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ABSTRACT

The eastern oyster, Crassostrea virginica, once an integral part o f the ecology and 
economy of Chesapeake Bay, has been severely depleted. Factors leading to the decline 
of the eastern oyster include over-harvesting, environmental degradation and disease 
pressure caused by the protozoans Haplosporidium nelsoni and Perkinsus marinus, 
known commonly as MSX and Dermo, respectively. Studies regarding the feasibility of 
introducing a non-native oyster to the Bay were initiated, and field-based research on an 
Asian oyster, Crassostrea ariakensis, suggested that it might be a viable species for 
introduction.

Research surrounding the proposed introduction has focused on recommendations 
such as those from the International Council for Exploration of the Seas, suggesting that 
the “ecological, genetic and disease relationships of the species in its natural range and 
environment” be examined. In order to assess the disease risks associated with C. 
ariakensis, a parasite survey o f oysters collected from China, Japan and Korea was 
undertaken to examine the pathogens associated with C. ariakensis in its natural range. 
The protozoan parasites, Perkinsus olseni and a new Perkinsus sp., as well as multiple 
genetic strains o f molluscan herpesvirus, were discovered using molecular diagnostic 
methods. Molluscan herpesvirus and Perkinsus spp. protozoans are known to cause 
mortality of many commercially important bivalve species.

Characterization of the new Perkinsus sp. included a comprehensive analysis of 
three DNA loci along with histological examination of the Perkinsus sp. cells in 
preserved tissue sections. Challenge experiments were undertaken using P. olseni and 
the new Perkinsus sp. in order to assess the transmission risk o f these exotic microbes to 
the eastern oyster and the hard clam, Mercenaria mercenaria. The laboratory 
experiments suggest that bivalve shellfish native to Chesapeake Bay may be susceptible 
to the alien Perkinsus spp. associated with C. ariakensis. In addition, C. ariakensis may 
acquire moderate to lethal infections of P. marinus under stressful conditions. In light of 
the proposed introduction o f C. ariakensis, it appears that there is a great disease risk 
associated with this Asian oyster species with the potential to have a negative impact on 
the nai've shellfish populations of Chesapeake Bay.

xi
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ABSTRACT

The eastern oyster, Crassostrea virginica, once an integral part o f the ecology and 

economy o f Chesapeake Bay, has been severely depleted. Factors leading to the decline of 

the eastern oyster include over-harvesting, environmental degradation and disease pressure 

caused by the protozoans Haplosporidium nelsoni and Perkinsus marinus, known commonly 

as MSX and Dermo, respectively. Studies regarding the feasibility of introducing a non­

native oyster to the Bay were initiated, and field-based research on an Asian oyster, 

Crassostrea ariakensis, suggested that it might be a viable species for introduction.

Research surrounding the proposed introduction has focused on recommendations 

such as those from the International Council for Exploration of the Seas, suggesting that the 

“ecological, genetic and disease relationships o f the species in its natural range and 

environment” be examined. In order to assess the disease risks associated with C. ariakensis, 

a parasite survey of oysters collected from China, Japan and Korea was undertaken to 

examine the pathogens associated with C. ariakensis in its natural range. The protozoan 

parasites, Perkinsus olseni and a new Perkinsus sp., as well as multiple genetic strains of 

molluscan herpesvirus, were discovered using molecular diagnostic methods. Molluscan 

herpesvirus and Perkinsus spp. protozoans are known to cause mortality o f many 

commercially important bivalve species.

Characterization of the new Perkinsus sp. included a comprehensive analysis of three 

DNA loci along with histological examination of the Perkinsus sp. cells in preserved tissue
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sections. Challenge experiments were undertaken using P. olseni and the new Perkinsus sp. 

in order to assess the transmission risk o f these exotic microbes to the eastern oyster and the 

hard clam, Mercenaria mercenaria. The laboratory experiments suggest that bivalve 

shellfish native to Chesapeake Bay may be susceptible to the alien Perkinsus spp. associated 

with C. ariakensis. In addition, C. ariakensis may acquire moderate to lethal infections of P. 

marinus under stressful conditions. In light o f the proposed introduction of C. ariakensis, it 

appears that there is a great disease risk associated with this Asian oyster species with the 

potential to have a negative impact on the naive shellfish populations of Chesapeake Bay.

JESSICA ANN MOSS 

SCHOOL OF MARINE SCIENCE 

COLLEGE OF WILLIAM AND MARY IN VIRGINIA
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INTRODUCTION 

Decline of the Oyster industry in Chesapeake Bay

The eastern oyster, Crassostrea virginica, was once an integral part of the 

economy of Chesapeake Bay. In colonial times, oysters provided not only an abundant 

food source, but oyster reefs additionally created unique habitats that played an 

ecologically important role in food webs supporting other commercially important fish 

and crab species. Oysters also acted as key regulators of the water quality o f the Bay, 

whereby it was estimated that prior to 1870, Bay oyster populations had the capacity to 

filter the waters of the Bay in approximately 30 days (Pomeroy et al. 2006). Natural 

populations of C. virginica have been severely depleted. Peak oyster harvests observed 

in the late 1800s were reduced by 60% between 1880 and 1930 due to over-dredging on 

deep channel reefs (National Research Council, 2003). Further decline in the late 1950s 

has been attributed to continued over-harvesting and the impact of two protozoan 

pathogens, Haplosporidium nelsoni and Perkinsus marinus, the parasites responsible for 

the diseases known as MSX and Dermo, respectively (Andrews 1988, Burreson and 

Ragone Calvo 1996). Use of agricultural pesticides, elevated levels o f tributyl tin and 

other environmental contaminants have also been implicated as factors in the decline of 

oyster harvests (National Research Council, 2003). In the state of Virginia, landings once 

in excess o f 6 million bushels in the 1930s have declined to less than 20,000 bushels 

annually since the 1990s.
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3

Non-native oyster introduction proposed

The decline in oyster production in Virginia and Maryland led to the formation of 

a number of panels in the early 1990s to make recommendations on restoring oyster 

populations to Chesapeake Bay. One option being considered is the introduction of a 

non-native oyster species for ecological and fishery enhancement. A Virginia Institute of 

Marine Science (VIMS) study conducted in 1996 focusing on the Pacific oyster, 

Crassostrea gigas, documented lower disease susceptibility in C. gigas than in the native 

eastern oyster, however growth rates of the Pacific oyster were equal or inferior to the 

native oyster in Chesapeake Bay (Calvo et al. 1999). A 1998 field-based study on 

another Asian oyster, Crassostrea ariakensis, documented rapid growth and survival in 

that species, as compared to C. virginica, even when endemic diseases were present 

(Calvo et al. 2001). In addition, marketability testing of C. ariakensis has shown that it 

has an acceptable taste for the local consumer (Grabowski et al. 2003).

In China, Crassostrea ariakensis is found naturally from the Bohai Sea in 

northern China to Beihai, Guangxi, in southern China near the border with Vietnam. A 

newly described species, Crassostrea hongkongensis, has been found to coexist with C. 

ariakensis in southern China, along the coast of Fujian, Guangdong, and Guangxi 

provinces (Wang et al. 2004). Crassostrea hongkongensis is preferred by local fishermen 

for oyster aquaculture in southern China due to higher meat quality and productivity 

(Zhou and Allen 2003). Morphological differences between these two oyster species are 

not very clear (Lam and Morton 2003), although slight anatomical differences have been 

reported (Wang et al. 2004). Past morphological and mitochondrial DNA phylogenetic 

studies have suggested that C. ariakensis is the “red meat” form (color of the soft body) 

of C. rivularis, an oyster species that is widely cultured in China while the “white meat”
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form of C. rivularis is the same species as the newly described oyster species, C. 

hongkongensis (Lam and Morton 2003,Wang et al. 2004). Through phylogenetic 

analysis o f many Asian oyster species, individuals identified as “red” or “white” based on 

morphology by researchers in the field did not segregate into monophyletic clades in an 

analysis based on the first internal transcribed spacer ribosomal RNA region (ITS-1) and 

cytochrome oxidase I (COI) gene regions (Cordes and Reece 2005), suggesting that 

morphological characteristics may not be appropriate for distinguishing between these 

two species. The fact that genetic data conflict with species designations based on 

morphological characters has therefore highlighted the need for confirmatory genetic 

identification of Asian Crassostrea species. For example, an intentional introduction of 

C. ariakensis from Beihai, China to the west coast, USA occurred in 1999. Genotypic 

analysis revealed that 48% (24 of 50) of those brood stock oysters, imported as C. 

ariakensis, were, in fact, C. hongkongensis (Zhang et al. 2005).

Additionally, because of the confusion associated with taxonomic identification of 

C. ariakensis, existing records of biology and ecology of C. ariakensis must be read with 

caution. Current trials using triploid C. ariakensis suggest that this species can tolerate a 

wide range o f temperature and salinity conditions (NOAA Quarterly Review, Spring 

2005).

Assessing the risk of Crassostrea ariakensis introduction

In 2003, the U.S. Congress authorized the Army Corps of Engineers to prepare an 

Environmental Impact Statement (EIS) examining the possible risks and benefits of 

introducing a non-native oyster to Chesapeake Bay. The EIS is being prepared with the 

Army Corps o f Engineers as the lead federal agency, in conjuction with two state 

agencies, the Maryland Department of Natural Resources and the Virginia Marine
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molluscan herpesviruses, two species of Perkinsus, Perkinsus olseni and a new Perkinsus 

species, Chlamydia-like organisms, ciliates, Nematopsis sp., cestodes, viral gametocytic 

hypertrophy and Steinhausia-like microsporidians in oysters from potential C. ariakensis 

broodstock sites in Asia.

Steinhausia-like microsporidians were observed in oyster ova, indicating a real 

possibility for vertical transmission. Vertical transmission of microsporidians has been 

demonstrated previously in invertebrates such as amphipod crustaceans and Daphnia 

(Kelly et al. 2003, Galbreath et al. 2004, Haine et al. 2004, Vizoso and Ebert 2004).

Viral gametocytic hypertrophy has been reported in Crassostrea virginica from 

Chesapeake Bay (Farley 1978), and a Steinhausia-like microsporidian has been reported 

in the clam Macoma balthica in Chesapeake Bay (Farley 1977). The parasites observed 

in Asian oysters, however, may be different strains or species than those in Chesapeake 

Bay, and could pose problems if introduced.

Although current quarantine measures should minimize the risk of introduction of 

exotic diseases with Asian C. ariakensis, there is obvious concern regarding accidental 

introduction of exotic pathogens associated with failed quarantine measures, rogue 

introductions of Asian oysters directly to Chesapeake Bay, or ballast water introductions. 

Failure o f adequate water treatment in those facilities importing oysters from Asia could 

result in contamination of Bay waters with pathogens associated with the exotic oysters. 

Furthermore, the mid-Atlantic coast is frequently at risk for experiencing hurricanes such 

as hurricane Floyd (September 15—22, 1999) and Isabelle (September 2003) that severely 

impacted the Bay, having the potential to damage the infrastructure and function of 

buildings designated as quarantine facilities and lead to accidental release of exotic 

pathogens.
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Virginia, in Chesapeake Bay, ranked fifth and second, respectively, in the amount of 

foreign ballast water received (Smith et al. 1999). Diverse assemblages of ballast water 

organisms have been reported in ships arriving in Chesapeake Bay including crustaceans, 

molluscs, ctenophores, echinoderms, rotifers, nematodes, ciliates, diatoms, copepods and 

cyanobacteria (Smith et al.1999), as well as viruses and pathogens such as Vibrio 

cholerae and Pfiesteriapiscidica (Dobbs et al. 2003). One thing that limits the 

establishemen of ballast-introduced organisms is their ability to survive in the 

environment into which they are discharged (Smith et al. 1999). Perkinsus spp. have 

been shown to tolerate a wide range of salinities and temperatures (see below), therefore 

it is possible that Chesapeake Bay may be a suitable habitat for exotic Perkinsus spp. 

arriving here through Asian shipping traffic. The impacts that these Perkinsus spp. 

would have on the native Chesapeake Bay bivalves such as C. virginica and M. 

mercenaria, or even on introduced C. ariakensis, are not known.

Mollusc herpesviruses

The detection of multiple genetic strains o f mollusc herpesviruses in Asia 

(Chapter 1) also poses a real risk to Chesapeake Bay. Mollusc herpesviruses are found in 

a growing number of bivalve species including the eastern oyster Crassostrea virginica 

(Farley, 1972), the Pacific oyster Crassostrea gigas in Australia and France (Hine et. al.

1992, Nicolas et. al. 1992, Renault et al. 1994), the European flat oyster Ostrea edulis 

(Comps and Cochennech 1993, Renault et al. 2000a), the southern flat oyster Ostrea 

angasi in Australia (Hine 1997), the Chilean oyster Tiostrea chilensis larvae in New 

Zealand (Hine et al. 1998), the European clam Ruditapes decussatus (Renault and Arzul, 

2001), the Manila clam R. philippinarum (Renault 1998, Renault et al. 2001), and the
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Virginia, in Chesapeake Bay, ranked fifth and second, respectively, in the amount of 

foreign ballast water received (Smith et al. 1999). Diverse assemblages of ballast water 

organisms have been reported in ships arriving in Chesapeake Bay including crustaceans, 

molluscs, ctenophores, echinoderms, rotifers, nematodes, ciliates, diatoms, copepods and 

cyanobacteria (Smith et al.1999), as well as viruses and pathogens such as Vibrio 

cholerae and Pfiesteriapiscidica (Dobbs et al. 2003). One thing that limits the 

establishemen of ballast-introduced organisms is their ability to survive in the 

environment into which they are discharged (Smith et al. 1999). Perkinsus spp. have 

been shown to tolerate a wide range of salinities and temperatures (see below), therefore 

it is possible that Chesapeake Bay may be a suitable habitat for exotic Perkinsus spp. 

arriving here through Asian shipping traffic. The impacts that these Perkinsus spp. 

would have on the native Chesapeake Bay bivalves such as C. virginica and M. 

mercenaria, or even on introduced C. ariakensis, are not known.

Mollusc herpesviruses

The detection of multiple genetic strains of mollusc herpesviruses in Asia 

(Chapter 1) also poses a real risk to Chesapeake Bay. Mollusc herpesviruses are found in 

a growing number of bivalve species including the eastern oyster Crassostrea virginica 

(Farley, 1972), the Pacific oyster Crassostrea gigas in Australia and France (Hine et. al. 

1992, Nicolas et. al. 1992, Renault et al. 1994), the European flat oyster Ostrea edulis 

(Comps and Cochennech 1993, Renault et al. 2000a), the southern flat oyster Ostrea 

angasi in Australia (Hine 1997), the Chilean oyster Tiostrea chilensis larvae in New 

Zealand (Hine et al. 1998), the European clam Ruditapes decussatus (Renault and Arzul, 

2001), the Manila clam R. philippinarum (Renault 1998, Renault et al. 2001), and the
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Perkinsus species have been described in a variety of molluscs worldwide. 

Perkinsus marinus was first described as a pathogen o f Crassostrea virginica (Mackin et 

al. 1950, Andrews and Hewatt 1957) and is known for its devastating effects on eastern 

and Gulf Coast USA oyster populations (Burreson and Ragone Calvo 1996). Perkinsus 

olseni and P. atlanticus have recently been synonymized based on molecular evidence 

(Murell et al. 2002), further expanding an already wide host and geographic range for P. 

olseni. Perkinsus olseni has been reported in abalone, Haliotis ruber and Haliotis 

laevigata in Australia (Lester and Davis 1981, Goggin and Lester 1995), in the pearl 

oyster Pinctada maxima (Norton et al. 1993) in Australia and in clams, Austrovenus 

stutchburyi in New Zealand (Dungan et al. 2007). Perkinsus olseni has been blamed for 

the death o f carpet shell clams, Ruditapes decussatus, in Portugal (Azevedo 1989) and 

Spain (Villalba et al. 2005) and manila clams, R. philippinarum, in Spain (Santmarti et al. 

1995), and has additionally been reported in Italy (Da Ros and Cazonier 1985).

Perkinsus olseni also infects the manila clam in South Korea (Choi and Park 1997, Park 

et al. 1999, Park and Choi 2001) and Japan (Hamaguchi et al. 1998, Dungan and Reece

2006). Perkinsus olseni was also recently detected in the undulated surf clam, Paphia 

undulata, from the Gulf o f Thailand (Leethochavalit et al. 2004), in cockles, Austrovenus 

stutchburyi, in New Zealand (Dungan et al. 2007), and in the venus clam, Protothaca 

jedoensis, in Korea (Park et al. 2006). Perkinsus chesapeaki and P. andrewsi have also 

been recently synonymized (Dungan et al. 2002). Perkinsus chesapeaki has been 

described in the soft clam, Mya arenaria (McLaughlin et al. 2000) and in Tagelusplebius 

in Chesapeake Bay (Dungan et al. 2002). Perkinsus chesapeaki has also been reported in 

Macoma baltica (Coss et al. 2001) in Delaware Bay. Perkinsus qugwadi was described 

in the Japanese scallop, Patinopecten yessoensi (Blackbourn et al. 1998), although
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hypnospores of this parasite do not enlarge in thioglycollate fluid media (Blackbourn et 

al. 1988), a characteristic of all other Perkinsus spp., and molecular evidence further 

suggests that P. qugwadi may be only a distant relative o f other Perkinsus species. 

Perkinsus mediterraneus has been described in the European flat oyster, Ostrea edulis 

(Casas et al. 2004) and P. honshuensis was recently reported in R. philippinarum  in 

southern Japan (Dungan and Reece 2006) where it co-exists with P. olseni.

The life cycle of all Perkinsus spp. consists of three stages, though the cell 

morphology may vary slightly between species. Intraspecific morphological variation 

may be dependent on host (Goggin and Lester 1995). The smallest Perkinsus spp. cells 

are uninucleate, round immature trophozoites usually found within the hemocytes of 

infected invertebrate hosts. When immature trophozoites become mature they develop a 

vacuoplast, grow in overall size and gain a large, eccentric vacuole. This morphology is 

classically called a “signet ring.” In addition, the nucleolus enlarges and becomes visible 

under a light microscope (Perkins 1996). In vivo, trophozoites divide by palintomy 

forming a meront containing 2—64 cells, however P. marinus grown in ODRP-3 or 

DME:Ham’s F12 medium may divide solely by binary fission (Perkins 1996, JAM 

personal observation). The cell wall of mature meronts ruptures to release immature 

trophozoites. In seawater, mature trophozoites enlarge, the cell wall thickens, the 

vacuoplast disappears and the eccentric vacuole enlarges, forming hypnospores or 

prezoosporangia. In seawater, it has been shown experimentally that Perkinsus spp. may 

undergo zoosporulation inside the enlarged cell wall often creating 4—32 or more 

immature zoospores within a zoosporangium. Zoosporulation of P. chesapeaki and P. 

olseni is commonly observed when cultured in DME:Ham’s media (Burreson et al. 2005, 

Dungan et al. 2007). Zoospores develop biflagellated flagella and are released through a
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discharge tube on the surface of the zoosporangia. It is assumed that the zoospores 

eventually lose their flagella and become rounded cells (Perkins 1996) because 

flagellated Perkinsus cells have never been seen infecting a host. Trophozoites of all 

Perkinsus species except for P. qugwadi may be induced to form zoosporangia in vitro 

when incubated in thioglycollate medium. In thioglycollate medium, trophozoites 

enlarge and changes in the cell wall enable staining with Lugol’s iodine. This is the basis 

for the Ray’s fluid thioglycollate media (RFTM) assay routinely used for Perkinsus 

diagnosis. Under laboratory conditions, all life stages, trophozoites, hypnospores and 

zoospores o f P. marinus have been shown to cause infection in oysters (Chu 1996).

The links between temperature and salinity associated with P. marinus infection 

dynamics have been well studied; however, it is also thought that the same environmental 

parameters similarly influence P. olseni. Warm water temperatures, 20—25 °C, and high 

salinity >15 ppt, have been shown to cause maximal proliferation of P. marinus parasite 

cells, as well as highest incidences of infection in oysters, as the rate of infection in 

nature is believed to be proportional to the number o f waterborne infective cells 

(Andrews and Hewatt 1957, Chu et al. 1994). Perkinsus marinus cells can survive in 

over winter conditions o f temperatures as low as 4 °C and a salinity of 4 ppt (Chu and 

Greene 1989, Ragone Calvo and Burreson 1994, Chu 1996). Due to the effects of 

salinity and temperature on the parasite, the infections caused by P. marinus are generally 

seasonal in the Chesapeake Bay. Oyster mortality rates in the parts o f the bay with >12 

ppt salinity begin to increase in early August, with P. marinus maximum prevalence 

peaking in September and a minimum prevalence observed during the winter with little to 

no observed mortality during the winter months. Mortality of hosts depends on the level 

of infection, with an apparent dose of 10-102 cells being enough to establish infection
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(Chu 1996). Infection intensity has also been linked to oyster size. Smaller oysters 

usually will not acquire infections during their first summer of P. marinus exposure, 

presumably because of their inherent reduced filtering ability when compared to more 

mature oysters, resulting in the smaller oysters failing to accumulate enough cells to 

cause infection (Burreson and Ragone Calvo 1996).

Maximal Perkinsus olseni proliferation, in vitro, occurs at temperatures between 

15—32 °C and salinities between 25—35ppt though cells may tolerate more extreme 

conditions in vivo (Ordas and Figueras, 1998, Casas et al. 2002). In a 5 yr study 

conducted in Spain, there was an annual pattern of P. olseni infection of Ruditapes 

decussatus. Lower mean infection intensity and prevalence was observed in winter and 

higher infection intensity and prevalence was observed from spring to autumn. The 

temporal pattern o f parasite development was significantly associated with the seawater 

temperature; maximum infection intensity occurred when seawater temperature was >15 

°C. Mortality of R. decussatus peaked in spring and summer, after peaks of high parasite 

infection intensity and coinciding with high seawater temperature. It has been suggested 

that, like P. marinus infections in C. virginica, P. olseni infection in clams is related to 

age or size, with parasite cells only detectable in clams >20 cm (>lyr old) (Villalba et al. 

2005).

Dissertation research summary

The initial parasite survey of C. ariakensis and sympatric bivalve shellfish species 

highlighted the existence of both viral and protozoan pathogens that could pose a severe 

risk to native Bay bivalve species. Molecular and histological characterization of a new 

Chinese Perkinsus species was followed by laboratory experiments undertaken to 

examine the potential for transmission of this exotic Perkinsus species to the native
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eastern oyster and the hard clam, Mercenaria mercenaria. Pure cultures of P. olseni as 

well as cells harvested from naturally-infected clam tissues were used in direct 

inoculation experiments and a bath challenge experiment to additionally look at the 

potential for transmission and pathogenicity of this Perkinsus species to local Bay 

bivalves. Results of Perkinsus spp. transmission experiments suggested that C. virginica 

and M. mercenaria may be susceptible to both of these exotic Perkinsus species.
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Chapter 1. Survey of Crassostrea ariakensis and other oyster species in Asia for 

Perkinsus spp., molluscan herpesviruses, and other parasites: implications for non­

native oyster introduction to Chesapeake Bay

ABSTRACT

With the drastic decline of eastern oyster, Crassostrea virginica, populations in 

the Chesapeake Bay due to over-fishing, diseases and habitat destruction, there is interest 

in Maryland and Virginia in utilizing the non-native oyster species, Crassostrea 

ariakensis, for aquaculture, fishery resource enhancement, and ecological restoration.

The International Council for the Exploration of the Sea (ICES) recommends that non­

native species be examined for ecological, genetic and disease relationships in the native 

range prior to a deliberate introduction to a new region. Therefore, a pathogen survey of 

C. ariakensis and other sympatric oyster species was conducted on samples collected in 

the People’s Republic of China, Japan and Korea, using molecular diagnostics and 

histopathology. Molecular assays focused on two types of pathogens: protistan parasites 

in the genus Perkinsus and herpesviruses, both with known impacts on commercially 

important molluscan species around the world, including in Asia. PCR amplification and 

DNA sequence data from the internal transcribed spacer region of the ribosomal RNA 

gene complex revealed the presence of two Perkinsus species not currently found in USA 

waters: Perkinsus olseni and an undescribed Perkinsus species. In addition, molecular 

analyses revealed three different strains of molluscan herpesviruses in oysters from
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several potential C. ariakensis broodstock acquisition sites in Asia. Viral gametocytic 

hypertrophy, Chlamydia-like organisms, a Steinhausia-like microsporidian, Perkinsus 

sp., Nematopsis sp., ciliates, and cestodes were also detected by histopathology.

INTRODUCTION

The eastern oyster, Crassostrea virginica, is important both economically and 

ecologically in the Chesapeake Bay. Oyster populations have been in a severe state of 

decline in recent decades due to combined effects of over-harvesting, habitat loss and 

disease pressures from marine pathogens (Mann et al. 1991). In the State o f Virginia, 

oyster landings exceeding 6 million bushels in the 1930s have declined to less than 

20,000 bushels since the 1990s (National Research Council 2003, Allen 2005). In 1995, 

a Virginia General Assembly resolution requested that the Virginia Institute o f Marine 

Science determine the appropriate legal process for, and examine the feasibility of, 

introducing a non-native oyster species to enhance ecological benefits and revitalize the 

oyster industry in the Chesapeake Bay region. Initial results o f research using the Pacific 

oyster, Crassostrea gigas, which has been successfully introduced at several locations 

around the world, suggested that this oyster species would not perform well in the 

Chesapeake Bay (Calvo et al. 1999). The search for another non-native oyster species 

that might be more suitable for the regional conditions was therefore initiated.

Considerable interest has recently focused on the Suminoe oyster, Crassostrea 

ariakensis, which resembles the native oyster, Crassostrea virginica, in taste (Grabowski 

et al. 2003), and is tolerant of temperate to sub-tropical water temperatures, and variable 

salinities. Field trials conducted in Virginia waters have documented lower mortality and 

faster growth by the Suminoe oyster, as compared with the native oyster. Disease 

surveys of triploid Suminoe oysters deployed in these side-by-side trials also suggest that,
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in comparison to the native eastern oyster, C. ariakensis is relatively resistant to 

infections of Haplosporidium nelsoni and Perkinsus marinus (Calvo et al. 2001, Orner 

2005), the two major parasites that have decimated C. virginica oyster populations in 

Chesapeake Bay since the 1950s (Sindermann 1990).

Based on significant impacts that non-native introductions o f various aquatic 

species have had around the world, the International Council for the Exploration of the 

Seas (ICES) developed a Code o f Practice on Introductions and Transfers of Marine 

Organisms (ICES 2005). The code describes a series of protocols to be followed prior to 

introductions of exotic animals. A thorough review of the ecological, genetic and disease 

impacts on native bivalves of the proposed introduced species in its natural range and in 

donor locations is recommended. These, and similar recommendations from other 

organizations, were the impetus behind a survey that we conducted on the parasites of 

Crassostrea ariakensis and other sympatric oysters in the C. ariakensis native range of 

China, Japan and Korea.

Previous research has documented the harmful impact o f both Perkinsus spp. and 

herpes-like viruses on molluscan species in Asia (Choi and Park 1997, Park and Choi 

2001, Chang et al. 2005). This fact, along with the ready availability of molecular assays 

for these organisms (Casas et al. 2002, Renault et al. 2000a), prompted the specific 

screening for these pathogens in Asian oyster populations. Since the discovery of P. 

marinus in Crassostrea virginica oysters along the Gulf of Mexico and Atlantic coasts of 

the USA in the late 1940s and early 1950s (Ray 1952, Mackin et al. 1950), Perkinsus spp. 

parasites have been found worldwide, and many are reported to cause disease in 

commercially important mollusc species. Perkinsus marinus has garnered recognition for 

its devastating effects on Atlantic and Gulf of Mexico USA oyster populations (Andrews
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and Hewatt 1957, Burreson and Ragone Calvo 1996), and in the Chesapeake Bay region,

P. chesapeaki (= P. andrewsi) (Burreson et al. 2005) has been associated with disease 

outbreaks in Mya arenaria and Tagelus plebeius (Dungan et al. 2002). Clam and oyster 

mortalities have also occurred in conjunction with Perkinsus spp. infections on the 

Atlantic and Mediterranean coasts of Europe (DaRos and Cazonier 1985, Azevedo 1989, 

Figueras et al. 1992, Santmarti et al. 1995, Montes et al. 2001, Villalba et al. 2005), in 

Australia (Lester and Davis 1981, Goggin and Lester 1995) and in Korea (Choi and Park 

1997, Park and Choi 2001).

In addition to Perkinsus spp. parasites, herpes-like viruses and herpesviruses can 

be a devastating problem leading to severe economic losses, particularly in hatcheries 

where they can cause massive mortality in larvae and juvenile oysters (Hine et al.1992,

Le Deuff et al. 1994, Arzul et al. 2001, Friedman et al. 2005). Numerous cases of herpes­

like viruses affecting commercial marine molluscs have been reported around the world, 

the earliest in 1972 in Crassostrea virginica in Maine, USA (Farley et al. 1972). The 

herpes-like viruses have been reported in the Pacific oyster, C. gigas (Hine et al. 1992, 

Nicolas et al. 1992, Renault et al. 1994, Friedman et al. 2005), the European flat oyster 

Ostrea edulis (Comps and Cochennec 1993, Renault et al. 2000a), the Australian flat 

oyster, Ostrea angasi (Hine and Thorn 1997), larvae of the Chilean oyster, Tiostrea 

chilensis, in New Zealand (Hine et al. 1998), the European carpet shell clam, Ruditapes 

decussatus (Renault et al. 2001), the Manila clam, Ruditapes philippinarum, (Renault 

1998) and the scallop, Pecten maximus, in France (Arzul et al. 2001). A similar herpes­

like virus may be responsible for mortality events in abalone, Haliotis diversicolor 

supertexta, in Taiwan (Chang et al. 2005).
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Unlike the larvae and some juvenile oysters, adult Crassostrea gigas oysters 

appear capable of surviving asymptomatically with OsHV-1 infections (the original strain 

of mollusc herpesvirus sequenced from French C. gigas) (Arzul et al. 2002) and prior to 

death, no gross physiological signs are detectable in the infected individuals. 

Histopathological signs indicative of infection include enlarged and abnormally shaped 

nuclei and abnormal chromatin patterns throughout the connective tissue (Renault et al.

1994). The experience in French hatcheries has shown that this pathogen is likely to be 

vertically transmitted from broodstock to progeny, and can be very difficult to eradicate 

from facilities (Arzul et al. 2001). Consequently, if introduced along with C. ariakensis, 

molluscan herpesviruses could have a devastating impact on the remaining C. virginica 

populations in Chesapeake Bay, and on the growing aquaculture industry in the USA 

mid-Atlantic region.

In accordance with the ICES recommendation that non-native species be 

examined for disease in their native range prior to a deliberate introduction into a new 

region, a pathogen survey was conducted of C. ariakensis and other sympatric oyster 

species on samples collected in China, Japan and Korea. Perkinsus sp. and other 

metazoan parasites were observed by histology peformed by the VIMS pathology 

laboratory. Molecular diagnostics developed to target Perkinsus spp. and OsHV-1 

identified two Perkinsus species not currently found in USA waters (Perkinsus olseni and 

an undescribed Perkinsus species), as well as three genetic variants of molluscan 

herpesviruses that are highly similar in DNA sequence to OsHV-1 in the genomic region 

analyzed. It should be noted that recent studies using these same molecular diagnostic 

assays have detected the two endemic Perkinsus species, P. marinus and P. chesapeaki 

(Burreson et al. 2005, Audemard et al. 2006), however no evidence o f molluscan
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herpesviruses has been detected previously in bivalve hosts along the US east and Gulf 

coasts (Friedman et al. 2005).

MATERIALS AND METHODS 

Sample collection and preparation. Crassostrea ariakensis and, inadvertently, 

several other oyster species samples (see below), were collected from 23 coastal sites in 

China, Japan and Korea between 1999 and 2005 (Fig. 1 and Table 1). Additional oyster 

hemolymph samples were taken from hatchery-reared C. ariakensis including F 1 

northern China C. ariakensis (NCA) spawned from broodstock collected from the Yellow 

River in China in 1999, FI southern China C. ariakensis (SCA) spawned from 

broodstock collected from the Dafen River in China in 1999, and west coast C. ariakensis 

(WCA), spawned from broodstock imported to VIMS from Washington, USA in 1999. 

Adductor muscle, mantle, gill tissue and/or hemolymph from each individual were 

preserved in either DMSO (25 mM EDTA, 20% DMSO and saturated NaCl) or 95% 

ethanol for DNA extraction and PCR analysis. When samples were additionally 

preserved and processed for histological analysis (Table 1), a sterile blade was used to 

excise a transverse tissue section through the visceral mass, and histological samples 

were fixed in Davidson’s solution (Shaw and Battle 1957). Because of the large size of 

the oysters in the 2002 Chinese samples, two tissue sections were preserved for each 

oyster, one that included digestive gland, gill and mantle, and one that included adductor 

muscle, heart and kidney. Paraffin-infiltrated histological tissues were embedded, 

sectioned at 5—6 pm thickness, and sections were stained with Mayer’s hematoxylin and 

eosin for microscopic analyses. Examinatin of hematoxylin and eosin stained tissue
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sections from those oysters collected in 2002 were performed by members of the VIMS 

oyster pathology laboratory.

Nucleic acid extraction. Genomic DNA was extracted individually for each 

oyster, from excised mantle and gill snips, using the DNeasy® Tissue Kit (Qiagen Inc., 

Valencia, CA) following manufacturer’s protocols. Hemolymph samples were 

centrifuged at 16,000 x g for 5 min and precipitated floccules were then subjected to 

DNA extraction with the DNeasy® Tissue Kit. DNA was eluted in 50-200 pi o f elution 

buffer.

Test for amplifiable DNA. In order to assure that amplifiable DNA was present 

in all extracted samples, genomic DNAs were tested using universal small subunit 

ribosomal RNA (SSU-rRNA) gene primers 16S-A (5'- 

CCGAATTCGTCGACAACCTGGTTGATCCTGCCAGT-3') and 16S-B (5'- 

GGATCCAAGCTTGATCCTTCTGCAGGTTCCCTAC-3') (modified from Medlin et al. 

1988) with an expected amplification product of approximately 1,800 bp. Each PCR 

reaction contained the following: 20 mM Tris-HCl (pH 8.4), 50 mM KC1, 0.75 mM 

MgCE, 0.1 mM of each dNTP, 0.5 pM of each primer, 0.0125 U p f 1 Taq polymerase, 0.2 

mg m l'1 bovine serum albumin (BSA), and 0.5 pi genomic DNA (10—50 ng total). 

Amplifications were performed with an initial denaturation of 94 °C for 4 min, followed 

by 35 cycles at 94 °C for 30 s, 45 °C for 30 s, 65 °C for 2 min, with a final elongation at 

65 °C for 2 min. Following amplification, 3 pi of PCR product was analyzed by agarose 

gel electrophoresis (2%), stained with ethidium bromide and visualized under UV light. 

Images were recorded with an Alpha Innotech FlourChem® (San Leandro, CA) imaging 

system.
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Genus-specific Perkinsus spp. PCR assay. Screening for Perkinsus spp. DNA 

was performed using Perkinsus genus-specific primers that target the internal transcribed 

spacer (ITS) region of the rRNA gene complex, modified slightly from Casas et al.

(2002); PerkITS-85 (5'-CCGCTTTGTTTGGATCCC-3') and PerkITS-750 (5'- 

ACATCAGGCCTTCTAATGATG-3'). Each PCR reaction contained the following: 20 

mM Tris-HCl (pH 8.4), 50 mM KC1, 1.5 mM M gCf, 0.2 mM of each dNTP, each primer 

at 1.0 pM, 0.025 U p i'1 Taq polymerase, 0.05 mg m l'1 BSA, and 0.5 pi genomic DNA 

(10—50 ng total). Amplifications were performed with an initial denaturation of 95 °C 

for 4 min followed by 40 cycles of: 95 °C for 1 min, 53 °C for 1 min, 65 °C for 3 min, 

with final elongation at 65 °C for 5 min. Following amplification, 4 pi of PCR product 

was analyzed as described above.

Molluscan herpesvirus PCR assay. The ‘A’ region of the molluscan 

herpesvirus genome encoding a gene of unknown function (Batista et al. 2007) was 

amplified using nested ‘A ’ region primer pairs (Renault et al. 2001). First a product of 

approximately 1,000 bp was amplified, followed by an approximate 900 bp product in the 

nested reaction. For the A3 (5'-GCCAACCGTTGGAACCATAACAAGCG-3') / A4 (5'- 

GGGAATGAGGTGAACGAAACTATAGACC 3') primer pair (external primers), the 

PCR reaction contained the following: 20 mM Tris-HCl (pH 8.4), 50 mM KC1, 1.0 mM 

MgC^, BSA 0.4 mg m l'1, 0.8 mM of each dNTP, 0.24 uM of each primer, Taq 

polymerase at 0.24 U p i'1, and template DNA at 20 ng p i'1. Amplifications were 

performed with an initial denaturation at 94 °C for 4 min, followed by 35 cycles of: 94 

°C for 4 min, 50 °C for 30 sec, and 72 °C for 30 sec, with final elongation at 72 °C for 5 

min. Reaction conditions and reagent concentrations were the same for the internal 

amplification reaction using the A5 (5'-CGCCCCAACCACGATTTTTCACTGACCC-
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3')/A6 (5'-CCCGTCAGATATAGGATGAGATTTG-3') primer pair; however, 0.5 pi of 

the initial PCR reaction after the A3/A4 amplification was used in the A5/A6 reaction in 

place o f genomic DNA. Following amplification using the A5/A6 primers, 5 pi of PCR 

product was analyzed by agarose gel electrophoresis as described above.

