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ABSTRACT

Fisheries sustainability is inherently linked to an understanding of the population-level effects of 
fishing. With an accurate characterization of historical fish and fishery dynamics, management 
agencies are more equipped to create regulations that sustain fisheiy resources over the long term. 
The overarching goal of this dissertation is to contribute to the advancement of fisheries stock 
assessment and promote resource sustainability. My research focused on highly migratory 
species (HMS), particularly fishes that reside in the open ocean. These species constitute some of 
the highest valued global fisheries; however, numerous factors compromise HMS stock 
assessment and management. These challenges are fully described in Chapter 1, which also 
includes corresponding research and management recommendations. A key limitation in HMS 
assessments underlying my research is the lack of independent scientific monitoring programs. In 
the absence of research surveys, HMS stock assessments must rely on fishery catch and effort 
data. Therefore, special care is required to infer population dynamics from entities that were not 
established to monitor populations. In particular, the habitat in which fishing occurs largely 
dictates the amount and composition of fishes captured. Unfortunately, habitat effects on fishery- 
dependent data are not commonly accounted for in HMS assessments. Chapter 2 presents the 
results of a performance evaluation of methods used for estimating HMS abundance trends, 
including traditional generalized linear models (GLMs), an existing method that considers habitat 
(statHBS), and a proposed method that hybridizes traditional and habitat-based approaches 
(HabGLM). I demonstrate that HabGLM was most accurate of those evaluated, while exhibiting 
minimal sensitivity to errors in input data. I recommend the use of HabGLM in future HMS stock 
assessments; however, despite being most accurate, there were scenarios where HabGLM still did 
not sufficiently capture the true abundance pattern. In Chapter 3, the HabGLM was applied to 35 
HMS in the Atlantic Ocean using fisher logbook data from the US pelagic longline fisheiy. This 
comprehensive analysis portrays an HMS community in the Atlantic as generally depleted, with 
current abundances of 76% of the species at less than half of their 25-year observed maxima. 
However, despite these depletions, 26% of the species exhibited population growth, suggesting 
recent fishing intensities may be adequate for sustaining or rebuilding certain populations. While 
interpretations of abundance trends can be informative, fisheries management is more often 
guided by the output of stock assessments. Thus, in Chapter 4 ,1 present the results of a study that 
evaluated the effects of abundance index quality on the performance of a stock assessment model 
(Stock Synthesis), with a focus on Atlantic blue marlin (Makaira nigricans). In general, 
assessment model performance was superior when based on abundance indices estimated using 
HabGLM; however, the management quantities derived from this best case scenario were still 
overly optimistic, and when the fisheries were regulated accordingly, population biomass was 
projected to be well below the management target level. Overall, my research emphasizes that (1) 
habitat should be directly incorporated into HMS stock assessments, and (2) independent stock 
monitoring programs are essential for effective fisheries management

xv
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INTRODUCTION

In marine ecosystems, highly migratory species (HMS) are characterized as having vast 

geographical distributions, with extensive individual migrations often spanning entire oceans. 

Dispersal on this scale can promote ocean-wide population connectivity, resulting in many HMS 

exhibiting genetic homogeneity. From a biological perspective, these species often comprise a 

single unit stock within an ocean basin. Since single stocks can be distributed throughout 

multinational and international waters (as with the tunas [Family Scombridae]), sustainable 

management of these harvested stocks requires cooperation between all fishing nations. An 

international governing organization is imperative to ensure cooperation, and in the Atlantic 

Ocean, the member nations of the International Commission for the Conservation of Atlantic 

Tunas (ICCAT) are responsible for management of highly migratory fishes. The main objective 

of ICCAT is to maintain stocks at levels that produce maximum sustainable yield (MSY) (ICCAT 

2007a), a goal that is likely shared among most fishing nations. However, numerous HMS exhibit 

spatial and temporal overlap, which creates management challenges since large quantities of 

nontarget HMS are often caught incidentally . The various HMS captured may not have the same 

intrinsic population growth rates or carrying capacities; therefore, their populations may not 

exhibit the same responses to a given level of fishing effort. Since fishers often seek productive 

stocks, nontarget species may be depleted at a rate faster than target species, thus sustainable 

management of all stocks may require a reduction of effort well below that which maximizes 

yield of the target species. For many fishing nations, this can result in substantial declines in 

commercial revenues. Since the overall importance of nontarget species inevitably varies between 

stakeholders, the international cooperation that is essential for management of HMS may break 

down when incidental catch is considered.



Numerous HMS and other large marine organisms are susceptible to incidental capture, 

including sea turtles (Family Cheloniidae), marine mammals (Order Cetacea), sharks (Superorder 

Euselachii), and billfishes (Family Istiophoridae). In the Atlantic, these species are most 

frequently encountered by fisheries that target tunas, swordfish Xiphias gladius, and sharks, with 

gears such as pelagic longlines, shark bottom longlines, and shark gill nets (NMFS 2007). For 

marine mammals, public disapproval of incidental fishing-induced mortality has been a powerful 

force in driving regulations (e.g., the Marine Mammal Protection Act of 1972 by the U.S. 

Congress) and adoption of new technologies that have reduced their respective fishing mortalities 

(Hall 1998; Hall et al. 2000). However, despite historically persistent overfishing (Restrepo et al. 

2003), the excessive exploitation of Atlantic billfishes, such as blue marlin Makaira nigricans 

and white marlin Kajikia albida, has not invoked a similar reaction (Webster 2006). While the 

most recent regulations imposed by ICCAT for reducing Atlantic marlin mortality are 

surprisingly restrictive (see Governance section, this chapter), especially when considering 

ICCAT’s goal of maximizing yield, it is uncertain that they are capable of rebuilding the stocks 

(ICCAT 2006; Webster 2006). Many of the challenges surrounding management of marlins are 

related to uncertainties in biological and fisheries data, resulting in uncertainties in the assessment 

process (Restrepo et al. 2003; Die 2006). Here, the focus is on Atlantic marlin populations and 

potential quantitative approaches to reduce uncertainty in their assessments, thereby promoting 

international cooperation and the implementation of sustainable management measures.
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IMPORTANCE

Globally, istiophorids comprise five genera and nine species (Collette et al. 2006). Of these, six 

species occur regularly in the Atlantic Ocean and its adjoining seas: blue marlin, white marlin, 

sailfish Istiophorus platypterus, longbill spearfish Tetrapturus pfluegeri, Mediterranean spearfish 

T. belone, and roundscale spearfish T. georgii. Blue marlin and white marlin are distributed 

throughout tropical and temperate waters of the Atlantic, ranging from Canada east to the Azores 

in the northern hemisphere to Argentina east to South Africa in the southern hemisphere (Figure 

1). There is a temporal trend to their distribution, with presence in the higher latitudes typically 

occurring during wanner times of the year. Atlantic marlins tend to exhibit solitary behavior, 

however, small aggregations of white marlin have been observed (Nakamura 1985). As with all 

istiophorids, the marlins likely exhibit extremely rapid growth rates in early life (Sponaugle et al. 

2005), but the average size of an adult blue marlin (100-175 kg) is much larger than that of a 

white marlin (20-30 kg) (NMFS 2007). Also, sexually dimorphic growth is common to both 

species (though much more pronounced in blue marlin), with females growing larger than males 

(Nakamura 1985; Wilson et al. 1991; Arocha and B&rios 2009).

Marlins are apex piscivores that also consume invertebrates such as squid (de Sylva and 

Davis 1963; Nakamura 1985; Cox et al. 2002a; Junior et al. 2004; Shimose et al. 2006). Apex 

predators are often considered ecologically important, as their depletion may impact food web 

structure through a trophic cascade (Paine 1969; Pace et al. 1999; Casini et al. 2009). However, 

Kitchell et al. (1999) demonstrated that the simulated removal of billfishes from the central North 

Pacific ecosystem had a minimal impact on trophic structure. In fact, in an assessment of 

importance, Kitchell et al. (2006) stated that the economic value generated by billfish angling is
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far greater than their ecological value as apex predators. While the uncertainty associated with 

complex ecosystem models such as these can be overwhelming, it may be that healthy Atlantic 

marlin populations are not critical to maintaining ecosystem stability; however, it is certain that 

their sustainability is of significant economic importance for artisanal communities and countries 

with recreational fisheries.

Since its beginning in the late 1800s to early 1900s, the recreational billfish fishery has 

been an important component of the tourist industry in many parts of the world (Holder 1912; 

Jordan and Evermann 1923). Though difficult to calculate on a global scale, Ditton and Stoll 

(2003) estimated the economic impact of this fisheiy (for several countries combined) to be 

between US$203.95 million and $339.91 million, annually. Additionally, the economic 

importance of recreational billfish fisheries is emphasized by the regulatory actions of the United 

States. To reserve billfish for recreational fishing, commercial retention of Atlantic marlins has 

been prohibited in the United States since implementation of the 1988 Fisheiy Management Plan 

for Atlantic Billfish. Also, by law, the United States mandates a recreational fishing presence in 

the policy-making process by declaring that at least one of the U.S. commissioners to ICCAT 

must possess “knowledge and experience regarding recreational fishing in the Atlantic Ocean, 

Gulf of Mexico, or Caribbean Sea” (U.S. Congress 1975).This presence is critical to marlin 

recreational fisheries, as the interests of billfish anglers often differ from those of commercial 

fishers that target HMS.

In addition to the significant economic contributions, marlin recreational fisheries are 

also valued for their social and historical importance. In the mid-20th century, writers such as 

Zane Gray and Ernest Hemingway romanticized big game fishing, prompting a rapid increase in 

the popularity of angling for marlins (Peel et al. 2003). This popularity continues today, but the 

recreational fishing community has recognized that sustainability of marlin populations is 

imperative to preservation of their fishery. Thus, to minimize fishing mortality, recreational 

marlin fisheries have become primarily catch and release. An appreciable percentage of marlins



will likely survive this practice, but the rate of postrelease mortality may vary depending on 

fishing gear and other fishing characteristics (Serafy et al. 2009). While catch-and-release fishing 

began to take hold following years of substantial recreational landings, it does not represent a 

considerable sacrifice for most fishermen; it is the challenging fight that precedes capture rather 

than the capture itself that has drawn many people to the sport (Ditton and Stoll 2003).

Commercially, marlins are of lesser importance than many other HMS. They are landed 

as nontarget bycatch of fisheries that target tunas and swordfish because the amount of biomass 

landed and their value per kilogram are lower than these target species. While current ICCAT 

regulations require the release of any marlin caught alive (ICCAT 2007b, Rec. 2006-09), longline 

operations often land fish that are dead upon retrieval of the gear. These harvests represent the 

largest source of fishing mortality for the Atlantic marlins, with Brazil, Japan, and Chinese Taipei 

constituting the bulk of the landings (ICCAT 2006).

Following peaks in the 1960s, total marlin landings have fluctuated over time with 

decreasing trends exhibited in recent years (Figure 2). Historical oscillations in total landings 

essentially tracked longline effort (Restrepo et al. 2003). While recent declines in reported 

landings may be a result of live release from longline operations, further reduction of fishing 

mortality could be achieved through a decrease in overall effort or changes in fishing practices. 

However, given the potential resulting loss of target catch, either of these approaches would 

likely face substantial resistance by any ICCAT member nation that places a low value on 

recreational fisheries for marlins.

On a smaller scale, directed artisanal fisheries for Atlantic marlins are conducted by 

coastal nations, especially in the Caribbean Sea and off the coast of western Africa (ICCAT 

2001a). These subsistence fisheries represent the only real reliance on marlins for their nutritional 

value (Peel et al. 2003). Thus, marlin stock collapses may have little impact on large commercial 

operations but could represent losses of valuable sources of protein for many developing coastal 

nations.



Another important group of stakeholders with an interest in Atlantic marlins is the 

environmental community. This constituency is most concerned with the existence and/or 

ecological values of the species. However, conservation of marlins has been a relatively low 

priority when considering the resources dedicated to preserving other charismatic marine 

megafauna such as bluefin tuna Thunnus thynnus, sea turtles, and marine mammals, but since 

recreational fishermen are also interested in healthy marlin populations, the messages and actions 

of the two groups are often aligned. A major exception to this collaboration occurred in 2001, 

however, when some conservationists petitioned to have white marlin listed as a threatened or 

endangered species under the U.S. Endangered Species Act (ESA; WMSRT 2002). If successful, 

a listing could have significantly impacted any recreational fisheries in the United States that have 

the potential to interact with white marlin. In 2002, the National Marine Fisheries Service 

(NMFS) of the National Oceanic and Atmospheric Administration determined that the petitioned 

action was “not warranted” despite concluding that the species was overexploited and that 

regulatory mechanisms implemented at that time were likely unable to prevent continued 

overfishing (WMSRT 2002). Subsequently, following further pressure from conservationist 

groups, NMFS agreed to reassess the species upon completion of the 2006 white marlin stock 

assessment conducted by ICCAT. After re-evaluation, NMFS maintained that the species did not 

warrant listing as threatened or endangered (WMBRT 2007).

Overall, the Atlantic marlins are most important to recreational and artisanal fisheries, 

and they are of relatively low commercial value. Their conservation hinges on an understanding 

of susceptibility to anthropogenic impacts, which is enhanced with knowledge regarding the sizes 

and distributions of marlin populations as related to habitat.
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POPULATIONS AND HABITATS 

Starting in 2000, Atlantic blue and white marlins have been considered to comprise single unit 

stocks for assessment and management purposes (Restrepo et al. 2003; ICCAT 2006). Prior to 

this, it was assumed that the populations each contained northern and southern stocks separated at 

58N (Restrepo et al. 2003). Recent genetic analyses supported the single unit stock approach for 

both populations (Graves and McDowell 2006; McDowell et al. 2007); however, Graves and 

McDowell (2006) identified significant spatial heterogeneity for white marlin, highlighting a 

potential need for continued research on their stock structure.

Current scientific understandings of population dynamics and stock status for marlins are 

entirely fisheiy-dependent, that is, independent research surveys are not used to monitor their 

populations. Therefore, estimates of historical biomasses are based on relative measures of catch 

per unit of effort (CPUE) obtained from the various fisheries, which are assumed proportional to 

exploitable abundance. Because the fisheries do not sample the populations in a random, unbiased 

fashion, a complete reliance on fishery-dependent data may introduce many potential sources of 

error. However, CPUE time series, and assessment models fitted to CPUE data are currently the 

best available estimates of historical relative abundance. Despite a potentially promising trend in 

recent years for white marlin, the relative biomasses estimated for each species have declined 

substantially from 1950s levels (Figure 3). In the context of MSY, these trends do not reflect 

sustainable harvests, but estimated biomasses may not be accurate because CPUE can be affected 

by changes in fishing practices regarding target species as well as changes in marlin abundance. 

Efforts to account for potential biases require an understanding of the relationship between marlin
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habitat, susceptibility to capture, and the spatiotemporal dynamics of fishing effort (Maunder and 

Punt 2004; Bishop 2006).

As with the overlapping geographical distribution of Atlantic marlins, the vertical 

habitats utilized by these species are also similar. Valuable characterizations of vertical habitat 

utilization for large pelagic fishes have come from studies that used pop-up satellite archival tags 

(PSATs) to monitor animal behavior (Arnold and Dewar 2001; Luckhurst 2007; Hofmann and 

Gaines 2008). These tags record a nearly continuous stream of specified environmental 

parameters (temperature, pressure [depth], light, etc.), archive the data, and transmit the 

information via satellite after releasing from the organism and floating to the surface (Graves et 

al. 2002). There have been several studies in the Atlantic and adjacent seas that attached PSATs 

to blue marlin (Graves et al. 2002; 2003; Kerstetter et al. 2003; Saito et al. 2004; Prince et al. 

2005; Luo et al. 2006; Prince and Goodyear 2006; Kraus and Rooker 2007; Goodyear et al. 2008) 

and white marlin (Horodysky and Graves 2005; Prince et al. 2005; Kerstetter and Graves 2006a; 

Horodysky et al. 2007; Graves and Horodysky 2008). The studies that made inferences about 

habitat utilization revealed similar trends; both species spent the majority of their time in warmer 

surface waters (<10 m) but made regular short-duration dives to deeper water (occasionally >100 

m) (Graves et al. 2003; Kerstetter et al. 2003; Saito et al. 2004; Prince et al. 2005; Luo et al.

2006; Prince and Goodyear 2006; Horodysky et al. 2007; Kraus and Rooker 2007; Goodyear et 

al. 2008).

While depth can be an informative descriptor for habitat, it is more likely that sea surface 

temperature (SST) and relative deviations from SST govern marlin distributions through 

physiological pathways. Brill and Lutcavage (2001) suggested that cardiac function is 

compromised in billfish when they dive to cooler waters that exceed an 8°C deviation from SST. 

This implies that these fishes are constrained to a relative temperature-at-depth distribution. 

Additionally, in areas with a shallow thermocline above hypoxic water, dissolved oxygen 

concentrations can further limit billfish distributions (Prince and Goodyear 2006). Thus, an
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understanding of marlin habitat is a key component to sustainable management. When evaluating 

vulnerability to fishing gear, it is not enough to simply consider the depth at which fishing effort 

is imposed, but the physical properties of the water column must also be incorporated.

Besides fishing, there are numerous human actions that may also affect marlin 

abundance. A review of anthropogenic impacts on billfish by de Sylva et al. (2000) highlighted a 

range of potential sources, including direct (e.g., fishing) and indirect (e.g., point and nonpoint 

sources of pollution) impacts that may degrade marlin habitats. Since marlins are distributed 

throughout relatively stable environmental conditions, they may be more susceptible to subtle 

ecological perturbations than coastal eurytopic organisms that experience variable conditions (de 

Sylva et al. 2000).

Given that Atlantic marlins are exploited across vast spatial scales, delineation of their 

habitats and the potential impacts of habitat degradation are crucial for conservation of these 

species. This is especially important since historical population trajectories indicate declines in 

abundance, raising concerns about the future for Atlantic marlins. There may be reason for 

cautious optimism, however, because relative biomass estimates from the 2000s suggest that the 

declines may have been arrested or, in the case of white marlin, the population may be in the 

early stages of a recovery (Figure 3). It is possible that these responses are the direct result of 

management measures, but there is little certainty in the trends in biomass, and several additional 

years of data are required to verify population responses (ICCAT 2006).
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FISHERIES

Fisheries targeting HMS have operated for many years, but until the 20th century, fishing was 

largely constrained to coastal waters (Majkowski 2007). In the early 1900s, a growing demand for 

canned tuna prompted the development of industrialized fisheries, including the Japanese longline 

fleet. By 1932, Japan had developed factory longline ships capable of canning tuna onboard 

(Morgan and Staples 2006). Following the elimination of post-World War II restrictions, this fleet 

expanded rapidly, eventually reaching the Atlantic Ocean in the late 1950s. Initially targeting 

yellowfm tuna Thunnus albacares and albacore T. alalunga in surface waters, the Japanese 

longline fishery was almost entirely responsible for the observed peak in Atlantic marlin landings 

in the late 1950s to early 1960s (Figure 2). Toward the end of the 1960s, developments in cold 

storage technology enabled Japanese fishermen to transition from the canned tuna market to a 

more lucrative sashimi market. This shift prompted a change in target species from yellowfm tuna 

and albacore to bigeye tuna T. obesus and bluefin tuna. By the early 1970s, the higher-valued 

target species dominated the catches in the Atlantic (Sakagawa et al. 1987). Since these species 

utilize deeper habitats, longline practices were altered to fish deeper in the water column 

(Majkowski 2007). Following this change, total landings of Atlantic marlins declined quickly, 

then fluctuated for many years before exhibiting further declines (white marlin, in particular) 

throughout the past decade (Figure 2).

Despite decreases in landings and potentially stabilizing biomass trajectories, the latest 

stock assessments concluded that Atlantic blue and white marlin stocks remain overfished and 

overfishing persists (ICCAT 2006). Given that ICCAT manages with respect to MSY, 

“overfishing” occurs when the fishing mortality rate (F) exceeds the rate associated with
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maximum sustainable yield ( F Ms y ) -  Marlin stocks have been experiencing overfishing throughout 

much of the historical time series, but in recent years, F  has drastically increased with respect to 

FMsy (Figure 4). As relative biomasses have continued to decline (Figure 3), the reductions in 

landings necessary to rebuild the populations to MSY levels are greater than those observed. The 

recent changes in biomass trajectories may, in fact, be in response to management measures, but 

with lags in implementation and collection and reporting of data, the full effects of the measures 

may not be observed for several years. This delay could be detrimental to the species if the 

regulations prove inadequate for stimulating stock recoveries.

For many bycatch species, fishing mortality has been reduced through technological 

developments that attempt to improve survival of nontarget organisms while maintaining catch 

rates of target species. There have been relatively few developments that accomplished this for 

marlins; however, the use of circle hooks (as opposed to traditional J-style hooks) may show 

promise. In a review of studies that tested the effect of hook choice on billfishes, Serafy et al. 

