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ABSTRACT 

A shortage of shell resources for restoring reefs of the Eastern oyster, Crassostrea 
virginica, has led to widespread use of other materials as substitutes for oyster shell. The 
effectiveness of such alternative substrates in reef construction efforts as habitat for reef­
associated fauna other than oysters is largely unresolved. For this study, I investigated 
the habitat value of reefs comprised of oyster shell, surf clam (Spisula solidissima) shell, 
and pelletized coal ash for benthic and nektonic communities. 

Oyster recruitment, survival, and growth were monitored on reefs constructed 
from oyster and surf clam shell near the mouth of Chesapeake Bay, USA and in the York 
River. The oyster shell reef supported greater oyster growth and survival and offered the 
highest degree of structural complexity. On the York River subtidal clam shell reef, the 
quality of the substrate varied with reef elevation with large shell fragments and intact 
valves scattered around the reef base and small, tightly packed shell fragments paving the 
crest and flank of the reef mound. Oysters were more abundant and larger at the reef 
base and less abundant and smaller on the crest of the reef. The availability of interstitial 
space and appropriate settlement surfaces is hypothesized to account for the observed 
differences in oyster abundance across the reef systems. The patterns observed give 
further context to the importance of substrate selection in similar restoration activities. 

Invertebrate fauna associated with oyster shell, clam shell, and pelletized coal ash 
reef habitats were investigated. Diversity and secondary production were greatest on the 
oyster shell reef. Species richness was lowest on the coal ash pellet reef due to fewer rare 
species; however, total community abundance was significantly greater than on the other 
two reef types, driven by numerical dominance of small crustaceans. Clam shell reefs 
showed intermediate abundance and diversity patterns but had the lowest values for 
secondary production. Differences in macrofauna! community metrics reflect the quantity 
and quality ofthe interstitial space afforded by the substrate material and is in part driven 
by the presence of living oysters that grew to form a living oyster crust on the oyster shell 
reef during this study. 

Differences in the abundance, diversity, and community structure of nekton 
species collected using a remotely deployed enclosure trap between these reef substrate 
types. Data show distinct differences in nekton community structure across habitat types. 
Species richness was greatest on the oyster shell and coal ash pellet habitats. Significant 
differences in the presence and abundance of nekton between oyster shell and clam shell 
reefs were detected. Clam shell reefs were similar in species composition and abundance 
to a bare-sand beach habitat. These reef habitats have refuge value, as demonstrated by 
the transient nekton species that numerically dominated all of these habitats. The oyster 
shell and coal ash pellet reef served as habitat to many ecologically, commercially, and 
recreationally important species that use the reef habitat for food and shelter during 
juvenile life stages, suggesting the reef habitats may be of great importance as habitat to 
finfish communities. 
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2 

GENERAL INTRODUCTION 

Anthropogenic alterations of estuarine environments have long been structuring 

coastal systems around the world. Shoreline development and land uses within the 

Chesapeake Bay watershed since the arrival of European settlers in 1607 have had 

deleterious etiects on water quality and altered estuarine habitats (Hargis 1999). 

Increased sedimentation and nutrient inputs from extensive deforestation, urbanization of 

the watershed, alteration of natural t1ow patterns and salinity regimes, and destructive 

agricultural practices contribute to degraded Bay water quality. Growing coastal 

populations and increased demand on living marine resources apply further pressure to a 

stressed estuarine ecosystem. 

The Eastern oyster, Crassostrea virginica, has fallen victim to pressures of human 

progress. The oyster industry thrived in Chesapeake Bay since the arrival of English 

colonists and peaked in the late 1800's as oyster populations began to decline (Hargis and 

Haven 1999). Overharvesting, disease, and changes in water quality are the explanations 

most often given for this decline; however, these impacts are not mutually exclusive. In 

fact, one impetus behind restoration of oyster populations and oyster habitat is that 

oysters are seen as a means to help improve poor water quality, a factor that contributed 

to their demise. Oysters have the capacity to strain large quantities of water through their 

gills as they feed, clearing the water of small particles and anything attached to the 

particles, in the process. This filtering function helps maintain good water quality in 
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estuaries, where the amount of suspended particles present can otherwise be quite high 

(Newell and Langdon 1996). 

In addition to water quality improvements. the momentum behind oyster habitat 

restoration in Chesapeake Bay also relates to fishery stock enhancement and restoration 

of the structure and function of oysters and organisms normally associated with oyster 

reef habitat. According to Cairns (1993 ), ''the ultimate goal of ecological restoration is to 

emulate a healthy, naturaL self-regulating system that is integrated into the surrounding 

natural landscape." Otten a measure of a restoration project's success involves a 

comparison of the restored habitat to one in its natural state. Unfmiunately, little 

quantitative data exist on functional aspects of oyster reef habitat in lower Chesapeake 

Bay. Although oyster reefs are prominent features of intertidal areas of most estuaries in 

the southeastern United States, there are no biogenic oyster reefs remaining in high 

salinity waters in Virginia that can be used to evaluate the functional role of this type of 

habitat. 

Recent oyster reef habitat restoration efforts have resulted in the placement of 

substrata in several locations within Chesapeake Bay. In Virginia, replenishment 

programs have resulted in reef construction in the James, Great Wicomoco, Piankatank, 

Rappahannock, and York Rivers, Mobjack Bay and on the Seaside of the Eastern Shore. 

These restoration effotis include ( 1) the construction of reef bases to provide substrate for 

oyster larval settlement and (2) stock enhancement with hatchery-raised juvenile oysters 

to provide broodstock and accelerate the formation of living oyster reef habitats. Oysters 

require appropriate hard substrate for settlement and survival and typically settle upon 

other oysters forming complex beds that support future settlement (Kennedy and Sanford 

3 
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1999). Overharvesting of oysters and relic oyster shell essentially removed much of the 

suitable habitat for new recruits. contributing to the decline in oyster populations. 

In this dissertation I investigate the relationship between physical structure and 

ecological function of constructed oyster reef habitats in Chesapeake Bay. I examined 

benthic and nektonic community structure on reef bases of varying construction materials 

to evaluate reef restoration approaches using alternative base substrates. Oyster reef 

restoration activities in the Virginia portion of Chesapeake Bay typically involve the 

placement of hard substrata on the seabed to form three-dimensional mounds to serve as a 

base for oyster recruitment and growth. A shortage of oyster shell for creating large­

scale reefs has led to widespread use of other materials, such as surf clam (Spisula 

solidissima) shell, limestone marl, pelletized coal ash, and even crushed porcelain toilets 

(J. Wesson, pers. com.) as a substitute for oyster shell. 

In Chapter 1, I discuss the population dynamics of oysters on intertidal and 

subtidal reefs composed of different substrate base materials. I examine and contrast the 

oyster recruitment, growth, and survival at different reef elevations on a subtidal Spissula 

solidissima shell reef in lower York River and intertidal reefs constructed of Crassostrea 

virginica shell and S. solidissima shell near the mouth of Chesapeake Bay at Fisherman's 

Island. 

In Chapter 2, I describe a enclosure trap seine developed to sample intertidal 

oyster reef habitats. 

In Chapter 3, I evaluate patterns of macro benthic community abundance, biomass, 

and diversity among three constructed oyster reef substrates on reefs at Fisherman's 

Island to determine if reef structure affects community development and function. I 

4 
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calculate benthic secondary productivity for macrobenthic invertebrates, which be used to 

assess ecological integrity in constructed oyster reef communities. Attention is paid to 

the relative production of the most representative and abundant taxa, also according to 

trophic groups, degree of mobility, and larval dispersal modes on different reef substrate 

types (oyster shell, surf clam shell, and pelletized coal ash). 

In Chapter 4, I compare nekton use and community composition of intertidal 

constructed oyster reef habitats of different substrate construction materials while using a 

nearby bare-sand beach habitat as a proxy pre-reef-construction control to assess the 

importance of these oyster reefs as fish habitat. 

Oyster reefs cannot be considered in isolation, as closed boxes do not exist in 

nature. Oyster reefs likely have vital ecological linkages with other ecosystems and the 

restoration of oysters to Chesapeake Bay will have implications beyond the physical reef 

habitat. High benthic secondary production on oyster reefs can contribute to neighboring 

systems. The physical structure of the reef habitat provides refuge habitat to many 

estuarine species. The findings reported in this dissertation provide evidence on the 

functional role of constructed oyster reefs habitats in Chesapeake Bay and shed light on 

community structure and functioning of reef and adjacent habitats. 

5 
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ON CREATED OYSTER REEF HABITATS IN CHESAPEAKE BAY 
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ABSTRACT 

Efforts to restore the Eastern oyster, Crassostrea virginica, reef habitats in Chesapeake 

Bay typically begin with the placement of hard substrata to form three-dimensional 

mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of 

oyster shell for creating large-scale reefs has led to widespread use of other materials, 

such as surf clam (Spisula solidissima) shell, as a substitute for oyster shell. Oyster 

recruitment, survival, and growth were monitored on intertidal reefs constructed from 

oyster and surf clam shell near Fisherman's Island on a subtidal surf clam shell reef in 

York River. At the Fisherman's Island reefs, oyster larvae settlement occurred at similar 

levels on both substrate types throughout the monitoring period but higher levels of 

postsettlement mortality occurred on clam shell reefs. The oyster shell reef supported 

greater oyster growth and survival and offered the highest degree of structural 

complexity. On the York River subtidal clam shell reef, the quality of the substrate 

varied with reef elevation with large shell fragments and intact valves scattered around 

the reef base and small, tightly packed shell fragments paving the crest and flank of the 

reef mound. Oysters were more abundant and larger at the reef base and less abundant 

and smaller on the crest of the reef. The availability of interstitial space and appropriate 

settlement surfaces is hypothesized to account for the observed differences in oyster 

abundance across the reef systems. The patterns observed give further context to the 

importance of substrate selection in similar restoration activities. 
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INTRODUCTION 

Oyster reefs serve an ecologically important role by providing the predominate 

natural hard substrate in the characteristically sedimentary environment ofthe middle 

Atlantic coastal plain. The three-dimensional structure of oyster reef habitat created by 

Eastern oyster (Crassostrea virginica) increases the amount of surface area for 

attachment and crevices for refuge of newly settled oysters, as well as numerous small 

invertebrates and fishes (Wells 1961; Bahr 1974; Dame 1979; Zimmerman et al. 1989). 

Oyster reefs, which were once a prominent feature in the Chesapeake Bay ecosystem 

before European colonization and intense overharvesting during the 19th and 20th 

centuries, have been reduced to mere footprints of their original upthrusting profile 

(Hargis 1999). Years of poor resource management of both live oysters and shell, 

mortality from diseases caused by the protistan parasites Perkinsis marinus ("Dermo") 

and Haplosporidium nelsoni ("MSX"), and increased sedimentation and environmental 

degradation have all contributed to a dramatic decline in oyster populations in 

Chesapeake Bay. These natural, self-renewing habitats have been effectively destroyed 

and are the focus of many habitat restoration efforts throughout Chesapeake Bay 

(Kennedy and Sanford 1999; O'Beim et al. 2000; reviewed by MacKenzie 1996 and 

Mann 2000). 

8 
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Efforts to restore oyster reef habitats typically begin with the placement of hard 

substrata on the seabed to serve as a base for oyster recruitment and growth. Over time, 

continued settlement and subsequent growth of generations of oysters form a continuous 

veneer ofliving oyster reef over the base substrate (Wesson et al. 1999; O'Beirn et al. 

2000). Numerous studies have emphasized the importance of vertical relief of these 

created habitats on oyster growth and survival in altering water flow and sedimentation 

(Lenihan 1999), and in elevating the habitat into the intertidal zone (Bartol and Mann 

1999; O'Beirn et al. 2000; Volety et al. 2000). Since the early 1990's, reefs in lower 

Chesapeake Bay have been commonly built as three-dimensional mounds ranging in 

height from approximately 0.5 to 2m above the seabed (Wesson et al. 1999; O'Beirn et 

al. 2000). While many of these created reefs in lower Chesapeake Bay are in the 

intertidal zone, some are located in deep regions or have settled or eroded and are entirely 

subtidal. Whether intertidal or subtidal, the structure of these constructed hummocks is 

intended to offer adequate surface and interstitial heterogeneity for oyster growth and 

survival and for recruitment by other epifaunal species. Bartol et al. (1999) underscore 

the importance of interstitial space within the fabric of intertidal reefs to promote oyster 

survival during periods of severe solar exposure and predation. The material used to 

create oyster reefs should afford this architectural complexity. 

The most common material used in oyster reef construction is empty Crassostrea 

virginica shell secured from local shucking operations. When piled into mounds, oyster 

shells form an interstitial matrix of void spaces between the shell pieces. These spaces 

and the shell surfaces around them provide settlement habitat, refugia from predation, and 

moderation of physical stress for oysters and associated colonizing fauna (Gutierrez et al. 
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2003). While prior research has shown that oyster larvae prefer to settle on living or 

recently living shells of conspecifics (Crisp 1967, Veitch and Hidu 1971), shortages of 

oyster shell have prompted a search for suitable alternative substrates for reef 

construction. 

One material commonly used as an alternative to oyster shell is surf clam (Spisula 

solidissima) shell (Wesson et al. 1999). With repeated handling associated with large­

scale reef construction, S. solidissima shells fracture into small pieces that pack tightly 

together and thus provide limited surface area and interstitial space for occupation by 

oysters and colonizing reef fauna. Overall interstitial volume afforded by fractured S. 

solidissima shell is significantly less than that provided by oyster shell (O'Beirn et al. 

2000). To date, only O'Beirn et al (2000) have examined the efficacy of the S. 

solidissima shell substrate in large-scale intertidal reef restoration efforts but similar 

details have not been quantified for clam shell reefs in subtidal habitats. 

The objective of this project is to examine and contrast the oyster recruitment, 

growth, and survival at different reef elevations on a subtidal Spissula solidissima shell 

reef in lower York River and intertidal reefs constructed of Crassostrea virginica shell 

and S. solidissima shell near the mouth of Chesapeake Bay at Fisherman's Island. The 

results have relevance for the selection and placement of materials and of design 

strategies for oyster reef restoration. Oyster populations on the reefs at Fisherman's 

Island were not compared statistically with that of the Goodwin Island reefbecause ofthe 

confounding effects of temporal difference in reef construction and considerable 

dissimilarities in reef surface area and tidal and salinity regime exposure. 

10 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

METHODS 

Site Description 

The study area included two created oyster reef sites protected from commercial 

harvesting in lower Chesapeake Bay. One site was situated at the mouth ofthe York 

River approximately 1 km north of Goodwin Island (a Chesapeake Bay National 

Estuarine Research Reserve in Virginia site, Figure 1). An oyster reefbase was 

constructed in spring 1995 of 30,000 bushels (1057 m3
) crushed surf clam (Spisula 

solidissima) shell on a subtidal sandflat (Meisner 1995). The reef measured 

approximately 1350 m2 and extended approximately 1.5 m above a seabed. At low tide 

the water over the subtidal reef crest was 1.5 m deep. 

11 

The other oyster reef site was located at the Fisherman's Island National Wildlife 

Refuge near the mouth of Chesapeake Bay at Virginia's eastern shore. During summer 

1996, 11 intertidal oyster reefhabitats were constructed of three substrate materials: 

Crassostrea virginica shell, Spisula solidissima shell, and, though not evaluated in this 

study, pelletized coal ash (Figure 1). The reefs range in size from 162 to 364m2 

(O'Beim et al. 2000). Although the Fisherman's Island and Goodwin Island reef systems 

were characterized by different physical (salinity, tidal range, intertidal vs. subtidal reefs, 

etc.) and biological (benthic and nektonic community species composition, nutrient 

regimes, etc.) regimes, a comparison of these reefs offered an opportunity to evaluate the 
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use of alternative substrates in oyster reef restoration efforts and the efficacy of S. 

solidissima shell reefs under distinctly different conditions. 

Oyster Sampling 

Sampling of the reef to determine oyster abundance and size at Goodwin Island 

took place from Fall1999 through Summer 2001. Using reference stakes permanently 

positioned at the reef margins, the surface of the reef was divided into a grid and 

coordinates were assigned to each cell ofthe grid. The reef was further subdivided into 

three depth strata- crest (1.5 m above the seabed), flank (0.8 m above the seabed), and 

base (0.2 m above the seabed) (Figure 2). Within each depth strata, the coordinates on 

the reef surface were selected randomly without replacement for each sample (once a cell 

was sampled, the coordinate of the area was be recorded so that sampled areas were 

excluded from selection at a later date). Within the cell, divers placed a square plastic 

frame (0.25 m x 0.25 m) on the reef surface and all substrate material within the frame 

was removed by hand to a depth of 10 em (below this depth, shell and associated 

sediments were dark black in color and indicative of anoxic conditions) and placed in a 

cloth bag. Samples were transported to the laboratory in ice chests and stored in flow­

through seawater tanks until processing. Samples were elutriated within 48 hours of 

collection over a 500~-tm mesh screen. Six replicate quadrat samples per sampling period 

were collected from each elevation strata. All live adult (oysters> 30 mm shell height), 

juveniles(~ 30 mm shell height) and recently dead (with empty, paired, articulated valves 

with no evidence of interior fouling) oysters were counted and measured. 

12 
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Similar methods were used at Fisherman's Island for assessing oyster stocks on 

the created intertidal reefs (described in detail in O'Beirn et al. 2000). Briefly, in May 

1997, 1998, and 1999, three 0.25 m x 0.25 m quadrats were collected from each ofthree 

tidal elevations on two replicate reefs of each substrate type. The elevations were 

subtidal (0.25 below mean low water), low intertidal (at mean low water), and high 

intertidal (0.25 m above mean low water). The crests and flanks of different reefs were 

exposed to different tidal inundation regimes because of settling and erosion of the reefs 

over time (in particular, one of the oyster shell reefs) (Figure 2). Since the tidal elevation 

of the reef crests ranged from the high to low intertidal, the higher tidal heights from all 

reefs were not sampled during the entire study. Therefore, to compare oyster density by 

reef substrate type, analysis was restricted to the samples collected from the subtidal (reef 

base) and low intertidal (reef crest or flank, depending on the reef) reef elevations. All 

live and recently dead (with paired, articulated valves with no interior fouling) oysters 

were enumerated and measured to the nearest 0.1 mm. 

Statistical analysis 

Differences in oyster densities among reef elevations (base, flank, crest) and 

among sampling times (November 1999, July 2000, June 2001) at the Goodwin Island 

reef were assessed by two-way full-factor fixed effects model ANOV A. Separate 

ANOVA's were conducted for small (s;30 em shell height) and large (>30 em shell 

height) live oysters and for identical categories of dead oysters to independently examine 

the effects of elevation and date on juvenile (small) and mature (large) oyster survival. 

Cochran's test was used to test for homoscedasticity of variances. When necessary, 
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density values were log transformed [In (x+ 1 )] to confom1 to homogeneity and normality 

assumptions. Student-Newman-Keuls a posteriori tests were used to explore differences 

among means when significant factor and interactive effects were detected (Underwood 

1997). 

Differences in live oyster densities among reef elevations, substrate types, and 

sampling times at the Fisherman's Island reefs were assessed with separate three-way 

ANOVA models with year, reeftype, and elevation as factors. Heteroscedastic variances 

were corrected with a In( x+ 1) transformation. 

14 
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RESULTS 

Goodwin Island 

Oyster densities on the Goodwin Island reef show a clear pattern relative to reef 

elevation at all sampling times with the base of the reef having greater oyster densities 

than reef crest (Figures 3 and 4). Two-way ANOVA for the effects of date and elevation 

revealed that only elevation on the reef influenced densities of both live and dead mature 

oysters(> 30 mm) (Table la). These oysters were significantly more abundant at the reef 

base compared with the flank and crest. Densities oflive juvenile oysters(::::; 30 mm) 

were significantly affected by reef elevation, date, and their interaction (P = 0.007). SNK 

tests (Table 1 b) performed to decouple the cause of the elevation x date interaction 

revealed: ( 1) during the 1999 and 2000 sampling events densities of small live oysters 

were greater at the flank and base than densities at the crest; (2) during the 2001 sampling 

period no statistically significant difference in juvenile oyster density according to reef 

elevation was detected although as in 1999 and 2000 densities tended to be lowest at the 

crest; (3) recruitment of juvenile oysters was lowest in 2000 across all elevations. 

Densities were greatest in 1999 and intermediate in 2001 at both the reef flank and base, 

but no significant differences were detected in densities these years at the reef crest 

(Table 1 b). Densities of dead juvenile oysters (::::; 30 mm) were significantly affected by 
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reef elevation and date. These oysters were significantly more abundant at the reef base 

than at the flank and crest (Table 1a). 

Size frequency distributions reveal that for each of the three years (Figure 5) 

juvenile oysters (:::: 30 mm) numerically dominated all samples. Reef crest oysters had a 

unimodal population distribution each year. Flank and base reef strata exhibit bimodal 

size distributions in 2001. Juvenile oysters dominated all three strata throughout the 

sampling period with mature oysters(> 30 mm) rare. A greater proportion (albeit small) 

of mature oysters were collected from the reef base than from the reef flank. Dead 

oysters (with articulated shells) were present at each elevation each year and, although 

fewer in number, tended to reflect the distribution of live oysters at each elevation. 

Dead oysters were examined for evidence of predation by crabs in 2000 and 2001. 

Predation by crabs on oysters was distinguished from other sources of mortality by the 

presence of chipped or cracked valve margins, puncture holes within the umbo region, 

crushing of the umbo region, and complete crushing of the valves. Dead oysters with 

such characteristics were collected from each reef elevation, but were proportionally 

more abundant at reef crest and flank compared with the reef base (Figure 6). 

Visual comparisons of the size of surf clam (Spisula solidissima) shell fragments 

that make up the reef at different elevations were striking and led to a characterization of 

the reef substrate in July 2000. A subsample of atleast 50 shell fragments were randomly 

selected from each 0.25 m2 reef quadrate sample and the largest dimension of each 

fragment was measured to the nearest millimeter. The size of clam shell fragments 

reflected the distribution oflarger oysters and varied among elevation strata (ANOV A, p 

< 0.001). Fragments of clam shell were significantly larger at reef base compared with 
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flank and crest. Shell fragments from the flank and crest did not differ significantly 

(Figure 7). 

Fisherman 's Island 

The mean density (ln(x+ 1) transformed) of oysters at Fisherman's Island varied 

significantly according to tidal reef elevation, substrate type, and date (Table 2). There 

was also a significant tidal reef elevation by substrate type by date interaction. This 

interaction effect was due to higher densities of oysters at low intertidal reef elevations 

than at subtidal reef elevations of the clam and oyster shell substrates each year except in 

1997 when subtidal oyster densities were greater than densities at low intertidal reef 

elevations on clam shell reefs (Figure 8, Table 2). Densities of oysters increased over 

time at the subtidal elevation of the oyster shell reefs and at the low intertidal reef 

elevation of the clam shell reefs. This pattern was not evident at the low intertidal reef 

elevation on the oyster shell reef where the density of oysters was lowest in 1998. Oyster 

densities remained low throughout the study at the clam shell reefs' subtidal elevation 

(Figure 8). None of the first order interaction effects were significant (all p > 0.079). 

Oysters were consistently more abundant on the oyster shell than on the clam 

shell reef habitat. Overall abundance patterns on clam shell were similar to that found on 

the clam shell reef at Goodwin Island with a population dominated by small oysters and 

few oysters surviving to attain larger sizes(> 30 mm) (Figure 9). By May 1997, nearly 

one year after reef construction, oysters were notably more abundant on the oyster shell 

reef compared with the clam shell reef. By May 1998 and through 1999, the size 

distribution of oysters on the oyster shell reef was bimodal with relatively large numbers 
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of larger live oysters, whereas a unimodal size distribution of small live oysters was 

found on clam shell. Recently dead oysters with atiiculated shells were present on both 

reef types all years and tended to reflect the distribution of live oysters. There appeared 

to be increased survival on the oyster shell habitats as the ratio of live oyster to recently 

dead oyster abundance was greater on the oyster shell reefs than on the clam shell reefs 

each year. The clam shell reefs were capped in Summer 1999 with a veneer of oyster 

shell because of the marked difference in oyster abundance and survival between the 

alternative substrate and oyster shell reefs. 
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DISCUSSION 

This study compared the development of oyster populations on different culch 

materials in intertidal and subtidal settings. Reefs built in lower Chesapeake Bay for 

habitat restoration are 3-dimensional mounds of shell (or other substrate material) rising 

half a meter to as much as 2 meters above the bottom. No matter what the construction 

configuration, the ultimate goal of substrate placement in reef restoration is the formation 

of a self-renewing veneer of generations of living oysters encrusted over the core base 

material. The formation of this living covering is dependent on the success of the 

substrate material to support survival and growth of the initial cohort of oysters that 

recruit to the constructed reef. This substrate should provide ample convolutions and 

surface area to afford settlement surface and refuge for young oysters from predation and 

physical stress. Thus, the choice of an appropriate substrate type for use as a reef base 

can dictate success or failure of the developing reef assemblage. 

The reef bases at Goodwin Island and Fisherman's Island developed quite 

different oyster populations on similar substrate materials under different physical 

regimes and recruitment levels. Oyster settlement on the eastern shore of Chesapeake 

Bay is generally greater than that of the western shore tributaries. Oyster recruitment at 

Fisherman's Island has been monitored since 1995 (Morales-Alamo and Mann 1996) and 
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annual fluctuations in the magnitude of recruitment, with low records in 1996 and high 

records in 1997 and 1999 (Southworth et al. 2000; this study). 

Oyster densities on both substrate types showed a steady increase over time at 

Fisherman's Island but the population on the oyster shell far exceeded that on the clam 

shell mound. By 1999, the single oyster shells that make up the base of the reef were 

encrusted by a continuous living veneer of live oysters. This veneer never formed on the 

clam shell mounds. 

Although the York River has been characterized by low recruitment in recent 

years (Morales-Alamo 1996, 1997, 1998; Southworth et al. 1999, 2000, 2001), juvenile 

oysters recruited to the Goodwin Island reef each year. Spawning of Crassostrea 

virginica is initiated by temperature (20-25° C) (Galtsoff 1964) or salinity cues(> 10 

psu) (Abbe 1986) and typically occurs between June and October in lower Chesapeake 

Bay (Andrews 1951). Low oyster recruitment has been prevalent in Virginia since 1991 

(Southworth et al. 2000). The relatively high number of recruits observed in 1999 at the 

Goodwin Island reef compared with subsequent years is likely due to temporal 

differences in sampling events. In 1999, the reef was sampled in November, after the 

conclusion of the settlement period so the population reported here is inclusive of young 

oysters recruited to the reef during the summer of 1999. During the other two years, the 

reef was sampled in the summer at the beginning of reproductive activity and data reflect 

the oysters that survived through the previous winter as well as some of the early recruits 

of that year. A recruitment event of the magnitude observed in November 1999 was not 

observed again in 2000 or 2001, nor was it reflected in the number of small oysters 

observed in subsequent years. 
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The distribution of live oysters and the physical structure of the subtidal reef at 

Goodwin Island is analogous to those of natural mature subtidal oyster reefs of the Gulf 

Coast exhibiting the "grit principle", first mentioned by MacKenzie (1977) and discussed 

by Gunter (1979). Reefs ofthis type form barren central ridges consisting of fine dead 

shell grit on the reef crest and live oysters are only found along the flanks and in deeper 

water. Constant motion of the crest substrate from effects of wind-generated waves and 

currents likely abrades sessile organisms and hinders oyster larvae development. Gunter 

suggests that delicate larvae that set on this material are destroyed through mechanical 

grinding by movement of the shell. It is likely that such movement of the small shell 

fragment substrate at the reef crest contributed to the distribution of oysters observed on 

this reef. 

The geometry of the reef substrate culch material and the extent of predation 

refuge it affords likely explain the differential survival of oysters and the observed oyster 

abundance patterns on different substrate materials. Decapod predators, including the 

blue crab, Callinectes sapidus, and Panopeid mud crabs (i.e., Panopeus herbstii, 

Dyspanopeus herbstii, Eurypanopeus depressus) are major predators of bivalve mollusks 

and can cause high levels of mortality in juvenile oyster populations (McDermott 1960, 

Krantz and Chamberlin1978; Seed 1980; Bisker and Castagna 1987; Eggleston 1990; 

reviewed by White and Wilson 1996). Fragile shells of young oysters ( < 15 mm shell 

height) are susceptible to crushing by these predators. Crabs generally chip the margins 

of the valve of larger oysters with their chelae to gain access to the tissue inside. The 

vulnerability of a given oyster to decapod predation is a function of oyster shell height 

and thickness, oyster growth geometry, and the site of attachment on cultch material 
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(Eggleston 1990). An oyster attached to the cupped depression on the nacreous surface 

of the cultch shell is less likely to be successfully preyed upon by crabs because the 

depression limits the crab's ability to reach the oyster with chelae and protects the oyster 

from crushing (Eggleston 1990). In laboratory experiments, larger oysters (> 30 mm 

shell height) were less likely to be successfully preyed upon by the blue crab Callinectes 

sapidus due to increased shell thickness compared with smaller oysters. 