In situ DNA probe hybridization (ISH) assays. Paraffin-infiltrated tissues from 

two different animals, one collected from Podi, Beihai, China, in 1999, and another from 

Beihai, China, collected in 2005, were cut into 5 pm tissue sections for in situ 

hybridization (ISH) assays. A genus-specific, 5' digoxigenin-labeled gQmxs-Perkinsus 

probe (Elston et al. 2004) was used to specifically target Perkinsus spp. SSU-rRNA 

sequences. Digoxigenin-labeled oligonucleotides were obtained from Operon 

Biotechnologies, Inc. (Huntsville AL). The ISH protocol of Stokes and Burreson (1995) 

was followed, with the modifications of Elston et al. (2004). Pronase at a final 

concentration o f 0.125 mg m L'1 was used for permeabilization during a 30 min 

incubation. A probe concentration of 7 ng p f 1 was used for hybridization. An anti- 

digoxigenin antibody linked to alkaline phosphatase was used in conjunction with 

NBT/BCIP for colorimetric detection o f bound probe. Negative controls included 

duplicate histological sections of all tested samples, which received hybridization buffer 

without probe during hybridization incubations.

PCR-RFLP identification of oyster host species. Species identification of host 

oyster samples was carried out using a molecular diagnostic key based on the PCR 

amplification and restriction enzyme digestion of the ITS-1 gene region (Cordes and 

Reece 2005). PCR amplifications was performed using the primers of Hedgecock et al. 

(1999). The PCR reaction contained the following: 20 mM Tris-HCl (pH 8.4), 50 mM 

KC1, 1.5 mM MgCL, 0.2 mM of each dNTP, 0.1 pM of each primer, Taq polymerase at
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0.25 U p i'1 and template DNA at 0.2 ng p i'1. Amplifications were performed with an 

initial denaturation at 95 °C for 3 min, followed by 30 cycles of: 95 °C for 1 min, 52 °C 

for 2 min, and 72 °C for 2 min, with a final elongation at 72 °C for 5 min. Amplification 

products were digested with the diagnostic restriction enzymes Hae III and Dde II 

following manufacturer protocols (New England Biolabs, Inc., Beverly, MA, USA). 

Following amplification and digestion, 4 pi of the initial PCR product and 10 pi of the 

digested PCR product, respectively, were electrophoresed on a 3% (1.5% agarose and 

1.5% low-melt agarose) agarose gel, stained with ethidium bromide, and visualized under 

UV light. Banding patterns were compared to those of reference oyster species for 

species identifications.

Cloning and Sequencing. PCR products of the Perkinsus spp. ITS region and 

those amplified by primers designed to target OsHV-1 sequences were cloned into the 

plasmid pCR®4-TOPO® and transformed into Escherichia coli using a TOPO TA 

Cloning® Kit (Invitrogen, Carlsbad, CA) following the manufacturer’s protocols. 

Transformed bacterial colonies were screened for inserts using a boil-prep method 

followed by a PCR-based screening reaction using the Ml 3 forward and reverse primer 

pairs supplied in the cloning kit, or by Eco RI digest following plasmid DNA isolation.

When using the Eco RI digest method, 4 ml of 2YT media was inoculated with 

transformed bacterial colonies and incubated for 12—15 h in a 37°C-water bath while 

shaking at 200 rpm. Plasmid DNA was purified from bacterial cultures using a Qiaprep 

Spin Miniprep Kit (Qiagen Inc., Valencia, CA) and electrophoresed on a 2% agarose gel. 

Eco RI restriction digestions were performed in 15 pil reactions containing 3.0 pi of 

purified plasmid DNA, 10.2 pi of sterile distilled water, 1.5 pi of lOx reaction buffer, and 

0.3 pi of Eco RI restriction endonuclease. Plasmid DNA was digested at 37 °C for 3 h,
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and 10 pi of the digested plasmid DNA was electrophoresed on a 3% (1.5% agarose and 

1.5% low melt agarose) agarose gel, stained with ethidium bromide and visualized under 

UV light.

For the PCR-based screening method, bacterial colonies were picked from agar 

plates using a sterile wooden toothpick, and inoculated into 10 pi of sterile water in 200 

pi plastic strip tubes. Inoculated water samples were boiled for 4 min at 94 °C and 0.5 pi 

of the boiled preparation was used in a PCR reaction using the M l 3 forward and reverse 

primers as described previously (Moss et al. 2006). Following amplification with the 

M l 3 primer pair, 3 pi of PCR product was electrophoresed on a 2% agarose gel, stained 

with ethidium bromide and visualized under UV light as described above.

Prior to sequencing, PCR products from clones containing the correct insert size 

were treated with shrimp alkaline phosphatase (SAP) and exonuclease I (Exo I) 

(Amersham Biosciences, Piscataway, NJ) in order to degrade nucleotides and single­

stranded DNA (primers) remaining after PCR. Five microliters of the Ml 3 PCR product 

was combined with 0.5 units of SAP and 5.0 units of Exo I and incubated at 37 °C for 30 

min, 80 °C for 15 min and 15 °C for 5 s.

Plasmid inserts or PCR products of plasmid inserts were sequenced bi- 

directionally, using the ThermoSequenase labeled primer cycle sequencing kit 

(Amersham Pharmacia, Cleveland, OH) according to methods as described previously 

(Reece and Stokes 2003), or the Big Dye Terminator kit (Applied Biosystems, Norwalk, 

CT) with M l3 sequencing primers as described previously (Moss et al. 2006).

Analysis of Perkinsus spp. and molluscan herpesvirus sequences. Perkinsus 

spp. and molluscan herpesvirus sequences were compared to those deposited in 

GenBank, and those compiled previously by researchers at VIMS, using BLAST (basic
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local alignment search tool) searches (Altschul et al. 1990) of the National Center for 

Biotechnology Information (NCBI) database.

Available ITS region sequences from Perkinsus spp., and ‘A ’ fragment sequences 

of molluscan herpesviruses, were downloaded from GenBank and included in 

phylogenetic analyses of the sequences obtained in this study. Representative Perkinsus 

spp. ITS region sequences included the following: P. marinus AY295177—AY295186; 

P. chesapeaki AF091541, AF440466, AF440468, AY876302, AY876304, AY876306, 

AY876308, AY876312, AY876314; P. olseni AF441207-AF441211, AF441213- 

AF441217; P, mediterraneus AY487834—AY487843; P. honshuensis DQ516696—

DQ516702 and P. qugwadi AF15128. Representative molluscan herpesvirus sequences 

included the genome sequence of OsHV-1, AY509253 and sequences AY459364 and 

AY459362.

Perkinsus spp. ITS region and molluscan herpesvirus sequences were aligned 

separately using the CLUSTAL-W algorithm (Thompson et al. 1994) in MacVector 

8.0.1, with open and extend gap penalties of seven and three, respectively. Neighbor- 

joining and parsimony analyses o f Perkinsus spp. ITS region sequences were conducted 

using PAUP*4bl0.0 (Swofford 2002). Bootstrap analyses were done with 10 random 

additions of 100 bootstrap replicates with gaps treated as missing data. For jackknife 

analyses, 30% deletion was done with 10 random additions and 100 replicates with gaps 

treated as missing data.

RESULTS

Host identifications. The species identification o f each individual was 

determined using the molecular genetic PCR-RFLP key developed by Cordes and Reece
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(2005) (Table 1). Although only the host species Crassostrea ariakensis was targeted for 

this study, and the animals were identified by fishermen and scientists in Asia as C. 

ariakensis, many other Crassostrea species, and even a Saccostrea sp., were found 

among the samples (Zhang et al. 2005, Cordes and Reece 2005).

PCR-based screening results. PCR-based screening results from locations in 

Japan, China and Korea (Fig. 1) revealed that molluscan herpesviruses and Perkinsus 

spp. parasites are widespread in Asian populations of Crassostrea ariakensis,

Crassostrea hongkongensis and other oyster species found at the same sites (Table 2).

The Itoki River, Japan; Souchang River and Chengcun, China; and Kahwa and Sumjin 

River, South Korea sites had the highest prevalence of molluscan herpesviruses of the 

locations sampled (Table 2). DNA evidence of Perkinsus spp. infections in C. ariakensis 

and other bivalve species was seen at several Japanese and Chinese sampling sites. DNA 

from the undescribed Perkinsus species was detected in all samples collected between 

1999 and 2005 from sites in southern China indicating that the parasite is endemic to that 

region (Table 2).

Perkinsus marinus DNA was detected in Virginia Institute of Marine Science 

(VIMS), USA hatchery stocks of Crassostrea ariakensis, however, none o f the oysters 

screened from the VIMS hatchery were PCR-positive for molluscan herpesviruses (Table 

2).

Histological screening results. The viral, bacterial, protistan and metazoan 

parasites detected in oysters by histopathology at eight sites sampled in 2002 are listed in 

Table 3 and illustrated in Fig. 2 and Fig. 3. Most parasites were uncommon. Although 

molluscan herpesvirus DNA was detected by PCR in 4 of 37 animals screened from one 

of the samples also examined by histology, no histological evidence of herpes viral
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Table 1. Sampling sites, abbreviations used, sample sizes, bivalve species present, analyses performed and general results 

(+ or -) o f assays. Sampling sites in China are ordered from northern to southern locations, and are listed chronologically for multiple 

collections from a single site. Positive (+) assay results in the molecular assays indicate that either molluscan herpesvirus or Perkinsus 

sp. DNA was detected (Table 2) and for the histological analysis that a potential pathogen was detected (Table 3).

Year Sampling Location 
(sample abbreviation)

Natural (N) 
Cultivated (C)

Sample 
Size (N) Oyster Species Assays Performed Assay Results 

(+ or -)

1999
Japan
Itoki River, Kyushu (IR) N 50 C. ariakensis Molecular +

2003 Ariake Sea (AK) N 24 C. gigas, C. sikamea Molecular -

2004 Amakusa (AM) N 60 C. gigas Molecular -

2004 Midori (MI) N 68 C. gigas Molecular -

2005 Mie Prefecture (JPAB05) C 217 C. ariakensis, C. sikamea, Molecular +

2004
South Korea
Seogwipo (SE) unknown 161

C. gigas 

Saccostrea sp., C. gigas, Molecular

2004 Kahwa River (KR) unknown 35
unknown sp.

C. ariakensis, C. gigas Molecular +
2004 Sumjin River (SR) unknown 20 C. ariakensis Molecular +
2004 Kanghwa Island, Inchon unknown 20 C. ariakensis Molecular +

1999

(IN)
People’s Republic of 
China (PRC)
Yellow River, Bohai Sea, N 43 C. ariakensis Molecular +

2002
Shandong (YR)
Dajiawa, Shandong (DJ) N 26 C. ariakensis, C. Molecular

hongkongensis Histological -
tooo
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2002 Chengcun, Yanxi, Fujian 
(CH)

C 37

2002 Longhai, Fujian (LH) C 9

2002 Tong’an, Fujian (TA) N 28

1999 Yamen River, Zhuhai, 
Guangdong (Z)

N 50

1999 Souchang River, 
Yangjiang, Guangdong 
(YJ)

N 50

2002 Shenzhen, Guangdong 
(SZ)

N 13

2002 Guandu, Zhanjiang, 
Guangdong (GD C)

C 35

2002 Guandu, Zhanjiang, 
Guangdong (GD_N)

N 25

2003 Zhanjiang, Guangdong 
(ZJ)

C 71

1999 Dafen River, Beihai, 
Guangxi Zhuang (DR)

N 50

2002 Dafen River, Beihai, 
Guangxi Zhuang (DR 02)

N 17

2002 Podi, Beihai, Guangxi 
Zhuang (PO)

C 39

2003 Beihai, Guangxi Zhuang 
(BC)

N 64

2005 Beihai, Guangxi Zhuang 
(B C 05)

N 113

2003 Lingshui, Hainan(FIN) C 19

C. ariakensis, C. 
hongkongensis 

C. hongkongensis

C. ariakensis, C. 
hongkongensis 

C. hongkongensis

C. hongkongensis

C. ariakensis, C. 
hongkongensis 

C. hongkongensis

C. hongkongensis

C. ariakensis, C. 
hongkongensis 

C. ariakensis, C. 
hongkongensis 

C. ariakensis, C. 
hongkongensis 

C. ariakensis, C. 
hongkongensis 

C. ariakensis, C. 
hongkongensis 

C. ariakensis, C. 
hongkongensis 

Pinctada margaritifera, P. 
martensii, unknown sp.

Molecular
Histological
Molecular

Histological
Molecular

Histological
Molecular

Molecular

Molecular
Histological
Molecular

Histological
Molecular

Histological
Molecular

Molecular

Molecular
Histological
Molecular

Histological
Molecular

Molecular
Histological
Molecular
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USA hatchery stocks
2000 SCA hatchery (SCA) C 52

(FI of DR, PRC)
2002 NCA hatchery (NCA) (FI C 50

of YR, PRC)
2003 WCA hatchery (WCA) C 49

C. ariakensis, C. 
hongkongensis 
C. ariakensis

Molecular

Molecular

C. ariakensis Molecular



31

Figure 1. Map of sampling locations. IR indicates Itoki River, Kyushu, Japan; YR, 

Yellow River, Bohai Sea, China; Z, Yamen River, Zhuhai, Guangdong Province, China; 

YJ, Souchang River, Yangjiang, Guangdong Province, China; DR, Dafen River, Beihai, 

Guangxi Zhuang Province, China; CH, Chengcun, Yanxi, Fujian Province, China; GD, 

Guandu, Zhanjiang, Guangdong Province, China; SZ, Shenzhen, Guangdong Province, 

China; PO, Podi, Beihai, Guangxi Zhuang Province, China; DJ, Dajiawa, Shandong 

Province, China; Zi/Longhai, Fujian Province, China; TA Tong’an, Fujian Province, 

China; SE, Seogwipo, South Korea; KR, Kahwa River, South Korea; SR, Sumjin River, 

South Korea; IN, Kanghwa Island Inchon, South Korea; ZZVLingshui, Hainan, China; ZJ  

Zhanjiang, Guangxi Zhuang Province, China; BC, BC05, Beihai, Guangxi Zhuang,

China; AK, JPAB05, Ariake Sea, Japan; ZMAmakusa, Japan; M I Midori, Japan.
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infection was observed. In addition to the parasites listed in Table 3, a sample o f 33 

Crassostrea hongkongensis from southern China collected in 2003 had 18 of 26 female 

oysters (69%) infected with a Steinhausia-Wke microsporidian in the ova (Fig. 2D). 

Unfortunately, the exact source location for this sample is unknown.

Among the 17 oysters sampled from Beihai, China, in 2005 that tested positive 

for Perkinsus sp. infections by PCR, only one showed lesions typical of Perkinsus sp. 

when examined histologically. In oyster BC05Ca-20, numerous mature Perkinsus sp. 

signet ring trophozoites of 5—10 pm diameters, subdividing 5 -10  pm diameter schizonts 

and clusters of multiple immature sibling trophozoites of 3 -4  pm diameters occurred 

(Fig. 3). Perkinsus sp. parasite cells (552) enumerated in one section occurred in multi­

focal stomach epithelium lesions (43%), rare lesions in digestive gland epithelia, among 

connective tissues of the mantle (27%), visceral mass (15%), and gills (10%) and 

systemically circulating both free and phagocytosed within host hemocytes, in the oyster 

vasculature (3%).

ISH results. In situ hybridization probes designed to target Perkinsus species 

cells hybridized only to Perkinsus sp. cells in oyster samples positive for Perkinsus sp.

DNA by PCR analysis. Figure 3A and B shows two consecutive sections from the 

Crassostrea hongkongensis from Beihai, China, BC05Ca-20, described above, infected 

with the undescribed Perkinsus species. Figure 3A is an H&E-stained section showing 

Perkinsus sp. cells in the stomach epithelium of the oyster. Figure 3B shows positive in 

situ hybridization with the genus-specific probe to Perkinsus sp. cells. The Perkinsus 

genus-specific probe labeled cells in connective tissues of the gills and mantle, as well as 

in the epithelia of intestine and stomach. In situ hybridization reactions conducted 

without probe produced no signal in tissues of the same host oyster.
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Table 2. Prevalence data for Perkinsus spp. and molluscan herpesvirus (HV) pathogens based on molecular assays. Samples where 

either one or both of these pathogens were detected are listed, all other samples were negative in both assays. The bivalve species 

infected with either pathogen at a sampling site are indicated. The symbol “n/d” indicates that identification o f the Perkinsus sp. was

not done. *No DNA remained for species identification of one oyster with Perkinsus sp. DNA in this sample.

HV
prevalence

(%)

# Perkinsus

Year Sample N # HV 
positive

Perkinsus
sp.

sp.
prevalence

Perkinsus
sp.

Bivalve spp.

positive (%)
Japan

1999 Itoki River, Kyushu 
(IR)

50 13 26.0 9 18.0 P. olseni C. ariakensis

2005 Mie Prefecture 
(JPAB05)

170 5 2.9 0 - C. ariakensis

29 2 6.9 0 - C. gigas
45 2 4.4 0 - C. sikamea

South Korea
2004 Kahwa River (KR) 35 10 28.6 0 - C. ariakensis
2004 Sumjin (SR) 20 8 40.0 0 - C. ariakensis
2004 Kanghwa Island, 

Inchon (IN) 
China

20 1 5.0 0 C. ariakensis

1999 Yellow River, Bohai 
Sea, Shandong (YR)

43 0 - 2 4.7 P. olseni C. ariakensis

2002 Tong’an, Fujian 
(TA)

28 0 “ 1 3.6 undescribed C. ariakensis

2002 Chengcun, Yanxi, 
Fujian (CH)

37 4 10.8 6 16.2 undescribed C. hongkongensis

U)4̂
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1999 Yamen River, 50 5
Zhuhai, Guangdong
(Z)

1999 Souchang River, 50 10
Yangjiang,
Guangdong (YJ)

2002 Shenzhen, 13 0
Guangdong (SZ)

2002 Guandu, Zhanjiang, 35 0
Guangdong, (GD C)

2002 Guandu, Zhanjiang, 25 0
Guangdong (GD_N)

2003 Zhanjiang, 1 0
Guangdong, (ZJ)

70 0
1999 Dafen River, Beihai, 26 0

Guangxi Zhuang
(DR)

24 1
2002 Podi, Beihai, 14 0

Guangxi Zhuang
(PO)

24 0
2003 Beihai, Guangxi 59 0

Zhuang (BC)
2005 Beihai, Guangxi 12 0

Zhuang (B C 05)
101 0

2003 Lingshui, Hainan 19 0
(HN)

5 10.0 P. olseni C. hongkongensis

1 2.0 P. olseni C. hongkongensis

1 7.6 undescribed C. hongkongensis

4 11.4 undescribed C. hongkongensis

3 12.0 undescribed C. hongkongensis

1 100.0 undescribed C. ariakensis

32 45.7 undescribed C. hongkongensis
9 34.6 undescribed C. ariakensis

2 8.3 undescribed C. hongkongensis
2* 14.3 undescribed C. ariakensis

2* 8.3 undescribed C. hongkongensis
11 18.6 undescribed C. hongkongensis

4 33.3 undescribed C. ariakensis

36 35.6 undescribed C. hongkongensis
12 63.2 undescribed Pinctada

margaritifera, P. 
martensii, unknown

U)
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2002
2003

VIMS NCA 
VIMS WCA

49
50

0
0

10
1

20.4
2.0

P. marinus 
P. marinus

sp.- not 
distinguished 
C. ariakensis 
C. ariakensis
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Table 3. Histological analysis of oysters collected at seven locations in China in 2002.

Sampling Location N

Natural
(N),

Cultured
(C)

Viral
gametocytic
hypertrophy

Chlamydia­
like

organisms

Perkinsus
sp. Ciliates Nematopsis

sp. Cesto

Dajiawa, Shandong 29 N 0 0 0 4 0 0
Chengcun, Yangxi, 31 C 0 1 1 2 0 1
Fujian
Longhai, Fujian 28 C 0 3 0 2 0 0
Tong’an, Fujian 29 N 0 1 0 2 11 1
Shenzhen, Guangdong 26 N 0 1 0 1 0 0
Guandu, Zhanjiang, 30 N 1 1 0 0 9 0
Guangdong 
Guandu, Zhanjian, 60 C 1 6 3 0 14 0
Guangdong 
Dafen River, Beihai, 30 N 0 1 0 2 0 6
Guangxi Zhuang 
Podi, Beihai, Guangxi 30 C 0 2 2 2 0 5
Zhuang

*<1
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Fig. 2. Parasites observed by histopathology in Crassostrea sp. in China. (A) Viral 

gametocytic hypertrophy (arrow) in gonad o f wild C. hongkongensis from Guandu, 

Zhanjiang, China (B) Chlamydia-like inclusions (arrows) in digestive tubules o f wild C. 

hongkongensis from Guandu, Zhanjiang, China (C) Ciliates (arrows) attached to gill 

epithelium in cultured C. hongkongensis from Chengcun, Yanxi, Fujian, China (D). 

Steinhausia-Mke microsporidian in ovum of wild C. hongkongensis from southern China. 

(E) Spores of Nematopsis-like gregarines (arrows) in cultured C. hongkongensis from 

Guandu, Zhanjiang, China. (F) Encapsulated metacestode (arrow) in gill tissue of wild C. 

hongkongensis or C. ariakensis from Dafen River, Beihai, Guangxi Zhuang, China.
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Figure 3. (A) H&E-stained histological section o f a Crassostrea hongkongensis oyster 

showing Perkinsus sp. cells in the stomach epithelium (arrows). (B) In situ hybridization 

with the Perkinsus sp. genus-specific probe to Perkinsus sp. cells (arrows) in the stomach 

epithelium.
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Perkinsus spp. ITS region sequences. ITS region PCR amplification products 

were sequenced from a select number o f positive oyster samples. All sequences were 

deposited in GenBank (Table 4). Sequencing of the ITS region amplicons from the 

Perkinsus spp. assay indicated that the Chesapeake Bay-native P. marinus was found in 

VIMS hatchery stocks of Crassostrea ariakensis. This is not surprising, since hatchery- 

reared oysters are exposed to water coming from the adjacent York River, which is 

endemic for P. marinus. ITS region sequences from oysters from the NCA and WCA 

hatchery stocks formed a monophyletic clade with known P. marinus sequences, with 

100% bootstrap support in both neighbor joining distance analysis and in maximum 

parsimony analysis (Fig. 4, Fig. 5). Perkinsus sp. ITS region sequences amplified from 

DNAs extracted from C. ariakensis and Crassostrea hongkongensis oysters collected 

from several Asian sites; including the Yamen and Yellow rivers, China and the Itoki 

River, Kyushu, Japan, formed a monophyletic clade with known P. olseni ITS region 

sequences in both neighbor joining distance analysis, as well as maximum parsimony 

analysis (100% bootstrap support) (Fig. 4, Fig. 5).

Crassostrea ariakensis and C. hongkongensis oysters collected from locations in 

China along the southern coast from Tong’an, Fujian to the Dafen River, Beihai, 

appeared to be infected with an undescribed Perkinsus species. The genus-specific 

Perkinsus spp. primers amplified unique nucleotide sequence fragments o f approximately 

689 bp from numerous oysters. Forty-two clones were sequenced from 16 individual 

oysters selected from six different samples, and were 99.3% similar (uncorrected-p) to 

each other. Overall, 28 of the 42 clones (67%) shared a common ITS rRNA sequence, 

while the other 14 clones all were all unique. BLAST analyses of GenBank suggested 

that these were Perkinsus spp. sequences. Pairwise distances and molecular phylogenetic
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Table 4. GenBank accession numbers associated with Perkinsus spp. ITS rRNA and molluscan herpesvirus (HV) sequences generated

in this study.

Pathogen Source GenBank accession numbers
Perkinsus olseni Itoki River, Kyushu, Japan (IR) EF204075, EF204076

Perkinsus olseni Yellow River, Bohai Sea, Shandong, China 
(YR) EF204073, EF204074

Perkinsus olseni Yamen River, Zhuhai, Guangdong, China (Z) EF204070-EF204072
undescribed Tong’an Fujian, China (TA)
Perkinsus sp. EF204046-EF204050

undescribed Chengcun, Yanxi, Fujian,
EF204034, EF204035, EF204043Perkinsus sp. China (CH)

undescribed 
Perkinsus sp.

Shenzhen, Guangdong, China (SZ) EF204015-EF204018, EF204029-EF204031, EF204036, EF204038, 
EF204039, EF204041

undescribedUllvlviJvi 1 OVVI

Perkinsus sp.
Guandu, Zhanjiang, Guangdong, China (GD) EF204022, EF204051-EF204056

undescribed Dafen River, Beihai, Guangxi Zhuang, China EF204021, EF204024-EF204028, EF204040, EF204044, EF204045Perkinsus sp. (DR)
undescribed 
Perkinsus sp.

Podi, Beihai, Guangxi Zhuang, China (PO) EF204019, EF204020, EF204023, EF204032, EF204033, EF204042

Perkinsus marinus VIMS hatchery (WCA) EF204008-EF204011
Perkinsus marinus VIMS hatchery (NCA) EF204012-EF204014

Ariake Sea, Mie,HV EF221836-EF221839Japan (JPAB05)

HV Kahwa River, EF221840South Korea (KR)

HV Sumjin River, EF221841
South Korea (SR)

HV Yamen River, Zhuhai, Guangdong, China (Z) EF221843
HV Chengcun, Yanxi, Fujian, China (CH) EF221842

HV
Souchang River, Yangjiang, Guangdong, EF221844
China (YJ)

4̂
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analyses confirmed that these sequences were closely related to those of known Perkinsus 

species. In both neighbor joining and maximum parsimony analyses, these new parasite 

ITS region sequences grouped with those of known Perkinsus spp. (Fig. 4, Fig. 5). Mean 

pairwise distances (uncorrected-p) of ITS region nucleotide sequences within known 

Perkinsus spp. ranged from 0.2% in the undescribed Perkinsus sp. to 1.6% variation in 

Perkinsus chesapeaki.

Only one ITS region nucleotide sequence was available for Perkinsus qugwadi, 

therefore mean intraspecific ITS variation could not be calculated. ITS rRNA of this new 

Perkinsus sp. was most distantly related to P. qugwadi (63.6%—63.7% similarity), and 

most closely related to the recently described species, Perkinsus honshuensis (89.0%—

89.8% similarity) (Table 5). Nucleotide sequences from this apparent new parasite form 

a well-supported sister group (100% bootstrap support within this species) to the larger 

Perkinsus spp. clade that includes P. marinus, P. mediterraneus and P. olseni (Fig. 4, Fig.

5).

Molluscan herpesvirus sequences. Molluscan herpesvirus DNA was found in 

Crassostrea ariakensis populations at a site in the Itoki River, Ariake Bay, Japan sampled 

in 1999, and was also found in the 2005 samples taken from Mie Prefecture, Japan near 

the first sampling site. A portion of oysters collected at the Kahwa River and Sumjin 

River, South Korea sampling sites, as well as in the Yamen River, Souchang River,

Dafen River, and Chengcun, China sites, were also positive for molluscan herpesvirus 

DNA (Table 3).

A subset of oysters positive for molluscan herpesvirus DNA from the Yamen 

River, Souchang River, Chengcun, China, and Mie, Japan, were chosen as representatives 

from those populations, and their herpesvirus DNA was cloned and sequenced. The
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Figure 4. Perkinsus spp. ITS rRNA gene sequences. Neighbor joining tree determined 

by analysis o f the ITS gene sequences of known Perkinsus spp. sequences and the ITS 

gene sequences o f those Perkinsus spp. found in oysters collected in Japan and China. 

GenBank accession numbers associated with each sample from this study (bold) are 

listed in Table 4.
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Figure 4.
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Figure 5. Perkinsus spp. ITS rRNA gene sequences. Maximum parsimony tree 

determined by analysis with 100 replicates of 10 random additions of the ITS gene 

sequences of the ITS gene sequences of known Perkinsus spp. sequences and the ITS 

gene sequences of those Perkinsus spp. found in oysters collected in Japan and China. 

Maximum parsimony bootstrap support values for each clade are given above the lines 

and jackknife support values are given below the lines. Bold support values indicate 

species clades. GenBank accession numbers associated with each sample from this study 

(bold) are listed in Table 4.
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Table 5. Range of sequence similarities and pairwise distances (uncorrected values) observed among rDNA ITS region sequences 

o f currently accepted Perkinsus spp. from GenBank, and those of the undescribed Perkinsus sp. obtained in this study. The range o f 

observed within species sequence distance is given across the diagonal. Raw distance value ranges between species are given above 

the diagonal, and ranges for percent distance values are given below. “—“ Only one sequence for P. qugwadi was available.

Species P. marinus P.
chesapeaki

P.
mediterraneus P. olseni P.

honshuensis
undescribed 

Perkinsus sp. P. qugwadi

P. marinus 0.000-0.004
0.4% 0.119-0.139 0.053-0.069 0.049-0.063 0.052-0.062 0.112-0.126 0.323-0.330

P. chesapeaki 11.9-13.9% 0.000-0.016
1.6% 0.134-0.148 0.126-0.138 0.117-0.126 0.156-0.175 0.342-0.350

P.
mediterraneus 5.3-6.9% 13.4-14.8% 0.000-0.007

0.7% 0.050-0.065 0.029-0.040 0.119-0.129 0.331-0.335

P. olseni 4.9-6.3% 12.6-13.8% 5.0-6.5% 0.000-0.003
0.3% 0.049-0.060 0.107-0.119 0.333-0.336

P.
honshuensis 5.2-6.2% 11.7-12.6% 2.9-4.0% 4.9-6.0% 0.000-0.006

0.6% 0.102-0.110 0.327-0.331

undescribed 
Perkinsus sp. 11.2-12.6% 15.6-17.5% 11.9-12.9% 10.7-11.9% 10.2-11.0% 0.000-0.002

0.2% 0.363-0.364

P. qugwadi 32.3-33.0% 34.2-35.0% 33.1-33.5% 33.3-33.6% 32.7-33.1% 36.3-36.4% —



molluscan herpesvirus DNA amplified from Crassostrea ariakensis oysters collected 

from the Chinese sites and from the two South Korean sites had variations in observed 

molluscan herpesvirus DNA sequences and polymorphic sequences were found within 

and between oysters from different locations. The level o f polymorphism between the 

viral sequences was low (3.7%) with a combined total of 34 individual randomly 

distributed single nucleotide differences over the entire 917 bp sequence from all of the 

clones analyzed. Three polymorphic nucleotide sites were observed that generally had 

consistent polymorphisms across all individuals within a collection site, except for 

individuals from the 2005 Ariake Sea, Japan sampling (Fig. 6). The molluscan 

herpesvirus DNA amplified from the Yamen River and Souchang River, China, C. 

ariakensis were similar to those viral sequences found in French C. gigas (LeDeuff & 

Renault 1999, Renault et al. 2000b), sharing a thymine at a polymorphic site 604 bp from 

the 5' end of the fragment (primers removed). The molluscan herpesvirus sequences 

amplified from the Chengcun, China, C. ariakensis, and those from both the Kahwa and 

Sumjin rivers, Korea, are similar to that found in C. gigas from Tomales Bay, California, 

USA (Friedman et al. 2005) and in the Itoki River, Japan C. ariakensis, sharing a 

cytosine at that particular polymorphic site. The viral DNA amplified from the Itoki 

River samples and from some of the 2005 Ariake Sea, Japan samples appears to have a 

unique polymorphism at a site 115 bp from the 5’ end o f the fragment, sharing an adenine 

residue where all other viral sequences share a guanine. From the 2005 Ariake Sea,

Japan, molluscan herpesvirus PCR fragments were cloned and sequenced from three 

molluscan herpesvirus-positive C. ariakensis oysters and one positive Crassostrea 

sikamea. The DNA sequences from these oysters suggest that two of the oysters, one C. 

ariakensis and the C. sikamea, were infected with the same strain o f molluscan
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Figure 6. Alignment of molluscan herpesvirus ‘A’ region sequences isolated from 

oysters showing the polymorphic sites unique to viral sequences at each location. Viral 

sequences found in France and in Tomales Bay, California, USA have been deposited 

previously in GenBank, and accession numbers are listed accordingly.
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herpesvirus found in the Japanese C. ariakensis collected in 1999 from the Itoki River, 

and the other two C. ariakensis were infected with the strain commonly seen in France 

and parts o f China. Viral DNAs amplified from Chengcun, China, and Korean C. 

ariakensis shared an additional polymorphic site 761 bp from the 5' end of the A5/A6 

fragment. These viral sequences share a guanine at this site, where all other viral 

sequences share a cytosine.

DISCUSSION

Several potential disease agents, including two different Perkinsus species, 

molluscan herpesviruses and a Steinhausia-like microsporidian, were detected in oysters 

collected from sites in Asia where potential Crassostrea ariakensis broodstocks for 

Chesapeake Bay might originate. Standard ICES protocols should minimize the risk of 

introducing horizontally transmitted pathogens with the host, since broodstock would be 

held under strict quarantine conditions, and only progeny of oysters brought to the USA 

would be introduced into the environment. However, neither the ICES protocols nor a 

mechanical procedure such as cleansing gametes to remove superficial parasites would 

prevent transmission o f pathogens if they infect the gametes themselves. If vertical 

transmission o f any pathogen identified in this survey occurred, they could be introduced 

to the Chesapeake Bay by vertical transmission from infected broodstock to FI or F2 C. 

ariakensis progeny oysters, with the potential for serious negative impacts to already 

depleted native oyster populations. In addition, C. ariakensis could act as a reservoir host 

for exotic pathogens that may be introduced by other means. For example, ballast water 

may have been the source of a possible exotic Bonamia sp. that caused a severe mortality 

event during 2003 in C. ariakensis deployed in North Carolina waters (Burreson et al.
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2004), but has not been documented to infect local native bivalves. The possibility of 

vertical transmission of viruses among aquatic organisms is recognized (Bootland et al. 

1991, Lo et al. 1997, Tsai et al. 1999), and recent transmission studies in France with 

Crassostrea gigas have detected OsHV-1 in three successive generations of oysters 

(Barbosa-Solomieu et al. 2005). In this study, three genetic variants of molluscan 

herpesviruses were detected by PCR.

Two of the pathogens observed histologically pose a threat of introduction to 

Chesapeake Bay via infected broodstock. Viral gametocytic hypertrophy and the 

Steinhausia-like microsporidian were both observed in oyster ova. Viral gametocytic 

hypertrophy has been reported in Crassostrea virginica from Chesapeake Bay (Farley 

1978), and a Steinhausia-\ike microsporidian has been reported in the clam Macoma 

balthica in Chesapeake Bay (Farley 1977). The parasites observed in Asian oysters, 

however, may be different strains or species than those in Chesapeake Bay, and could 

pose problems if introduced. There is substantial evidence for vertical transmission of 

some microsporidian parasites of invertebrate hosts (Kelly et al. 2003, Galbreath et al. 

2004, Vizoso & Ebert 2004), therefore indicating a real possibility for vertical 

transmission of these Asian pathogens.

Although there is no current evidence to suggest that Perkinsus sp. parasites may 

be vertically transmitted, and therefore might not be introduced to a new area through 

importation of small numbers o f infected broodstock that are held in quarantine, past 

studies have found protozoan cells that were described as “Perkinsas-like”, but were not 

a true Perkinsus sp., in male and female scallop gonads. Subsequent infection of the 

larvae post-spawning was observed, suggesting the possibility of vertical transmission 

(Karlsson 1991, Whyte et al. 1993). ICES protocols are being followed, however, the
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potential for vertical transmission of the pathogens observed in this study, and the 

associated risks of introducing the non-native host, must be recognized. Consistent and 

careful disease testing of deployed oysters may need to be conducted if an introduction 

occurs. It should be noted that there was no evidence of molluscan herpesviruses in the 

current VIMS hatchery stocks of C. ariakensis that were screened, and although 

Perkinsus sp. DNA was detected in these samples, it was P. marinus DNA, an endemic 

species. There is currently no evidence of Perkinsus olseni or the new undescribed 

Perkinsus species in the VIMS stocks.

Most parasites observed in the histological analyses conducted here (Table 3) 

were generally uncommon, and are unlikely to be introduced to a new area via infected 

broodstocks. Histological observations indicated tissue tropisms by Perkinsus sp. 

pathogens among both connective tissues and digestive system epithelia o f oysters from 

Beihai, China. These observations are consistent with the detection of Perkinsus sp.

DNAs in this sample, using molecular tools (see below).