(2009) determined that circle hooks are beneficial to billfish conservation efforts, and they 

recommended their use in commercial pelagic longline and recreational fisheries. However, when 

examining hook-induced mortality rates for blue and white marlins specifically, there are 

conflicting results among fisheries. For instance, in recreational fisheries for white marlin, circle 

hooks have been shown to significantly improve postrelease survival as compared to J hooks 

(Horodysky and Graves 2005). Yet, for pelagic longlines, white marlin mortality was slightly 

higher on circle hooks, though not significantly (Kerstetter and Graves 2006b). However, for 

most species analyzed, mortality rates were generally higher on J hooks than on circle hooks, and 

catch rates of the target species were not significantly impacted. It should be noted that mortality 

estimates in studies that used PSATs reflected postrelease mortality after a specified number of 

days, while in other studies mortality was the percentage of fish that were alive when brought 

alongside the boat (Serafy et al. 2009). There were not enough blue marlins captured (« = 1) for
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Kerstetter and Graves (2006b) to test the effects of hook type on survival, and there are currently 

ongoing studies comparing hook types in recreational fisheries for blue marlin.

In general, when compared to J hooks, circle hooks tend to reduce incidences of deep- 

hooking and bleeding in billfishes (Serafy et al. 2009). Thus, in the most recent stock assessment 

report, it was recommended that ICCAT consider encouraging the use of circle hooks to increase 

the chances of rebuilding Atlantic marlin stocks (ICCAT 2006). In the United States, the use of 

circle hooks has been mandatory in the pelagic longline fisheiy following the 2004 ESA section 7 

consultation. This implementation was intended to minimize impacts on sea turtles, but marlin 

populations may also benefit. Also, circle hooks are currently required in all U.S. recreational 

Atlantic billfish tournaments when natural baits are used (NMFS 2006).

Recent stock assessments suggested that current fisheiy removals of Atlantic marlins are 

at levels too high to permit rebuilding to MSY levels. As relatively low value bycatch species of 

commercial fisheries, further depletion of marlin populations is not likely to substantially impact 

future commercial interests; however, recreational and artisanal fisheries will suffer in the 

absence of harvest policies that promote rebuilding. These trade-offs should be considered when 

management formulates recommendations, since international cooperation is required to attain 

sustainability. However, to rebuild populations to levels that support MSY, the main focus of 

management must be on the outcomes of stock assessments, which are scientific analyses of the 

status of the populations. Unfortunately, insufficient data result in numerous uncertainties in 

Atlantic marlin assessments (Restrepo et al. 2003; Die 2006), leading to disagreements over 

interpretations of assessment results, which serve as a basis for ICCAT member nations to object 

to further management restrictions. In fact, Webster (2006) identified uncertainty in the stock 

assessment process and the resulting lack of consensus regarding stock status as major factors 

preventing acceptance of more conservative international management measures for Atlantic 

marlins. Thus, identifying and accounting for assessment uncertainties is an important step in 

improving the management of blue and white marlins in the Atlantic.
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ASSESSMENT UNCERTAINTIES 

Resource managers are faced with numerous sources of uncertainty, ranging from those analytical 

to those related to institutions and management (Hilbom 1987; Francis and Shotton 1997). While 

the consideration of management institutional uncertainties (i.e., uncertainties surrounding 

determination and implementation of management objectives and policies) is crucial for 

achieving sustainability, the focus here is on analytical uncertainties related to stock assessments 

and population dynamics (e.g., observation, model, and estimation uncertainty). Failure to 

address these sources of uncertainty can translate to errors in stock assessments, skepticism 

regarding stock status, and poor management advice; thus, the consideration of analytical 

uncertainties is an essential component of reliable sustainable resource management.

The importance of addressing analytical uncertainties in fisheries management is 

emphasized by the dynamics of the Atlantic herring (also known as the North Sea herring)

Clupea harengus fisheiy. This stock has experienced two periods of severe overexploitation since 

the 1960s (Simmonds 2007). While warnings from scientists preceded the first decline, data at 

that time were insufficient to accurately determine stock status (i.e., observation uncertainty), and 

management action was resisted on this basis to preserve commercial profits. The stock 

eventually collapsed, moratoria were imposed, and a slow recoveiy followed. During the next 

period of overexploitation, the scientific understanding of the stock was more reliable, allowing 

management to take actions to successfully prevent a second total collapse. However, there were 

errors in the assessments during this decline, leading to an underestimation of exploitation rates. 

Had this not been the case, a second severe stock depletion may have been avoided altogether.
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This example accentuates the importance of accounting for scientific uncertainty in 

fisheries management, and the lessons learned may translate to the management of many stocks, 

including Atlantic marlins. Similar to the tenor surrounding the initial decline in North Sea 

herring, Atlantic blue and white marlins are thought to be experiencing overfishing, but 

management measures are resisted, in part because of substantial uncertainties in the stock 

assessments. Delays in the enactment of management measures have been shown to increase the 

severity in the measures needed for stock rebuilding, the time required for rebuilding, and even 

the likelihood of stock collapse (Shertzer and Prager 2007). Therefore, unless the uncertainties 

are fully addressed and scientific advice is heeded, the management failures of the herring fishery 

may be repeated for Atlantic marlins.

The most recent stock assessments for Atlantic marlins were conducted by the Standing 

Committee for Research and Statistics (SCRS) of ICCAT in 2006. The assessments were 

performed using a Bayesian surplus production (BSP) model (McAllister et al. 2001; Babcock

2007) on catch data from 1990 to 2005, although catch data for 2005 were incomplete. The 2006 

assessments seem to have improved scientific understandings of population dynamics in recent 

years; however, numerous sources of uncertainty remain.

Catch-per-Unit-of-Effort Standardization

Perhaps the most significant sources of debate and uncertainty in marlin assessments are CPUE 

standardization methods. The assessment models are “tuned” to CPUE time series, which 

represent indices of relative abundance under the assumption that catch (adjusted by effort) is 

proportional to abundance. However, numerous factors can impact catch that are not a result of 

changes in population size, including altering the temporal or spatial distribution of fishing effort, 

modifying fishing gear, and changing target species. If these factors are not accounted for, then 

the proportionality assumption is violated and CPUE no longer reflects relative abundance 

(Maunder and Punt 2004). This could introduce substantial error into the assessments.
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There are two general approaches to standardizing marlin CPUE currently under 

consideration. The method used in the recent assessment is a traditional statistical approach using 

a generalized linear model (GLM; Nelder and Wedderbum 1972; McCullagh and Nelder 1989).

As an extension of ordinary least squares linear regression, GLMs are capable of accommodating 

nonnormal error distributions by relating the expected ith value of the response variable to a set of 

predictor variables through a link function, where the link function is based on the assumed error 

distribution. Several CPUE time series were incorporated in the recent marlin assessments, each 

of which was standardized with some form of GLM (ICCAT 2006). For example, Diaz and Ortiz 

(2007) standardized catch rates from the U.S. pelagic longline fishery by accounting for factors 

such as year, area of fishing, gear characteristics, and fishing characteristics while also 

incorporating random interaction effects. The specification of random effects indicates that Diaz 

and Ortiz (2007) used a variant of GLM, referred to as a generalized linear mixed model 

(GLMM; Venables and Dichmont 2004). While incorporating fishing characteristics can account 

for some of the variability caused by a change in target species, the GLMMs did not directly 

address the overlap between fishing effort and marlin distributions.

Another approach under consideration is habitat based standardization (HBS). This is a 

deterministic method that estimates effective fishing effort by incorporating information on the 

vertical distribution of the species in relation to the distribution of fishing effort (Hinton and 

Nakano 1996). Information on vertical distributions are typically derived from analyses of 

archival tagging data (e.g., PSATs), and the distribution of fishing effort is estimated based on 

characteristics of the gear. The HBS approach has been applied and incorporated into assessments 

of large pelagics in the Pacific Ocean (Bigelow et al. 2002; Maunder et al. 2002; Hinton and 

Maunder 2004; Maunder et al. 2006; among others); however, in the Atlantic, HBS has been 

applied but not used in stock assessments because of criticisms over the ambiguity surrounding 

the relationship of these species to the amount of fishing effort imposed on them (Yokawa et al. 

2001; Goodyear et al. 2003; Yokawa and Takuchi 2003).
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The merits of both approaches to CPUE standardization warrant thorough evaluation. 

Since the aforementioned shift in target species resulted in a change in the depth stratum 

exploited by the pelagic longline fishery, it is likely that marlin catch rates were impacted by 

factors other than changes in abundance. The HBS and GLM approaches can account for this 

variability as long as catchability {q) is proportional to habitat type. However, it is difficult to 

effectively accommodate changes in exploited habitat if detailed information on habitat structure, 

marlin vulnerability as related to habitat, and the distribution of effort across habitats are 

unavailable. In the case of the 2006 marlin stock assessments, CPUE was standardized without 

directly considering changes in the habitats targeted by the fisheiy, resulting in steep declines 

early in the time series. These prominent features may be artifacts of a change in target species, 

yet they likely influence assessment results. The HBS approach can also be biased, however, 

because numerous factors can violate the assumption that q is proportional to habitat type. Some 

of these factors include inconsistent feeding behavior across vertical habitats, inconsistent fish 

behavior across time and space, inconsistent gear behavior with depth, and many others 

(Goodyear et al. 2003; Horodysky et al. 2004). Another drawback of HBS is that it is a 

deterministic approach and therefore does not allow a characterization of uncertainty. Since 

GLMs estimate parameters statistically, the error surrounding these estimates can be quantified.

In an effort to incorporate habitat information into CPUE standardization under a 

statistical framework, Maunder et al. (2006) described statHBS. This method estimates the habitat 

parameters of the original HBS method rather than deriving them from external data. This 

overcomes one of the main criticisms of HBS because depth and habitat utilization data do not 

determine vulnerability to fishing gear. Also, statHBS accommodates additional explanatoiy 

variables, as is possible with GLMs. The statistical nature of this model allows quantification of 

uncertainty and the application of model comparison and selection techniques. In fact, Maunder 

et al. (2006) compared various methods of CPUE standardization for bigeye tuna in the Pacific 

Ocean, and, through model selection, determined that the statHBS model fit best to the data. Also,
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Bigelow and Maunder (2007) used statHBS and model selection to determine which explanatory 

variables are most important in understanding catch rates of bigeye tuna and blue shade Prionace 

glauca in the Pacific. They concluded that habitat parameters (those related to temperature and 

dissolved oxygen) are more reliable for predicting catch rates than depth. Nevertheless, statHBS 

and other approaches are not immune to shortcomings imposed by inadequate observations, 

which can violate assumptions and produce inaccurate trends in relative abundance.

Clearly, the methods of CPUE standardization mentioned here have unique advantages 

and drawbacks. Since a lack of consensus over the approach used in the last stock assessment of 

Atlantic marlins existed among the SCRS, it is important to fully evaluate and compare the 

available methods. Furthermore, Ortiz (2006) emphasized the need for additional comparisons of 

CPUE standardization techniques for blue and white marlins, specifically. Comparisons of GLM 

and HBS methods have been performed on simulated (Goodyear 2003a) and actual catch data 

(Maunder et al. 2006), but the conclusions of these studies were contradictory; HBS methods 

were favored by Maunder et al. (2006) and the GLM approach was determined most reliable by 

Goodyear (2003a). Since CPUE time series are fundamental to marlin stock assessments, it is 

imperative that the approaches to standardization are fully evaluated. Choosing between GLM 

and HBS standardizations can substantially influence the outcomes of assessments and, therefore, 

may have significant management implications. For example, the application of HBS in an 

assessment of Pacific blue marlin resulted in a stable, if not increasing, index of relative 

abundance and a completely different conclusion regarding stock status as compared to an 

assessment tuned to a GLM standardization, which produced a downward trend (Uozumi 2003).

Habitat Utilization

Whether entered directly (HBS) or estimated (statHBS), habitat parameters can substantially 

influence indices of relative abundance. Thus, prior to assessing the utility of these methods of 

CPUE standardization, it is important to thoroughly evaluate scientific understandings of Atlantic
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marlin behavior and habitat utilization. Current knowledge regarding marlin habitats has, in large 

part, come from studies that used PSATs. Typically, these studies described habitat by reporting 

temperature and depth distributions for the tagged individuals. While this provides a valuable 

summary of habitat utilization, a thorough understanding of marlin distributions requires an 

explanation of the sources of variability within the populations. For instance, marlin habitats may 

vary ontogenetically, across regions and seasons, or in response to various environmental factors. 

In many ecological studies, the effects of these variables can be explained through statistical 

analyses, such as linear models. However, PSAT data present unique statistical challenges, 

causing a majority of studies to truncate the trends and report results as histograms representing 

mean behavior. This prevents the detection of significant sources of variation in the populations, 

which may substantially improve the accuracy of CPUE standardization methods that are habitat- 

based.

Determining an effective approach to the statistical analysis of PSAT data requires an 

understanding of the nature of the data. Since PSATs record numerous sequential measurements 

while attached to a fish, the measurements for one fish are likely more similar than those between 

fish, and measurements adjacent in time are likely more similar than those farther apart. As noted 

by Wilson et al. (200S), if the statistical method used for the analysis of PSAT data does not 

account for this autocorrelation, the power of a statistical test may be overinflated, potentially 

leading to erroneous conclusions that cannot be supported by the data. Typically, autocorrelated 

data resulting from multiple measurements within a single experimental unit are considered 

longitudinal data, and statistical methods capable of addressing their unique nature have been 

developed (Diggle et al. 2002). High frequencies of measurements obtained from PSATs, 

however, are considered intensive longitudinal data (ILD). The statistical methods developed for 

longitudinal data are designed for relatively few repeated measurements (roughly 10 or fewer) 

and may not be appropriate for ILD with multiple waves of measurements (Walls and Schafer 

2006). Recently, statisticians in the social and health sciences developed statistical methods
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designed to analyze ILD (Walls and Schafer 2006) that may have great potential for the analysis 

of archival tagging data.

There are several models reviewed by Walls and Schafer (2006) that may translate to 

PSAT data analysis. Those that show the greatest promise are essentially variations of the original 

multilevel linear model (MLM) developed for analysis of longitudinal data (Laird and Ware 

1982). Li et al. (2006) described a variant of the MLM that may apply to PSAT data. Through the 

incorporation of local polynomial regression, their functional data analysis (FDA) techniques 

allow the fixed and random coefficients of the MLM to vary nonparametrically over time. This 

may provide more flexibility in the statistical analysis by accommodating the variability among 

dives often observed in PSAT data.

Along with random variation between dives, large pelagic fishes often exhibit periodic 

trends in their dive behavior (Horodysky et al. 2007). Fok and Ramsay (2006) built upon FDA 

techniques by incorporating Fourier basis functions and B-splines to analyze ILD with periodic 

and nonperiodic trends. Their approach may be effective in addressing the cyclic trends observed 

in many PSAT data streams (e.g., dives in relation to diel cycles).

Another analytical approach that shows promise for PSAT data analysis is state-space 

modeling. This method has been in use for some time (Jazwinski 1970; Anderson and Moore 

1979) and has recently been described for application to longitudinal data in a regression model 

framework (Dethlefsen and Lundbye-Christensen 2006; Ho et al. 2006). When presented in this 

manner, state-space models represent an extension of generalized linear models where the 

parameters are allowed to vary over time (Dethlefsen and Lundbye-Christensen 2006). This 

flexibility may help to describe the complicated habitat utilization profiles typically observed in 

PSAT data.

The models described represent potential approaches to robust statistical analyses of 

PSAT data. These analyses may identify significant, presently unconsidered sources of variation 

in the habitats utilized by the Atlantic marlins, and may address several uncertainties surrounding
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the relationships between marlin distributions and the distribution of commercial fishing effort. 

Since limited knowledge about fish (and gear) behavior has reduced confidence in CPUE 

standardization techniques that consider habitat (Goodyear et al. 2003; Horodysky et al. 2004), 

pethaps an improved understanding of habitat utilization would increase the value placed on these 

indices of abundance, potentially justifying their incorporation into stock assessments. It should 

be noted, however, that these methods still exclusively consider habitat and do not address the 

interaction between fish behavior and habitats. Thus, while understandings of marlin distributions 

may be improved, catchability is also a function of behavior, and this should be recognized when 

incorporating habitat into CPUE standardizations. Nonetheless, advancing knowledge regarding 

habitat utilization and potentially improving estimates of relative abundance may substantially 

improve the assessments.

Assessment Model

While the most recently applied stock assessment model (BSP) was useful for evaluating stocks 

in an entirely fishery-dependent context, there were potential sources of error that the model did 

not directly address. First, due to limited data, the BSP model relied solely on catch-and-effort 

data. This speaks to the importance of accuracy in estimating relative indices of abundance 

because changes in CPUE may considerably alter assessment results (Babcock 2007), especially 

when methods of standardization do not account for changes in target species (i.e., catchability). 

A sensitivity analysis using a range of indices of abundance may account for uncertainties 

associated with CPUE, but reliable indices facilitate accurate depictions of stock status. 

Furthermore, estimates of stock parameters in the recent assessments were constrained with prior 

distributions governed by the results of previous assessments. This biased the results and 

contributed to the uncertainty regarding stock status relative to MSY benchmarks (ICCAT 2006).

Also, the BSP model was relatively simple in that annual biomasses were aggregated 

across all ages in the population that were subject to exploitation. This assumed that, irrespective
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of age, these individuals were equally vulnerable to incidental capture by the fisheries. Since this 

may be unlikely, evaluations of population dynamics could improve from better understandings 

of the age composition of marlin catches. Some marlin growth data are available, but validated 

aging methods do not exist for adult marlins (Drew et al. 2006), and this information was deemed 

insufficient for incorporating age structure into the most recent marlin assessments. Also, 

necessary additional biological information regarding ages at maturity and sex ratios of the catch 

was lacking (ICCAT 2006). It has been suggested, however, that despite the lack of confidence in 

the aging data, certain age-structured models may improve marlin assessments (Restrepo et al. 

2003) since relatively simple production models capture net effects of fishing and not detailed 

historical trends of growth dynamics, selectivity-at-age, and other population impacts (Hilbom 

and Walters 1992; Walters and Maitell 2004).

There are several existing age-structured assessment models that do not rely directly on 

detailed catch-at-age data, and therefore their application to Atlantic marlin stocks may be worth 

consideration. One mode of imposing age structure is through relating estimated growth models, 

such as length (or weight) at age, to length frequencies of the catch. These integrated assessment 

models, such as MULTIFAN-CL (Fournier et al. 1998), Stock Synthesis (Methot 2000; NOAA 

Fisheries Toolbox 2009), CASAL (C++ algorithmic stock assessment laboratory; Bull et al. 

200S), and others have proven useful when applied to large pelagic fishes. Porch (2003) used a 

state-space age-structured production model to assess the Atlantic white marlin stock; however, 

his approach was purely heuristic and not meant to influence management decisions, largely due 

to limited information for estimating selectivity at age. Another assessment approach that has 

been attempted for marlins involves a delay-difference model in which age structure is imposed 

on immature individuals only, based on an assumed selectivity at age (Cox et al. 2002b). This 

model was applied to several stocks of large pelagic fishes in the central North Pacific Ocean. 

While the approach was relatively simple, the estimates were similar to those of more complex 

assessments. Typically, ideal model complexity for a stock assessment is ultimately related to the
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data available (Walters and Martell 2004), yet, as exemplified by Cox et al. (2002b), additional 

complexity does not always result in a better understanding of stock status. In general, models 

that incorporate age/size structure are favored over less complex production models because they 

estimate trends in selectivity at age and can elucidate changes in growth patterns (Walters and 

Martell 2004). Thus, one or more of the proposed assessment models should at least be 

thoroughly evaluated and the results compared to those of the BSP model to see if increasing 

model complexity through the incorporation of age structure provides better information for 

managing Atlantic marlins.

Catch Data

In addition to addressing uncertainties pertaining to marlin habitats, CPUE standardization, and 

stock assessment models, there are numerous other sources of error that warrant attention. For 

instance, the historical catch database, which is the basis for marlin stock assessments, is 

incomplete (Restrepo et al. 2003). Since marlins are landed by commercial fisheries or directly by 

artisanal fisheries, they are difficult to monitor, causing many countries to inconsistently report 

landings or fail to report them altogether (WMBRT 2007). Gaps in the data are then filled in with 

estimated catches, which are based on the amount of target species landed. Also, landings 

typically do not include discards, a problem that may be exacerbated by regulations requiring live 

release. Individuals that were discarded dead were certainly subject to fishing mortality, and 

based on studies that estimated postrelease survival (Kerstetter et al. 2003; Kerstetter and Graves 

2006b), a certain percentage of live releases also perish, depending on the species and gear used. 