Substrate material with ample convolutions and interior surfaces for settlement 

out of direct reach of decapod predators gives young oysters a survival advantage not 

afforded to those that settled on less suitable substrates. A greater proportion of young 

oysters (:S 30 mm shell height) from the Goodwin Island reef showed evidence of 

decapod predation on the crest and flank of the reef compared with those collected from 

the base. Areas on the reef where the substrate consists of small, tightly packed shell 

fragments leave young oysters that settle vulnerable to crab predation. The distribution 

of oysters with evidence of crab predation reflected the size distribution of clam shell 

fragments on the reef mound (Figures 5 and 6). Proportionately fewer dead oysters 

collected from the base of the reef showed evidence of crab predation and it is likely that 

these oysters succumbed to other sources of mortality, such as disease and flat worm 

predation (Ragone Calvo and Burreson 1999,2000, 2001). Since a large proportion of 

the oysters collected in 1999 from the Goodwin Island reef mound were unaccounted for 

in 2000, it is likely that many ofthe young oysters from 1999 were preyed upon by crabs 

and crushed and were not represented in these samples. In areas where the substrate did 

not offer adequate shelter from predation, oyster mortality likely occurred due to decapod 

predation before infection could kill the oyster. Where the substrate afforded adequate 
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refuge for young oysters from predators, oysters survived to attain larger sizes with a 

greater percentage of the mortality attributed to parasitic infections. Early post­

settlement mortality due to a combination of predation and disease structured the oyster 

community on this habitat. 

Of the two substrate materials evaluated, oyster shell may provide more available 

settlement surfaces with room to grow and adequate water flow to supply food to young 

oysters compared with clam shell. The importance of larval supply and habitat selection 

in creating the patters observed is arguable. If settlement and metamorphosis success 

were unequal across substrate types, surviving oysters could be expected to be more 

abundant on reefs with favorable larval habitats, such as demonstrated by the patterns 

observed on the oyster shell or larger clam shell fragments. Conversely, if oyster larval 

settlement and metamorphosis success were equal across all reefs, the patterns observed 

could be a result of differing post settlement mortality pressure on different reef types. If 

this post settlement mortality was the result of predation, then different reef substrates 

may foster predator communities imposing different pressures on newly settled oysters. 

The matrix of the oyster shell reefbase, having larger interstitial spaces compared with 

clam shell, could be more accessible to fish and decapod predators. While these larger 

predators may not prey directly upon the small, new recruits, they may feed upon smaller 

predator species that would, making the reef matrix a predation refuge for young oysters 

(McDermott and Flower 1952). Smaller interstitial spaces, such as those of the clam 

shell substrate, may be limiting to larger predators but accessible to small decapods (such 

as juvenile panopeid crabs) and flatworms. This reef type may serve as a structural 

refuge for these individuals, permitting grazing on newly settled oysters. The resulting 
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oyster population would reflect these trophic interactions with few oysters persisting on 

clam shell substrates. Future studies of interactions of newly settled oysters and their 

predators on different substrate materials may further elucidate the potential importance 

of habitat selection and predation processes in structuring these communities. 

Although this study was not designed to examine oyster settlement and early 

post-settlement mortalities directly, oyster recruitment to each location on the reef was 

observed but oysters did not persist equally through subsequent monitoring periods. The 

oyster populations on the clam shell mounds at Fisherman's Island and on the flank and 

crest of the Goodwin Island mound were numerically dominated with small, newly­

recruited individuals. Oysters from these locations never attained shell heights greater 

than 60 mm in any of the years sampled and few reached shell heights above 30 mm 

(between 0 and 25 oysters/m2 at the Fisherman's Island clam shell mounds, 5 and 18 

oysters/m2 at the Goodwin Island reef flank, and 2 and 4 oysters/m2 at the Goodwin 

Island reef crest) (Figures 4 and 8). While the oyster populations at the base of the 

Goodwin Island reef and on the oyster shell mounds at Fisherman's Island were also 

dominated by small individuals, overall densities of oysters were greater and large (older) 

oysters representing multiple year classes were present in the population. By May 1999, 

8% (110 oysters/m2
) ofthe standing stock at the oyster shell reefs Fisherman's Island had 

attained a shell height of~ 60 mm and 50% (680 oysters/m2
) ofthe standing stock had 

grown to~ 30 mm shell height. Since large oysters generally produce more eggs than do 

smaller oysters (Davis and Chanley 1956; Cox and Mann 1992) and oysters can reach 

sexual maturity at shell heights smaller than 35 mm (Andrews 1979), this proportion of 
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the standing stock represents a considerable number of oysters that could contribute to 

future reproductive events to sustain these reefs. 

As efforts to restore oyster reefs become more widespread along the Atlantic 

coast, we learn that there is no generic model for construction and configuration of the 

reefs (e.g., size, shape, vertical relief, substrate type). The results of this study further 

affirm the importance of substrate complexity in the development of oyster populations 

on restored reefs reported in earlier studies (Bartol and Mann 1999; Bartol et al. 1999; 

O'Beirn et al. 2000), but they also highlight the importance of environn1ent specific 

interactions and point to the need for an improved understanding of the mechanisms 

affecting the interaction between substrate characteristics and oyster recruitment and 

survival. Constructed reef design should account for local geophysical and biological 

conditions and provide shelter for oysters and associated fauna from such stressors as 

hypoxia, siltation, ice scour, and aquatic and avian predators. 

Materials used as reef substrate should provide adequate small-scale structural 

complexity with ample refugia for newly settled oysters to avoid predation, whether 

subtidally or intertidally. An interaction was observed between the substrate material 

used in the construction of oyster reef habitats and the subsequent abundance of oysters 

on these habitats. Results from this study suggest that the interstitial space afforded by 

the material used to construct the reef contributes to the ability of oysters escape 

predation and survive. Oyster shell and large fragments of clam shell provided sufficient 

habitat to support and sustain a viable oyster population. The provision of large-scale 

vertical relief extending up in to the intertidal may not be as important in shallow ( <2 m), 

subtidal habitats with good water quality as is the provision of proper settlement 
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substrate. Providing high relief mounds move oyster habitat higher into the water column 

or intertidally may not be as impmiant as adequate surface heterogeneity in sustaining 

oyster populations in systems where sedimentation and water quality are not deleterious 

to oysters. The results of this study should be used to reassess the types of material and 

reef configurations in oyster reef restoration efforts and emphasize the importance of a 

wise use of the limited oyster shell resource in future oyster reef restoration efforts. 
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Table 1 (a): Summary of ANOVAs testing whether oyster densities (ln(x+ 1) transformed) at the Goodwin Island's constructed oyster 
reefvaried as a function of position on reef(Crest (C), Flank (F), or Base(B)), and date. Multiple comparisons of the means were 
analyzed using Student-Newman-Keuls tests. Treatments are listed in ascending order of means and treatments not connected by a 
common underline differed at p = 0.05. 

Small dead oysters 
(S:: 30mm) 

Large dead oysters 
(> 30mm) 

Small live oysters 
(S:: 30 mm) 

Large live oysters 
(>30 mm) 

Source 

position on reef 

date 

position on reefx date 

error 

position on reef 

date 

position on reefx date 

error 

position on reef 

date 

position on reefx date 

error 

position on reef 

date 

position on reef x date 

error 

df Mean Square 

2 19.400 

2 8.960 

4 3.180 

45 1.280 

2 13.203 

2 0.972 

4 0.527 

45 0.753 

2 17.790 

2 39.423 

4 2.354 

45 0.585 

2 31.020 

2 1.620 

4 0.930 

45 1.150 

Multiple 
F-value P-value Comparisons 

15.19 <0.001 C<F=B ---
7.02 0.002 99 <00 =01 ---
2.49 0.056 

17.54 <0.001 C=F<B ---
1.29 0.285 

0.70 0.596 

30.42 <0.001 

67.42 <0.001 

4.03 0.007 see Table I b 

26.97 <0.001 C<F<B ---
1.41 0.256 

0.81 0.527 
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Table 1 (b): Results ofStudent-Newman-Keuls multiple comparison tests on mean small live oysters(~ 30 mm shell height) 
densities. Treatments not connected by a common underline differed at p = 0.05. 

Effect of position on reef for each year: 

1999 2000 2001 

C<F=B C<F=B C=F=B 

Effect of year at each position on reef: 

CREST FLANK BASE 

00 < 99 = 01 00 <01 < 99 00 < 01 < 99 
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Table 2: Summary of ANOVA oflive oyster densities (ln(x+ 1) transformed) from the reefs at Fisherman's Island, Virginia. 

Source df 
Mean 

F-value P-value 
Square 

elevation 1 17.381 8.97 0.004 
substrate type 1 318.188 164.29 <0.001 
elevation x substrate type 1 1.290 0.67 0.418 
date 2 20.356 10.51 <0.001 
elevation x date 2 5.139 2.65 0.079 
substrate type x date 2 1.291 0.67 0.517 
elevation x substrate type x date 2 11.447 5.91 0.005 
error 60 1.937 
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Figure 1: Location of created oyster reef study areas near Goodwin Island at the mouth of 

York River and near Fisherman's Island at the mouth of Chesapeake Bay. 
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Figure 2: Sizes and shapes of constructed oyster reefs used in this study. Reefs are 

exaggerated vertically for this figure. 

(A) The subtidal reef at Goodwin Island was constructed of surf clam shell. 

Samples were collected from the reef crest, flank, and base. 

(B) The intertidal reefs at Fisherman's Island (bottom) were constructed of 

either surf clam or oyster shell. Regions of the reefs sampled on the 

intertidal reefs were based on tidal elevation rather than reef morphology. 

The crests and flanks of different reefs were exposed to different tidal 

inundation regimes over the course of the study because of settling and 

erosion of the reefs over time. 
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Figure 3: Mean density of small (:S 30 mm shell height) live and dead oysters, 

Crassostrea virginica, at the Crest (1.5 m above the seabed), Flank (0.8 m 

above the seabed), and Base (0.2 m above the seabed) of the Goodwin Island 

created oyster reef, York River, Virginia, November 1999, July 2000, and June 

2001. Bars represent mean abundance per square meter+ 1 SE (n = 6). 

35 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

600 
c=:::::J SMALL DEAD 1999 

500 -SMALL LIVE 

400 

300 

200 

100 

0 
CREST FLANK BASE 

80 

~ 2000 
I e 60 

00 
~ 
~ 40 
~ 
00 
~ 
0 20 

0 
CREST FLANK BASE 

180 

160 2001 
140 

120 

100 

80 

60 

40 

211 

0 
CREST FLANK BASE 

POSITION ON REEF 

36 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 4: Mean density oflarge (>30 mm shell height) live and dead (non-fouled, 

articulated oyster shells only) oysters at the Crest (1.5 m above the seabed), 

Flank (0.8 m above the seabed), and Base (0.2 m above the seabed) of the 

Goodwin Island created oyster reef, York River, Virginia in 1999, 2000, and 

2001. Bars represent mean abundance per square meter+ 1 SE (n = 6). 

Separate ANOVAs and SNK a posteriori tests were used to compare densities 

of live and dead oysters. As there was no significant effect of sampling date, 

data shown are pooled from all sampling events. Letters above bars represent 

results of SNK a posteriori comparisons: 

dead- a> b, live- A> B > C, a= 0.05. 
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Figure 5 Size frequency distributions for live and dead (non-fouled, empty articulated 

oyster shells) oysters collected from the Crest, Flank, and Base of the Goodwin 

Island created oyster reef, November 1999, July 2000, and June 2001. Mean 

oyster densities for each size class were derived from six replicate 0.25 m2 

quadrate samples collected from each reef elevation each sampling period. 

Omitted from this figure is one live oyster (shell height= 166 mm) collected 

from the reef Base in July 2000. Note the order of magnitude difference in 

scale of abundance between 1999 and 2000/2001. 
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Figure 6: Proportion of dead oysters with evidence of predation by crabs out of total 

number of dead oysters sampled in 2000 and 2001 from each position on the 

reef. Predation by crabs was distinguished from other mortality sources by the 

presence of chipped or cracked valve margins, puncture holes within the umbo 

region, crushing of the umbo region, and complete crushing ofthe valves. 

Numbers in parentheses above bars corresponds to total number of individuals 

observed. 
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Figure 7: Size distribution patterns of surf clam shell (Spisula solidissima) fragments at 

each of three reef elevation strata: Crest (1.5 m above the seabed), Flank (0.8 m 

above the seabed), and Base (0.2 m above the seabed) on the Goodwin Island 

created oyster reef. Bars represent means+ 1 SE (n = 6). Bars underlying the 

same line are not significantly different at a= 0.05 (SNK test). 
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Figure 8: Mean density oflive oysters at Subtidal and Mean Low Water elevations on 

constructed oyster shell and clam shell intertidal reefs at Fisherman's Island, 

Virginia over three years. Bars represent means+ 1 SE (n = 6). Numbers in 

parentheses in the top panel represent mean oyster abundance on clam shell 

substrate. 
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Figure 8: Size frequency distributions for live and dead (non-fouled, empty articulated 

oyster shells) oysters collected from oyster shell and clam shell reef mounds at 

Fisherman's Island, Virginia in May 1997, 1998, and 1999. Bars represent 

mean oyster densities for each size class and are for all animal combined from 

three replicate quadrate samples (0.0625 m2
) collected from each of two clam 

shell reefs and one oyster shell reef at three tidal heights (0.25 m below mean 

low water; at mean low water; and 0.25 m above mean low water) and one 

oyster reef at two tidal heights (0.25 m below mean low water and at mean low 

water). 
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CHAPTER2 

QUANTITATIVE SAMPLING OF NEKTON ASSOCIATED WITH STRUCTURED 

INTERTIDAL HABITATS: APPLICATION AND ASSESSMENT OF A NOVEL 

REMOTELY DEPLOYED ENCLOSURE TRAP 
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ABSTRACT 

This paper describes the design and application of a remotely deployed enclosure trap 

used to quantitatively sample nekton associated with shallow estuarine habitats. A seine 

with added weight and flotation is deployed from the stem of a small, non-motorized 

skiff and is used in conjunction with a specially designed cod end holding box. The 

design of this gear permits rapid entrapment of nektonic organisms while generating 

minimal disturbance that may ward off target species. This capability is useful in habitats 

where use of a trawl is not particularly feasible because risk of snags or where rapid 

escaping species are not efficiently captured with a standard haul seine. This gear has 

value as a quantitative tool for comparative sampling of different habitat types. With 

minor modifications, the design could be readily adapted for use in other structured 

intertidal habitats such as marshes and SA V beds. The utility of the enclosure net and 

cod end design is demonstrated for capturing nekton on and around oyster reefs and 

intertidal sand flats. Tests of the recovery efficiency of this gear using mummichog 

Fundulus heteroclitus and spot Leiostomus xanthurus showed the remotely-deployed 

enclosure seine and removable cod end to be a highly reliable and effective sampling 

method for nekton in intertidal habitats. 
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INTRODUCTION 

Reliable population estimates are necessary for accurate descriptions of 

community structure, secondary production, and trophic dynamics. Oyster reef habitats 

are difficult areas in which to quantitatively assess fish and macroinvertebrate 

populations because the nature of the reef structure hampers techniques normally 

employed for sampling aquatic organisms. This paper describes a remotely deployed 

enclosure trap used to effectively and quantitatively sample nektonic species associated 

with intertidal oyster reef habitats. 

51 

Much of the challenge associated with quantitative sampling of estuarine nekton 

on structured habitats is identifying a gear type that will collect an unbiased sample 

without altering the habitat (reviewed in Rozas and Minello 1997). Quantitative methods 

that have proved effective for sampling nekton in other structured habitats are unsuited 

for use on the hard, irregular, convoluted surface of an oyster reef. For example, the use 

of throw traps and drop rings is quite successful in intertidal and subtidal soft sediment 

habitats (Zimmerman et al. 1984; Chick et al. 1992), but these gear types may not seal 

properly along the bottom when placed over dense clusters of oysters, and permit nekton 

to escape underneath. Conventional methods for sampling soft-bottom habitats, such as 

trawls and seines, are not practical on oyster reefs because of inevitable snags or tears 

from oyster clusters. Furthermore, these gear types usually have low catch efficiencies 
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(Loesch et al. 1976; Orth and van Montfrans 1987) and, while all gear have biases and 

provide relative abundance estimates, some gears are more efficient for some species and 

show different efficiencies in different habitats. Passive sampling devices, such as flume 

nets (Mcivor and Odum 1986) and flume weirs (Kneib 1991) rely on tidal action to 

capture nekton exiting a vegetated habitat on a falling tide. A variation of these passive 

sampling gear types was developed for use on intertidal oyster reefs in South Carolina 

with large (> 1.5 m) tidal ranges (Wenner et al. 1996). This pop-net design requires that 

the enclosed habitat become fully exposed at low tide so trapped nekton are concentrated 

into a pit trap. For areas with smaller tidal ranges where entire oyster reefs are not fully 

intertidal, such as Chesapeake Bay, removal oftrapped organisms from the enclosed area 

becomes problematic. 

We have developed an enclosure net system to sample oyster reef habitats that 

causes minimal disturbance to the sampling area, has no permanent structures present to 

act as an attractant, and can be adapted for use in other habitats. Although the primary 

intent of this paper is to describe the design features of the enclosure trap and assess its 

sampling characteristics, we also provide data on species composition and abundance of 

fishes and decapod crustaceans collected by the gear to emphasize its effectiveness and 

adaptability to other intertidal habitats. 
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METHODS 

Site Description 

The study was conducted near Fisherman's Island, Virginia, U.S.A., near the 

mouth of Chesapeake Bay. Spartina alterniflora marshes and intertidal and subtidal 

mudflats surround this polyhaline site. Mean tidal amplitude in the study area is 

approximately 1.25 m. Collections were made from one ofthe eleven three-dimensional, 

intertidal oyster reefbases constructed in 1996 (described in detail in O'Beirn et al. 2000) 

and from an adjoining unvegetated bare-sand beach habitat. The oyster reef base was 

initially constructed of shucked oyster shell and, at the time of this study, supported an 

uninterrupted layer of naturally recruited live oysters (O'Beirn et al. 2000). The reef 

measures 44.2 m x 9.6 m (424.3 m2
) and is surrounded by unvegetated intertidal and 

subtidal mudflats. The bare-sand beach area is located 200 m northwest of the oyster reef 

and is characterized by a gentle continuous slope (Y) into a subtidal mudflat. 

Net Design 

The sampling gear consists of small skiff (126 em x 107 em) equipped with a net 

spool carrying a 30 x 1.7 m heavily weighted nylon mesh seine (3.2 mm, untreated, 

Figure 1 ). The net height of 1. 7 m is sufficient to prevent the top of the net from sinking 

below the water surface when sampling areas up to 1 m deep in a persistent current. The 

flotation on the top of the net consists of 7 continuous strands of 1.3 em foam-core 
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polypropylene line enclosed in a 7.6 em hem to maintain the entire length of the top of 

the net at the water surface. Because of strong currents and irregular bottom topography 

in the sampling area, this seine is designed so that the lead line is sufficiently heavy, 

flexible, and continuous to avoid the formation of gaps between the net and the substrate. 

The lead line consists of 3.5 em (31 g) taper leads crimped 1 em apart around a 0.5 em 

diameter lead-core line and encased in a 2.5 em hem at the bottom of the net. A 1.2 x 1.8 

m sheet of 3.2 mm solid neoprene rubber is attached to the underside of the net spool and 

extends over the stem of the skiff and into the water to reduce noise and disturbance to 

the water upon deployment. 

One end of the net is secured to a five-sided open-topped 3.2 mm mesh box cod 

end (1.2 x 1.2 x 2.4 m). This cod end has a vertical opening on one end and a conical bag 

on the other (Figure 2). Each side of the vertical opening of this cod end is lined with a 

set of23 x 1 em ABS plastic "Neptune Mini-Fingers" (Neptune Marine Products, Seattle, 

Washington) spaced 2.2 em apart. The rows of fingers face inward, forming a 60° angle 

to funnel nekton into the cod end and are staggered so that each finger is spaced 0.6 em 

apart to reduce escapement. To further increase removal efficiency of trapped organisms, 

a mesh skirt extends 1 m out from and is hinged along the bottom edge of the side of the 

cod end with the vertical opening. This skirt, bordered with chain to prevent escapement 

under the cod end, is lifted during sample removal to enclose the vertical opening in the 

side of the cod end along with any organisms. Upon sample collection, the entire cod end 

can be lifted from its support posts and out of the water. Trapped organisms are funneled 

down into the conical bag and removed. 
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The cod end is supported by and connected to the seine net with PVC connectors 

adapted from the design described by Mcivor and Odum (1986). Each connector unit is 

made up of two components: a movable inner section attached to the netting and an outer 

sleeve fastened to a wooden post driven into the substrate (Figure 3). The inner 

component (hereafter, called the IC) is made up of a 1.5 m length ofthick-walled 

(schedule 40; 480 psi) PVC pipe 1.9 em in diameter. Each outer component or sleeve 

(hereafter, called OC) is made up of a 1.5 m section of 2.5 em diameter thin-walled (200 

psi) PVC pipe. A 0.5 em and 1.0 em wide slit is cut lengthwise in each IC and OC, 

respectively, using a table saw. The OC is secured to a 5 x 5 em wooden post with flat 

head stainless steel wood screws. To form the IC component, the end of the net and 

corners of the cod end are reinforced by wrapping the net material around lengths of 6 

mm line and securing in place with stainless steel hog rings. The net-wrapped line is 

permanently inserted into the IC so that the net extends out of the slit and forms a smooth 

joint that can be inserted into the OC. The resulting IC/OC junction is free of gaps or 

holes that may serve as potential escape routes for organisms trapped in the net. 

Sampling procedure 

Our sampling procedure is adapted from methods previously used to 

quantitatively sample intertidal vegetated (Mcivor and Odum 1986, Kneib 1991) and 

open water estuarine habitats (Kjelson and Johnson 1974). All of these methods involve 

isolating a discrete area of habitat on the order of 1 0' s of m2 with a net and extracting the 

animals trapped within. We collected samples by surrounding one side of an intertidal 
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oyster reef(or a section ofbare-sand beach habitat) with the enclosure seine while using 

the emergent portion of the reef or beach as a batTier to fish escapement. 

All samples were collected during the daylight ebb tide stage and sampling was 

initiated only after the crest of the reef became exposed by the falling tide. Samples were 

collected by surrounding one side of an intertidal reef habitat (or a section of bare-sand 

beach habitat) with the enclosure seine while using the emergent portion of the reef or 

beach as a barrier to fish escapement. The time of the tide was estimated from NOAA 

tide tables, and the actual time was determined by observing water current speed at the 

site. At least one hour before sample collection, the OC connectors on the wooden posts 

were put in position just down current of the sampling area. Two posts, each with 3 OC 

connectors (Figure 3 A), were placed at the vertical opening of the cod end. These 

connectors are designed to (1) accept the cod end, (2) anchor the block or enclosure 

seine, and (3) attach a canvas door to close off the vertical opening. Four posts, each 

with a single OC connector (Figure 3 B) were arranged to support each corner of the cod 

end. The cod end was then slid in place and a canvas door was lowered through one of 

the OC connectors to close the cod end and prevent entry by nekton prior to sample 

collection. A 3.2 mm mesh block seine (with continuous lead and float lines as described 

for the enclosure seine) was extended from the vertical cod end opening nearest the reef 

or beach and beyond the water's edge onto the reef or beach. The skiff and spool were 

placed adjacent to the reef (or beach) with one end of the enclosure net secured one of the 

OC connectors at the vertical opening of the cod end. A 5 mm diameter line was attached 

to the bow of the skiff and laid out in a triangle to define the area sampled and act as a 

pull-line (Figure 4 A). To complete the triangle and serve as a pivot point for the 
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enclosure net path, a researcher was positioned on another boat anchored approximately 

15 m away from the reef-water edge. This person remained still in position until the time 

of enclosure net deployment. Following this initial set-up, the other researchers waited 

quietly on the emergent portion of the reef (or beach) for at least 20 minutes to allow the 

nekton community using the habitat to return. To facilitate gear preparation and 

minimize site disturbance prior to sampling each day, the wooden posts to support the 

cod-end were left in place and removed at the end of the three-day sampling period. 

Immediately prior to net deployment, the canvas door was removed from the cod 

end vertical opening and the researchers moved into position, creating as little 

disturbance as possible, to take a sample. With one researcher on the anchored boat 

offshore of the sampling area and another positioned on the end of the sampling area 

opposite the cod end (Figure 4 A), the skiff was pulled away from the cod end so that the 

enclosure seine, with one end staked to the vertical opening of the cod end, unreeled off 

the stem. The researcher positioned offshore began the enclosure net deployment by 

pulling the small skiff toward him or her until it reached a distance of approximately 5 m 

away from the shoreline. At this point, the researcher offshore released the pull line and 

the path of the small skiff turned in toward the researcher positioned on the shore. This 

researcher completed the enclosure path by pulling the small skiff upon shore and 

forming an enclosed area in the shape of an arc. The length of reef, the distance between 

the reef-water edge and the reef-mud edge, and the distance from the reef-mud edge to 

the circumference of the arc bordered by the net are measured to calculate the area 

encircled by the net. During our trials, a 10- 15m x 1m section of reef habitat and 
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approximately 25 -40m2 of adjacent unvegetated mud were quietly enclosed in about 20 

seconds. 

Once the area was enclosed, the net was brought in toward shore to draw the 

captured nekton into the cod end. Starting at the end of the net furthest from the cod end, 

fishes and decapods were funneled into the cod end by pulling the net slack on to the reef 

surface while maintaining a good seal of the lead line to the bottom and reducing the area 

enclosed by the net (Figure 4, B). A good seal is possible despite the snagging nature of 

the reef surface because the net leadline was continuously weighted and could be worked 

in slowly over and around snags. As this area encroached on the cod end, the skirt was 

lifted to enclose the last 1-m sections of the enclosure and block nets. After the canvas 

door was dropped to seal off the cod end vertical opening, 10 sweeps were made with a 1 

mm mesh dipnet in the pocket between the skirt and door to extract any remaining 

animals. The set of 1 0-sweeps was repeated until no further animals were collected by 

dip net. The entire cod end was then lifted out of the water and captured organisms were 

funneled into the conical bag and emptied into a large bin. All collected animals were 

identified, counted, and measured to the nearest mm for total length (carapace width for 

crabs, carapace length for shrimp). Water depth (em) at the reef edge, temperature (°C) 

and salinity (psu) were recorded with each sample. Samples were collected monthly 

from April to October 1999 over three consecutive days at neap tide preceding a full 

moon. The effects of Hurricane Floyd precluded sampling in September 1999. 

A separate underwater video study (Nestlerode, unpublished) compared fish use 

of the oyster shell reef edge (the interface between the reef and mudflat) to the 

unvegetated subtidal mudflat immediately adjacent to the reef. Nekton activity was 
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recorded using modified infrared security cameras placed in waterproof plexiglass 

housings (Cicchetti 1998b) at the reef edge and at the subtidal mudflat approximately 5 

meters away from the reef edge simultaneously over the entire daylight tidal cycle for 

two consecutive days in August 1999. Since the video footage indicated that most fishes 

(>94%) are using the reef edge compared to the off-reef subtidal habitat and both of these 

habitats were included by the samples taken by the encircling seine gear, it is appropriate 

to evaluate fish use of the reef habitat in this study per linear meter of reef edge. 

Efficiency Estimates 

To estimate the efficiency of removing organisms from the enclosure trap, we 

added marked fish to the enclosed sample area, and calculated the percentage of those 

retrieved. We used mummichog (Fundulus heteroclitus) and spot (Leistomus xanthurus) 

within the size range normally captured from the habitat for these tests. Mummichogs 

are notoriously evasive of typical fish collection gear (seines and trawls) and their ability 

to swim with quick bursts of speed and rapidly change direction allows them to escape 

around and under seine lead lines. We observed that spot do not appear to be as evasive 

of seines as mummichogs and their swimming behavior typically places them higher in 

the water column. We chose these species for these tests because they were readily 

available at the sampling sites, are not demersal residents of the reef habitat, and have 

very different observed body shapes and swimming performances. All fish were marked 

by injecting neon colored acrylic craft paint (Plaid Enterprises, Inc., Norcross, Georgia) 

as per procedures described by Lotrich and Meredith (1974). Marks were placed 
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subcutaneously in the musculature flanking the dorsal fin using a 26-gauge needle and a 

l-ee syringe. Needles were replaced after approximately 50 fish were marked. 