Molecular detection assays identified Perkinsus spp. and molluscan herpesvirus 

DNA in many of the samples surveyed. Perkinsus olseni DNA was detected in several 

samples o f Asian Crassostrea ariakensis and C. hongkongensis. Perkinsus olseni is 

known to be widely distributed among molluscs in the Pacific and eastern Atlantic oceans 

(Lester & Davis 1981). With the synonymization with P. atlanticus (Murrell et al. 2002),

P. olseni has been reported to infect a variety of hosts from around the world (Villalba et 

al. 2004), including the blacklipped and the green-lipped abalone in Australia (Lester &

Davis 1981), the carpet shell clam in Portugal (Azevedo 1989), and the Manila clam, in 

Spain, Portugal, northern China, Korea, and Japan (Dungan & Reece 2006). The 

discovery of P. olseni in C. ariakensis, C. hongkongensis, and C. gigas in Japan and
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southern China expands the currently known geographic and host distribution of that 

parasite.

In addition to P. olseni, a previously undescribed Perkinsus species was found in 

populations of C. ariakensis and C. hongkongensis in southern China, as well as in some 

pearl oysters and unidentified bivalves. As discussed in several recent publications 

(Burreson et al. 2005, Reece and Dungan 2006), molecular methods are the only reliable 

way to distinguish Perkinsus spp., because host and environmental elements may 

influence host morphological characteristics. ITS region Perkinsus sp. sequences 

amplified from southern China host sample DNAs grouped with those sequences from 

other Perkinsus spp. However, as with each of the other species, they form a unique 

monophyletic clade within the genus indicating that this is a unique species. The 

similarity among the sequences within this clade, and the genetic distance between these 

sequences and those of other Perkinsus spp., are consistent with the distances observed in 

previous studies that have used the ITS region sequences to discriminate species or 

strains (Brown et al. 2004, Burreson et al. 2005, Dungan and Reece 2006). Sequencing 

of multiple gene regions is recommended to provide additional support for Perkinsus spp. 

phylogenies based on the ITS rRNA region. To date, phylogenies that were based on 

other regions including the large subunit ribosomal RNA and actin gene sequences have 

confirmed results obtained using ITS rRNA (Dungan and Reece 2006, Dungan et al.

2007).

More than 30 years ago Farley (1972) reported, based on transmission electron 

microscopy, a herpes-like virus infecting Crassostrea virginica oysters from Maine. A 

recent survey of oysters from the Atlantic, Gulf o f Mexico, and Pacific coasts of the 

USA, which used molecular diagnostic tools designed originally to detect OsHV-1,
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indicated that a herpes-like virus is currently found only on the Pacific coast o f the 

United States in Tomales Bay, California and not along the US East or Gulf coasts 

(Friedman et al. 2005). Molluscan herpes-like viruses also occur in France (Nicolas et al. 

1992, Comps and Cochennec 1993, Renault et al. 1994, Renault et al. 2000a, Renault et 

al. 2001, Arzul et al. 2002), Australia (Hine and Thorn 1997), New Zealand (Hine and 

Thorn 1997, Hine et al. 1998), and Taiwan (Chang et al., 2005). Previously, at least two 

genetic strains o f molluscan herpesviruses were described; with DNA sequence 

polymorphisms in the 'A' region distinguishing between the original strain (OsHV-1) 

found in France, another French variant was described later (Arzul et al. 2001) and a 

recently described variant strain found in California (Friedman et al. 2005). Based on the 

observation o f three total polymorphic sites within the 4 A ’ region, this study suggests that 

there are at least two different genetic strains of molluscan herpesvirus in Japan, one 

strain in Korea and two strains in China.

Initial sequencing of molluscan herpesvirus DNA detected in Crassostrea 

ariakensis from sites in Korea and in C. hongkongensis in Chengcun, China, suggested, 

based on the site at 604 bp, that these oysters could be infected with the same genetic 

strain that was detected in C. gigas from Tomales Bay, California (Friedman et al. 2005). 

However, additional DNA sequencing revealed that the viral DNAs amplified from 

oysters in Chengcun, China and from Korean C. ariakensis share an additional 

polymorphic site, making them unique from the California molluscan herpesvirus strain. 

Interestingly, molluscan herpesvirus sequences found in oysters from Souchang River 

and Yamen River, China, had the same ‘A ’ region sequence as OsHV-1 that was first 

detected in C. gigas from France (Le Deuff and Renault 1999, Renault et al. 2000b). 

However, molluscan herpesvirus sequences from Japanese oysters have a unique pattern
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of differences at the three polymorphic sites, suggesting that the two Japanese molluscan 

herpesvirus strains could be unique to that geographic region. Sequencing of additional 

gene regions of the molluscan herpesvirus found in Asia may further discriminate strains 

suggested by the polymorphisms observed here in the ‘A’ fragment. Overall, this study 

expands the current known host geographic range of molluscan herpesviruses to include 

Japan, China and Korea, where it infects C. ariakensis, C. hongkongensis, C. gigas and 

C. sikamea.
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DISCLAIMER

According to the International Code of Zoological nomenclature (Article 9), the 

use of a new species name in an unpublished document such as this dissertation does not 

meet the criteria of the Code. Following the criteria outlined by the code, the new 

Perkinsus species name introduced in the following chapter would be invalid, however 

this chapter will be submitted for publication, therefore I request that the use of the new 

species name be allowed in this chapter and in all following references in this document 

solely for the purposes of this dissertation.
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Chapter 2. A Novel Perkinsus sp. Parasite of Oysters in Southern China;

Description of Perkinsus beihaiensis n. sp.

ABSTRACT

Oysters were collected from coastal locations in China from 1999—2006 for parasite 

analyses by molecular, culture and histological techniques. Polymerase chain reaction- 

based assays targeting the internal transcribed spacer (ITS) region o f the ribosomal RNA 

gene complex were performed to detect the presence of Perkinsus spp. parasites. 

Sequencing and phylogenetic analysis of amplified Perkinsus spp. DNAs indicated that a 

novel Perkinsus sp. infects Crassostrea hongkongensis, Crassostrea ariakensis and other 

oyster hosts from the Fujian to Guangxi provinces in southern China. Prevalence o f this 

Perkinsus sp. reaches as high as 60% in affected oyster populations. Analyses of ITS 

region nucleotide sequences and o f large subunit ribosomal RNA and actin genes, 

consistently confirmed the genus affiliation of this Perkinsus sp., but distinguished it 

from currently accepted Perkinsus species. Parasite cell types such as signet ring 

trophozoites of 2— 8 pm diameter were observed histologically, and application of both 

genus Perkinsus and Perkinsus species-specific in situ hybridization probes consistently 

labeled the same Perkinsus sp. cells in histological sections from infected oyster tissues. 

Combined phylogenetic and histological results support the identity of the new parasite 

species, Perkinsus beihaiensis n. sp., in oysters from southern China.
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INTRODUCTION

Since the initial description of Perkinsus marinus as a significant pathogen o f 

Crassostrea virginica oysters (Mackin et al. 1950), and especially with the recent advent 

of highly sensitive and specific diagnostic techniques, numerous new Perkinsus spp. 

parasites have been described worldwide, and the geographic and host ranges of many 

known species also have been expanded. Perkinsus spp. infections may be the most 

thoroughly studied of the molluscan disease agents, due to their notoriety for causing 

significant mortalities among commercially important bivalve species. Perkinsus 

marinus continues to have devastating effects on Atlantic and Gulf of Mexico USA 

oyster populations (Burreson and Ragone Calvo 1996, Soniat 1996). Significant 

mortality events and depressed production have also been associated with P. olseni 

infections among marine molluscs on the Atlantic and Mediterranean coasts o f Europe 

(Azevedo 1989, da Ros and Cazonier 1985, Figueras et al. 1992, Montes et al. 2001, 

Santmarti et al. 1995, Villalba et al. 2005) in Australia (Goggin and Lester 1995, Lester 

and Davis 1981) and along the coasts o f Korea (Choi and Park 1997, Park and Choi 

2001) and Japan (Hamaguchi et al. 1998).

During the past decade, major research efforts have focused on the potential risks 

and benefits o f introducing the Asian oyster, Crassostrea ariakensis, to the Chesapeake 

Bay, USA, in order to restore the severely depleted native oyster population. Field trails 

conducted in Virginia have documented lower mortality and faster growth in C. 

ariakensis, relative to that of the native oyster, C. virginica (Calvo et al. 2001). Disease 

resistance studies conducted as part o f that investigation also suggest that C. ariakensis is 

relatively more resistant to Haplosporidium nelsoni and Perkinsus marinus infections, the
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two pathogens that have contributed significantly to reduction of C. virginica populations 

in Chesapeake Bay (Sindermann 1990).

In China, Crassostrea ariakensis is found naturally from the Bohai Sea in 

northern China to Beihai, Guangxi province, near China’s southern border with Vietnam.

A newly described oyster species, Crassostrea hongkongensis, occurs sympatrically with 

C. ariakensis in southern China, along the coasts of Fujian, Guangdong and Guangxi 

provinces (Wang et al. 2004). Morphological differences reported to distinguish these 

two oyster species are neither clear nor consistent (Lam and Morton 2003), although 

consistent minor anatomical differences are reported (Wang et al. 2004). Reliable 

differentiation between C. ariakensis and C. hongkongensis are currently possible only 

by genetic techniques (Cordes and Reece 2005).

With an introduction of C. ariakensis to the Chesapeake Bay proposed, it is both 

prudent and compliant with the International Council for Exploration of the Seas (ICES) 

protocols (ICES, 2005) to identify the natural pathogens of this oyster species in Asia.

In addition, since C. hongkongensis is sympatric with C. ariakensis in southern China 

waters and easily confused with C. ariakensis that might be imported to the USA for use 

as broodstock (for example see Zhang et al. 2005), it is also important to identify the 

pathogens and parasites of C. hongkongensis. Using PCR-based diagnostics, P. olseni 

was detected in C. ariakensis in Japan, as well as in C. ariakensis and C. hongkongensis 

in northern China. An undescribed Perkinsus sp. was also detected apparently infecting 

several oyster host species in parts of southern China (Moss et al. 2007).

Herein is provided a detailed description of Perkinsus beihaiensis n. sp., based on 

phylogenetic analyses of nucleotide sequences from the internal transcribed spacer region 

of the ribosomal RNA (rRNA) gene complex, of large subunit rRNA gene, and of the
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actin gene. Histologically, this parasite shows the characteristic morphology of other 

described Perkinsus spp. and cells of this parasite enlarge after incubation for five days in 

Ray’s fluid thioglycollate medium (RFTM) (Ray 1952). A PCR-based diagnostic assay 

has been developed and makes possible a report of the prevalence and distribution of P. 

beihaiensis n. sp. in oyster samples from southern China that were collected during 1999- 

-2006.

MATERIALS AND METHODS 

Oyster tissue samples. Wild and cultivated oysters were collected from coastal 

locations in China from 1999—2006 (Chapter 1, Moss et al. 2007, Figure 1, Table 1). In 

some cases, oysters were collected from the same locations over multiple years. 

Hemolymph, adductor muscle, mantle, gill tissue, or visceral mass sections were 

preserved in either dimethyl sulfoxide (DMSO) storage buffer (25 mM EDTA, 20% 

DMSO, and saturated NaCl) or in 95% ethanol, for DNA extraction and PCR analysis. 

Visceral mass sections o f some sample oysters were also preserved in Davidson’s 

solution (Shaw and Battle 1957) for histological examination. In addition to oyster 

collections reported in Moss et al. (2007), oysters were collected in April 2005, and in 

April and November 2006, for use in parasite assays and Perkinsus sp. in vitro 

propagation efforts (Table 1). For detection o f potential exotic infectious agents, oysters 

collected from waters in the Beihai region of southern China during April 2006 were co- 

habitated for up to 3 mo with native Chesapeake Bay bivalve molluscs, in quarantined 

disease transmission experiments. Upon termination of transmission experiments, tissue 

samples from Chinese oysters were also processed for parasite diagnostic assays and 

Perkinsus sp. in vitro isolate propagation (Table 1).
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Figure 1. Map of sampling locations. BC, BC05, Beihai, Guangxi Zhuang, China; CH, 

Chengcun, Yanxi, Fujian Province, China; DR, DR06, Dafen River, Beihai, Guangxi 

Zhuang Province, China; GD, Guandu, Zhanjiang, Guangdong Province, China; HN, 

Lingshui, Hainan, China; PO, Podi, Beihai, Guangxi Zhuang Province, China; QZ06, 

Qinzhou, Guangxi Zhuang, China; SZ, Shenzhen, China; TA, Tong’an, Fujian Province, 

China; ZJ, Zhanjiang, Guangxi Zhuang Province, China.
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Table 1. Locations sampled during this study. PCR results using the P. beihaiensis-specific assay or amplification of the ITS rRNA 
followed by DNA sequencing and phylogenetic analysis are noted. Bivalve species infected with Perkinsus beihaiensis n. sp. are 
indicated. C* refers to cultivated oysters._______________________________________________________________________________
Year Sampling Location N # PCR 

positive
% PCR 
positive

Bivalve sp. infected

2002 Tong’An, Fujian (TA) 28 1 3.6 C. ariakensis

2002 Chengcun, Yanxi, Fujian (CH) 37 6 16.2 C. hongkongensis
2002 Shenzhen (SZ) 13 1 7.7 C. hongkongensis
2002 Guandu, Zhanjiang, Guangdong (GD) C* 35 4 11.4 C. hongkongensis
2002 Guandu, Zhanjiang, Guangdong (GD) 25 3 12.0 C. hongkongensis
2003 Zhanjiang, Guangdong (ZJ) 1 1 100.0 C. ariakensis

70 32 45.7 C. hongkongensis
1999 Dafen River, Beihai, Guanxi Zhuang (DR) 26 9 34.6 C. ariakensis

24 2 8.3 C. hongkongensis
2006 Dafen River, Beihai, Guangxi Zhuang (DR06) 13 2 15.4 C. ariakensis

29 12 41.4 C. hongkongensis
2002 Podi, Beihai, Guangxi Zhuang (PO) 14 2 14.3 C. ariakensis

24 2 8.3 C. hongkongensis
2003 Beihai, Guangxi Zhuang (BC) 59 11 18.6 C. hongkongensis
2003 Lingshui, Hainan (HN) 19 12 63.2 Pinctada margaritifera, P.

martensii, unknown sp.- not
distinguished

2005 Beihai, Guanxi Zhuang (BC05) 12 4 33.3 C. ariakensis
101 36 35.6 C. hongkongensis

2006 Qinzhou, Guangxi Zhuang (QZ06) 15 1 6.7 C. ariakensis
44 3 6.8 C. hongkongensis

O n
O n
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ARFTM and RFTM assays. Homogenized tissue preparations for alternative 

Ray’s Fluid Thioglycollate Medium (ARFTM) assays (La Peyre et al. 2003) were 

inoculated into 24-well culture plates, 4 -2 4  wells per sample. Tissues were incubated at 

27 °C for 48 h to induce enlargement of Perkinsus sp. hypnospore cells, and unstained 

oyster tissue biopsies in culture plate wells were analyzed microscopically with Hoffman 

modulation contrast (HMC) optics, for enumeration of enlarged, refractile Perkinsus sp. 

hypnospores. Relative hypnospore densities in oyster tissues were rated as absent, light, 

moderate, or heavy according to the categories of Ray (1952, 1954); and infection 

prevalences were calculated as the percentage of infected oysters detected in samples. In 

some cases, gill, mantle, and rectal tissues were processed for Ray’s fluid thioglycollate 

medium (RFTM) assays (Ray 1952). Following 27 °C incubation for 5—7 d in RFTM, 

tissues were removed from the culture tubes, macerated on microscope slides, and stained 

with Lugol’s iodine. Stained tissue preparations were examined by brightfield 

microscopy, and Perkinsus sp. infection intensities were categorized on a scale from 

absent (0) to very heavy (5), based on the categories o f Ray (1952, 1954).

In vitro propagation of Perkinsus spp. Selected ARFTM- or RFTM-incubated 

tissues with heaviest Perkinsus sp. hypnospore densities were aseptically transferred to 

culture plate wells, 4—24 wells per plate, containing 2 ml of antimicrobial-supplemented 

DME/F12-3 culture medium (Burreson et al. 2005). Infected tissues were disrupted and 

suspended in culture medium by gentle trituration with a sterile pipet. Resulting 

suspensions were serially diluted at 0.5 ml well'1 into three additional wells containing 2 

ml o f culture medium. Inoculated culture plates were covered, incubated at 27 °C in a 

humidified air atmosphere, and observed for up to 6 mo for Perkinsus sp. isolate 

proliferation.
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Nucleic acid extraction. Genomic DNA was extracted from excised oyster 

mantle and gill snips, or from hemocytes, using a DNeasy® Tissue Kit (Qiagen Inc., 

Valencia, CA), as described in Chapter 1.

PCR-RFLP identification of oyster host species. Species identifications of 

sampled oysters were carried out using a molecular diagnostic key based on PCR 

amplification and restriction enzyme digestion of the first internal transcribed spacer 

(ITS-1) region of the rRNA gene complex (Cordes and Reece 2005) as described in 

Chapter 1.

Perkinsus genus-specific PCR assay. Screening for Perkinsus sp. DNA was 

performed using Perkinsus genus-specific ITS ribosomal RNA complex primers that 

were slightly modified from those of Casas et al. (2002) as described in Chapter 1.

LSU rRNA gene amplification. A forward primer, PerkITS2 217 (5’ 

GTGTTCCTYGATCACGCGATT 3’) was used with a previously described reverse 

primer, LSU B (5’ ACGAACGATTTGCACGTCAG 3’) (Lenaers et al. 1989), to amplify 

a fragment of approximately 1170 bp from the rRNA gene complex. The targeted 

fragment consisted of the 3 ’ end of the second ITS rRNA region (ITS-2) and ended in the 

5’ end of the large subunit (LSU) rRNA gene. Each PCR reaction contained the 

following: 20 mM Tris-HCl (pH8.4), 50 mM KC1, 1.5 mM MgCl2, 0.2 mM of each 

dNTP, each primer at 0.25 pM, 0.0625 U p i'1 Taq polymerase, 0.2 mg m l'1 BSA and 1.0 

pi genomic DNA (10—50 ng total). Amplifications were performed with initial 

denaturation at 94 °C for 4 min followed by 35 cycles of 94 °C for 30 s, 58 °C for 1 min, 

65 °C for 2 min, with a final elongation of 65 °C for 5 min. Following amplification, 8 pi 

of PCR product was electrophoresed on a 2% agarose gel and amplification products of
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the correct size were excised and gel-purified using a QIAquick gel extraction kit 

(Qiagen Inc., Valencia, CA).

Actin gene amplification. The forward primer, PerkActinl 13 OF (5’

ATGTATGTCCAGATYCAGGC 3’) and reverse primer PerkActinl 439R (5’ 

CTCGTACGTTTTCTCCTTCTC 3’) were used to amplify an approximate 330-bp 

fragment o f type 1 Perkinsus sp. actin gene DNA from Perkinsus sp.-infected oyster 

tissue genomic DNA, and from genomic DNA isolated from a Perkinsus sp. culture 

sample containing abundant Perkinsus sp. zoosporangia and hypnospores, oyster tissues, 

and contaminant microorganisms. The latter sample was obtained from an attempt to 

establish in vitro clonal cultures o f this parasite (see above). Each PCR reaction 

contained the following: 20 mM Tris-HCl (pH8.4), 50 mM KC1, 3.0 mM MgCl2, 0.1 

mM of each dNTP, each primer at 0.1 pM, 0.0125 U p i'1 Taq polymerase, 0.2 mg m l'1 

BSA and 0.5 pi genomic DNA (10—50 ng total). Amplifications were performed with 

initial denaturation at 95 °C for 5 min followed by 40 cycles of 95 °C for 1 min, 58.5 °C 

for 45 s, 68 °C for 1 min, with a final elongation o f 68 °C for 5 min. Following 

amplification, 10 pi of PCR product was electrophoresed on a 2% gel and amplification 

products o f the correct size were excised and gel-purified using a QIAquick gel 

extraction kit (Qiagen Inc., Valencia, CA).

Cloning and Sequencing. Cloning of the ITS region, LSU rRNA gene and actin 

gene PCR products as well as sequencing reactions were performed as previously 

described (Chapter 1, Moss et al. 2006, Moss et al. 2007, Dungan and Reece 2006).

Perkinsus beihaiensis n. sp. diagnostic assay development. ITS region 

sequences o f the novel Perkinsus sp., Perkinsus beihaiensis n. sp., and those of Perkinsus 

spp. previously deposited in GenBank were aligned, and regions unique to Perkinsus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

beihaiensis n. sp. were targeted for development of PCR primers. PCR reaction 

conditions using the Perkinsus genus-specific forward primer, PerkITS-85, with a unique 

P. beihaiensis n. sp. reverse primer, PerkITS-430R (5’ TCTGAGGGGCTACAATCAT 

3’) were optimized and tested for specificity against known Perkinsus spp., closely 

related dinoflagellates, other oyster pathogens, and potential host organisms. Specificity 

of the assay was tested against P. olseni, P. honshuensis, P. mediterraneus, P. marinus,

P. chesapeaki, Crassostrea hongkongensis, C. ariakensis, C. virginica, Amphidinium 

carterae, Karlodinium micrum, Peridinium foliaceum, Cryptecodinium cohnii, 

Prorocentrum micans, Pseudopfiesteria shumwayae, Pfiesteria piscida, Hematodinum sp. 

from Callinectes sapidus, Hematodinium sp. from Leocarcinus depurator, 

Haplosporidium nelsoni, and Bonamia sp. from C. ariakensis. The 460-bp targeted 

fragment consisted of a 3’ portion of the ITS1 region, the complete 5.8S rRNA gene, and 

a 5’ portion of ITS2 region of the rRNA gene complex. Each PCR reaction contained the 

following: 20 mM Tris-HCl (pH 8.4), 50 mM KC1, 2.0 mM MgCl2, 0.2 mM of each 

dNTP, each primer at 0.1 pM, 0.0125 U p i'1 Taq polymerase, 0.2 mg m l'1 BSA, and 0.5 

pi genomic DNA (10—50 ng total). Amplifications were performed with initial 

denaturation at 95 °C for 5 min followed by 40 cycles o f 95 °C for 1 min, 57 °C for 45 s, 

68 °C for 90 s, with a final elongation of 68 °C for 5 min. Following amplification, 6 pi 

of PCR product was electrophoresed on a 2% agarose gel and visualized as described.

Phylogenetic analysis. Perkinsus sp. sequences obtained from the southern 

China oysters were compared to those deposited in GenBank, using BLAST (basic local 

alignment search tool) searches (Altschul et al. 1990) of the National Center for 

Biotechnology Information (NCBI) database, and those compiled previously by 

researchers at VIMS. Available ITS region, LSU rRNA gene, and actin gene sequences
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of known Perkinsus spp. were downloaded from GenBank for inclusion in phylogenetic 

analyses of the sequences obtained in this study. Multiple alignments of DNA sequences 

were performed using the ClustalW algorithm in MacVector 8.1.2, and genetic distance 

(uncorrected -‘p ’) and parsimony analyses were performed using PAUP*4.0bl0 

(Swofford 2002).

GenBank sequences included in the ITS region analyses were the following: 

Perkinsus qugwadi AF15128 (outgroup taxon); Perkinsus marinus AY295180,

AY295188, AY295189, AY295194, AY295197, AY295199; Perkinsus chesapeaki (= P. 

andrewsi) AF091541, AY876302, AY876304, AY876305, AY876306, AY876311; 

Perkinsus olseni (= P. atlanticus) AF441207, AF441209, AF441211, AF441213,

AF441215, AY435092, AF473840, AY820757, AF522321, POU07701, PSU07698, 

PSU07699, EF204082, EF204083, EF204086; Perkinsus mediterraneus AY487834, 

AY487835, AY487837, AY487839, AY487841, AY487842; Perkinsus honshuensis 

DQ516696, DQ516697, DQ516698, DQ516699; Perkinsus sp. EF204015-EF204068, 

EF526428—EF526436, EU068080—EU068095.

GenBank sequences included in analyses of the LSU rRNA gene were the 

following: Prorocentrum micans X I6180 (outgroup taxon); Perkinsus marinus 

AY876319, AY876320, AY876322, AY876325, AY876328, AY876329; P. chesapeaki 

(= P. andrewsi) AY876344—AY876349; P. olseni (= P. atlanticus) AF509333,

AY876330, AY876331, AY876332, EF204077-EF204079; P. mediterraneus EF204095- 

-EF204098, EF204100; P. honshuensis DQ516680-DQ516682, DQ516684; Perkinsus 

sp. EF526433, EF526437-EF526441, EF526443-EF526452.

GenBank sequences included in the analyses o f the actin genes were the 

following: Amphidinium carterae U84289, Prorocentrum minimum U84290 (outgroup 

taxa); Type 1 Perkinsus marinus AY876350, U84287, U84288; Type 1 P. chesapeaki (=
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P. andrewsi), AY876359-AY876361; Type 1 P. olseni (= P. atlanticus), AY876352, 

AY876355—AY876357, EF204109--EF204111; Type 1 P. mediterraneus EF204112- 

EF204115; Type 1 P. honshuensis, DQ516686—DQ516689; Type 1 Perkinsus sp. 

EF526411, EF526412, EF526414, EFF526415, EF516418, EF526420, EF526425, 

EF526427; Type 2 P. marinus TIGR4286, TIGR5138; Type 2 P. chesapeaki (= P. 

andrewsi) AY876358, AY876362; Type 2 P. olseni (= P. atlanticus), AY876351, 

AY876353, AY876354, DQ516693-DQ516695, EF204108; Type 2 P. honshuensis, 

DQ516690-DQ516692.

In situ DNA probe hybridization assays. A genus-specific 5' end digoxigenin- 

labeled Perkinsus spp. probe (Elston et al. 2004) was used to specifically target small 

subunit rRNA sequences (SSU), and a species-specific probe, PerkBehLSU (5’ 

GTGAGTAGGCAGCAGAAGTC 3’) was designed and used in separate hybridization 

reactions to target the LSU rRNA of Perkinsus beihaiensis n. sp. Digoxigenin-labeled 

oligonucleotide probes were obtained from Operon Biotechnologies, Inc. (Huntsville 

AL). The protocol followed for ISH was that previously published (Stokes and Burreson 

1995) with the modifications of Elston et al. (2004). Pronase at a final concentration of 

125 pg mL’1 was used for permeabilization during a 30-min incubation. A probe 

concentration o f 7 ng p f 1 was used for hybridization with both the genus- and species- 

specific probes. The P. beihaiensis n. sp.-specific probe was tested for specificity against 

Perkinsus sp.-infected reference tissues, including P. marinus in Crassostrea virginica,

P. chesapeaki in Mya arenaria, P. mediterraneus in Chamelea gallina, P. olseni in 

Venerupis {Tapes) philippinarum, and P. honshuensis in V. philippinarum. Negative 

controls included duplicate histological sections o f all tested samples, which received 

hybridization buffer without probe during hybridization incubations.
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RESULTS

ARFTM  and RFTM  assays. Thirteen of 78 (17%) live oysters collected during 

May 2005 from Beihai, China and analyzed by ARFTM assays, showed light Perkinsus 

sp. infections. Among DNAs from 24 of the same oysters that were tested using the 

genus Perkinsus ITS region PCR assay, nine (38%) gave positive results, and 

approximately half (5/9) of the PCR-positive DNAs came from oysters that also tested 

positive by ARFTM assays. Thus, 17—38% of Beihai, China C. ariakensis and C. 

hongkongensis oysters tested positive for the presence of Perkinsus sp. by one or both 

diagnostic assays.

In vitro propagation of Perkinsus sp. Low numbers o f enlarged hypnospores 

harvested from ARFTM-incubated tissues of nine infected oysters that were processed 

soon after their 2005 arrival from China, were transferred into the DME/F12-3 Perkinsus 

spp. propagation medium (Burreson et al. 2005), but failed to proliferate before their 

overgrowth by thraustochytrid contaminants (Lyons et al. 2006). Supplementing the 

DME/F12-3 medium to 500 pg m l'1 with the fungicide metalaxyl (CAS 57837-19-1) 

temporarily inhibited the growth of thraustochytrid contaminants, had no inhibitory effect 

on in vitro proliferation o f P. olseni isolate ATCC PRA-180; but did not promote 

proliferation of Perkinsus sp. primary isolate cultures from the Beihai, China oysters.

Among 76 oysters from China’s Beihai region that were processed soon after their 

2006 arrival, RFTM- or ARFTM-enlarged hypnospores from tissues of 17 infected 

oysters were sub-cultured in the DME/F 12-3 Perkinsus spp. propagation medium. 

Thraustochytrid contaminants overgrew several primary cultures, and proliferation 

among Perkinsus sp. inoculum hypnospores occurred in none.
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Among six C. hongkongensis oysters that were collected during 2006 from 

Beihai, China waters and used for 95 d as Asian pathogen vectors in cohabitation 

experiments with Chesapeake Bay molluscs, ARFTM-enlarged Perkinsus sp. 

hypnospores from two infected oysters were sub-cultured. One oyster harbored a 

relatively intense Perkinsus sp. infection, and approximately 80% of its numerous 

hypnospores zoosporulated upon sub-culture in the DME/F 12-3 propagation medium. 

Zoosporangia with diameters of 35—65 pm had single polar discharge pores and tubes, 

and developed motile zoospores with diameters o f 3—5 pm (Fig. 2). Although 

zoosporulation itself is a proliferation event, motile zoospores in primary cultures of 

Perkinsus sp. from southern Chinese oysters remained contained within thick-walled 

zoosporangia, lost motility after several days, and failed to proliferate further. At 

approximately 90 d post-inoculation, non-proliferating zoospores within zoosporangia, 

and non-proliferating culture inoculum hypnospores, were harvested from selected in 

vitro isolate primary cultures. Harvested cells were preserved in ethanol for extraction 

and DNA sequencing.

ISH assay results. In situ hybridization probes designed to target LSU rRNA of 

the novel southern China Perkinsus sp., P. beihaiensis n. sp., specifically hybridized to 

Perkinsus sp. cells in tissue sections from southern Chinese oysters (Figs. 4, 6).

Likewise, the results observed with this P. beihaiensis n. sp.-specific probe 

complemented those obtained with the previously published Perkinsus spp. genus probe 

in oysters found to contain Perkinsus sp. cells. The species-specific probe did not cross- 

react with previously described Perkinsus species or host tissues in control samples, and 

in situ hybridization reactions conducted without probes produced no signals in sections 

from Perkinsus sp.-infected southern Chinese oysters.
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Figure 2. Hoffman modulation contrast image of Perkinsus beihaiensis n. sp. 

zoosporangia containing zoospores. Identity of zoosporangia confirmed by sequencing 

the ITS rRNA region (GenBank accession numbers EU068100—068107). Discharge tube 

labeled with arrow. Scale bar = 20 pm.
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Histological assays. Among Chinese oysters sampled during 2005 and 2006 that 

tested positive for P. beihaiensis n. sp. DNA by PCR assays, 16/39 (41%) showed in situ 

lesions when tissue sections were analyzed histopathologically. O f those host oysters, 37 

(95%) were genetically identified as C. hongkongensis, one as C. ariakensis, and one as 

an unidentified Crassostrea sp. Perkinsus sp. lesions occurred in stomach, intestine (Fig. 

3 -6 ) and digestive gland epithelia (81%) and visceral connective tissues (63%), as well 

as among gill and mantle connective tissues (44%). In two heavy, systemic, infections 

that were observed, numerous Perkinsus sp. trophozoites (Fig. 7) and proliferating 

schizonts (Fig. 8) were observed phagocytosed, but apparently healthy, within circulating 

hemocytes. Two examples of possible Perkinsus sp. dispersal mechanisms were 

observed. In one oyster, a C. ariakensis, numerous parasite cells were observed shedding 

into the stomach lumen adjacent to a necrotic epithelial lesion (Fig. 9). In another oyster, 

a female C. honkongensis, Perkinsus sp. cells occurred in the egg-laden lumen and 

epithelium of the gonoduct (Fig. 10). Infection intensities ranged through light (31% 

with small focal lesions), moderate (56% with multi-focal or light systemic lesions), and 

heavy (13% with lethal systemic lesions) (Fig. 11, Fig. 12). Perkinsus sp. signet ring 

trophozoites of 2—8 pm diameters, subdividing 4—12 pm diameter schizonts, and clusters 

of multiple sibling trophozoites o f 2—4 pm diameters occurred among infected tissues.
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Figures 3— 6. 3. H&E stained tissue section o f Crassostrea ariakensis stomach epithelia 

showing a Perkinsus beihaiensis n. sp. lesion. Examples of trophozoites ( | )  and 

schizonts (<) indicated. Scale bar = 10 pm. 4. Crassostrea ariakensis (same individual 

as shown in Fig. 3) showing hybridization o f the Perkinsus beihaiensis n. sp.-specific 

probe to cells in the stomach epithelia. Scale bar = 10 pm. 5. H&E stained tissue section 

of Crassostrea hongkongensis stomach epithelia showing a Perkinsus beihaiensis n. sp. 

lesion. Examples o f trophozoites ( f ) and schizonts (<) indicated. Scale bar = 10 pm. 6. 

Crassostrea hongkongensis (same individual as shown in Fig. 5) showing hybridization 

of the Perkinsus beihaiensis n. sp. specific probe to cells in the stomach epithelia. Scale 

bar = 10 pm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

Figure 3 -6 .
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Figure 7— 8. 7. H&E stained tissue section showing a Perkinsus beihaiensis n. sp. 

trophozoite (<) encapsulated within an oyster hemocyte. Hemocyte nucleus (f )  visible. 

Scale bar = 10 pm. 8. H&E stained tissue section o f a Perkinsus beihaiensis n. sp. 

schizont (<) encapsulated within an oyster hemocyte. Hemocyte nucleus ( f )  visible. 

Scale bar = 10 pm.
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Figure 7— 8.
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Figure 9-10 . 9. H&E stained tissue section of a Perkinsus beihaiensis n. sp. trophozoite 

(<) visible within the stomach lumen of a Crassostrea ariakensis oyster. Scale bar = 10 

pm. 10. H&E stained tissue section of a Perkinsus beihaiensis n. sp. trophozoites (<) and 

schizonts ( f ) visible in the epithelia surrounding the gonoducts of a Crasssostrea 

hongkongensis oyster. Scale bar = 10 pm.
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Figure 9— 10.
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Figure 11 --12. 11. Low magnification photograph of LugoFs iodine-stained Perkinsus 

beihaiensis hypnospores within Crassostrea hongkongensis gill and mantle tissues after 

incubation in RFTM. The number and density of cells observed represents a very heavy 

infection according to Ray (1952, 1954). Scale bar = 200 pm. 12. Low magnification 

photograph showing hybridization o f the Perkinsus beihaiensis n. sp.-specific probe to 

cells in all tissues of a C. hongkongensis oyster. Scale bar = 200 pm.
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Phylogenetic analyses of ITS region, LSU rRNA gene and actin genes. The

expected approximate 690-bp P. beihaiensis n. sp. ITS region fragment was amplified 

from oysters from many sampled locations listed in Table 1, and from cells harvested in 

attempts to establish primary P. beihaiensis n. sp. cultures. Only those samples relevant 

to the following species description are included in Table 1; however, a complete 

description of the disease survey is reported in Moss et al. (2007). The primers designed 

to amplify Perkinsus spp. LSU rRNA gene and type 1 actin gene fragments from infected 

oyster genomic DNA, successfully amplified the expected fragments of approximately 

1170 bp and 330 bp, respectively, from the infected southern Chinese oysters.

Sequencing of the ITS region and LSU rRNA gene fragments o f the rRNA gene complex 

showed that in all cases the fragment amplified was the targeted DNA. When P. 

beihaiensis n. sp.-infected oyster genomic DNA was used as a template for amplification 

of the type 1 Perkinsus sp. actin gene, many sequenced fragments were found to be non­

targeted DNA. However, when DNA from the enriched P. beihaiensis n. sp. hypnospore 

and zoosporangia from in vitro culture cell pellets was used as a template, the majority of 

the amplified fragments were found to be the targeted P. beihaiensis n. sp. type 1 actin 

gene fragment as indicated by results of BLAST searches and the phylogenetic analysis. 

In many instances, identical P. beihaiensis n. sp. ITS region sequences were found within 

a single oyster; however, within-host Perkinsus sp. ITS region sequence variation was 

occasionally recorded. For example, of eight ITS fragments sequenced from P. 

beihaiensis n. sp. hypnospores harvested from a single oyster, four variants differing 

from each other by only a few base pairs were observed. Identical ITS region sequences 

were often observed in different oysters and from oysters collected from geographically 

separate locations.
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LSU rRNA gene sequences were amplified from six of the P. beihaiensis n. sp.- 

positive oysters collected from Beihai in 2005. O f the total 14 PCR fragments that were 

sequenced, an identical sequence was found in three different oysters; however, the other 

11 fragments each varied by a few base pairs with no observed pattern in the variation.

Two P. beihaiensis n. sp. type 1 actin gene fragments were sequenced from the 

genomic DNA of one oyster collected in Beihai in 2005. Fifteen additional fragments 

were amplified and sequenced from the P. beihaiensis n. sp. cell pellet DNA obtained 

during an unsuccessful attempt to establish a clonal culture of the parasite. O f the 17 

sequences obtained, 11 PCR fragments had identical sequences; a second sequence was 

common to two fragments, and all other sequences were unique. In total, six unique P. 

beihaiensis n. sp. type 1 actin gene sequences were recorded.