Thus, any changes in release practices that are not documented further limit the ability to predict 

fishing-induced mortality rates. Atlantic marlins are subject to a range of illegal, unreported, and 

unregulated (IUU) fishing activities (for more on the complexities of IUU fishing, see Serdy 

2011). While ICCAT has made recommendations to identify and combat IUU fishing (ICCAT 

2004, Rec. 2003-16; ICCAT 2007b, Rec. 2006-12; ICCAT 2008, Rec. 2007-09), the practice
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continues, thereby compromising the accuracy of the catch database. Each of these factors 

potentially results in underestimated landings. Since the degree of uncertainty surrounding the 

inadequacies in the catch data are difficult, if not impossible to quantify, accounting for 

underestimated landings in the assessment is a significant challenge. At the very least, sensitivity 

analyses using reasonable ranges of unreported landings, and live and dead discards are 

encouraged. Management decisions, therefore, could be based on a range of stock status 

predictions for Atlantic marlins rather than fixed estimates.

Another problem plaguing marlin assessments is billfish misidentification. There is 

misclassification between the marlins (WMBRT 2007), but awareness of the uncertainty in 

billfish classification has increased in recent years (ICCAT 2006). This may be due, in part, to the 

recent verification of the existence of roundscale spearfish Tetrapturus georgii in the Atlantic 

(Collette et al. 2006; Shivji et al. 2006). At first glance, this species can easily be confused with 

white marlin and other spearfish. Since roundscale spearfish has only recently been verified, it is 

impossible to estimate historical proportions of marlin landings comprised of roundscale 

spearfish. Uninformed estimates of these proportions could be generated and sensitivity analyses 

performed, but estimating proportions with confidence requires extensive research on landings, 

distribution, and habitat utilization of roundscale spearfish. While current estimates suggest that 

roundscale spearfish make up roughly 27% of the “white marlin” catch in the western Atlantic, 

simulated changes in the proportions over time were shown to substantially impact assessment 

results (Beerkircher et al. 2009). Furthermore, a portion of reported billfish landings are 

determined in port on fish that have already been processed for sale. Since billfishes are more 

difficult to distinguish when dressed, this represents a substantial source of uncertainty in the 

catch database. Unfortunately, without regular tissue sampling for genetic identification, the 

issues regarding classification in billfish landings will likely persist for some time.
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Life-History Characteristics

Finally, uncertainty regarding life-histoiy characteristics can impact the accuracy of stock 

assessments and, as mentioned, has limited the choice of assessment models for Atlantic marlins. 

For example, sexually dimorphic growth (with females attaining larger sizes than males) is 

present in both species, especially blue marlin; therefore, it is likely that males and females differ 

in their susceptibility to fishing gear. Also, sexual dimorphism contributes to the difficulty of 

relating size and age in marlins, which further limits the ability to apply age-structured stock 

assessments. However, if unaccounted for, these growth dynamics could result in unforeseeable 

impacts to the populations. For instance, if the proportion of females (especially large females) 

removed from the population exceeds the proportional removal of males then overall reproductive 

output could be compromised (Luckhurst et al. 2006). This decreasing fecundity may be 

undetected in stock assessments that do not consider sex-specific effects, potentially resulting in 

overestimates of MSY, but if the impacts are well understood, management could enact measures 

designed to protect the most productive components of the population. At a minimum, an 

understanding of the sex ratios of the populations as well as of the catch would be required to 

estimate population impacts such as these. While sex ratios of samples of the populations and of 

the landings have been estimated in some areas (de Sylva and Davis 1963; Baglin 1977; Arocha 

and Barrios 2009), a thorough sampling of the landings has not occurred; thus, historical trends in 

sex ratios would be difficult to determine. Despite these challenges, estimating the sex-specific 

impacts of fishing on the populations using the available data may be worth consideration. This 

could be attempted in an assessment context with sensitivity analyses, or through simulations 

similar to those performed by Goodyear (2003b). However, it should be noted that 

comprehensive size- or age-structured assessments of the populations may require information 

concerning age-specific sex ratios, maturity, fecundity, natural mortality rates, understandings of 

the stock-recruitment relationships, and any related density-dependent effects.
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The aforementioned analytical uncertainties regarding Atlantic marlin population 

analyses (i.e., model and estimation uncertainties related to CPUE standardization and the stock 

assessment process and observational uncertainties surrounding habitat data, catch data, and life- 

history characteristics) limit the ability to manage these stocks sustainably. It may be that 

imposing relatively strict management measures can account for uncertainties indirectly and 

marlin populations can be conserved in this way, but informed management decisions based on 

assessments that directly address uncertainties are more likely to be broadly supported. While this 

is a difficult task, some of the suggestions provided may prove effective. Overall, it is critical to 

the sustainability of Atlantic marlins that attempts are made to address and account for 

uncertainties surrounding their assessments.
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GOVERNANCE

The Atlantic-wide stocks of blue marlin and white marlin are susceptible to multinational 

commercial, recreational, and artisanal fisheries. As mentioned previously, assessments and 

management of these stocks fall under the jurisdiction of ICCAT’s member nations, a collection 

of contracting parties that represent national interests. Regulations by ICCAT are either in the 

form of nonbinding resolutions or binding recommendations, and passage of these measures 

typically involves consensus among member nations. In 1995, ICCAT passed their first resolution 

pertaining to billfish, which encouraged live release from commercial and recreational fisheries. 

Since this initial resolution, several recommendations and resolutions have followed (Peel et al. 

2003; WMBRT 2007).

Currently, Atlantic marlins are in phase 1 of a two-part stock rebuilding program (ICCAT 

2007b, Rec. 2006-09). This phase will apply through 2010, with regulations affecting 

commercial and recreational fisheries. For pelagic longline and purse-seine vessels, landings of 

blue and white marlins are restricted to 50% and 33%, respectively, of 1996 or 1999 landings 

(whichever year was greater). Also, all marlins caught alive are to be released, though successful 

live release from purse seines may be challenging. For U.S. recreational fisheries, total landings 

are not to exceed 250 individuals per year for blue marlin and white marlin combined, and other 

nations with recreational fisheries are encouraged to develop minimum size regulations. The 

remaining management measures associated with phase 1 mainly pertain to reducing uncertainties 

in stock assessments by encouraging continued research on Atlantic marlins and maintaining and 

improving fisheries data collection practices, especially for artisanal fisheries.

In addition to international regulations, member nations may choose to impose further 

management measures on their respective fisheries. For example, the United States prohibits all
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commercial landings and trade of Atlantic marlins. This clearly emphasizes the value the United 

States places on its recreational fisheries; however, these fisheries are not immune to additional 

regulations. The annual allowable catch set by NMFS follows ICCAT’s restriction at 250 blue 

and white marlins combined, and to attain this limit NMFS has established size limits for each 

species (2.51 and 1.68 m [99 and 66 in] lower jaw fork length for blue and white marlin, 

respectively). Furthermore, NMFS requires the use of circle hooks in natural baits for billfish 

tournaments and encourages the live release of all billfish caught recreationally, a practice 

favored by many billfish anglers.

Overall, the phase 1 regulations imposed by ICCAT will likely benefit Atlantic marlin 

populations to some degree. Increases in live-release practices are particularly promising, 

especially given that a substantial number of marlins are alive upon retrieval (haulback) of 

pelagic longline gear (Cramer 2000; Kerstetter and Graves 2006b). Also, when released from this 

gear, survival rates are likely to be high for both blue marlin (Kerstetter et al. 2003) and white 

marlin (Kerstetter and Graves 2006a). Furthermore, low postrelease mortality has been 

demonstrated in recreational fisheries for blue marlin (Graves et al. 2002) and white marlin, 

especially when circle hooks are used (Horodysky and Graves 2005; Graves and Horodysky

2008). Thus, when coupled with reduced landings, increased live-release practices should slow 

and possibly reverse downward population trajectories. If estimates of relative abundance are 

accurate, some evidence of population responses to these management strategies may already be 

observable (Figure 3), but stocks likely remain depleted and overfishing almost certainly 

continues.

The inability to eliminate or substantially reduce overfishing of Atlantic marlins has been 

considered a failure attributed to ICCAT (Peel et al. 2003). It should be noted, however, that due 

to overlapping distributions and differing biological characteristics, it is unlikely that ICCAT 

could ever achieve its goal of harvesting at MSY for all species under its purview. For instance, 

the fishing pressure associated with MSY for a target species may result in overfishing of
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nontarget species. Conversely, ensuring sustainable harvests of nontarget species may lead to 

considerable underutilization of target species. The prior scenario reflects the relationship 

between the Atlantic marlins, whose estimated fishing mortality rates exceed Fmsy, and various 

target species (bigeye tuna, yellowfin tuna, and swordfish), whose rates are close to .F m sy- 

However, the latter scenario represents a form of precautionary management where effort is 

controlled to achieve MSY for the species most vulnerable to overfishing. Given the short-term 

declines in profits that would result from such an approach, it is unlikely that ICCAT could reach 

consensus on measures that ensure sustainability of bycatch species at the expense of commercial 

revenue.

While it is improbable that ICCAT will reduce fishing effort to the extent necessary for 

rapid rebuilding of marlin populations, further management actions may prove beneficial. Since 

ICCAT relies on self enforcement by member nations, full compliance with additional measures 

may be unlikely; nevertheless, these measures, including encouraging live release and the use of 

circle hooks, may substantially reduce fishing mortality rates. However, if marlin populations do 

not respond to additional management actions, external influences may be required to achieve 

reductions in fishing pressure. There are several options related to protected species management 

that may be applicable to marlins, including die Convention on International Trade in Endangered 

Species of Wild Fauna and Flora, the protocol on Specially Protected Areas and Wildlife of the 

Convention for the Protection and Development of the Marine Environment of the Wider 

Caribbean Region, and the U.S. Environmental Protection Agency (U.S. EPA; Peel et al. 2003). 

However, a petition to have white marlin listed as threatened or endangered under the U.S. ESA 

was not successful (see Importance section, this chapter). Beyond these management pathways, 

increased attention and interest by nongovernmental organizations, the public and the media 

could also be strong forces of influence over marlin bycatch. Thus far, these groups have 

expressed relatively little concern regarding the depleted biomasses and continued overfishing of 

marlins. If that changes, however, a successful campaign against products from fisheries that land
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marlins incidentally could encourage the industry to minimize marlin bycatch or risk declining 

demand. The evolution to “dolphin-safe” tuna has already exemplified the utility of consumer 

activism as an effective strategy for reducing bycatch in these fisheries (Hall 1998; Hall et al. 

2000). Perhaps consumer-driven sustainability for other bycatch species could be attempted by 

demanding a more comprehensive label for these fisheries, such as certification via the Marine 

Stewardship Council or other programs. This could provide an incentive for ICCAT’s member 

nations to abandon the status quo and enact holistic measures that promote ecosystem-wide 

sustainability.

In general, there has been relatively little action by ICCAT or external groups to ensure 

rebuilding of Atlantic marlins. Unfortunately, until management measures are designed to 

substantially improve the odds of rebuilding, the number of uncertainties surrounding marlin 

population assessments may actually facilitate inaction because it is difficult to confirm 

population responses with high certainty given the noise in the available stock indicators. Thus, 

marlin assessments may have produced overly optimistic or overly pessimistic portrayals of the 

stock conditions, rendering appropriate management actions difficult to discern unless 

uncertainties are addressed. However, even with improvements in data collection and statistical 

analysis, there will always be uncertainties surrounding assessment results. Such uncertainties 

should not be used to justify delayed management action.
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RECOMMENDATIONS 

Following years of overfishing, Atlantic marlin populations appear to be severely depleted. 

Unfortunately, there are compounding limitations to successful rebuilding and management of 

these populations. First, the historical catch data are incomplete and potentially flawed. In 

combination with relatively poor understandings of marlin biology, ecology and behavior, these 

limitations compromise the accuracy of stock assessments. Also, uncertainties regarding 

quantitative approaches exist in the assessments, which further limit the willingness of ICCAT’s 

member nations to make management decisions that constrain the fisheries, and result in a lack of 

consensus within ICCAT regarding the status of the stocks. Since these uncertainties represent a 

roadblock to effective management, it is important that they are addressed to ensure that 

management measures are based on the best possible characterizations of the stocks. Moreover, 

member nations are responsible for the development of management measures and enforcing 

compliance among their respective fisheries. However, full compliance is difficult to achieve, so 

management actions should be designed to accommodate implementation error.

Clearly there are many difficulties concerning management of Atlantic marlins. 

Nevertheless, with substantial international support, addressing and accounting for many of these 

issues may be possible. Uncertainties surrounding the catch data must be considered; major 

sources of error include unreported landings and discards from commercial, IUU, recreational, 

and artisanal fisheries, as well as misidentification of billfishes. Expanding the coverage and 

responsibilities of fisheries observers should be employed to address these limitations and 

improve the catch data. In addition to comprehensive monitoring of catch, landings, and number 

and condition of released bycatch species, observers could obtain valuable scientific information,
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including sex ratios, removal of hard parts for aging purposes, tissue samples for genetic 

validation of species, and other potentially useful information (e.g., diet, maturity, etc.).

Beyond expanding observer coverage, there are further actions that should improve catch 

data. For instance, nations that fail to meet reporting obligations should be penalized, and in the 

cases where these nations lack a sufficient infrastructure to monitor their fisheries, appropriate 

assistance should be given to ensure that proper reporting can be achieved. For marlins in 

particular, documenting the status and biomass of discards is especially important because of 

recently imposed management measures requiring live release in longline fisheries. Previously, 

fish captured live may have been accounted for in total landings, but now that they are released, 

their encounter and fate must be documented or else CPUE time series and future assessments 

could be substantially biased. Also, since misidentification occurs not only at sea, but also in port, 

the establishment of a comprehensive port sampling program, where tissue samples are collected 

for genetic identification (verification) of species, would likely improve classification of billfish 

landings. Finally, concerted efforts to identify and quantify catches from IUU and artisanal 

fishing must be ongoing.

Additional uncertainties surrounding Atlantic marlins are related to the assessment 

process itself. Combined with improving the data, advancing quantitative approaches to 

population analyses will encourage international consensus over stock status determinations, 

thereby supporting the passage of sustainable management measures. With an initial focus on 

improving analyses of habitat utilization, evaluating methods for standardizing CPUE that 

appropriately consider habitat, and expanding the complexity of the current assessment approach, 

understandings of marlin populations should drastically improve. Without these advancements, a 

lack of consensus among ICCAT’s member nations over the stock status of Atlantic marlins is 

likely to persist, and necessary management measures may be resisted on the basis of uncertainty. 

It should be noted, however, that expanding the complexity of assessment models may
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substantially expand the data requirements; thus the suggested data collection improvements are a 

necessary first step.

Sustainability of Atlantic marlin populations is ultimately in the hands of the member 

nations of ICCAT. Many of the suggestions provided herein require management action, 

especially those related to improving the quality of the data. If enacted, these recommendations 

may improve the fisheries science and facilitate better understandings of Atlantic marlin 

populations, but their translation into sustainable management measures relies on the resolve of 

ICCAT’s member nations. With many nations representing strong commercial interests, it seems 

unlikely that the contracting parties will manage for sustainability of bycatch species, such as 

Atlantic marlins, when commercial landings may suffer. Given this potential conflict of interest, 

it may behoove ICCAT to consider approaches such as time/area closures or alternative fishing 

strategies that minimize bycatch; otherwise, external pressure may be necessary to encourage 

precautionary management of all species under the purview of ICCAT.

Many of the world’s fisheries that target HMS face bycatch problems similar to those 

described here. Therefore, a unified approach to monitoring, assessment, and management may 

increase the attention designated to bycatch and promote sustainability of these species. Globally, 

there are five regional fishery management organizations (RFMOs) that are responsible for 

international management of tuna and tuna-like resources, including billfishes. In addition to 

ICCAT, there is the Commission for the Conservation of Southern Bluefin Tuna, the Inter- 

American Tropical Tuna Commission (see Oh 2011), the Indian Ocean Tuna Commission, and 

the Western and Central Pacific Fisheries Commission. Currently, these RFMOs manage their 

respective fisheries independently; however, since each organization may be facing similar issues 

related to bycatch, coordinated efforts among the RFMOs may improve management efficiency 

and effectiveness. While previous collaborations have occurred (Majkowski 2007), we 

recommend that the five RFMOs collectively establish harmonized measures across the world’s 

oceans that (1) improve reporting of landings, discards, and fishery practices and dynamics as

34



related to nontarget species; (2) expand fisheries observer coverage and responsibilities to fully 

monitor international fisheries and to collect valuable scientific information; (3) develop a 

comprehensive international port sampling program for identification and sample collection; (4) 

monitor IUU and artisanal fisheries to the extent possible; (S) encourage and support ongoing 

advancements in quantitative approaches to evaluating stocks that characterize and reduce 

uncertainties and fully utilize available data; and (6) with a focus on the results of stock 

assessments, follow a precautionary approach to fisheries management that considers the whole 

ecosystem and ensures the sustainability of target and nontarget species. Cohesive adoption of 

these recommendations by the tuna RFMOs would promote consistency and cooperation across 

international fisheries. This would encourage the sustainability of fisheries worldwide and would 

especially benefit bycatch species susceptible to overexploitation, such as the Atlantic marlins.
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Figure 1. Distributions of blue marlin (BUM) and white marlin (WHM) in the Atlantic Ocean as 
determined from fisheries catch data from 2000 to 2006. The largest circles for BUM and WHM 
correspond to catches of 789 and 52 metric tons, respectively. Source: ICCAT (2009).
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Figure 2. Total annual landings of blue marlin (solid line) and white marlin (dashed line) in the 
Atlantic Ocean. Data source: ICCAT online catch database (www.iccat.int/en/accesingdb.htm). t 
= metric tons.

46

http://www.iccat.int/en/accesingdb.htm


2 

1.5 

1

0.5

o
g  0
|  1955 1965 1975 1985 1995 2005

1.5 

1 ■

0.5 

0

1955 1965 1975 1985 1995 2005

(B) WHM

% W Oa*' .® °o o o o o o o 00 * - .

* -  -

V
*o •• ♦

•0 *

(A) BUM

.o
° ^ o o\°000t

° ° O f t  * " * * * * - .. .Oooooooopoooo-a
* * * « • «

■ W * V* ft* i #

Year
Figure 3. Estimated relative abundance of blue marlin (A: BUM) and white marlin (B: WHM), 
derived from production model fits to catch-per-unit-effort data from the most recent assessments 
(solid circles) and previous stock assessments in 2000 for BUM and 2002 for WHM (open 
circles). The models used in the assessments were similar, but the recent assessments were fit to 
all available catch-per-unit-effort time series separately, where the previous assessments 
considered a single composite index of abundance. Dashed lines represent 80% confidence 
intervals. Source: ICCAT (2007c).
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Figure 4. Historical trends in relative fishing mortality rate (F) with respect to the rate at 
maximum sustainable yield (/msy) for blue marlin (A: BUM) and white marlin (B: WHM) in the 
Atlantic Ocean. Estimates were generated in the 2000 stock assessments using a logistic 
production model. Points above the solid horizontal line represent years in which F  > Fmsy 
trajectory. Source: ICCAT (2001b).
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CHAPTER 2 

Performance o f methods used to estimate indices 

o f abundance for highly migratory species
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ABSTRACT

Estimating indices of abundance from fishery-dependent data requires that catch-per-unit-effort 
(CPUE) be standardized to account for factors that may have affected CPUE but are not related to 
changes in abundance. Such standardization is particularly important for highly migratory species 
(e.g., tunas, pelagic sharks, and billfishes), because of time-varying mismatches between 
distributions of abundance and the distribution of fishing effort Two commonly applied methods 
for standardizing CPUE are generalized linear models (GLMs), which can account for changes in 
fishing practices in a straightforward linear fashion, and habitat-based standardizations (e.g., 
statHBS), which use nonlinear analysis to relate the distribution of fishing effort to the species 
distribution. We evaluated the accuracy of these methods over three patterns in vertical 
catchability as related to ocean temperature profiles, and SO possible biomass trajectories using a 
simulation framework that followed the general effort dynamics of the Japanese longline fishery 
in the Atlantic Ocean from 1956 to 2009. Additionally, we propose a method for directly 
incorporating vertical habitat information into the linear models. Overall, we found the most 
accurate approach to be a delta-lognormal GLM with our unique habitat factor. The statHBS 
approach was the most accurate when catchability was simulated to peak in surface waters. 
However, statHBS was much more sensitive to errors in estimates of longline hook depths (i.e., 
habitats exploited). Based on these results, we recommend that relative abundance be estimated 
for highly migratoiy species following a delta-GLM approach that considers vertical habitats 
fished.
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1. INTRODUCTION 

Management decisions in fisheries are often guided, at least in part, by the results of 

stock assessments. Therefore, in the interest of scientific integrity and sound management, it is 

important that scientists provide managers with accurate characterizations of stock dynamics and 

stock status. Assessment models often use fisheiy catch data and other inputs to estimate biomass 

trajectories and stock parameters by fitting predicted biomass to externally derived indices of 

relative abundance (Maunder and Starr, 2003). Such indices of abundance serve as ‘observed’ 

abundance trends and thus have an influence over the assessment results.