Five replicate removal efficiency collections were taken on each habitat type over 

three consecutive days in July 2000. For each efficiency trial, we released 20 marked 

mummichogs (mean total length= 69.1 mm) and 10 markedjuvenile spot (mean total 

length= 109.0 mm) into the area enclosed by the net and the mean return rates were used 

to represent efficiency. 

Five additional efficiency comparisons were conducted with each of these species 

for each habitat type using a 30 x 2m haul seine with 3.2 mm mesh to compare the 

effectiveness of the remotely-deployed gear with a more traditional, standard, 

commercially available seine net. Both encircling seine and haul seine trails sampled the 

same area (10-15 m section of habitat edge and approximately 25-40 m2 of adjacent 

subtidal habitat) to allow for general comparisons of the removal efficiency of each gear 

type. The haul seine trial involved the use of three nets. Two 10 x 2 m block nets were 

positioned perpendicular to the water line, spaced 15 m apart, and held in place with 

wooden posts (Figure 5). Two researchers positioned a haul seine between the two block 

seines 5 m away from the water line. A third researcher released the marked fish into the 

area enclosed by the three nets. The two researchers on each end of the haul seine net 

pulled the net shoreward while maintaining the brail poles up against the block seines and 

using care over the irregular bottom of the reef. A third researcher helped to pull the lead 

line of the net on shore and collect captured organisms from the net. 
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Two-way fixed factor ANOVA's were used to determine whether the percent of 

recaptured individuals differed between habitat type and gear. We found no evidence 

that variances were heterogeneous at the 5% significance level (Sokal and Rohlf 1981 ). 
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RESULTS 

Despite the relatively short distance ( ~ 200 m) between the two habitats sampled, 

the nekton assemblages at the oyster reef and beach habitats of Fisherman's Island were 

quite different. A total of 39 species were identified from both habitats (Tables 1 and 2). 

Thirty-three species representing 21 fish and three decapod crustacean families were 

found on the oyster reef and 15 species representing nine fish and three decapod 

crustacean families were collected from the beach habitat. Fifteen families were found 

only on the oyster reef, three species were unique to the beach, and six fish families and 

the three decapod crustacean families were common between habitats. 

Grass shrimp Palaemonetes vulgaris and rough silverside Membras martinica 

were most abundant and constituted 64% and 33%, respectively, ofthe total 17,203 

individuals captured on the oyster reef from April through October 1999 (Table 1 ). 

Abundance of these species was proportionately high during each collection period. Of 

the remaining 3% ofthe total number of individuals, species composition and 

proportional abundance varied each month. Species richness was highest in June, July 

and August. Diversity (H') was greatest in samples collected in June and July. During 

these months, juvenile pinfish Lagodon rhomboides, pigfish Orthopristus chrysoptera, 

silver perch Bairdiella chrysoura, spot, mummichog, and rainwater killifish Lucania 

parva together made up greater than 3% ofthe total number of individuals collected. 
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Mean nekton abundance each month ranged from 42 (October) to 123 (June) individuals 

m-1 of reef edge. 

Fewer individuals were collected from the beach habitat compared with samples 

collected during the same months from the oyster reef (AN OVA, p<0.05). Overall, only 

15 species were collected from the beach compared with the 29 species collected from 

the oyster reef during July, August, and October 1999. Rough silverside, mummichog, 

and striped killifish Fundulus majalis numerically dominated the beach enclosure trap 

samples (Table 2). Diversity (H') was highest in July and August. 

Nekton assemblages from the two habitats were assigned ecological groups based 

on biological data in Murdy et al. (1997), Baltz et al. (1993), Breitburg (1999), and 

personal observation. Species were classified into one of four categories (Tables 1 and 

2): resident oyster reef species; facultative reef residents; demersal transients; and 

nektonic transients. Reef residents are those species that spend the majority of their life 

history associated with the reef structure and are dependent on the reef for feeding, 

shelter, and reproduction. These species, such as gobies, blennies, and oyster toadfish, 

feed primarily on benthic invertebrates and find shelter and nest sites among shells of live 

and dead oysters. Facultative reef residents are those species that use the reef habitat for 

food and shelter during juvenile life stages. This group includes tautog, sheepshead, 

pigfish, and pinfish. They feed on small crustaceans, worms, and mollusks and seek 

shelter among the oyster shells until they outgrow the complex matrix of spaces between 

the oyster shells on the surface of the reef. As adults, these species may continue to 

intermittently visit the reef habitat in search of food and are found associated with a 

variety of other habitats. Transient species, those species that may be abundant on oyster 
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reefs but are also found in a wide range of estuarine habitats, are divided into two 

categories based on their behavior and favored position in the water column: demersal 

transients and nektonic transients. Demersal transients, such as silver perch, spot, 

killifish, blue crab Callinectes sapidus, and grass shrimp, are highly mobile and feed 

from the benthos. Some species within this group are found in both habitats, but were 

consistently more abundant in oyster reef collections. Nektonic transients, such as 

silversides and anchovies, are those species that are abundant in both habitats and are 

primarily associated with the water column. This group includes highly aggregated 

planktivorous species that are active swimmers and prefer surface waters. 

All species collected from the beach habitat were "transients" in terms of oyster 

reef habitat use. No resident oyster reef or facultative species were obtained from this 

habitat. Although transient species numerically dominated all ofthe samples collected 

from the oyster reef, oyster reef residents and facultative residents were captured during 

all but one (April 1999, no facultative residents collected) sampling period. 

The effect of gear type on recapture efficiencies varied between the two marked 

fish species, mummichog and spot (Table 3). For mummichogs, recapture efficiencies 

were significantly higher within the enclosure trap (80-81%) than within the haul seine 

(43-58%) (two-way ANOVA, p = 0.001). There was no effect of gear type on the 

recapture efficiencies of spot (64-74% for the enclosure seine and 56-74% for the haul 

seine, two-way ANOVA, p>0.05). It is also important to note that these patterns were 

consistent across both habitat types tested since habitat type was not significant in either 

analysis (p > 0.05). 
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DISCUSSION 

Our enclosure net system is a modification of two types of gear commonly used to 

sample shallow aquatic habitats. We combined the rapid enclosure capability of an 

encircling seine (Kjelson and Johnson 1974) with a flume net's capacity for passive 

removal of captured nekton (Mcivor and Odum 1986). Our adaptation provides a means 

for efficient, quantitative assessment of nektonic species associated with structured 

intertidal habitats with minimal disturbance to the area sampled. 

Our enclosure net is designed to swiftly enclose a measurable area of habitat 

while accommodating the irregular bottom topography of the oyster reef in our sample 

retrieval process. Unlike a standard haul seine, our enclosure seine reduces the 

importance of speed in the sample recovery phase since once the area is completely 

enclosed, nekton cannot escape around the ends of the net. Our design incorporates 

gap less net connecting elements and block seines that minimize the possibility of escape 

around the gear. Researchers may slowly and carefully pull the net up on to the reef to 

decrease the size of the enclosed area, while using care to bring the lead line over the 

three-dimensional structure of the oyster reef habitat to reduce escapement under the lead 

line. Unlike flume and block nets (Mcivor and Odum 1986; Thayer et al. 1987; Hettler 

1989), our design has no walls or barriers (apart from the cod end) to repel or guide 

nekton out of or into the study area and requires little habitat modification for site 

preparation. Unlike lift nets (Rozas 1992; Wenner et al. 1996), the enclosure seine 
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sample may be collected and retrieved without having to wait for the tide to fall from the 

enclosed area. This is particularly useful in areas, like Fisherman's Island, that do not 

drain completely at low tide, or have high cunent velocities that may pull the walls of the 

net under water or the bottom of the net off the substrate during periods of maximum 

cunent. 

The recapture efficiency of our enclosure net system compared favorably with 

similar techniques used to sample other shallow ( <1.5 m deep) habitats. Allen et al. 

(1992) estimated the catch efficiency of a haul seine in a tidal salt marsh creek to range 

from 7 to 91%, depending on the species, with their method having low overall 

efficiencies for the two species we selected for our efficiency trials: mummichog 

(average 27%) and spot (average 23%). Kjelson and Johnson (1974) used a longer haul 

seine to encircle a large area of open water and estimated average capture efficiencies of 

semi-demersal species, including spot, to be 4 7%. Both studies sampled habitats with 

relatively smooth bottoms having little, if any, vertical relief. Efficiencies for these gear 

types would likely be less for coarser substrates, such as oyster reefs, as more escapement 

would be expected under the seine lead line as it passes over uneven bottom topography 

(Parsley et al. 1989). The higher efficiency estimates for our haul seine trials (average 

50% for mummichog, 65% for spot) compared with Allen et al. (1992) are likely due to 

our smaller mesh size (3 mm vs. 6 mm) and our use of block seines stretched 

perpendicular to shore at either end of the haul seine to deter escape of fishes from 

around the ends ofthe seine (Table 3). 

In areas of dense emergent vegetation, such as salt marshes and mangroves, flume 

nets and weirs have high recovery efficiencies for transient nekton. These gear types use 
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tidal action to passively sample large areas of vegetated areas and have proven to be quite 

effective in regularly flooded intertidal habitats. Mcivor and Odum (1986) found that a 

passive flume net set adjacent to an intertidal freshwater marsh recovered an average of 

73% of released mummichogs and 80% of the semi-demersal bluegill sunfish Lepomis 

macrochirus. An average of62% ofmarked mummichogs and 97% of spot were 

recaptured with one retrieve using a flume weir from an intertidal salt marsh (Kneib 

1991). Similarly, Morton (1990) recaptured between 66 and 100% of marked demersal 

fish species released into a mangrove area enclosed with a block net in Australia. Our 

enclosure net system uses a modified flume net as the cod end to take advantage of high 

removal efficiencies demonstrated by these gear types. 

Wenner et al. (1996) used a lift net/pit trap system to sample intertidal oyster reefs 

in South Carolina and reports recovery efficiencies for mummichog comparable to our 

enclosure gear (54 to 69%). Unlike the reefs at Fisherman's Island, the South Carolina 

reefs are fully emergent at low tide so that the nekton may be corralled into a pit trap as 

the tide falls from the sampling area. Our cod end takes the place of a pit trap as a 

perceived refuge for the captured nekton. Vulnerability of a fish to a net is affected by 

how the fish reacts when it encounters the sampling gear. By giving the captured fish a 

perceived refuge in the cod end, we believe that we enhance the capture efficiency. 

Although resident reef species such as blennies, gobies, and oyster toadfish 

(Breitburg 2000) were collected and are reported here, we believe that the manner we 

used this enclosure trap gear did not produce a quantitative sample for these taxa. When 

disturbed or startled, these species often exhibit a dive response and seek shelter in the 

substrate structure. Because our study targeted non-resident reef species, effort was not 
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focused on inciting these organisms to leave the structure of the reef habitat. Thus, data 

shown in Table 1 may greatly underestimate the true abundance of these species. To 

remedy this omission from future sampling efforts, we suggest using a plastic garden rake 

to rouse the oyster reef resident species out of the substrate and herd them into the cod 

end. We suspect that the addition of rotenone or other toxicants to the sample area may 

also enhance capture efficiency of this gear type for these and other nekton species. 

Thayer et al. (1987) used rotenone within the enclosed area to draw fish out ofthe 

structure of mangrove roots and estimated recovery efficiencies using the block net­

rotenone technique to be approximately 70%. We chose not to include the use of 

rotenone in our study because of the relatively small habitat being sampled, and because 

this project was conducted as part of an oyster reef restoration effort and we did not want 

to adversely affect non-targeted members of the oyster reef community. 

Our enclosure net system, like all sampling devices, has limitations. The 

enclosure net may not work optimally under high wind conditions when there is 

sufficient chop on the water surface because the net does not silently deploy off the stem 

of the skiff. This gear type is ideally suited for use in studies comparing nekton densities 

among intertidal edge habitats because proper deployment and enclosure of the sampling 

area is dependent on an emergent barrier (i.e. intertidal reef or beach shoreline) to block 

the escape of nekton. Other gear types, such as drop samplers (Zimmerman et al 1984) or 

pop nets (Connolly 1994) with sweeping mechanisms to remove nekton from the 

enclosed area of water column, are better suited for sampling subtidal habitats without an 

emergent barrier, although the size ofthe area sampled is limited and may introduce 

biases associated with small sample sizes. Edge habitats are of interest to ecologists 
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because they facilitate trophic transfer from the interior of the intertidal habitat to 

adjacent deeper waters (Thayer et al. 1987; Peterson and Turner 1994). Although we 

have described its use on oyster reefs, this enclosure net has also been used successfully 

along the erosional edge of a salt marsh (Cicchetti and Diaz 2000). With a few minor 

modifications (such as the addition of a block seine in place of the emergent portion of 

the habitat) an area of open water or SAV may be encircled and sampled using this gear. 

The enclosure net system is relatively inexpensive to construct. The cost of 

materials to build one enclosure seine is less than $500 and one cod end is less than $80. 

This does not include the cost of the lumber needed to make the spool or the cost of the 

skiff used to deploy the net. Nets were rinsed and dried after sampling to prolong their 

use and small holes were repaired with a needle and tarred twine. Three people were able 

to set up the enclosure in less than fifteen minutes. Depending on the size of the catch 

and the tidal regime of a given area, multiple samples may be collected during optimal 

tidal levels. We were able to sample 4 different areas within the 4 hour window of 

optimal tide levels at Fisherman's Island. 

This enclosure net system described here permits quantitative sampling of nekton 

associated with intertidal oyster reefs and edge habitats. Other methods used to quantify 

organisms associated with subtidal habitats were not suitable for the calculation of 

density estimates of nekton associated with the uneven and complex structure of oyster 

reefs. This method quantitatively samples the edge ecotone of oyster reef habitats, can be 

adapted for use in other habitats, and requires little habitat modification for site 

preparation. No permanent structures are present to act as an attractant. The gear is 

deployed with a minimum disturbance to target organisms, and is relatively inexpensive 
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to construct and maintain. Information obtained from the sampling of intertidal oyster 

reefs aids in determining the relative value of these habitats to the ecological functioning 

of estuarine systems. 
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Table 1: Pooled species abundance for all collections from the intertidal oyster reef at 
Fisherman's Island. Number (no.) is total number of specimens from 2 replicate enclosure trap 
collections obtained on consecutive days in April, August, and October 1999 and from 3 replicate 
enclosure trap collections obtained over three consecutive days in May, June, and July 1999. 
Total number and percentage of total catch are given for each species. 

Species 
April May June July Aug Oct grand % rank 
(no.) (no.) (no.) (no.) (no.) (no.) total abund abund 

Palaemonetes vulgaris (DT) 3068 3282 1812 1914 258 672 11006 63.977 

Membras martinica (NT) 71 557 2513 258 1658 660 5717 33.233 2 

Fundulus heteroclitus (DT) 0 2 0 71 0 0 73 0.424 3 

Anchoa hepsetus (NT)• 0 0 3 0 39 0 42 0.244 4 

Lucania parva (DT) 0 0 33 4 0 42 0.244 4 

Syngnathus ji1scus (NT) 2 13 8 10 9 0 42 0.244 4 

Lagodon rhomboides (F) 0 0 33 5 0 0 38 0.221 5 

Orthopristus chrysoptera (F) 0 0 0 31 0 0 31 0.180 6 

Hypsoblennius hentz (R) 0 I 9 9 6 2 27 0.157 7 

Leiostomus xanthurus (DT) 0 0 24 3 0 0 27 0.157 7 

Bairdiella chrysoura (DT) 0 0 0 24 I 0 25 0.145 8 

Gobiosoma bose (R) 2 3 10 4 3 2 24 0.140 9 

Callinectes sapidus (DT) 0 0 I 12 6 0 19 0.110 10 

Paralichthys dentatus (DT) I 8 4 0 0 0 13 0.076 II 
Tautoga onitis (F) 0 0 8 4 0 0 12 0.070 12 

Archosargus probatocephalus (F) 0 0 0 2 7 I 10 0.058 13 

Opsanus tau (R) 0 0 3 2 4 0 9 0.052 14 

Hyporhamphus meeki (NT) 0 0 8 0 0 0 8 0.047 15 

Gobiosoma ginsburgi (R) 0 I 0 5 0 I 7 0.041 16 

Sphyreana borealis (DT) 0 0 0 6 0 0 6 0.035 17 

Chasmodes bosquianus (R) 0 3 0 I 0 0 4 0.023 18 

Lutjanus griseus (F) 0 0 0 0 4 0 4 0.023 18 

Centropristis striata (F) 0 0 0 3 0.017 19 

Eucinostomus argenteus (DT) 0 0 0 3 0 0 3 0.017 19 

Diplodus holbrooki (F) 0 0 2 0 0 0 2 0.012 20 

Eucinostomus gula (DT) 0 0 0 2 0 0 2 0.012 20 

Chaetodon ocellatus (F) 0 0 0 I 0 0 0.006 21 

Monocanthus hispidus (F) 0 0 I 0 0 0 0.006 21 

Mycteroperca microlepis (F) 0 0 0 I 0 0 0.006 21 

Penaeus aztecus (DT) 0 0 0 0 0 0.006 21 

Sphoeroides maculatus (DT) 0 0 0 0 0 0.006 21 

Syngnathus jloridae (NT) 0 0 0 0 0 0.006 21 

Synodus joetens (T) 0 0 0 0 0 0.006 21 

0.4127 
Total reef resident individuals (R) 2 8 22 21 13 5 71 19 

0.5987 
Total facultative resident individuals (F) 0 44 45 II 2 103 33 

65.465 
Total demersal transient individuals (DT) 3,071 3,305 1882 2,049 282 673 11,262 33 

33.523 
Total nektonic transient individuals (NT) 71 557 2,524 258 1,697 660 5,767 22 

Total fish and decapods: 3,144 3,871 4,472 2,373 2,003 1,340 17,203 100.00 

• Ecological classification (in parentheses) based on species' dependence on oyster reef habitat and adapted 
from Breitburg ( 1999) and Baltz ( 1993 ): 
R = resident oyster reef species, F = facultative oyster reef species, DT = demersal transient species; NT = 
nektonic transient species. 
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Table 2: Pooled species abundance for all collections from the bare-sand beach habitat at 
Fisherman's Island. Number (no.) is total number of specimens from 3 replicate 
enclosure trap collections obtained over three consecutive days in July 1999 and from 2 
replicate enclosure trap collections obtained on consecutive days in August and October 
1999. 

Species July Aug Oct grand % rank 
{no.} {no.} {no.) total abund abund 

Membras martinica (NT) 308 208 294 810 38.190 I 
Fundulus heteroclitus (DT) 761 4 0 765 36.068 2 
Fundulus majalis (DT) 388 92 5 485 22.867 " .) 

Callinectes sapidus (DT) 0 12 8 20 0.943 4 
Lucania parva (DT) 7 2 0 9 0.424 5 
Palaemonetes vulgaris (DT) 2 3 2 7 0.330 6 
Eucinostomus gula (DT) 0 0 6 6 0.283 7 
Leiostomus xanthurus (DT) 5 0 0 5 0.236 8 
Cyprinodon variegatus (DT) 4 0 0 4 0.189 9 
Anchoa michelli (NT) a 2 0 0 2 0.094 10 
Mugil curema (NT) 0 2 0 2 0.094 10 
Penaeus aztecus (DT) 0 0 2 2 0.094 10 
Symphurus plagiusa (DT) 0 2 0 2 0.094 10 
Paralichthys dentatus (DT) 1 0 0 0.047 11 
Selene vomer (NT) 1 0 0 0.047 II 

Total reef resident individuals (R) 0 0 0 0 0 
Total facultative resident individuals (F) 0 0 0 0 0 

Total demersal transient individuals (DT) 1,168 115 23 1,306 61.575 

Total nektonic transient individuals (NT) 311 210 294 815 38.425 

Total fish and decapods 1,479 325 317 2,121 100 

a Ecological classification (in parentheses) based on species' dependence on oyster reef habitat and adapted 
from Breitburg (1999) and Baltz (1993): 
R = resident oyster reef species, F = facultative oyster reef species, DT = demersal transient species; NT = 
nektonic transient species. 
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Table 3: Efficiency estimates for enclosure and haul seines on oyster reef and bare-sand 
beach habitats. 

gear habitat species size range total efficiency 
TL-mm N tests organisms X +I SE 

enclosure seine oyster reef mummichog 51-92 5 100 0.81±0.10 
enclosure seine oyster reef spot 84- 160 5 61 0.64 ± 0.11 
enclosure seine beach mummichog 32-93 5 100 0.80 ± 0.04 
enclosure seine beach spot 89- 150 5 50 0.74 ± 0.09 

haul seine oyster reef mummichog 50-82 5 100 0.43 ± 0.03 
haul seine oyster reef spot 85 - 110 5 50 0.74 ± 0.08 
haul seine beach mummichog 53-80 5 100 0.58 ± 0.10 
haul seine beach s2ot 75 - 130 5 50 0.56 ± 0.12 

74 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 1: Photograph of spooled enclosure seine on small skiff used to deploy net around 

sampling area. A sheet of hard neoprene rubber is attached to the bottom of 

the spool and extends over the stern of the skiff to reduce splashing of the net 

on the surface of the water as the net unwinds from the spool. 

75 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 2: Diagram of enclosure seine cod end showing 5-sided mesh box about to be 

lowered into position. PVC connectors labeled A and B are shown in detail in 

Figure 3. 

77 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

. : 
:·. 

~I 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 3: Construction details of PVC net connectors and support posts used to achieve 

gapless connections between net elements. 

79 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

A 

"Neptune Fingers"~ 

canvas 

I= 

3 mm mesh __--­
encircling seine 
or block net 

I 5 em I 

IC OC 
PVC pipe 

8 
wooden post \ 

; ( 

PVC pipe 

I 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 4: Deployment of enclosure seine at an intertidal oyster reef habitat. 

A. Set is begun when crest of reef is exposed above the tide level. A person 

positioned offshore of the reef begins to pull the small skiff (with net spool) 

away from shore and the net is unreeled from the stern to surround the 

sampling area. As the skiff approaches this person, the pull line is dropped 

and a second person positioned on the reef pulls the skiff in toward the reef. 

B. The sampling area is enclosed and trapped nekton is forced toward the cod 

end. Starting at the end of the enclosure seine closest to the small skiff and 

moving down the reef toward the cod end, small sections of the net are 

sequentially pulled up onto the reef by hand and fish are corralled into the cod 

end. 
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Figure 5: Schematic of the haul seine arrangement used to compare gear removal 

efficiency of a haul seine with the enclosure seine. 
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CHAPTER3 

BENTHIC COMMUNITY STRUCTURE OF INTERTIDAL CONSTRUCTED 

OYSTER REEF HABITATS AT FISHERMAN'S ISLAND, VIRGINIA 
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ABSTRACT 

Invertebrate fauna associated with intertidal regions of oyster shell, clam shell, and 

pelletized coal ash reef habitats were sampled monthly over one year to identify faunal 

differences between the three reef types. Diversity, species richness, and secondary 

production were greatest on the oyster shell reef, with production driven by large 

individuals of the panopeid crab, Panopeus herbstii, found only on this substrate type. 

Species richness was lowest on the coal ash pellet reef due to fewer rare species; 

however, total community abundance was significantly greater than on the other two reef 

types, driven by numerical dominance of small crustaceans. Clam shell reefs showed 

intermediate abundance and diversity patterns but had the lowest values for secondary 

production. Differences in macrofauna! community metrics appear to reflect the quantity 

and quality of the interstitial space afforded by the substrate material (i.e., providing 

predation and foraging refuges) and are in part driven by the presence ofliving oysters 

which grew to form a living oyster crust on the oyster shell reef during the course of this 

study. 
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INTRODUCTION 

Reefs created by the Eastern oyster, Crassostrea virginica, provide the 

predominate natural hard substrate in the characteristically soft sediment environment of 

estuaries of the middle Atlantic coastal plain. The three-dimensional structure of this 

habitat provides surface area for attachment and crevices for refuge for numerous small 

invertebrates and fishes (Wells 1961; Bahr 1974; Dame 1979; Zimmerman et al. 1989; 

Meyer and Townsend 2000). As oyster stocks in Chesapeake Bay diminished as a result 

of overfishing (Rothschild et al. 1994), disease (Paynter 1996), and degraded water 

quality, the complex habitat produced by the oyster disappeared with it. 

While substantial state and federal funds have supported efforts to restore oyster 

stocks and reef habitat in Chesapeake Bay, the most common material used for oyster 

reef restoration, fresh and fossil oyster shell, is in short supply and has led to a search for 

alternative substrate materials. The reefs at Fisherman's Island (Figure 1) were built to 

investigate the feasibility of using surf clam (Spisula solidissima) shell and cement 

stabilized coal ash pellets as a reef base. Coal ash pellets·were produced by mixing 88% 

coal combustion fly ash with 12% Portland cement (Andrews et al1997, O'Beirn et al 

2000) and have been shown to withstand the physical and biological forces of the marine 

environment without fracturing, leaching heavy metals, or significant bioaccumulation of 

metals in associated epibiota (Collins et al 1992, reviewed by Pickering 1996). 
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Constructed reef bases provide a steady, hard substrate elevated off the bottom 

and away from excessive sedimentation so that oysters and other epifauna may settle and 

grow (Lenihan et al 1996, Bartol et al 1999, Lenihan 1999). Over time, it is anticipated 

that a layer oflive oysters forms a crust over the surface of the reef base so that the 

original substrate material is no longer visible from the surface (O'Beirn et al 2000). 

O'Beirn (2000) et al. report significant differences in the oyster population on each of 

these reef types with greatest densities occurring on the oyster shell substrate. While the 

physical structure and chemical composition ofthe substrate material likely influence the 

structure the macrobenthic community associated with it, it is important to keep in mind 

that the presence of oysters (and their biodeposits, interstices) may also enhance the 

surrounding reef macro benthic community by providing habitat and food to associated 

fauna. Additionally, settlement and metamorphosis processes in many invertebrate larvae 

are triggered by specific chemical and/or physical cues associated with the adult habitat 

(Crisp 1974) such that the presence of adults triggers recruitment. 

Large amounts of surface area are available to epifauna and reef-associated 

macrofauna on naturally formed intertidal oyster reefs. Bahr (1974) estimated that for 

every square meter of reef at least 50 m2 of surface area is available to a highly diverse 

and dense faunal community of reef-associated macrofauna. Studies along the southeast 

coast report as many as 303 species associated with reef communities (Wells 1961) with 

abundances exceeding 125,000 individuals m-2 (Larsen 1974). Reef communities are 

typically dominated (in terms of number and biomass) by suspension feeders (i.e., 

oysters, mussels, polychaetes) that remove suspended particles from the water column 

and deposit this material to the bottom which is then further utilized by deposit feeding 
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reef associates (Bahr and Lanier 1981 ). Reef macrofauna include sessile epibenthic and 

encrusting forms (e.g., barnacles, tunicates, bryozoans, serpulid polychaetes, sponges, 

tunicates) that live on the shells oflive and dead oysters and infaunal species (e.g., 

amphipods, annelids, bivalves) that recruit to pockets of sediment in crevices of the reef 

matrix. Motile epifauna (e.g., crabs, shrimp, fishes) occupy convolutions between shells 

and move through the complex network of spaces below the reef surface. The multitude 

of fauna associated with oyster reef structure make up a complex community that 

contributes to the ecological functioning of reefs in estuarine systems. 

The importance of temperate oyster reefs as habitats that support large numbers 

of resident consumers has long been recognized (Wells 1961; Bahr 1974; Larsen 1974; 

Dame 1979; Zimmerman et al. 1989), yet quantitative studies ofthe macrofauna! oyster 

reef assemblage are limited and, to the author's knowledge, none have examined 

secondary production at the habitat scale. Most benthic studies have attempted to 

describe oyster reef macrofauna! communities in terms of biomass or abundances. While 

these measurements are helpful in expressing the energy available at a moment in time, 

production gives a much better characterization of energy flow, yield, and growth, habitat 

resource value and the potential of oyster reef fauna for supporting resident and 

migratory consumer populations (Waters 1977, Fredette and Diaz 1986, Diaz and 

Schaffner 1990). Secondary production, analogous to "net production" in plants (Waters 

and Crawford 1973), is the rate of change in biomass of a population of organisms over a 

given period of time. It is the total of growth increments of all individuals existing at the 

start and end of the time period, the growth of newly born individuals, and the biomass of 
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individuals that do not survive to be pmi of the population biomass at the end of that 

period (Diaz and Schaffner 1990). 