In both distance and parsimony analyses, the nucleotide sequences of P. 

beihaiensis n. sp. from the ITS region, LSU rRNA gene and actin gene loci consistently 

placed this parasite as a member of the genus Perkinsus; however, the sequences grouped 

in clades that were distinct from those o f all previously described Perkinsus species. The 

topologies of the trees generated with the distance and parsimony analyses were similar 

in the analyses based on each of the three loci. In the ITS region parsimony analysis 

(Fig. 13.), P. chesapeaki was the most distant of the Perkinsus spp. apart from P. 

qugwadi (outgroup). ITS region nucleotide sequences of P. beihaiensis n. sp. formed a 

monophyletic clade (100%) bootstrap support andjackknife support) sister to a clade 

containing P. olseni, P. marinus, P. honshuensis and P. mediterraneus. In that analysis, 

sequences o f P. mediterraneus and P. honshuensis formed strongly supported (>98% 

both bootstrap andjackknife support) monophyletic clades that were relatively weakly 

supported as sister groups with 55% bootstrap and 58% jackknife support values.
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Figure 13. Perkinsus spp. ITS region gene sequences. Maximum parsimony bootstrap 

support values for each clade are given above the lines andjackknife support values are 

given below the lines. Bold support values indicate species clades.
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Figure 13.
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In the LSU rRNA parsimony analysis (Fig. 14), nucleotide sequences of P. 

beihaiensis n. sp. formed a highly supported clade (100% bootstrap andjackknife 

support). The clade containing P. beihaiensis n. sp. sequences fell out as sister to a clade 

containing P. chesapeaki, P. olseni, P. marinus, P. honshuensis and P. mediterraneus. 

Within that latter grouping of Perkinsus species, a clade with 90% bootstrap support 

(98% jackknife support) grouped the sequences of P. mediterraneus and P. honshuensis 

and although the P. mediterraneus sequences formed a monophyletic group, the P. 

honshuensis sequences fell out as unresolved at the base the clade containing both 

species.

In actin gene sequence analyses (Fig. 15) there were two major monophyletic 

clades, one containing all Perkinsus spp. type 1 actin sequences, and the other containing 

all type 2 Perkinsus spp. actin sequences (types as originally designated in Burreson et al. 

2005). The clade containing P. beihaiensis n. sp. sequences was monophyletic and 

highly supported (100%) in both parsimony bootstrap andjackknife analysis. Type 1 P. 

honshuensis and P. mediterraneus actin nucleotide sequences formed highly supported 

(100% both bootstrap andjackknife) monophyletic clades within a clade that placed these 

taxa as sister species with 98% bootstrap (100% jackknife) support.

The genetic distance within the ITS region sequences of P. beihaiensis n. sp. was low 

(0.0—0.2%), and is within the intraspecific variation observed within the currently 

accepted Perkinsus species (Table 2). Genetic distance analysis indicated that the ITS 

region sequences o f this parasite are most closely related to those of P. honshuensis 

(88.5-89.6% genetic similarity). The two most closely related Perkinsus species based 

on ITS region genetic distances were P. honshuensis and P. mediterraneus (96.3—97.1% 

similar).
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Figure 14. Perkinsus spp. LSU rRNA gene sequences. Maximum parsimony bootstrap 

support values for each clade are given above the lines andjackknife support values are 

given below the lines. Bold support values indicate species clades.
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Figure 15. Perkinsus spp. actin gene sequences. Maximum parsimony bootstrap support 

values for each clade are given above the lines andjackknife support values are given 

below the lines. Bold support values indicate species clades.

Perkinsus species based on ITS region genetic distances were P. honshuensis and P. 

mediterraneus (96.3—97.1% similar).
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Figure 15.
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The intraspecific genetic distance observed between LSU rRNA gene sequences 

of P. beihaiensis n. sp. was low (0.0-0.2%), and within the range expected between other 

Perkinsus species (Table 3). Due to the relatively highly conserved nature of the LSU 

rRNA gene sequences, observed genetic distances were low between species. Among all 

Perkinsus spp., genetic distance analysis o f LSU rRNA gene sequences placed P. 

honshuensis and P. mediterraneus as the most closely related (99.3—99.9% similar).

Intraspecific variation within type 1 actin sequences of P. beihaiensis n. sp. was 

low (0.0—0.4%), and was also within the variability observed within other Perkinsus 

species sequences (Table 4). Type 1 actin sequences of P. beihaiensis n. sp. were most 

closely related to P. olseni (83.4—86.2% similar). Perkinsus honshuensis and P. 

mediterraneus were suggested to be the two most closely related of the other Perkinsus 

species (93.0—93.8% genetic similarity).

Host and geographic distribution. Based on results from sequencing products 

of the genus Perkinsus-specific assay, as well as results from the P. beihaiensis n. sp.- 

specific PCR assay described here, the geographic distribution of P. beihaiensis n. sp. in 

sampled oyster populations extends at least from Tong’an in Fujian province, to Qinzhou 

and locations surrounding Beihai, Guangxi province, in southern China (Table 1). DNA 

of this parasite was detected in Crassostrea ariakensis and C. hongkongensis oysters, as 

well as in Pinctada margaritifera and P. martensii pearl oysters, and several oyster 

specimens that were not identified genetically using available tools (Table 1). The 

abundance of C. hongkongensis was higher than that of C. ariakensis (470 C. 

hongkongensis was higher than that of C. ariakensis (470 C. hongkongensis versus 107 

C. ariakensis) in our samples from southern China locations, and DNA from P. 

beihaiensis n. sp. was more frequently found in C. hongkongensis than in C. ariakensis
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Table 2. Range of pairwise distances (uncorrected-‘p ’) values observed among ITS rDNA region sequences of currently accepted Perkinsus 

spp. (except P. qugwadi) from GenBank and those o f the Perkinsus beihaiensis n. sp. obtained in this study. The range o f within species 

sequence distances are given across the diagonal. Raw distance value ranges between species are given above the diagonal and ranges for 

percent distance values are given below.

Species P. marinus P. chesapeaki P. mediterraneus P. olseni P. honshuensis P. beihaiensis n. 
sp.

P. marinus 0.000-0.004
0.4% 0.123-0.140 0.048-0.061 0.048-0.061 0.046-0.055 0.110-0.124

P. chesapeaki 12.3-14.0% 0.000-0.017
1.7%

0.122-0.136 0.124-0.135 0.115-0.122 0.163-0.175

P. mediterraneus 4.8-6.1% 12.2-13.6% 0.000-0.006
0.6% 0.042-0.055 0.029-0.037 0.110-0.120

P. olseni 4.8-6.1% 12.4-13.5% 4.2-5.5% 0.000-0.005
0.5% 0.043-0.055 0.105-0.120

P. honshuensis 4.6-5.5% 11.5-12.2% 2.9-3.7% 4.3-5.5%
0.000-0.004

0.4% 0.104-0.115

P. beihaiensis n. 
sp. 11.0-12.4% 16.3-17.5% 11.0-12.0% 10.5-12.0% 10.4-11.5% 0.000-0.002

0.2%

VOo\
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Table 3. Range of pairwise distances (uncorrected-‘p’) values observed among LSU rDNA region sequences of currently accepted Perkinsus 

spp. (except P. qugwadi) from GenBank and those of the Perkinsus beihaiensis n. sp. obtained in this study. The range of within species 

sequence distance are given across the diagonal. Raw distance value ranges between species are given above the diagonal and ranges for 

percent distance values are given below.

Species P. marinus P. chesapeaki P. mediterraneus P. olseni P. honshuensis P. beihaiensis n. 
sp.

P. marinus 0.000-0.002
0.2% 0.035-0.040 0.022-0.026 0.001-0.029 0.021-0.025 0.044-0.049

P. chesapeaki 3.5-4.0% 0.000-0.005
0.5% 0.023-0.032 0.022-0.040 0.025-0.032 0.036-0.044

P. mediterraneus 2.2-2.6% 2.3-3.2% 0.000-0.003
0.3% 0.017-0.026 0.001-0.007 0.044-0.051

P. olseni 0.1-2.9% 2.2-4.0% 1.7-2.6% 0.000-0.003
0.3% 0.019-0.025 0.035-0.049

P. honshuensis 2.1-2.5% 2.5-3.2% 0.1-0.7% 1.9-2.5% 0.000-0.004
0.4% 0.044-0.052

P. beihaiensis n. 
sp. 4.4-4.9% 3.6-4.4% 4.4-5.1% 3.5-4.9% 4.4-5.2% 0.000-0.002

0.2%
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Table 4. Range o f pairwise distances (uncorrected-‘p ’) values observed among type 1 actin gene region sequences of currently accepted 

Perkinsus spp (except P. qugwadi) from GenBank and those of the Perkinsus beihaiensis n. sp. obtained in this study. The range o f within- 

species sequence distances are given across the diagonal. Raw distance value ranges between species are given above the diagonal and ranges 

for percent distance values are given below.

Species P. marinus P. chesapeaki P. mediterraneus P. olseni P. honshuensis P. beihaiensis n. 
sp.

P. marinus 0.000-0.018
1.8% 0.152-0.170 0.125-0.131 0.114-0.131 0.142-0.145 0.173-0.190

P. chesapeaki 15.2-17.0% 0.000-0.009
0.9% 0.163-0.176 0.145-0.159 0.173-0.183 0.163-0.180

P. mediterraneus 12.5-13.1% 16.3-17.6% 0.000-0.007
0.7% 0.104-0.118 0.062-0.070 0.163-0.176

P. olseni 11.4-13.1% 14.5-15.9% 10.4-11.8% 0.000-0.018
1.8% 0.125-0.131 0.138-0.166

P. honshuensis 14.2-14.5% 17.3-18.3% 62-1.0% 12.5-13.1% 0.000-0.000
0.0% 0.163-0.170

P. beihaiensis n. 
sp. 17.3-19.0% 16.3-18.0% 16.3-17.6% 13.8-16.6% 16.3-17.0% 0.000-0.004

0.4%

VOoo
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(23.8% of C. hongkongensis versus 18.7% of C. ariakensis). DNA of P. beihaiensis n. 

sp. was detected in as little as 3.8% (1/26) of the C. ariakensis sampled from Tong’an,

Fujian, in 2002, however, results from a 2003 oyster sample from Zhanjiang, Guangdong, 

suggest that the prevalence of P. beihaiensis n. sp. infections in Crassostrea spp. oysters 

can be as high as 46.5% (Table 1).

DISCUSSION

A comprehensive phylogenetic analysis was conducted of a unique, new 

Perkinsius sp. parasite infecting oysters from coastal southern China. Phylogenetic 

analyses based on nucleotide sequences of the ITS region, the LSU rRNA gene, and the 

type 1 actin gene of this parasite consistently placed it within the genus Perkinsus.

However, sequences at each locus form well-supported, distinct, monophyletic clades, 

when compared to those from other Perkinsus spp. described to date. With these 

consistent genetic similarities and differences, in addition to observations of typical 

Perkinsus spp. parasite cell morphology and enlargement in RFTM media, I conclude 

that this parasite represents a new Perkinsus sp. for which I propose the name Perkinsus 

beihaiensis n. sp. as follows.

Perkinsus beihaienesis n. sp.

Diagnosis. Infections occur among oyster digestive epithelia and various 

connective tissues. Histologically, trophozoites in oyster tissues are spherical, 2—6 pm in 

diameter, with a single, eccentric nucleus that typically contains a prominent nucleolus, 

and a large, eccentric vacuole that occupies much o f the cell volume. In situ proliferation 

is by schizogany o f 4 -1 2  pm mother cells to yield clusters of 4—20 sibling daughter 

cells. Lesions occur with decreasing frequency among visceral connective tissues,
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stomach and intestine epithelia, mantle and gill connective tissues, and digestive gland 

epithelia.

DNA nucleotide sequences. In phylogenetic analyses, nucleotide sequences 

from the ITS region and LSU rRNA gene of the rRNA gene complex and type 1 actin 

gene will form distinct monophyletic clades, separate from those of the other known 

Perkinsus species, including P. marinus, P. chesapeaki, P. mediterraneus, P. olseni, P. 

honshuensis, and P. qugwadi.

Reference material deposited. Replicate H&E-stained histological sections 

from infected C. hongkongensis and C. ariakensis oysters that were confirmed by both 

PCR and ISH assays to be infected by P. beihaiensis n. sp., were deposited as respective 

holotype and paratype reference materials, with both the USDA National Parasite 

Collection (http://www.lpsi.bare.usda.go v/bnpcu) (USNPC 100051 and USNPC 100052), 

and with the OIE genus Perkinsus reference collection at the Virginia Institute of Marine 

Science (http://www.vims.edu/env/research/shellfish/oie). Nucleotide sequences of the 

ITS region and LSU rRNA genes o f the rRNA gene complex and actin genes are 

deposited with GenBank (http://www.ncbi.nlm.nih.gov/Genbank) under the accession 

numbers listed in Table 5.
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Table 5. GenBank accession numbers for Perkinsus beihaiensis n. sp. sequences 

associated with this study.

Locus GenBank Accession 

Numbers

Internal transcribed EF204015-EF204068,

spacer rRNA EF52642--EF526436,

EU06808—EU068095,

EU068100—EU068107

LSU rRNA EF526437—EF526452

Actin gene EF52641 —EF526427
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Type hosts. Crassostrea hongkongensis

Other hosts. Crassostrea ariakensis, Pinctada martensii (by PCR only), Pinctada 

margaritifera (by PCR only)

Type locality. Beihai region, Guangxi Zhuang, People’s Republic of China

Etymology. The species name refers to Beihai, the city in China near waters 

where this parasite has frequently been detected in oysters.

Higher classification. (Adi et al. 2005). Chromalveolata (super-group), 

Alveolata (first rank), Dinozoa (second rank), Perkinsidae (third rank).

The internal transcribed spacer region of the ribosomal RNA complex has 

previously been used to examine relationships within the genus, and discriminate 

between Perkinsus spp. (Brown et al. 2004, Casas et al. 2002, Dungan et al. 2002,

Dungan and Reece 2006, Goggin 1994, Park et al. 2006). In addition, the large subunit 

rRNA and actin genes have been used to further clarify taxonomic placements, because 

analyses o f these regions offer resolution at multiple levels. The ITS region of the rRNA 

gene complex is transcribed, though is not translated into a functional protein with 

potential fitness effects; therefore its sequences are often found to be more variable than 

those of adjacent rRNA gene loci. Internal transcribed spacer region, LSU rRNA gene, 

and the type 1 actin gene sequences of P. beihaiensis consistently place it within the 

genus Perkinsus, though distinct from all other described Perkinsus species. For each 

analyzed genetic locus, observed intraspecific variation of P. beihaiensis sequences were 

within ranges seen for other described Perkinsus spp. Interspecific distances within the 

genus were typical o f what has been observed in previous studies between accepted
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Perkinsus species, and were less than those found between Perkinsus species and 

outgroup taxa (Burreson et al. 2005, Dungan and Reece 2006, Dungan et al. 2007).

Although I was only able to successfully amplify and sequence type 1 actin gene 

fragments from P. beihainesis, I cannot discount the existence of a type 2 actin gene(s).

Until recently, only type 1 actin gene sequences from P. marinus existed in GenBank, but 

as part o f the genome-wide sequencing effort, type 2 actin gene sequences have been 

deposited in the P. marinus TIGR database. The conserved nature o f actin gene DNA 

sequences across very different taxa, combined in this case with the absence of a pure 

culture of P. beihaiensis, make it difficult to amplify pathogen DNA selectively from the 

milieu of host and symbiont DNAs. The type 1 Perkinsus spp. actin gene primers 

reported in this study successfully amplified targeted DNA from a semi-enriched P. 

beihaiensis genomic DNA source; however, these primers had limited success in 

selectively amplifying targeted actin genes from genomic DNAs of P. beihaiensis- 

infected oysters.

The Perkinsus beihaiensis-specific PCR primer set specifically amplifies this 

species’ ITS region DNA, and the in situ hybridization probe specifically hybridizes to 

the nucleic acids of P. beihaiensis cells in histological tissue sections. PCR assay 

specificity was tested on DNA samples from infected and uninfected host oysters, and 

multiple other closely related organisms. Specificity of the ISH assay was confirmed, 

and I observed no probe binding to non-target Perkinsus sp. cells in tested sections. 

Additionally, P. beihaiensis-specific probe assay results mirrored results obtained with 

the genus Perkinsus-specific probe in tissue sections from oysters in which only P. 

beihaiensis was detected by PCR assays. The successful PCR amplification and ISH 

labeling o f P. beihaiensis cells in infected C. ariakensis and C. hongkongensis oyster
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tissues demonstrate that these assays may be used to screen potential hosts for P. 

beihaiensis infections, and to localize parasite cells in situ.

In histological analyses, P. beihaiensis cells were most commonly found in 

visceral mass connective tissues o f infected oysters, and in stomach and intestinal 

epithelia. Early infections of P. olseni in Venerupis (Tapesj decussatus, P. chesapeaki in 

Mya arenaria or Tagelus plebeius, and P. marinus in Crassostrea virginica are often 

limited to the gill or mantle (Casas et al. 2002, Dungan et al. 2002, Mackin 1951), and 

these organs are generally considered to be points of entry for those parasites. Perkinsus 

marinus infections in C. virginica often become systemic, though P. marinus cells may 

be localized in digestive epithelia, and these organs have often been found to have the 

highest densities of parasite cells (Oliver et al. 1998). Infections by P. olseni occur 

almost exclusively among connective tissues, and RFTM analysis of gill tissues alone is 

commonly used for diagnosis of P. olseni in clams (Villalba et al. 2005.) For the current 

study, gill and mantle, and occasionally rectal tissues, were used for PCR and RFTM 

assays. With the apparent rarity of P. beihaiensis lesions in gill and mantle tissues that 

we observed histologically with both ISH and H&E analyses (38% of lesions seen in 

gill), the PCR and RFTM assays of gill tissues may have underestimated prevalences and 

intensities of P. beihaiensis infections among tested Chinese oysters.

Visceral mass tissues are not commonly targeted as sources of PCR-template 

samples, because DNA extracted from these tissues often carry high levels o f PCR- 

inhibitory substances associated with digestive organs (Abolomaaty et al. 2007).

Extraction methods exist that may facilitate amplification of DNA isolated from digestive 

gland tissues; however, the complexity of those methods make them currently impractical 

for use in routine diagnostics. Future research goals will be to determine the optimal
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diagnostic method for P. beihaiensis. Until optimal diagnostic tissues are identified, I 

suggest that a complete histological analysis in concert with PCR analysis may be 

necessary in order to adequately assess prevalences and intensities of P. beihaiensis 

infections.

Despite the promising and extensive proliferative zoosporulation that occurred 

among several P. behaiensis primary cultures, efforts to establish continuous in vitro 

isolate cultures of P. beihaiensis have failed to date. Constituents of Perkinsus spp. 

culture media, including compositions and concentrations of mineral salts, trace 

elements, metabolites, nucleotide precursors, and vitamins were originally developed for 

P. marinus, and were based on compounds found normally in C. virginica oyster tissues 

(Gauthier and Vasta 2002, La Peyre et al. 1993). Although those media and their 

modifications have been subsequently used to propagate diverse Perkinsus spp. isolates 

from a wide variety of mollusc hosts, they appear to be deficient in the several 

modifications that we used for in vitro propagation o f P. beihaiensis infecting C. 

ariakensis and C. hongkongensis oysters from southern China. Perkinsus spp. such as P. 

marinus and P. olseni have been shown to proliferate in several media, and within ranges 

of temperature and salinity conditions (Chu et al. 1994, Ordas and Figueras 1998); while 

P. mediterraneus has proven to be extremely fastidious and slow-growing in vitro (Casas 

et al., submitted). Critical, minor modifications to existing medium compositions and/or 

incubation parameters may yield continuous P. beihaiensis in vitro isolate cultures and 

archival type-strains in the future.

The distribution and prevalence of P. beihaiensis suggests that it may be 

widespread in Chinese oysters, particularly Crassostrea hongkongensis, in coastal 

localities from Tong’an, Fujian to Beihai, Guangxi, near the southern border of China
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with Vietnam. DNA of this parasite has been found additionally in high prevalence in C. 

ariakensis, and in Pinctada margeratifera, Pinctada martensii, and in some unidentified 

bivalve mollusc species. Infection prevalences averaged over the southernmost sampling 

sites indicate that approximately 20% of regional mollusc populations may be infected by 

P. behaiensis during some seasons. More extensive host and seasonal sampling will 

clarify patterns and natural levels of parasite prevalence in affected populations.

Histopathological data collected thus far indicate that infection by P. beihaiensis 

is detrimental to host oysters. In this study, defensive hemocyte infiltration occurred in 

P. beihaiensis-infected oyster tissues. In low-intensity infections, P. beihaiensis cells 

were detected in epithelia of the stomach, intestine and in the digestive tubules and ducts, 

potentially leading to interference with nutrient uptake and absorption by the oyster. In 

moderate to severe infections, P. beihaiensis cells were systemically distributed and 

abundant in virtually all tissues, including the visceral mass connective tissues, stomach 

and intestinal epithelia, gills, mantle, and gonoducts, with necrotic loss of normal tissue 

architecture readily apparent. Although observed parasite body burden cannot be directly 

attributed to a loss of condition or death, a few moribund or dead oysters were found to 

have very heavy infection intensities.

It has been suggested that heavy infections of Perkinsus spp. may have significant 

negative physiological effects on oysters. Early studies showed that P. marinus 

infections reduce oyster growth, and are especially pathogenic during summer, when the 

parasite tissue abundance is high. It has been postulated that condition index may be 

reduced as well, although often the highest infection intensities occur during the summer 

post-spawning period (Andrews 1961). In addition, reproductive output may be affected 

(Dittman et al. 2001) and metabolic costs of Perkinsus spp. parasitism may be greater
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than those that could be met by the normal feeding activity of the infected bivalve (Casas 

et al. 2002, Choi et al. 1989).

Although there exists a long history of oyster culture in the southern provinces of 

China, there are few previous reports of apparent disease- or pathogen-induced mortality 

in shellfish populations from that region. Past accounts of mollusc disease in that region 

include a mortality event in Ostrea edulis caused by a bloom of a toxic Prorocentrum sp. 

dinoflagellate (Zhang et al. 1995), reports of rickettsia-like organisms in pearl oysters, 

Pinctada maxima and Pinctada fucata (Wu and Pan 1999) and C. ariakensis (Wu and 

Pan, 2000), and mass mortality of abalone, Haliotis diversicolor, attributed to the 

outbreak of a viral infection (Wang et al. 2004). Here I report on the existence of a 

previously unknown and pathogenic oyster parasite in southern China. Perkinsus 

beihaiensis occurs throughout an extensive geographic range in that region and, based on 

the prevalence and pathology of P. beihaiensis infections, there may exist a disease risk 

to wild and cultured oyster populations in the region.

With a pending Environmental Impact Statement (EIS) and ruling regarding the 

introduction of C. ariakensis to Chesapeake Bay, we are now aware of the new and 

pathogenic Perkinsus beihaiensis parasite that infects C. ariakensis, C. hongkongensis, 

and other oyster species, and occurs in potential broodstock sites in southern China. The 

natural pathogenicity o f this parasite to its host is not yet fully known, although it is the 

subject o f ongoing research. A fear is that non-native pathogens, either introduced 

directly with rogue introductions of C. ariakensis or indirectly such as through ballast 

water may impact the oyster restoration effort (using C. ariakensis), or harm other 

Chesapeake Bay bivalves such as C. virginica or the hard clam Mercenaria mercenaria. 

Therefore, future research should seek to understand the pathogenicity and
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transmissibility o f P. beihaiensis to its native hosts, as well as to native Chesapeake Bay 

bivalve species.
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Chapter 3. Perkinsus olseni transmission studies

ABSTRACT

The Suminoe oyster, Crassostrea ariakensis, has been being considered for 

introduction into the Chesapeake Bay, USA, since the early 1990s for the purpose of 

restoring the commercial harvest of oysters and/or for developing a non-native oyster 

aquaculture industry. During a survey of Crassostrea spp. oysters conducted in Asia 

(Chapter 1), the protozoan parasite, Perkinsus olseni, was found in C. ariakensis and 

aother sympatric oyster species including C. hongkonensis. In light of the proposed 

introduction of C. ariakensis, challenge studies were performed in order to ascertain the 

pathogenicity of P. olseni both to C. ariakensis, as well as to Bay bivalves, the eastern 

oyster, Crassostrea virginica, and the hard clam, Mercenaria mercenaria. Two direct 

inoculation experiments were performed in which cultured P. olseni cells were inoculated 

into the pallial cavity of naive bivalves. During the second inoculation experiment, 

standard Perkinsus spp. culture media was supplemented with C. ariakensis homogenate 

as a protein source in an attempt to increase the natural virulence that may have been lost 

by the P. olseni cells when cultured in artificial media. An additional bath challenge 

experiment was performed in which naive bivalves were exposed to P. olseni derived 

from Ruditapes decussatus clams procured from a P. olseni-endemic region of Spain. 

During the first inoculation experiment, the triploid C. ariakensis obtained for use in the 

disease challenge were briefly exposed to York River water where they were
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unintentionally exposed to P. marinus, a Perkinsus sp. endemic to that area. As the 

experiment progressed, the acquisition of moderate and heavy infection intensities of P. 

marinus in C. ariakensis was observed in oysters being maintained in the laboratory.

Results suggest that there may be some risk of mortality from P. marinus if  C. ariakensis 

is held under stressful conditions in a hatchery or laboratory setting. PCR and RFTM 

assay results compiled from the inoculation experiments and bath challenge experiments 

sugest that M. mercenaria and C. virginica may be susceptible to the exotic pathogen, P. 

olseni, therefore highlighting a serious disease risk associated with introduction of C. 

ariakensis to Chesapeake Bay.

INTRODUCTION

The eastern oyster, Crassostrea virginica, an integral part of the economy and 

ecology of the Chesapeake Bay, has been in a severe state of decline in recent decades.

Two pathogens, Haplosporidium nelsoni and Perkinsus marinus, the parasites 

responsible for the diseases known as MSX and dermo, respectively, have contributed 

significantly to the decimation of the oyster populations in Chesapeake Bay since the 

1950s (Sindermann 1990).

The decline in oyster production in Virginia led to the formation o f a number of 

panels in the early 1990s to make recommendations on restoring oyster populations. One 

option being seriously considered currently is the introduction and use of a non-native 

oyster in Chesapeake Bay. A 1998 field-based study on the Asian oyster, Crassostrea 

ariakensis, documented rapid growth and survival in that species, as compared to C. 

virginica, even when endemic diseases were prevalent (Calvo et al. 2001).
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Based on significant impacts that non-native introductions o f various aquatic 

species have had around the world, the International Council for the Exploration of the 

Seas (ICES) developed a Code of Practice on Introductions and Transfers of Marine 

Organisms (ICES 2005). Recommendations put forth by ICES and other organizations, 

were the impetus behind a survey conducted on the parasites of Crassostrea ariakensis 

and other sympatric oysters in the C. ariakensis native range of China, Japan and Korea.

A Perkinsus spp. genus-specific PCR assay targeting the internal transcribed 

spacer region (ITS) of the ribosomal RNA complex was used to test Asian oyster samples 

for the presence of parasite DNA. Sequencing of positive amplification products from 

the genus-specific assay revealed that P. olseni was present in C. ariakensis in Japan and 

in C. ariakensis and C. honkongensis in northern China (Chapter 1). This result raised 

concern that there was potential for an accidental introduction of the parasite to the 

Chesapeake Bay region either through infected oysters or from ballast water entering Bay 

waters through Asian shipping traffic. Therefore, an investigation of the potential 

pathogenicity o f P. olseni to local Chesapeake Bay bivalve species, C. virginica and 

Mercenaria mercenaria, as well as to C. ariakensis, was initiated.

The first experiment consisted of a direct inoculation of a standard dose o f P. 

olseni cultured cells into the pallial cavity o f the above listed bivalves. Due to an 

unfortunate exposure of C. ariakensis to the Chesapeake Bay native parasite, Perkinsus 

marinus, results of the first inoculation experiment were confounded. Although, in the 

first experiment, C. ariakensis acquired moderate and heavy infection intensities of P. 

marinus, there was little evidence of disease in the bivalves challenged with the cultured 

P. olseni cells. There was evidence from several previous experiments conducted by 

other researchers (Ford et al. 2002) that virulence is compromised in cultured Perkinsus
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spp. cells. Therefore, a second challenge experiment was undertaken to analyze if 

supplementing standard culture media with oyster homogenate resulted in differential 

transmission or pathogenicity when compared to a direct inoculation of cells cultured in 

the absence o f oyster homogenate. Previous studies conducted with P. marinus have 

demonstrated that virulence of cultured cells may be increased by supplementing the 

culture media in this manner (MacIntyre et al. 2003, Earnhart et al. 2004). The third 

experiment in the P. olseni challenge series was a bath experiment in which the three 

bivalve species were exposed to P. olseni cells purified directly from naturally infected 

Spanish Ruditapes decussatus clams.

Experiment 1. First challenge experiment

MATERIALS AND METHODS 

Quarantine procedures. A quarantine facility in Byrd Hall at the Virginia 

Institute of Marine Science (on the upper campus, physically separated from the 

Aquaculture Facility/shellfish hatchery on the lower campus) has been established for the 

experimental culture of shellfish infected with non-endemic pathogens. This is a 

restricted-access facility, and great care is taken to prevent the escape of potential 

pathogens from this facility to the environment. Those working in this lab are required to 

log in all activities, wash hands and arms thoroughly and spray with ethanol before 

leaving, and use a sanitizing footbath upon exiting. All experiments involving exotic 

Asian Perkinsus spp. were conducted using strict quarantine protocols. As is customary 

in the quarantine facility, two thirds o f the water from tanks used in the Perkinsus sp. 

experiments was renewed three times a week. Bleach was added to the waste tank at a 

final concentration of greater than 300 ppm CE. According to Bushek et al. (1997), this
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concentration of bleach kills all parasite cells within 30 minutes. After 24 h, chlorine was 

neutralized with sodium thiosulfate. The water was pumped into the drain, allowing this 

water to be additionally treated by Hampton Roads Sanitation District facilities. Any 

whole animals, portions of animals, or shell disposed of during the duration of these 

experiments were immersed in 70% ethanol for 24 h, or autoclaved, before being 

discarded into the garbage in sealed plastic bags.

Experim ental design. On January 24, 2005, 120 triploid C. ariakensis (74.4 ±

8.9 mm shell length) were received from the Aquaculture Genetics and Breeding 

Technology Center hatchery at VIMS. On February 15, 2005, 120 hard clams,

Mercenaria mercenaria (36.1 ± 2.7 mm shell length) were obtained from Mobjack Bay 

Seafood Company, Ware Neck, Virginia. On February 4, 2005, 120 eastern oysters, 

Crassostrea virginica (83.7 ± 8.6 mm), were obtained from Hog Island Oyster Company, 

Tomales Bay, California. The C. ariakensis were held for 4 d inside a plastic mesh bag 

in a holding tank prior to bringing them into the laboratory aquaria. The holding tank 

was not covered and there was flow-through of non-filtered York River water of 

approximately 9 °C and 16 ppt salinity.

When the M. mercenaria and C. virginica were received, the C. ariakensis were 

removed from the holding tank and 20 individuals of each species were sacrificed.

Whole wet body weights were obtained and gill and mantle was excised aseptically from 

each animal for DNA extraction. Genomic DNA of each oyster was used in a PCR-based 

molecular diagnostic assay (Casas et al. 2002) to examine the animals for the presence of 

DNA from Perkinsus spp. parasites.

The animals were subsequently held for 59 days in 10 gallon glass aquaria that 

were maintained at 20 °C and 25 ppt salinity at a density of approximately 25 individuals
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per tank and were fed 0.1 g per oyster algal food daily (Reed Mariculture, San Jose, CA). 

After 50 days, on March 24, 2005, five individuals of each species were sacrificed and 

gill and mantle were excised aseptically from each animal to be used in Perkinsus spp. 

screening by PCR as described below. This was to insure that all hosts remained 

Perkinsus spp.-free prior to the start of the experiment.

On March 28, 2005, the remaining C. virginica, M. mercenaria and C. ariakensis 

were used in an experiment designed to evaluate the pathogenicity o f P. olseni to these 

bivalve species. Twenty C. ariakensis, 37 M. mercenaria and 25 C. virginica received 

single pallial cavity injections of 100 ill of 25 ppt sterile artificial seawater (SASW) 

through a notch in the shell. Those C. ariakensis inoculated with 25 ppt SASW were 

maintained in one 10 gallon aquarium, the M. mercenaria were split into two aquaria, 

with 18 and 19 clams in each, respectively, and the C. virginica were also split into two 

aquaria, with 12 and 13 oysters in each, respectively. Thirty-nine C. ariakensis, 36 C. 

virginica and 57 M. mercenaria were inoculated with 105 log phase cultured P. olseni 

cells, suspended in 100 pi of 25 ppt SASW, per gram body weight. The average body 

weight o f each host (wet, excised from shell) was 12.2 g for C. ariakensis, 7.3 g for C. 

virginica and 4.3 g for M. mercenaria, translating to inoculations of approximately 12.2 x 

106, 7.3 x 106, and 4.3 x 106 cells per host, respectively, in a 100 pi volume. For all 

Perkinsus spp. inoculations, cell counts and viability were recorded using neutral red and 

an Improved Neubauer, 1/400 Square mm counting chamber (Hausser Scientific, 

Horsham, PA). After injection, animals were wrapped with a rubber band and held at 4 

°C for 5—6 h. The clonal P. olseni culture used for this experiment was isolated from a 

Japanese Venerupis (=Tapes) philippinarum clam that was obtained from Mr. Chris 

Dungan of the Maryland Cooperative Oxford Laboratory, Oxford Maryland, (ATCC
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PRA-181). The C. ariakensis were divided into three aquaria with 20, 20 and 19 oysters 

in each. The C. virginica were divided into three aquaria with 12 oysters in each. The M. 

mercenaria were divided into three aquaria with 18 clams in each. As a positive control,

17 C. virginica were inoculated with 105 log phase cultured Perkinsus marinus cells per 

gram body weight in a 100 pi volume. The clonal P. marinus culture (ATCC 50439) was 

also obtained courtesy of Mr. Chris Dungan. These C. virginica were divided evenly 

between two aquaria, 8 and 9 animals each. Thirty additional untreated, control C. 

ariakensis were neither notched nor inoculated, but held in separate aquaria and 

otherwise maintained and fed in the same manner as the experimental animals for the 

duration of the experiment. All aquaria were identical and each tank was covered with a 

plexiglass lid.

All aquaria environments were maintained at 20—22 °C and contained 25 ppt 

aerated, 1-pm filtered York River water. When the experimental hosts were first 

introduced to the aquaria, the aquaria were only half full of water. After 1 h, 1 ml of 

algae feed (Reed Mariculture) was added to each aquarium. These steps were taken to 

instigate feeding in order to promote uptake of any purged cells that may have been 

released. Eighteen hours later, the aquaria were filled entirely with 25 ppt filtered York 

River water. Starting four days post inoculation, water changes took place 2—3 times 

weekly, during which two thirds o f the water was removed each time and replaced with 

an equal volume of clean, 25 ppt, 1-um filtered York River water. Animals were fed 

daily a single dose of 0.1 g algal feed per animal.

Aquaria were checked daily for mortality and moribund animals were removed.

When moribund or dead animals were discovered, and if sufficient undegraded tissue 

remained it was processed for analysis. Gill and mantle tissues were removed with a
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portion preserved in 95% ethanol for DNA extraction and molecular diagnostics, and gill, 

mantle and rectal tissues were processed for Ray’s fluid thioglycollate medium (RFTM) 

assay (Ray 1952). Following 27 °C incubation for 5—6 d in RFTM, tissues were 

removed from the culture tubes, macerated on microscope slides and stained with Lugol’s 

iodine. Stained, cover-slipped tissue preparations were examined under a light 

microscope and Perkinsus sp. tissue burdens were enumerated on a scale from rare (R) to 

very heavy (VH) based on the categories of Ray (1952, 1954). Visceral mass tissue 

sections were preserved in Davidson’s solution for histological analysis (Shaw & Battle 

1957).

Experimental sampling. Because of space constraints in the laboratory, the 

untreated C. ariakensis that were remaining after 37 d were sacrificed and tissues were 

taken and preserved for DNA, RFTM, and histological analyses of disease status as 

described above. For those tanks in which hosts were inoculated with either 25 ppt 

SASW or with P. olseni, two randomly chosen individuals from each tank were removed 

and sacrificed for disease diagnosis on days 21, 44 and 59 post-inoculation. The 

challenge experiment was terminated on day 72 and all remaining animals were 

sacrificed and tissues preserved for DNA, RFTM and histological analysis.

Nucleic acid extraction. Genomic DNA was extracted from the excised mantle 

and gill snips, using a DNeasy® Tissue Kit (Qiagen Inc., Valencia, CA) as in Chapter 1.