When derived from fisheiy-independent surveys that monitor the stock(s) being 

evaluated, indices of abundance may reliably depict abundance trends. However, many exploited 

species are either not monitored or not monitored comprehensively. For these organisms, 

information on distribution and abundance is primarily obtained through catch and effort data 

from fisheries that either target or incidentally catch these species. To estimate relative abundance 

from these data, it is common practice to adjust the catch by the corresponding amount of effort 

and assume a proportional relationship between catch-per-unit-effort (CPUE) and abundance. 

However, because fisheries are not designed to collect random unbiased samples of the harvested 

populations, fishery-dependent CPUE must be standardized to account for factors (e.g., changes 

in fishing practices) that may cause the proportionality constant (catchability) to be time-varying 

(Wilberg et al., 2010; Ye and Dennis, 2009), thereby violating the assumed relationship between 

CPUE and abundance. Numerous approaches are available for standardizing CPUE to estimate 

relative abundance (Maunder and Punt, 2004); thus, to promote confidence in stock assessment 

results it is important to evaluate proposed methods under various assumptions and real-world 

conditions.
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Highly migratoiy species (HMS) represent valuable global resources, but the high cost 

associated with a large scale pelagic survey has prevented the development of comprehensive 

monitoring programs for HMS (Bishop, 2006). Therefore, estimated trends in abundance for 

HMS are typically derived from fishery-dependent data. Given the extensive spatial and temporal 

coverage of many HMS fisheries, such as the Japanese longline fishery (ILL), these time series, if 

appropriately standardized, may be capable of capturing true patterns in abundance. Longline data 

represent important sources for estimating indices of abundance for many HMS, but these data 

require careful consideration.

Changes in fishing practices within the JLL (Ward and Hindmarsh, 2007; Yokawa and 

Uozumi, 2001) have resulted in changes in vertical habitats exploited over time. Perhaps the most 

notable modification was a shift to deeper target habitats in response to a change in target species 

from yellowfin tuna, Thunnus albacares, and albacore, Thmnus alalmga, to bigeye tuna,

Thrnnus obesus, and bluefin tuna, Thmnus thymus. While many HMS are known to exhibit 

vertical migrations, they have been shown to spend a large percent of their time in a relatively 

small depth or temperature (relative to the surface) range (Goodyear et al., 2008; Graves et al., 

2002; Hoolihan et al., 2011; Horodysky et al., 2007; Kerstetter et al., 2003; Prince et al., 2010; 

among others). Considering the shift in JLL target habitat, the vertical distributions of HMS 

suggest that the proportion of their stocks removed by a given unit of effort (catchability) has not 

been homogeneous over time with respect to the vertical habitats exploited. This emphasizes the 

importance of including vertical fishing habitat in the CPUE standardization process when 

estimating relative abundance.

Historically, there have been two general classes of approaches to including vertical 

habitat information in CPUE standardization for HMS: generalized linear models (GLMs) and 

habitat-based standardization (HBS) (Goodyear, 2003; Hinton and Nakano, 1996; Maunder et al., 

2006). In a GLM, environmental data are typically considered indirectly by including variables 

related to longline gear configurations as fixed effects to serve as proxies for habitats fished.
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Habitats are directly included with HBS, and this approach has been used to estimate relative 

abundance for several HMS in the Pacific Ocean (Bigelow et al., 2002; Bigelow and Maunder, 

2007; Hinton and Nakano, 1996; Langley et al., 2005; Maunder et al., 2006). The HBS approach 

was originally described as a deterministic model (Hinton and Nakano, 1996); however, the 

preferred method is cast in a statistical framework (statHBS; Maunder et al., 2006). In the 

statistical approach, the relative catchability from a given pre-specified vertical habitat is 

estimated by relating the total catch for a longline set to the amount of effort estimated to occur in 

each habitat for each set (see Section 2.2 for more details). The GLM approach is commonly used 

for Atlantic HMS; for example, blue marlin, Makaira nigricans, CPUE from the United States 

longline fisheiy was standardized using a delta-lognormal GLM with fixed effects for area, 

fishing characteristics, and gear characteristics (Ortiz and Hoolihan, 2010). The GLM and HBS 

approaches may provide different trends in abundance, which have been shown to affect 

assessment results (Uozumi, 2003). Accordingly, comparing and evaluating the accuracy of 

GLMs and HBS has been identified as an important research priority (ICCAT, 2004).

In addition to changes in exploited habitats, another common consideration is the 

proportion of records with zero catch (Maunder and Punt, 2004). For pelagic longline fisheries, 

this proportion can be relatively high, particularly for bycatch species. A high proportion of zero 

catches may violate the assumptions of the statistical analysis, and when the data are assumed to 

follow a lognormal probability distribution (a common assumption), computational issues arise 

because the natural logarithm of zero is undefined. These concerns are relevant for GLMs and 

HBS methods cast in a statistical framework (Section 2.2). One common approach to account for 

zeros is to add a small constant to all catch records before analysis (Maunder and Punt, 2004). 

Other approaches do not require the analyst to alter the data, such as using an assumed probability 

distribution that can include zero observations (e.g., Poisson or negative binomial), or modeling 

the proportion of zero observations and the observations with positive catches separately (i.e., the
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delta-GLM approach; Aitchison, 1955; Lo et al., 1992; Maunder and Punt, 2004; Stefrinsson, 

1996; among others).

In this study, we simulated catch and effort data over a range of specified biomass 

trajectories and patterns in vertical catchability. We compared the indices estimated by statHBS 

and several formulations of GLMs, including delta-GLMs, when fit to the simulated data. The 

simulated catch data incorporated a trend in fishing effort that is similar to that of the JLL in the 

Atlantic Ocean from 1956 to 2009. Previous studies have compared similar approaches to 

standardizing indices of abundance (Bigelow and Maunder, 2007; Goodyear, 2003; Maunder et 

al., 2006); however none of these directly compared the commonly used models evaluated in this 

analysis.

54



2. METHODS

2.1. Data simulation

A simulation analysis is well suited for evaluating methods used to estimate relative 

abundance, because the true pattern in abundance is known. To simulate realistic catch data in 

this study, we specified fishing effort to follow the temporal dynamics of the JLL in the Atlantic 

Ocean. The change in target species and target fishing depth exhibited by this fisheiy highlights 

the importance of considering vertical habitats fished (e.g., depth) when estimating relative 

abundance from these data. Therefore, the data simulation propagated effort over a range of 

vertical habitats and specified catchability to vary by habitat.

It is common practice in fisheries to assume that CPUE is proportional to abundance (.N) 

using the following general relationship (Maunder and Punt, 2004):

CPUE =  qN (1)

where q represents catchability. This fundamental relationship served as the basis for data 

simulation, and by expanding it to incorporate a habitat-specific q, we simulated catch data per 

longline set following:

£ (2)

where CyiS is the catch in biomass for longline set s in yeary, qh refers to the catchability 

associated with vertical habitat h, EyS:h is the total effort associated with habitat h in set s in year
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y, By is the exploitable biomass in year j ,  and sys is a random deviation in catch for set s in year y. 

When generating random deviates, we selected a value for a that enabled Cys to cover a realistic 

range as compared to many HMS caught by the JLL in the Atlantic. Overall, this simulation was 

relatively simple in that neither spatial structure nor population structure (size, age, sex, etc.) were 

considered; however, these simplifying assumptions are consistent with recent assessments of 

many HMS, such as Atlantic marlins, that used a single-stock approach without population 

structure (ICCAT, 2006).

We simulated catch data over a period of 54 years (1956-2009), a time-span during 

which the JLL operated continuously in the Atlantic Ocean (ICCAT, 2006; Uozumi and Nakano, 

1994). Biomass trajectories were specified for this period by declaring an initial biomass in the 

first year {Bm6 = 500,0001), with biomass in the following years determined as a random 

deviation from the previous year. The random deviates were derived from a normal distribution 

with a mean specified in each simulation as a random uniform number between -10,000 and 

10,000 and a standard deviation of 10,000. Thus, the biomass trend followed a correlated random 

walk that increased when the mean of the normal distribution was large and positive, decreased 

when large and negative, and was stable when near zero. Also, a lower threshold of 1001 was 

imposed on By to prevent complete extirpation of the stock.

Fishing effort was specified as numbers of hooks, with one hook representing one unit of 

effort. Annual effort (total hooks fished per year) for the JLL in the Atlantic (Fig. 1) was 

determined using publically available catch and effort data from the International Commission for 

the Conservation of Atlantic Tunas (ICCAT)1. The number of longline sets per year (Fig. 1) was 

determined from these catch and effort data as the total number of records per year, and the 

number of hooks fished per longline set was then fixed for each year at the number of hooks per 

year divided by the number of sets per year. The total number of records in the ICCAT database 

may not be an accurate representation of total sets per year, because each record may represent

1 http://www.iccat.int; data accessed September 2011.
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more than one set, but we feel this approach characterized the general pattern in sets per year for 

the JLL and improved efficiency in our simulation by reducing the total number of records (sets) 

generated.

To calculate the number of hooks from each set in each vertical habitat category, we 

specified a fishing depth for each hook in a set following catenary geometry (Bigelow et al.,

2006; Yoshihara, 1951,1954). These calculations required details pertaining to the configuration 

of longline gear over time, including the number of hooks per basket (HPB; i.e., hooks between 

floats), lengths of the branch-line (b; connects the hook to the mainline; also called gangion), 

floatline if, connects the float to the mainline), mainline between floats (2), and the angle (<p) 

between horizontal and tangential of the mainline where it attaches to the floatline. The following 

equation was used to specify hook depths:

where dj is the depth of hook j  and j  = 1 to HPB for a given long-line set. The number of HPB is 

often considered representative of longline target fishing depth with smaller numbers (3-6) used 

in shallower sets and larger numbers (10-20) used in deeper sets. Corresponding to a shift in 

target species, the proportion of sets with a large number of HPB increased throughout the 1980s 

(Serafy et al., 2004; Uozumi, 2003; Ward and Hindmarsh, 2007; Yokawa and Uozumi, 2001). 

This simulation followed the proportions outlined by Uozumi (2003) for HPB from 1975-1998. 

For years prior to 1975, we used the proportion reported in 1975, and for years after 1998, we 

used the proportion reported for 1998 (Fig. 2). The angle <p, although variable in practice, was set 

to 72°, a conventional assumption in previous studies (Ward and Myers, 2006), and the lengths of 

the longline components b and/increased over time, following the historical trend in gear

d j = b  + f  + 0.5e<(l + cot2< p f -  [ 1 - 2  J-
2

(3)
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configurations reported by Yokawa and Takuchi (2003) (Fig. 2). The value for € was determined 

by assuming a fixed distance between longline hooks (45 m) throughout the simulation (i.e., € = 

45[HPB + 1]; Ward and Hindmarsh, 2007). Finally, we reduced calculated hook depths by 25% 

to account for shoaling of the gear (Ward and Myers, 2006). Actual hook depth is likely 

influenced by several dynamic processes, and it has been shown that catenary algorithms do not 

accurately estimate longline hook depth (Rice et al., 2007; Ward and Myers, 2006). Thus, hook 

depths from our simulation were reflective of a general pattern for the JLL over time, but are not 

necessarily an accurate characterization of each set.

While it is important to have an understanding of hook depth, the vertical distributions of 

HMS are likely governed by a physiological response to the thermal properties of the water 

column (Brill and Lutcavage, 2001). Because these properties are highly variable over time and 

space, fishing depth does not necessarily reflect habitat fished. Therefore, we declared 16 vertical 

habitats (h) in which fishing effort could occur, each representing one degree deviations from sea 

surface temperature (i.e., 0 to -15 °C). To simulate variability in the temperature at given hook 

depths, we randomly assigned each simulated longline set one of three possible temperature 

profile scenarios (i.e., relative temperature-at-depth): shallow, intermediate, or deep thermocline 

depth (Fig. 3). Relative temperature-at-depth was specified deterministically in each scenario to 

cover a range of possible temperature profiles. This effectively assigned each hook within each 

set to one of the 16 habitat categories and incorporated random variability between sets. 

Following the changes in longline gear configurations specified in the simulation, hook depths 

increased over time, which corresponded with deeper (cooler) habitats being fished (Fig. 2).

To relate habitat-specific fishing effort to vulnerability for the species being fished, we 

specified one of three potential scenarios for vertical habitat catchability (Fig. 3) in each 

simulation. The catchability in each habitat was influenced by relative temperature, and these 

scenarios were meant to cover the conceivable range for large pelagic fishes. While these
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organisms may spend the majority of their time in a preferred thermal regime, their vertical 

movement is likely a foraging strategy; therefore, the likelihood of taking a baited hook may not 

be constant with depth, meaning the vertical trend in catchabilily may not be directly related to 

the vertical distribution of the species (Goodyear et al., 2003). To account for uncertainty in 

vertical catchability, the three scenarios evaluated included peaks in different thermal habitats, 

relative to sea surface temperature (SST): surface, intermediate, and deep (Fig. 3). Each scenario 

was specified to have the same total catchability over the vertical habitats {qtotai = 2.5 * 10-10), 

and qh was determined as a proportion of total catchability allocated to each habitat using:

<lh=<l,o,aiPh h = 0,...,-15 (4)

where in each scenario the proportion of total catchability for each habitat (/**) was specified 

using the normal probability density function (PDF). The parameters of the normal PDF (ji, a) 

varied between vertical catchability scenarios (ji = 0,3,5  and a  = 1.2,1.5,2.5 for vertical 

catchability peaks at surface, intermediate, and deep habitats, respectively) and Ph was 

constrained to sum to one by dividing the probability densities in each habitat by the sum of the 

densities across h. We are unaware of any previously estimated patterns in vertical catchability 

for the JLL. The trends specified here allowed for the simulation of realistic catch data when 

following the effort dynamics of the JLL.

We repeated this simulation iteratively over 50 randomly determined biomass trajectories 

and the three possible scenarios for vertical catchability (Fig. 3) for a total of 150 simulated data 

sets. This captured the effects of a broad range of possible relationships between the abundance 

and vertical distribution of a large pelagic fish as related to the dynamics of the JLL. Also, to 

incorporate zeros in the catch data, sets with total catches less than 0.041 were set to zero.
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2.2. Approaches to estimating relative abundance

The 150 simulated datasets were used to compare the accuracy of indices of abundance 

estimated using three general approaches: the nonlinear statHBS model, GLMs, including delta- 

lognormal GLMs (delta-GLMs), and non-standaidized ‘nominal’ CPUE (calculated as average 

annual CPUE). The statHBS model, as described by Maunder et al. (2006), models catch data (Q  

from longline set / in a nonlinear framework as:

where q ^  is overall catchability, /, represents the index of abundance over time t, H h is the

difference in catchability for habitat h, and EtJ reflects the effort associated with hook j  in set / 

(for this study each hook represented one unit of effort, so EtJ = 1). By multiplying the total

effective effort is calculated for each longline set, thereby directly accounting for changes in 

vertical habitats exploited over time. The number of hooks per habitat category was calculated 

using catenary algorithms and longline configurations to determine hook depth, and the thermal 

properties of the water column to relate fishing depth to temperature relative to the surface 

(categorized as one degree deviations from SST). Estimates of hook depth and temperature-at- 

depth relied on the values specified for gear configurations and temperature profiles in the

A A

simulation. The estimable parameters of this model are qhase and elements of the vectors I, and

H h . Overall catchability is confounded with 7, and H h, so I  in the first year is set to one, and

A

H h is constrained to sum to one. These parameters were estimated by fitting this model to 

simulated C, by minimizing the following negative log-likelihood function:

(5)

number of hooks in habitat h by the change in catchability associated with that habitat ( H h),
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(ln (C ,-f^ )-ln (C ,+ g ));
2 <T2

where C, is the predicted catch for longline set /, B is a vector of parameters, 6 is a small

constant (1) used to prevent taking the log of zero, and a  is the estimated standard deviation (in 

log space). The last term was included to improve convergence by penalizing deviation from a

The GLM-based approach to standardizing CPUE data has been used in stock 

assessments for many years (Maunder and Punt, 2004). A GLM can accommodate non-normal 

error structure by relating the expected rth value of a response variable to a set of predictor 

variables through a link function (McCullagh and Nelder, 1989; Nelder and Wedderbum, 1972). 

Since GLMs are linear models, a linear response is assumed between the function of the expected 

response and the explanatory variables as:

where ^represents the link function, /i, is the predicted response, x j  is a transposed vector of

explanatory variables including an intercept and a categorical variable representing the time step 

(at a minimum), and fi  is a vector of parameters. For the GLM, CPUE adjusted by a small 

number (1 * 10”3) rather than catch (as with statHBS) was the response variable and lognormal 

error structure was modeled by taking the natural logarithm of CPUE (the identity link function 

was used). Annual estimates of relative abundance and their respective standard errors were

uniform distribution under the constraint that H h must sum to one.

P )
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obtained as back-transformed year means with an infinite series lognormal bias correction 

following Lo et al. (1992).

The GLM is expanded in a delta-GLM, which models die probability of observing a zero 

catch as a function of the explanatory variables, and then separately fits a GLM to the non-zero 

catches (Aitchison, 1955; Lo et al., 1992; Maunder and Punt, 2004; Stef&nsson, 1996; among 

others). This approach is represented by:

In Eq. (8), w is the probability of observing a zero for the response variable (CPUE) and f ( y )  is

a model of the mean of the non-zero CPUEs. For our analyses, the proportion of sets with 

positive CPUE (1 -  w) was modeled using a binomial GLM with a logit link function, and the 

positive CPUEs were modeled with a lognormal GLM as previously described (though, without 

adjusting CPUE). Annual probabilities of positive catches from the binomial GLM were the back- 

transformed mean values for each year predicted when all additional factors were set to the level 

representing the observed mode (Maunder and Punt, 2004). Annual estimates of abundance were 

then obtained by multiplying the probability of positive observations for year y  and the back- 

transformed bias corrected year means from the lognormal GLM of positive catches. To capture 

the precision of the abundance estimates, standard errors were calculated using the delta method 

(Lo et al., 1992; Seber, 1982).

It is important when evaluating the accuracy of GLMs and delta-GLMs to consider which 

explanatoiy variables should be included in the models. The year in which the catch occurred 

must be one of the variables, because the output of interest is relative abundance over time. The 

number of HPB is commonly used for longline catch and effort data as a proxy for fishing depth, 

so this factor was also considered in the analysis. Typically, when linear models are used to

y  = 0 

otherwise
(8)
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estimate relative abundance from longline data, habitats exploited are not directly considered, 

because information cannot be summed over multiple habitats as with statHBS (Maunder et al., 

2006). However, catenary geometry and water column temperature profiles can be used to 

combine fishing and environmental data into a single variable to be incorporated directly into the 

GLMs. For this type of variable, it is important to consider the degree of detail since a factor with 

numerous levels can result in an over-parameterized model. Thus, using the catenary algorithm 

(Eq. (3)) to estimate hook depths, and the simulated temperature profiles to relate depth to 

temperature, we created a factor that represents the largest change in temperature relative to SST 

(MaxAT) for each longline set (i.e., deepest/coldest habitat fished per set).

To determine which predictor variables to include in the GLMs, a series of GLMs were 

evaluated using a range of configurations for the main effects of year, HPB, MaxAT, and each 

possible first-order interaction (following convention, interactions with year were modeled as 

random effects). In practice, model selection techniques, such as Akaike’s Information Criterion 

(AIC) or analyses of residual deviance, are often employed when selecting a model for generating 

a standardized index of abundance (Maunder and Punt, 2004). However, in a simulation analysis, 

estimated abundance trends can also be compared with the simulated ‘true’ pattern in abundance 

to determine model performance. Thus, we fit each proposed GLM configuration to all simulated 

datasets and recorded AIC, residual deviance, and a metric for model accuracy (Section 2.3). 

Selection via AIC was based on AIC for each model minus the minimum observed AIC (A AIC). 