Calculating secondary production estimates can be labor-intensive. Three of the 

four basic methods used to estimate secondary production, Growth Increment 

Summation, Mortality (or Removal) Summation, and Instantaneous Growth (or Allen 

Curve) (all reviewed by Waters and Crawford 1973), require cohort identification or 

knowing the age of a particular specimen to determine growth rates. A great 

disadvantage to these methods is that they are generally restricted to estimating 

production of single species rather than community production. Furthermore, most 

macrobenthic invertebrates are difficult to age and defining cohorts may be problematic 

because individuals of the same cohort may be spread out through several different size 

classes due to differing individual growth or prolonged spawning or recruitment periods. 

Sampling intervals must be sufficiently small, relative to the life span of the species 

present, to discern the age or cohort of individuals, and short-interval sampling may be 

necessary to avoid underestimating production in multivoltine species such as amphipods 

and isopods (Fredette at al. 1990). Community production is infrequently estimated 

because of the methodological and sampling difficulties in quantitatively estimating 

population size, following complex life histories of benthic species, and the substantial 

time and labor required to process the data (Diaz and Schaffner 1990). 

The fourth production estimation method, the Hynes (1961) method (also known 

as the Size Frequency or Average Cohort method; reviewed by Waters and Crawford 

1973), eliminates the need to identify individual cohorts because it treats individuals in 

terms of size classes that represent an average cohort and can be used on mixed-species 
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populations to rough estimates of total community production. This approach estimates 

invertebrate production by estimating the total number of individuals that developed into 

each size class, and then calculates losses in numbers between size classes. Production is 

then estimated as the sum ofbiomass losses between successive size classes. Because 

this method does not require the recognition and tracking of individual cohorts, it is 

therefore suitable for populations with continuous reproduction. The Edgar sieve method 

for estimating community secondary production (Edgar 1990), a simplified modification 

of the Hynes method, requires relatively little sampling processing effort, is applicable to 

temperate marine and estuarine species, and is proven effective for estimating benthic 

community production in Chesapeake Bay (Hagy 2001). This method is based on the 

metabolic rate-body size relationship of individuals and the distribution ofbody sizes 

within a population. It estimates daily production rates by multiplying the abundance of 

animals in different size classes and mean individual daily production rates of animals 

retained on different sieve sizes. 

The aim of this study is to highlight some aspects of secondary production 

estimates for macrobenthic invertebrates that could be used to assess ecological integrity 

in constructed oyster reef communities. Attention is paid to the relative production of the 

most representative and abundant taxa, also according to trophic groups, degree of 

mobility, and larval dispersal modes on different reef substrate types (oyster shell, surf 

clam shell, and pelletized coal ash). Patterns of macro benthic community abundance, 

biomass, and diversity are compared among these constructed oyster reef substrate types 

to determine if reef structure affects community development and function. 
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METHODS 

Site description 

The study site is located at Fisherman's Island near the north side of the mouth of 

Chesapeake Bay and described previously by O'Beirn et al (2000) (Figure 1). Briefly, 

this polyhaline (20-32 psu) environment has a tidal amplitude of approximately 1.25 m 

and is surrounded by marsh islands and intertidal and subtidal mud/sand flats. In July 

1996, 11 reef bases were constructed using three different substrates: oyster shell, surf 

clam shell, and pelletized coal ash. These reefs range in size from 80 to 900 m2 and 

extend from the shallow subtidal into the intertidal zone. A natural channel separates the 

two rows of reefs, reaching a maximum depth of approximately 2 m at ML W. 

Field collections 

Permanent time-series stations were randomly established on reefs of each 

substrate type to minimize the impact of repeated destructive sampling on the limited 

surface area of the constructed reefs. Substrate basket traps (0.06 m2
, 0.1 m deep) were 

filled with defaunated reef substrate ( cultch) material and embedded, flush with the reef 

surface at three tidal elevations on the reefs: approximately 0.25 m above (intertidal 

crest), at, and 0.25 m below mean low water. These baskets were constructed of the 

bottom 0.1 m of 5-gallon plastic buckets (0.27 m diameter) with 13 0.6 m diameter holes 

cut into the sides and bottom. The sides and bottom of the containers were lined with 6 
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mm plastic aquaculture mesh to permit exchange of interstitial pore water with the 

surrounding reef. Samples collected from the intertidal crests ofthe constructed reefs are 

the focus of this study. At monthly intervals between May 1997 and June 1998, substrate 

baskets were deployed, retrieved, and replaced on a falling tide when the water depth 

above reef surface was 2: 0.15 m to promote capture of species that may migrate with a 

falling tide to leave the reef crest when it is aerially exposed. Upon recovery, baskets and 

cultch material were placed in cloth bags, stored on ice, transported to the lab, and stored 

in a freezer until further processing. 

Samples were thawed and cultch material was elutriated over a 500)..lm sieve 

using filtered seawater to remove all organisms other than firmly attached species. The 

substrate material was inspected and attached fauna were removed using a scalpel blade 

and presence of encrusting species noted. All organisms were preserved in 1 0% buffered 

formalin. All macroalgae attached to the substrate were removed and identified. 

Macroalgae were dried for 48 h to a constant weight at 60° C and dry weight measured. 

Production analyses 

In the laboratory, macro benthic organisms were separated from substrate material 

with the aid of a dissecting microscope and attached epifauna were removed from pieces 

of substrate using a scalpel blade. Specimens were sorted into size classes by rinsing the 

sample through a series of nested sieves, 8.0- 5.6-4.0-2.8-2.0- 1.4- 1.0-0.71-

0.5 mm (as per Edgar 1990). Each sieve was individually shaken in a bucket ofwater to 

allow animals smaller than the sieve mesh size to pass through and the contents of the 

bucket were then poured over the next smallest sieve. Individuals retained on each 
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screen were identified to the lowest possible taxonomic level (usually species) and 

counted. Specimens retained on the 8.0 mm screen and all taxonomic groups (including 

echinoderms, cnidarians, and ascidians) not specified by the sieve production estimation 

method (see Edgar 1990: Table III) were dried for 48 h to a constant weight at 60° C and 

combusted at 550° C for 4 h to obtain their ash-free dry weight (AFDW). Abundance 

was converted to AFDW biomass using equations relating mean faunal AFDW biomass 

and screen mesh size (Edgar 1990) for those organisms retained on the smallerscreens 

specified by the sieve production method. 

Community production on each reef type was calculated using a relationship 

deduced in Edgar's (1990) empirical analysis ofthe effect of body mass on macrofauna! 

production: 

P = 0.0049 · B o.so · T 0·89 

Where P =estimated daily macrofauna! production in llg m-2 dai1
, B = llg AFDW 

individual biomass, and T =water temperature in °C. This model, based on published 

production rates of 41 marine and estuarine invertebrate species ranging in size from 

~ 10-5 to 1 g and valid for temperatures from 5 - 30 °C. For each sample, production was 

determined separately for individuals in each size class using the equation above and then 

summed the nine size class production values into a total production value. Production 

values were converted to mg AFDW m-2 dai1 for this study. 

Community Structure Analysis 

Species richness, diversity, and evenness indices were calculated for each reef on 

each sampling date using the PRIMER (V 5.2.9, Plymouth Routines in Multivariate 
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Ecological Research, Plymouth Marine Laboratories, UK) software package (Clarke and 

Gorley 2001; Clarke and Warwick 2001 ). The observed species richness (S), or the total 

number of species collected in a sample, reflects the adequacy of resources within the 

habitat to support a variety of species (Connell 1978). This measure is highly dependent 

on sampling effort and eventually reaches an asymptote, which is rarely reached in most 

studies, that represents the true number of species in the community and beyond which 

no further increase in the cumulative number of species is expected by additional 

sampling. Species richness is predicted to be lower in disturbed or stressed habitats 

because fewer species possess the adaptive strategies necessary to overcome continual or 

periodic stress (Dauer 1993). Diversity is also expected to decrease with increasing 

environmental stress. The two estimates of diversity calculated were the Simpson index 

(1-A) and the Shannon index (H, using log2). The Simpson index is the probability that 

any two individuals in a sample, chosen at random, are different species, with larger 

values corresponding to more diverse assemblages. The Simpson index is the preferred 

diversity measure to use for this study because it is relatively unbiased with respect to 

sample size (Lande 1996). H is dependent on sampling effort, on the actual number of 

species in a community, and is insensitive to rare species (Lande 1996, Clarke and 

Warwick 2001). Despite its inherent bias, H was calculated because of its widespread 

reporting in marine and estuarine studies. Pielou's evenness (.F) index describes the 

distribution of abundance of individuals among species. Evenness compares the 

observed diversity (H) to a theoretical maximum diversity (Hmax). If all species have 

equal abundance, the distribution of abundances has a maximum evenness. It is common 
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to find many rare species and few abundant ones in a multi-species collection (Larsen 

1974). 

As species counts are entirely dependent on sampling effort, true species richness 

of the macroinvertebrate community was estimated with species-effort curves. These 

curves were calculated for each reef type to estimate true community species richness 

using EstimateS (Colwell 1997; randomization iterations= 1 00). This program 

extrapolates species richness by plotting the curve of the mean cumulative number of 

species encountered in incrementally pooled samples over a large number (e.g. 1 00) of 

randomized permutations of the sample pool. These methods use the number of rare 

species to estimate the number of undiscovered species. Since the abundance and 

occurrence of rare species changes with increasing sampling effort, species-effort curves 

are an important way of noting how complete the sampling was and consequently, 

whether actual species counts could be higher than estimated (Walther and Morand 1998, 

Foggo et al. 2003). 

Two-way analysis ofvariance (ANOVA) was used to investigate habitat and 

temporal differences in macrofauna! density and population biomass and macroalgal 

biomass using reef type and season as independent factors. Data were tested using the 

Shapiro-Wilk test of normality (Zar 1999) and Bartlett's test of homogeneity of variance 

(Underwood 1997) and transformed by log (X+ 1) or square root (X +0.5) where necessary 

to improve normality and homoscedasticity . Tukey Honestly Significant Difference tests 

(hereafter, Tukey test) were used for post-hoc comparisons when ANOVA detected 

significant differences (Zar 1999). 
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Similarity of species composition and abundance of macro invertebrates among 

reef types was determined by hierarchical cluster analysis using COMP AH96 

(http://vvww.es.umb.edu/edgwebp.htm) a version of the original program written and 

described by Boesch (1977). Abundance data were square-root transformed prior to 

analysis. The sample and species clusters were generated using flexible sorting with p of 

-0.25 and group-averaged Bray-Curtis similarity, calculated from simultaneous 

standardization of abundance (Boesch 1977): 

Y = X I .V(sample total* species total) 

where Y is the standardized value of abundance (X). Any species that was present in 

fewer than two samples was eliminated from the cluster analysis. This resulted in a total 

of 22 of 76 total taxa being dropped. 

Results of the sample and species clusters were compared using nodal analysis of 

a two-way table of the original data matrix rearranged by sample and species clusters. 

Constancy and fidelity measures were calculated for each species group/sample group 

cluster. Constancy is a measure of how frequently a species cluster occurs within a given 

sample cluster (Boesch 1977): 

Cu =au I (ni * n1) 

where aiJ is the number of occurrences of members of species cluster i in sample cluster j, 

ni is the total number of species in species cluster i, and n1 is the total number of samples 

in sample cluster}. A species cluster with a constancy value of 1.0 is present in every 

sample in a given sample cluster. A constancy value ofO is obtained when none of the 

species in a species cluster occur in a sample cluster. Fidelity is a measure of how unique 

a species cluster is to a given sample cluster (Boesch 1977): 
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Fu = (aij L: n;) I (n1 L: au) 

where au and n1 are as described above. A species has a fidelity value of 1.0 when the 

constancy of the species cluster in the sample cluster is equal to the overall constancy of 

the species cluster to all samples collected. When fidelity is > 1.0, the constancy of the 

species cluster in a particular sample cluster is greater than the total overall constancy. 

When fidelity is <1.0, the constancy of the species cluster in a sample cluster is less than 

the total overall constancy. Values ofF >2.0 suggest a species cluster has a strong 

preference for a sample cluster. Values ofF <0. 7 suggest avoidance of the species from 

the sample cluster (Boesch 1977). 

All taxa were categorized into one of four feeding types, one of four purchase 

(relationship to the substrate) types, and one ofthree dispersal types based on the system 

described by Larsen (1974) and on other published accounts (Appendix). The four 

assigned feeding types are: (1) carnivores, including carrion feeders; (2) omnivores, 

including general scavengers; (3) deposit feeders, including detritivores and herbivores; 

and (4) suspension feeders. The four purchase types are: (1) motile epifauna; (2) attached 

(sessile) epifauna; (3) free (motile) infauna; and (4) tube-dwelling (sedentary) infauna, 

including those with semi-permanent burrows. Larval dispersal types are: (1) 

nonpelagic; (2) short pelagic, i.e. two or three days; (3) pelagic. A list of all species and 

assigned feeding, purchase, and dispersal types is given in Appendix. Due to limited or 

conflicting information on the biology of many of these species, these designations 

cannot be considered rigid. Some species exhibit considerable plasticity in feeding or 

larval dispersal methods, however, each species was assigned to the category which is 

believed to be most characteristic of its behavior. When no information was available on 
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a species, it was assigned the most appropriate category based on generic or familial 

characteristics (Larsen 1974). 
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RESULTS 

Physical characteristics 

Water temperature followed a sinusoidal pattern driven by season with a 

maximum of 27 C recorded on 9 August 1997 and a minimum of 11 C recorded on 26 

January 1998 (Figure 2). Salinity followed no discernable pattern and ranged from 20 to 

32 °/oo during the investigated period. The low salinity value recorded on 11 August was 

likely due to a high rainfall event associated with Tropical Storm Danny that crossed over 

eastern Virginia 24-25 July 1997 (Graumann et al. 1998). 

Macroalgae 

Seven macroalgal species were collected in the basket samples from the intertidal 

portion ofthe reefs at Fisherman's Island (Table 1). Gracilariafoliifera, a red algal 

species, occurred on all reef types and was the most abundant species collected during 

this study. Enteromorpha spp. and Ulva curvata were also collected from all three reef 

types. Macroalgal dry weight biomass was highly variable throughout the entire study 

period on all substrate types (Figure 3). Macroalgae was absent from the clam shell reef 

in the summer and macroalgal biomass on the other two reef types was generally lowest 

during the fall. Given the high variability of algal abundance and low replication, no 

statistically significant difference was detected in algal biomass by reef type or season 

(log transformed, two-way ANOVA: p = 0.141, p = 0.233, respectively). Clam shell 

reefs consistently yielded low overall dry weight biomass(< 0.4 g baskef1
). Neither 
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macroalgal species diversity (Sham1on index, H, using log2) nor evenness (.F), both 

calculated from dry weight biomass, varied significantly across reef type or season. 

Species richness (number of species, S) varied significantly across reeftype (p = 0.016), 

with more species occurring on the ash pellet reef than on the clam shell reef. 

Macro algal species richness on the oyster reef was intem1ediate but did not differ 

significantly from the other two reef types. 

Patterns of total macrobenthic abundance and biomass among reef substrate types 

A total of76 macrobenthic taxa were collected across all three reeftypes during 

this study. Of these, 16 species were unique to samples collected from oyster shell, eight 

unique to clam shell, and five unique to coal ash. A subset of 21 species or genra 

accounted for >98% of the total abundance and >89% of the total biomass of the total 

fauna collected from all reef types (Table 2). Comprising this assemblage were six 

polychaete species (Polydora websteri, Nereis succinea, Streblospio benedicti, 

Heteromastusfiliformis, Podarke obscura, Hydroides dianthus), five bivalve species 

(Mytilus edulis, Crassostrea virginica, Mercenaria mercenaria, Spisula solidissima, 

Ensis directus) and one bivalve species group (Tellina spp., grouped together because 

immature individuals are indistinguishable), three amphipod species (Melita nitida, 

Corophium acherusicum, Gammurus mucronatus), two Panopeid crab species (Panopeus 

herbstii, Ewypanopeus depressus), the gastropod Mitrella lunata, the barnacle Balanus 

improvisus, the caridean shrimp Palaeomonetes vulgaris, and an unidentified 

collembolan insect. 
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There was a significant effect ofreeftype on total macrofauna! abundance (Table 

3). Total abundance ranged between 112 and 1891 individuals per 0.06 m-2 basket (1914 

to 32322 individuals m-2
) and was significantly greater on the ash pellet reef than on the 

oyster shell reef (Table 3, Figure 4a). The clam shell reef was not significantly different 

from either the coal ash or oyster shell reefs (Table 3, Figure 4a). The larger abundance 

on the ash pellet reef was primarily attributed to high densities (> 1400 individuals 

baskef1
) of the barnacle Balanus improvisus, the amphipod Melita nitida, and small 

panopeid crabs (carapace widths < 10 mm). Although total abundance differed 

significantly by reef type, reef type did not significantly influence total community 

biomass (Table 3, Figure 4b). The total biomass ofthe abundant small animals that 

dominated the ash and clam reefs was offset by the biomass of the few larger crabs and 

the shrimp collected on the oyster shell reef (Figures 7, 8, 9). Season did not have a 

significant effect on total overall abundance or biomass (Table 3). The large peak in 

biomass on the oyster shell reef in the fall is ascribed to the presence of large decapods 

(P. vulgaris, P. herbstii >10 mm carapace width, and the hermit crab Clibanarius 

vittatus) in samples collected during this period (Figure 8). 

The classification of macrofauna taxa into one of four feeding types (Larsen 

1974) further elucidated patterns in trophic structure of these reef habitats. Deposit 

feeding, detritivorous, and herbivorous taxa contributed little to the overall faunal 

abundance and biomass across all habitats throughout the study (Figures 1 0 and 11). The 

abundance of omnivores, exemplified by the gammaridean amphipods Melitia nitida and 

Gammurus mucronatus, was significantly greater on the ash and clam shell reef 

compared to the oyster shell reef (Table 7), yet there was no significant difference among 
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reef types for omnivore biomass. While reef type did not have a significant effect on 

total overall abundance or biomass of the other feeding types, the abundance and biomass 

of carnivores and suspension feeders varied significantly by season (Table 7). 

Carnivores, of which the panopeid crabs Panopeus herbstii and Eurypanopeus depressus 

were most abundant, contributed very little to the overall abundance of the macro faunal 

community through the year, with lowest counts occurring in the winter (0-2%) and 

highest in the summer and fall (1-10%) (Table 7, Figure 10). These carnivorous reef 

species were often large bodied and, although overall counts were relatively low 

compared to the rest of the community, comprised a greater proportion of the total 

community biomass (Table 2, Figure 11 ). Carnivore biomass was also lowest in the 

winter on all reef types and was consistently high on the oyster shell reef throughout the 

year with the lowest proportion occurring in the winter (39%) (Table 7, Figure 11). 

Oyster reef habitats are characterized by high relative proportions of suspension 

feeders compared to other feeding types (Larsen 1974 ). Suspension feeders at 

Fisherman's Island varied seasonally and accounted for 51-86% ofthe total community 

abundance in the spring and as little as 2% in the summer; Neither summer or spring 

suspension feeder abundance differed significantly from that of the fall and winter (Table 

7, Figure 10). The peak in abundance corresponds with the mass Mytilus edulis 

recruitment in the winter and spring. Spring and summer suspension feeder biomass, 

dominated by M edulis and Crassostrea virginica, was significantly greater than that 

observed in the winter. Although small M edulis winter recruits contributed 78% of the 

total suspension feeder biomass, suspension feeders made up only 5-6% of the total 

community biomass (Figure 11 ). Suspension feeders were more important in the spring 
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and summer and comprised between 11-35% ofthe total community biomass (Table 7, 

Figure 11 ). One premise behind oyster reef restoration efforts is to bring back biological 

filtering capacity of estuarine habitats. Larsen (1974) reported suspension feeders 

comprised over 60% of the total community abundance on reefs in the polyhaline portion 

ofthe James River. The values reported in the present study are less than this figure and 

are likely an underestimate of the true suspension feeder community contribution because 

of the sampling gear bias associated with the monthly deployment of basket traps. Many 

suspension feeding species are attached epifaunal species and only those individuals 

recruiting to the surface of the substrate within the sampling basket are accounted for 

because defaunated substrate material was deployed in the baskets and retrieved monthly 

from each reef. 

Defaunated substrate material was deployed in the baskets and retrieved monthly 

from each reef, so the presence of sessile and sedentary species (such as bivalves, 

barnacles, sedentary polychaetes, cnidarians, and tunicates) represents those individuals 

recruiting to the surface of the substrate within a month. It is plausible that older 

individuals could be washed into the basket on substrate material from the surface of the 

reef surrounding the basket opening (as per Cosby et al. 1991 ). These substrate baskets 

detect short-term ( <1 month) recruitment pulses of sessile and sedentary epifaunal 

species but are best at quantitative sampling of motile species. 

When only motile species (i.e. motile epifauna and free infauna) are considered, 

the overall abundance from all samples over the entire study period is reduced from 

>30,000 to >16,000 individuals while the total biomass is reduced by 8 g AFDW from 

48.2 to 40.2 g AFDW (Tables 2 and 4). Analysis of total macrofauna! abundance and 
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biomass calculated using data for motile species only reveals that clam shell and ash 

pellet reefs had significantly greater densities of motile species than the oyster shell reef 

(Table 5, Figure 5a). This relationship held true for abundance of the numerical 

dominant, the amphipod Melita nitida (Figure 7c). Panopeus herbstii and Nereis 

succinea abundance also differed between clam shell and oyster shell reefs but abundance 

on the ash pellet reef was not significantly different from either (Figure 7a,e). Season did 

not have a significant effect on the total abundance of motile species (Table 5), but was a 

significant factor affecting the abundance of two of the dominant species, P. herbstii and 

N succinea. Panopeus herbstii was more abundant in summer, fall, and spring than in 

the winter months (Figure 7a). Nereis succinea was more abundant in the summer, 

primarily on the clam shell reef (Figure 7e ). 

There were no significant differences in total community biomass among reefs or 

seasons for the motile species group (Table 4b ). Season was nearly significant (P = 

0.0534) due to the high biomass of decapod crustaceans in oyster reef samples collected 

during the fall. The only individual species to exhibit a significant difference among reef 

types was the amphipod Melita nitida with greater biomass occurring on the clam shell 

and coal ash pellet reefs than on the oyster shell reef (Figure 8c ). The biomass of 

Panopeus herbstii, the amphipods Gammurus spp. (including G. mucronatus and G. 

palustris), and N. succinea was each affected by season differently. Panopeus herbstii 

had the greater biomass in the fall, summer and spring than in the winter. Gammurus 

spp. had the greater biomass in winter than in the spring and fall (Figure 8d). As with 

abundance, Nereis succinea biomass was greatest in the summer and lowest in the winter 

(Figure 8e). 
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Analysis oftotal macrofauna! abundance and biomass calculated using data for 

sedentary and sessile species only (attached epifauna and tube-dwelling infauna; e.g., 

sedentary polychaetes, barnacles, tunicates, and anemones) reveals that this component of 

the total community did not vary significantly by reef type, nor did the dominant species, 

Crassostrea virginica and Mytilus edulis individually (Table 6, Figures 6, 7f, 7g, and 8f, 

8g); however, there was a significant effect of season on biomass with greatest values in 

the spring and summer and lowest in the winter (Table 6, Figures 6 and 8f, 8g). The 

abundance of the numerical dominant sessile species, M edulis, was greatest during 

recruitment periods in winter and spring, with only a few individuals collected in the 

summer and none during the fall (Figure 7f). The few individuals collected in the 

summer had a high AFDW per individual and are likely incidental captures and not 

reflective of natural recruitment during the sampling interval (Figures 8f and 12). 

Abundance patterns of C. virginica reflected recruitment events in the summer and fall. 

As with M. edulis, the high biomass of C. virginica on the clam shell reef during the 

summer was also driven by the few, large individual collected in these samples (Figures 

8g and 13). 

The percentage of taxa and proportional abundance and biomass in each of the 

three designated dispersal types is shown in Figure 14. The short pelagic dispersal type 

only occurred in 4 species from the oyster shell and 3 species from both the clam shell 

and ash reefs and contributed negligible amounts to the overall community abundance 

and biomass (Figure 14a). There was a slight trend of relatively greater percentage of 

pelagically dispersing individuals, including the panopeid crab Panopeus herbstii and the 

mussel My til us edulis, on the oyster shell reef and this was reflected in the community 
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biomass patterns as well. The higher proportion of non-pelagically dispersed individuals 

on the other two reef types is accounted for by the numerical and biomass dominance of 

young-brooding gammaridean amp hi pods (Figure 14 b,c ). 

Species Richness and Diversity Indices 

No significant differences were detected for any of the diversity indices calculated 

across the entire study. Species richness did not vary significantly by reef type 

(ANOV A, P = 0.081 ), but tended to be higher in the summer than during any of the other 

seasons (Figures 15 and 16). Although variable throughout the seasons and not 

statistically significant, the relative contributions of each feeding type (Larsen 1974) to 

species richness of the assemblages generally differed across reef type. The overall 

number and percentage of taxa in three of the four feeding types were greater on the 

oyster shell reef compared with the clam and ash reefs (Figure 16). Omnivores and 

scavengers dominated the oyster shell reeftaxa while suspension feeders contributed the 

fewest number and percentage of taxa on this reef substrate. In contrast, suspension 

feeders made up the bulk ofthe taxa collected from the ash reef. Proportions of taxa in 

each feeding group on the clam shell reef appeared more reflective overall ofthe oyster 

shell reef community compared to that of the ash reef with a relatively high species 

richness of omnivorous taxa. 

By examining within season, summer was the only season where diversity indices 

differed significantly across reef type. The Shannon diversity index, H', was 

significantly higher (ANOVA, P = 0.003) on the oyster shell reef than on the clam shell 

and coal ash pellet reefs (Figure 15). Similarly, the Simpson index was significantly 
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higher (ANOV A, P = 0.005) on the oyster shell reef than the coal ash pellet reef, but not 

significantly different from that of the clam shell reef (Figure 15). Evetmess was 

significantly higher (ANOVA, P = 0.006) on the oyster shell reef compared to the coal 

ash pellet and clam shell reefs. 

Randomized species-effort curves, whereby cumulative number of species is 

plotted against cumulative number of samples show the extrapolated species richness 

values, were consistently higher on the oyster shell than on the clam shell and coal ash 

pellet reefs (Figure 17 A). All three curves appear to approach an asymptote and thus 

further incremental sampling efforts beyond the twelve samples per reef type would 

likely yield few additional species. The patterns of species accumulation with increasing 

numbers of individuals sampled are varied by reef type (Figure 17B). Species 

accumulated more rapidly on the oyster shell reef than on the clam shell and coal ash 

reefs and attained a higher species richness even though fewer individuals were collected 

from that reef type during the duration of this study. As the oyster shell reef curve does 

not yet appear to approach an asymptote as the other reef type curves do, it can be 

extrapolated that the true species richness on the oyster shell substrate is greater. 

Secondary Production 

Total community secondary production estimates ranged between 1.4 and 282.3 

mg AFDW m-2 day-1 for the 384 d study period with lowest production estimates 

occurring in the winter (ANOV A, P < 0.001, Figure 18, Table 9). Even though no 

significant differences were found, a slight trend in reef community secondary production 
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rates, with oyster shell greatest, was evident from the proportional contribution of daily 

production from each reef type each season (Figure 18, Table 9). 

As with biomass, large decapods and gammaridean amphipods were primarily 

responsible for driving the spatial and temporal pattems observed in estimated secondary 

production (Figures 19 and 20, Table 9). Production on the oyster shell reef was mainly 

by camivores, mostly Panopeus herbstii (Figures 20C, 21 C and 22, Table 1 0), which 

accounted for over half of the annual production estimate on the oyster shell habitat. 

Though of lesser magnitude, this species was also particularly productive on the clam 

shell and coal ash pellet reefs contributing 24 and 31% of the total annual production, 

respectively (Table 1 0). Production of this species, and camivores in general, dropped 

off notably during the winter months across all habitat types (Figures 19, 20, 21, 22). 

