 1968. Jordan and Valiela 1982) 

and the utilization o f nitrogen by bacterioplankton (Wheeler and Kirchman 1986) and 

autotrophic uitraplankton. a flow of nitrogen between the water column and the benthos can 

be hypothesized (Figure 14). Flaxes were calculated using literature values for the late 

summer.

Atlantic ribbed mussels retain 1.5 and 5.2 mg N day'1 m': from heterotrophic bacteria 

and autotrophic uitraplankton. respectively, through active suspension feeding (Kemp et al.

1990). These mussels also significantly reduce populations of micrograzers. Thus. Atlantic 

ribbed mussels feed at three trophic levels within this microbial food web. The mean trophic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

Figure 14. Conceptualized daily flow o f nitrogen between the water column and the benthos 

in the salt marshes o f Sapelo Island. Georgia. USA. Arrows indicate the direction of 

flow with dashed lines representing dissolved nitrogen and solid lines particulate 

nitrogen. Values, mg N m';. in boxes are standing stocks and near arrow are fluxes. 

Water column standing stocks are for an integrated water column o f 0.2 m and ambinet 

concentrations of D[N are for 200 I. the overlying water column. Trophic level within 

the food web. as indicated by position in the vertical, was determined following Baird 

and Ulanowicz (Baird and Ulanowicz 1989). Unknown fluxes are indicated by ? next 

to an arrow.
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level of 2.38 (computed from Figure 14) places Atlantic ribbed mussels within the guild o f 

primary consumers o f this ecosystem.

Mussels will release 0.06 mg N d a y 1 m': in the form DON (Hammen 1968), 0.7 mg 

N d a y 1 m': in ammonium which can be used to support production of autotrophic 

uitraplankton and heterotrophic bacteria. Heterotrophic bacteria incorporate 1.7 mg N d a y 1 

m': (Sherr. E. B. et al. 1986. Wheeler and Kirchman 1986), equally partitioned between DON 

and DIN during the summer (Wheeler and Kirchman 1986). Atlantic ribbed mussels can 

supply 66% of the DON requirements o f heterotrophic bacteria. Heterotrophic bacteria and 

autotrophic uitraplankton would compete for the DIN fraction which is supplemented by 

fluxes from the sediments and detritus. Also. Atlantic ribbed mussels biodeposit 3 mg N 

d ay1 m'; and secrete 0.1 mg N d ay 1 m': in byssal threads (Jordan and Valiela 1982). Thus, 

ca. 60% o f the nitrogen is assimilated by the mussels and this assimilation efficiency is 

comparable to those o f other bivalves fed a diet of bacterioplankton (Langdon and Newell 

1990).

Atlantic ribbed mussels consume 88% o f the bacterial production each day. This is 

reasonable if one considers that the population o f mussels also grazes on the micrograzers 

(Kemp et al. 1990). that are the other major consumers o f heterotrophic bacteria. Atlantic 

ribbed mussels can remove 90% of the micrograzers from the overlying water column in 1 

hour (Kemp et al. 1990). Considering this, only 0.01 mg N day'1 m': in heterotrophic 

bacteria is consumed each day by micrograzers in water overlying mussel communities 

(Sherr. E. B. et al. 1986. Sherr. B. F. et al. 1989). Combined, grazing of heterotrophic 

bacteria by water column and benthic communities can account for 94% of the heterotrophic
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bacterial production. The inability o f grazing by water column communities to equal 

bacterial production (Sherr, B. F. et al. 1989) may be accounted for if grazing o f 

heterotrophic bacteria by the benthic community is incorporated into models o f material 

flaxes. More importantly, it clearly demonstrates that the microbial food web is an important 

source o f exogenous nitrogen to the benthic community o f the marshes o f Sapelo Island.

SUMMARY

Overall, macro invertebrates from a variety o f ecosystems have been shown to be 

primary consumers within the microbial food web as they are a sink for uitraplankton and 

in return are a source o f DOM and DIM that nutritionally support the microbial food web. 

The microbial food web is an important source of exogenous carbon to benthic communities 

dominated by macroinvertebrates that are capable of utilizing uitraplankton. Ecologically, 

we tend to bias our interpretation o f the flow of matter through ecosystems in terms of 

energy, which in the photic zone is expressed as carbon. Most likely, a majority o f the 

carbon from the microbial food web is quickly respired, hence the link vs sink controversy 

(Ducklow et al. 1986. Sherr. E. B. and Sherr 1987). and this carbon is used for metabolic 

maintenance by macro invertebrates as it is an abundant, stable energy source. Heterotrophic 

bacteria can be an exceptional source o f nutritionally important nitrogen, which is either 

assimilated for new production or remineralized and released as DON and DIN to be utilized 

by the water column community. Heterotrophic bacteria in near shore communities have a 

C:N ratio o f 3-4 while the C:N ratio of autotrophic uitraplankton ranges from 6-8 (Wheeler 

and Kirchman 1986). In general, the transfer of nitrogen from uitraplankton to higher trophic
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levels is conserved, in that it is not lost as N* and may be easier to follow making it a better 

predictor o f the importance o f microbial food webs in benthic-pelagic coupling.

Macro invertebrates that have the capacity to graze on uitraplankton are globally 

distributed in benthic and pelagic habitats. We have only begun to understand the role that 

these organisms play in the cycling o f carbon and other nutrients within aquatic 

environments and much remains to be learned. Particularly important will be to ( U expand 

our base o f knowledge on the feeding ecology of uitraplankton grazers tfom larval to adult 

Iife-history stages: (2) understand better the fate o f carbon and nitrogen from uitraplankton 

to macro invertebrates by establishing the assimilation efficiencies: and (3) resolve die role 

o f the microbial food web as an exogenous source o f carbon and other nutrients to some of 

the most highly productive communities on the globe.
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