The model with AAIC = 0 represented the ‘best’ model of those evaluated (Burnham and 

Anderson, 2002). For our deviance analyses, we calculated the percent of deviance explained by 

the stepwise addition of each factor (Ortiz and Arocha, 2004), and if the percent explained was 

less than the somewhat arbitraiy cutoff value of 1%, then the model was rejected (Maunder and 

Punt, 2004). For comparisons made between different random effects, models were fitted using 

restricted maximum likelihood estimation, while standard maximum likelihood estimation was
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used when comparing different configurations of fixed effects (Zuur et al., 2009). We conducted 

the analyses of model configurations using In (CPUE + 1 * 10-3) as a response variable, then 

repeated the analyses using only the records with positive CPUEs (i.e., ln(CPUE > 0) was the 

response). We considered four configurations of fixed effects (FE1 = Year, FE2 = Year +

MaxAT, FE3 = Year + MaxAT + HPB, and FE4 = Year + MaxAT + HPB + MaxAT * HPB), and 

fit the candidate models to the ISO simulated datasets. To summarize the selection metrics across 

all scenarios, we recorded their median values and calculated the percent of times each model 

structure would have been selected following the three selection approaches. The summary 

statistics for model fit and model accuracy were then synthesized to select a single GLM structure 

for all simulated datasets. We did not allow the model structure to change during the simulations, 

because we did not want to introduce model selection as an additional level in our evaluations. 

The overall comparisons were then confined to five approaches: statHBS, a GLM and delta-GLM 

with the selected model structure, a delta- GLM without the MaxAT factor (delta-GLM2) for 

evaluation of this unique variable, and nominal CPUE, because many studies (particularly meta­

analyses) have used this approach to describe trends in abundance (e.g., Myers and Worm, 2003).

2.3. Model evaluation cmd comparison

The GLMs and statHBS model were fit to different response variables (CPUE and catch, 

respectively); therefore, common statistical comparisons of model fit (e.g., AIC) could not be 

used to compare these models. However, this does not represent a substantial drawback, because 

these statistical metrics are typically concerned with balancing model fit and parsimony for a 

given dataset, and the most important aspect in this evaluation is the accuracy of the estimated 

trend in annual biomass. Because estimated trends were treated as relative indices, the estimates 

from the various models were scaled for comparison with the associated ‘true’ biomass. Model
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comparisons were based on the annual percent difference in simulation scenario x  for model m in 

yeary (% DKmy) between true biomass and estimated biomass calculated as:

100

% D =  ■xjH.y

x,y * x*y
: x,m,y

Bx,y
(9)

A

where I x m y refers to the index of abundance estimated in simulation x  for model m in year y. To

facilitate the comparison of methods, the median of the annual percent differences (MPD) was 

calculated for each model m to serve as a single metric of accuracy for each simulated time series 

x  and the standard deviation (SDPD) was calculated to characterize the variability of % DKm 

across years. Our performance metrics compared the absolute value (magnitude) of the relative 

errors. To evaluate the pattern (directionality) in the errors, we analyzed overlaid plots of ‘true’ 

and estimated biomass across all scenarios.

2.4. Sensitivity

The habitat variables specified in the GLMs and the statHBS model relied on estimates of 

hook depth for each longline set By using the conditions described in the data simulation, these 

dynamics were known without error in the analyses. However, hook depth is notoriously difficult 

to estimate with accuracy (Rice et al., 2007; Ward and Myers, 2006), and uncertainty surrounding 

inputs for HBS methods have been shown to affect the accuracy of these approaches (Goodyear, 

2003). Thus, we conducted a sensitivity analysis with a single simulated data set, assuming 

declining biomass over time and a peak in vertical catchability in surface waters. This scenario 

potentially reflects the vertical distribution and biomass trajectory of several HMS in the Atlantic 

Ocean. The statHBS model and a delta-GLM including the MaxAT factor were then fit to the data
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assuming different degrees of uncertainty regarding estimated hook depth. Because estimates of 

hook depth may be biased, three scenarios were considered in the sensitivity analysis (hook 

depths always underestimated, always overestimated, or randomly over/underestimated in each 

longline set), and hook depth errors were specified over a range of 5-50% (incremented by 5%) 

for each scenario. ITie model evaluation metrics (Section 2.3) were then compared across the 

range of errors specified.

2.5. Implementation

With the exception of the statHBS model, the simulation and analyses were executed 

using the statistical programming language R (R Development Core Team, 2011). Due to 

increased model complexity, statHBS was implemented using AD Model Builder (ADMB 

Project, 2011), which was called from R.
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3. RESULTS

The simulation model generated ISO separate catch and effort time series from SO 

random biomass trends, each repeated three times to evaluate different profiles of vertical 

catchability. Of the ISO simulations, we highlighted nine as representative of the range of 

possibilities for patterns in relative abundance and vertical catch-ability (Fig. 4). When 

catchability was highest in surface waters (Fig. 4a-c), simulated catch peaked early in the time 

series, but then decreased as the fishery began targeting deeper habitats. When catchability was 

highest in intermediate and deeper habitats (Fig. 4d-i), simulated catches tracked the true trend in 

abundance more closely. Also, because one component of this study is the treatment of records 

with a total catch equal to zero (i.e., either add a constant or use the delta approach), we 

summarized the proportion of zeros across all simulation scenarios (minimum, mean, and 

maximum proportions were 0.02,0.11, and 0.41, respectively). The highest proportions of zero 

catches occurred when catchability was simulated to peak in surface waters or when biomass was 

simulated to decrease over time.

Selection of a model structure for the GLMs and delta-GLMs was not straightforward, 

because the three selection metrics did not always lead to the same conclusion (Table 1). The AIC 

approach clearly favored FE3, while the deviance analysis selected FE2 and FE4 most frequently. 

However, the accuracy of the models is their most important attribute, and MPD indicated that 

FE3 and FE4 exhibited the greatest accuracy, with FE4 selected slightly more often, and a lower 

overall MPD for FE3. In fact, the AIC approach selected the most accurate configuration in only 

19.3% of the scenarios, and the deviance analysis led to the most accurate model in only 10.7% of 

the scenarios. We decided to use FE3 rather than FE4 throughout the simulation runs, because it 

is a more parsimonious model, and also because the interaction term caused convergence issues
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with the delta-GLM. We did not observe improved accuracy when the model contained random 

effects to describe interactions with the Year coefficient; thus, these interactions were not 

included in the analyses.

Indices of abundance were estimated for each simulated data set following five 

approaches (delta-GLM, delta-GLM2, GLM, nominal, and statHBS) and evaluation metrics were 

calculated for each approach. The overall comparison of MPD for all simulations (Fig. 5a) 

suggests that the delta-GLM that included detailed vertical habitat information provided the most 

accurate estimates of relative abundance (i.e., the lowest overall median of MPD), though the 

variability of this metric spanned a slightly larger range than that for GLM. When accounting for 

different patterns in vertical catchability across all biomass trends (Fig. 6a-c), delta-GLM was 

most accurate, except when vertical catchability peaked in surface waters (Fig. 6a). Comparison 

of MPD over different biomass trajectories across all catchability scenarios (Fig. 6d-f) suggested 

that delta-GLM was most accurate except when biomass increased over time (Fig. 6f). Overall 

variability in the accuracy of the estimates was lowest for delta-GLM2 (Fig. 5b), which exhibited 

the lowest SDPD when vertical catchability peaked in deep waters (Fig. 6i) and when biomass 

increased over time (Fig. 61). However, in general, SDPD was relatively consistent across all 

approaches except when using nominal CPUE.

The nine highlighted simulation scenarios were used to visually evaluate estimated trends 

in abundance as compared to ‘true’ abundance trends (Fig. 7). The patterns in these plots were 

consistent across all simulated scenarios, and suggest that when vertical catchability peaked at the 

surface (Fig. 7a-c) all approaches over-estimated abundance early in the time series, but 

underestimated abundance when catches declined with changes in fishing strategy. These patterns 

were exacerbated for less accurate approaches, particularly nominal CPUE. For scenarios where 

vertical catchability peaked in intermediate and deep waters, there were no consistent patterns in 

the errors, irrespective of biomass trajectory (Fig. 7d—i).
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Finally, the sensitivity analysis indicated that for the scenario evaluated, the statHBS 

model was sensitive to hook depth uncertainty, yet the delta-GLM with detailed habitat 

information was not particularly sensitive to this error (Fig. 8). Model evaluation metrics for 

statHBS and delta-GLM were compared with baseline metrics calculated assuming no error in 

estimated hook depth as well as delta-GLM2 which did not include the MaxAT factor. The 

accuracy of statHBS was compromised when hook depths were always underestimated or 

randomly over/underestimated. When hook depths were always overestimated, accuracy did not 

decline until hook depth estimates were at least 30% different from actual fishing depths (Fig. 

8a). For the delta-GLM, accuracy was not substantially reduced as hook depth uncertainty 

increased; though when hook depths were always overestimated, a relatively small amount of 

error caused delta-GLM to be less accurate than delta- GLM2, but larger errors in estimated hook 

depths actually improved accuracy (Fig. 8b). The statHBS model also appeared more sensitive 

than delta-GLM to hook depth uncertainty in terms of SDPD (Fig. 8c and d). For the delta-GLM, 

SDPD was relatively consistent across the range of hook depth uncertainty for all scenarios.
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4. DISCUSSION

There are numerous challenges surrounding the assessment and management of HMS 

(Lynch et al., 2011). Among these include a lack of fishery-independent scientific research, 

resulting in a reliance on fishery catch and effort data for making inferences about population 

dynamics. In this study, we evaluated common approaches to estimating indices of abundance for 

HMS from longline fishery data when the fisheiy exhibited a change in target fishing depth. This 

shift in the vertical distribution of effort is a common feature of many pelagic longline operations 

to which HMS are susceptible (Majkowski, 2007). Thus, we evaluated models that accounted for 

habitats exploited, such as statHBS and GLMs that included a unique habitat factor (MaxAT). By 

including this habitat variable, we essentially created a bridge between statHBS and GLM 

approaches, because under both methods, estimates of vertical habitats exploited are derived by 

relating estimated longline hook depth to surrounding environmental conditions. Our overall 

conclusion from this study is that the most accurate approach was a delta-GLM that included the 

MaxAT habitat factor. Including this information improved the performance of the linear models 

tested, and to our knowledge, this type of detailed habitat factor has not previously been used for 

obtaining annual estimates of relative abundance from longline data. However, delta-GLM did 

not exhibit the lowest variability in the errors of the approaches evaluated. This suggests that 

while delta-GLM may provide more accurate estimates of abundance across a time series, the 

magnitude of the error is less consistent than that for other methods. Still, given that SDPD does 

not differ substantially across approaches, we maintain that delta-GLM is the preferred approach 

on the basis of MPD. It should be noted that we evaluated the base form of the statHBS model as 

described by Maunder et al. (2006). We did not consider alternative formulations; however, 

Maunder et al. (2006) suggested several that may improve the accuracy of the model.
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While delta-GLM provided the most accurate estimates of abundance overall, other 

approaches provided the lowest MPD in several scenarios. For instance, when vertical 

catchability peaked at the surface, GLM and statHBS were generally more accurate than delta- 

GLM. However, it is important to recognize that under this catchability scenario all models 

provided relatively inaccurate estimates of abundance (Fig. 6a), even though the fisheiy and 

environmental data included in the analyses were known without error. A potential explanation 

for this phenomenon is that the shift by the fishery to deeper target habitats caused catches to 

decline over time to a level where there was no longer enough information to estimate annual 

biomasses with accuracy. This emphasizes the point that fisheries do not always sample 

populations effectively; thus, it is risky to rely on fishery-dependent data for making inferences 

about population dynamics, even when changes in fishing strategy are properly considered.

When indices of abundance fail to capture stock dynamics, it is important to determine if 

the estimated trends exhibit hyperstability (i.e., abundance decreases more rapidly than the index) 

or hyperdepletion (the index decreases more rapidly than abundance) (Hilbom and Walters,

1992). For scenarios with a peak in vertical catchability at the surface, we observed evidence of 

hyperdepletion in estimated trends in abundance (Fig. 7a-c). If these scenarios captured true 

patterns in vertical catchability for bycatch species, then our results support the assertion by 

Uozumi (2003) that assessments of bycatch HMS in the Atlantic have been overly pessimistic.

In general, the delta approach did not result in substantial improvements over the 

traditional GLM. This suggests that the treatment of zeros (i.e., longline sets with total catch 

equal to zero) constitutes another important aspect of our evaluations. The delta approach directly 

accounts for zero observations, and for statHBS and GLM the data are adjusted to accommodate 

zeros. Therefore, when the proportion of zero observations is relatively high, the delta approach 

would be expected to outperform methods that alter the data; however, statHBS and GLM 

performed better than delta-GLM in the scenario that resulted in the highest proportions of zeros 

(surface peak in catchability). Because the treatment of zeros was not the primary focus of our
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analyses, this unexpected result warrants further evaluation of the influence of zero observations 

on methods used to estimate indices of abundance. Additional studies should also consider the 

choice of assumed error distribution, since discrete distributions (e.g., Poisson, negative binomial) 

would not require the data to be altered.

Another aspect of our study that could benefit from additional research is the application 

of model selection criteria when generating indices of abundance. For our simulated scenarios 

and model configurations, neither AIC nor deviance analysis were reliable for predicting the 

model that provided the most accurate index of abundance. Further studies are necessary, because 

these approaches are commonly used when selecting models to standardize CPUE. Alternative 

selection approaches to consider include cross-validation (Maunder and Punt, 2004) and 

consistent information criteria (Shono, 2005).

Our catch and effort simulation was based on the dynamics of the Japanese Atlantic 

longline fishery, partly because this fishery has been recommended in this context (ICCAT,

2004), but also because it captures a scenario when changes in the vertical distribution of fishing 

effort may have affected catchability. Because fisheries continually evolve in response to 

advances in technology and shifts in the global demand for resources, dynamic catchability is 

likely a common feature underlying the catch data of many species, especially HMS caught by 

longline fisheries that have changed targeting practices. Thus, the data simulated in this study 

incorporated a shift in the distribution of fishing effort across vertical habitats to reflect a change 

in target species. While this important feature was incoiporated, the simulation did not consider 

other potentially important dynamics, such as the geographical distribution of fishing effort over 

time, or variability due to size, age, or sex in the fish population. In some cases, including such 

detail may be essential. For instance, Prince et al. (2010) demonstrated that catchability of 

bycatch HMS may be higher inside than outside the oxygen minimum zone of the eastern tropical 

Atlantic. Standardization of CPUE with GLMs could account for this by including an
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appropriately defined area factor in the linear model, whereas statHBS could be expanded to 

include a GLM component with this area factor (Maunder et al., 2006).

While the incorporation of vertical habitats fished improved estimates of relative 

abundance, its main practical limitation is the ability to estimate hook depths with accuracy. 

Catenary algorithms are typically used to generate static estimates of hook depth for an entire 

longline set, yet numerous factors (wind, hydrodynamics, behavior of hooked organisms, etc.) 

can cause substantial deviations from predicted depth for a given hook position both within and 

between sets (Bigelow et al., 2006; Rice et al., 2007; Ward and Myers, 2006). By conducting a 

sensitivity analysis over a range of errors in estimated hook depths, we quantified the effects of 

this uncertainty on the performance of statHBS and a delta-GLM. The high sensitivity of statHBS 

is perhaps due to the reliance of this method on a detailed characterization of hook depth, whereas 

the less sensitive delta-GLM used a simple categorical variable to describe vertical habitats 

fished. Although the MaxAT variable provided a simplistic depiction of habitats fished, its 

inclusion substantially improved the accuracy of the model (Table 1). Therefore, it is interesting 

that this influential factor was not particularly sensitive to error. In general, the sensitivity 

analysis provided a simple characterization of the influence of hook depth uncertainty. To pro­

vide a baseline evaluation, we selected a single simulated scenario that potentially reflects the 

vertical distribution and biomass trajectory of many HMS in the Atlantic Ocean (i.e., surface peak 

in catchability and declining biomass over time). For instance, stock assessments of Atlantic 

marlins indicated that their biomasses are in decline (ICCAT, 2006), and their vertical 

distributions have been characterized as surface oriented with occasional deep dives (Goodyear et 

al., 2008; Graves et al., 2002; Horodysky et al., 2007; Kerstetter et al., 2003; Prince et al., 2010). 

More comprehensive characterizations of hook depth uncertainty are warranted, and we 

encourage additional analyses that consider a variety of simulated scenarios. Additionally, our 

evaluations were conducted assuming no error in the catch data, gear dynamics, or oceanographic 

conditions. In practice there may be uncertainties surrounding each of these inputs, and a

73



characterization of their effects would be useful. For example, temperature profiles for each 

longline set would ordinarily be obtained from a global ocean database, which may require 

interpolation, and therefore may not reflect the true temperature profile for each set

In addition to expanding the evaluation of the effects of hook depth uncertainty, the 

results of this study highlight the importance of several areas of research. For instance, the 

development of a more sophisticated approach to modeling longline gear behavior as a function 

of environmental conditions could be useful in these applications. Accordingly, increasing the 

detail of fishery data reporting to include catch by hook position and corresponding 

environmental conditions could foster a better understanding of catches by habitat. Additionally, 

we defined vertical habitat categories as 1°C deviations from SST, but decisions about how to 

partition habitat may influence estimates of abundance that include this information. This 

emphasizes the importance of continued research on behavior, physiology, and habitat use of 

fishes, and in future analyses, model performance may be further improved using model selection 

(e.g., AIC) to determine an appropriate degree of detail in the habitat factor. However, based on 

the results of our selection of a fixed structure for the linear models, caution should be exercised 

when using traditional model selection metrics for CPUE standardization. Furthermore, the 

methods evaluated are best suited for estimating historical trends in abundance, yet predictions 

about future patterns are also important for fisheries management. In reality, complex dynamics 

likely govern true abundance trends, and most approaches for estimating relative abundance do 

not incorporate these relationships. However, nonlinear forecasting may be a promising approach 

for predicting future abundance when the governing equations are unknown (Glaser et al., 2011).

The focus of our study was on estimating relative abundance in the presence of changes 

in the vertical distribution of fishing effort, but a change in the geographical distribution of effort 

is an equally important consideration (Walters, 2003). Fishery-dependent data provide 

information from areas fished, which typically represent areas of high profitability. Without 

accounting for abundance trends in areas that were not fished, there is an implicit assumption that
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CPUE trends in areas fished are reflective of trends in areas that were not fished. In many cases 

this assumption may not be valid, and it has been shown to bias estimates of relative abundance 

(Campbell, 2004; Carruthers et al., 2010; Walters, 2003). To account for this source of bias in a 

CPUE standardization context, Carruthers et al. (2011) described a GLM approach to CPUE 

standardization that includes data imputation in unfished spatial cells. Their approach could easily 

be adapted to account for vertical habitats as described herein, thereby directly addressing effects 

on catchability due to changes in the distribution of effort in three dimensions.

Since the description of HBS by Hinton and Nakano (1996), the choice between using 

HBS or a GLM approach to estimating the relative abundance of HMS has been controversial 

(Bigelow and Maunder, 2007; Goodyear, 2003; Goodyear et al., 2003; Maunder et al., 2006; 

Prince and Goodyear, 2006; Ward and Myers, 2005). Debate over this choice could be expected 

given the potential influence on assessment results (e.g., Uozumi, 2003) and the fact that 

regulations aimed at conserving HMS affect highly valued international fisheries. Nevertheless, 

the controversy emphasizes the importance of comparing and evaluating these methods, and the 

results of our study should be interpreted in the context of previous research (i.e., Bigelow and 

Maunder, 2007; Goodyear, 2003). In a simulation study, Goodyear (2003) compared GLM with 

the original deterministic formulation of HBS, and concluded that both methods can be accurate, 

but HBS can be strongly biased when input assumptions were erroneous. Bigelow and Maunder 

(2007) however, modeled catch rates using statHBS and GLM when applied to real fisheries data 

and found that statHBS fit best to the data, though the focus of their conclusions was on the 

importance of considering vertical habitat, rather than depth, in CPUE standardization for HMS. 

Recognizing the significance of this conclusion, we decided to evaluate not only statHBS, but 

also GLMs that consider habitat. Furthermore, given that delta-GLMs are a popular approach to 

CPUE standardization, we thought it was important to evaluate this method of dealing with zeros 

in the catch data. Thus, this study is the first to compare delta-GLMs and statHBS in a simulation 

context. In agreement with previous work, we conclude that the incorporation of vertical habitats
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exploited is important when estimating relative abundance of HMS from fishery-dependent data, 

specifically when there has been contrast in the habitats exploited over time. We further 

recommend that this information be included via delta-GLM rather than statHBS, unless there is 

substantial confidence in estimates of habitats exploited.
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TABLES

Table 1. Summary of linear model selection metrics for different fixed effect structures. The four 
hypothesized model structures were evaluated when fit to all catch data adjusted by a constant, 
and when fit to the positive catch records only. Median values across all 150 simulated datasets 
were presented for the change in Akaike’s Information Criterion from the minimum value 
(AAIC), the percent of the total residual deviation explained by the stepwise addition of each 
factor (% total dev.), and the median percent difference between estimated and true biomass 
(MPD). Also presented are the percent of times each model structure was selected by each 
corresponding selection metric (% S).