Omnivores contributed a bulk of the production on the reef habitats and dominated 

production on the clam shell and ash pellet reefs (Figure 22, Table 1 0). The 

garnmaridean arnphipod Melita nitida was a major omnivorous producer on the clam 

shell and ash pellet reefs and contributed 27 and 32% of the total annual production yet 

only made up 5% of production on the oyster shell reef (Table 1 0). Nereis succinea' s 

contribution to total community production was greatest on the clam shell reef, driven by 

several large specimens collected during the summer months (Figure 19B, 20B, Table 

1 0). Omnivores were the second-most important producers on the oyster shell reef, due 

in part to fall and winter productivity of Palaeomonetes vulgaris. This species was 

relatively unimportant elsewhere and only occurred in November samples from the coal 

ash and clam shell reefs (Figure 19). 
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Production estimates for sessile and sedentary species, many of which make up 

the deposit and suspension feeder feeding groups (Appendix), theoretically represent only 

those individuals recruiting to the surface of the substrate within a month because 

defaunated substrate material was deployed in the baskets and retrieved monthly from 

each reef. Therefore, production values reported for Crassostrea virginica and Mytilus 

edulis are likely to be gross underestimates because the sampling gear did not 

quantitatively sample all cohorts of this component of the community. Nonetheless, 

suspension feeder secondary production estimates for recent recruits of C. virgin tea and 

M edulis accounted for much of the total community production. Fifteen percent of the 

macroinvertebrate production on the clam shell habitat was due to C. virginica, while M 

edulis contributed 15% of the coal ash reef community production (Table 10, Figure 19). 

Suspension feeders contributed about 14% of the total community production on the 

oyster shell reef, the bulk of which were spring M edulis recruits. Deposit feeders, 

mostly Tellinid clams present in spring collections, contributed little to the overall 

productivity estimates ofthe reefhabitats at Fisherman's Island (Table 10). 

Community analyses 

Hierarchical cluster analysis, using abundance data, of the coal ash pellet, clam 

shell, and oyster shell reef macro faunal data segregated the samples into eight dissimilar 

groups (Figure 23, Table 11) and species into fourteen dissimilar groups (Figure 24, 

Table 12). Constancy and fidelity are illustrated in Figures 25 and 26. The basic patterns 

in both species and sample cluster analyses appeared to be controlled by temporal effects. 
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The nine numerically dominant species that formed groups H and I displayed high 

constancy but low fidelity across all reef types, indicating their ubiquity and numerical 

importance. Group I was made up of the top two numerically dominant species, Melita 

nitida and Mytilus edulis. Members of Group H included the other numerically dominant 

bivalves Crassostrea virginica, Mercenaria mercenaria, Spisula solidissima, and Tellina 

spp, as well as the most numerically dominant crustaceans, Panopeus herbstii and 

Balanus improvisus and polychaete, Nereis succinea. Subdominant taxa within species 

groups F, G, and J were broadly distributed but usually in low numbers across all sample 

groups. Species groups F and G expressed moderate to high fidelity to summer sample 

groups. The taxa within the remaining species groups are considered rare and had low to 

very low constancy and fidelity for the majority of the sample groups, occasionally 

having a high constancy or fidelity for a particular sample group (Figures 25,26). 

Sample groups 1 and 2 were closely associated (Figure 23) and represented 

collections from summer months (June and July) on all three reef types, with high 

occurrences of the dominant (species groups Hand I) and subdominant (species groups F, 

G, and J) taxa. Sample group 1 also had high occurrences of individuals within species 

group M, which was comprised of taxa that were rare throughout the rest of the study. 

Sample group 2 had high constancy and fidelity of both of the rare species that made up 

species group L (Figures 25, 26). Neither group was comprised of individuals from 

species in groups A, B, or N. 

Sample groups 3, 4, and 5 were closely associated and consisted of samples 

collected in the fall to early winter across all each reeftypes (Figure 23, Table 11). 

Sample group 3 represented all but one of the ash pellet samples and all of the clam shell 
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reef samples collected during the last 5 months of 1997 (Table 11 ). Sample group 4 was 

made up of samples collected from the oyster shell reef in August and September. Rare 

taxa, except for those of species group N, were generally absent from this sample group 

(Figure 25). Sample group 5 was made up of oyster shell reef samples collected October 

through December and the November ash pellet reef collection. One factor separating 

these groups from others is the near absence of My til us edulis (of species group I) from 

the collections. The other species in species group I, Melita nitida, was prominent along 

with each of the other species in group H, all of which were dominant throughout the 

study period. Very few species from groups E, L, or M were found in the collections 

making up this sample group. It is noteworthy that the decapod Palaeomonetes vulgaris 

was most abundant in samples within group 5. 

There was a high degree of similarity between sample groups 6, 7, and 8 (Figure 23 ), 

which were composed of samples collected from each reef type during the late winter and 

spring months (January through May; Table 11). The numerically dominant species of 

species of group I (Melita nitida and Mytilus edulis) had very high constancy (C = 1) to 

each of these sample clusters (Figure 25) and most species groups were collected (but 

often in low occurrences or abundances). 
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DISCUSSION 

While the placement of any substrate in any structure-limited system will likely 

attract organisms, the physical and chemical nature of the structure and biological 

attributes of the system are important factors to consider in assessing whether that 

structure will have a significant impact on the ecological functioning of that system. In 

this study, a suite of physical and biological factors (i.e., structural differences in reef 

type, predation, recruitment/immigration, disturbance by currents and wave action, the 

presence oflive oysters, metamorphosis cues secreted by adults in the habitat, etc.) could 

have likely influenced the observed patterns in the macrobenthic community on the 

Fisherman's Island reef. 

Oyster shell reefs were the most productive habitat in the Fisherman's Island reef 

system, indicating that they are an important habitat for macrobethic invertebrates. 

However, oyster reefs cannot be considered in isolation, as closed boxes do not exist in 

nature. These reef habitats have vital ecological linkages with other ecosystems and high 

benthic secondary production on reefs likely contribute to neighboring habitats. While a 

fundamental goal of oyster reef restoration efforts is to establish viable, self-sustaining 

oyster populations, the formation of a productive community of reef-associated fauna 

including mud crabs, grass shrimp and other small crustaceans (i.e., amphipods, isopods) 

is important to restoring invertebrate prey for higher trophic level predators such as 

finfish and birds. All three reef substrate types demonstrated substantial production of 
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these species, but the portion of the production consumed by higher trophic levels is 

unknown. Additional investigations (i.e. gut analysis) of the trophic role of each species 

collected in this study would provide a better understanding of the habitat's value to 

resident and transient predators. 

Other investigators have noted high macroinvertebrate densities and biomass on 

oyster reefs (Wells 1961; Bahr 1974; Larsen 1974; Dame 1979; Zimmerman et al. 1989), 

however, little comparable community production data for macrobenthos, particularly on 

reefhabitats, is available (Dame 1976). Dame (1976) estimated intertidal oyster 

production in South Carolina, omitting values for associated macrofauna in his estimate. 

He reports a production rate of22312 g AFDW m-2y-1 for intertidal oysters (values 

converted from Kcal to ash-free dry mass using 1 g AFDW = 0.19 Kcal; Waters 1977), a 

value far exceeding the production rate of the entire reef community at Fisherman's 

Island. The estimated production values determined in the present study are more 

comparable to those reported for other estuarine communities. Sarda et al. (1998) 

calculated production of saltmarsh macroinfauna inhabiting sandy-organic sediments to 

be 69 g ADFW m-2i 1 (values converted from dry mass to ash-free dry mass using ash 

content= 10.4% dry mass; Benke and Wallace 1980). In Chesapeake Bay SAV habitats, 

Fredette et al. (1990) calculated community production values as high as 268 g ADFW 

m-2i 1 (values converted from dry mass to ash-free dry mass; Benke and Wallace 1980). 

Freshwater streams are on average much less productive with values typically less than 

50 g ADFW m-2i 1 (Waters and Crawford 1973; Smock et al. 1985; Buffagni and Comin 

2000). 
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Various errors were possible in estimating the secondary production rates for the 

communities of the constmcted oyster reefs at Fisherman's Island. Because of the small 

size ofthese reefbases, destmctive sampling was avoided and the alternative sampling 

approach employed (monthly replacement with clean substrate) was not quantitative for 

multiple cohorts of sessile or sedentary species. Therefore, production values reported 

for non-motile species such as Crassostrea virginica and Mytilus edulis are likely to be 

gross underestimates because the sampling gear targeted only individuals recmited within 

the each sample period. Another possible source of error was the use of sieve mesh size 

(500 J..Lm) during sample processing that permitted the smallest individuals to escape. 

Because small bodied individuals have high production rates (reviewed by Diaz and 

Schaffner 1990), inclusion of the smallest size classes is important for accurate 

community production estimates. Benthic macrofauna juveniles (retained on 250 J..Lm and 

125 J..Lm screens) contribute as much as 20% of the total community production during 

peak recruitment periods (Hinchey 2002), yet this component was not considered in the 

production estimates for the Fisherman's Island reefs. This factor may have been of 

greatest significance during the spring and summer when most temperate macrobenthic 

recmitment takes place (reviewed by Holland et al. 1988), resulting in a serious 

underestimate of smallest size classes of recruits during these seasons. Furthermore, 

categorizations into functional feeding groups, based on various sources, does not take 

into account plasticity exhibited by many in feeding modes, crossing the categories 

employed here. For example, tellinid clams are categorized in the present study as 

deposit feeders, but under certain flow regimes, they switch to suspension feeding 

(Holland et al. 1988). Additional investigations (i.e. gut analysis) of the trophic role of 
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each species collected in this study should be carried out to allow a more truly 

representative assignment of functional feeding groups leading to more accurate 

interpretations of energy transfer patterns. 

Seasonal cycles of phytoplankton abundance, productivity, and composition are 

strong in temperate estuaries due to changes in availability of light and nutrients and 

seasonal temperature variations (Tenore 1988). While water column food supplies drop 

to minimum levels in the winter months, competition among individuals for resources 

can regulate productivity and community structure and is reflected in reduced winter 

community productivity. The temporal differences in secondary production can be 

interpreted as a result of observed shifts in biomass because production is a function of 

population biomass and biomass turnover rate. Seasonal production on the constructed 

oyster shell reef habitat showed a moderate production in the summer, followed by peak 

in the fall and almost no production through winter, but production increased again in the 

spring. During the winter, Panopeus herbstii biomass decreased sharply suggesting 

mortality rates were above production rates at that time. Although overall production 

rates were lowest in the winter months, it is interesting to note that production of 

omnivorous and scavengers, particularly Melita nitida on the clam shell and ash pellet 

reefs, continued through the winter at levels that contributed to the annual production of 

this group. 

Small-scale structural differences in the different reef substrates (oyster shell, 

clam shell, and coal ash pellet) could have contributed to the differences in community 

structure observed in this study. O'Beirn et al (2000) demonstrated that each reef type 

has significantly different interstitial volumes (oyster shell (0. 70 LIL substrate) > clam 
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shell (0.58 L/L substrate)> coal ash pellet (0.45 L/L substrate)). Substrates with greater 

interstitial space provide more volume and crevices for reef macrofauna to occupy 

(Figure 27). Oyster shell reefs, with large overall interstitial space volume and large 

individual interstitial spaces, likely provided good habitat for larger decapod crustaceans 

(Figure 27 A), resulting in increased overall production relative to the clam shell and coal 

ash pellet reefs. The clam shell reef substrate, with intermediate interstitial space 

volume, high overall substrate surface area available for epibenthic settlement, yet small 

individual interstitial spaces, was more restrictive to larger bodied individuals and 

supported more individuals of smaller size classes than the oyster shell habitat (Figures 

27B, 28). Coal ash pellets, with low overall interstitial volume and moderately sized 

individual interstitial spaces, supported macrofauna size classes reflective of those on the 

clam shell habitat (Figure 27C, 28). 

Differential predation pressure may also explain some of the differences seen in 

macro faunal community across reef type. Complex habitats affect predator foraging 

success and prey survival by limiting a predator's ability to move through a habitat to 

search, detect, and capture prey (reviewed by Heck and Crowder 1991, Bartholomew et 

al. 2000). Postsettlement predation is considered one of the potential key factors 

regulating population density and structure (Hines and Ruiz 1995) and smaller juveniles 

are also comparatively weak competitors for food and refuge, which should further 

reduce their probability of survival and growth (Hines 1986). However the varying sizes 

of the interstructural gaps between the pieces of oyster shell, clam shell and coal ash 

pellet reef substrate likely act to limit the body size of fauna that are able to occupy the 

space. These spaces may serve as predation refuges for smaller size classes relative to 
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larger predators, increasing survivorship (Bartholomew et al. 2000) because the 

individual pieces of substrate may serve as physical barrier to faunal maneuverability 

through the substrate matrix. In this study, nearly half of the largest animals collected 

came from the oyster shell reef (Figure 28), which also had the largest interstitial volume 

(O'Beim et al. 2000). Larger crabs (>21 mm carapace width) were not collected from the 

clam shell or coal ash pellet substrate, likely because these substrates lacked sufficient 

interstitial refuge space for these individuals to occupy. 

Proportionately more individuals of smaller size class macrofauna were collected 

from the clam shell and ash pellet reefs compared to oyster shell reef. While clam and 

ash pellet reefs support higher abundances of small size class macrofauna, the interstices 

may not be large enough to support small resident reef fish or other intermediate level 

consumers (Figure 27). These trophic intermediate species between primary consumers 

and larger transitory fishes are important components of the oyster reef linking oyster 

reef secondary production with other open water habitats (Harding and Mann 1999). In 

essence, these reefs may be acting as trophic dead-ends with less production transferred 

to higher trophic levels via these intermediate consumers. 

For example, the oyster shell reefs had proportionately lower abundances of the 

amphipod Melita nitida than the other two reef types. Although sufficient space was 

available to this species on the oyster shell reef, the spaces were large enough to permit 

access to the interior ofthe reef matrix by predatory fishes (Bartholomew et al2000). 

Since cryptic oyster reef resident fishes rely on appropriately sized interstices within the 

oyster reef habitat for feeding and predator refugia (Breitburg 1999), it is likely that 

smaller bodied crustaceans fell prey to higher level predators occupying the reef habitat. 
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Investigations of gut contents of fishes collected from these reefs may further elucidate 

patterns oftrophic transfer at Fisherman's Island. 

Another factor that may influence faunal patterns observed on these reefs is 

recruitment and/or immigration of individuals to the different reef types. Geographic 

distribution of benthic invertebrate species is suggested to be related to larval mobility 

(Crisp 1978). The proportional majority of the taxa collected on all three reef types have 

planktonic larval development (Figure 14A) which facilitates dispersal and immigration 

(Newell and Newell 1977), yet the clam shell and coal ash pellet reefs had proportionally 

more individuals with non-pelagic development compared to the oyster shell reef (Figure 

14B). The duration ofthe planktonic larval phase is positively correlated to the potential 

distance the larvae may be transported away form the point of release such that a species 

with a short, or no, planktonic stage is expected to have a small geographic range, while 

those with a long planktonic phase assume a wider distributional range. All of the 

sampled reefs at Fisherman's Island were within 0.5 km and presumably close enough 

such that the species pool for colonizing each reef type is equal for even species with 

short (1-2 day) larval duration. Johannesson (1988) however, suggests that passive 

transport of adult benthic invertebrates of low mobility, such as by rafting on floating and 

drift algae, in combination with a direct development may an effective means of dispersal 

means allowing direct developers to disperse and colonize new habitats. This transport 

may facilitate movements of individuals from a habitat with high predator densities (i.e., 

oyster shell reef) to those of lower predation pressure (i.e., clam shell or coal ash reefs) 

resulting in dense populations of species with non-planktonic larvae (i.e. gammaridean 

amphipods). 
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Although not directly measured, the stability of a substrate to resist physical 

disturbance could also have an effect on the macrofauna! community. Physical 

disturbance, in the form of currents or wave action (of sufficient force to turn over or 

move a piece of substrate) could cause localized extinction of the epifauna on a piece of 

substrate. While abundances of sessile and sedentary species did not vary significantly 

across reef types, trends in epifaunal species abundance were apparent. For example, 

lower abundances of newly settled Mytilus edulis on the clam shell reefthan the oyster 

shell reef may be explained by the instability ofthe individual clam shell fragments to 

remain in place over time. A post-settlement juvenile M edulis may settle a particle of 

clam shell, adding surface roughness to the individual clam shell fragment, and increase 

the susceptibility of the fragment to movement by predominate currents, dislodging the 

substrate fragment and organism from reef surface. As the oyster shell substrate became 

colonized with oysters, it became more stable and resistant to disturbance by wave action. 

Habitat stability has been shown to affect species abundance distributions of benthic 

invertebrate communities in freshwater streams and instability of a habitat can be viewed 

as resetting the successional stage of a community (Death 1996). Unstable and very 

stable stream communities were dominated by one or two taxa with a large number of 

rare species, while those of intermediate stability had relatively uniform species 

abundances with no species strongly dominant. Following this paradigm, habitats with 

maximum evenness (and therefore equal abundances of species), would indicate 

intermediate habitat stability. While no significant differences in evenness (J) were 

detected for the Fisherman's Island habitats across season or reef type, there was a 

general trend of the oyster shell habitat having greater evenness values (Figure 15). 
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Based on Death's characterization of evenness and its relation to habitat stability, it is not 

possible to discriminate as to whether generally lower evenness values on the clam shell 

and ash pellet reefs are due to those habitats being very stable or very unstable. 

One last factor that may be influencing patterns in the macrofauna! community is 

the presence of live oysters. The timing of oyster recruitment to the reefs detected in the 

basket samples at Fisherman's Island is consistent with results reported for the same 

vicinity by Morales-Alamo and Mann (1998). They report oyster recruitment to shell­

string collectors appeared 29 June through 19 October 1997. Oyster settlement was first 

recognized on substrate material retrieved from the oyster shell reef on 7 July 1997. 

Oysters from the clam shell reef collected 11 June and 7 July 1997 ranged in size from 12 

to 27 mm shell height, larger than the 10 mm achieved by intertidal recruits one month 

after settlement (Roegner 1989; Crosby et al. 1991) and are presumably from a fall 1996 

recruitment pulse. It is most likely that these oysters recruited to the reef at an earlier 

date and the pieces of shell that they were attached to washed into the substrate basket by 

tidal currents. Similarly, oysters were collected in samples retrieved from the clam shell 

reef on 26 January ( 6 - 8 mm shell height) and 26 May 1998 (21 mm shell height), 

months after recruitment was last detected in 1997 and before recruitment commenced in 

August 1998 at Fisherman's Island (Southworth et al. 1999) and it is likely that these 

oysters washed into the baskets and are individuals from the previous fall recruitment. 

Lateral transfer of oysters on shell fragments on the oyster shell reef did not occur, 

presumably because this substrate became stabilized with a matrix of live oysters over 

time (O'Beirn et at 2000). 

121 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Although recruitment to each of the reef types appeared equal, concurrent studies 

within the same reef system showed differential survival and growth of oysters on the 

different reefs. O'Beirn et al (2000) report significant differences in oyster abundance by 

reef type for the same time period covered by the present study. The oyster shell reefs 

showed significantly greater densities of live oysters compared to clam shell and coal ash 

pellet reefs. In fact, by the fall of 1998, a continuous crust of live oysters had formed on 

the oyster shell reef while the surface of the other two reefs retained their original 

appearance with little biofouling on the surface of the substrate material (O'Beirn et al 

2000). The rank order of oyster density by reef type reported by O'Beirn et al (oyster> 

clam = ash) follows the same trend as demonstrated for total macrofauna! community 

secondary production and estimated species richness. 

Live oysters, as habitat engineers, create a variety of structurally complex 

microhabitats and contribute to the overall biodiversity and secondary production of the 

reef community. The shells of oysters provide substrata for epifaunal attachment and the 

interstices offer refugia and collect sediment and biodeposits, creating carbon-rich habitat 

for deposit feeding and other infaunal and trophically intermediate species. In intertidal 

mussel beds of rocky intertidal communities, interstices provide refuge for species that 

would normally suffer intense predation (Whitman 1975) and physical refuge for infaunal 

and epifaunal species that would not normally survive the extreme physical stresses 

between periods of tidal inundation (Suchanek 1978). Oysters act in much the same 

manner (Bahr and Lanier 1981, Meyer 1994). The presence oflive oysters, therefore, has 

important implications for evaluating the success of restored oyster reef habitats in terms 
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of how they function ecologically as habitats for trophic exchange from primary and 

secondary consumers to higher predators (Coen et al 1999). 
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Table 1: Macroalgae species sampled from the three reef types at Fishem1an's Island 

throughout the course of this study. 

SPECIES ASH CLAM OYSTER 

Rhodophyta 

Ceramium spp. X X 

Gracilaria foliifera X X X 

Phaeophyta 

Fucus vesiculous X 

Chlorophyta 

Bryopsis plumose X 

Codium spp. X 

Enteromorpha spp. X X X 

Ulva curvata X X X 
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Table 2: Dominant species from constructed reefs in this study (all reef substrate types 

combined). N is the number of individuals collected. Major taxa are: (A) Amphipoda; 

(B) Bivalvia; (C) Cirripedia; (D) Decapoda; (G) Gastropoda; (I) Insecta; (P) Polychaeta. 

Taxa N 
% oftotal % oftotal 
abundance biomass 

Panopeus herbstii (D) 540 1.8 40.1 
Melita nitida (A) 12880 41.9 18.7 
Mytilus edulis (B) 9477 30.8 10.2 
Palaeomonetes vulgaris (D) 107 0.3 5.7 
Crassostrea virginica (B) 490 1.6 5.1 
Nereis succinea (P) 865 2.8 5.0 
Gammurus mucronatus (A) 362 1.2 2.0 
Eurypanopeus depressus (D) 52 0.2 1.2 
Mitrella lunata (G) 386 1.3 0.6 
Balanus improvisus (C) 1769 5.6 0.5 
Polydora websteri (P) 1083 3.5 0.1 
Corophium acherusicum (A) 449 1.5 0.1 
Mercenaria mercenaria (B) 407 1.3 0.1 
Tellina spp. (B) 374 1.2 0.1 
Spisula solidissima (B) 191 0.6 0.06 
Ensis directus (B) 88 0.3 0.06 
Heteromastus.filiformis (P) 135 0.4 0.05 
Podarke obscura (P) 67 0.2 0.05 
Collembolidae (I) 345 1.1 0.04 
Streblospio benedicti (P) 198 0.6 0.03 
Hydroides dianthus (P) 61 0.2 0.03 

Cumulative percent 98.6 89.7 
Cumulative total abundance, biomass 30326 indiv. 43.3 gAFDW 

Overall total abundance, biomass 30767 indiv. 48.2 gAFDW 
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Table 3: Results of ANOV A and Tukey multiple comparisons tests for differences in 

total community abundance (no transformation necessary) and log
10 

(AFDW + 1) 

biomass among reef type (A- coal ash, C - clam shell, 0 - oyster shell) and seasons. P 

values< 0.05 are in bold. Reef types with underlines that overlap are not statistically 

different at P < 0.05. 

Source (d;Q ss MS F p Tukey's Test 

Total abundance 

Season (3) 614462 204820 0.73 0.544 

Reef (2) 2801231 1400615 4.99 0.015 A !: 0 

Season*Reef (6) 751108 125184 0.45 0.841 

Total biomass 

Season (3) 1.213 0.405 2.90 0.056 

Reef (2) 0.071 0.036 0.26 0.777 

Season*Reef (6) 1.236 0.206 1.48 0.228 
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Table 4: Dominant motile species from constructed reefs in this study (all reef substrate 

types combined). N is the number of individuals collected. Major taxa are: (A) 

Amphipoda; (D) Decapoda; (G) Gastropoda; (I) Insecta; (P) Polychaeta (errantia) 

Taxa N 
% oftotal %of total 
abundance biomass 

Panopeus herbstii (D) 540 3.3 48.1 
Melita nitida (A) 12880 78.4 22.4 
Palaeomonetes vulgaris (D) 107 0.7 6.8 
Nereis succinea (P) 865 5.3 6.0 
Gammurus mucronatus (A) 362 2.2 2.4 
Paleanotus heteroseta (P) 47 0.3 1.8 
Eurypanopeus depressus (D) 52 0.3 1.4 
Mitrella lunata (G) 386 2.3 0.7 
Corophium acherusicum (A) 449 2.7 0.1 
Podarke obscura (P) 67 0.4 <0.01 
Collembola sp. (I) 345 2.1 <0.01 

Cumulative percent 98 90 
Cumulative total abundance, biomass 16100 indiv. 36.1 gAFDW 

Overall total abundance, biomass 16432 indiv. 40.2 gAFDW 
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Table 5: Results of ANOVA tests and Tukey multiple comparisons tests for differences 

in total motile species abundance (log
10 

(Abundance+ 1)) and square-root transformed 

biomass (AFDW + 0.5) among reef type (A- coal ash, C- clam shell, 0- oyster shell) 

and among seasons. P values< 0.05 are in bold. Reef types with underlines that overlap 

are not statistically different at P < 0.05. 

Source (DF) ss MS F p Tukey 

Motile abundance 

Season (3) 0.27 0.09 1.02 0.40 

Reef(2) 3.57 1.78 19.77 <0.001 ~ A .Q 
Season*Reef (6) 0.10 0.02 0.19 0.98 

Motile biomass 

Season (3) 1399.4 466.5 2.94 0.05 

Reef(2) 66.9 333.5 2.10 0.14 

Season*Reef (6) 1551.6 258.6 1.63 0.18 
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Table 6: Results of ANOVA tests and Tukey multiple comparisons tests for differences 

in total sessile and sedentary species abundance (log 10 (Abundance+ 1)) and biomass 

(log
10 

(AFDW + 1)) among reef type and among seasons (Sp- Spring, Su- Summer, F­

Fall, W- Winter). P values< 0.05 are in bold. Seasons with underlines that overlap are 

not statistically different at P < 0.05. 

Source (DF) ss MS F p Tukey 

Sedentary and Sessile abundance 

Season (3) 2.62 0.87 2.27 0.106 

Reef(2) 1.30 0.65 1.70 0.204 

Season*Reef (6) 1.54 0.26 0.67 0.676 

Sedentary and Sessile biomass 

Season (3) 9.84 3.89 10.26 0.002 s~ Su F W 

Reef(2) 0.30 0.15 0.47 0.630 

Season*Reef (6) 2.18 0.36 1.14 0.371 
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Table 7: Results of ANOVA tests and Tukey multiple comparisons tests for differences 

in abundance (log
10 

(Abundance+ 1)) and biomass (log
10 

(AFDW + 1)) of each feeding 

type among reef type (A- coal ash, C- clam shell, 0- oyster shell) and among seasons 

(Sp- Spring, Su- Summer, F- Fall, W- Winter). P values < 0.05 are in bold. Reef 

types and seasons with underlines that overlap are not statistically different at P < 0.05. 

Source (DF) ss MS F p Tukey 

Carnivore abundance 

Season (3) 2.58 0.86 4.44 0.013 Su F s~ w 
Reef(2) 0.93 0.46 2.40 0.112 

Season *Reef ( 6) 0.34 0.06 0.29 0.935 

Carnivore biomass 

Season (3) 14.76 4.92 7.37 0.001 s~ Su F>W 

Reef(2) 0.98 0.49 0.74 0.489 

Season*Reef (6) 2.08 0.35 0.52 0.787 

Omnivore abundance 

Season (3) 0.30 0.10 1.06 0.383 

Reef (2) 4.18 2.09 22.54 <0.001 !: A >.Q 

Season*Reef (6) 0.12 0.02 0.22 0.965 

Omnivore biomass 
Season (3) 0.69 0.23 1.16 0.347 

Reef(2) 0.46 0.23 1.16 0.329 

Season *Reef ( 6) 2.34 3.89 1.97 0.110 
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Table 7 (continued) 

Source (DF) ss MS F p Tukey 

Deposit feeder, detritivore, and herbivore abundance 

Season (3) 1.98 0.66 1.57 0.223 

Reef(2) 0.07 0.04 0.09 0.919 

Season*Reef (6) 1.74 0.29 0.69 0.661 

Deposit feeder, detritivore, and herbivore biomass 

Season (3) 0.92 0.31 0.63 0.604 

Reef(2) 0.41 0.20 0.42 0.664 

Season*Reef (6) 2.09 0.35 0.72 0.641 

Suspension feeder abundance 

Season (3) 4.23 1.41 3.41 0.034 Su F W su 
Reef(2) 2.12 1.06 2.56 0.098 

Season *Reef ( 6) 1.55 0.26 0.62 0.710 

Suspension feeder biomass 
Season (3) 11.20 3.74 9.35 <0.001 su Su F w 
Reef(2) 0.36 0.18 0.44 0.646 

Season*Reef(6) 2.21 0.37 0.92 0.497 
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Table 8: Results of ANOVA tests and Tukey multiple comparisons tests for differences 

in abundance (log
10 

(Abundance+ 1)) and biomass (log
10 

(AFDW + 1)) of each dispersal 

type among reef type (A -coal ash, C -clam shell, 0- oyster shell) and among seasons 

(Sp- Spring, Su- Summer, F- Fall, W- Winter). P values < 0.05 are in bold. Reef 

types and seasons with underlines that overlap are not statistically different at P < 0.05. 