SSU gene and genus-specific Perkinsus sp. PCR assays. In order to assure that 

PCR amplifiable DNA was present in all extracted samples, genomic DNAs were tested 

using a universal small subunit (SSU) ribosomal RNA gene assay and screening for 

Perkinsus sp. DNA was performed using a Perkinsus genus-specific PCR assay, both 

described in Chapter 1.
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Perkinsus species-specific assays. Identification of the Perkinsus species that 

was infecting animals shown to have positive amplification products with the Perkinsus 

genus-specific assay was accomplished through the use of P. marinus and P. olseni 

species-specific PCR assays. Perkinsus marinus-specific primers PmarITS-70F (5' 

CCTTTGYTWGAGWGTTGCCAGATG 3') and PmarITS-600R (5'

CGAGTTTGCGAGTACCTCKAGAG 3') (Audemard et al. 2004) and P. olseni-specific 

primers designed for this study Pols-140F (5' GACCGCCTTAACGGGCCGTGTT 3') 

and PolsITS-600R (5' GGRCTTGCGAGCATCCAAAG 3') were used in separate 25 pi 

reactions. PCR reactions for the P. marinus ITS region contained the following: 20 mM 

Tris-HCl (pH8.4), 50 mM KC1, MgCl2 1.5 mM, 0.2 mM each dNTP, each primer at 0.1 

pM, 0.025 U p f 1 Taq polymerase, 0.05 mg per ml BSA and 0.5 pi genomic DNA (-10— 

50 ng). Amplifications were performed with an initial denaturation of 95 °C for 4 min 

followed by 40 cycles o f 94 °C for 1 min, 57 °C for 1 min, 65 °C for 3 min, with a final 

elongation o f 65 °C for 10 min. PCR reactions for the P. olseni ITS region contained the 

following: 20 mM Tris-HCl (pH8.4), 50 mM KC1, 1.0 mM MgCl2, 0.2 mM each dNTP, 

each primer at 0.1 pM, 0.025 U p f 1 Taq polymerase, 0.05 mg per ml BSA and 0.5 pi 

genomic DNA (-1 0 -5 0  ng). Thermocycling parameters were as follows: an initial 

denaturation of 95 °C for 4 min followed by 40 cycles of: 94 °C for 1 min, 64 °C for 1 

min, 68 °C for 3 min, all followed by a final elongation step of 68 °C for 10 min. 

Following amplification, for each species-specific reaction, 4 pi of PCR product were 

analyzed as described above.

Specificity o f P. olseni primers was tested against P. marinus, P. chesapeaki, P. 

mediterraneus, and P. honshuensis DNAs. In addition, selected amplification products 

from positive P. olseni-specific reactions were sequenced. PCR products were cloned

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

into the plasmid pCR®4-TOPO® and transformed into E. coli using a TOPO TA Cloning®

Kit (Invitrogen, Carlsbad, CA) following the manufacturer’s protocols. Cloned fragments 

were sequenced according to methods described previously (Chapter 1).

Histological analysis. Tissues preserved for histological analysis in Davidson’s 

solution (Shaw & Battle 1957) were dehydrated in a series of ethanol baths, infiltrated 

with paraffin and embedded in paraffin blocks prior to sectioning. Sections of 5 pm 

thickness were stained with Harris-hematoxylin and eosin. Histological sections of 

infected oysters were examined using light microscopy to visualize Perkinsus sp. parasite 

cells in situ.

In situ hybridization. Representative tissue sections from three C. ariakensis 

oysters determined to have P. marinus or mixed infections of both P. marinus and P. 

olseni by species-specific PCR (see Results) were evaluated by ISH. In addition, those 

C. virginica and M. mercenaria determined to contain P. olseni DNA by PCR assay were 

also evaluated. A genus-specific 5' end digoxigenin-labeled Perkinsus probe (Elston et 

al. 2004) was used to specifically target SSU rRNA sequences. Perkinsus species- 

specific probes, PmarLSU-181DIG (5' GACAAACGGCGAACGACTC 3'), specific to 

P. marinus, and PolsLSU-464DIG (5' CTCACAAGTGCCAAACAACTG 3'), specific to 

P. olseni, were designed by locating unique regions in aligned available Perkinsus 

species LSU rRNA gene sequences. Digoxigenin-labeled oligonucleotides were obtained 

from Operon Biotechnologies, Inc. (Huntsville AL). The protocol followed for ISH was 

that previously described (Stokes and Burreson 1995) with the modifications published 

by Elston et al. (2004). Pronase at a final concentration of 125 pg m L'1 was used for 

permeabilization during a 30 min incubation, and a probe concentration of 7 ng p f 1 was 

used for hybridization. The putative species-specific probes were tested for specificity
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with numerous Perkinsus sp.-infected reference tissues, including P. marinus in C. 

virginica, P. chesapeaki in Mya arenaria, P. olseni in Haliotis laevigata and P. 

mediterraneus in Chamelea gallina. Controls for each Perkinsus species-specific probe 

were tested identically except that they received hybridization buffer lacking probe 

during the hybridization step.

RESULTS -  Experiment 1

Genus-specific PCR and RFTM assay results. All tissue samples used for 

DNA extraction yielded high quality genomic DNA as indicated by strong 1800 bp 

amplification products that were clearly visible by UV illumination of agarose gels 

following PCR assays with the universal SSU rRNA gene primers. Perkinsus genus- 

specific PCR-based diagnostic screening of an initial baseline subset of 20 individuals of 

each host type showed that all animals were free of Perkinsus sp. DNA. After being held 

in the laboratory aquaria for 59 days, prior to inoculation, the five C. ariakensis sacrificed 

for genus-specific PCR screening, however, indicated 100% prevalence of Perkinsus sp. 

DNA, while no Perkinsus sp. DNA was detected in either M. mercenaria or C. virginica.

Crassostrea ariakensis results. RFTM and Perkinsus genus-specific PCR 

screening results for the C. ariakensis that were inoculated with SASW or P. olseni cells 

are shown in Table 1. RFTM data were not collected during the first day of sampling, 

day 21, however, the PCR screening indicated the presence of Perkinsus sp. DNA in both 

individuals sampled from those inoculated with SASW and in three of the four oysters 

sampled from the P. olseni injected group. There were no Perkinsus cells observed by 

RFTM assays on the day 44 in the SASW oysters, although Perkinsus DNA was found 

by the PCR assay in one of the two oysters sampled. Very light to light RFTM rankings 

were observed for two of the four P. o/sem-inoculated oysters sampled on day 44 and
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three o f the four were positive in the Perkinsus genus-specific PCR assay. On day 59 

both of the SASW-inoculated oysters sampled had moderate-moderate/heavy Perkinsus 

sp. tissue burdens and Perkinsus DNA was detected in both animals by the PCR assay.

Three o f the four P. o/sew-inoculated oysters that were sampled on day 59 had light- 

moderate infections as indicated by the RFTM assay and Perkinsus sp. DNA was 

detected in all four of the sampled oysters. On day 72, when the experiment was 

terminated, six SASW- and 15 P. olseni-treated oysters remained and were sacrificed. 

Perkinsus sp. DNA was found by the PCR assay in all o f the oysters remaining from the 

two treatment groups (Table 1). Perkinsus cells were not detected, however, by the 

RFTM assay in three of the SASW-inoculated or in one o f the P. olseni- inoculated 

oysters. The other three remaining SASW-inoculated oysters had rare RFTM rankings. 

Rare-light/moderate tissue burdens were found in nine P. olseni-inoculated oysters at the 

end of the experiment and four P. oAew'-inoculated oysters had heavy-very heavy 

infections as indicated by the RFTM assay.

RFTM and P. marinus PCR assay results for the 29 untreated C. ariakensis that 

were still alive and were sacrificed on day 37 of the challenge experiment are shown in 

Table 2. Eighteen of these oysters were ranked as having rare to light Perkinsus sp. 

tissue burdens, two were ranked as light/moderate and two as moderate-moderate/heavy 

tissue burdens. Seven had no observable Perkinsus sp. cells in the RFTM assay, however 

five of these were positive in the PCR assay. Perkinsus marinus DNA, as indicated by 

the PCR assay, was found in 23 of these 29 untreated oysters (Table 2), with no P. 

marinus DNA detected in three o f the oysters with a rare RFTM ranking and in one with 

a light infection as indicated by the RFTM assay.
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Crassostrea virginica results. RFTM and Perkinsus genus-specific PCR 

screening results for the C. virginica that were inoculated with P. marinus or P. olseni 

cells are shown in Table 3.

Positive RFTM or PCR results were not observed during the course of the 

experiment for any o f the SASW treated C. virginica.

RFTM data were not collected during the first day of sampling, day 21, for any of 

the Perkinsus marinus-inoculated C. virginica. On day 21, PCR screening indicated the 

presence o f Perkinsus sp. DNA in three of the four oysters sampled from those inoculated 

with P. marinus. On Day 44, none of the C. virginica in the P. marinus treatment were 

PCR positive for Perkinsus sp., though Perkinsus sp. cells were observed in one 

individual (light to moderate RFTM ranking). On Day 59, two C. virginica were PCR 

positive for Perkinsus sp., however no cells were observed in RFTM assays of these 

individuals. On the last sampling, day 72, two of the four C. virginica sampled were 

PCR positive for Perkinsus sp. and no Perkinsus sp. cells were observed in these 

individuals by RFTM assay.

RFTM data were not collected on day 21 for any of the Perkinsus olseni- 

inoculated C. virginica. For the Perkinsus olseni inoculated C. virginica treatment,

Perkinsus sp. DNA was detected in four of the six oysters sampled on day 21. On Day 

44, Perkinsus sp. cells were observed in one individual from the P. olseni treatment by 

RFTM (rare ranking), however it was not positive for Perkinsus sp. DNA by PCR. On 

day 59, Perkinsus sp. cells were observed in one C. virginica, however this sample was 

not Perkinsus sp. positive by PCR. On the last sampling, day 72, Perkinsus sp. cells were 

observed in one C. virginica oyster from the P. olseni treatment (light RFTM ranking), 

however it was not PCR positive for P. olseni DNA.
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Table 1. RFTM ranking and PCR-based Perkinsus genus-specific assay screening results of the first challenge study C. ariakensis oysters that

were notched and inoculated with either SASW or cultured P. olseni cells and sampled from the experimental aquaria on days 44, 59 and 72.

RFTM Ranking
Day 44 (n=2) 

SASW

Day 44 (n=4) 

P. olseni

Day 59 (n=2) 

SASW

Day 59 (n=4) 

P. olseni

Day 72 (n=6) 

SASW

Day 72 (n=15) 

P. olseni

# # PCR # # PCR # # PCR # # PCR # # PCR # # PCR
RFTM pos RFTM pos RFTM pos RFTM pos RFTM pos RFTM pos

pos pos pos pos pos pos
None (N) 2 1 2 1 1 1 3 3 1 1
Rare (R) 3 3 1 1

Very Light (VL) 1 1 2* 2
Light (L) 1 1 2 2 6 6

Light/Moderate (LM) 1 1
Moderate (M) 1 1 1 1

Moderate/Heavy (MH) 1 1
Heavy (H) 1 1

Very Heavy (VH) 3 3

* Species-specific PCR assays indicated that one of these individuals, as well as one P. oAe/n-inoculated individual collected on day 21 (data

not shown), contained DNA from both P. marinus and P. olseni. Only P. marinus DNA was detected in all other individuals.
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Table 2. RFTM ranking and PCR-based P. marinus assay screening results of control 

untreated C. ariakensis (unnotched and uninoculated) on day 37 of the first challenge 

study. (Note: P. olseni DNA was not detected in any of these oysters.)

Day 37 (n=29)

RFTM Ranking # individuals
# P. marinus PCR 

positive

None (N) 7 5

Rare (R) 7 4

Very Light (VL) 3 3

Light (L) 8 7

Light/Moderate (LM) 2 2

Moderate (M) 1 1

Moderate/Heavy (MH) 

Heavy (H) 

Very Heavy (VH)

1 1
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Table 3. RFTM ranking and PCR-based Perkinsus genus-specific assay screening results o f the challenge study C. virginica oysters that were

notched and inoculated with cultured P. marinus or P. olseni cells and sampled from the experimental aquaria on days 44, 59 and 72.

RFTM Ranking Day 44 (n=4) 
P. marinus

Day 44 (n=6) 
P. olseni

Day 59 (n=4) 
P. marinus

Day 59 (n=6) 
P. olseni

Day 72 (n=4) 
P. marinus

Day 72 (n=17) 
P. olseni

# # PCR # # PCR # # PCR # # PCR # # PCR # # PCR
RFTM pos RFTM pos RFTM pos RFTM pos RFTM pos RFTM pos

None (N) 3 5 4 2 5 4 2 16 1
Rare (R) 1 0 1 0

Very Light (VL) 
Light (L) 1 0

Light/Moderate (LM) 
Moderate (M)

1 0

Moderate/Heavy (MH) 
Heavy (H)

Very Heavy (VH)

K>



125

Mercenaria mercenaria results. Positive RFTM or PCR results were not 

observed during the course of the experiment for any of the SASW treated M. 

mercenaria. RFTM and Perkinsus sp. PCR screening results for the M. mercenaria that 

were inoculated with P. olseni cells are shown in Table 4. RFTM data was not collected 

during the first sampling day 21, however two of the four sampled clams were positive 

for P. olseni DNA on that day. On day 44, one clam was observed with a rare RFTM 

ranking, however Perkinsus sp. DNA was not detected. On day 56, all clams were 

negative by RFTM and PCR On day 72, one clam had a rare ranking by RFTM and 

another a very light ranking by RFTM, although only the individual with the very light 

RFTM ranking was found to be positive for Perkinsus sp. DNA.

M ortality data. Mortality was observed in untreated C. ariakensis oysters and in 

those injected with either SASW or P. olseni (Table 5). For the untreated C. ariakensis, 

two died during the 37-day period that they were held in the aquaria. For the SASW 

treatment and the P. olseni treatment, cumulative mortality for the C. ariakensis after 72 

days was 40.0% and 46.2%, respectively. O f the 27 dead C. ariakensis removed from the 

untreated tank and the experimental aquaria during the course of the experiment, it was 

possible to conduct RFTM analysis on only 11 oysters and PCR analysis on 22 because 

tissues rapidly degraded in the small oysters. All tissues taken from dead C. ariakensis 

were PCR positive for P. marinus DNA. Of these 11 oysters examined by RFTM, two 

had none, or rarely observable Perkinsus sp. cells, two had very light or light tissue 

burdens, one had a light to moderate tissue burden and six had moderate to heavy tissue 

burdens o f Perkinsus sp. cells.

The observed mortality was minimal for the C. virginica and M. mercenaria.

Two C. virginica from the SASW treatment and one from the P. olseni treatment died
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Table 4. RFTM ranking and PCR-based Perkinsus genus-specific assay screening results o f the first challenge study M. mercenaria clams

that were notched and inoculated with cultured P. olseni cells and sampled from the experimental aquaria on days 44, 59 and 72.

RFTM Ranking Day 44 (n=4) 
P. olseni

Day 59 (n=4) 
P. olseni

Day 72 (n=35) 
P. olseni

# RFTM # PCR pos # RFTM # PCR pos # RFTM # PCR pos
None (N) 3 4 33 4
Rare (R) 1 0 1 0

Very Light (VL) 
Light (L) 

Light/Moderate (LM) 
Moderate (M)

1 1

Moderate/Heavy (MH) 
Heavy (H) 

Very Heavy (VH)
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Table 5. Daily observed mortalities during the course of the first challenge experiment.

Column headings indicate the sample treatments.

^  „ • , • ^  . . . MercenariaCrassostrea ariakensis Crassostrea virginica______________________________________________________ _______________ mercenaria
II , 25 ppt Perkinsus 25ppt Perkinsus Perkinsus 25 ppt Perkinsus

D ay U ntreated  SASW oheni SASW olseni marinus SASW olseni
2 1
6
11 1
37 1
42
43 na* 1
45 na
49 na 4 1
53 na 1
55 na 4
58 na 1 1
59 na 1
64 na 1 2
66 na 1
72 na 6

1

*na=not applicable as the C. ariakensis from the untreated tank were sacrificed on day 

37.
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during the course of the study. There was no tissue remaining to process for the SASW 

treatment oyster that died on day 42, however for the other SASW or P. olseni treatment 

oysters, neither was either RFTM or PCR positive for Perkinsus sp. Only one clam died 

during the course of this experiment. It was an animal from the P. olseni treatment and 

there was no tissue left to process and analyze for the presence o f Perkinsus sp. DNA.

Species-specific PCR screening for Perkinsus marinus and Perkinsus olseni 

All bivalve species shown to be PCR positive with the Perkinsus genus-specific assay 

were analyzed using both P. marinus-specific and P. olseni-specific primers. As the P. 

olseni primers were new for this study, specificity was tested against P. marinus and P. 

chesapeaki DNAs. The P. olseni primers did not amplify DNA from these other 

Perkinsus species. Sequencing of amplification products from the control DNA samples 

further confirmed the specificity as sequences of amplification products from all positive 

P. olseni-specific reactions matched those of GenBank deposited P. olseni sequences.

The five C. ariakensis taken as a baseline sample immediately prior to the start of the 

study, and all untreated oysters had only P. marinus, not P. olseni, DNA. In addition, all 

but two of the C. ariakensis that were SASW- or P. olseni-inoculated and that were 

Perkinsus sp. positive with the genus-specific primers, were positive for only P. marinus 

DNA. Two C. ariakensis that were inoculated with P. olseni at the start of the challenge 

and were sampled on days 21 and 72 were positive for both P. marinus and for P. olseni 

DNA. Tissue from all dead oysters collected from either the experimental or untreated 

aquaria were found to be PCR-positive for P. marinus only.The six C. virginica from the 

P. olseni-inoculated treatment that were Perkinsus sp. positive with the genus-specific 

primers, were positive only for P. olseni DNA. The seven PCR positive oysters from the 

P. marinus-inoculated treatment were found to be positive only for P. marinus DNA.
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In total, seven M. mercenaria were Perkinsus sp.-positive from the P. olseni 

treatment and all of these clams were found to be positive only for P. olseni DNA.

RFLP results. The P. olseni and P. marinus positive control DNA isolated from 

cultured cells, and a plasmid-containing Perkinsus chesapeaki ITS region DNA, were 

amplified in the Perkinsus genus-specific assay. ITS region amplification products were 

digested with Mbo I restriction endonuclease. Results confirmed that P. marinus ITS 

region DNA has a unique digestion profile when digested with Mbo I and the observed 

fragment sizes o f approximately 17 bp, 226 bp and 264 bp were consistent with the 

fragment sizes expected for P. marinus. With this enzyme, ITS region amplification 

products of P. chesapeaki would remain uncut while P. olseni ITS region amplification 

products would be cut, resulting in a 64 bp and a 262 bp fragment.

Histology. Ten C. ariakensis shown by PCR to have Perkinsus sp. DNA, and 

whose tissues showed light to very heavy RFTM rankings were chosen for further 

histological examination. A tissue section from one animal with a very heavy RFTM 

ranking that had died during the experiment showed gross Perkinsus sp. lesions (Fig. 1 A) 

and observable parasite cells when stained with Harris-hemotoxylin and eosin (Fig. IB). 

Parasite cells were numerous and observed systemically throughout the visceral mass. 

Obvious lesions due to Perkinsus sp. infection were not observed by histology in tissue 

sections taken from animals with light or moderate Perkinsus sp. tissue burdens as 

determined by the RFTM assays.
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Figure 1. H&E-stained histological section o f Perkinsus marinus lesions in the gonad of 

Crassostrea ariakensis. (A) Low power photomicrograph showing the extent of the 

lesions (arrows) in the vicinity of the gonoduct (g). Square represents the area shown in 

B. (B) Higher magnification in the vicinity of a gonoduct (g) showing P. marinus cells 

(arrows) in the lesions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

131 

Figure 1. 
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All C. virginica and M. mercenaria observed to be P. olseni positive or RFTM 

positive (within the P. olseni treatment only) were examined histologically. Perkinsus 

sp. cells were not observed in any tissue sections examined.

In situ hybridization results. In situ hybridization probes designed to target the 

LSU rRNA gene of P. marinus or P. olseni exhibited specificity for the targeted 

Perkinsus species. In the specificity tests, the P. marinus probe hybridized only to the 

Perkinsus cells in the sample of P. marinus in C. virginica and the P. olseni probe 

hybridized to Perkinsus sp. cells in the control sample of P. olseni in Haliotis laevigata.

The probes did not cross-react with non-targeted Perkinsus species or host tissues in 

other control samples.

Figure 2A-D shows four consecutive sections from the heavily infected 

Crassostrea ariakensis oyster shown in Fig. 1. Figure 2A is an H&E-stained section.

Fig. 2B shows positive in situ hybridization with the PmarDIGLSU-181 probe to 

Perkinsus sp. cells indicating that the lesions were caused by P. marinus. The P. 

marinus-specific probe bound to cells throughout the digestive epithelium, gonads and 

gonoducts. In situ hybridization reactions conducted without probe (Fig. 2C), or with the 

P. olseni-specific probe, PolsDIGLSU-464, (Fig. 2D), produced no signal in host tissues 

of this oyster. The P. olseni-specific probe was also tested against two C. ariakensis that 

were inoculated with P. olseni and found to harbor both P. marinus and P. olseni DNA 

by the PCR assays. The P. marinus probe hybridized to Perkinsus sp. cells in the dually 

infected oysters, however, no binding of the P. olseni probe was observed, suggesting 

that infections by P. olseni were extremely light, or that only P. olseni DNA was present 

and not viable cells.
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Figure 2. Perkinsus marinus in Crassostrea ariakensis. (A) H&E-stained histological 

section in the vicinity of a gonoduct (g) showing Perkinsus marinus lesions (arrows). (B) 

In situ hybridization with the P. marinus-specific probe, Pmarl81LSUDIG, illustrating 

strong binding to the Perkinsus sp. cells (arrows). (C) No probe negative control 

showing no binding to the C. ariakensis tissue. (D) In situ hybridization with the P. 

olseni-specific probe, Pols464LSUDIG, illustrating no binding to the Perkinsus sp. cells.
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Figure 2.
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The tissue sections of the six C. virginica and seven M. mercenaria that were 

PCR positive for P. olseni DNA produced no hybridization of the P. olseni probe, 

suggesting that there were not enough P. olseni cells in those individuals to be detected 

using this technique.

EXPERIMENT 2. Supplementation of Perkinsus olseni culture media

MATERIALS AND METHODS

Experimental hosts. Two hundred Crassostrea virginica were obtained from 

Hog Island Oyster Company, Tomales Bay, California, 200 Mercenaria mercenaria were 

obtained from Mobjack Bay Seafood Company, Ware Neck, Virginia, and 200 triploid 

Crassostrea ariakensis were obtained from the hatchery at the Virginia Institute of 

Marine Science (VIMS), Gloucester Point, Virginia. Prior to the start of the experiment, 

20 individuals o f each species were sacrificed in order to confirm that they were 

Perkinsus sp.-free. Tissue from the subsampled hosts was processed for DNA, RFTM 

and histological analysis as above.

Remaining C. ariakensis, C. virginica and M. mercenaria were acclimated for 

two weeks in separate, 50 gallon glass aquaria to 25 ppt, 1-pm filtered York River water. 

Aquaria water temperature was maintained at 20—20 °C and animals were fed 0.2 g per 

oyster algal food daily. Two thirds of the aquaria water was removed three times each 

week and replaced with an equal volume of clean, 25 ppt, 1-pm filtered York River 

water.

Perkinsus olseni culture. A clonal, cryopreserved Perkinsus olseni culture, 

(ATCC PRA-181) isolated from a Japanese Venerupis philippinarum clam was thawed, 

propagated, and continually expanded over two weeks at the Maryland Cooperative
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Oxford Laboratory, Oxford Maryland by Chris Dungan and Rosalee Hamilton.

Perkinsus sp. medium consisted o f DME: Ham’s F12 media, 2mM L-glutamine, 25 mM 

HEPES, 7 mM NaHC0 3 , carbohydrates (glucose, glactose, trehalose) and 3% (v/v) fetal 

bovine serum (FBS). The final osmolality was 850 mOsm kg'1 (29 ppt) and hereafter will 

be indicated as DME/F12-3 (Burreson, Reece and Dungan 2005). Medium was 

additionally supplemented with penicillin (100 ug/ml), streptomycin (100 ug/ml) and 

gentamicin (100 ug/ml). Absence o f microbial contamination was microscopically 

confirmed in all flasks and cell viability was determined using the neutral red assay. Two 

weeks later, cells were harvested by pipetting 180 ml each into four 250 ml conical 

centrifuge bottles. Cells were centrifuged for 15 min at 20 °C, 300 x g, to recover four,

~3 ml volume cell pellets. Cell pellets were resuspended to wash in 50 ml of 30 ppt 

sterile artifical seawater (SASW), and were repelleted by centrifugation for 5 min at 

20°C, 300 x g. Supernatant was removed and each cell pellet was then resuspended in 

132 ml of serum free DME/F12-3 medium and resulting suspensions were distributed 22 

ml each to 24, 125 cm2 culture flasks. Flasks were tightly sealed and sent to VIMS.

Upon arrival, 2 ml of fresh media was added to each flask and they were incubated at 20 

°C.

Homogenate preparation. Approximately 250 small (25.9 ± 4.08 mm average 

shell height) triploid C. ariakensis were aseptically shucked and homogenized in 25 ppt 

SASW in batches using sterile blenders. C. ariakensis homogenate was pooled and 

divided into 12 Sorval ultracentrifuge tubes held on ice. Ultracentrifuge tubes containing 

homogenate were balanced using 25 ppt SASW and were initially centrifuged for 1 h at 4 

°C, 16,000 x g. The supernatant was removed using sterile Pasteur pipettes and pooled 

into sterile 50 ml polystyrene falcon tubes on ice. The supernatant was then aliquoted
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into six new ultracentrifuge tubes and centrifuged for an additional 45 min at 4 °C,

100,095 x g. Resulting supernatant was removed using sterile Pasteur pipettes and 

pooled into 15 ml polystyrene falcon tubes on ice. Pooled supernatant was sterile filtered 

three times using sterile 3 ml syringes fitted with 0.22 pm filters (Costar, Whatman,

Clifton, N.J.) and placed at 4 °C overnight. An aliquot o f sterile C. ariakensis 

homogenate was run in triplicate in a bicinchoninic acid assay (BCA) against BSA 

standards to determine the protein concentration of the homogenate.

P. olseni culture supplementation. Propagating P. olseni cells were observed 

microscopically for absence of microbial contamination and pooled into six sterile 250 ml 

conical centrifuge bottles. One milliliter aliquots of cells were removed from each bottle 

for cell counts and determination of viability. The pooled cells were then centrifuged for 

15 min at 20 °C, 300 x g. The supernatant culture media was removed and cells 

resuspended in a volume o f fresh, serum-free DME/F12 media as necessary to yield a 

final concentration of 108 cells/ml. Six 225 cm2 polystyrene culture flasks were 

designated for fetal bovine serum (FBS) culture treatment and were inoculated with 237 

ml of fresh DME/F12 media, 2.4 ml of P. olseni cells at 108 cells/ml, and 0.7 ml of FBS 

(35 mg/ml protein) to yield cell cultures supplemented at 0.1 mg/ml with FBS at 106 

cells/ml seeding density. Six additional 225 cm2 polystyrene culture flasks were 

designated for the C. ariakensis homogenate supplemented treatment and were inoculated 

with 236 ml of fresh DME/F12 media, 2.4 ml of P. olseni cells and 1.6 ml o f C. 

ariakensis homogenate (14.8 mg/ml protein), to yield cell cultures supplemented at 0.1 

mg/ml with C. ariakensis homogenate at 106 cells/ml seeding density.

All flasks of cells were then incubated at 22 °C, for 96 h. Every 24 h, all flasks 

were observed microscopically to confirm the absence o f microbial contaminants and at
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the same time, 2 ml of cells were removed from each flask. These subsamples of cells 

were centrifuged for 10 min at 20°C, 300 x g. Supernatant culture media was removed 

from the cell pellet using sterile 3 ml syringes (needle removed) and passed through 0.22 

um filters (Costar, Whatman, Clifton, N.J.) into sterile 1.5 ml centrifuge tubes. Sterile 

cell-free media taken from each flask was frozen at -80°C for later analysis of protease 

activity.

After the 96 hour incubation period, four flasks of cells for each treatment were 

then pooled separately into sterile 250 ml conical centrifuge bottles and centrifuged for 

15 min at 20°C 300 x g. The remaining two flasks for each treatment were combined 

into a new flask and held for an additional 25 d. Cell free media was taken as described 

above from each of these flasks at 5, 13, 20 and 27 d. The supernatant media from the 

pooled, centrifuged P. olseni cells was removed and 50 ml of 25 ppt SASW were added 

to each centrifuge bottle. Cells were washed and repelleted for 10 min at 20 °C, 500 x g.

The supernatant was removed and cells were resuspended in 50 ml of 25 ppt SASW.

Washed cells were centrifuged for an additional 10 min at 20 °C, 500 x g. Supernatant 

was removed and cells were resuspended in 25 ml of fresh 25 ppt SASW. Cell counts 

and viability were performed on aliquots of cells for each supplementation treatment as 

described above.

After the cell counts were performed, P. olseni cells for each supplementation 

treatment were then separately diluted in 25 ppt SASW in sterile 25 cm2 culture flasks as 

needed for each culture treatment. Inoculum concentrations were manipulated so that a 

100 pi volume of cells at 106 cells per gram body weight o f host could be administered to 

each host. Average body weights of C. ariakensis, C. virginica and M. mercenaria were
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0.56 ± 0.24, 5.91 ± 1.69 grams and 7.71 ± 1.80 grams, respectively. Inocula in 25 ppt 

SASW were held at 20°C overnight prior to injection.

On the same day that the P. olseni cells were washed and resuspended in 25 ppt 

SASW (96 h post supplementation), all experimental hosts were removed from the 

acclimation aquaria. Using a Dremel tool fitted with a stone cutting disk, the C. virginica 

were notched at the posterior valve margin. Mercenaria mercenaria were notched along 

the valve margin in the vicinity of the mouth. Due to the small size and fragile nature of 

the C. ariakensis shells, a sterile razor blade was used to notch individuals at the posterior 

valve margin. All animals were returned to the acclimation aquaria where they remained 

overnight.

The following day all animals were removed from the acclimation aquaria.

Fourty-five individuals o f each host species were given a single, 100 pil volume 

inoculation of 106 log phase P. olseni cells per gram body weight, cultured previously for 

96 hours in 0.1 mg/ml FBS supplemented DME/F12 culture medium. An additional 45 

individuals of each host type received an identical inoculation o f P. olseni cells cultured 

previously with DME/F12 media supplemented with 0.1 mg/ml C. ariakensis 

homogenate. As negative controls, thirty individuals o f each host received a single 100 

pi inoculation of 25 ppt SASW only. Inoculated animals were placed on plastic trays, 

notch side up, and held for 5 h in a humidified room at 4°C. For each group of hosts 

inoculated with the designated P. olseni culture inocula, the 45 individuals were then 

divided into three aquaria, 15 individuals per aquaria. For each sham-inoculated group of 

hosts, the 30 individuals were then divided into two aquaria, 15 individuals per aquaria.

When the experimental hosts were first introduced to the aquaria, the aquaria 

were only half full o f water. After one hour, 1ml of algae feed was added to each
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aquaria. These steps were taken in order to promote uptake, by feeding, of any purged 

cells that may have been released. Eighteen hours later the aquaria were filled entirely.

All animals were held in 10 gallon glass aquaria maintained at 20— 22 °C and 25 ppt 

aerated, 1-pm filtered York River water, and were fed 0.2 g algal food/oyster twice daily.

The first water change occurred 5 days post injection so that any purged P. olseni cells 

were not immediately removed from the aquaria. From this point forward, two thirds of 

the aquaria water was removed three times each week and replaced with an equal volume 

of clean, 25 ppt, 1-pm filtered York River water.

Aquaria were checked daily for mortality and moribund animals were removed.

When moribund or dead animals were discovered, and if sufficient undegraded tissue 

remained it was processed for analysis. Gill and mantle tissues were removed, preserved 

and processed as described above for RFTM, PCR and histological analyses.

Analysis of P. olseni proteolytic enzyme expression. Supernatants from the two 

P. olseni culture treatments and media controls were analyzed for the presence of 

proteolytic activity. Ten microliters of culture supernatant or control media was mixed 

with 5 pi of Laemmli non reducing sample buffer (Biorad, Hercules, CA) and 

electrophoresed under non-reducing conditions on a 10% sodium dodecyl sulfate 

polyacrylamide (SDS) resolving gel containing 0.1% porcine gelatin (G-8150; Sigma- 

Aldrich, Inc.) with a 4% stacking gel. One lane per gel contained 10 pi of a broad range, 

unstained protein standard (Biorad, Hercules, CA). Electrophoresis was performed on a 

Bio-Rad mini-Protean apparatus using a Tris-glycine buffer system at 120 volts and 4°C 

for approximately 1.5 h. Following electrophoresis, gels were vigorously washed three 

times for 10 min at 4 °C in 250 ml of 4°C 2.5% Triton X-100 in order to renature the 

proteins and then washed once in 250 ml o f room temperature lOOmM Tris HC1 (pH 8.0).
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Gels were incubated overnight at 37 °C in 250 ml fresh lOOmM Tris HC1 (pH 8.0). Use 

of activating buffer at pH 8.0 was chosen as it had been previously determined to be 

optimal for detection of protease expression in P. marinus (La Peyre et al. 1995).

Following incubation, gels were stained for at least 4 h in Coomassie brilliant blue G-250 

in 40% methanol-10% acetic acid. Gels were destained in 40% methanol, 10% acetic 

acid and analyzed for the presence of clear bands corresponding to the location of 

protease activity. Gel images were recorded on an Alpha Innotech FlourChem®

(SanLeandro, CA) imaging system.

Experimental sampling -  animals. Three animals were removed from each 

aquarium on days 14, 28, 42, 56 and on day 70, the final day of the experiment, as long as 

enough live animals remained. Sampled animals were aseptically sacrificed and tissues 

were subdivided as described above.

Nucleic acid extraction, test for genomic DNA quality and P. olseni -  specific 

PCR. Genomic DNA was extracted and analyzed as described above to determine that 

PCR amplifiable DNA was present in all extracted samples.

DNA from all animals as well as from all water samples (see below) was analyzed 

using the PCR-based molecular diagnostic assay specific for P. olseni using primers 

Patll40F and Patl600R, described above, that targets the ITS region o f the ribosomal 

RNA gene complex. Following amplification, 5 pi o f PCR product was analyzed by 

agarose gel electrophoresis (2%), stained with ethidium bromide and visualized as above.

Enumeration and DNA extraction of cultured P. olseni cells. Enumeration and 

DNA extraction of cultured P. olseni cells was performed according to methods in 

Audemard et al. (2004) with slight modification. Approximately 10 ml of Perkinsus 

olseni (ATCC PRA-181) cells in DME F/12 culture media were centrifuged for 10
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minutes at 20 °C, 200 x g, to pellet the cells. The supernatant was removed and cells 

were resuspended in 10 ml of 25 ppt SASW in a 15 ml polystyrene falcon tube. An 

aliquot o f cells was removed and eight cell counts were performed as described above on 

a subsample of cells stained with neutral red. Based on the mean cell concentration from 

eight cell counts, six replicates of 25 ppt SASW were spiked with cells to obtain a final 

concentration of 1,000 cells/ml and a final volume o f 100 ml (100,000 cells total per 100 

ml sample). Each P. olseni spiked replicate was filtered under vacuum filtration onto a 

sterile, 47 mm diameter, 3 pm pore size Nucleopore filter (Costar, Whatman, Clifton,

N.J.) with a disposable apparatus (Nalgene Nunc International, Rochester, N.Y.).

Membranes were handled with sterile disposable forceps and placed into 180 pi of 

QIAmp DNA Stool Mini Kit lysis buffer with 20 pi (100 mg/ml) of proteinase K 

(Qiagen, Valencia California) and incubated overnight at 55 °C to lyse the cells prior to 

DNA extraction.

DNA was extracted from the spiked water samples using a QIAmp DNA Stool 

Mini Kit (Qiagen, Valencia, California) according to the manufacturer’s protocol with 

the modifications published by Audemard et al. (2004). Modifications included the 

overnight lysis step, decreasing by half the volume of ASL buffer and using half o f an 

InhibitEX tablet. DNA was eluted by three 100 pi loadings of elution buffer onto the 

column with 5 min of incubation before centrifugation (eluates combined).

Real-time PCR conditions. Quantitative real-time PCR was performed using the 

Light Cycler from Roche Diagnostics (Mannheim, Germany). Amplified PCR product 

was quantified on a cycle-by-cycle basis through the acquisition of a fluorescent signal 

generated by the binding of the molecule, Sybr Green I (Roche Diagnostics) to double 

stranded DNA. DNA from the six replicates of P. olseni-spiked water (1,000 cells/ml),
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was diluted serially by six orders of magnitude using elution buffer. This corresponded 

to a dilution series ranging from 333 x 10° to 3.3 x 1 O'4 cells/pi From the dilution series, 

a standard curve was generated in which the threshold cycle was plotted versus the 

logarithm of the starting concentration of DNA (corresponding to a known number of 

cells). This standard curve, generated from known concentrations of cells, allowed 

quantification of the number o f P. olseni cells in the water collected from experimental 

aquaria when sample cycle threshold values were plotted against the standard curve.