Model structure AAIC % total dev. MPD % Saic %  Soev % S mpd

Response: log(CPUE + 1x1 (T3)
Year 1055.3 73.2 33.9 0.0 0.0 12.7
Year + MaxAT 21.7 24.6 12.2 19.3 47.3 10.7
Year + MaxAT + HPB 0.0 1.0 9.7 62.0 5.3 27.3
Year + MaxAT + HPB + MaxAT x HPB 29.1 1.5 11.3 18.7 47.3 32.0

Response: log(CPUE > 0)
Year 762.1 75.6 35.0 0.0 0.0 8.7
Year + MaxAT 10.8 21.2 9.1 33.3 42.7 25.3
Year + MaxAT + HPB 0.0 1.2 10.1 58.0 8.0 29.3
Year + MaxAT + HPB + MaxAT x HPB 37.5 1.9 11.1 8.7 49.3 30.0
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Fig. 1. Annual effort for the Atlantic Japanese longline fishery specified in the catch data 
simulation as total hooks and total sets per year (HKPY and SPY, respectively). The number of 
sets per year is an underestimate of the true number of sets for this fishery.
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Fig. 2. Gear dynamics for the Atlantic Japanese longline fishery specified in the catch data 
simulation, including branchline and floatline lengths (a), and total hooks per basket (b) over 
time. Also, estimates of deepest habitats fished over time are presented (c). The total ranges 
(gray) and 95% confidence intervals (black) are presented for hooks per basket and deepest 
habitats fished.
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Fig. 3. Simulated ocean temperature profiles (a) and scenarios of vertical catchability (b). The 
temperature profiles were randomly assigned to simulated longline sets and were meant to reflect 
shallow, intermediate, and deep thermocline depths. The catchability scenarios exhibited peaks in 
surface (shallow), intermediate, and deep waters. The top of each panel represents the surface of 
the water with depth (a) and temperature (b) changing vertically.
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Fig. 6. Box and whisker plots of performance metrics, including median percent difference 
between estimated biomass and true biomass for a simulated dataset, and standard deviation (SD) 
of the percent differences for five approaches to estimating an index of abundance. The 
performance metrics were summarized for scenarios where vertical catchability (qh) was 
simulated to peak in surface (a and g), intermediate (b and h), or deep waters (c and i), and where 
biomass (B,) was simulated to decrease (d and j), remain stable (e and k), or increase (f and 1) 
over time. The solid line reflects the median, the box encompasses the interquartile range, the 
whiskers extend to the extreme values, and circles reflect potential outliers.
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where vertical catchability was assumed to peak in surface (a-c), intermediate (d-e), or deep 
waters (g-i), and the known biomass trajectoiy was either decreasing (a, d, and g), stable (b, e, 
and h), or increasing (c, f, and i) over time.
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result for a delta-GLM without an effect for habitats fished.
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CHAPTER 3

Trends in abundance o f highly migratory species in the Atlantic Ocean
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ABSTRACT

Declining populations of highly migratory species (HMS) have served as evidence of a global 
fisheries crisis. However, abundance trends have mostly been inferred from fishery catch 
rates, which are inherently biased. While many biases are accounted for through traditional 
catch rate standardization, habitats are often not directly considered. Using a method that 
explicitly accounts for habitats fished, we estimated abundance trends for 35 HMS in the 
Atlantic Ocean from 1987 through 2010. This represents one of the largest studies of HMS 
community dynamics. Overall, most populations appear to have declined over time with 
current abundances of roughly 76% of HMS analyzed at less than half of their 25-year 
observed maxima. However, 26% of the species exhibited signs of population growth, and in 
some cases, recoveiy. By including habitat in our analyses, we observed habitat effects on 
fishery catch rates; thus, our results can help guide management regulations aimed at 
reducing incidental catch of certain species, by avoiding the habitats in which these species 
catch rates were highest. Furthermore, we provide our abundance indices to facilitate their 
incorporation in fisheries stock assessments.
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1. INTRODUCTION

Indices of abundance are necessary inputs for most fisheries stock assessment models. 

Within assessments, indices are treated as ‘observed’ abundance trends, thereby giving them 

substantial influence over assessment results. Unfortunately, abundance indices for highly 

migratory species (HMS) are not obtained through comprehensive, scientifically designed, 

monitoring programs (due to the high cost of implementation), but rather from fisheiy- 

dependent catch and effort data. This poses a considerable challenge to estimating an accurate 

index of abundance, because fisheries continually change their fishing practices in response 

to various socioeconomic drivers. It is common to assume that fishery catch rates are 

proportional to stock abundance, but changes in fishing practices need to be accounted for 

because they can cause the proportionality assumption to be violated (Maunder and Punt, 

2004).

In the Atlantic Ocean, pelagic longline fisheries are responsible for the bulk of the 

fishing mortality experienced by many HMS. These fisheries have exhibited numerous 

changes in fishing practices over time, including changes in gear configurations, target 

species, and the spatiotemporal distribution of effort (Majkowski 2007). Although 

contemporary approaches to estimating indices of abundance for HMS do account for 

changes in fishing practices, ocean conditions are variable and habitats fished are related to 

both fishing practices and environmental conditions. While the distributions of HMS can be 

roughly characterized by depth and geography, temperature regimes are likely the main 

governing factor (Brill and Lutcavage, 2001; Bigelow and Maunder, 2007). Therefore, when 

estimating indices of abundance for HMS, it is important to consider habitats exploited (e.g., 

temperature regimes) in addition to fishing practices.
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For longline fisheries, the incorporation of environmental information is not 

straightforward and is often not done in practice, primarily because estimates of fishing depth 

and environmental conditions at depth are required. It is notoriously difficult to estimate 

longline fishing depths with accuracy (Ward and Myers, 2006; Rice et al., 2007). 

Furthermore, environmental conditions at a given depth, time, and location are typically not 

recorded, and can only be estimated through interpolation from a global ocean database.

Despite the challenges associated with considering environmental information when 

estimating an index of abundance for HMS, it has been shown that this information can 

improve the accuracy of the index (Lynch et al., 2012). In fact, Lynch et al. (2012) proposed 

a method for incorporating habitat information using a delta generalized linear model (delta 

GLM) and found this approach to be relatively insensitive to errors in estimates of longline 

fishing depths. This is contrary to other index estimation methods that incorporate habitat, 

including habitat based standardization (HBS: Hinton and Nakano, 1996) and the statistical 

counterpart to HBS (statHBS: Maunder et al., 2006). The HBS and statHBS approaches have 

both been shown to be highly sensitive to model inputs, such as estimates of longline fishing 

depth (Goodyear, 2003; Lynch et al., 2012).

For stock assessments of Atlantic HMS, we are unaware of any occasions where the 

abundance indices used in the assessment incorporated detailed habitat information. Here, we 

incorporate habitats fished into a delta GLM analysis of fisher logbook data from the US 

pelagic longline fishery (USLL) and derive new indices of abundance for a suite of HMS in 

the Atlantic Ocean. In general, indices of abundance for species caught in the USLL are 

generated by US members of the Standing Committee on Research and Statistics (SCRS), a 

committee within the International Commission for the Conservation of Atlantic Tunas 

(ICCAT). With the exception of our consideration of habitats fished, we estimated indices 

following the approach used by the SCRS (e.g., Walter, 2011). Walter (2011) provided 

indices of abundance for yellowfin tuna (Thunnus ablacares), and we followed this
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framework, not because yellowfin tuna represent a particularly strong candidate for 

incorporating habitat information, but rather because the framework reflects the 

contemporary approach used by die SCRS. Hence, we reduced confounding due to 

methodological differences, and our evaluation of the importance of including habitats fished 

is more robust.
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2. METHODS

2.1. Fishery data

Indices of abundance were generated for 35 HMS2 routinely caught by the US pelagic 

longline fishery (Table 1). Fisher logbook data for the US pelagic longline fishery were 

obtained from the National Marine Fisheries Service (NMFS) on November 21,2011. The 

logbook database includes set-specific information, including catches (numbers of 

individuals), effort (number of hooks), gear configurations, dates, times, and spatial locations 

(Fig. 1). The primary target species of the US pelagic longline fishery include swordfish 

(Xiphias gladius), yellowfin tuna, and bigeye tuna (Thunnus obesus). Other features of this 

fishery have been described in detail by Hoey and Bertolino (1988).

Truncation of the dataset followed the restrictions imposed by Walter (2011). For 

instance, the logbook program began in 1986, but data for 1986 are incomplete; thus, our 

analyses used data from 1987 to 2010. Longline sets with fewer than 100 hooks in a set were 

excluded, and vessels that caught 10 or fewer individuals over the time series were excluded. 

Any records with incomplete catch, effort, time, or geographical information were removed, 

and records with more than one fish per hook were removed. Furthermore, sets occurring in 

areas that have been closed due to management restrictions, either before or after closure, 

were excluded. The time-area closures affecting the USLL were described in detail by Walter 

(2011). Finally, any sets occurring outside the regions commonly used in analysis of USLL 

data were not used.

2 There were two species groups included in the analyses (spearfish and hammerhead sharks). We use 
‘HMS’ and ‘species’ throughout to collectively refer to individual species and species groups.
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To estimate habitats fished, detailed longline gear information is required. Therefore, 

the indices that included habitat information required further data truncation. The main 

components of the longline gear used for estimating fishing depths include mainline length, 

the number of hooks between floats (HBF), branchline (or gangion) length (b), and floatline 

length (/) (see Maunder et al., 2006 for a description of these components). There were clear 

errors in the database associated with each of these components, and there were records that 

did not include data for one or more of the components. Thus, we excluded records where 

measurements of the gear components were either not reported, or fell within the upper or 

lower 0.5% quantiles of the data. For occasions where habitat information was not included 

in the analyses, the aforementioned data truncation procedure was used (Walter 2011).

2.2. Oceanographic data

In addition to estimating fishing depth from longline gear information, estimates of 

habitats fished required detailed oceanographic data. We designated temperature regimes as 

habitats; therefore, we assigned each longline set a fixed temperature-at-depth profile. Ocean 

temperature profiles were obtained from the National Oceanographic Data Center3 using the 

World Ocean Atlas (WOA) data series (Locamini et al., 2010). These data were available as 

average monthly temperature profiles following 1° latitude by 1° longitude spatial resolution, 

covering a depth range of 0 to 1500 m over variable increments. For the rare instances where 

temperature profiles were not available for a given combination of geographical location and 

month, the set record was removed entirely.

3 www.nodc.noaa.gov: data accessed December 1,2011.
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2.3. Habitat variable

Incorporation of detailed habitat information requires estimates of longline fishing 

depths and corresponding estimates of temperature-at-depth (Lynch et al., 2012). Longline 

fishing depth (in meters) of hook j  (dj) for j  = 1 to HBF was estimated using catenaiy 

geometiy according to the following relationship (Bigelow et al., 2006; Yoshihara, 1951; 

1954):

. .1 7  i \ 2
i ' 
2

d j = b  + f  + 0.5t< (l + cot2 q>f - I 1 2^ (HBF + l)
+ cot2 <p >

where t  is the length of the mainline between floats, and q> is the angle between the horizon 

and the tangent of the mainline where it attaches to the floatline. We calculated I  as the ratio 

of total mainline length to the number of panels fished, which was determined as the ratio of 

the total number of hooks fished in a set to HBF. There was insufficient information in the 

logbook database for estimating <p\ therefore, we used the average values reported by Bigelow 

et al. (2006). For shallow sets ( 2 - 6  HBF) we set q> to 56.40°, for deep sets (20+ HBF) q> was 

the average (61.45°) of the two deep fishing methods analyzed by Bigelow et al. (2006), and 

for intermediate sets (7 -  19 HBF) we averaged the deep and shallow set values (58.93°). 

Additionally, we corrected estimated fishing depths by the percent of shoaling of the longline 

gear using the following quadratic equations (Bigelow et al., 2006):

f - 36.562+ 0.9958*/, -2.331 xl0~3*/2 for HBF<7
% shoal = < J , , , , (2)

| -254.104 + 1.784*/, -3 .473x 10 */2 + 2.184 x 10 d \ for HBF>19
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When HBF = 7 to 19, we averaged the components of Eq. (2), and when these equations 

resulted in estimates outside the range observed by Bigelow et al. (2006), the minimum or 

maximum value was used (0% or 87%, respectively).

Fishing depths for each longline set were then related to temperature-at-depth for the 

corresponding month and geographical location of the set. Because temperatures were 

available at discrete depths, the temperature at the depth closest to estimated fishing depth 

was specified as the temperature fished for a given hook. Following Lynch et al. (2012), 

temperatures fished were converted to 1° increments relative to surface temperature in the 

corresponding time/space. The maximum deviation from sea surface temperature (MaxAT), 

or deepest, coldest habitat fished, was then assigned to each longline set as a single value 

(0°,...,15° C) characterizing the habitat fished for that set. In a simulation study based on the 

fishing dynamics of the Japanese longline fishery in the Atlantic Ocean, this variable was 

shown to improve the accuracy of indices of abundance for HMS (Lynch et al., 2012). The 

Japanese longline fishery however, has exhibited substantial changes in fishing techniques 

over its long time series, resulting in considerable contrast in MaxAT over time. The time 

frame for USLL logbook data is short by comparison, and gear configurations have been 

relatively consistent over the time series. This may limit the importance of MaxAT since 

minimal contrast would be expected for this variable. Thus, in addition to MaxAT, we 

evaluated a habitat variable that characterized each longline set as the minimum temperature 

fished (MinT) in that set. This variable was specified as categorical with 5° temperature bins 

from 1° C to 30° C. While MaxAT directly accounts for the vertical distribution of the species 

being analyzed, MinT accounts for the distribution of the species spatially, as well as 

vertically.

2.4. Other variables considered
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A suite of additional explanatory variables was also considered in the analyses. These 

variables were modeled as categorical factors, and included Year (year in which the set 

occurred), Region (nine geographical regions commonly used by to classify the longline 

fishery: Fig. 1), Season (calendar quarters: January -  March, April -  June, July -  September, 

October -  December), Lightstick (the number of lightsticks per hook categorized with four 

levels: 0, >0 -  0.4, >0.4 -  0.7, >0.7), HBF categorized with seven levels (0 -  3,4 -  6, 7 -  9,

10 -1 5 , 16 -  21,22 -  29,30+), Time (time at the beginning of the set: a.m., p.m., or 

unknown), and Bait (type of bait used: live, dead, mixture, unknown). These variables are all 

thought to potentially affect catch rates of various species in the US pelagic longline fishery 

(Walter, 2011).

2.5. Index estimation

We used a two-stage delta GLM approach to estimating indices of abundance 

(Aitchison, 1955; Lo et al., 1992; Maunder and Punt, 2004; Stefdnsson, 1996; among others). 

Accordingly, each index of abundance was determined by combining two GLMs, one of 

which modeled the presence/absence of a particular species as a linear function of 

explanatory variables, assuming a binomial error distribution (logit link function). The second 

GLM modeled catch-per-unit-effort (CPUE), calculated as numbers of individuals caught in a 

set per 1000 hooks. For this GLM, only the records with a positive catch rate (i.e., CPUE > 0) 

were included, and we assumed a lognormal error distribution by using log(CPUE) as the 

response variable (identity link function). For both models, explanatory variables and 

interaction terms were modeled as fixed effects, with the exception of interaction terms that 

included the variable Year, which were modeled as random effects.

Annual estimates of abundance were obtained by multiplying the probability of a 

positive catch rate in a given year from the binomial GLM by the mean CPUE in that same 

year from the lognormal GLM. The probability of a positive catch was calculated as the back-
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transformed mean probabilities for each year predicted when all factors other than Year were 

set to their mode level (Maunder and Punt, 2004). Mean CPUE for each year was calculated 

as back-transformed year means adjusted by an infinite series lognormal bias correction (Lo 

et al., 1992). Standard errors of the annual abundance estimates were calculated using the 

delta method (Lo et al., 1992; Seber, 1982).

2.6. Model selection

Selection of explanatory variables and interaction terms for the binomial and lognormal 

GLMs was based on the percent of overall deviance explained by the addition of each 

variable and the corresponding first-order interaction terms (Ortiz and Arocha, 2004). In 

maximum likelihood estimation, deviance is essentially the equivalent of sum of squares.

This approach to model selection was employed by Walter (2011) and has been used to 

generate indices of abundance for numerous HMS in the Atlantic Ocean. By incorporating 

our habitat variables (MaxAT, MinT) into the established approach to model selection, we 

evaluated the importance of these variables relative to other variables commonly considered 

in these analyses.

Typically, the statistical significance of each variable is considered in addition to the 

percent of the deviance explained (Ortiz and Arocha, 2004). However, we focused 

exclusively on percent deviance explained and only included variables or interactions that 

explained at least five percent (terms explaining this much deviance were always statistically 

significant). Percent deviance explained was calculated for each term as the decrease in 

deviance due to the addition of the term divided by the difference between the null model and 

the full model (Ortiz and Arocha, 2004). The null model only included the overall mean, and 

the full model included all variables and interaction terms that converged on a statistical 

solution (in our analyses interaction terms were evaluated individually to avoid convergence 

issues). For model selection, all variables and interaction terms, including interactions with
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Year, were evaluated as fixed effects. Interactions with Year were only modeled as random

Section 2.5). There were a few occasions where the selected model would not converge on a 

solution. This was mostly due to the models being rank deficient, and in these instances, all 

interaction terms were modeled as random effects.

2.7. Index comparison

In addition to evaluating the importance of including habitat information (Section 2.6), 

we used the selected models to generate indices of abundance for numerous HMS in the 

Atlantic Ocean. For several species, these may be the first ever estimated indices of 

abundance. For species previously analyzed, we compared our proposed indices to those most 

recently generated.

All abundance indices were standardized to their respective means for making species- 

specific comparisons. Visual comparisons were conducted using overlay plots for each 

species. Also, two metrics were used to characterize the relative difference between two 

indices, and the variability in the relative differences over time. The percent difference (%D) 

between any two indices (//, I2) in yeary was calculated as (Lynch et al. 2012):

The median of the percent differences (MPD) was calculated to characterize the magnitude of 

the relative difference between indices, and the standard deviation (SDPD) was used to 

describe variability.

effects when these terms were included in models used to generate indices of abundance (see

y (3)
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While our analytical approach is nearly identical to that used for yellowfin tuna 

(Walter, 2011), there may be small differences that confound the evaluation of the importance 

of the habitat variables. For instance, our analyses were conducted with the statistical 

programming language R (R Development Core Team, 2011) and Walter (2011) used SAS® 

(Littell et al., 1996; SAS Institute Inc, 1997). Also, we followed the approach to data 

truncation described by Walter (2011), but the original logbook data obtained may not be 

identical between studies. Therefore, to observe the potential effects of differences between 

studies, direct comparisons were made between analytical approaches and data truncation for 

yellowfin tuna, specifically.
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3. RESULTS

Catch records for yellowfin tuna were used as a case study to evaluate our analytical 

approach as compared to that used by Walter (2011). Very slight differences between indices 

were observed between identical model structures and approaches to data truncation (Fig. 2a). 

These small differences may be attributed to differences between statistical packages (R 

versus SAS), or to slight discrepancies between data analyzed since logbook data were 

obtained at different times for the two studies, and the total number of records analyzed may 

not be consistent. Because the differences were minimal (MPD = 0.04, SDPD = 0.02) we are 

confident that meaningful comparisons can be made with previous indices generated from 

this dataset. Another comparison using yellowfin tuna suggested that removing additional 

records to generate detailed habitat variables (MinT, MaxAT) had almost no effect (MPD = 

0.01, SDPD = 0.01) on estimates of relative abundance (Fig. 2b). Also, the inclusion of MinT 

in the delta GLM minimally affected (MPD = 0.03, SDPD = 0.01) the index for yellowfin 

tuna (Fig. 2c). This is not a surprising result, because yellowfin tuna was the only species 

analyzed that was not a good candidate for including this variable (see below).

The detailed habitat variables MinT and MaxAT were estimated for each longline set 

using information on longline gear configurations and local oceanographic conditions. The 

number of HBF is thought to be an important factor governing fishing depth and therefore 

habitats fished (Ward and Hindmarsh, 2007). We calculated annual means and 95% 

confidence intervals for HBF, MaxAT, and MinT (Fig. 3). With such a large number of 

records in the logbook database, the range observed for these variables was much larger than 

the 95% confidence interval, but the overwhelming majority of records exhibited minimal 

variation in gear configurations over time. Despite only slight changes, the trends of
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increasing HBF, MaxAT, and MinT are apparent It is surprising that MinT has increased 

with HBF since larger HBF should result in deeper, colder habitats exploited. Increases in 

MinT may be explained by changes in the spatial distribution of the fishery, and/or changing 

oceanographic conditions over time, such as ocean wanning. Also, several gear variables in 

addition to HBF (e.g., branchline and floatline lengths, mainline tension, weights, etc.) 

influence fishing depth (Ward and Hindmarsh, 2007).