Source (DF) ss MS F p Tukey 

Non-Pelagic abundance 

Season (3) 0.35 0.12 0.99 0.414 

Reef(2) 4.02 2.01 17.30 <0.001 c A .Q 
Season*Reef (6) 0.20 0.03 0.29 0.935 

Non-Pelagic biomass 

Season (3) 1.13 0.38 1.98 0.143 

Reef(2) 3.33 1.67 8.78 0.001 c A .Q 
Season*Reef (6) 0.50 0.08 0.44 0.844 

Short Pelagic abundance 

Season (3) 0.27 0.09 0.55 0.655 

Reef (2) 0.43 0.22 1.30 0.290 

Season *Reef ( 6) 0.14 0.02 0.14 0.990 

Short Pelagic biomass 
Season (3) 0.37 0.12 0.71 0.554 

Reef (2) 0.36 0.18 1.04 0.368 

Season* Reef ( 6) 0.30 0.05 0.29 0.936 

Pelagic abundance 

Season (3) 1.30 0.43 1.73 0.187 

Reef (2) 0.49 0.25 0.99 0.187 

Season* Reef ( 6) 1.34 0.22 0.90 0.513 

Pelagic biomass 

Season (3) 7.93 2.64 13.83 <0.001 su Su F w 
Reef(2) 1.77 0.88 4.62 0.020 Q ~ A 

Season*Reef (6) 1.56 0.26 1.36 0.271 
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Table 9: Estimated daily total community secondary production and production of numerical and biomass dominanls 
from Coal Ash Pellet. Clam ShelL and Oyster Shell reefs al Fisherman Island. \'irginia (as per Edgar 1990). 

Data are mg AFDVv' n{' day-' J()r each sampling inlenal. 

No. of water 
Interval Ending 

11 June97 
7 July 97 

12 August 97 
11 September 97 

16 Oc10ber 97 
12 November 97 
11 December 97 
26 January 98 
27 February 98 

27 March 98 
27 April 98 
29 May 98 

days 
33 
25 
36 
30 
35 
27 
29 
46 
32 
28 
31 
32 

No. of 
Interval Ending days 

11 June97 33 
7 July 97 25 

12 August 97 36 
11 September 97 30 

16 Ocmber 97 35 
12 November 97 27 
11 December 97 29 

26 January 98 46 
27 February 98 32 

27 March 98 28 
27 April 98 31 
29 May 98 32 

temperature 
24 
25 
27 
25 
23 
14 
9 
7 
8 

11 
16 
21 

water 
temperature 

24 
25 
27 
25 
23 
14 
9 
7 
8 

11 
16 
21 

Panopeus herbsti 

ASH 
8.856 
4457 

50.225 
46687 
33.296 
18 939 

0.188 
0 
0 

9311 
23.022 
27 865 

Cl/IM 
9.626 

48435 
27.368 
31887 

6.361 
34175 

8.078 
0 

0.956 
1 536 

15.736 
1 788 

OYSTER 
40.740 
51.771 
53.185 
57 949 

213.944 
3 227 
1.540 

0 
0 

0 196 
30.812 
78 410 

Crassostrea virginica 

ASH Cl!IM OYSTER 
0 27598 <0 001 
0 61.608 2.405 

8 875 1 392 14 608 
8.707 6.611 1 986 
6 1 04 6 985 1 073 

0 0 0 
0 0 0 

0.148 1.510 <0001 
0.017 0 0 

0 0 0 
0 0 0.785 
0 9.657 0 

Melita nitida 

.-\SH 
5.243 

0 
51.016 
51 967 
27.541 

4.324 
14.344 
15 790 
12.599 
11 513 
18.061 
18 973 

Cl!IM 
8.781 

20 981 
24.169 
32.944 
14.537 
9.378 

10.460 
8491 

19.804 
9.038 

35.217 
15 490 

OYSTER 
2.685 
3.43-6 
2.735 
7 305 
4.379 
3695 
2.659 
0 222 
0.478 
3 508 

19.101 
0398 

Palaeomonetes vulgaris 

ASH Cl/IM OYSTER 
0 0 0 
0 0 7.678 
0 0 0 
0 0 0 
0 0 59 520 

9 240 7.829 28.710 
<0.001 <0 001 7348 
<0.001 <0.001 0 
<0 001 <0 001 0 
'-'0.001 <0.001 0 
<0.001 <0 001 6 948 
<:Q 001 <0 001 0 

Myti/us edulis 

ASH 
5.371 

0 
0 
0 
0 
0 

0.016 
0 602 
3.092 
9 935 

37 752 
52 481 

Cl!IM 
1476 

0 
0.143 

0 
0 
0 
0 

0 339 
1.878 
9 163 

20.399 
0 876 

OYSTER 
13.392 
!i 818 

0 
0 
0 
0 
0 

0 353 
4.546 

14180 
24.072 
63936 

Gammurus mucronatus 

ASH Cl!IM OYSTER 
0 043 0 1 026 
1036 0.199 0182 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0.228 0.226 0 
5 135 0 987 18 090 

0 0 0 
0 0 0 

3.564 0 0.038 

Nereis succinea 

ASH CLAr~o•l OYSTER 
1.511 
6 393 
8.267 
1 273 
0.168 
0 831 

0 
0 122 
0238 
2.271 
5.146 
6 565 

5l 2t,J~1 
50 040 
18.592 
16 128 
0.716 
0 422 
0.152 
0 061 
0 034 
0 182 
1 141 
3 049 

Total Community 

L.637 
2 970 
0.435 

0 9&8 
0.610 

0 
0.092 

0 
0.616 
1 152 
3_ 7"1!J 

4 671 

ASH CLAM OYSTER 
44 800 115 678 76 579 
34.702 185.171 88.995 

124596 74893 92861 

110.793 94.425 207.948 
!0 123 39 476 282 3J5 
36 457 54 997 36.072 
•14 748 19 300 12 036 
2 1.098 10 86S• 1 430 
23 322 26 156 41 63~ 
34 029 20 438 24 916 
96 119 7 4 994 86 760 

117 803 44 629 152.271 
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Table 10: Contribution of numerically and biomass dominant species and feeding groups 

to total average annual reef community production rates from constructed reef habitats at 

Fisherman's Island (g AFDW m-2 year-1
). Percentages oftotal reef production are given 

in parentheses. 

ASH CLAM OYSTER 

By taxa 

Panopeus herbstii 6.78(31) 5.66 (24) 16.17 (48) 

Palaeomonetes vulgaris 0.28 (I) 0.24 (I) 3.35 (10) 

Melita nitida 7.04 (32) 6.37 (27) 1.54 (5) 

Gammurus mucronatus 0.30 (I) 0.04 (<1) 0.59 (2) 

Crassostrea virginica 0.73 (3) 3.57 (15) 0.63 (2) 

Mytilus edulis 3.32 (15) 1.04 (5) 3.84(11) 

Nereis succinea 1.00 (5) 4.49 (19) 0.54 (2) 

Other 2.71 (12) 1.77 (8) 7.21 (21) 

By feeding group 

Carnivores 7.08 (32) 6.52 (28) 17.60 (52) 

Omnivores & scavengers 9.34(42) 11.28 ( 49) 10.68 (32) 

Deposit feeders I 
0.51 (2) 0.31 (I) 0.92 (3) 

herbivores/ detritivores 
Suspension feeders 5.23 (24) 5.07 (22) 4.68 (14) 
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Table 11: Sample clusters selected from numerical classification of macro benthic 

organisms collected monthly from the inte1iidal region of reefs of each substrate type at 

Fisherman's Island. 

Sample Cluster 1 Sample Cluster 5 
Ash June Ash November 
Clam June Oyster October 
Clam July Oyster November 
Oyster July Oyster December 

Sample Cluster 2 Sample Cluster 6 
Ash July Ash January 
Oyster June Clam January 

Ash May 
Sample Cluster 3 Clam April 
Ash August Clam May 
Ash September Oyster April 
Ash October 
Clam August Sample Cluster 7 
Clam September Ash February 
Ash December Clam February 
Clam November Ash March 
Clam December Clam March 
Clam October Ash April 

Oyster March 
Sample Cluster 4 Oyster February 
Oyster August 
Oyster September Sample Cluster 8 

Oyster January 
Oyster May 
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Table 12: Species clusters selected from numerical classification ofmacrobenthic 

organisms collected monthly from the intertidal region of reefs of each substrate type at 

Fisherman's Island. 

Species Cluster A 
Alpheus heterochaelis 
Dulichiella appendiculata 

Species Cluster B 
Ensis directus 
Glycera americana 
Uca spp. 

Species Cluster C 
Anadara transversa 
Molgula manhattiensis 
Erichthonius brasiliensis 
Geukensia demissa 

Species Cluster D 
Caprella pentatus 
Crepidula convexa 
Palaeomonetes vulgaris 
Retusa canaliculata 

Species Cluster E 
Corophium spp. 
Diadumene leucolena 
Ilyanassa obsoletus 

Species Cluster F 
Ampithoe valida 
Gammurus palustris 
Gammurus mucronatus 
Mitrella lunata 
Polydora websteri 
Streblospio benedicti 

Species Cluster G 
Heteromastus filiform is 
Podarke obscura 
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Species Cluster H 
Balanus improvisus 
Crassostrea virginica 
Nereis succinea 
Panopeus herbstii 
Mercenaria mercenaria 
Tellina spp. 
Spisula solidissima 

Species Cluster I 
Melita nitida 
Mytilus edulis 

Species Cluster J 
Collembola spp. 
Corophium acherusicum 
Eteone heteropoda 
Skenopsis planorbis 
Eurypanopeus depressus 

Species Cluster K 
Anachis obesa 
Doridella obscura 
Cymedusa compta 

Species Cluster L 
Dyspanopeus sayi 
Sphaeroma quadradentatum 

Species Cluster M 
Bittium varium 
Paracaprella tenuis 
Nemertean sp. 
Odostomia spp. 
Stylochus ellipticus 

Species Cluster N 
Anadara ova/is 
Callinectes sapidus 
Hydroides dianthus 
Anomia simplex 
Stenothoe minuta 
Lepidonotus sublevis 
Odostomia impressa 
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Figure 1: Location of created oyster reef study area near Fisherman's Island at the mouth 

of Chesapeake Bay. 
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Figure 2: Water temperature (•) and salinity (D) measurements from Fisherman's Island 

constructed reef area from May 1997 to July 1998. 
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Figure 3: Mean dry weight (g 0.06 m-2 basket) ofmacroalgae collected from the 

intertidal region of each constructed reef type (pelletized coal ash, clam shell, 

and oyster shell) during Summer (June, July, and August 1997), Fall 

(September, October, and November 1997), Winter (December 1997, January 

and February 1998), and Spring (March, April, and May 1998). No algae was 

recovered from any of the clam shell samples collected during the summer, as 

indicated by the "0" in place of the bar on the figure. 
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Figure 4 a, b: Mean macrobenthic community abundance (number per 0.06 m-2 substrate 

basket± SE) and biomass (mg AFDW) for the intertidal region of the three 

reeftypes from June 1997 to May 1998 (n = 3). 
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Figure 5 a, b: Mean macrobenthic abundance (number per 0.06 m-2 substrate basket± 

SE) and biomass (mg AFDW) for motile species only from the intertidal 

region of the three reeftypes from June 1997 to May 1998 (n = 3). 
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Figure 6 a, b: Mean macrobenthic abundance (number per 0.06 m-2 substrate basket± SE) 

and biomass (mg AFDW) for sessile and sedentary species only from the 

intertidal region of the three reef types from June 1997 to May 1998 (n = 

3). 
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Figure 7: Abundance (mean per 0.06 m-2 basket± SE) of the numerical and biomass 

dominants from each reef substrate type from June 1997 to May 1998 (n = 3). 

When ANOV A revealed significant differences (log10 (Abundance + 1 ), P < 

0.05), results ofTukey multiple comparisons for reef type (A- coal ash, C­

clam shell, 0- oyster shell) and season (Sp- Spring, Su- Summer, F- Fall, 

W- Winter) are illustrated for each species. Underlined factor levels and 

those with underlines that overlap are not statistically different. 
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Figure 8: Biomass (mean mg AFDW per 0.06 m-2 basket± SE) of the numerical and 

biomass dominants from each reef substrate type from June 1997 to May 

1998 (n = 3). When ANOV A revealed significant differences (log 10 

(Biomass + 1 ), P < 0.05), results of Tukey multiple comparisons for reef type 

(A- coal ash, C- clam shell, 0- oyster shell) and season (Sp- Spring, Su­

Summer, F- Fall, W- Winter) are illustrated for each species. Underlined 

factor levels and those with underlines that overlap are not statistically 

different. 
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Figure 9: Size frequency distribution of all panopeid crabs (Panopeus herbstii: n = 540, 

mean carapace width= 6.8 mm; Eurypanopeus depressus n =52, mean 

carapace width = 6.6 mm; and Dyspanopeus sayi n = 4, mean carapace width 

= 8.2 mm) collected from the three reef types at Fisherman's Island, June 1997 

-May 1998. 
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Figure 10: Distribution of macrofauna! feeding types across season and reeftype. Bars 

represent the percentage of individuals within each feeding type category. 
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Figure 11: Distribution of macro faunal feeding types across season and reef type. Bars 

represent the percentage of total biomass within each feeding type category. 
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Figure 12: Size frequency distribution of all Mytilus edulis collected from each reef type 

at Fisherman's Island, June 1997- May 1998. 
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Figure 13: Size frequency distribution of all oysters ( Crassostrea virginica) collected 

from each reef type at Fisherman's Island, June 1997- May 1998. 
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Figure 14: Distribution ofmacrofaunal dispersal types across reef type. Bars represent 

(A) the percent of taxa (the number to the right of the bar is the total number 

oftaxa ofthe category collected), (B) total abundance of individuals, and (C) 

total biomass for each dispersal type category. 
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Figure 15: A: Species richness (number of species, S), B: Shannon's diversity (H'), C: 

Simpson's Index (1-A_), and D: Pielou's evenness (J') for each reef type. 
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Figure 16: Distribution ofmacrofaunal feeding types across season and reeftype. Bars 

represent the percentage of taxa within each feeding type category and the 

number to the right of the bar is the total number of taxa of the category 

collected. 
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Figure 17: Species-effort curves. (A) Observed species accumulation(± SD) vs. 

cumulative number of 0.06 m-2 substrate basket samples from each reef 

substrate type at Fisherman Island. (B) Observed species accumulation(± 

SD) vs. cumulative number of individuals. 
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Figure 18: Mean total community secondary production estimates(+ SE) for each season. 

Shading of each bar and number in parentheses to the right of the bar are 

representative ofthe relative percentage of production from each reeftype to 

the mean total for the season. 
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Figure 19: Proportion of monthly total community secondary production estimates 

attributed to numerical and biomass dominants from Coal Ash Pellet, Clam 

Shell, and Oyster Shell Reefs between June 1997 and May 1998. Legend 

abbreviations for dominant species are for decapods Panopeus herbstii 

(Pan_ her) and Palaeomonetes vulgaris (Pal_ vul), gammaridean amphipods 

Melita nitida (Mel_ nit) and Gammurus mucronatus (Gam_muc), bivalves 

Crassostrea virginica (Cra_ vir) and Mytilus edulis (Myt _ edu), and polychaete 

Nereis succinea (Ner_suc). "Other" represents the remaining grouped taxa of 

the community not listed above. 
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Figure 20: Mean total community production (+SE) for each season on (A) Coal Ash 

Pellet, (B) Clam Shell, and (C) Oyster Shell reefs. Shading in each bar 

represents the proportion of production contributed by each of the numerical 

and biomass dominant species listed in Table 9. Legend abbreviations for 

dominant species are for decapods Panopeus herbstii (Pan_her) and 

Palaeomonetes vulgaris (Pal_ vul), gammaridean amphipods Melita nitida 

(Mel_nit) and Gammurus mucronatus (Gam_muc), bivalves Crassostrea 

virginica (Cra_vir) and Mytilus edulis (Myt_edu), and polychaete Nereis 

succinea (Ner_suc). "Other" represents the remaining grouped taxa of the 

community not listed above. Note differences in scale on each vertical axis. 
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Figure 21: Mean total community production estimates (+SE) for each season on (A) 

Coal Ash Pellet, (B) Clam Shell, and (C) Oyster Shell reefs. Shading in each 

bar represents the proportion of production contributed by each feeding typre 

each season. Note differences in scale on each vertical axis. 
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Figure 22: Proportion of monthly total community secondary production estimates 

attributed to each macroinvertebrate feeding type on Coal Ash Pellet, Clam Shell, and 

Oyster Shell Reefs between June 1997 and May 1998. 
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Figure 23: Hierarchies resulting from clustering of using Bray-Curtis similarity values for 

all collections of macrofauna made monthly from each reef substrate type at 

Fisherman Island. 
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Figure 24: Hierarchies resulting from clustering of using Bray-Curtis similarity values 

for all macrofauna! species collected monthly from each reef substrate type at 

Fisherman Island. 
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Figure 25: Nodal constancy in a two-way table of species groups and sample groups 

from an analysis of abundance patterns of macrobenthos from intertidal 

oyster reefs of different substrate types. 
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Figure 26: Nodal fidelity in the same two-way table as in Figure 25. 
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Figure 27: Examples of profiles of reef substrate material imbedded in Portland cement 

and cross-sectioned to show differences in substrate surface area available for 

epifaunal colonization and volume of interstitial spaces between substrate 

pieces (Nestlerode, unpublished data). Light features represent cross-sections 

of individual substrate elements and black is the void interstitial spaces 

between these elements (reef material profiling adapted from mussel bed cast 

procedure described in Commito and Rusignuolo 2000). (A) Oyster shell, (B) 

Clam shell, (C) Coal ash pellet. Scale bar in top right of each panel is 5 em. 
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Figure 28: Distribution of macrofauna by body size across each reef type. Bars represent 

the percentage of individuals (top panel) and biomass (bottom panel) retained 

on each nested sieve of varying mesh size (as per Edgar 1990). 
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CHAPTER4 

NEKTON USE OF CREATED INTERTIDAL OYSTER REEF HABITATS OF 

CHESAPEAKE BAY 
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195 

ABSTRACT 

Efforts to restore the Eastern oyster, Crassostrea virginicc1, reef habitats have resulted in 

the placement of constructed oyster reef bases in several locations within Chesapeake 

Bay. A shortage of oyster shell for creating these large-scale reefs has led to widespread 

use of other materials. Reefs constructed of oyster shell, clam shell and pelletized coal 

ash were built in 1996 at Fisherman's Island, Virginia. This study examined differences 

in the abundance, diversity, and community structure of nekton species collected using a 

remotely deployed enclosure trap between these reef substrate types, as well as an 

adjacent bare-sand beach that served as a proxy pre-reef-construction control to assess the 

importance of these oyster reefs as fish habitat. Using multivariate non-metric statistics, 

the data show distinct differences in nekton community structure across habitat types. 

Species richness was greatest on the oyster shell and coal ash pellet habitats. It was 

found that there were significant differences in the presence and abundance of nekton 

species between oyster shell and clam shell reefs and that clam shell reefs were similar in 

species composition and abundance to the bare-sand beach habitat. These reef habitat 

have refuge value, as demonstrated by the transient nekton species that numerically 

dominated all of these habitats. Additionally, the oyster shell and coal ash pellet reef 

served as habitat to many ecologically, commercially, and recreationally important 

species that use the reef habitat for food and shelter during juvenile life stages, suggesting 

the reef habitats may be of great importance as habitat to finfish communities. 
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196 

INTRODUCTION 

Oyster reef habitats support characteristically high animal diversities and 

abundances and increased recognition of the interconnection of oyster reef habitats and 

fish assemblages has further incited efforts to restore oyster reefs as functional estuarine 

habitats to Chesapeake Bay. Oyster reefs serve as feeding and nursery grounds to several 

decapod and finfish species (Eggleston 1990, Breitburg 1999, Harding and Mann 1999) 

and restoration efforts have the potential to influence populations of many estuarine 

fishes (Breitburg 1999) and other investigators have highlighted the prominence of 

transient predatory species on and around oyster reefs along the east coast of the United 

States (Powell 1994, Wenner and Coen 1996, Breitburg 1999, Harding and Mann 1999). 

It has been hypothesized that the three-dimensional structure of oyster reefs 

functions similar to aquatic vegetated habitats in providing refuge and foraging habitat 

for many estuarine species (Posey 1999). Unlike seagrass beds, which are primarily 

subtidal, nekton use in marshes and intertidal oyster reefs is intermittent and tidally­

dependent because most nekton can only gain access when these habitats are submerged. 

If these nekton are also foraging predators, these habitats provide a wealth of benthic 

biomass and food webs are primarily characterized by omnivorous feeding (see Chapter 3 

of this dissertation). Posey et al. 's study (1999) demonstrates preferential use of oyster 

habitats by several fish and decapod species compared with adjacent sandflats. These 
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transient species appeared to use the reef during higher tidal stages and move to subtidal 

areas at low tide. Small transient fish and crustaceans, which are known to be important 

food items for many larger fish predators (Murdy et al. 1997), may also feed at the reef 

while they are using it as a refuge from predation. If so, then they are potentially 

important as trophically intermediate "vector" species that mediate energy flow through 

the reef and surrounding shallow water system (Posey et al. 1999). Similar food webs 

have been documented in salt marsh ecosystems (Cicchetti 1998a) and many of these 

species are believed to be important vectors of energy from the marsh to adjacent shallow 

water habitats. 

Larger estuarine fish species are difficult to sample quantitatively because they 

are often less abundant, more motile, and more sparsely distributed than smaller sized 

species (Kjelson 1977). Oyster reef habitats are exceedingly difficult areas in which to 

quantitatively assess fish and macro invertebrate populations because the nature of the 

reef structure hampers techniques normally employed for sampling aquatic organisms. 

Quantitative estimates oflarger estuarine fish species associated with oyster reef habitats 

is fundamental to understanding ecological interconnections between these species and 

oyster reefs as fish habitat. In this study, a remotely deployed enclosure trap was used 

(see Chapter 2 of this dissertation for a full description) to quantitatively sample nekton 

associated with intertidal reef habitats. 

Oyster reef restoration activities in the Virginia portion of Chesapeake Bay 

typically involve the placement of hard substrata on the seabed to form three-dimensional 

mounds to serve as a base for oyster recruitment and growth. A shortage of oyster shell 

for creating large-scale reefs has led to widespread use of other materials, such as surf 
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clam (Spisula solidissima) shell, as a substitute for oyster shell. The goal of this study 

was to compare nekton use and community composition of intertidal constructed oyster 

reef habitats of different substrate construction materials while using a nearby bare-sand 

beach habitat as a proxy pre-reef-construction control to assess the importance of these 

oyster reefs as fish habitat. 
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METHODS 

Study site 

This study was conducted at Fisherman's Island near the north side of the mouth 

of Chesapeake Bay, previously described in detail by O'Beirn et al (2000) (Figure 1). 

Briefly, this polyhaline environment has a tidal amplitude of approximately 1.25 m and is 

surrounded by marsh islands and intertidal and subtidal mud/sand flats. In July 1996, 11 

reef bases were constructed using three different substrates: oyster shell, surf clam shell, 

and pelletized coal ash. These reefs range in size from 80 to 900 m2 and extend from the 

shallow subtidal into the intertidal zone. A natural channel separates the two rows of 

reefs, reaching a maximum depth of approximately 2 m at ML W. 

Sampling for transient fishes and mobile macroinvertebrates 

Nekton was collected from constructed oyster shell, clam shell, and coal ash pellet 

reefs and a nearby bare-sand beach habitat at Fisherman's Island (Figure 1). Sampling 

was conducted monthly from April to October 1999 over three consecutive days at neap 

tide preceding a full moon using the encircling seine gear depicted in Figure 4, Chapter 2. 

A full description of the encircling seine gear, techniques, and sampling design is 

provided in Chapter 2 of this dissertation. All samples were collected during the ebb tide 

stage and sampling was initiated only after the crest of the reef became exposed by the 

falling tide. Samples were collected by surrounding one side of an intertidal reef habitat 
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(or a section of bare-sand beach habitat) with the enclosure seine while using the 

emergent portion of the reef or beach as a barrier to fish escapement. All collected 

animals were identified, counted, and measured to the nearest mm for total length 

(carapace width for crabs, carapace length for shrimp). Length of reef (or beach habitat, 

in m) enclosed by the seine, temperature (°C) and salinity (psu) were recorded with each 

sample. Poor weather or gear failure occasionally prevented full replication on three 

consecutive days per monthly sampling period; therefore, the data presented here are only 

from the first two replicates from each reef habitat each sampling period. Sampling of 

the beach habitat was added in July 1999 as a proxy pre-reef-construction control and 

continued on through the end ofthe study. The effects of Hurricane Floyd prohibited 

sampling in September 1999. 

Data analysis 

Nekton species abundance values in each enclosure trap sample were converted to 

density per linear meter of reef edge (or bare-sand beach habitat) to account for 

differences in length of habitat sampled by each replicate sample. This measure is 

appropriate because results of a separate video study showed most fishes (>94%) use the 

reef edge compared to the off-reef subtidal habitat also included by the enclosure trap 

gear (Nestlerode, unpublished). 

Two-way analysis ofvariance (ANOVA) was used to investigate habitat and 

temporal differences in nekton density using habitat type and season as independent 

factors. Data were tested using the Shapiro-Wilk test of normality (Zar 1999) and 

Bartlett's test ofhomogeneity ofvariance (Underwood 1997) and transformed by log 
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(X+ 1) to improve normality and homoscedasticity. Tukey Honestly Significant 

Difference tests (hereafter, Tukey test) were used for post-hoc comparisons when 

ANOV A detected significant differences (Zar 1999). Because of the unbalanced sample 

design with the bare-sand beach habitat samples restricted to the latter half of the study, 

separate analyses were conducted to compare differences in nekton density for April -

October 1999 samples from oyster shell, clam shell, and coal ash pellet reefs and for July 

- October 1999 samples from oyster shell, clam shell, and coal ash pellet reefs and the 

bare-sand beach habitat. 

The PRIMER software package (V 5.2.9, Plymouth Routines in Multivariate 

Ecological Research, Plymouth Marine Laboratories, UK; Clarke and Gorley 2001; 

Clarke and Warwick 2001) was used to test differences in nekton communities between 

habitat types. Square-root transformed nekton densities from each habitat and sampling 

month were used to create a triangular similarity matrix based on the Bray-Curtis 

similarity coefficient (Bray and Curtis 1957). The Bray-Curtis coefficient was also 

computed for presence-absence data using a matrix of 1 's (presence) and O's (absence) 

(Clarke and Warwick 2001). This approach was employed because simplification of 

density data to presence/absence down-weighs the effects of common species such that 

rare species contribute the same as common species and reduces possible gear bias (such 

as possible unequal collection of each species based on behavior, gear avoidance, etc.) on 

community composition represented in the samples. While this analysis does not account 

for relative abundances of species within samples, it provides a general categorization of 

community composition. 
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Samples were classified by hierarchical agglomerative cluster analysis using 

group-average linking method and ordinated using non-metric, multidimensional scaling 

(MDS) techniques. On the two-dimensional plots generated from the MDS analysis, 

points that appear closer together represent samples that are highly similar in species 

composition and have high rank similarities. Points that are farther apart correspond to 

very different communities with lower rank similarities. "Stress" is a measure that 

indicates how faithfully the high-dimensional relationships among the samples are 

represented in the two-dimensional orientation plot. Stress values of <0.1 correspond to 

good ordination with little chance of a misleading interpretation of the MDS analysis; 

Stress <0.2 gives a potentially useful two-dimensional representation of the data but 

conclusions should be further evaluated by superimposing cluster groups on the MDS 

ordination to verify grouping of samples. Stress >0.3 indicates points are close to being 

placed arbitrarily on the two-dimensional orientation plot and positions should be treated 

with skepticism (Clarke and Warwick 2001). 