Real-time PCR reactions were performed using a LightCycler® FastStart DNA 

MasterPLUS SYBR Green I Kit (Roche Diagnostics) in 10 pi volumes and P. olseni- 

specific PCR primers Pols HOF and Pols600R. Each PCR reaction contained 1 U Fast 

Start DNA MasterPLUS polymerase mixture (contains M gCf ), 0.5 pm of high 

performance liquid chromatography purified primers, Pols HOF and Pols600R 

(Invitrogen), 0.4 mg/1 bovine serum albumin, and 1 ul of DNA. The amplification 

program was as follows: the reaction was heated at 95 °C for 10 min to activate the DNA 

polymerase, followed by 50 cycles of increasing the temperature 20 °C/s to 95 °C, 

holding the temperature at 95 °C for 10 s, decreasing the temperature 20 °C/s to 67 °C, 

holding this temperature for 10 s, increasing the temperature 20 °C/sec to 72 °C, and 

holding this temperature for 18 s. Flourescence acquisition was acquired at 72 °C at the 

end of each cycle. A melting curve was acquired by heating the PCR products at 20 °C/s 

to 95 °C, cooling it at 20 °C/s to 60 °C, and slowly heating it at 0.1 °C/s to 95 °C, with 

fluorescence values collected at 0.1 °C intervals. The melting temperature of P. olseni 

ITS PCR products was determined to be 83 °C. The serial dilutions used to create a 

standard curve and all experimental samples were run in triplicate. The reproducible
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limit of sensitivity for the P. olseni real-time PCR reaction was 3.3 x 10'2 cells in a 10 ul 

reaction volume or -1000 cells/liter.

Experimental sampling -  water. On days 5, 14,28, 42, 56 and on day 70, the 

final day of the experiment, duplicate 100 ml samples o f water were taken from each 

aquarium using a sterile 50 ml serological pipette and were dispensed into 100 ml sterile 

coliform bottles. Water samples were filtered and DNA was extracted following the 

protocol described above for enumeration and DNA extraction of P. olseni spiked water 

samples used to create the standard curve.

Data analysis. Acquisition of P. olseni, as determined by PCR results, was 

analyzed for all hosts and treatments in Systat (Systat 11, San Jose California) using 

logistic regression. In particular, the questions of interest were 1) is there a difference in 

number o f PCR positive samples seen in experimental hosts depending on the culture 

method used and 2) is there a difference in the number of P. olseni PCR positive samples 

depending on host species inoculated. In addition, P. olseni cell counts taken on day 5, 

day 13, day 20 and day 27 for each treatment were analyzed using a two way analysis of 

variance in MiniTab version 14 (State College, Pennsylvania) in order determine if 

culture supplementation had an effect on P. olseni cell proliferation. In all analyses, 

differences were considered significant at <*< 0.05.

RESULTS -  Experiment 2 

P. olseni culture cell population & analysis protease activity. Perkinsus olseni cell 

counts taken on days when cell free supernatant was acquired revealed a marked 

difference among days (Figure 3) and subsequently the frequency of certain cell types 

between the media treatments. On day 5 (days following supplementation), there were
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Figure 3. Perkinsus olseni cell counts taken over a 27-day incubation in media 

supplemented with either 0.1 mg/ml FBS or 0.1 mg/ml Crassostrea ariakensis 

homogenate.
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approximately 1.8 times the number of cells in the FBS treatment compared to the oyster 

homogenate treatment. By day 13, that difference reached a maximum, with the P. olseni 

cells in FBS treatment being 8.7 times more dense than the cells in the oyster homogenate 

treatment. On days 20 and 27, the difference in cell density between the FBS and oyster 

homogenate was 3.3 and 4.2 times, respectively. Though individual counts of the various 

life stages were not taken, throughout the 27-day incubation, flasks containing cells in the 

oyster homogenate treatment had visibly more zoosporangia than the FBS treatment 

flasks. Zoosporulation of P. olseni in culture is often inversely proportional to the 

density of the culture, therefore proliferating stages in the oyster homogenate flasks were 

dominated by zoosporangium whereas proliferating stages in the FBS flasks were 

dominated by schizonts.

A number of the P. olseni supernatant samples taken during the first 96 hours of 

incubation were unfortunately lost after being stored at -80°C. Samples analyzed 

included those taken after 96 hours and on day 8 and day 20. High molecular weight 

protease activity was observed for the oyster homogenate supplemented control media 

sample, but not for the FBS supplemented control media sample. High molecular weight 

protease activity was observed for samples taken from the oyster homogenate 

supplemented flasks 96 hours post-supplementation, as well as on days 8 and 20, with an 

observed increase in strength o f proteolytic activity over time. No protease activity was 

seen for FBS-supplemented culture samples (Fig 4).

Experimental sampling -  animals. All animals sampled from the negative 

control treatments were negative for P. olseni by PCR and RFTM assays. Individuals 

from all three host species inoculated with P. olseni cells from either the FBS 

supplemented or oyster homogenate supplemented media, except the clams from the
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Figure 4. Effect o f 0.1 mg/ml C. ariakensis homogenate versus 0.1 mg/ml FBS on 

protease expression by P. olseni. SDS-PAGE gelatin gel showing clearing in the presence 

of proteolytic enzymes. A) Day 8 oyster homogenate culture supernatant B) Day 8 FBS 

culture supernatant C) empty lane D) Day 20 oyster homogenate culture supernatant E) 

Day 20 FBS culture supernatant F) empty lane G) oyster homogenate media control H) 

FBS media control.
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oyster homogenate treatment, showed the presence o f P. olseni DNA by PCR (Table 6) at 

the first sampling point, week 2. Many C. virginica died within the first two weeks o f the 

experiment, therefore, the PCR and RFTM data from these mortalities was combined 

with the week 2 sampling data. At week 4, individuals of all host types in both 

treatments were PCR positive for P. olseni, however, no cells were observed by the 

RFTM assay. At week 6, some C. virginica and M. mercenaria individuals were PCR 

positive for P. olseni in both treatments, however, only one C. ariakensis from the oyster 

homogenate treatment was found to contain P. olseni DNA. In addition, only one C. 

virginica in each of the treatments was positive by RFTM assay, while no Perkinsus sp. 

cells were observed in any of the sampled M. mercenaria or C. ariakensis. At week 8, C. 

virginica and M. mercenaria were PCR positive for P. olseni in both treatments, 

however, only one C. ariakensis was positive for P. olseni DNA from the oyster 

homogenate treatment. Due to previous mortality, there were very few C. virginica 

remaining by week 10. At the week 10 sampling, although some M. mercenaria were 

PCR positive in each treatment, no Perkinsus sp. cells were observed in any of the clams 

by the RFTM assay. Crassostrea virginica and C. ariakensis were found to be PCR 

positive for P. olseni only in the oyster homogenate treatment and Perkinsus sp. cells 

were observed by RFTM in only one sampled C. virginica from this treatment.

When examining cumulative or percent PCR positive and RFTM positive for each 

host species and treatment, higher values for both assays were observed for C. virginica 

and M. mercenaria from the FBS treatment compared to the oyster homogenate treatment 

(Table 6), however the differences observed were not statistically different (p = 0.67). 

Perkinsus olseni DNA was detected most frequently in those C. virginica inoculated with
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Table 6. PCR and RFTM data for the three bivalve species studied during the course o f the second P. olseni challenge experiment in 

which culture media was supplemented with C. ariakensis homogenate or fetal bovine serum. Data is divided into the treatments 

indicative of how the P. olseni culture media was supplemented prior to inoculation. Fractions indicate the number o f animals either 

PCR or RFTM positive over the total number sampled at that time point.

Fetal Bovine Serum Supplemented Treatment Oyster Homogenate Supplemented Treatment

Week 2 PCR positive RFTM positive RFTM ranking PCR positive RFTM positive RFTM ranking
Crassostrea

virginica 12/14 11/14 N-L 12/13 8/13 R-L

Mercenaria
mercenaria 8/9 3/9 N-VL 5/9 0/9 N

Crassostrea
ariakensis 4/9 1/9 N-VL 8/9 1/9 N-VL

Week 4 PCR positive RFTM positive RFTM ranking PCR positive RFTM positive RFTM ranking
Crassostrea

virginica 7/10 0/10 N 5/9 0/9 N

Mercenaria
mercenaria 5/9 0/9 N 7/9 0/9 N

Crassostrea
ariakensis 4/9 0/9 N 2/9 0/9 N

Week 6 PCR positive RFTM positive RFTM ranking PCR positive RFTM positive RFTM ranking
Crassostrea

virginica 8/10 1/10 R 3/9 1/9 R

Mercenaria
mercenaria 7/9 0/9 N 3/9 0/9 N
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Crassostrea
ariakensis 0/9 0/9 N 1/9 0/9 N

Week 8
Crassostrea

virginica
Mercenaria
mercenaria
Crassostrea
ariakensis

PCR positive

6/9

2/9

0/9

RFTM positive

1/9

0/9

0/9

RFTM ranking

R

N

N

PCR positive

3/9

4/9

1/9

RFTM positive

1/9

1/9

1/9

RFTM ranking

R

R

R

Week 10
Crassostrea

virginica
Mercenaria
mercenaria
Crassostrea
ariakensis

PCR positive

0/2

1/9

0/7

RFTM positive

0

0

0

RFTM ranking

N

N

N

PCR positive

2/4

2/9

1/9

RFTM positive

1/4

0/9

1/9

RFTM ranking

R

N

N

totals (%)
Crassostrea

virginica
Mercenaria
mercenaria
Crassostrea
ariakensis

PCR positive 

33/45 (73%)

23/45(51% )

8/45 (18%)

RFTM positive 

12/45 (27%)

3/45 (7%)

1/45 (2%)

PCR positive 

25/45 (56%)

21/45 (47%)

13/45 (29%)

RFTM positive 

12/45 (27%)

1/45 (2%)

3/45 (7%)

to
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cells cultured in FBS (73%) of which 27% were RFTM positive. In comparison, 56% of 

the C. virginica in the oyster homogenate treatment were PCR positive for P. olseni,

(27% RFTM positive). Mercenaria mercenaria had the second highest values for 

cumulative PCR and RFTM positive samples. Fifty one percent of the M. mercenaria in 

the FBS treatment were positive for P. olseni DNA (7% RFTM positive) and in the oyster 

homogenate treatment, a similar percentage o f clams (47%) were PCR positive (2%

RFTM positive). Crassostrea ariakensis sampled from either treatment were the least 

likely to have the presence of P. olseni by DNA analysis or the presence of Perkinsus sp. 

cells by RFTM. Eighteen percent of the C. ariakensis were PCR positive (2% RFTM 

positive) in the FBS treatment, and 29% were PCR positive (7% RFTM positive) in the 

oyster homogenate treatment. Though the observed difference between treatments for C. 

ariakensis was not statistically significant with a p-value of 0.093, an odds ratio of 2.953 

—10.451 suggests that a trend may exist in that C. ariakensis are more likely to be PCR 

positive when inoculated with P. olseni cells cultured in media supplemented with oyster 

homogenate. Within each host species, there was not a significant relationship between 

being PCR positive for P. olseni versus host size; however, there was a significant 

negative relationship observed between time following inoculation and being PCR 

positive for P. olseni in that the longer it had been since inoculation, the less likely the 

individuals of any host species were to be PCR positive.

Mortality data. Mortality was observed beginning three days post inoculation in 

the C. virginica oysters and was observed until day 35. Mortality occurred in all 

treatments and 6, 7 and 9 oysters died in the control, oyster homogenate supplemented 

and FBS supplemented treatments, respectively. None o f the control oysters was positive
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for P. olseni, however many of those oysters from both inoculation treatments were PCR, 

as well as RFTM, positive for Perkinsus sp. (Table 7).

No mortality occurred in any of the M. mercenaria treatments and only two C. 

ariakensis were found dead upon sampling at week 10, both from one of the FBS 

supplemented treatment tanks. No tissue remained in these two oysters for DNA or 

RFTM analysis.

In situ hybridization analyses. All RFTM positive animals from all host types 

were analyzed by in situ hybridization. Hybridization to P. olseni cells was observed in 

only one sample, a M  mercenaria clam sampled from the FBS treatment at week 8, with 

a very light ranking by RFTM (Figure 5). P. olseni cells were observed in small clusters 

in a section of gill only and were not detected in any other organs. Perkinsus sp. cells 

could not be found in an H&E stained tissue section from the same animal.

Experimental sampling -  water. Standard PCR analysis of DNA extracted from 

water samples taken 5 d post -inoculation (before the first water change) detected P. 

olseni DNA in one C. virginica tank in the oyster homogenate treatment and in one C. 

virginica and two M. mercenaria tanks in the FBS treatment. Two weeks post­

inoculation, P. olseni DNA was amplified from water taken from one C. ariakensis tank 

and one C. virginica tank from the oyster homogenate treatment and from one M. 

mercenaria tank from the FBS treatment. Water from one C. ariakensis tank from the 

oyster homogenate treatment and water from one C. virginica tank from the FBS 

treatment were PCR positive for P. olseni DNA on week 4. On week 6, only water from 

one M. mercenaria tank was positive for P. olseni DNA. No water samples tested 

positive for P. olseni DNA on weeks 8 and 10.
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Table 7. PCR and RFTM data for Crassostrea virginica mortality occurring during the second P. olseni challenge experiment.

Date Days Post C ontrol T reatm ent FBS Treatm ent
O yster Homogenate 

T reatm ent
Inoculation

# dead # PCR #
# dead # PCR # RFTM # dead # PCR # RFTM

pos RFTM pos RFTM ranking pos RFTM ranking
3/25/06 3 1 0 0
3/27/06 5 1 0 0 3 3 3 VL, L, 

L
1 1 1 L

3/28/06 6 1 0 0
3/29/06 7 1 1 1 VL 1 1 1 R
3/31/06 9 1 0 0 1 1 1 1
4/2/06 11 1 1 1 L
4/3/06 12 1 1
4/4/06 13 2 1 1 R
4/5/06 14 1 1 0
4/6/06 15 1 0 0
4/16/06 25 1 0
4/19/06 28 1 0 1 1 0
4/26/06 35 1 1 1 R

Totals 6 0 0 9 8 5 7 6 4

C/1
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Figure 5. In situ hybridization of the P. olseni- specific probe, Pols689DIG, illustrating 

binding to Perkinsus sp. cells in the gill of a Mercenaria mercenaria clam collected at 

week 8 from the FBS treatment.
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Real time PCR analysis using P. olseni specific primers was performed on all 

water samples that were positive using standard PCR primers, however no samples had 

reliable replication of quantification that was above the previously determined threshold 

limit o f 3.0 x 10'2 cells per 10 pi reaction.

Experiment 3. Bath challenge with Perkinsus olseni

MATERIALS AND METHODS 

Experimental hosts. On September 28, 2006, 200 Mercenaria mercenaria (36.6 

± 2.5 mm) were received at VIMS from Mobjack Bay Seafood Company, Ware Neck, 

Virginia. On November 1, 2006, 200 Crassostrea virginica (81.8 ± 8.9 mm) were 

received from Hog Island Oyster Company, Marshall, California. On November 15, 

2006, 200 triploid Crassostrea ariakensis (37.5 ± 6.0 mm) were received from the 

hatchery at the University o f Maryland’s Center for Environmental Science. Upon 

arrival, 20 individuals of each host type were sacrificed, and gill and mantle was excised 

aseptically from each animal for DNA extraction. Additional gill, mantle and rectal 

tissues were excised for RFTM assay. Genomic DNA of each oyster was used in the 

PCR-based molecular diagnostic assay to examine the animals for the presence of DNA 

from Perkinsus spp. parasites. All remaining animals were put in separate 10 gallon glass 

(20—30 animals individuals each) aquaria at equivalent salinity to which they came from 

and were acclimated over a period of weeks to 1-pm filtered, 25 ppt York River water. 

Animals were fed 0.2 g oyster''algal food daily and 2/3 of the water was refreshed three 

times per week with clean 1-pm filtered, 25 ppt York River water.
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Ruditapes decussatus. On November 26, 2006, 100 Ruditapes decussatus 

collected from Rla de Pontevedra, Galicia, Spain arrived at VIMS. They were delayed by 

15 d during refrigerated shipment and most were moribund or dead upon arrival. The 

clams had been collected by commercial harvesters in Spain per request by Dr. Antonio 

Villalba of the Centro de Investigaciones Marinas, Galacia, Spain. A sample of clams 

was previously collected and analyzed using RFTM assays by Dr. Villalba. Results from 

RFTM assay o f gill tissues indicated the prevalence o f Perkinsus olseni was 80% and the 

clams had a Perkinsus sp. weighted prevalence o f 2.17. In previous attempts to collect R. 

decussatus or R. philippinarum for this experiment, most clams had either been dead on 

arrival or died within a few days after being placed in acclimation aquaria. It was 

determined to keep the November 26th shipment in a humidified, refrigerated holding 

room and use the moribund or dead animals to harvest live P. olseni cells for a bath 

challenge experiment.

Purification of Perkinsus olseni. On November 29th, December 3rd, December 

8th and December 11th, R. decussatus clams were used to create a partially purified 

homogenate o f Perkinsus olseni cells using a method modified from La Peyre and Chu 

(1994). Fifteen clams were aseptically shucked onto sterile plastic weigh boats. Foot and 

siphon tissue was removed using a sterile razor blade. All remaining tissue was 

macerated with a sterile razor blade and then homogenized in a sterile blender with 

approximately 200 ml of 4 °C, 25 ppt SASW. Homogenized tissue was passed through a 

1 mm mesh sieve and subsequently through a 90 pm and 73 pm sieve. The filtered 

homogenate was dispensed to 50 ml polystyrene falcon tubes and centrifuged at 300 rpm 

for 15 min at 15 °C. The supernatant was removed and an equal volume of fresh 25 ppt 

SASW was added to each cell pellet. The cell pellet was gently disturbed and washed
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followed by centrifugation and washing twice more. After the final centrifugation, the 

supernatant was removed and the cell pellet was resuspended in 15 ml of fresh 25 ppt 

SASW. Perkinsus sp. cell counts were performed and viability determinations were 

performed as described above.

Experimental design. For each host species, 120 individuals were divided 

among 6 tanks, 20 individuals per tank. Three tanks for each host received doses of live 

P. olseni and the other three received an equal volume of 25 ppt SASW only. All aquaria 

environments were maintained at 20—22 °C and contained 25 ppt aerated, 1-pm filtered 

York River water.

When the experimental hosts were first introduced to the aquaria, the aquaria 

were entirely full of water. Prior to being dosed with the partially purified P. olseni, half 

o f the water was removed from the aquaria and 1ml o f algae feed was added to each 

aquarium. These steps were taken in order to promote feeding by the host bivalves and 

uptake o f P. olseni cells added to the water. Eighteen hours later, the aquaria were filled 

entirely. Starting four days after each dose of cells, water changes took place 2—3 times 

weekly, during which two thirds of the water was removed each time and replaced with 

an equal volume of clean, 25 ppt, 1-pm filtered York River water. Animals were fed 

twice daily a single dose of 0.2 g per oyster algal feed.

Aquaria were checked daily for mortality and moribund animals were removed.

When moribund or dead animals were discovered, and if sufficient undegraded tissue 

remained, it was processed for analysis. Gill and mantle tissues were removed and 

processed for DNA and RFTM analysis and visceral mass tissue sections were preserved 

in Davidson’s solution for histological analysis as described above.
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Challenge with Perkinsus olseni. On November 29th, 4 ml of partially purified 

P. olseni were added to each of the treatment aquaria and 4 ml of 25 ppt SASW were 

added to the control aquaria. Cell counts indicated a P. olseni density of 2.3 x 105 cells 

per ml. This was equivalent to 9.2 x 105 cells per tank or 4.6 x 104 cells per animal. On 

December 1st, 8 ml newly purified P. olseni were added to each aquarium and 8 ml of 25 

ppt SASW were added to the control aquaria. Cell counts on December 1st indicated a P. 

olseni density of 1.1 x 105 cells per ml. This was equivalent to 8.9 x 105 cells per tank or 

4.5 x 104 cells per animal. Cell counts taken after sacrificing more clams and 

homogenate preparation on December 8th and December 11th indicated that few viable 

Perkinsus sp. cells remained in the necrotic clam tissue, therefore aquaria were not dosed 

with these homogenate preparations.

Experimental sampling. On 30 and 60 d post inoculation (PI), 5 animals from 

each aquarium were sacrificed. Tissues were aseptically subdivided from each animal for 

DNA, histology and RFTM analysis as above. The experiment terminated after 90 d and 

all remaining animals were sacrificed and tissues preserved as above for DNA, RFTM 

and histological analysis.

RESULTS - Experiment 3 

Experimental sampling. PCR and RFTM results for the 20 animals of each host 

species sacrificed prior to the start o f the experiment were negative in all cases.

On day 30 PI, six M. mercenaria sampled from the three P. olseni dosed aquaria 

were PCR positive for P. olseni. Of these, one individual had visible Perkinsus sp. cells 

in the RFTM assay (light ranking), while no other animals had visible Perkinsus sp. cells. 

On day 60 PI, no clams were PCR positive for P. olseni, however two clams had visible
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Perkinsus sp. cells in the RFTM assay. One had a rare ranking and the other a very light 

ranking. No clams were PCR positive on day 90 PI. (Table 8). After 90 d PI, no C. 

ariakensis or C. virginica oysters were PCR positive for P. olseni. Tissue from one C. 

ariakensis sacrificed on day 30 had visible Perkinsus sp. cells, however, this animal was 

found to be positive for P. marinus and not P. olseni. This suggests that the animal had 

acquired P. marinus cells prior to being used in the experiment, most likely during their 

holding at the University o f Maryland, in waters where P. marinus is endemic.

Mortality. Seven C. ariakensis died during the experiment, two from the P. 

olseni dosed treatment and five from control tanks. None of these oysters was positive 

for Perkinsus sp. by RFTM or PCR. One C. virginica from a control aquarium died and 

it was also negative for Perkinsus sp. by RFTM and PCR.

Histological analysis. All M. mercenaria that were either PCR or RFTM positive 

for Perkinsus sp. were analyzed by ISH utilizing the P. olseni-specific probe as described 

above. No tissue sections showed binding of the P. olseni probe to Perkinsus sp. cells.
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Table 8. PCR and RFTM data for Mercenaria mercenaria sampled during the Perkinsus 

olseni bath challenge experiment.

Day 30 (n=15) Day 60 (n=15) Day 90 (n=30)
RFTM ranking # RFTM # RFTM # RFTM

None (N) 14 13 30
Rare (R) 0 1 0

Very Light (VL) 0 1 0
Light (L) 1 0 0

Light/Moderate(LM) 0 0 0
Moderate (M) 0 0 0

Moderate/Heavy(MH) 0 0 0
Heavy (H) 0 0 0

Very Heavy (VH) 0 0 0
# Perkinsus olseni PCR 

positive 6 0 0
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DISCUSSION

Perkinsus olseni, though widespread geographically and found on at least four 

continents, Asia, Europe, Australia and South America, is not currently found on the east 

coast o f the USA and has not been reported from either the eastern oyster, Crassostrea 

virginica or the hard clam, Mercenaria mercenaria. This parasite has been found 

previously in South Korea in the Venus clam Protothaca jedoensis (Park et al. 2006) and 

in Ruditapes philippinarum (Choi and Park 1997), in R. philippinarum in Japan 

(Hamaguchi et al. 1998) and northern China (Liang et al. 2001), and in Crassostrea 

ariakensis and Crassostrea hongkongensis in northern China and Japan (Moss et al.

2007, Chapter 1). The research leading to the discovery of P. olseni in Asian oysters 

occurred during a recent survey of C. ariakensis populations in Asia (Moss et al. 2007, 

Chapter 1), motivated by a proposed introduction of C. ariakensis to Chesapeake Bay in 

order to restore an ecologically functional and commercially viable oyster population to 

the Bay. The detection of P. olseni in a natural population of C. ariakensis from potential 

Asian broodstock sites prompted initiation o f challenge studies to examine the 

pathogenicity of P. olseni to C. ariakensis, C. virginica and M. mercenaria for evaluation 

o f potential impacts in case o f accidental introduction of the parasite with Asian oysters. 

Perkinsus olseni has been implicated in mortality of shellfish populations (Villalba et al. 

2005, Park et al. 2006), however the host and environmental dynamics that lead to 

pathogenicity of P. olseni have not been extensively studied (Miossec et al. 2006). The 

fact that researchers in northern China and Japan have not reported disease signs or 

mortality in C. ariakensis populations associated with a Perkinsus sp. infection, may 

suggest that P. olseni is a rare or benign parasite in these oysters.
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At the termination o f the first challenge experiment conducted here, PCR based 

diagnostics suggested that a relatively low number of the P. oAem'-inoculated C. 

ariakensis (n=2) harbored both P. marinus and P. olseni DNA. Many C. ariakensis were 

PCR positive for P. marinus only and P. marinus-specific ISH assays confirmed the 

presence of P. marinus in each of the three oysters analyzed. RFTM and PCR assay 

results for the C. virginica and M. mercenaria inoculated with P. olseni also did not 

suggest that transmission of P. olseni readily occurred. Although on day 21 there were 

five C. virginica oysters that were PCR positive for P. olseni, no viable Perkinsus sp. 

cells, either by H&E or ISH, were seen in those oysters. During the rest o f the 72 -day 

experiment, Perkinsus sp. cells were observed in only three C. virginica, however 

negative PCR and histological analysis o f these individuals makes the suggestion of 

transmission inconclusive. On Day 21 there were two clams that were PCR positive for 

P. olseni, yet no viable cells were seen histologically or by RFTM. One clam was RFTM 

positive on day 44 and two on day 72, however only one clam, on day 72 was both 

RFTM and PCR positive for P. olseni. Histological analysis o f all RFTM or P. olseni 

PCR-positive oysters and clams was negative, therefore I could not conclusively 

demonstrate during this first experiment that transmission of this parasite occurs to these 

hosts.

Data concerning the effect of P. marinus on C. ariakensis collected during the 

first challenge was unexpected and enlightening given that one of the reasons for the 

proposed introduction of this oyster species is its reported resistance to P. marinus (Calvo 

et al. 2001). Initial screening using a PCR-based diagnostic method on a sample of the C. 

ariakensis oysters that were obtained for the first challenge study suggested that they did 

not harbor P. marinus. A small sample (n = 5) of these oysters screened 59 days later,
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however, had 100% P. marinus DNA prevalence as indicated by the P. marinus- specific 

PCR assay. I suggest that the C. ariakensis oysters either acquired a small number of P. 

marinus cells that were not numerous enough to be detected by the initial PCR assay of 

gill/mantle tissue while in the VIMS hatchery before collection for this experiment, or 

while being held in unfiltered York River water for 4 days prior to being brought into the 

aquaria where they were subsequently held only in filtered York River water.

Warm water temperatures, 20—25 °C, and high salinity >15 ppt, have been shown 

to correlate with times of maximal proliferation of parasite cells, as well as highest 

incidences of infection in oysters (Andrews and Hewatt 1957, Chu et al. 1994). Due to 

the effects of salinity and temperature on the parasite, the infections caused by P. marinus 

are seasonal in the Chesapeake Bay, with maximum parasite prevalence recorded in late 

summer and minimum prevalence observed during the winter months (Burreson and 

Ragone Calvo 1996). York River water conditions during the short time that the oysters 

were in the holding tank were approximately 9 °C and 16 ppt salinity. Environmental 

conditions of the York River were not likely favorable for P. marinus proliferation at the 

start of the first experiment; however, it has been shown that parasite cells can remain 

viable in over wintering conditions of temperatures as low as 4 °C and a salinity of 4 ppt 

(Chu & Greene 1989, Ragone Calvo & Burreson 1994, Chu 1996). Therefore, I cannot 

discount the possible presence of parasite cells in the York River water during the 

holding period, when the oysters were in unfiltered water.

The experimental conditions under which the C. ariakenis were held, 20 °C and 

25 ppt salinity, would have favored the proliferation of P. marinus cells present in the 

oysters, accounting for the increase in infection prevalence observed after the baseline 

sampling. The P. marinus proliferated to PCR detectable levels after 59 days in aquaria
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with disease developing and mortality subsequently occurring in not only those oyster 

groups that had been subjected to notching and inoculation with either SASW or P. olseni 

for the challenge study, but also in the control group o f unnotched and untreated oysters 

that were simply held for an additional 37 days during the challenge experiment. RFTM 

and PCR assay results for the C. ariakensis initially inoculated with either 25 ppt SASW 

or cultured P. olseni cells for the challenge study revealed a progression o f P. marinus 

infection in the oyster tissues. Sampling and subsequent PCR-based screening of both 

the 25 ppt SASW and P. o/sem-inoculated oysters on days 21 and 44 indicated that P. 

marinus DNA was found in 83.3% and 66.7% of the oysters, respectively. I believe that 

the observed decrease in P. marinus prevalence on day 44 was unlikely an actual 

decrease in the prevalence among the oysters, but rather was a function of the small 

sample sizes (n = 6) assayed to determine PCR-based Perkinsus sp. prevalence at each 

time point. Although P. olseni DNA was found in two of the P. olseni-inoculated oysters 

(one each on days 21 and 72), there was an increase in the observed PCR prevalence of 

P. marinus DNA to 100% in samples of all treated oysters collected on days 59 and 72. 

Likewise, as determined by RFTM assays, the tissue burdens for the two positive 

individuals were light in the P. olseni-treated oysters collected on day 44 of the 

experiment. However, among samples of these same oyster groups that were collected 

on days 59 and 72, not only light infections, but also moderate to very heavy tissue 

burdens were observed. Interestingly, disease progression in those C. ariakensis not 

notched or inoculated, mimicked that seen in the manipulated experimental oysters based 

on the RFTM-based tissue burdens. By day 37 when the control oysters were sacrificed, 

the observed Perkinsus sp. tissue burdens ranged from light to moderate/heavy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

During the course of the first challenge experiment, there were many instances 

where dead C. ariakensis were discovered in the various treatment groups and there was 

little or no tissue available for either PCR or RFTM analysis. It is important to note, 

however, that of the 11 dead oysters with available tissue, more than half (55%) had 

moderate to heavy Perkinsus sp. tissue burdens.

In the first experiment, cumulative mortalities for C. ariakensis were highest in 

those treatments subjected to the extra stress of notching and injection, and the highest 

Perkinsus sp. tissue burdens were seen in dead C. ariakensis. Minimal mortality 

occurred with the other oyster and clam species and could not be attributed to one 

treatment. Higher cumulative mortalities may have been observed in the untreated 

control oysters, as well, had they been held for a longer time period. In C. virginica, 

digestive gland epithelia and the stomach are often heavily colonized with P. marinus and 

damaged. As parasite proliferation increases to lethal levels, massive tissue sloughing 

occurs, which eventually contributes to the death of the animals (Mackin, 1951). In the 

first experiment, tissue sections from a moribund C. ariakensis with a very heavy RFTM 

rating showed dense, systemic P. marinus infection and the in situ hybridization analyses 

confirmed that all of the observable Perkinsus sp. cells were P. marinus. Collectively, 

the results presented here strongly suggest that P. marinus was an important contributing 

factor to the death of these oysters.

The first experiment provided valuable information regarding the potential for 

advanced P. marinus infections to occur in C. ariakensis. Prior field studies conducted in 

Chesapeake Bay have indicated that although C. ariakensis is capable of acquiring P. 

marinus infections (Calvo et al. 2001), there was no evidence that C. ariakensis was 

susceptible to the advanced parasite infections known to occur in C. virginica. The
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experimental environmental conditions, under which the oysters were held for a total of 

five months, combined with the stress of the unnatural aquaria environment and 

experimental manipulation, may have promoted the development of the intense P. 

marinus infections in C. ariakensis that were observed here. The first experiment 

provides valuable information on potentially problematic disease issues including 

parasite proliferation that can arise if  P. marinus-infected C. ariakensis encounter stress 

challenges in the wild or aquaculture environment, or if they are held in hatcheries or 

laboratories under stressful conditions.

In the first experiment, C. virginica that were inoculated with P. marinus served 

as an indicator that the notching and inoculation of Perkinsus sp. was performed 

correctly. By the termination of the first experiment, 44% of those animals initially 

inoculated were either RFTM or PCR positive for P. marinus, a pathogen which we know 

naturally infects the eastern oyster. In that experiment, an order of magnitude fewer P. 

marinus cells were inoculated into naive C. virginica than in the second study. After 72 

days, 55% of the C. virginica acquired P. marinus infections (PCR and RFTM data 

combined). It is widely known that P. marinus is a lethal pathogen to C. virginica, and 

the first experiment suggested that even when cultured under artificial conditions, it was 

still capable o f causing infection in its native host.

The results o f the first experiment suggested that the three bivalve species tested 

might not be readily susceptible to P. olseni, or that virulence attenuation of the parasite 

may have occurred during the culturing period prior to the use of the parasite as 

inoculum. The goal o f the second experiment was to see if P. olseni would become more 

infective to the three bivalve species if cultured under altered media conditions. In 

addition, I hypothesized that protease activity would be higher in cultures where P. olseni
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cells were supplemented with oyster homogenate compared to cells cultured with fetal 

bovine serum (FBS). Perkinsus marinus virulence factors include proteases that are 

believed to play a role in parasite invasion and spreading in host tissues (Anderson et al. 

1996), evasion o f host defenses (Garreis et al.1995, Tall et al. 1999) and have been 

shown to increase infectivity of P. marinus in vivo (La Peyre et al. 1996). Virulence 

attenuation with in vitro cultured P. marinus cells has been well documented (Ford et al. 

2002). Recent studies, however, have demonstrated that P. marinus virulence, correlated 

with protease activity, is enhanced by supplementing Perkinsus sp. culture media with 

oyster homogenate (MacIntyre et al. 2003, Earnhart et al. 2004) and therefore, a second 

experiment was undertaken in which standard P. olseni culture media was supplemented 

with either C. ariakensis oyster homogenate or FBS as a protein source.

The results of the second experiment suggest that there is no significant difference 

in virulence of P. olseni cells cultured in media containing C. ariakensis homogenate as 

compared to those cultured with FBS, at least for the supplementation concentration 

tested, the bivalve species used, and under the environmental conditions at which the 

experiments were performed. The cumulative percentage of P. olseni PCR positive 

individuals in the oyster homogenate treatment for C. virginica, M. mercenaria and C. 

ariakensis was 56%, 47% and 29%, respectively. For the FBS treatment, the cumulative 

percentage of P. olseni PCR positive individuals for C. virginica, M. mercenaria and C. 

ariakensis was 73%, 51% and 18%, respectively. There was a weak trend for C. 

ariakensis to be more prone to be P. olseni PCR positive when inoculated with cells 

cultured in oyster homogenate supplemented media. The opposite was true, though not 

statistically significant, for C. virginica and M. mercenaria, both of which had more P. 

olseni PCR positive individuals when inoculated with cells cultured in FBS supplemented
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media. All three hosts inoculated with live cells appeared to harbor cells, or at least P. 

olseni DNA, for approximately 6 weeks post inoculation, after which the number of PCR 

positive individuals found at each sampling generally decreased. The RFTM assay 

detected live cells in many instances at week 2 and rarely after that time point. This trend 

may indicate that initial infections may have been resolved in the animals as the 

experiment progressed.

Many C. virginica died during the early weeks of the experiment, both in the 

control and experimental treatments, suggesting that of the three species, the C. virginica 

oysters may be more susceptible than the C. ariakensis or M. mercenaria to stress 

induced by the notching and inoculation process. Perkinsus olseni was not detected in 

any of the dead C. virginica using molecular or histological techniques.

In situ hybridization analysis of the animals sampled during the second 

experiment indicated the presence of P. olseni cells in only one animal, a M. mercenaria 

clam, found also to contain P. olseni DNA by PCR. In this clam, the P. olseni -specific 

probe hybridized to a few clusters o f cells in the gill. The ISH result confirms that P. 

olseni was transmitted to this clam. The presence of P. olseni DNA only must not be 

used as a definitive diagnostic assay for infection unless microscopic examination of 

preserved tissue confirms the existence of parasite cells. Lacking histological data to 

confirm the positive P. olseni-specific PCR results for the other samples/hosts reported 

here, it is hard to comment on the pathogenicity o f P. olseni to these host species. It is 

possible that cells are infective, but if so, they are not abundant enough to be detected in 

representative 5 p,m histological sections. Likewise, it has been reported previously that 

RFTM assays using only a small piece of gill, mantle and rectal tissues, as was performed

-3

here, will only detect Perkinsus sp. cells when the total body burden exceeds 10 cells per
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gram wet weight o f oyster tissue (Choi et al. 1989, Bushek et al. 1994). It is equally 

plausible, therefore, that the PCR results reflect the persistence of cells within the host 

tissues that are below the detection limit for RFTM and histological analyses.