A different number of records was analyzed for each of the 35 HMS included in this 

study (Table 1), because data from vessels that caught fewer than 10 individuals over the time 

series were excluded. Species with more catch records (after truncation) tended to have a 

higher probability of being captured (Fig. 4), but with the exception of swordfish and 

yellowfin tuna, there were fewer instances of positive catches than catches equal to zero. This 

suggests that most species we analyzed were rarely encountered by the fisheiy, which may 

limit the ability to make inferences about population trends over time.

A wide variety of model structures was selected for the binomial and positive catch 

models (Appendix A). According to our selection criteria (at least 5% of total deviance 

explained by the variable), one of our proposed detailed habitat variables (MinT) was 

selected for the binomial and/or positive models for almost every species (Fig. 4, Appendix 

A). This suggests that MinT may explain a substantial amount of the variability in the catch 

rates of target and incidentally captured species of the USLL. For certain species, MinT 

explained over 40% of the total deviance. In fact, the only species for which MinT was not 

selected for either model was yellowfin tuna, which may explain why there was minimal 

difference between indices with and without MinT for this species (Fig. 2).

In addition to MinT, we evaluated MaxAT, which has been shown to be a potentially 

important explanatory variable when estimating indices of abundance using data from a 

pelagic longline fisheiy (Lynch et al. 2012). However, there were only two species (wahoo, 

Acanthocybium solandri, and blackfin tuna, Thunnus atlanticus) for which this variable
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explained a sufficient percent of the total deviance (Fig. 4b), and in these cases, the percent 

explained was only slightly above the threshold for inclusion.

Estimates of MinT were not only useful for generating indices of abundance, but also 

for observing the influence of this variable on species-specific catch rates (Fig. 5). Encounter 

rates (proportion of positive CPUE) and median positive catch rates both exhibited variability 

across estimates of MinT. The highest encounter rates and median positive CPUE values 

were observed for swordfish and blue sharks (Prionace glauca) when the coldest habitats 

were fished. In fact, the highest overall median CPUE corresponded with blue sharks at 

approximately 50 sharks per 1000 hooks. The encounter rates of swordfish and yellowfin 

tuna (two important target species of this fisheiy) exhibited opposing gradients in response to 

MinT, with the highest rates for yellowfin tuna occurring when the warmest habitats were 

fished. Numerous other species-specific patterns emerged (Fig. 5).

The majority of our abundance indices exhibited declines over the time series (Fig. 6, 

Appendix A); however, the magnitude of change was highly variable. For instance, when 

comparing current relative abundances of the primary target species, swordfish and yellowfin 

tuna are just below 50% of their observed maxima, where bigeye tuna have declined by more 

than 75%. For many of the bycatch species, particularly the sharks, die declines were more 

severe. A few species may have increased in abundance over the time series, such as northern 

bluefin tuna (Thunnus tbynnus), albacore (Thunnus alalunga), porbeagle {Jumna nasus), 

spearfish (Tetrapturus spp), and shortfin mako sharks (Isurus oxyrinchus). For the select 

species with previously generated indices of abundance, our estimates are mostly consistent 

with the historical patterns, and extend the time series to provide an update of recent 

population dynamics (Fig. 6). However, the patterns for swordfish and skipjack tuna 

(Katsuwonus pelamis) are not consistent. As a measure of precision, the median of the annual 

coefficients of variation (MCV) was calculated for each index (Fig. 6). According to MCV,
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many of the indices were estimated with veiy poor precision (i.e., MCV > 1), suggesting that 

these particular trends should be interpreted with caution.
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4. DISCUSSION

In this study we estimated trends in abundance for 35 HMS using a novel approach to 

account for habitats fished. This represents one of the most comprehensive analyses of HMS 

to date, and for some species (e.g., many of the sharks and other infrequently encountered 

fishes) these are the first ever estimated trends in abundance. For other species (e.g. blue 

shark and porbeagle), abundance indices have not been estimated in several years; thus, our 

indices provide an update of recent population dynamics. The remaining species have been 

evaluated recently (e.g., bigeye tuna and yellowfin tuna), meaning our indices are more useful 

in a comparative sense. Overall, population declines of varying degrees were observed for 

most HMS analyzed. Excluding the species group hammerhead sharks (due to redundant 

representation), the current relative abundances of 26 of the 34 species (76%) are less than 

50% of their observed maxima (over the 25 year period), and 18 species (53%) are currently 

less than 25% of their observed maxima.

Declines in abundance of large piedatoiy fishes have been cited many times as 

evidence of a global fisheries crisis (Jackson et al., 2001; Myers and Worm, 2003; Myers et 

al., 2007; Worm et al., 2006; Baum et al., 2003; Ferretti et al., 2008). While these studies 

have garnered considerable attention from the media, general public, and scientific 

community, many have been criticized due to analytical flaws, some of which may have been 

critical (Walters, 2003; Burgess et al., 2005; Hampton et al., 2005; Polacheck, 2006; Wilberg 

and Miller, 2007). We have been careful to address many of the concerns over the use of 

fisheries data (particularly pelagic longline logbook data) to infer population trends.

Assuming our results generally reflect patterns in abundance (to the degree possible given the 

manner in which data were collected), substantial declines were observed for many species;
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however, a trend toward complete extirpation of large predators was not evident. 

Approximately nine species (26%) exhibited evidence of population growth (recoveiy in 

some cases) over the past several years, including northern bluefin tuna, albacore tuna, 

blackfin tuna, blue shark, porbeagle, tiger shark (Galeocerdo cuvier), spearfishes, escolars 

(Gempylidae spp), and shortfin mako shark. While our results show that many HMS may be 

at or approaching critically low population levels, the observed increases suggest that either 

the purported demise of marine predators was overly pessimistic, or several species began to 

rebuild since the earlier studies were conducted (we suspect both explanations to be true).

The range of abundance patterns observed in this study support the conclusions of Worm et 

al. (2009), who, in a comprehensive analysis of global fish stocks, described a combination of 

overexploited and recovering marine ecosystems.

The data used for our analyses is perhaps one of the best sources for making 

inferences about HMS population dynamics in the Atlantic Ocean (Baum et al., 2003). Given 

the vast distributions of HMS and the historical development of high seas fisheries, analysis 

of HMS populations is most robust using observations over a large spatial and temporal range 

(Uozumi, 2003). There are no independent scientific monitoring programs that have collected 

data on this scale; therefore, fishery-dependent sources may represent the best available 

information for capturing long-term changes in HMS abundance. Pelagic longline fisheries 

typically cover a wide geographic range, and they have been fishing in the Atlantic Ocean 

since the 1950s (Majkowski, 2007). Longline fleets from nations with a long-term presence in 

the Atlantic (e.g., Japan and Taiwan) represent the most valuable sources of data for 

evaluating HMS dynamics; however, to account for changing fishery dynamics, information 

about fishing practices must be available. When recorded, this information is usually 

considered proprietary, and therefore can be difficult to obtain. We analyzed fisher logbook 

data from the USLL, which includes detailed set-specific information concerning fishery 

dynamics. When compared with the fisheries from Japan or Taiwan, the spatial and temporal
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coverage of the USLL is limited. For instance, the first complete year of logbook records was 

1987; meaning relative abundance in the first year of our time series may represent an 

abundance that has already been reduced following years of intense fishing pressure.

Despite efforts to account for factors that may have biased our results, a reliance on 

fishery-dependent data warrants a cautious interpretation of abundance trends. In a simulation 

study, Lynch et al. (2012) showed that, under certain scenarios, even when accounting for all 

potential sources of bias, the best performing model still may poorly estimate the true pattern 

in abundance. In general, comprehensive stock assessments (Quinn and Deriso, 1999) that 

incorporate multiple sources of information provide a more complete evaluation of fish stock 

dynamics. These types of analyses have not been conducted on many of the species we 

evaluated; thus, our results serve as best available characterizations of abundance trends. For 

the few species that have been assessed, management decisions should be (and are) based on 

assessment results rather than a single index of abundance; however, our indices have the 

advent of adjusting for exploited habitats and may be useful in future stock assessments.

Abundance trends previously estimated using fisher logbook data from the USLL are 

available for species that have been assessed in a fishery stock assessment context or by 

individual research projects (e.g., Baum et al., 2003). In general, our abundance trends 

closely follow those previously estimated for stock assessments, and they extend the 

estimates beyond the final year of the earlier time series. We observe that previous population 

trajectories have continued for many species, while the direction of others has reversed 

(mainly those that are exhibiting signs of population growth). The abundance trends 

estimated for swordfish and skipjack tuna are clearly in contrast with previous estimates. We 

show a declining, rather than stable swordfish abundance over time, and we did not observe a 

sudden increase in skipjack tuna abundance as previously shown.

When comparing and evaluating abundance trends for individual species, the 

population biology and fishery data collection for that species should be considered. For
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instance, previous estimates of abundance for swordfish used fishery weigh-out data to 

estimate catches by age, and then aggregated catches over ages 3 - 10 .  We did not have 

weigh-out data available for our analyses, nor did we attempt to partition catches by age. 

Furthermore, important considerations have been documented (Burgess et al., 2005) 

concerning the use of logbook data from the USLL to make inferences about the abundance 

of sharks (these concerns may not apply to blue and shortfin mako sharks). Misidentification, 

errors in reporting, and failure to record bycatch species contribute significant errors to the 

logbook database. Random errors in identification and data recording are much less 

problematic than an unaccounted sudden change or systematic pattern in data recording. 

Although, for some species, such as white shark (Carcharadon carcharias), the error may be 

substantial enough to make our abundance trends uninformative (most recorded white shark 

catches are likely the result of misidentification; Burgess et al., 2005). While many of the 

criticisms by Burgess et al. (2005) concern the presence of random error in the logbook data, 

they discussed regulatory changes in 1993 that highlight a sudden change in shark reporting 

requirements. In response to the U.S. Atlantic Shark Management Plan (NMFS 1993), fishers 

in the directed shark fishery adopted a new logbook system. This migration may have 

removed fishers that were more likely to record shark catches from the logbook database we 

used, resulting in a false decline in catch rates starting in 1993; however, many of the shark 

species we analyzed exhibited declines before 1993. Overall, we maintain that our estimates 

of HMS abundance trends can be useful in an assessment and management context; however, 

we encourage critical evaluation of the applicability of our methods at the species-specific 

level.

Catches observed in relation to the MinT habitat variable (Fig. 5) highlight the 

expected result that, for a given longline set, the respective target species do not have equal 

probability of capture. Consequently, the habitats exploited (which are a function of gear 

configuration, fishing location, and environmental conditions) largely govern the composition
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of species encountered. This conclusion provides strong support for including a habitat 

variable in models designed to estimate indices of abundance. Furthermore, the incorporation 

of a habitat variable allows a post-hoc evaluation of the role of habitat on catches of HMS. 

For instance, blue sharks exhibited a higher probability of encounter when cooler habitats 

were fished. This is not necessarily surprising (see Cortes et al., 2007); however, when the 

fishery exploited the absolute coldest habitat ( 1 - 5  °C) and blue sharks were encountered, 

their catch rates were higher than those for any other species caught by the fishery. Because 

blue sharks are a bycatch species, fishery managers could use this information to impose 

restrictions to avoid fishing the coldest habitat and possibly reduce overall bycatch of blue 

sharks. Evaluating habitat-specific catch rates would not only be useful for blue sharks, but 

for all species analyzed.

The lack of importance of MaxAT may be unexpected considering the results of the 

simulation study conducted by Lynch et al. (2012); however, their study was based on the 

dynamics of the Japanese pelagic longline fishery. The Japanese fishery has substantially 

changed fishing practices over time, resulting in strong contrast in habitats exploited. The 

USLL has not exhibited systematic changes in fishing practices over the time period we 

analyzed, causing MaxAT to be relatively consistent (Fig. 2). This does not suggest that 

relative temperature is not an important factor governing the population dynamics of HMS, 

but rather that the minimal contrast in MaxAT precludes it from explaining considerable 

variability in USLL catch rates.

Many of our indices of abundance were not estimated with great precision, suggesting 

these indices be interpreted with caution. However, in addition to index precision, there are 

other concerns that warrant attention. For instance, our methodology was based on a 

commonly used approach described by Walter (2011) to facilitate the comparison of indices 

that consider habitats fished, but the approach itself is not evaluated in this study. In fact, the 

use of percent deviance for variable selection in these models may be unreliable for selecting
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the most accurate model (Lynch et al. 2012). Furthermore, due to data limitations, estimates 

of habitats fished ignored potentially important sources of variation. By setting/ = 1 to HBF 

in Eq. (1), we made the assumption that in each longline set, all sections of the gear were 

distributed identically throughout the water column. This is unlikely, because longline fishing 

depth is governed by numerous dynamic processes, including wind, hydrodynamics, and the 

behavior of hooked organisms (Bigelow et al., 2006; Rice et al., 2007; Ward and Myers, 

2006). Also, by relating fishing depth to temperature using average ocean temperatures we 

ignore interannual variability in temperature-at-depth for a given time/location. Finally, 

following the approach to data truncation used for yellowfin tuna, indices were estimated for 

each species using data from all times and areas available (with the exception of the closed 

areas). This comprehensive use of data may be appropriate for many HMS; however, unique 

considerations may be warranted for certain species. For example, previous indices of 

abundance for northern bluefin tuna from die USLL restricted the logbook data by only using 

records from the Gulf of Mexico during January to May (Cass-Calay, 2010). Many of the 

indices generated herein may be useful in a stock assessment context; however, species- 

specific considerations regarding distributions, population structure, and other treatments of 

the data should be taken into account.
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TABLES

Table 1. Species for which indices of abundance were generated using fisher logbook data from 
the U.S. pelagic longline fishery with corresponding species codes, and the number of records 
analyzed (out of a total o f292717) after removing records from vessels that caught less than ten 
individuals of a given species over the time period.

Species Species code Records analyzed Species Species code Records analyzed

Swordfish 
Xiphias gladius

SWO 228596 Silky shark
Carcharhinus falciformis

FAL 146503

Yellowfin tuna 
Thunnus ablacares

YFT 227784 Dusky shark 
Carcharhinus obscurus

DUS 144651

Dolphinfish 
Coryphaena hippurus

DOL 225738 Bigeye thresher 
Alopias superciliosus

BTH 140491

Bigeye tuna 
Thunnus obesus

BET 214539 Thresher 
Alopias vulpinus

ALV 137453

Wahoo
Acanthocybium solandri

WAH 205132 Blacktip shark 
Carcharhinus limbatus

CCL 133756

Blue marlin 
Makaira nigricans

BUM 197412 Sandbar shark 
Carcharhinus plumbeus

CCP 117581

Alabacore tuna 
Thunnus alalunga

ALB 197216 Oceanic whitetip shark 
Carcharhinus longimanus

OCS 104673

Northern bluefin tuna 
Thunnus thynnus

BFT 195301 Spearfishes 
Tetrapturus spp

SPR 87513

White marlin 
Kajikia albida

WHM 194581 Skipjack tuna 
Katsuwonus pelamis

SKJ 85775

Shortfin mako 
Isurus oxyrinchus

SMA 190713 Night shark 
Carcharhinus signatus

CCS 78335

Escolars 
Gempylidae spp

OIL 184821 Scalloped hammerhead 
Sphyma lewirn

SPL 74137

Longfin mako 
Isurus paucus

LMA 181633 Atlantic bonito 
Sarda sarda

BON 47246

Tiger shark 
Galeocerdo cuvier

TIG 177109 White shark
Carcharadon carcharias

WSH 40442

Blue shark 
Prionace glauca

BSH 173251 Smooth hammerhead 
Sphyma zygaena

SPZ 40025

Blackfin tuna 
Thunnus atlanticus

BLF 168514 Porbeagle 
Lamna nasus

POR 37076

Hammerhead sharks 
Sphyma spp

SPN 161941 Bignose shark 
Carcharhinus altimus

CCA 33945

Sailfish
Istiophorus albicans

SAI 150602 Spinner shark 
Carcharhinus brevipinna

CCB 32684

King mackerel 
Scomberomorus cavalla

KGM 12042
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FIGURES

Fig. 1. Map of the distribution of longline sets (total number per cell) between 1987 and 2010 for 
the U.S. pelagic longline fishery in the Northwest Atlantic Ocean. The geographical regions used 
for classifying the fishery include the Caribbean Sea (CAR), Gulf of Mexico (GOM), Florida east 
coast (FEC), south Atlantic bight (SAB), mid Atlantic bight (MAB), north east coastal (NEC), 
north east distant waters (NED), Sargasso Sea (SAR), and offshore waters (OFS).
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Fig. 2. Comparison between our approaches to data analysis and truncation, and those used by 
Walter (2011) to generate an index of abundance for yellowfin tuna. The standardized indices 
were compared between identical approaches (a), between an identical model structures but with 
further data truncation needed for calculating habitat variables (b), and between models with and 
without MinT (c). Median percent difference (MPD) and standard deviation of percent difference 
(SDPD) were calculated for each comparison.
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Fig. 3. Annual trends in the number of hooks between floats for the U.S. pelagic longline fishery 
(a), and estimated habitat variables including the minimum temperature relative to surface 
temperature (MaxAT) fished per set (b), and the actual minimum temperature (MinT) fished per 
set (c). The black line represents the mean and the grey area encompasses the 95% confidence 
interval.

121



8
Ci «nv>
■ PosSm

■  Posttv# 
a  Binomial

s 8
f  ? j

|  8
I  o _

(c)

ill nn - l i d  M

■  Posittv* 
a  Binomial

[I ILh In
n ii ipipii ti ii i m  it ipii ti ipii i p im  ii ii ipii n i p i n i i i  ii m i  n n i rn

Fig. 4. Number of records analyzed (a), including proportion of positive catch records for species 
captured in the U.S. pelagic longline fishery (see Table 1 for definition of species codes). Also, 
the percent of the total deviance explained by the habitat factors MaxAT (b), and MinT (c) for 
analysis of presence/absence of a given species (Binomial) or the positive catch records 
(Positive). The deviance threshold used for determining inclusion of the variable in the final 
model (5%) was provided for reference (black line).