Nekton assemblages were compared with a two-way analysis of similarities 

(ANOSIM) with reef type and month as the main effects. ANOSIM is roughly analogous 

to ANOV A and tests a priori defined groups against random groups in ordinate space 

(Clarke and Warwick 2001). ANOSIM generates RANosrM statistic values, which are a 

relative measure of separation of the a priori defined groups. The test statistic was 

computed over 5000 permutations. Although RANOSIM can vary between 1 and -1, values 

usually fall between 0 and 1. Values less than one indicate the generally unusual 

situation of lower levels of similarity within treatments or groups than between them 

(Clarke and Warwick 2001). A RANOSIM value of zero (0) indicates that the null 
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hypothesis is true and that there are no differences between the assessed factors, while a 

RANOSIM value of one (1) indicates that all replicates within a treatment/group are more 

similar to each other than to any others from different treatments/groups. A RANOSIM 

value of -1 indicates that all replicates within a treatment/ group are more similar to those 

from different treatments/groups (Clarke and Gorley 2001 ). As a general rule, RANOSIM 

values can be categorized into 3 broad categories (Clarke and Gorley 2001): 

1. RANoSIM > 0.75 indicates that there are large differences and the 
treatments/groups are well separated 

ii. RANOSIM > 0.5 indicates clear differences, but the treatments/groups are 
overlapping 

iii. RANOSIM < 0.25 indicates little/no difference and the treatments/groups are 
barely separable. 

Significant ANOSIM results were followed with the similarity percentages 

(SIMPER) routine to identify the species responsible for contrasts in the community 

analysis. The SIMPER analysis results were calculated from the data matrix with a 

square-root transformation and were limited to species contributing to the top 50% of 

similarity between habitat types. 

Various univariate indices, the observed species richness (S), Shannon diversity 

index (H', using log2), and Pielou's evenness (.F) index, were calculated from 

untransformed data for each sample collected each month from each habitat type using 

PRIMER (Clarke and Warwick 2001). 
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RESULTS 

Environmental conditions 

Salinity measurements at the study area fluctuated within the polyhaline range 

and varied between 25 psu (20-22 October 1999) and 31 psu (26-28 April 1999). Water 

temperature measurements during the study period were lowest in April ( 14 °C) and 

October (16 °C) and reached a seasonal maximum of 34 oc recorded 26-28 July 1997 

(Figure 2). 

General community patterns 

A total of20540 individuals representing 40 species (Figure 3) were collected 

during this study. The most abundant species were the grass shrimp, Palaemonetes 

vulgaris (contributing to 40% ofthe total overall abundance across all habitats), followed 

by the rough silverside, Membras martinica (38%), killifish Fundulus heteroclitus (12%), 

F. majalis (5%), and Lucania parva (2%), and the blue crab, Callinectes sapidus (1.6%) 

(Table 1; Appendix II). P. vulgaris and M martinica made up 98% of all individuals 

collected from the oyster shell reef, 90% from the clam shell reef, 53% from the coal ash 

pellet reef, and 40% from the bare-sand beach habitat. 

Many of the remaining species were unique to specific habitat types and occurred 

in only one or two samples from a particular habitat. Eight species were unique to the 

oyster shell habitat, four were unique to the ash pellet reef, and two were unique to the 
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clam shell reef. All species collected at the bear-sand beach were also collected on at 

least one of the other reef habitat types. It is noteworthy that two of the unique species, 

Opsaus tau from the oyster shell and Chaetodon ocellatus from the coal ash pellet, were 

also found on the coal ash pellet and oyster shell reef, respectively, but these individuals 

are not included in abundance and diversity calculations here because they occurred in a 

third replicate enclosure trap sample that was not included in this analysis 

Nekton species were assigned to habitat use categories based on biological data in 

Murdy et al. (1997), Baltz et al. (1993), Breitburg (1999), and personal observations. 

Species were classified into one of four categories (Tables 1 and 2): resident oyster reef 

species; facultative reef residents; demersal transients; and nektonic transients. Reef 

residents are those species that spend the majority of their life history associated with the 

reef structure and are dependent on the reef for feeding, shelter, and reproduction. These 

species, such as gobies, blennies, and oyster toadfish, feed primarily on benthic 

invertebrates and find shelter and nest sites among shells of live and dead oysters. 

Facultative reef residents are those species that use the reef habitat for food and shelter 

during juvenile life stages. This group includes tautog, sheepshead, pigfish, and pinfish. 

They feed on small crustaceans, worms, and mollusks and seek shelter among the oyster 

shells until they outgrow the complex matrix of spaces between the oyster shells on the 

surface ofthe reef. As adults, these species may continue to intermittently visit the reef 

habitat in search of food and are found associated with a variety of other habitats. It is 

likely that some facultative reef residents may also be considered transient, depending on 

their life stage. Transient species, those species that may be abundant on oyster reefs but 

are also found in a wide range of estuarine habitats, are divided into two categories based 
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on their behavior and favored position in the water column: demersal transients and 

nektonic transients. Demersal transients, such as silver perch, spot, killifish, blue crab 

Callinectes sapidus, and grass shrimp, are highly mobile and feed from the benthos. 

Nektonic transients, such as silversides, mullet, and anchovies, are primarily associated 

with the water column. This group includes highly aggregated planktivorous species that 

are active swimmers and prefer surface waters. 

Of the thirteen species collected from the beach habitat, all were "transients" in 

terms of oyster reef habitat use. Eleven of these species were demersal tranisients and 

two were nektonic transients (Table 2). The ash pellet reef had the greatest overall 

number of species collected over the study period, however, the oyster shell habitat had 

the greatest number of reef resident and facultative resident species compared with the 

other habitat types (Table 2). The clam shell reef had the lowest overall observed species 

richness with fewer numbers of species within each category compared to the other two 

reef types (Table 2; Figure 4A). Shannon diversity and Pielou's evenness were lowest 

for all habitats sampled in April 1999, but no other temporal or habitat patterns in 

Shannon diversity were observed (Figure 4B, 4C). Evenness values tended to be lowest 

on the oyster shell reef habitat each month compared to the other two reef types 

indicating these samples had many rare species and were dominated by a few taxa 

(Figure 4C). 

Total nekton abundance varied significantly by reef type and month between 

April and October 1999 (Table 3). There was a significant effect of reef type on total 

nekton abundance (Table 3). Total abundance across all samples ranged between 0.4 and 

216 individuals per m-1 of reef edge and was significantly greater on the oyster shell (2-
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216 individuals per m-1
) reef than on the clam shell reef(2- 2S individuals per m- 1

) 

(Table 3, Appendix II). The coal ash pellet reef was not significantly different from 

either the clam shell or oyster shell reefs (Table 3, Figure SA). The larger abundance on 

the oyster shell reef was primarily attributed to above average high densities of 

Palaemonetes vulgaris and Membras martinica (Figure SA, SC). Temporal differences 

in nekton abundance also significantly influenced the patterns observed. Overall nekton 

abundance was greatest in June collections compared to that observed in May (Table 3, 

Figure SA). 

Total nekton abundance also varied significantly by habitat type and month 

between July and October 1999 (Table 3). There was a significant effect of habitat type 

on total nekton abundance (Table 3). Total abundance across all samples ranged between 

1.4 and 103 individuals per m-1 of reef edge and was again significantly greater on the 

oyster shell (16- 103 individuals per m-1
) reef than on the clam shell reef (1.4- 23 

individuals per m- 1
) (Table 3, FigureS). Nekton abundance on the bare-sand beach 

habitat did not differ significantly from any of the other habitats and coal ash pellet reef 

nekton was not significantly different from that of the oyster shell reef (Table 3, Figure S) 

and. Again, the larger abundance on the oyster shell reef was primarily attributed to 

above average high densities of Palaemonetes vulgaris and Membras martinica. 

Temporal differences in nekton abundance also significantly influenced the patterns 

observed with overall nekton abundance was greatest in July and August collections 

compared to that observed in October (Table 3, Figure SC). There was also a significant 

interaction between month and habitat (Table 3; Figure 6) and this interaction is 

accounted for by differences in temporal patterns on different habitat types. Nekton 
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abundance on the coal ash pellet and bare-sand each habitats decreased over time, where 

nekton abundance on the clam shell and oyster shell reefs reached a maximum during the 

August sampling period. High nekton abundances during the July sampling period 

(Figure SC) on the coal ash pellet and beach habitats were driven by high killifish 

(Fundulus heteroclitus, F. majalis, and Lucania parva) abundances (mean total killifish 

abundance on the coal ash pellet reef and bare-sand beach habitat were 86 and 31 

individuals m-1
, respectively). Killifish abundances did not exceed 2 individuals m- 1 on 

the oyster shell or clam shell reefs during this sampling period (Figure 6; Appendix II). 

In examining the constructed oyster reef habitats between April and October 

1999, nekton assemblages were again found to be significantly different between clam 

shell and oyster shell reefs (ANOSIM test with RANoSIM = 0.542,p = 0.01). Nekton 

species richness and total overall abundance differed between these habitat types (Tables 

1 and 2). The MDS ordination (Figure 7) shows a general separation of clam shell reef 

on the right and oyster reef samples on the left. Using SIMPER, the species most 

responsible for the different assemblages on these two habitat types were M martinica 

(32%) and P. vulgaris (31 %). 

Evaluation of nekton communities across the four habitat types (oyster shell, clam 

shell, and coal ash pellet reefs and the bare-sand beach habitat) between July and October 

1999 using ANOSIM revealed slightly different patterns than described by ANOV A 

(Table 3). Pairwise tests revealed significant differences between coal ash and beach 

habitats (ANOSIM test with RANOSIM = 1.00, p = 0.03), clam shell and oyster shell 

habitats (ANOSIM test with RANoSIM = 0.67,p = 0.03), and oyster shell and beach 

habitats (ANOSIM test with RANOSIM = 0.83, p = 0.03). Additionally, pairwise tests 
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between sampling periods revealed a significant difference between July and August 

samples (ANOSIM test with RANOSIM = 0.81,p = 0.01). Nekton species richness differed 

between these habitat types with the oyster shell and coal ash reefs having greater values 

than those of the other two habitats (Table 2). Total overall abundance followed similar 

relative patterns to species richness with oyster and coal ash reefs having highest 

abundances compared to the clam shell reef and bare-sand beach habitat (Table 1 ). The 

MDS ordination (Figure 9) shows a general separation of clam shell reef and beach 

habitats from coal ash and oyster shell reefs. Using SIMPER, the species most 

responsible for the different assemblages on the coal ash and beach habitats were M 

martinica (21 %), F. heteroclitus (20%), F. majalis (14%), and P. vulgaris (14%). The 

species most responsible for the differences in assemblages on the clam and oyster shell 

reefs were M martinica (30%) and P. vulgaris (27%). The species most responsible for 

the assemblage differences on the oyster shell and beach habitats were the same as those 

driving dissimilarities in the coal ash and beach comparison: P. vulgaris (24%), M 

martinica (20%), F. majalis (12%), and F. heteroclitus (11 %). Further simplification of 

these data with a presence/absence transformation reveal an even clearer MDS ordination 

pattern of oyster shell reef samples grouped with coal ash pellet reef samples and clam 

shell and beach samples sharing higher similarity groupings (Figure 11 ). 
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DISCUSSION 

Nekton assemblages were highly variable across all habitats sampled. The 

physical characteristics of a habitat can influence fish assemblages associated with this it. 

Structurally complex reef substrate configurations (see Chapter 3, Figure 27), such as 

those of oyster shell and coal ash pellet reefs, generally supported higher densities and 

diversities of nektonic species. 

The clam shell reef habitat was comparable to the bare-sand beach in terms of 

general species composition, abundance, and diversity. Transient species dominated the 

nekton communities of these habitats and were responsible for separating these 

assemblages from those of the other to reef substrate types. The beach habitat 

community, which was entirely comprised of transient species, was numerically 

dominated by the rough silverside, Membras martinica, and killifish Fundulus 

heteroclitus and F. majalis. The clam shell reef, with low surface roughness from the 

compaction of fractured shell fragments over time (see Chapter 3 of this dissertation), 

was also numerically dominated by the rough silverside, Membras martinica, and grass 

shrimp, Palaemonetes vulgaris. 

Facultative resident species, such as pigfish, pinfish, sheephead, and tautog, were 

present as juveniles on the oyster shell habitat (Appendix II). Though also present in on 

the ash pellet reef, these species were more frequently encountered in samples collected 

form the oyster shell habitat. The living veneer of oysters that formed on the oyster shell 
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habitat by the time of this investigation and higher benthic secondary productivity (see 

chapter 3, of this dissertation) may have had some influence on the development ofthese 

abundant and diverse nekton assemblages associated with this habitat. 

This study demonstrates the profound use by nekton of constructed oyster reef 

habitats. High densities of nekton on structurally complex habitat types suggest these 

habitats should be designed to provide adequate refuge, not only for the oysters they are 

intended to support, but for also the multitude of reef macroinvetiebrates and nekton that 

utilize the reef matrix as for foraging on the high benthic secondary productivity and as 

shelter from transient predatory species. 
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Table 1: Summary of the nekton catches from each habitat at Fisherman's Island during this study. Data presented are 
raw numbers per enclosure net sample and are not adjusted to take into account different lengths of habitat sampled by 
the gear with each replicate. Values for the Ash, Clam Shell, and Oyster Shell habitats are totaled across 2 replicates 
collected monthly over 6 months. Values for the bare-sand beach habitat are totaled across two replicates collected 
monthly over 3 months. Habitat use categories are denoted in parentheses after each species name adapted from 
Breitburg (1999) and Baltz (1993): R = resident oyster reef species, F =facultative oyster reef species, DT =demersal 
transient species; NT = nektonic transient species. See text for further descriptions. 

Species Name Common Name 
Habitat 

ASH CLAM OYSTER BEACH Total 
overall species 

Use rank 

Anchoa hepsetus striped anchovy NT 0 0 42 0 42 10 
Archosargus probatocephalus sheepshead F 2 0 10 0 12 17 
Bairdie/Ja chrysoura silver perch DT 1 0 22 0 23 15 
Callinectes sapidus blue crab DT 67 43 14 20 144 6 
Centropristis striata black sea bass F 4 1 3 0 8 20 
Chasmodes bosquianus striped blenny R 6 0 2 0 8 20 
Chaetodon oce/Jatus spotfin butterflyfish F 2 0 0 0 2 24 
Cyprinodon variegatus sheepshead minnow DT 8 0 0 4 12 17 
Epinephelus sp. grouper F 1 0 0 0 1 25 
Eucinostomus argenteus spotfin mojarra DT 2 0 1 0 3 23 
Eucinostomus gula silver jenny DT 2 1 2 6 11 18 
Fundulus heteroclitus mummichog DT 1884 22 30 603 2539 3 
Fundulus majalis striped killifish DT 607 3 0 357 967 4 
Gobiosoma bose naked goby R 16 5 18 0 39 11 
Gobiosoma ginsburgi seaboard goby R 10 9 6 0 25 14 
Hypsoblennius hentz feather blenny R 4 0 19 0 23 15 
Lagodon rhomboides pinfish F 3 4 36 0 43 9 
Leiostomus xanthurus spot DT 13 6 15 5 39 11 
Lucania parva rainwater killifish DT 300 26 7 334 5 
Luljanus griseus gray snapper F 0 0 4 0 4 22 
Membras martinica rough silverside NT 1638 895 5011 656 8200 1 
Marone saxatilis striped bass NT 10 0 0 0 10 19 
Mugilcurema white mullet NT 9 8 0 2 19 16 
Mycteroperca microlepis gag F 0 0 1 0 1 25 
Opsanus tau oyster toadfish R 0 0 7 0 7 21 
Orthopristus chrysoptera pigfish F 1 0 31 0 32 12 
Palaemonetes vulgaris grass shrimp DT 1724 490 5607 7 7828 2 
Paralichthys dentatus summer flounder DT 6 33 5 1 45 8 
Penaeus aztecus brown shrimp DT 21 5 1 2 29 13 
Pepri/us triacanthus butterfish DT 1 0 0 0 1 25 
Prionotus carolinus northern searobin DT 0 1 0 0 1 25 
Scorpaena plumeiri scorpionfish DT 0 1 0 0 1 25 
Sphyreana borealis northern sennet NT 0 0 4 0 4 22 
Sphoeroides maculatus northern puffer DT 0 0 1 0 1 25 
Strongylura marina Atlantic needlefrsh NT 3 0 0 0 3 23 
Syngnathus floridae dusky pipefish F 0 0 1 0 1 25 
Syngnathus fuscus northern pipefish F 25 14 26 0 65 7 
Symphurus plagiusa blackcheek tonguefish DT 2 0 0 2 4 22 
Synodus foetens inshore lizardfish DT 0 0 1 0 1 25 
Tautog onitis tautog F 1 1 6 0 8 20 

Grand Total 6373 1543 10952 1672 20540 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table 2: Number of species within each habitat use category (adapted 
from Breitburg (1999) and Baltz (1993)) collected from each habitat type at 
Fisherman's Island between April and October 1999. 

Habitat Use ASH CLAM OYSTER BEACH 

Resident 4 2 5 0 

Facultative Resident 8 4 9 0 

Demersal Transient 14 11 12 11 

Nektonic Transient 4 2 3 2 

Totals 30 19 29 13 
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Table 3: Results of ANOV A tests and Tukey multiple comparisons tests for differences 

in total nekton abundance (log10 (Abundance+ 1)) among reef type (A- coal ash, C-

clam shell, 0- oyster shell) for all months sampled in 1999 (Ap- April, M- May, Jn-

June, Jy- July, Ag- August, 0- October) and among habitat type (A - . coal ash, C-

clam shell, 0- oyster shell, B- bare-sand beach) for July through October 1999. P 

values < 0.05 are in bold. Reef types with underlines that overlap are not statistically 

different at P < 0.05. 

Source (DF) ss MS F p Tukey 

Reefs only 
Month (5) 3.11 0.62 2.72 0.05 

M 0 J~ A~ A~ Jn 

Reef (2) 3.34 1.67 7.29 0.005 c A 0 

Month*Reef (1 0) 2.53 0.25 1.11 0.41 

Reefs and Beach 

Month (2) 0.66 0.33 4.74 0.03 0 Jy Ag 
Habitat (3) 2.28 0.76 10.87 0.001 

c B A 0 

Month*Habitat (6) 1.49 258.6 3.54 0.03 

214 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 1: Schematic of Fisherman's Island study area showing orientation ofthe 

constructed oyster reef habitats. Stars indicate the location of enclosure trap 

sampling stations adjacent to reefs and a bare-sand beach habitat. 
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Figure 2: Mean water temperature and salinity (+SE) recorded at the Fisherman's Island 

study area over each monthly three-consecutive day sampling period from April 

to October 1999. 
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Figure 3: Fish species caught during 1999 using enclosure trap gear at the Fisherman's 

Island reef area. Shaded lines span the time interval during which a species 

was collected. Shading within these lines corresponds with the habitat type. 
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FIGURE 3 CONTINUED 
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Figure 4: Univariate community indices calculated from species density measurements 

from each sample using Primer. Asterisks(*) indicate no data were collected 

April through June from the beach habitat. No data were collected from any 

habitat in September 1999 due to Hurricane Floyd. 

A) Observed species richness, S 

B) Shannon diversity index (H') using log2 

C) Pielou's evenness (J') 
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Figure 5: Mean total abundance ( +SE) of nekton per linear meter of reef edge (or bare­

sand beach habitat) for each sampling period calculated from two replicate 

sampled collected over two consecutive days. Asterisks(*) indicate no data 

were collected April through June from the beach habitat. No data were 

collected from any habitat in September 1999 due to concurrence of Hurricane 

Floyd with the planned sampling period. 

A) Mean total abundance of all species across each habitat type and sampling period. 

B) Mean total abundance omitting the numerical dominant Membras martinica to 

elucidate patterns of intermediate abundant species. 

C) Mean total abundance omitting Membras martinica and Palaemonetes vulgaris to 

further elucidate patterns of intermediate abundant species. 
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Figure 6: Mean nekton abundance per linear meter of habitat sampled with the enclosure 

trap gear (with SE) for July, August, and October 1999. The coal ash pellet 

reef and bare-sand beach habitat exhibited slopes for temporal abundance 

patterns different than those of the clam shell and oyster shell reefs, 

explaining the significant interaction observed between habitat type and 

sampling period (ANOV A, p = 0.03). 
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Figure 7: Multi-dimensional scaling (MDS) ordination of the 36 enclosure trap samples 

collected from oyster shell, clam shell, and coal ash pellet reefs at Fisherman's 

Island between April and October 1999. MDS ordination is based on square­

root transformed abundances on Bray-Curtis similarities (stress= 0.19) with 

superimposed clusters from Figure 8 at similarity levels of 30% (solid ovals) 

and 45% (dashed ovals). The small number next to each symbol corresponds 

with the sample label designated in the dendrogram in Figure 8. Larger grey 

shaded numbers within the ovals correspond to the assigned groups separated 

at the 45% threshold in Figure 8. 
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Figure 8: Dendrogram of the 36 enclosure trap samples collected from oyster shell, clam 

shell, and coal ash pellet reefs at Fisherman's Island between April and 

October 1999. Dendrogram is based on group-average clustering from Bray­

Curtis similarities on square-root transformed abundances. The number (1-

36) preceding the sample label along the horizontal axis corresponds with the 

MDS ordination plot in Figure 7. The four groups of samples separated at a 

40% threshold (solid line) are indicated by circled numbers 1, 2, 3, and 4. 

These numbers correspond to the larger grey shaded numbers within the ovals 

in Figure 7. 
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Figure 9: Multi-dimensional scaling (MDS) ordination of the 24 enclosure trap samples 

collected from oyster shell, clam shell, and coal ash pellet reefs and a bare­

sand beach habitat between July and October 1999. The two-dimensional 

MDS ordination is based on square-root transformed abundances on Bray­

Curtis similarities (stress= 0.19) with superimposed clusters from Figure 10 

at similarity levels of30% (solid ovals) and 40% (dashed ovals). The small 

number next to each symbol corresponds with the sample label designated in 

the dendrogram in Figure 10. Larger grey shaded numbers within the ovals 

correspond to the assigned groups separated at the 40% threshold in Figure 

10. 
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Figure 10: Dendrogram ofthe 24 enclosure trap samples collected from oyster shell, 

clam shell, and coal ash pellet reefs and a bare-sand beach habitat between 

July and October 1999. Dendrogram is based on group-average clustering 

from Bray-Curtis similarities on square-root transformed abundances. The 

number (1-24) preceding the sample label along the horizontal axis 

corresponds with the MDS ordination plot in Figure 9. The three groups of 

samples separated at a 40% threshold (solid line) and six subgroups are 

indicated by circled numbers 1, 2a, 2b, 3a, 3b, and 3c. These numbers also 

correspond to the larger grey shaded numbers within the ovals in Figure 9. 
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Figure 11: Multi-dimensional scaling (MDS) ordination of the 24 enclosure trap samples 

collected from oyster shell, clam shell, and coal ash pellet reefs and a bare­

sand beach habitat between July and October 1999. The two-dimensional 

MDS ordination is based on presence-absence transformed abundances on 

Bray-Curtis similarities (stress= 0.19) with superimposed clusters from 

Figure 12 at similarity levels of30% (solid ovals) and 45% (dashed ovals). 

The small number next to each symbol corresponds with the sample label 

designated in the dendrogram in Figure 12. Larger grey shaded numbers 

within the ovals correspond to the assigned groups separated at the 45% 

threshold in Figure 12. 

235 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

190 

2b 

Presence-absence 
transformed 

240 

1m! 

1~ 3m! 

2a 

g1}W 
15\1 

~ 

1 

11W 1J/ 

Stress = 0.19 

,6.ASH 

mJCLAM 

\/OYSTER 

OBEACH 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 12: Dendrogram of the 24 enclosure trap samples collected from oyster shell, 

clam shell, and coal ash pellet reefs and a bare-sand beach habitat between 

July and October 1999. Dendrogram is based on group-average clustering 

from Bray-Curtis similarities on presence-absence transformed abundances. 

Jhe 35% similarity threshold (solid line) separates the samples into two 

groups. These groups are further subdivided into four groups by the 45% 

similarity threshold (dotted line). These groups, 1 a, 1 b, 2a, and 2b, 

correspond to the larger grey shaded numbers within the ovals in Figure 11. 

The number ( 1-24) preceding the sample label along the horizontal axis 

corresponds with the MDS ordination plot in Figure 11. 
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239 

Appendix 1: Life Form code for noncolonial macrofauna! species (based on Larsen 

1974). First digit represents feeding type [(1) carnivores, including carrion 

feeders; (2) omnivores, including general scavengers; (3) deposit feeders, 

including detritivores and herbivores; and (4) suspension feeders], second digit 

represents purchase type [(1) motile epifauna; (2) attached epifauna; (3) free 

infauna; and (4) tube-dwelling infauna, including those with semi-permanent 

burrows], and third digit represents dispersal type [(1) nonpelagic; (2) short 

pelagic, i.e. two or three days; (3) pelagic]. 

Taxa 

Cnidaria 

Hydrozoa 

Sertularia argentea 

Anthozoa 

Diadumene leucolena 

Haliplanella luciae 

Platyhelminthes 

Turbellaria 

Stylochus ellipticus 

Rhynchocoela 
Cerebratulus lacteus 

Tubulanus pellucidus 

Nemertean a 

Annelida 
Polychaeta 

Asychis elongata 

Capitellidae spp 

Cirriforma grandis 

Clymenella torquata 

Life Form 
Code 

423 

122 

423 

113 

131 

131 

131 

343 

343 

343 

343 

References 

Barnes 1980 

Larsen 1974, Holland eta!. 1988 

Barnes 1980 

Larsen 1974, Holland eta!. 1988 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974; Ulanowicz et al. 1998 

Gaston et al. 1998; Ulanowicz eta!. 
1998 

George 1980; Ulanowicz et a!. 1998 

Larsen 1974; Ulanowicz et al. 1998 
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Appendix 1: Life Form code for noncolonial macrofauna! species (based on Larsen 

1974 ). First digit represents feeding type [(1) carnivores, including carrion 

feeders; (2) omnivores, including general scavengers; (3) deposit feeders, 

including detritivores and herbivores; and ( 4) suspension feeders], second digit 

represents purchase type [(1) motile epifauna; (2) attached epifauna; (3) free 

infauna; and (4) tube-dwelling infauna, including those with semi-permanent 

burrows], and third digit represents dispersal type [(1) nonpelagic; (2) short 

pelagic, i.e. two or three days; (3) pelagic]. 