Combined analysis of data collected in the two inoculation experiments suggests 

that P. olseni cultured in the laboratory and artificially inoculated into naive hosts does 

not promote the development of advanced P. olseni infections in C. virginica, M. 

mercenaria or C. ariakensis. This may indicate that either P. olseni will not readily 

infect these hosts in nature, or, as is known with P. marinus, P. olseni cultured in 

artificial media may lose its virulence attributes and will not readily cause infection even 

when re-introduced to its natural host. In this study, 0.1 mg/ml oyster homogenate or 0.1 

mg/ml FBS (final concentration) was chosen as a protein supplement to standard 

DME:Ham’s F12 Perkinsus spp. media in an attempt to promote increased virulence of 

P. olseni. The concentration o f oyster homogenate used to supplement the cultures was 

chosen for two reasons. The first is that previous studies (Earnhart et al. 2004) found that 

higher concentrations o f C. virginica and C. gigas homogenate, 1.0 mg/ml, for example, 

decreased the P. marinus cell numbers below the seeding density and C. ariakensis 

homogenate at that concentration yielded the P. marinus cells non viable. Lower 

homogenate concentrations tested (down to 0.004 mg/ml) were not inhibitory to cell 

growth yet still elicited an induction o f low molecular weight proteases in the 

homogenate supplemented cell cultures. Secondly, a collaborator, Chris Dungan at the 

Cooperative Oxford Laboratory, Maryland, performed a preliminary experiments 

supplementing P. olseni growing in DME:Ham’s F12 media with 0.1 mg/ml C. 

ariakensis homogenate and found that it was not significantly inhibitory to cell 

proliferation. Due to the large number of cells needed for this experiment, it was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



173

important to use a concentration of oyster homogenate that had the potential to stimulate 

protease activity but that would not be prohibitive to achieving the necessary cell 

densities.

I believed that ninety-six hours was an adequate amount of time for P. olseni to 

grow in the various media formulations and to react to the protein supplement prior to 

inoculation. In fresh DMEiHam’s media with 5% FBS, growth rates of P. olseni are 

high and in log phase within the first week, after which growth slows and cell cultures 

fall into a stationary state with cells not actively replicating (Ordas and Figueras, 1998). 

Protease activity o f 1-day old P. marinus cultured in a standard media formulation has 

been shown to equal that of P. olseni held in phosphate buffered saline without 

nutritional supplement for 3 days (Ordas et al. 1999). If Perkinsus sp. cells are 

replicating at a logarithmic rate and are capable of expressing protease activity within 24 

hours (see also La Peyre et al. 1995), it was reasoned that within 96 hours, P. olseni cells 

should be able to react and respond to stimuli present in the media.

In examining the ECP enzyme activities of P. olseni, Casas et al. (2002b) detected 

numerous enzymes including, among others, esterase, esterase lipase, acid phosphatase, 

(3-glucosidase, lipase, (3-galactosidease and a-glucosidase. They did not find activity of 

the serine proteases, trypsin and a-chymotrypsin, detected in ECP of cultures of P. 

marinus (La Peyre et al. 1995, Brown and Reece 2003) and suggested that the lack o f (or 

undetected) serine protease production by P. olseni could explain a relatively lower 

virulence of P. olseni to Ruditapes decussates than is exhibited by P. marinus in C. 

virginica. In the second experiment, P. olseni media was supplemented with a low 

concentration of C. ariakensis homogenate. Supernatant analyzed from P. olseni cultures 

20 days old indicated high molecular weight proteolytic activity in the presence of oyster
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homogenate, however protease bands of low molecular weight (LMP) were not detected.

This observation was in contrast to that observed for cultures of P. marinus supplemented 

with C. virginica oyster plasma (Earnhart et al. 2004) where both high and low molecular 

weight protease forms were recorded. Low molecular weight protease activity of P. 

marinus was also recorded previously by La Peyre et al. (1995) when cultured in JL- 

ODRP-1 media without bovine serum albumin. The LMPs were identified as serine 

proteases. MacIntyre et al. (2005), however, reported that LMPs were not produced 

when P. marinus was cultured in media supplemented with C. gigas or C. ariakensis 

homogenate, two hosts which are relatively more resistant to P. marinus than C. 

virginica.

Other than molecular detection of P. olseni in C. ariakensis in northern China and 

Japan (Chapter 1), there has been no report o f this Perkinsus sp. as a problematic disease 

agent in these bivalves. It could be argued that the protease profile described here, 

suggesting absence of LMP and serine protease activity, in concert with lack of concrete 

evidence of P. olseni transmission to C. ariakensis, as further indication that P. olseni 

may not be a severe pathogen of C. ariakensis in nature. On the other hand, the 

minimum infective dose for P. olseni to infect C. virginica, M. mercenaria or C. 

ariakensis may not have been achieved in the inoculations or bath challenge conducted 

for this study (see below). In previous studies on P. marinus disease processes, Chu and 

Volety (1996) suggested that the dosage required for parasite transmission was between 

10 and 100 cells via oyster cavity injection and Mackin (1962) similarly found that 

injection of 10 to 500 P. marinus cells was enough to cause disease. In the environment 

oysters likely come into contact with Perkinsus sp. cells through filtration, however after 

ingestion, cells may also be released in the feces and pseudofeces (Bushek et al. 1994). If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



175

this scenario holds true for P. olseni, then it is possible that even though >106 cells were 

injected into each animal, many may have been purged or eliminated. These cells would 

have been removed during the process of water changes, thereby diluting the number of 

potentially infective cells in the aquaria.

Using molecular techniques, P. olseni cells were sporadically detected in the 

aquaria of the supplemented P. olseni media challenge experiment until week eight, 

suggesting that cells were continually being shed into the water. It was necessary to 

exchange 2/3 of the aquaria water three times a week during the experiment to maintain 

water quality, so it is likely that shed parasite cells were removed from the aquaria as 

initial infections were resolved or as digested cells were shed in feces. Standard PCR 

detected P. olseni DNA in the water, however the amount of P. olseni cells present was 

unable to be quantified using the real time PCR assay developed here, because the 

quantity of cells was at or below the detection limit for this assay.

Crassostrea virginica, M. mercenaria and C. ariakensis may not be readily 

susceptible to P. olseni when exposed by a single concentrated dose o f cultured P. olseni 

cells. The fact that potentially infective cells are removed from the experimental aquaria 

with water changes suggests the injection experiments may not adequately reproduce the 

prolonged exposure that might take place in nature. Repeated exposure to potentially 

infective cells would likely more accurately reflect a natural scenario, therefore, a bath 

challenge experiment was undertaken in which P. olseni cells harvested directly from 

naturally infected clams were added to aquaria with P. olseni-free hosts.

Initially a cohabitation experiment using naturally infected Ruditapes 

philippinarum or R. decussatus from Spain as a source o f P. olseni was intended. It was 

reasoned that by using naturally infected animals, exposure to the parasite would more
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closely mimic exposure that occurs with naive animals in nature. If the Spanish clams 

died, P. olseni cells would be released into the aquaria and could be transmitted by 

normal feeding activity to the experimental animals. Three shipments of Spanish clams 

were received, however it was not possible to use any of these clams in cohabitation 

experiments. They either died upon arrival or shortly thereafter, most likely because of 

the combined stress of having a high body burden of parasite to start with, along with 

being shipped overseas. It was preferred to use naive R. philippinarum obtained from the 

west coast, USA as control animals for the bath challenge experiment. On two occasions 

clams from Hog Island Oyster Company, California, were received, and clams from both 

shipments died within days of being put into acclimation aquaria. The cause for the 

mortality was never investigated, although it was later learned that the hatchery from 

which they came had reported unexplained mortality events earlier that year. Healthy R. 

philippinarum from Taylor Shellfish, Washington, were eventually obtained; however, by 

the time they arrived and had acclimated for a week, there were no more live P. olseni 

cells to harvest from my last shipment of clams, therefore it was impossible to expose 

these animals to P. olseni in the same manner as the C. virginica, M. mercenaria and C. 

ariakensis. The unfortunate series of events admittedly compromised the integrity of the 

third exposure experiment.

Results of the bath challenge experiment suggested that transmission o f P. olseni 

occurred to naive M. mercenaria, although this could not be proven histologically. 

Perkinsus o/sew'-positive PCR results were obtained for a few clams and live Perkinsus 

sp. cells were additionally observed in a few instances. Unlike the first two experiments, 

no suggestion of transmission was observed for C. ariakensis or C. virginica during the 

bath exposure. The dosage of cells used in the bath challenge experiment was much less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



177

than what was administered to each host in the previous two experiments. The fact that 

PCR and RFTM assays were positive for M. mercenaria only may indicate that the hard 

clam could be more susceptible to P. olseni. As described above, an increase in the 

parasite dose, perhaps under different environmental conditions or along with 

physiological stress o f the hosts, may have led to a different outcome. This experiment, 

however, is valuable in revealing the relative susceptibility of these hosts when P. olseni 

is administered by a more natural means.

The data presented here, suggest that P. olseni is not a problematic pathogen in C. 

ariakensis in Asia. Combined results of the three experiments, however, suggests that C. 

virginica and M. mercenaria may be more susceptible to P. olseni than C. ariakensis. 

Consistently there was more P. olseni-specific PCR and RFTM data suggesting 

transmission of P. olseni to C. virginica and M. mercenaria, and additionally, the only 

histological confirmation of P. olseni acquisition was seen in a M. mercenaria clam. One 

must caution that laboratory manipulation of Perkinsus sp. cells and laboratory holding of 

animals does not represent outcomes that are possible in nature. Ford et al. (2006) found 

that different isolates of P. marinus may have different temperature and salinity optima, 

therefore it is possible that aquaria conditions chosen for these experiments were not 

optimal for P. olseni isolates that were used. Infection dynamics must also consider the 

status and immune response capability of the host at different environmental conditions 

and the interaction between P. olseni and these three hosts at a range of environmental 

parameters was not conducted in this study.

Hayward and Lester (2004) reported that P. olseni did not initially appear to be a 

virulent pathogen to blacklip abalone, Haliotis rubra; however, six weeks after a 

temperature stress, P. olseni prevalence as determined by RFTM assay, increased from
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0% to 82%. They suggested that Perkinsus-associated disease did not develop in abalone 

until after a significant disturbance. They also suggested that pollution from sewage 

outfalls, resulting in elevated levels of nitrogen and phosphorus, may have been linked to 

hotspots o f disease. These findings of Haywood and Lester (2004) are relevant to the 

above described studies, as they suggest that P. olseni can appear to be benign in some 

hosts but can become virulent when hosts are physiologically stressed. In addition it was 

clear in the first experiment that C. ariakensis may acquire advanced and likely lethal 

infections o f P. marinus under stress, something not observed in previous field trials 

(Calvo et al. 2001). The three experiments conducted here indicate that P. olseni may be 

transmitted to C. virginica and M. mercenaria and the evidence that physiological stress 

may increase the pathogenicity of Perkinsus sp. to infected hosts validates further that 

there is a recognizable risk associated with exposure of P. olseni to native Chesapeake 

Bay bivalves.
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Chapter 4. Perkinsus beihaiensis n. sp. cohabitation studies

ABSTRACT

A novel Perkinsus sp. parasite, Perkinsus beihaiensis, has been discovered in 

Crassostrea ariakensis, C. hongkongensis and other bivalve mollusc species in southern 

China (Moss et al. 2007, Chapters 1 and 2). Molecular analysis o f multiple DNA loci 

including the internal transcribed spacer (ITS) region and the large subunit (LSU) 

ribosomal RNA (rRNA) gene o f the ribosomal RNA gene complex and type 1 actin 

gene(s), confirm that it is a member of the genus Perkinsus, however it is distinct from 

other known Perkinsus spp. Crassostrea ariakensis is currently under consideration for 

introduction to Chesapeake Bay, USA, in order to restore a commercially viable and 

sustainable oyster population to that region. Research is ongoing to examine, among 

other things, the potential disease impacts that this non-native oyster could have on 

Chesapeake Bay shellfish populations. In order to assess the potential for transmission of 

P. beihaiensis to Chesapeake Bay oysters and clams, experiments were performed in 

which Asian oysters, specifically the species C. ariakensis and C. hongkongensis, which 

were naturally exposed to P. beihaiensis in native Asian waters, were cohabitated with 

naive C. ariakensis and C. virginica oysters and Mercenaria mercenaria clams during 

two separate experiments lasting three and six months. At pre-determined intervals, a 

subset of the oysters and clams were removed from the cohabitation aquaria and 

sacrificed. In order to establish the pathogenicity o f P. beihaiensis to these host species,
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tissues from the necropsied bivalves were subdivided for PCR-based molecular 

diagnostics, for cell culture-based Ray’s fluid thioglycollate media (RFTM) assays (Ray 

1952) and for histological analyses. PCR and RFTM assay evidence highlighted that P. 

behaiensis may be transmitted to C. virginica and M. mercenaria. Additionally, many of 

the Chinese oysters used in these experiments developed severe P. beihaiensis infections 

suggesting that this parasite may be a problematic pathogen for C. ariakensis and C. 

hongkongensis.

INTRODUCTION

A novel Perkinsus sp. parasite, Perkinsus beihaiensis, has been discovered in 

Crassostrea ariakensis, C. hongkongensis and other bivalve mollusc species in southern 

China (Moss et al. 2007, Chapters 1 and 2). Molecular analysis of the internal 

transcribed spacer (ITS) region and the large subunit (LSU) ribosomal RNA gene of the 

ribosomal RNA gene complex, and type 1 actin gene(s) of this parasite confirm that it is a 

member of the genus Perkinsus, however it is distinct from other known Perkinsus spp.

Using a P. beihaiensis-specific PCR assay (Chapter 2), in southern China the distribution 

of P. beihaiensis extends at least from Tong’an, Fujian Province, to waters surrounding 

Beihai, Guangxi Province, on China’s southern border with Vietnam. PCR results from a 

2003 oyster sample from Zhanjiang, Guangdong suggest that the prevalence in 

Crassostrea spp. oysters o f infections by P. beihaiensis n. sp. can be as high as 46.5%. 

Perkinsus beihaiensis cell morphology and pathology in infected oysters is consistent 

with what has been described for known Perkinsus spp., however nothing is known about 

its natural pathogenicity within Asian bivalve mollusc populations.
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The proposed introduction of C. ariakensis to Chesapeake Bay ignited research 

into the potential disease impacts that this oyster could have on Bay bivalve molluscs.

The current International Council for Exploration of the Seas (ICES) protocols (ICES,

2005) require that adult oysters from Asia be imported into designated quarantine 

facilities prior to conditioning and spawning. Once adult oysters are spawned, they are 

required to be destroyed and only FI or later generations of oysters originating from the 

Chinese broodstock can be deployed. Strictly executed quarantine and breeding 

procedures would not effectively limit vertically transmitted pathogens, however. Rogue 

introductions of native Asian oysters or accidental failure of quarantine facilities could 

also expose Chesapeake Bay waters to other types o f exotic pathogens. Furthermore, a 

concern is that introduced C. ariakensis could serve as vectors for exotic pathogens 

introduced through ballast water. The discovery of a new Perkinsus sp. in oysters from 

potential broodstock sites in Asia therefore necessitates further research, both into its 

effects on its native hosts in Asia and its potential impact on those mollusc species native 

to Chesapeake Bay.

In order to assess the potential for transmission of P. beihaiensis to Chesapeake 

Bay oysters and clams, experiments were performed in which Asian oysters naturally 

exposed to P. beihaiensis in native Asian waters were cohabitated with naive C. 

ariakensis and C. virginica oysters and Mercenaria mercenaria clams during two 

separate experiments lasting three and six months. At pre-determined intervals, a subset 

of the oysters and clams were removed from the cohabitation aquaria and sacrificed. In 

order to establish the pathogenicity of P. beihaiensis to these host species, tissues from 

the necropsied bivalves were subdivided for PCR-based molecular diagnostics, for cell 

culture-based Ray’s fluid thioglycollate media (RFTM) assay (Ray 1952) and for
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histological analysis. During these experiments, PCR analysis detected P. beihaiensis 

DNA in all host species (C. virginica, C. ariakensis and M. mercenaria) and RFTM 

assays detected Perkinsus spp. cells in a number of samples. Confirmatory histological 

evidence would have provided additional support that transmission of P. beihaiensis 

occurred; however, P. beihaiensis cells could not be detected using P. beihaiensis- 

specific DNA probes when in situ hybridization assays were performed on tissue sections 

from P. beihaiensis-specific PCR or RFTM positive samples. Although the evidence of 

transmission of P. beihaiensis to the naive bivalves used in the two experiments was 

somewhat limited, this does not rule out the possibility that Chesapeake Bay oysters and 

clams could be more readily infected by P. beihaiensis when exposed at higher doses, or 

for longer time periods. At the termination of the cohabitation experiments, many o f the 

Chinese oysters had histological evidence of P. beihaiensis infection and examination of 

these Chinese C. ariakensis and C. hongkongensis suggested that P. beihaiensis can 

establish systemic and likely lethal infections in these bivalve hosts (see also Chapter 2).

Experiment 1

MATERIALS AND METHODS 

Quarantine procedures. Quarantine procedures were conducted as previously 

described in Chapter 3.

Chinese oysters. In April 2006, oysters were collected from the Dafen River,

Beihai, and Qinzhou, Guangxi Zhuang, People’s Republic of China. Oysters were 

shipped in refrigerated containers to the Virginia Institute of Marine Science on April 19, 

2006, and were transported directly to the quarantine facility where they were allowed to 

warm to room temperature (~20 °C). The oysters were divided among four 50-gallon
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glass aquaria, two per sample location, containing aerated 1-pm filtered York River water 

at 21 ppt and 20 °C. Oysters were fed twice daily 0.1 grams'1 oyster algae feed (Reed 

Mariculture, San Jose, CA) and two-thirds of the water was refreshed three times weekly. 

Many oysters were dead on arrival or died within a few days of arrival and for all such 

individuals, tissues were aseptically excised and preserved for DNA extraction, Ray’s 

fluid thioglycollate media assay (RFTM) or histological analysis (see below), as 

sufficient undegraded tissue allowed.

Experimental hosts. Specific pathogen free (SPF) C. virginica (19.6 ± 2.7 mm 

shell height) and triploid C ariakensis (36.8 ± 7.7 mm shell height) were received from 

Haskin Shellfish Research Lab, Rutgers University, Port Norris, New Jersey. Upon 

arrival, eight C. virginica and ten C. ariakensis were sacrificed, and gill and mantle was 

excised aseptically for DNA extraction. Genomic DNA of each oyster was used in the 

Perkinsus genus-specific PCR assay in order to detect the presence of Perkinsus spp. 

parasites (see below).

Experimental design. On April 21, 2006, the C. ariakensis and C. virginica 

were divided among three 10-gallon aquaria, 23—27 individuals per tank, with 4 -6  

Chinese oysters from Dafen River, Beihai, also added to each tank. As controls, 48 

naive C. ariakensis and C. virginica were each divided into four separate aquaria, 24 of 

each host type per tank, and no Chinese oysters were added. All aquaria were maintained 

in aerated 1-pm filtered York River water at 21 ppt and 18-21 °C and oysters were fed 

0.1 grams'1 oyster algae feed twice daily. Two-thirds o f the water was exchanged three 

times per week with fresh, 1-pm filtered York River water at 21 ppt and 18-21 °C.

Perkinsus spp.-naive C. ariakensis and C. virginica were cohabitated with 

Chinese oysters for a total of 95 d. On day 47, 5—6 more Chinese oysters, this time from
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both the Dafen River site and from Qinzhou, were added to each cohabitation aquaria.

For the duration of the experiment, aquaria were checked daily for mortality and 

moribund animals were removed. When moribund or dead animals were discovered, and 

if sufficient tissue remained, it was processed for P. beihaiensis analysis. Gill and mantle 

tissues were removed with a portion preserved in 95% ethanol for DNA extraction and 

molecular diagnostics and gill and mantle tissues were processed for the RFTM assay 

(Ray 1952) (see below.) Visceral mass tissue sections were preserved in Davidson’s 

solution for histological analysis (Shaw & Battle 1957).

Five C. ariakensis or C. virginica were sampled from all aquaria on days 20 and 

69, and all remaining oysters were sampled on day 95 when the experiment was 

terminated. All remaining Chinese oysters from the cohabitation aquaria were removed 

and sacrificed five days later.

RFTM assay. Gill, mantle and rectal tissues of dead, moribund or sacrificed 

oysters were taken for RFTM analysis as previously described (Chapter 3). Stained, 

cover-slipped tissue preparations were examined under a light microscope and P. 

beihaiensis tissue burdens were enumerated on a scale from rare (R) to very heavy (VH) 

based on the categories o f Ray (1952, 1954). To calculate weighted prevalence (WP) of 

P. beihaiensis in the Chinese oysters, categorical data was converted to numerical data 

and averaged for hosts within each aquarium and then collectively for each host.

Conversion of categorical data to numerical data was as follows: none (N) = 0, rare (R) to 

light (L) = 1, light to moderate (LM) = 2, moderate (M) = 3, moderate to heavy (MH) =

4, heavy to very heavy (H) = 5.
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Nucleic acid extraction. Genomic DNA was extracted from the excised mantle 

and gill snips, using a DNeasy® Tissue Kit (Qiagen Inc., Valencia, CA) as described in 

Chapter 1.

SSU genes. In order to assure that PCR amplifiable DNA was present in all 

extracted samples, genomic DNAs were tested using universal small subunit (SSU) 

ribosomal RNA gene primers (Chapter 1). Following amplification, 3 pi of PCR product 

was electrophoresed on a 2% agarose gel, stained with ethidium bromide and visualized 

under UV light. Images were recorded with an Alpha Innotech FluorChem® (San 

Leandro, CA) imaging system.

Perkinsus genus-specific PCR assay. Screening for Perkinsus sp. DNA was 

performed using Perkinsus genus-specific primers that were slightly modified from those 

of Casas et al. (2002) (Chapter 1). Following amplification, 4 pi of PCR product was 

electrophoresed on a 2% agarose gel, and visualized as described above.

Perkinsus beihaiensis -specific PCR. A previously developed (Moss et al. 2007, 

Chapter 2) Perkinsus beihaiensis- specific PCR assay was used to screen sampled oyster 

tissues for the presence of P. beihaiensis DNA. PCR reaction conditions using the 

modified previously published PerkITS-85 primer (above and Chapter 1) with a unique 

reverse primer, PerkITS-430R (5’ TCTGAGGGGCTACAATCAT 3’). The targeted 

fragment was approximately 460 bp in length. Each PCR reaction contained the 

following: 20 mM Tris-HCl (pH8.4), 50 mM KC1, 2.0 mM MgCl2, 0.2 mM of each 

dNTP, each primer at 0.1 pM, 0.0125 U p i'1 Taq polymerase, 0.2 mg m l'1 BSA and 0.5 

pi genomic DNA (-10—50 ng total). Amplifications were performed with an initial 

denaturation of 95 °C for 5 min followed by 40 cycles of 95 °C for 1 min, 57 °C for 45 

sec, 68 °C for 90 s, with a final elongation of 68 °C for 5 min. Following amplification, 6
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jil of PCR product was electrophoresed on a 2% gel and visualized under UV light. Gel 

images were recorded as above.

Histological analysis. Tissues preserved for histological analysis in Davidson’s 

solution (Shaw and Battle 1957) were dehydrated in a series of ethanol baths, infiltrated 

with paraffin and embedded in paraffin blocks prior to sectioning. Sections of 5 pm 

thickness were stained with Harris-hematoxylin and eosin. Histological sections of 

oysters were examined using light microscopy to visualize Perkinsus sp. parasite cells in 

situ.

In situ hybridization. Representative tissue sections of those oysters and clams 

positive for P. beihaiensis DNA by species-specific PCR or RFTM analysis, were 

evaluated by in situ hybridization (ISH) using separately a Perkinsus genus-specific 

probe, Perksp700DIG (5’ CGCACAGTTAAGTRCGTGRGCACG 3’) (Elston et al. 

2004) and a P. beihaiensis-specific DNA probe (Chapter 2), PerkBehLSUDIG (5’ 

GTGAGTAGGCAGCAGAAGTC 3’). The digoxigenin-labeled oligonucleotide probes 

were obtained from Operon Biotechnologies, Inc. (Huntsville AL). The protocol 

followed for ISH was that previously published (Stokes and Burreson 1995) with the 

modifications published by Elston et al. (2004). Pronase at a final concentration of 125 

pg mL'1 was used for permeabilization during a 30-min incubation, and a probe 

concentration of 7 ng p f 1 was used for hybridization. Negative control tissue sections 

were tested identically except that they received hybridization buffer lacking probe 

during the hybridization step.

PCR-RFLP identification of oyster host species. Species identification of 

Chinese oysters was carried out using a molecular diagnostic key based on the PCR
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amplification and restriction enzyme digestion of the first internal transcribed spacer gene 

region (ITS-1) (Cordes and Reece 2005, Chapter 2).

RESULTS -  Experiment 1 

Experimental sampling. Five oysters were sampled from each of the aquaria on 

days 20 and 69 and all remaining oysters were sacrificed on day 95. All PCR and RFTM 

data collected for sampled and dead or moribund oysters found during the experiment is 

listed in Table 1. In addition, the P. beihaiensis-specific PCR screening and weighted 

prevalence data for the Chinese oysters used in the cohabitation aquaria are also listed in 

Table 1. No negative control oysters were PCR or RFTM positive for P. beihaiensis.

On Day 20, no initially P. beihaiensis-mive C. ariakensis or C. virginica were PCR or 

RFTM positive for P. beihaiensis. On Day 69, all five C. virginica sampled from 

cohabitation tank 1 were PCR positive (5/15); however, none was RFTM positive for P. 

beihaiensis. On day 95, one C. ariakensis in each of the three cohabitation tanks was 

RFTM positive (3/15); however, only those in tank two and tank three (2/15) were also 

PCR positive for P. beihaiensis. One C. virginica in cohabitation tank one (1/15) was 

PCR positive, although it was not RFTM positive.

After 95 days, the final P. beihaiensis prevalence, as determined by positive PCR 

results in the initially naive hosts were as follows: for C. ariakensis, prevalence was 

0.0% (0/16), 4.8% (1/21) and 4.5% (1/22) for cohabitation tanks one, two and three, 

respectively; for C. virginica, prevalence was 26.1% (6/23), 27.2% (6/22) and 0.0%

(0/18) respectively, for tanks one, two and three.

Chinese oysters. The final number of Chinese oysters cohabitated with naive 

hosts varied between aquaria. For C. ariakensis cohabitation tanks one, two and three,
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Table 1. PCR and RFTM data for oysters sampled during the first cohabitation experiment. Final Perkinsus sp. prevalence values are 

calculated based on the number of PCR positive samples out o f the total number that had tissue available for PCR. Weighted prevalence 

(WP) for Chinese oyster Perkinsus sp. RFTM ranking includes data collected on dead oysters.

Day 20 Day 69 Day 95 Total
mortality

Final host 
Perkinsus 

sp.
prevalence

Final Chinese oyster 
Perkinsus sp. 
prevalence

Cohabitation # PCR # #
PCR
pos

# #
PCR
pos

# # #
k r  R
pos

# # PCR pos „  . ,„  # PCR Total # pos WPTank pos RFTM RFTM RFTM dead FTM

C. ariakensis 1 0/5 0/5 0/5 0/5 0/13 1/13
(R)

6 0/3 0/3 0/16
(0.0%) 13 3/10

(30%) 0

C. ariakensis 2 0/5 0/5 0/5 0/5 1/7 1/7
(L)

5 0/4 0/4 1/21
(4.8%) 8 6/6

(100%) 0.75

C. ariakensis 3 0/5 0/5 0/5 0/5 1/11 1/11
(R)

3 0/1 0/0 m i
(4.5%) 10 8/8

(100%) 0

C. virginica 1 0/5 0/5 5/5 0/5 1/12 0/12 1 0/1 0/1 6/23
(26.1%) 10 9/9

(100%) 2.0

C. virginica 2 0/5 0/5 0/5 0/5 0/3 0/3 15 6/9 0/7 6122
(27.2%) 15

8/11
(72.7%

)
4/11

0.18

0/18
(0.0%)C. virginica 3 0/5 0/5 0/5 0/5 0/7 0/7 7 0/1 0/0 13 (36.4% 

. ) _

0.86

oo
oo



13, 8 and 10 Chinese oysters, respectively, were included. For C. virginica cohabitation 

tanks one, two and three, 10, 15 and 13 Chinese oysters, respectively, were included with 

naive oysters. Five Chinese oysters died during the experiment, and a few small ‘spat’ 

oysters attached to the shells of mature oyster were found dead when the experiment was 

terminated. Using only those Chinese oyster samples where enough tissue remained for 

PCR and RFTM analysis, the P. beihaiensis prevalence based on the P. beihaiensis- 

specific PCR assay, as well as weighted prevalence based on the RFTM assay, is listed in 

Table 1. Perkinsus beihaiensis PCR-based prevalence was 30% (3/10), 100% (6/6) and 

100% (8/8) in the Chinese oyster/naive C. ariakensis cohabitation tanks one, two and 

three, respectively and RFTM-based weighted prevalence was 0.0, 0.75 and 0.0. 

Perkinsus beihaiensis PCR-based prevalence in the Chinese oyster/na'ive C. virginica 

tanks one, two and three was 100% (9/9), 72.7% (8/11) and 36.4% (4/11), and weighted 

prevalence values were 2.0, 0.18 and 0.86, respectively. Oyster species identification 

revealed that the majority of the oysters used in the experiment were C. hongkongensis, 

and 4/68 individuals (5.8%) were C. ariakensis. There were four oysters that could not 

be identified using the PCR and RFLP key described above because o f either lack o f PCR 

amplification or because the RFLP pattern was unrecognizable. In all cases, the 

unidentifiable oysters were small ‘spat’ oysters, possibly Saccostrea sp., as suggested by 

small denticles observe on the edge o f the shell.

Mortality data. Significant mortality was observed in both of the initially naive 

oyster species and sporadically in the Chinese oysters serving as the potential parasite 

source in the cohabitation tanks. Many of the small spat Chinese oysters that were 

sampled at the end of the experiment contained no tissue; however, the death of these 

animals either was not noticed during the experiment or those shells were empty prior to
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the start of the experiment, but not discovered at the time. For this reason, final PCR and 

RFTM data for the Chinese oysters is based on the number of individuals that had tissue 

available for processing. For the Chinese oysters, two deaths occurred in the C. 

ariakensis cohabitation tank one, of which none was PCR positive for P. beihaiensis.

Two Chinese oysters died in C. ariakensis cohabitation tank three, of which one was PCR 

positive for P. beihaiensis. One Chinese oyster died in C. virginica cohabitation tank 1, 

and it was both PCR and RFTM positive for P. beihaiensis with an RFTM ranking of 

moderate.

Cumulative mortality of the initially naive C. ariakensis was 18.7% (14/75) and 

for C. virginica was 30.7% (23/75). Of those oysters that died, many did not have tissue 

remaining for PCR and/or RFTM analysis. Six of nine (66.7%) dead C. virginica from 

cohabitation tank two were PCR positive for P. beihaiensis, however, none was RFTM 

positive. None of the C. ariakensis that had suffered mortality tested positive for P. 

beihaiensis using either RFTM or PCR assays.

Histological analysis. In situ hybridization analysis was performed on all those 

initially naive C. virginica and C. ariakensis oysters sampled during the experiment that 

were either PCR or RFTM positive for P. beihaiensis (n = 15). Hybridization of the P. 

beihaiensis species-specific probe to P. beihaiensis cells was not observed in any of the 

tissue sections analyzed.

Histopathological analyses of hematoxylin-eosin stained tissue sections were 

performed on 16 of the Chinese oysters used in the experiment that were species-specific 

PCR assay -positive for P. beihaiensis. In addition, RFTM data were collected for these 

as well as all other Chinese oysters sacrificed at the termination of the experiment.

Twelve of 16 (75%) Chinese oysters were RFTM positive, having infection intensities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ranging from 1-5 (Table 2). Perkinsus sp. cells were observed commonly in the epithelia 

of the stomach and intestine, as well as in the connective tissue o f the visceral mass. On 

rare occasion, cells were observed in the gill and mantle and epithelia of digestive 

tubules. In one instance, a few cells were observed in gonadal tissue. Eight of the 

sixteen Chinese oysters used as a parasite source were analyzed using the P. beihaiensis- 

specific ISH probe. Hybridization of the P. beihaiensis-specific probe to P. beihaiensis 

sp. cells was observed in all Chinese oyster tissue sections analyzed (Table 2). (See also 

Chapter 2).
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Table 2. Histological data for a subset of Chinese oysters used in the first cohabitation 

experiment. The tank that the Chinese oyster was cohabitated in is indicated in the first 

column. When in situ hybridization analysis was not performed on a sample, it is 

indicated as “n/d.”

Histopathology
Cohabitation RFTM PCR Analysis Oyster ISH

Tank 0-5 Assay +/■ 0-5 Species ID Analysis
C. ariakensis C.

1 0 + + 0 hongkongensis n/d
C. ariakensis C.

1 0 + + 1 hongkongensis n/d
C. ariakensis C.

2 4 + + 2 hongkongensis
C.

+

C. virginica 1 1 + + 0 hongkongensis n/d
C. virginica 1 2 + + 0 unknown sp. 

C.
n/d

C. virginica 1 5 + + 5 hongkongensis +
C. virginica 1 4 + + 4 C. ariakensis 

C.
+

C. virginica 1 3 + + 3 hongkongensis
C.

+

C. virginica 1 1 + + 1 hongkongensis
C.

+

C. virginica 2 1 + + 2 hongkongensis
C.

n/d

C. virginica 2 1 + + 3 hongkongensis
C.

+

C. virginica 2 0 + + 0 hongkongensis
C.

n/d

C. virginica 2 0 + + 1 hongkongensis
C.

n/d

C. virginica 3 3 + + 3 hongkongensis
C.

+

C. virginica 3 2 + + 0 hongkongensis
C.

n/d

C. virginica 3 4 + + 2 hongkongensis +
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Experiment 2

MATERIALS AND METHODS 

Chinese oysters. In November 2006, oysters were collected from Beihai, 

Guangxi Zhuang, People’s Republic of China. Oysters were shipped in refrigerated 

containers to the Virginia Institute of Marine Science, arriving on November 13, 2006 

and were transported directly to the quarantine facility where they were allowed to warm 

to room temperature (~20 °C). The oysters were divided among 10-gallon glass aquaria, 

containing aerated 1-pm filtered York River water at 23—24 ppt at 20 °C. Oysters were 

fed twice daily 0.1 grams'1 oyster algae feed (Reed Mariculture, San Jose, CA) and two 

thirds of the water was refreshed three times weekly with 1-pm filtered York River water 

at 23—24 ppt and 20 °C.

Experim ental hosts. On December 2, 2006, Crassostrea ariakensis (37.54 ±

6.03 mm shell height) were received from the University of Maryland’s Center for 

Environmental Science (UMCES). Crassostrea virginica (72.3 ± 6.5 mm shell height) 

were obtained from Taylor Shellfish, Shelton, Washington, on December 5, 2006 and 

Mercenaria mercenaria clams (35.5 ± 3.0 mm shell height) were obtained from Mobjack 

Bay Seafood Company, Ware Neck, VA, on December 7, 2006. Upon arrival, twenty 

individuals o f each bivalve species were sacrificed, and gill and mantle was excised 

aseptically for DNA extraction. Genomic DNA of each oyster or clam was used in the 

Perkinsus genus-specific PCR assay to determine the presence o f Perkinsus spp. parasites 

(see below). Remaining oysters and clams were divided among 10-gallon glass aquaria, 

containing aerated 1-pm filtered York River water at 23—24 ppt and 20 °C. Oysters were 

fed twice daily 0.1 grams'1 oyster algae feed (Reed Mariculture, San Jose, CA) and 2/3 of
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the water was refreshed three times weekly with 1-pm filtered York River water at 23—

24 ppt and 20 °C.

Experim ental design. On December 14, 2006, 60 naive C. virginica, C. 

ariakensis and M. mercenaria were divided evenly among three 10-gallon aquaria per 

host species, 20 individuals per tank, with seven oysters from Beihai, China (9 

cohabitation tanks total). Sixty C. virginica, C. ariakensis and M. mercenaria were 

divided evenly among three 10-gallon aquaria per host species, 20 individuals per tank 

without Chinese oysters (9 negative control tanks total). All aquaria were maintained in 

aerated 1-pm filtered York River water at 23—24 ppt and 21-24°C and were fed 0.1 

grams’1 oyster algae feed twice daily. Two-thirds of the water was exchanged three times 

per week with 1-pm filtered York River water at 23—24 ppt and 21—24°C.

Perkinsus beihaiensis-naive C. virginica, C. ariakensis and M. mercenaria were 

cohabitated with Chinese oysters for a total of six months. For the duration of the 

experiment, aquaria were checked daily for mortality and moribund animals were 

removed. When moribund or dead animals were discovered, and if sufficient tissue 

remained, it was processed for analysis. Gill and mantle tissues were removed with a 

portion preserved in 95% ethanol for DNA extraction and later Perkinsus spp. molecular 

diagnostics and gill and mantle tissues were processed for RFTM assays (Ray 1952).

Visceral mass tissue sections of each sample were preserved in Davidson’s solution for 

histological analysis (Shaw & Battle 1957).