Taxa 

Cnidaria 
Hydrozoa 

Sertularia argentea 

Anthozoa 

Diadumene leucolena 

Haliplanella luciae 

Platyhelminthes 

Turbellaria 

Stylochus ellipticus 

Rhynchocoela 
Cerebratulus lacteus 

Tubulanus pellucidus 

Nemertean a 

Annelida 

Polychaeta 

Asychis elongata 

Capitellidae spp 

Cirriforma grandis 

Clymene/la torquata 

Life Form 
Code 

423 

122 

423 

113 

131 

131 

131 

343 

343 

343 

343 

References 

Barnes I980 

Larsen 1974, Holland et al. I 988 

Barnes I980 

Larsen I 974, Holland et al. 1988 

Larsen 1974 

Larsen I974 

Larsen I974 

Larsen 1974; Ulanowicz et al. I 998 

Gaston et al. 1998; Ulanowicz et al. 
I998 

George I 980; Ulanowicz et al. I 998 

Larsen I 974; Ulanowicz et al. I 998 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Appendix I. continued 

Taxa 

Polychaeta (continued) 

Drilonereis longa 

Drilonereis magna 

Eteone heteropoda 

Eusyllis lamelligera 

Glycera americana 

Glycera dibranchiata 

Glycinde solitaria 

Heteromastus filiformis 

Hydroides dianthus 

Laeonereis culveri 

Leitoscoloplos spp 

Lepidonotus sublevis 

Nereis succinea 

Paleanotus heteroseta 

Paraprionospio pinnata 

Pectinaria gouldii 

Piromis eruca 

Pista palmata 

Podarke obscura 

Polydora websteri 

Sahel/aria vulgaris 

Scoletoma fragilis 

Scoletoma tenuis 

Scoloplos rubra 

Streblospio benedicti 

Websterinereis tridentata 

Oligochaeta 

Tubificidae spp 

Life Form 
Code 

133 
133 
113 
113 
243 
243 
133 
343 
422 
343 
332 
113 
233 
113 
343 
343 
333 

343 

133 
323 
423 
131 
343 
332 
343 
243 

331 

240 

References 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974; Holland et al. 1988 

Larsen 1974; Ulanowicz eta!. 1998 

Larsen 1974 

Pettibone 1963; Holland et al. 1988 

Pettibone 1963 

Pettibone 1963; Holland et al. 1988 

Larsen 1974; Holland eta!. 1988 

Larsen 1974 

Larsen 1974 

Larsen 1974; Holland eta!. 1988 

Blake 2000 

Pettibone 1963; Ulanowicz et a!. 
1998 

Pettibone 1963 

Larsen 1974; Holland eta!. 1988 

Larsen 1974; Holland eta!. 1988 

Larsen 1974; Ulanowicz eta!. 1998 

Ulanowicz et al. 1998 

Pettibone 1963 

Larsen 1974; Holland eta!. 1988 

Pettibone 1963 

Gaston et al. 1998 
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Appendix I. continued 

Taxa 

Mollusca 

Pelecypoda 

Bivalve a 

Anadara ova/is 

Anadara transversa 

Anomia simplex 

Crassostrea virginica 

Ensis directus 

Gemma gemma 

Geukensia demissa 

Macoma tenta 

Macoma balthica 

Mercenaria mercenaria 

Mya arenaria 

Mytilus edulis 

Noetia ponderosa 

Periploma spp 

Petricola pholadiformis 

Spisula solidissima 

Tellina agilis 

Tellina spp 

Gastropoda 

Gastropod a 

Doridella obscura 

Anachis obesa 

Busycon canaliculatum 

Busycon carica 

Crepidula fornicata 

Crepidula convexa 

241 

Life Form 
References 

Code 

333 
423 Larsen 1974; Holland et al. 1988 

423 Larsen 1974; Holland et al. 1988 

423 Larsen 1974 

423 Larsen 1974 

433 Miller eta!. 1992 

433 Larsen 1974; Holland et al. 1988 

423 Larsen 1974 

333 Larsen 1974; Holland et al. 1988 

333 Larsen 1974; Holland et al. 1988 

433 Larsen 1974 

433 Larsen 1974 

423 Gosling 1992 

423 Larsen 1974 

433 Carter 2004 

433 Gaston et a!. 1998 

433 Larsen 1974 

333 Larsen I 974; Holland eta!. 1988 

333 Larsen I 974; Holland eta!. 1988 

211 
113 Larsen I974 

211 Larsen I974 

213 Edwards and Harasewych 1988 

213 Edwards and Harasewych 1988 

313 Larsen 1974; Ulanowicz eta!. I 998 

313 Larsen 1974; Ulanowicz eta!. 1998 
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Appendix I. continued 

Taxa 

Gastropoda (continued) 

Crepidula plana 

Diastoma varium 

Diodora cayenensis 

Eupleura caudata 

Ilyanassa obsoleta 

Mitrella lunata 

Muricidae sp 

Odostomia sp 

Odostomia impressa 

Polineces duplicatus 

Pyrgocythara plicosa 

Retusa canaliculata 

Skenopsis planorbis 

Triphora nigrocinta 

Urosalpinx cinera 

Arthropoda 
Copepod 

Harpacticoid sp 

Cirripedia 

Balanus improvisus 

Mysidacea 

Mysidopsis sp 

Tardigrada 

Stygarctus sp 

Pycnogonidae 
Pycnogonid sp 

Isopoda 

Cyanthura burbanki 

Life Form 
Code 

313 
313 
311 
Ill 

311 
211 
111 
Ill 

Ill 

113 
213 
113 
211 
213 
Ill 

231 

423 

211 

331 

213 

241 

242 

References 

Larsen I 974; Ulanowicz et al. I 998 

Ulanowicz et al. I 998 

Abbott I 974 

Larsen 1974 
Miller et al. I 992; Ulanowicz et al. 
1998 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Larsen 1974 

Abbott 1974 

Abbott 1974 

Berry I 988; Gaston et al.1998 

Larsen 1974 

Larsen I 974 

Larsen 1974 

Barnes 1980 

Larsen 1974 

Barnes 1980; Holland et al. 1988 

Gaugler 2002 

Arnaud and Bamber 1987 

Larsen 1974 
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Appendix I. continued 

Taxa 

Isopoda (continued) 

Edotea triloba 

Erichsonella filiformis 

Ligia baudiniana 

Probopyrus pandalicola 

Sphaeroma quadridentatum 

Amphipoda 

Ampelisca macrocephala 

Ampithoe valida 

Ampithoe longimana 

Batea catharinensis 

Caprella pentatus 

Caprella equilibra 

Corophium spp 

Corophium bonelli 

Corophium acherusicum 

Cymedusa compta 

Dulichiella appendiculata 

Erichthonius brasiliensis 

Gammurus mucronatus 

Gammurus palustris 

Leptochirus plumulosus 

Melita nitida 

Orchestia grillus 

Paracaprella tenuis 

Stenothoe minuta 

Decapoda 

Alpheus heterochaelis 

Alpheus normanni 

Life Form 
Code 

411 
411 
411 
411 
211 

441 
421 
421 
211 
411 
411 
321 
321 
321 
421 
211 
221 
211 
211 
431 
211 
211 
411 
411 

212 
212 

243 

References 

Larsen I 974 

Kens ley and Schotte I 989 

Kensley and Schotte I 989 

Kens ley and Schotte I 989 

Barnes I980 

Larsen I 974 

Larsen I 974; DuffY and Hay I 99 I 

DuffY and Hay I 99 I 

Bousfield I 973 

Luczkovich et al. 2002 

Luczkovich et al. 2002 

Larsen I 974; Holland et al. I 988 

Larsen I 974; Holland et al. I 988 

Larsen I 974; Holland et al. I 988 

Larsen I974 

Bousfield I 973 

Bousfield I 973 

DuffY and Hay 1994 

Larsen 1974 

Larsen 1974 

Larsen 1974; Holland et al. 1988 

Bousfield 1973 

Luczkovich et al. 2002 

Larsen I974 

Williams I 984 

Williams I 984 
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Appendix I. continued 

Taxa 

Decapoda (continued) 

Brachyuran zoea 

Brachyuran megalopa 

Callianassa atlantica 

Callinectes sapidus 

Caridean larva 

Clibanarius vittatus 

Crangon septemspinosa 

Dyspanopeus sayi 

Eurypanopeus depressus 

Hemigrapsus sanguineus 

Hippolyte pleuracantha 

Pagurus longicarpus 

Pagurus arcuatus 

Pagurus pollicaris 

Palaemonetes pugio 

Palaemonetes vulgaris 

Panopeidae spp 

Panopeus herbsti 

Pinnixa sayana 

Ucasp 

Upogebia ajjinis 

Insecta 

Collembola sp 

Diptera spp 

Chordata 
Urochordata 

Molgula manhattiensis 

244 

Life Form 
References 

Code 

213 Williams 1984 

213 Williams I 984 

243 Williams 1984 

113 Larsen 1974 

213 Williams 1984 

213 Williams 1984 

113 Larsen 1974 

113 Larsen 1974 

113 Larsen 1974 

213 McDermott 1998 a, b 

213 Williams 1984 

213 Williams 1984; Miller et al. 1992 

213 Williams 1984 

213 Williams 1984 

213 Larsen 1974 

213 Larsen 1974 

113 Larsen 1974 

113 Larsen 1974 

213 Williams 1984; Holland et al. I 988 

413 Williams 1984 

443 Larsen I974 

211 Barnes I980 

111 

422 Larsen 1974 
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Appendix II: Raw nekton abundance data for two replicate samples collected on two consecutive days using the enclosure trap gear, April - October 1999 from the constructed reef and beach habitats at 
Fisherman's Island, Virginia. Numbers in parentheses are mean total length and standard error, respectively, in mm, for fishes; carapace width in mm for crabs, and carapace length in mm for shrimp. No samples 
were collected in September due to Hurricane Floyd occurring during target tidal sampling period. Habitat use categories are denoted in parentheses after each species name adapted from Breitburg (1999) and Baltz 
(1993): R = resident oyster reef species, F = facultative oyster reef species, DT = demersal transient species; NT= nektonic transient species. 

OYSTER SHELL REEF 
APRIL MAY JUNE JULY AUGUST OCTOBER 

replicate 1 2 1 2 1 2 1 2 1 2 1 2 
length of reef edge sampled (m) 14.0 14.0 14.0 14.0 13.5 10.0 14.0 14.0 14.0 14.0 14.0 17.0 

Anchoa hepsetus (NT) 0 0 0 0 0 3 (125.3, 3.4) 0 0 4 (50.0, 2.0) 35 (56.7, 1.4) 0 0 

Archosargus probatocephalus (F) 0 0 0 0 0 0 2 (53.0, 0) 0 4 (55.3, 9.4) 3 (49.0, 2.5) 0 1 (51.0) 

Baird/ella chrysoura (DT) 0 0 0 0 0 0 15 (51.1, 1.0) 6 (46.2, 6.4) 1 (49.3) 0 0 0 
Callinectes sapidus (DT) 0 0 0 0 0 1 (21.0) 4 (82.8, 17.5) 3 (97.3, 21.1) 3 (113.3, 25.2) 3 (66.0, 45.0) 0 0 

Centropristis striata (F) 0 0 0 1 (49.0) 0 0 0 1 (108.0) 0 0 0 1 (72.0) 

Chasmodes bosquianus (R) 0 0 0 2 (68.5, 1.5) 0 0 0 0 0 0 0 0 

Chaetodon ace/latus (F) 0 0 0 0 0 0 0 0 0 0 0 0 
Cyprinodon variegatus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Epinephelus sp. (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Eucinostomus argenteus (DT) 0 0 0 0 0 0 0 1 (46.0) 0 0 0 0 
Eucinostomus gula (DT) 0 0 0 0 0 0 2 (47.0. 2.0) 0 0 0 0 0 
Fundulus heteroditus (DT) 0 0 0 1 (40.0) 0 0 20 (44.9, 1.1) 9 (46.2, 2.5) 0 0 0 0 
Fundulus majalis (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Gobiosoma bose (R) 0 2 (34.0, 3.0) 1 (41.0) 2 (39.0. 1.0) 3 (47.3, 4.1) 4 (51.5, 3.9) 0 1 (34.0) 0 3 (30.3, 8.9) 2 (45.0, 3 0) 0 
Gobiosoma ginsburg/ (R) 0 0 0 1 (34.0) 0 0 2 (25.5, 0.5) 2 (26.5, 3.5) 0 0 1 (26.0) 0 
Hypsoblennius hentz (R) 0 0 0 1 (57.0) 1 (74.0) 2 (72.5, 2.5) 5 (76.4, 2.8) 2 (85.0, 0) 1 (72.0) 5 (65.2. 7.1) 1 (64.0) 1 (52.0) 
Lagodon rhomboides (F) 0 0 0 0 31 (51.1, 1.2) 0 4 (79.3, 3.6) 1 (60.0) 0 0 0 0 
Leiostomus xanthurus (DT) 0 0 0 0 12 (35.2, 0.8) 0 3 (58.0, 2.0) 0 0 0 0 0 

Lucania parva (DT) 0 0 0 0 20 (34.6, 0.8) 1 (42.0) 0 0 5 (24.0, 0.6) 0 0 0 
Lutjanus griseus (F) 0 0 0 0 0 0 0 0 0 4 (65.8, 0.8) 0 0 

Membras martinica (NT) 0 71 (86.6, 1.1) 550 (21.5, 0.7) 1 (115.0) 1029 (38.4, 1.6) 890 (32.2, 0.8) 27 (49.0, 1.0) 125 (46.2, 0.7) 1390 (55.1, 1.0) 268 (58.0, 0.8) 20 (61.1, 1.2) 640 (56.9, 0.2) 
Marone saxatilis (NT) 0 0 0 0 0 0 0 0 0 0 0 0 
Mugil curema (NT) 0 0 0 0 0 0 0 0 0 0 0 0 

Mycteroperca microlepis (F) 0 0 0 0 0 0 1 (71.0) 0 0 0 0 0 

Opsanus tau (R) 0 0 0 0 2 (85.5, 9.5) 1 (98.0) 0 0 1 (52.0) 3 (50.0, 3.6) 0 0 
Orthopristus chrysoptera (R) 0 0 0 0 0 0 30 (46.1' 0.6) 1 (47.0) 0 0 0 0 
Palaemonetes vulgaris (DT) 123 2945 1094 13 78 110 638 72 20 129 336 49 

Paralichthys dentatus (DT) 0 1 (21.0) 0 3 (35.0, 5.2) 0 1 (62.0) 0 0 0 0 0 0 
Penaeus aztecus (DT) 0 0 0 0 0 0 0 0 0 0 0 1 (24.0) 
Peprilus triacanthus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Prionotus carolinus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Scorpaena plumeiri (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Sphyreana borealis (NT) 0 0 0 0 0 0 4 (64.5, 1.7) 0 0 0 0 0 
Sphoeroides maculatus (DT) 0 0 0 0 0 0 0 0 1 (114.0) 0 0 0 
Strongylura marina (NT} 0 0 0 0 0 0 0 0 0 0 0 0 
Syngnathus floridae (F) 0 0 0 0 0 0 0 0 0 1 (122.0) 0 0 
Syngnathus fuscus (F) 0 2 (105.0, 6.0) 2 (163.5, 31.5) 5 (138.0, 8.0) 2 (110.5, 5.5) 1 (145.0) 1 (100.0) 4 (121.3, 7.9) 4 (106.5, 7.2) 5 (102.6, 4.3) 0 0 
Symphurus plagiusa (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Synodus foetens (DT) 0 0 0 0 0 0 0 0 1 (87.0) 0 0 0 
Tautog onitis (F) 0 0 0 0 0 2 (20.5, 1.5) 3 (55.0, 5.0) 1 (53.0) 0 0 0 0 

total 123 3021 1647 30 1178 1016 ~761 __ 229 1435 459 360 693 
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Appendix II: Continued. 

CLAM SHELL REEF 
APRIL MAY JUNE JULY AUGUST OCTOBER 

replicate 1 2 1 2 1 2 1 2 1 2 1 2 

length of reef edge sampled (m) 15.0 16.0 16.0 8.0 16.0 16.0 16.0 16.0 12.3 16.0 8.6 8.4 

Anchoa hepsetus (NT) 0 0 0 0 0 0 0 0 0 0 0 0 

Archosargus probatocephalus (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Bairdiella chrysoura (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Cal/inectes sapidus (DT) 1 (10.0) 0 3 (56.8. 31.1) 5 (20.3, 3.1) 2 (19.0, 1.0) 6 (37.5, 7.4) 7 (87.7, 11.8) 1 (30.0) 10 (22.5, 7.1) 6 (22.5, 6.3) 1 (22.0) 1 (19.0) 

Centropristis striata (F) 0 0 0 0 1 (72.0) 0 0 0 0 0 0 0 

Chasmodes bosquianus (R) 0 0 0 0 0 0 0 0 0 0 0 0 

Chaetodon ocellatus (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Cyprinodon variegatus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Epinephelus sp. (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Eucinostomus argenteus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Eucinostomus gula (DT) 0 0 0 0 0 0 0 0 0 0 0 1 (59.0) 

Fundulus heteroc/itus (DT) 0 0 1 (50.0) 1 (46.0) 12 (32.7, 1.1) 2 (21.5, 7.5) 1 (37.0) 5 (39.4, 2.3) 0 0 0 0 

Fundulus majalis (DT) 0 0 0 0 0 2 (60.0, 22.0) 1 (60.0) 0 0 0 0 0 

Gobiosoma bose (R) 0 1 (32.0) 0 3 (41.0, 1.5) 0 1 (45.0) 0 0 0 0 0 0 

Gobiosoma ginsburgi (R) 0 0 1 (39.0) 7 (35.4, 1.3) 1 (40.0) 0 0 0 0 0 0 0 

Hypsoblennius hentz (R) 0 0 0 0 0 0 0 0 0 0 0 0 

Lagodon rhomboides (F) 0 0 0 0 0 0 3 (84.3, 18) 0 0 1 (122.0) 0 0 

Leiostomus xanthurus (DT) 0 0 0 0 0 0 6 (81.5, 0.8) 0 0 0 0 0 

Lucania parva (DT) 1 (26.0) 0 0 0 0 0 0 0 0 0 0 0 

Luljanus griseus (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Membras marlinica (NT) 0 0 17 (90.5, 2.2) 19 (93.0, 2.2) 33 (40.1' 2.2) 378 (33.2, 2.9) 22 (52.2, 1.7) 13 (56.6, 2.6) 269 (60.6, 0.9) 99 (60.3, 0.8) 45 (62.0, 1.0) 0 

Marone saxatilis (NT) 0 0 0 0 0 0 0 0 0 0 0 0 

Mugil curema (NT) 0 0 0 0 0 0 5 (147.2, 14.5) 1 (111.0) 1 (136.0) 1 (142.0) 0 0 

Mycteroperca microlepis (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Opsanus tau (R) 0 0 0 0 0 0 0 0 0 0 0 0 

Orthopristus chrysoptera (R) 0 0 0 0 0 0 0 0 0 0 0 0 

Palaemonetes vulgaris (DT) 40 326 3 26 45 17 5 0 1 0 5 22 

Para/ichthys dentatus (DT) 0 0 13 (44.2, 2.0) 13 (42.5, 2.7) 3 (44.7, 7.3) 4 (47.3, 5.6) 0 0 0 0 0 0 

Penaeus aztecus (DT) 0 0 0 0 0 0 0 0 3 (45.0, 0) 1 (57.0) 1 (26.0) 0 

Peprilus triacanthus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Prionotus carolinus (DT) 0 0 0 0 1 (52.0) 0 0 0 0 0 0 0 

Scorpaena plumeiri (DT) 0 0 0 0 0 0 0 1 (35.0) 0 0 0 0 

Sphyreana borealis (NT) 0 0 0 0 0 0 0 0 0 0 0 0 

Sphoeroides maculatus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Strongylura marina (NT) 0 0 0 0 0 0 0 0 0 0 0 0 

Syngnathus f/oridae (F) 0 0 0 0 0 0 0 0 0 0 0 0 

Syngnathus fuscus (F) 0 1 (118.0) 0 4 (145.8, 10.4) 6 (115.0, 6.5) 0 0 2 (87.5, 15.5) 1 (142.0) 0 0 0 

Symphurus plagiusa (DT) 0 0 0 0 0 0 0 0 0 0 0 0 

Synodus foetens (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Tautog onitis (F) 0 0 0 0 0 1 (20.0) 0 0 0 0 0 0 

total 42 328 38 78 104 411 50 23 285 108 52 24 



R
eproduced w

ith perm
ission of the copyright ow

ner.  F
urther reproduction prohibited w

ithout perm
ission.

Appendix II: Continued. 

ASH PELLET REEF 
APRIL MAY JUNE JULY AUGUST OCTOBER 

replicate 1 2 1 2 1 2 1 2 1 2 1 2 
length of reef edge sampled (m) 15.0 15.0 16.0 14.0 12.6 12.7 12.8 13.0 15.3 15.0 4.2 15.0 

Anchoa hepsetus (NT) 0 0 0 0 0 0 0 0 0 0 0 0 
Archosargus probatocephalus (F) 0 0 0 0 0 0 0 0 1 (50.0) 1 (26.01 0 0 

Bairdiella chrysoura (DT) 0 0 0 0 0 0 1 (113.0) 0 0 0 0 0 
Cal/inectes sapidus (DT) 0 3 (12.0, 1.5) 1 (12.0) 0 10 (31.7, 4.0) 6 (57.2, 18.5) 3 (48.3, 17.1) 2 (59.5, 43.5) 23 (12.4, 0.7) 17 (24.4, 7.4) 0 2 (24.0, 10.0) 

Centropristis striata (F) 0 1 (48.0) 0 0 1 (78.0) 1 (103.0) 0 0 0 1 (36.0) 0 0 
Chasmodes bosquianus (R) 0 0 0 0 0 0 0 0 4 (45.8, 8.2) 1 (51.0) 0 1 (48.1) 

Chaetodon ace/latus (F) 0 0 0 0 0 0 0 0 2 (35.0, 1.0) 0 0 0 
Cyprlnodon varlegatus (DT) 0 0 0 0 0 7 (27.0, 0.7) 1 (30.0) 0 0 0 0 0 
Epinephelus sp. (F) 0 0 0 0 1 (24.0) 0 0 0 0 0 0 0 
Eucinostomus argenteus (OT) 0 0 0 0 0 0 0 2 (21.0, 2.0) 0 0 0 0 
Eucinostomus gula (DT) 0 0 0 0 0 0 0 0 1 (79.0) 1 (69.0) 0 0 
Fundulus heterodffus (DT) 0 0 4 (42.0, 0.41) 2 (65.0, 3.0) 11 (30.2, 0.8) 395 (35.2, 1.2) 698 (39.3, 1.3) 766 (44.9, 1.0) 1 (54.0) 6 (44.0, 3.7) 1 (44.0) 0 
Fundulus majalis (DT) 0 0 0 0 15 (34.2, 0.9) 45 (36.1, 1.6) 508 (41.5, 2.2) 38 (47.6, 1.8) 0 1 (61.0) 0 0 
Gobiosoma bose (R) 0 0 0 0 0 0 3 (36.7, 3.2) 2 (30.5, 0.5) 4 (29.3, 1.4) 6 (35.0, 3.8) 1 (50.0) 0 
Gobiosoma ginsburgi (R) 0 0 0 1 (39.0) 2 (40.5, 1.5) 2 (38.5, 0.5) 4 (29.0, 0.8) 1 (26.0) 0 0 0 0 
Hypsoblennius hentz (R) 0 0 0 0 0 0 0 1 (25.0) 1 (48 0) 2 (58.5, 6.5) 0 0 
Lagodon rhomboides (F) 0 0 0 0 1 (34.0) 0 0 0 2 (128.5, 5.5) 0 0 0 
Leiostomus xanthurus (DT) 0 0 0 0 5 (39.8, 6.7) 8 (37.1. 4.8) 0 0 0 0 0 0 
Lucania parva (DT) 0 0 0 0 16 (36.3, 1.2) 6 (35.5. 2.0) 0 200 (28.2, 0.4) 10 61 (24.2, 0.3) 0 7 (21.7, 1.0) 
Luljanus grlseus (F) 0 0 0 0 0 0 0 0 0 0 0 0 
Membras marlinica (NT) 1 (83) 17 (82.8, 0.6) 1 0 567 (31.6, 1.1) 166 (35.9, 1.1) 0 0 211 (61.5, 0.8) 673 (64.0, 0.9) 0 2 (47.5, 6.5) 
Marone saxatilis (NT) 0 0 0 0 9 (39.2, 1.6) 1 (39.0) 0 0 0 0 0 0 
Mugil curema (NT) 0 0 0 0 0 0 0 0 6 (140.3, 0.9) 3 (143.0, 0.6) 0 0 
Mycteroperca microlepis (F) 0 0 0 0 0 0 0 0 0 0 0 0 
Opsanus tau (R) 0 0 0 0 0 0 0 0 0 0 0 0 
Orthoprlstus chrysoptera (R) 0 0 0 0 0 0 0 0 1 (50.0) 0 0 0 
Palaemonetes vulgaris (DT) 49 1235 0 0 136 64 49 5 107 1 40 38 
Paralichthys dentatus (DT) 0 0 1 (27.0) 1 (41.0) 2 (56.5, 8.5) 2 (121.0, 11.0) 0 0 0 0 0 0 
Penaeus aztecus (DT) 0 0 0 0 0 0 0 0 15 (53.4, 3.4) 5 (38.0, 4 5) 0 1 (25.0) 
Peprllus trlacanthus (DT) 0 0 0 0 0 0 1 (40.0) 0 0 0 0 0 
Prionotus carolinus (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Scorpaena plumeiri (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Sphyreana borealis (NT) 0 0 0 0 0 0 0 0 0 0 0 0 
Sphoeroides maculatus ( DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Strongylura manna (NT) 0 0 0 0 1 (102.0) 2 (84.5, 11.5) 0 0 0 0 0 0 
Syngnathus florldae (F) 0 0 0 0 0 0 0 0 0 0 0 0 
Syngnathus fuscus (F) 0 0 2 (140.6, 14.1) 1 (132.0) 7 (129.6, 9.9) 8 (99.8, 10.2) 0 0 1 (92.0) 2 (86.0, 12.0) 1 (111.0) 3 (113.0, 16.9) 
Symphurus plagiusa (DT) 0 1 (26.0) 0 0 0 1 (65.0) 0 0 0 0 0 0 
Synodus foetens (DT) 0 0 0 0 0 0 0 0 0 0 0 0 
Tautog onitis (F) 0 0 0 0 1 (20.0) 0 0 0 0 0 0 0 

--
total 50 1257 L__ __ 9 ____ 5 L___ ~ --

714 
-

1268 1017 390 781 43 54 -----
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Appendix II: Continued. 

BEACH 
APRIL MAY JUNE JULY AUGUST OCTOBER 

replicate 1 2 1 2 1 2 1 2 1 2 1 2 

length of habitat sampled (m) 14.0 14.0 14.0 14.0 14.0 14.0 

Anchoa hepsetus (NT) 0 0 0 0 0 0 

Archosargus probatocephalus (F) 0 0 0 0 0 0 

Bairdiella chrysoura (DT) 0 0 0 0 0 0 

Callinectes sapidus (DT) 0 0 7 (27.9, 14.6) 5 (12.8, 1.1) 0 8 (186, 1.5) 

Centropristis striata (F) 0 0 0 0 0 0 

Chasmodes bosquianus (R) 0 0 0 0 0 0 

Chaetodon ace/latus (F) 0 0 0 0 0 0 

Cyprinodon variegatus (DT) 1 (33.0) 3 (35.0, 1.2) 0 0 0 0 

Epinephelus sp. (F) 0 0 0 0 0 0 

Eucinostomus argenteus (DT) 0 0 0 0 0 0 

Eucinostomus gula (DT) 0 0 0 0 0 6 (69.6, 4.8) 

Fundulus heteroclitus (DT) 383 (50.7, 1.2) 216 (48.0, 0.7) 1 (80.0) 3 (58.0, 5.6) 0 0 

Fundulus maja/is (DT) 51 (45.9, 1.6) 209 (37 .5' 1.2) 55 (58.8, 2.3) 37 (51.1' 2.1) 5 (51.0, 5.3) 0 

Gobiosoma bose (R) 0 0 0 0 0 0 

Gobiosoma ginsburgi (R) 0 0 0 0 0 0 

Hypsoblennius hentz (R) 0 0 0 0 0 0 

Lagodon rhomboides (F) 0 0 0 0 0 0 

Leiostomus xanthurus (DT) 1 (87.0) 4 (83.3, 5.7) 0 0 0 0 

Lucania parva (DT) 2 (42.5, 3.5) 3 (28.0, 2 3) 2 (26.0, 0) 0 0 0 

Lutjanus griseus (F) 0 0 0 0 0 0 

Membras martinica (NT) 98 (51.2, 1.8) 56 (47.0, 0.9) 181 (61.5, 2.2) 27 (60.0, 2.0) 250 (57.7, 0.5) 44 (53.7, 0 6) 

Marone saxatilis (NT) 0 0 0 0 0 0 

Mugil curema (NT) 0 0 2 (135.0, 5.0) 0 0 0 

Mycteroperca microlepis (F) 0 0 0 0 0 0 

Opsanus tau (R) 0 0 0 0 0 0 

Orthopristus chrysoptera (R) 0 0 0 0 0 0 

Palaemonetes vulgaris (DT) 0 2 3 0 0 2 

Paralichthys dentatus (DT) 1 (51.0) 0 0 0 0 0 

Penaeus aztecus (DT) 0 0 0 0 0 2 (21.0, 0) 

Peprilus triacanthus (DT) 0 0 0 0 0 0 

Pfionotus carolinus (DT) 0 0 0 0 0 0 

Scorpaena plumeiri (DT) 0 0 0 0 0 0 

Sphyreana borealis (NT) 0 0 0 0 0 0 

Sphoeroides maculatus (DT) 0 0 0 0 0 0 

Strongylura marina (NT) 0 0 0 0 0 0 
Syngnathus floridae (F) 0 0 0 0 0 0 

Syngnathus fuscus (F) 0 0 0 0 0 0 

Symphurus plagiusa (DT) 0 0 1 (30.0) 1 (23.0) 0 0 
Synodus foetens (DT) 0 0 0 0 0 0 
Tautog onitis (F) 0 0 0 0 0 0 

total 0 0 0 0 0 0 537 493 252 73 255 62 -- -- ---- - --
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