Five C. virginica, C. ariakensis and M. mercenaria were sampled from all aquaria 

after one, two, and three months, and all remaining oysters and clams were sampled at the 

end of six months. All remaining Chinese oysters from the cohabitation aquaria were 

removed and sacrificed when the experiment was terminated.
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Sample processing. Nucleic acid extraction, amplification of SSU genes,

Perkinsus genus-specific PCR assays, Perkinsus beihaiensis-specific PCR assays, in situ 

hybridization analysis using P. beihaiensis-specific oligonucleotide probes, and PCR 

RFLP identification of Chinese oyster hosts were performed exactly as described in the 

first experiment (see above and Chapter 1, 2 and 3). RFTM assays using gill, mantle and 

rectal tissues as described above were performed on all clams and oysters sampled during 

the first three months and on all dead or moribund animals that were removed from the 

aquaria during the course of the experiment. A change to previously mentioned protocols 

included the RFTM analysis performed when the experiment was terminated (see below).

Because occasionally Perkinsus sp. cells were observed by RFTM in control 

animals, or in cohabitated initially naive animals in the absence o f P. beihaiensis-specific 

PCR results, all DNA samples were screened using the Perkinsus sp. genus-specific PCR 

assay and then positive samples were tested using P. beihaiensis, P. chesapeaki, P. 

marinus and P. olseni-specific PCR assays. Perkinsus chesapeaki and P. marinus are 

endemic to Chesapeake Bay and therefore could be a likely possible contaminant of the 

oysters and clams obtained from Maryland or Virginia waters. Additionally, because P. 

olseni has been found in northern China and Japan, it was necessary to test for the 

presence of P. olseni in both the Chinese oysters and subsequently in naive oysters and 

clams sampled from cohabitation aquaria.

Modified whole body burden RFTM assay. When the experiment was 

terminated, remaining clams and oysters, including all remaining Chinese oysters, were 

processed for the presence of Perkinsus spp. using a modification of a previously 

described whole body burden RFTM method (Bushek et al. 1994, Choi et al. 1989).

Oysters and clams were aseptically shucked and replicate gill and mantle samples were
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taken for DNA analysis and for preservation in 95% ethanol. A transverse visceral 

section was removed from each animal and preserved for histological analysis. All 

remaining tissues for each individual were then macerated on a sterile plastic weigh boat 

using a sterile scalpel. Macerated C. virginica and M. mercenaria tissues were separately 

incubated in 25 ml of RFTM media in sterile polystyrene falcon tubes while the initially 

naive C. ariakensis tissues were incubated in 10 ml of RFTM media in sterile polystyrene 

falcon tubes. All samples were incubated for 5—7 d at 27 °C. After incubation, samples 

were centrifuged at 1,600 x g for 20 min and RFTM media was removed. Remaining 

tissue including trace remaining RFTM media was weighed and approximately 10 ml of 

2M NaOH was added per gram wet tissue weight. Samples were vortexed and incubated 

at 50 °C for 1 h or until tissue was completely digested. Samples were centrifuged at 

1,600 x g for 10 min and the 2M NaOH was removed. An equal volume to that of the 

NaOH of IX phosphate buffered saline (PBS) was added to each sample followed by 

vortexing. Each sample was then centrifuged at 1,600 x g for 10 min, supernatant 

removed and an equal volume of IX PBS was added. Vortexing, centrifugation and 

removal of supernatant PBS was repeated. After this final washing step, 2 ml of 10% 

Lugol’s iodine solution was added and the sample was vortexed. Stained cell 

preparations were vacuum filtered onto a 47 mm, 0.45 pm filter and the Perkinsus sp. 

cells were counted. If previous PCR analysis o f a sample indicated it was P. beihaiensis 

-positive, three 100 pi aliquots of the sample were first counted. Triplicate aliquots were 

counted or diluted as necessary and an average of the counts was multiplied according to 

the final volume of the stained sample. Data were recorded as total number o f cells per 

sample. For the Chinese oysters only, wet cell pellet weight was recorded after initial 

removal o f RFTM media was reduced by 10% (to account for the approximate weight of
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the residual RFTM media) and cell counts were also converted to Mackin’s scale values 

based on Choi et al. (1989).

Perkinsus marinus and P. olseni PC R  assays. PCR primers PmarITS-70F and 

PmarITS-600R (Audemard et al. 2004) were used in a P. marinus-specific PCR reaction 

as described previously (Moss et al. 2006, Chapter 3). Following amplification, 4 pi of 

PCR product was analyzed as described above.

PCR primers Pols-140F and PolsITS-600R were used in a P. olseni-specific PCR 

reaction as described previously (Moss et al. 2006, Chapter 3). Following amplification, 4 

pi of PCR product was analyzed as described above.

Perkinsus chesapeaki PCR assay. A previously published PCR assay (Burreson 

et al. 2005) targeting the conserved areas of the P. chesapeaki ITS region was used to 

screen oyster and clam genomic DNA for the presence of P. chesapeaki. The forward 

primer sequence was (5’ AAACCAGCGGTCTCTTCTTCGG 3’) and the reverse primer 

sequence was (5’ CGGAATCAACCACAACACAGTCG 3’). PCR reagents for the 25 pi 

reaction P. chesapeaki-specific PCR reaction contained 20 mM Tris-HCl (pH8.4), 50 

mM KC1, 1.5 mM MgC^, 0.2 mM of each dNTP, 0.1 mM each primer, 0.625 U per pi 

Taq polymerase, 0.2 mg per mlBSA and 0.5 pi genomic DNA (-1 0 -5 0  ng total). 

Amplifications were performed with an initial denaturation of 94 °C for 4 min, followed 

by 10 cycles at 94 °C for 30 s, 64 °C for 30 s (with a decrease of 1 °C per cycle), and 72 

°C for 90 s. After ten cycles, amplification included 30 cycles of 94 °C for 30 s, 54 °C 

for 30 s, and 72 °C for 90 s with a final elongation of 72 °C for 5 min. Following 

amplification, 5 pi o f PCR product was analyzed by agarose gel electrophoresis (2%), 

stained with ethidium bromide and visualized under UV light. Gel images were recorded 

as above.
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RESULTS -  Experiment 2 

Experimental sampling. During the six-month experiment, no negative control 

animals tested positive for Perkinsus beihaiensis DNA using the P. beihaiensis-specific 

PCR assay, however four Mercenaria mercenaria tested positive for P. chesapeaki. No 

negative control or cohabitated clams or oysters, or any Chinese oyster ever tested 

positive for P. marinus or P. olseni DNA.

PCR and RFTM data for initially naive oysters and clams, in addition to the 

Chinese oysters used during the second experiment as parasite vectors, are shown in 

Table 3. After one month in cohabitation with P. beihaiensis-infected Chinese oysters, 

no Crassostrea virginica, Crassostrea ariakensis or M. mercenaria were PCR positive 

when analyzed using the P. beihaiensis-specific PCR assay, nor did any samples exhibit 

Perkinsus sp. cells by RFTM analysis. After two months, no samples tested positive for 

P. beihaiensis DNA, however three M. mercenaria had visible Perkinsus sp. cells by 

RFTM. These three clams were sampled from cohabitation tanks two and three.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table 3. PCR and RFTM data for oysters and clams sampled during the second cohabitation experiment. The symbol next to RFTM 

values is a reminder that Perkinsus chesapeaki was detected using PCR in some Mercenaria mercenaria clams, but Perkinsus beihaiensis was 

never detected by PCR or in situ hybridization, therefore the presence of visible Perkinsus sp. cells as seen by RFTM could be either P. 

chesapeaki or P. beihaiensis. For the Chinese oyster data, P. beihaiensis PCR positive and RFTM positive sample data is given as the number 

o f positive samples over the number of samples where tissue was available for processing. “WP” refers to P. beihaiensis weighted prevalence 

for Chinese oysters within the specified aquaria.

Month 1 Month 2 M onth 3 Month 6 M ortality Chinese oysters

Cohabitation
Tank

#
PCR
pos

#
RFTM

#
PCR
pos

#
RFTM

#
PCR
pos

#
RFTM

#
PCR
pos

#
RFTM

#
PCR
pos

#
RFTM

Total
#

dead

# PCR 
pos

# RFTM WP

C. ariakensis 1 0/5 0/5 0/5 0/5 0/5 0/5 1/5 1/5 1/1 0/1 1 1/7(14.3% ) 5/7 (71.4%) 0.43
C. ariakensis 2 0/5 0/5 0/5 0/5 0/5 0/5 0/4 1/4 0/3 0/3 2 1/7(14.3% ) 5/7 (71.4%) 0.71
C. ariakensis 3 0/5 0/5 0/5 0/5 0/5 0/5 0/3 1/3 0/1 0/1 3 4/6 (66.7%) 3/6 (50.0%) 0.88
C. virginica 1 0/5 0/5 5/5 0/5 0/5 0/5 1/5 4/5 0/0 0/0 1 6/7 (85.7%) 5/5(100% ) 0
C. virginica 2 0/5 0/5 0/5 0/5 0/5 0/5 0/5 1/5 0/0 0/0 0 1/7(14.3% ) 4/7 (57.1%) 0
C. virginica 3 0/5 0/5 0/5 0/5 0/5 0/5 0/5 1/5 0/0 0/0 0 3/7 (42.9%) 4/5 (80.0%) 0.21
M. mercenaria 1 0/5 0/5 0/5 0/5 0/5 0/5 0/5 4*/5 0/0 0/0 0 5/7 (71.4%) 7/7(100% ) 0.94
M. mercenaria 2 0/5 0/5 0/5 l*/5 0/5 0/5 0/5 3*/5 0/0 0/0 4 1/7(14.3% ) H I  (28.6%) 0.04
M. mercenaria 3 0/5 0/5 0/5 2*/5 0/5 0/5 0/5 2*15 0/0 0/0 1 3/6 (50.0%) 4/6 (66.7%) 0.42
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One clam from tank one tested positive for P. chesapeaki DNA during the 

sampling at two months, however Perkinsus sp. cells were not observed in that clam by 

RFTM. When sampling was performed after three months, no previously naive oysters 

or clams tested positive for P. beihaiensis DNA, however one C. ariakensis from 

cohabitation tank one was found to contain one Perkinsus sp. cell by RFTM assay.

The final sampling of the experiment occurred after six months exposure to P. 

beihaiensis-'mfected Chinese oysters. At that time, one previously naive C. ariakensis 

(cohabitation tank two) and one C. virginica (cohabitation tank one) were PCR positive 

according to the P. beihaiensis-specific PCR assay. The C. ariakensis was dead and 

necrotic when sampled and had no tissue left to analyze histologically, though three 

Perkinsus sp. cells were observed in tissue of this sample when analyzed by RFTM. The 

tissue processed for RFTM analysis from the P. beihaiensis-PCR positive C. virginica 

was found to contain 1,300 P. beihaiensis cells. An additional two C. ariakensis, five C. 

virginica and nine M. mercenaria were Perkinsus sp.-positive using the RFTM assay.

Two of these clams, however, were positive for P. chesapeaki DNA.

M ortality data. There was little mortality in the P. beihaiensis -naive C. 

virginica, C. ariakensis and M. mercenaria during the six-month experiment. Two C. 

ariakensis in the control treatment and four C. ariakensis from the cohabitation treatment 

died. Only one of these oysters (described above) tested positive for Perkinsus sp. DNA 

and it was determined to be P. beihaiensis DNA by the P. beihaiensis-specific PCR 

assay.

Chinese oysters. All of the Chinese oysters imported to use as the parasite 

source that had tissue and DNA available to analyze were determined to be Crassostrea 

hongkongensis. In total, 63 oysters were used in the experiment and over six months, 12
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oysters died. Of these, seven were RFTM and/or PCR positive for P. beihaiensis. In 

total, 41.0% (25/61) were positive for P. beihaiensis DNA using PCR and 68.4% (39/57) 

were positive by RFTM. The difference between the total number of animals processed 

using either PCR or RFTM reflects that in some instances tissue was not available to be 

processed for one or both of the assays because the oyster had died and remaining tissue 

was severely degraded or absent.

All o f the Chinese oysters sacrificed at the end of the experiment were analyzed 

using the modified whole body burden RFTM assay and many contained thousands of P. 

beihaiensis cells. For example, for those C. hongkongensis used in C. ariakensis 

cohabitation tank one, there were on average, 71,886 ± 190,191 P. beihaiensis cells 

counted per oyster based on the amount of tissue examined when they were finally 

sacrificed. Similarly, for M. mercenaria cohabitation tank one, there were on average 

225,106 ± 576,162 P. beihaiensis cells counted per oyster based on the modified whole 

body burden RFTM assay.

Combined PCR and RFTM analysis of the Chinese oysters indicated that after six 

months, 61.9% (13/21) of the oysters cohabitated with M. mercenaria, and 66.7% (14/21) 

of those oysters cohabitated with C. virginica or C. ariakensis were infected with P. 

beihaiensis. The P. beihaiensis weighted prevalence (WP) of the Chinese oysters 

cohabitated with C. ariakensis was 0.52, for the Chinese oysters cohabitated with M. 

mercenaria it was 0.47 and for those oysters cohabitated with C. virginica it was 0.07.

Histological analysis. All of those initially naive oysters or clams found to 

contain P. beihaiensis DNA or where Perkinsus sp. cells were observed by RFTM during 

the course of, or at the end of the experiment, were analyzed by ISH using both Perkinsus 

genus-specific and P. beihaiensis-specific oligonucleotide probes. No binding of either
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the genus or species probe was found in any of the tissue sections from analyzed. Both 

probes bound to P. beihaiensis cells in the tissue sections of three C. hongkongensis from 

the experiment used as positive controls for the ISH assay.

DISCUSSION

The discovery of the new Perkinsus species, Perkinsus beihaiensis, in southern 

China during a disease survey of bivalve mollucs from China, Japan and Korea (Chapter 

1 and 2), in light o f the proposed introduction of Crassostrea ariakensis to the 

Chesapeake Bay, prompted the investigation into the potential for transmission of this 

exotic pathogen to native Chesapeake Bay bivalve species. Transmission studies of P. 

beihaiensis to C. virginica, Mercenaria mercenaria, as well as to naive triploid C. 

ariakensis were undertaken in order to assess this risk.

These experiments were undertaken using naturally-infected Chinese oysters 

collected from Dafen River, Qinzhou, and Beihai, China. Significant mortality had 

occurred during transport of the first set o f oysters from China to Virginia in the spring of 

2006, therefore the likelihood that they would survive re-acclimation to aquaria in the 

quarantine facility was tenuous. The fragile state of the oysters discouraged non-lethal 

subsampling o f gill tissue or hemolymph in order to assess P. beihaiensis presence in 

each oyster prior to the start of the cohabitation. Additionally, only with histological 

analysis conducted later (Chapter 2) was information gained about the tissue tropisms of 

this Perkinsus sp., therefore it would have been possible for sampling of selected tissues 

to not have been truly diagnostic of the body burden o f parasite for an oyster at the start 

of the cohabitation. For both of the experiments, it would have been ideal to cohabitate 

an equal number of infected Chinese oysters in each of the experimental aquaria at the
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beginning. Especially during the first experiment, due to the high early mortality in the 

imported oysters, it was necessary to start the cohabitation with naive hosts quickly, 

rather than try to screen the oysters for P. beihaiensis individually, risking that they may 

die during the stress of experimental manipulation. Lacking a non-lethal and proven 

diagnostic method, prevalence of P. beihaiensis in the Chinese oysters could be obtained 

only at the end of the experiments.

In the first experiment averaging Perkinsus sp. weighted prevalence (WP) among 

the Chinese oysters for each host treatment, C. ariakensis and C. virginica, the WP of the 

oysters cohabitated with the C. ariakensis was 0.25, whereas for those cohabitated with 

the C. virginica, WP was 1.01. Weighted prevalence data were recorded for the Chinese 

oysters at the termination of the experiment, therefore one might argue that these data 

does not reflect the P. beihaiensis levels at the beginning of the experiment. All aquaria 

were maintained under similar conditions, and there is no reason to hypothesize that cells 

of this Perkinsus species reproduce at variable rates. For this reason, the starting body 

burdens of parasite should be proportionately less at the beginning of the cohabitation 

experiment than after 95 days. With this consideration, overall, the C. virginica were 

likely exposed to a greater number of P. beihaiensis cells than were the C. ariakensis.

The fact that on average, C. ariakensis were exposed to a fewer number of cells 

than C. virginica may explain why final average P. beihaiensis PCR prevalence for C. 

virginica was 17.8%, whereas average prevalence for C. ariakensis was 6%. Weighted 

prevalence data o f the Chinese oysters and putative transmission to the naive hosts, based 

only on positive P. beihaiensis PCR results, were not correlated. For example, within the 

C. ariakensis treatment, no parasite cells were recorded in Chinese oysters that had been 

in tanks one and three, however P. beihaiensis PCR prevalence by the end of the
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experiment in the initially naive C. ariakensis was 0.0% in tank one, and 4.5% in tank 

three. In addition, a WP of 0.18 was recorded for Chinese oysters from C. virginica tank 

two while PCR prevalence data in initially naive C. virginica became 27.2%. A WP of 

0.86 in the Chinese oysters was recorded in C. virginica tank 3 and those C. virginica had 

a P. beihaiensis PCR prevalence o f 36.4%.

Proliferation of P. beihaiensis within the Chinese oysters or horizontal 

transmission of the parasite during the experimental challenge is suggested because 

baseline Perkinsus sp. prevalence data taken for Dafen River oysters was approximately 

33% and 10% for Qinzhou oysters, whereas a mixture of oysters from both locations 

sampled at the end of 95 days had a P. beihaiensis PCR prevalence o f 73%. The animals 

used in the experiment were randomly sampled from those collected in Asia, therefore 

the starting P. beihaiensis prevalence in those oysters should have been similar to that 

recorded in the initial sample.

The oysters received from Beihai, China in November 2006 stabilized once put 

into aquaria at VIMS and only occasional mortality was observed. The original P. 

beihaiensis prevalence in those oysters that were dead or moribund on arrival indicated 

that approximately 10% of the oysters were infected with the parasite. Initially, the 

second cohabitation experiment was scheduled to last for only four months; however, 

when there was little evidence of P. beihaiensis transmission in the first three months, 

perhaps because of the low initial prevalence of P. beihaiensis in the Chinese oysters, the 

experiment was extended for an additional two months. Based on histological analysis of 

Chinese oysters used in the first experiment, while the second experiment was already in 

progress, it became apparent that gill and mantle tissues sampled for DNA and RFTM 

analysis were likely not representative of the body burden of the oysters. Many Chinese
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oysters were found to contain P. beihaiensis cells in the visceral mass connective tissues, 

and cells were observed in gill or mantle connective tissues in the histological sections 

(Chapter 2). In order to increase the potential for P. beihaiensis detection, a modified 

whole body burden RFTM assay was used on the final six-month samples in order to 

screen any remaining tissues that were not used in DNA analysis or for histological 

preservation. This modification may have detected P. beihaiensis cells that would have 

been missed employing the previously used RFTM method or by performing PCR-based 

molecular diagnostics on DNA extracted from the gill and mantle tissues alone.

In the second cohabitation experiment, the PCR assay amplified P. beihaiensis 

DNA from only one of the initially naive C. virginica and one of the C. ariakensis, both 

collected when the experiment was terminated. When using the body burden RFTM 

assay, Perkinsus sp. cells were observed in nine M. mercenaria, six C. virginica and three 

C. ariakensis sampled from cohabitation aquaria at the six-month sampling whereas 

Perkinsus sp. cells had been observed only in three M. mercenaria and in no C. 

ariakensis or C. virginica in prior samplings. The increase in the observed number of 

Perkinsus sp. cells may indicate that the modified RFTM assay was in fact more sensitive 

than the previously used method, and/or that it took at least six months for transmission 

of P. beihaiensis to occur. Perkinsus chesapeaki DNA was detected in five M. 

mercenaria clams, therefore in the absence o f confirmatory P. beihaiensis-specific PCR 

or in situ hybridization results, the Perkinsus sp. cells found in clams could be either P. 

chesapeaki or P. beihaiensis or represent a mixed infection of both Perkinsus species. 

Perkinsus sp. DNA, other than P. beihaiensis DNA, was never detected in C. ariakensis 

or C. virginica. The C. virginica came from Washington, USA, where Perkinsus sp. has 

never been reported, therefore it is plausible that the Perkinsus sp. cells observed in C.
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virginica could be P. beihaiensis cells and the PCR assay, targeting genomic DNA 

isolated only from gill and mantle tissue, was not sensitive enough to detect the P. 

beihaiensis present. The C. ariakensis used in the second experiment originated from a 

hatchery in Maryland, from waters where P. marinus has been previously detected (data 

not shown); however, P. marinus never was detected in this batch of oysters. There does 

exists a slight chance, due to the origin of the oysters, that some P. marinus cells could be 

harbored by the C. ariakensis and only after 6 months in an aquaria environment where 

P. marinus has been shown to proliferate (Chapter 3), did the cells reach a detectable 

level, especially using the more sensitive RFTM assay. Perkinsus marinus has been 

shown to actively replicate in C. ariakensis and can reach lethal levels within two months 

(Chapter 2), so if  the oysters were infected with P. marinus at the start o f the experiment, 

it is very unlikely that the presence of P. marinus would have gone undetected for six 

months. This suggests that the Perkinsus sp. cells observed in the C. ariakensis at the 

end of the experiment are likely P. beihaiensis. If  this is true, then during the six-month 

experiment 13.3% (6/45) of the C. virginica, and 6.7% (3/45) of the C. ariakensis may 

have become infected with P. beihaiensis.

In hindsight, an aliquot of the pellet left from the whole body burden RFTM 

technique should have been used for DNA extraction and PCR analysis, and the 

remainder o f the pellet then stained and examined for the presence of P. beihaiensis cells. 

This may have increased the chances of detecting P. beihaiensis DNA, although it is 

unclear how residual NaOH or organic compounds associated with the visceral mass 

(common inhibitors of PCR) would have effected DNA extraction and subsequent PCR 

amplification of P. beihaiensis DNA if present.
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Only gill, mantle and rectal tissues were analyzed for those Chinese oysters that 

died during the experiment, whereas the more comprehensive RFTM technique that 

surveys a larger portion of the total tissue of the oyster was used for those oysters that 

survived until the end of the experiment. The relationship between Mackin’s scale 

ranking (based on a small amount of tissue such as that used here) and the number of P. 

marinus hypnospores per gram wet tissue weight has been characterized (Choi et al.

1989). Cell counts taken for Chinese oysters were converted to Mackin’s scale values in 

order to indicate the weighted prevalence for those vector oysters in each of the 

cohabitation aquaria (Table 3) and able to compare the relative P. beihaiensis exposure of 

host bivalves in this experiment to those used in the first experiment. According to Choi 

et al. (1989), Perkinsus sp. cells would go undetected until infection intensity reached at 

least 1,000 cells per gram wet tissue weight (Mackin rank of 0). In this study, smaller 

increments (between 0 and 1) were used here to more accurately portray cell counts 

between 0 and 1,000 that were observed in the Chinese oysters. The PCR data suggest 

that overall, the initially naive clams and oysters may have been equally exposed to P. 

beihaiensis cells because combined PCR and RFTM analysis (positive or negative for 

cells) o f the Chinese oysters used in the second cohabitation experiment indicated that 

after 6 months, 61.9% (13/21) o f the oysters cohabitated with M. mercenaria, and 66.7% 

(14/21) of those oysters cohabitated with C. virginica or C. ariakensis had P. beihaiensis 

DNA. The weighted prevalence data for the second cohabitation experiment, however, 

suggests that the C. ariakensis were exposed to the greatest number of cells (Chinese 

oyster WP of 0.52), followed by M. mercenaria (Chinese oyster WP of 0.47) and C. 

virginica (Chinese oyster WP of 0.07).
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With exposure being variable for each host species in these experiments, a 

drawback of using Chinese oysters naturally infected with variable levels of P. 

beihaiensis, it is not possible to comment on the relative apparent susceptibility of C. 

virginica, C. ariakensis or M. mercenaria. Further experiments using equal exposure 

rates and confirmatory histological evidence o f transmission would be required; however, 

lacking pure cultures of P. beihaiensis handicaps efforts to conduct direct inoculation 

studies or to standardize dosages of cells to P. beihaiensis-free bivalve molluscs in bath 

challenge experiments.

Use of oysters naturally infected with P. beihaiensis to serve as vectors of the 

parasite in cohabitation could be ideal, however, as previously mentioned, the sensitivity 

of non-lethal versus more invasive methods to detect P. beihaiensis cells have not been 

studied. Histological evidence collected thus far on naturally infected animals and those 

used in these cohabitation experiments suggests that lesions most commonly occur in the 

epithelia of the stomach and intestine as well as in the connective tissues of the visceral 

mass. Only rarely were cells detected in the gill and mantle. The presence of P. 

beihaiensis cells circulating in the hemolymph was not examined. Being that parasite 

cells are only rarely observed in the gill and mantle with this Perkinsus sp., and it is only 

possible to take these tissues non-lethally from anesthetized animals, it makes non-lethal 

pre-screening of potentially infected hosts virtually impossible until another means of 

diagnostics is developed.

As was discussed in Chapter 3, it was not possible to test a wide range of salinity 

and temperature regimes during these cohabitation experiments. Perkinsus beihaiensis 

has been found in oysters taken from waters of 21-23 ppt therefore these conditions were 

used in the cohabitation experiments. Without proliferating pure cultures of this
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Perkinsus sp. it is difficult to determine the optimal conditions under which the parasite 

proliferates, or the host is susceptible, and therefore likely is most infective to potential 

hosts.

The results of these cohabitation experiments suggest that P. beihaiensis may be 

transmitted to C. virginica, C. ariakensis and M. mercenaria. PCR and RFTM analysis 

detected Perkinsus sp. cells in oysters and clams that were exposed to P. beihaiensis, 

however histological evidence o f parasite acquisition is lacking. PCR detection of P. 

beihaiensis DNA cannot solely be used for evidence of transmission because DNA-based 

analysis can detect cells that are not viable or may only be superficial. For example, 

parasite cells on the gills or passing through the gut do not necessarily represent 

infections by a parasite. To verify infections, therefore, PCR data must always be 

confirmed by histological evidence of parasite cells within an organism.

Additionally, although the bivalve mollusc species tested here do not appear to be 

highly susceptible to this parasite, especially when considering that P. beihaiensis 

appeared to readily proliferate within Chinese oyster hosts, the data reported here should 

be interpreted that P. beihaiensis does represent a risk to Chesapeake Bay bivalves and 

steps must be taken to prevent introduction o f this non-native parasite to the Bay.
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CONCLUSION

The proposed introduction of Crassostrea ariakensis to Chesapeake Bay has 

incited intense debate regarding the economic viability and risks associated with 

introducing a non-native species to the mid-Atlantic, USA. Funded research priorities 

have been identified and incorporated guidance from the International Council for 

Exploration of the Seas (ICES) Code of Practice on the Introductions and Transfers of 

Marine Organisms. ICES recommends, among other things, that the “ecological, genetic 

and disease relationships of the species in its natural range and environment” be 

examined prior to introduction of a non-native organism.

The basis for the research presented here began with a pathogen survey of C. 

ariakensis throughout its natural range in Korea, Japan and China (Chapter 1). In 

addition to C. ariakensis, a sympatric Crassostrea species, C. hongkongensis, 

distinguishable from C. ariakensis only by genetic techniques (Cordes and Reece, 2005), 

as well as other Crassostrea spp., and pearl oysters collected in the same area from 1999- 

-2006 were screened for molluscan herpes virus and for Perkinsus spp. parasites using 

PCR-based molecular diagnostics. Histological analysis was performed by the VIMS 

shellfish and pathology lab, in conjunction with molecular screening performed 

personally, on oysters collected in 1999 from eight locations in China. As a result o f that 

parasite survey, multiple genetic strains o f molluscan herpes virus and two Perkinsus 

spp., P. olseni and a novel Perkinsus sp., Perkinsus beihaiensis, were reported. 

Steinhausia-like microsporidians, viral gametocytic hypertrophy, Clamydia-like
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organisms, Nematopsis sp., cestodes, and ciliates were observed in histological analyses 

performed on the 1999 samples.

The report of a new Perkinsus sp. in southern China was initially based solely on 

phylogenetic analysis of the internal transcribed spacer (ITS) region of the ribosomal 

RNA gene complex. In order to confirm the uniqueness of this parasite, additional DNA 

loci were targeted for examination, and histological analysis of Perkinsus beihaiensis 

infected oysters was also performed (Chapter 2). Large subunit rRNA gene and actin 

gene DNA fragments were amplified from genomic DNA of infected oysters using newly 

developed PCR assays, and additional ITS region sequences were also obtained.

Combined phylogenetic analysis of ITS region, LSU rRNA gene and type 1 actin gene 

nucleotide sequences yielded trees with similar topologies. In all analyses, sequences of 

this new parasite showed that it was clearly a member of the genus Perkinsus; however, it 

was unique from all currently accepted Perkinsus species. Histological analysis 

performed on Perkinsus beihaiensis PCR positive oysters revealed cells with typical 

Perkinsus morphology and recognizable Perkinsus sp. life stages in tissue sections 

examined. In some oysters, systemic Perkinsus beihaiensis infections were observed 

suggesting that this species may reach lethal intensities under certain conditions. A 

unique PCR assay, as well as a Perkinsus beihaiensis -specific oligonucleotide probe 

used for in situ hybridization, was developed for this new Perkinsus species. Using these 

genetic tools, the range of this new Perkinsus sp. has been determined to be at least from 

Fujian Province to Guangxi Province in southern China, and it is associated with C. 

ariakensis and C. hongkongensis (PCR and histological confirmation) as well as pearl 

oysters, Pinctada martensii and P. margaritifera (based on PCR results only).
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Those organisms discovered by histological analysis during the parasite survey 

were observed infrequently and likely are not significant pathogens of those Crassostrea 

spp. examined. Molluscan herpesvirus can be a serious problem leading to severe 

economic losses, particularly in hatcheries where it can cause massive mortalities in 

larvae and spat (Hine 1992, Le Deuff et al.1994, Arzul et al. 2001b); furthermore, it is 

implicated as a possible cause of summer mortality in C. gigas in California (Friedman et 

al. 2005). Previous research suggests that molluscan herpesvirus can be both horizontally 

(Arzul et al. 2001b and 2001c) and vertically transmitted (Renault et al. 1994, Arzul et al. 

2002). Vertical transmission o f Perkinsus spp. protozoans has not been documented, 

though vertical transmission of microsporidians has been demonstrated previously in 

invertebrates such as amphipod crustaceans and Daphnia (Kelly et al. 2003, Galbreath et 

al. 2004, Haine et al. 2004, Vizoso and Ebert 2004). Current quarantine methods and 

import procedures as outlined by ICES (ICES, 2005) should minimize or eliminate the 

risk of exposure of native Asian broodstock oysters, or associated pathogens, to the 

waters and shellfish of Chesapeake Bay. Current protocols, however, will not be 

effective against vertically transmitted pathogens. In order to understand the potential 

disease impacts associated with an introduction of C. ariakensis to Chesapeake Bay, we 

must attempt to predict the outcome of exposure of Asian pathogens to naive local 

bivalve species.

Perkinsus olseni is geographically widespread and is known to be especially 

problematic to the carpet shell clam, Ruditapes decussatus, in Spain (Casas et al. 2002, 

Villalba et al. 2005). The discovery of P. olseni in C. ariakensis and C. hongkongensis in 

northern China (Chapter 1) is not surprising given that previous reports of P. olseni have 

documented its occurrence in bivalve shellfish from northern China (Liang et al. 2001),
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Japan (Hamaguchi et al. 1998) and Korea (Choi and Park 1997, Park et al. 2006). The 

pathogenicity o f P. olseni to C. ariakensis is unknown, therefore this question and the 

potential for transmission to native Bay bivalve shellfish, the hard clam, M. mercenaria, 

and the eastern oyster, C. virginica, were the motivation behind conducting two direct 

inoculation experiments, using cultured P. olseni cells, as well as a bath challenge 

experiment, using P. olseni cells harvested directly from naturally-infected Spanish R. 

decussatus (Chapter 3).

During the first inoculation experiment, there was little evidence o f P. olseni 

transmission to naive hosts; however, C. ariakensis briefly exposed to P. marinus 

developed heavy and lethal infections. This provided valuable information on potentially 

problematic disease issues including parasite proliferation that could arise if  P. marinus- 

infected C. ariakensis encountered stress challenges in the wild or aquaculture 

environments, or if  they are held in hatcheries or laboratories under stressful conditions.

It is known that Perkinsus sp. may lose virulence in culture (Ford et al. 2002a). 

Therefore, in the second experiment, P. olseni culture media was supplemented with 

oyster homogenate. Oyster homogenate has been shown to increase protease activity of 

P. marinus in culture (Earnhart et al. 2004, MacIntyre et al. 2003). Proteolytic enzyme 

analysis o f P. olseni cell free supernatant showed high molecular weight protease activity 

in the presence of oyster homogenate, but none in the presence of fetal bovine serum.

The lack o f low molecular weight proteases suggested that P. olseni may not secrete 

serine proteases, as does P. marinus, or that they were not detected. Crassostrea 

virginica followed by M. mercenaria and C. ariakensis had the highest number o f PCR 

positive and RFTM positive samples following the challenge, though the presence o f P. 

olseni cells was only detected in one clam when analyzed using in situ hybridization.
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A P. olseni bath challenge experiment was undertaken due to the inability to 

acquire live, P. oAera-infected oysters or clams for cohabitation experiments. Crudely 

purified P. olseni cells obtained from R. decussatus from Spain were added to aquaria 

containing the above listed host species on two occasions. After three months, 6/60 

(10%) of the M. mercenaria were PCR positive for P. olseni and RFTM analysis detected 

Perkinsus sp. cells in 3/60 (5%) clams, although none of these three clams was of the six 

that were PCR positive for P. olseni.

Combined results o f the three P. olseni experiments provided genetic evidence, as 

seen by positive P. olseni-specific PCR assays, as well as RFTM evidence of P. olseni 

transmission to naive hosts of all three species. Histological confirmation of infection 

was limited, however, and only in situ hybridization performed on one clam ever showed 

hybridization to P. olseni cells in situ. Histological examination of one or a few 5 pm 

tissue sections may not be sensitive enough to detect rare or focal Perkinsus spp. 

infections. It is also imperative to understand that for P. olseni, neither the minimum 

infective dose of cells, nor the optimal environmental conditions for transmission and 

disease development are known (Miossec et al. 2006). The experiments were conducted 

over a very small temperature and salinity range and replacing water each week in the 

experimental aquaria also removed potentially infective cells from the system. In 

addition to obtaining evidence that C. virginica and M. mercenaria may be susceptible to 

P. olseni, important diagnostic methods were developed for these experiments that can be 

applied to future research. A P. oAew'-specific PCR assay was optimized, a quantitative 

real time PCR assay was developed and P. marinus and P. olseni-specific in situ 

hybridization probes were developed.
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Along with describing the new Perkinsus sp., cohabitation experiments were 

performed in order to assess the pathogenicity and likelihood of transmission of this 

exotic Perkinsus sp. to the hard clam and the eastern oyster. Live oysters were imported 

from the Beihai, China region on two occasions and placed in aquaria with naive C. 

ariakensis, M. mercenaria or C. virginica. The experiments lasted four and six months. 

Modified RFTM assays were performed during the second cohabitation experiment and 

appeared to be more sensitive than previous RFTM assays that used only gill, mantle or 

rectal tissues for detection o f Perkinsus spp. Combined PCR and RFTM analysis 

suggested that Perkinsus n. sp. may be transmitted to both the eastern oyster and the hard 

clam, but this cannot be confirmed because Perkinsus n. sp. cells could not be found in 

tissue sections examined histologically. The Chinese oysters used in these experiments 

appeared to be highly susceptible to Perkinsus n. sp. with infections becoming more 

prevalent and intense during the course of each experiment.

This research suggests that transmission of exotic Perkinsus spp. to M. 

mercenaria and C. virginica may be possible and results reported herein should be 

interpreted with the understanding that it is impossible to emulate natural conditions in 

the laboratory, nor is it possible to mimic each environmental scenario possible along the 

expansive range of conditions under which these parasites may survive, proliferate, or 

become pathogenic. As was demonstrated in the first P. olseni inoculation experiment,

C. ariakensis, considered to be relatively resistant to P. marinus as compared to C. 

virginica, can develop lethal P. marinus infections. This finding is especially important 

because it is contrary to what was found in previous field trials undertaken to understand 

how well C. ariakensis might perform under the disease pressure naturally present in the 

Bay (Calvo et al. 2001). Crassostrea hongkongensis and C. ariakensis can also develop
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systemic infections o f Perkinsus n. sp. The apparent Perkinsus spp. susceptibility also 

indicates that these oysters could act as reservoirs for non-native Perkinsus spp., should 

they become introduced through discharge of Asian ballast water into Chesapeake Bay or 

by failure of quarantine protocols or facilities holding Asian brood stock oysters. There 

clearly are dangerous viral and protozoan pathogens associated with C. ariakensis that 

may be transmitted to nai've populations of Bay oysters and clams.
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