122



~  «
?  °  
Ul
?  CD

I

&
S

o

CM
o

o
o

(a)

I
■
" l

■
i

■ 26-30
■ 21-25  
« 16-20
■ 11-15
■ 06-10  
■ 01-05

. 1 1  1  V

■ l i ' l l t
I l I J I l Ii l l  1 . 11 M  l l  I J I .1

8  - (b)

©  -
j  j  j  j j  i i  i i j  j  j  i j  j  j i rm nm
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minimum temperature fished per set.
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Fig. 6. Indices of abundance estimated for each species (see Table 1 for definition of species 
codes) using data from the U.S. pelagic longline fishery (black line), and indices estimated 
previously for select species (red line). Each index was scaled to its mean value, and the 
corresponding median of the annual coefficients of variation (MCV) was presented. Dashed lines 
represent 50% (top) and 25% (bottom) of observed maximum relative abundance.
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APPENDIX A. INDICES OF ABUNDANCE

Table Al. Swordfish (SWO) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 8.867 1.699 1.399 0.192
1988 8.750 1.669 1.381 0.191
1989 9.162 1.741 1.446 0.190
1990 8.772 1.668 1.384 0.190
1991 8.011 1.522 1.264 0.190
1992 6.613 1.253 1.044 0.190
1993 6.537 1.240 1.032 0.190
1994 6.886 1.305 1.087 0.189
1995 6.028 1.141 0.951 0.189
1996 5.228 0.991 0.825 0.190
1997 6.010 1.139 0.948 0.190
1998 7.340 1.390 1.158 0.189
1999 7.759 1.471 1.224 0.190
2000 6.443 1.223 1.017 0.190
2001 5.964 1.133 0.941 0.190
2002 5.896 1.119 0.930 0.190
2003 5.437 1.037 0.858 0.191
2004 4.926 0.945 0.777 0.192
2005 4.528 0.862 0.715 0.190
2006 4.803 0.914 0.758 0.190
2007 5.376 1.030 0.848 0.192
2008 4.404 0.838 0.695 0.190
2009 4.385 0.837 0.692 0.191
2010 3.949 0.755 0.623 0.191
BFE: Year, Region, Time, Lightstick 
BRE: NA
PFE: Year, MinT, Region, Lightstick 
PRE: Year*Region
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Table A2. Yellowfin tuna (YFT) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 3.960 2.932 1.411 0.740
1988 4.913 3.259 1.751 0.663
1989 3.878 3.002 1.382 0.774
1990 3.566 2.755 1.271 0.773
1991 3.016 2.591 1.075 0.859
1992 3.905 2.756 1.391 0.706
1993 2.716 2.327 0.968 0.857
1994 2.936 2.475 1.046 0.843
1995 3.144 2.341 1.120 0.745
1996 2.390 2.016 0.852 0.843
1997 2.477 2.073 0.883 0.837
1998 1.988 1.776 0.708 0.893
1999 2.502 2.070 0.892 0.827
2000 2.559 2.023 0.912 0.790
2001 2.010 2.051 0.716 1.021
2002 2.218 1.768 0.790 0.797
2003 1.840 2.021 0.655 1.098
2004 3.093 2.606 1.102 0.842
2005 2.897 2.315 1.032 0.799
2006 2.908 2.366 1.036 0.814
2007 3.381 2.386 1.205 0.706
2008 1.497 1.515 0.533 1.012
2009 1.666 1.590 0.594 0.954
2010 1.899 1.702 0.677 0.896
BFE: Year, Region, Lightstick, Region*Lightstick
BRE: Year* Region
PFE: Year, Region, Time, Lightstick
PRE: Year*Region
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Table A3. Dolphinfish (DOL) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 1.534 3.766 0.740 2.455
1988 1.535 3.357 0.741 2.187
1989 2.887 4.439 1.393 1.537
1990 3.383 5.035 1.633 1.488
1991 2.896 4.081 1.397 1.409
1992 2.686 3.698 1.296 1.377
1993 2.169 3.424 1.047 1.579
1994 2.184 3.345 1.054 1.532
1995 3.040 4.190 1.467 1.378
1996 1.774 3.004 0.856 1.694
1997 2.134 3.513 1.030 1.647
1998 1.842 3.002 0.889 1.630
1999 1.974 3.160 0.952 1.601
2000 1.696 2.969 0.818 1.750
2001 1.766 2.956 0.852 1.674
2002 2.396 3.298 1.156 1.377
2003 2.296 3.418 1.108 1.489
2004 2.074 3.321 1.001 1.601
2005 1.164 2.345 0.562 2.014
2006 1.360 2.386 0.656 1.755
2007 2.077 3.128 1.002 1.506
2008 1.783 2.642 0.860 1.482
2009 2.013 2.872 0.971 1.427
2010 1.074 2.166 0.518 2.018
BFE: Year, MinT, Region, Season
BRE: Year*Region, Year*Season, MinT*Region, MinT*Season, Region*Season 
PFE: Year, MinT, Region, Season, Region*Season 
PRE: Year*Region, Year*Season
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Table A4. Bigeye tuna (BET) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.693 2.781 2.027 4.014
1988 0.460 2.366 1.346 5.144
1989 0.578 2.338 1.692 4.042
1990 0.362 2.154 1.059 5.949
1991 0.345 2.007 1.010 5.816
1992 0.262 1.834 0.767 6.999
1993 0.302 1.918 0.883 6.353
1994 0.463 1.850 1.353 3.999
1995 0.353 1.716 1.031 4.866
1996 0.349 1.880 1.020 5.390
1997 0.323 1.815 0.944 5.626
1998 0.429 1.771 1.256 4.125
1999 0.625 2.229 1.829 3.566
2000 0.369 1.753 1.081 4.746
2001 0.553 1.916 1.618 3.464
2002 0.411 1.765 1.202 4.293
2003 0.195 1.458 0.570 7.486
2004 0.132 1.317 0.385 10.001
2005 0.173 1.387 0.505 8.034
2006 0.246 1.509 0.719 6.140
2007 0.151 1.316 0.441 8.726
2008 0.148 1.280 0.434 8.635
2009 0.162 1.286 0.473 7.964
2010 0.122 1.177 0.356 9.680
BFE: Year, MinT, Region, Season, Region*Season 
BRE: Year*MinT, Year*Region 
PFE: Year, Region, Season, Region*Season 
PRE: Year*Region
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Table AS. Wahoo (WAH) index of abundance, standard errors (SE), index standardized to mean 
(Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with the 
factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.733 0.149 0.570 0.203
1988 0.958 0.199 0.746 0.208
1989 1.226 0.250 0.954 0.204
1990 0.979 0.196 0.762 0.200
1991 1.339 0.225 1.042 0.168
1992 1.912 0.306 1.487 0.160
1993 1.447 0.246 1.126 0.170
1994 1.343 0.234 1.044 0.175
1995 1.270 0.204 0.988 0.161
1996 0.884 0.143 0.688 0.162
1997 1.230 0.196 0.956 0.160
1998 1.788 0.288 1.391 0.161
1999 1.812 0.284 1.410 0.157
2000 1.334 0.207 1.038 0.155
2001 1.293 0.197 1.006 0.153
2002 1.380 0.222 1.074 0.161
2003 1.402 0.231 1.091 0.165
2004 1.501 0.236 1.167 0.158
2005 1.395 0.229 1.085 0.164
2006 1.574 0.266 1.224 0.169
2007 1.105 0.186 0.860 0.168
2008 1.110 0.177 0.863 0.160
2009 0.987 0.160 0.768 0.162
2010 0.849 0.151 0.661 0.178
BFE: Year, MinT, Region, Season, Time 
BRE:NA
PFE: Year, MaxAT, Region, Season, Time, Lightstick, HBF
PRE: Year*MaxAT, Year*Region, Year*Season, Year*Lightstick, Year*HBF
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Table A6. Blue marlin (BUM) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating die index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.577 0.761 1.500 1.319
1988 0.607 0.776 1.579 1.278
1989 0.636 0.765 1.654 1.202
1990 0.782 0.833 2.033 1.065
1991 0.679 0.739 1.765 1.088
1992 0.782 0.667 2.034 0.853
1993 0.892 0.670 2.318 0.751
1994 0.704 0.630 1.831 0.895
1995 0.583 0.568 1.517 0.973
1996 0.447 0.541 1.162 1.211
1997 0.298 0.454 0.775 1.521
1998 0.233 0.407 0.606 1.747
1999 0.223 0.422 0.580 1.894
2000 0.218 0.434 0.566 1.992
2001 0.154 0.390 0.400 2.535
2002 0.159 0.368 0.414 2.314
2003 0.123 0.372 0.319 3.035
2004 0.173 0.390 0.449 2.262
2005 0.165 0.412 0.430 2.492
2006 0.141 0.352 0.367 2.494
2007 0.163 0.403 0.424 2.475
2008 0.173 0.333 0.449 1.929
2009 0.172 0.358 0.446 2.085
2010 0.147 0.355 0.383 2.406
BFE: Year, MinT, Region, Season, Region* Season 
BRE: Year*Region 
PFE: Year, MinT, Region 
PRE: Year*Region
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Table A7. Albacore tuna (ALB) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.019 2.046 0.429 107.747
1988 0.023 2.346 0.523 101.221
1989 0.029 2.290 0.658 78.587
1990 0.046 2.540 1.034 55.406
1991 0.040 2.125 0.896 53.502
1992 0.032 1.981 0.726 61.588
1993 0.041 1.903 0.928 46.297
1994 0.051 2.003 1.153 39.197
1995 0.050 2.011 1.139 39.837
1996 0.050 1.687 1.129 33.723
1997 0.058 1.655 1.314 28.429
1998 0.044 1.619 0.993 36.775
1999 0.042 1.713 0.939 41.177
2000 0.045 1.820 1.020 40.278
2001 0.078 1.773 1.760 22.728
2002 0.063 1.528 1.418 24.311
2003 0.034 1.474 0.760 43.768
2004 0.038 1.383 0.866 36.015
2005 0.056 1.658 1.267 29.532
2006 0.038 1.522 0.848 40.521
2007 0.047 1.521 1.065 32.204
2008 0.037 1.450 0.826 39.578
2009 0.059 1.501 1.338 25.311
2010 0.043 1.433 0.971 33.306
BFE: Year, MinT, Region, Season
BRE: Year*Region, MinT*Season, Region*Season
PFE: Year, MinT, Region, Season
PRE: Year*MinT, Year*Region, Year*Season, MinT*Season, Region*Season
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Table A8. Northern bluefin tuna (BFT) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.023 2.995 1.513 128.529
1988 0.027 3.519 1.721 132.775
1989 0.018 3.098 1.160 173.384
1990 0.017 3.329 1.105 195.647
1991 0.017 3.208 1.131 184.078
1992 0.015 2.392 0.972 159.857
1993 0.009 2.075 0.592 227.360
1994 0.011 2.141 0.710 195.704
1995 0.006 1.975 0.366 350.469
1996 0.007 1.954 0.467 271.754
1997 0.007 1.523 0.453 218.328
1998 0.011 1.710 0.735 151.040
1999 0.008 1.682 0.495 220.453
2000 0.011 1.938 0.742 169.527
2001 0.005 1.570 0.309 330.036
2002 0.010 1.732 0.672 167.303
2003 0.015 1.941 0.962 131.040
2004 0.021 1.596 1.377 75.247
2005 0.019 1.832 1.241 95.844
2006 0.013 1.700 0.864 127.739
2007 0.013 1.994 0.872 148.426
2008 0.020 1.963 1.271 100.230
2009 0.042 2.097 2.739 49.705
2010 0.024 1.561 1.533 66.095
BFE: Year, MinT, Region, Season, Region* Season 
BRE: Year*MinT, Year*Region, Year*Season 
PFE: Year, MinT, Region, Season
PRE: Year*MinT, Year*Region, Year*Season, MinT*Season, Region*Season
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Table A9. White marlin (WHM) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 1.148 0.427 1.705 0.372
1988 1.035 0.436 1.538 0.421
1989 1.080 0.459 1.605 0.425
1990 0.974 0.442 1.447 0.454
1991 0.970 0.416 1.442 0.428
1992 1.100 0.402 1.634 0.366
1993 1.065 0.390 1.582 0.366
1994 0.802 0.325 1.192 0.405
1995 0.827 0.322 1.229 0.389
1996 0.657 0.283 0.977 0.431
1997 0.642 0.279 0.954 0.434
1998 0.540 0.267 0.802 0.494
1999 0.692 0.307 1.029 0.444
2000 0.501 0.268 0.744 0.535
2001 0.384 0.249 0.571 0.648
2002 0.561 0.279 0.834 0.498
2003 0.395 0.237 0.586 0.601
2004 0.503 0.262 0.747 0.521
2005 0.511 0.298 0.760 0.583
2006 0.277 0.236 0.412 0.851
2007 0.401 0.245 0.596 0.611
2008 0.313 0.216 0.466 0.690
2009 0.457 0.240 0.680 0.525
2010 0.315 0.231 0.468 0.735
BFE: Year, MinT, Region, Season, MinT*Season, Region* Season 
BRE: Year*MinT, Year*Region, Year*Season 
PFE: Year, Region, Lightstick, HBF, Region*Lightstick 
PRE: Year*Region, Year*Lightstick
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Table A 10. Shortfin mako shark (SMA) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.329 0.228 1.404 0.693
1993 0.281 0.195 1.201 0.693
1994 0.261 0.180 1.114 0.692
1995 0.301 0.208 1.289 0.691
1996 0.247 0.171 1.055 0.694
1997 0.220 0.153 0.941 0.694
1998 0.221 0.153 0.944 0.694
1999 0.195 0.136 0.835 0.697
2000 0.245 0.170 1.046 0.695
2001 0.230 0.160 0.982 0.696
2002 0.249 0.174 1.066 0.696
2003 0.264 0.184 1.127 0.697
2004 0.350 0.243 1.494 0.695
2005 0.318 0.222 1.359 0.697
2006 0.283 0.198 1.208 0.699
2007 0.439 0.305 1.878 0.695
2008 0.373 0.259 1.593 0.694
2009 0.458 0.318 1.959 0.694
2010 0.353 0.245 1.507 0.695
BFE: Year, MinT, Region 
BRE: NA
PFE: Year, MinT, Region, Season, Lightstick, HBF
PRE: Year*MinT, Year*Region, Year*Season, Year*Lightstick, Year*HBF, MinT*Season, Region*Season, 
Region*Lightstick, Region*HBF, Season*Lightstick

134



Table Al l .  Escolars (OIL) index of abundance, standard errors (SE), index standardized to mean 
(Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with the 
factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.021 0.025 0.014 1.158
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.000 0.000 0.000 NA
1993 0.015 0.009 0.010 0.572
1994 2.237 0.468 1.496 0.209
1995 2.197 0.450 1.469 0.205
1996 2.417 0.508 1.617 0.210
1997 1.675 0.351 1.121 0.210
1998 2.378 0.500 1.591 0.210
1999 2.528 0.525 1.691 0.208
2000 2.342 0.486 1.566 0.208
2001 1.979 0.413 1.324 0.209
2002 2.290 0.492 1.532 0.215
2003 2.435 0.523 1.629 0.215
2004 2.304 0.492 1.541 0.213
2005 1.916 0.425 1.282 0.222
2006 1.742 0.429 1.165 0.246
2007 1.699 0.411 1.137 0.242
2008 1.615 0.361 1.080 0.224
2009 1.624 0.383 1.086 0.236
2010 2.465 0.561 1.649 0.227
BFE: Year, MinT, Region 
BRE: NA
PFE: Year, MinT, Region, Season, Lightstick, HBF
PRE: Year*Region, Year*Season, Year* Lightstick, Year*HBF, Region*Season
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Table A12. Longfin mako shark (LMA) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.814 0.764 4.425 0.939
1988 0.683 0.710 3.710 1.040
1989 0.834 0.746 4.534 0.894
1990 0.639 0.695 3.475 1.087
1991 0.500 0.666 2.718 1.331
1992 0.086 0.611 0.470 7.068
1993 0.087 0.599 0.475 6.857
1994 0.078 0.586 0.422 7.557
1995 0.063 0.500 0.344 7.905
1996 0.069 0.552 0.374 8.026
1997 0.048 0.519 0.259 10.884
1998 0.044 0.471 0.241 10.609
1999 0.050 0.447 0.274 8.870
2000 0.036 0.454 0.193 12.752
2001 0.037 0.408 0.202 10.955
2002 0.039 0.449 0.209 11.658
2003 0.030 0.396 0.164 13.122
2004 0.025 0.458 0.137 18.164
2005 0.038 0.404 0.208 10.562
2006 0.042 0.427 0.227 10.223
2007 0.065 0.460 0.354 7.061
2008 0.034 0.387 0.182 11.537
2009 0.045 0.448 0.244 9.958
2010 0.029 0.402 0.158 13.832
BFE: Year, MinT 
BRE: Year*MinT
PFE: Year, Region, Season, Lightstick, Region*Season 
PRE: Year*Region
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Table A13. Tiger shark (TIG) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.289 0.055 1.478 0.191
1988 0.141 0.027 0.723 0.190
1989 0.216 0.041 1.102 0.189
1990 0.190 0.036 0.971 0.189
1991 0.210 0.040 1.072 0.190
1992 0.193 0.036 0.988 0.188
1993 0.165 0.031 0.844 0.189
1994 0.164 0.031 0.838 0.188
1995 0.132 0.025 0.675 0.188
1996 0.132 0.025 0.672 0.189
1997 0.106 0.020 0.543 0.189
1998 0.122 0.023 0.622 0.190
1999 0.109 0.021 0.555 0.190
2000 0.165 0.031 0.842 0.189
2001 0.165 0.032 0.845 0.191
2002 0.180 0.034 0.920 0.189
2003 0.182 0.035 0.932 0.190
2004 0.205 0.039 1.047 0.190
2005 0.301 0.057 1.539 0.191
2006 0.314 0.060 1.603 0.191
2007 0.297 0.057 1.516 0.191
2008 0.268 0.051 1.370 0.191
2009 0.229 0.044 1.169 0.191
2010 0.222 0.042 1.133 0.190
BFE: Year, MinT, Region 
BRE:NA
PFE: Year, Region, Lightstick, HBF
PRE: Year* Region, Year*Lightstick, Region*Lightstick, Region*HBF
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Table A14. Blue shark (BSH) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 17.544 9.620 2.462 0.548
1988 10.391 6.504 1.458 0.626
1989 8.217 5.969 1.153 0.726
1990 7.442 5.360 1.044 0.720
1991 8.875 5.420 1.245 0.611
1992 9.778 5.317 1.372 0.544
1993 9.308 5.495 1.306 0.590
1994 9.955 4.866 1.397 0.489
1995 9.830 4.691 1.379 0.477
1996 10.403 4.874 1.460 0.469
1997 9.462 4.747 1.328 0.502
1998 7.675 3.788 1.077 0.494
1999 5.804 3.069 0.814 0.529
2000 5.098 3.013 0.715 0.591
2001 4.234 2.492 0.594 0.589
2002 3.155 2.076 0.443 0.658
2003 3.422 2.181 0.480 0.637
2004 4.145 2.474 0.582 0.597
2005 2.784 2.006 0.391 0.721
2006 3.436 2.352 0.482 0.684
2007 3.536 2.636 0.496 0.745
2008 4.212 2.489 0.591 0.591
2009 5.793 3.181 0.813 0.549
2010 6.554 3.431 0.920 0.523
BFE: Year, MinT, Region 
BRE: Year*Region 
PFE: Year, MinT, Region, Season 
PRE: Year*Region
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Table A1S. Blackfin tuna (BLF) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.863 1.918 0.884 2.223
1988 1.034 2.234 1.060 2.161
1989 1.285 2.216 1.317 1.724
1990 1.483 2.062 1.520 1.390
1991 1.440 1.970 1.476 1.368
1992 1.749 2.017 1.792 1.153
1993 1.487 1.878 1.524 1.263
1994 1.542 1.869 1.580 1.212
1995 1.396 1.570 1.431 1.124
1996 0.775 1.338 0.795 1.725
1997 0.745 1.424 0.764 1.910
1998 0.823 1.356 0.843 1.647
1999 0.764 1.467 0.783 1.921
2000 0.429 1.339 0.440 3.120
2001 0.521 1.278 0.533 2.455
2002 0.586 1.236 0.601 2.109
2003 0.735 1.518 0.753 2.066
2004 0.868 1.456 0.889 1.678
2005 0.407 1.352 0.417 3.323
2006 0.529 1.472 0.542 2.781
2007 0.892 1.447 0.914 1.622
2008 0.998 1.198 1.023 1.200
2009 1.119 1.750 1.147 1.564
2010 0.949 1.499 0.973 1.580
BFE: Year, MinT, Region, Season
BRE: Year*Region
PFE: Year, Region, Season, Lightstick
PRE: Year*Region, Year*Season, Year* Lightstick, Region*Season, Region*Lightstick
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Table A 16. Hammerhead sharks (SPN) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 1.489 3.583 4.795 2.407
1988 1.707 3.473 5.497 2.035
1989 1.530 2.663 4.929 1.740
1990 0.822 2.331 2.646 2.837
1991 0.659 2.546 2.122 3.863
1992 0.256 1.891 0.825 7.383
1993 0.139 1.767 0.448 12.695
1994 0.109 1.574 0.350 14.461
1995 0.075 1.552 0.240 20.804
1996 0.040 1.350 0.130 33.475
1997 0.021 1.095 0.067 52.611
1998 0.031 1.065 0.099 34.623
1999 0.033 1.249 0.107 37.447
2000 0.027 1.086 0.087 39.971
2001 0.010 1.148 0.034 109.601
2002 0.009 0.923 0.030 97.744
2003 0.038 1.272 0.122 33.646
2004 0.044 1.351 0.143 30.408
2005 0.070 1.264 0.225 18.102
2006 0.066 1.465 0.213 22.200
2007 0.089 1.175 0.287 13.174
2008 0.059 0.962 0.192 16.161
2009 0.055 1.023 0.176 ■ 18.757
2010 0.073 1.134 0.234 15.577
BFE: Year, MinT, Region
BRE: Year*Region 
PFE: Year, Region 
PRE: Year*Region
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Table A 17. Sailfish (SAI) index of abundance, standard errors (SE), index standardized to mean 
(Stdz. Index), and coefficients of variation (CV)- The components of the delta GLM with the 
factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.247 0.787 0.997 3.183
1988 0.446 0.725 1.797 1.626
1989 0.326 0.757 1.314 2.323
1990 0.354 0.722 1.427 2.039
1991 0.365 0.613 1.472 1.680
1992 0.655 0.654 2.642 0.998
1993 0.639 0.614 2.577 0.960
1994 0.441 0.563 1.778 1.276
1995 0.250 0.465 1.009 1.858
1996 0.261 0.450 1.053 1.724
1997 0.252 0.452 1.016 1.793
1998 0.208 0.385 0.838 1.854
1999 0.239 0.449 0.963 1.881
2000 0.256 0.470 1.032 1.836
2001 0.093 0.335 0.374 3.610
2002 0.097 0.389 0.393 3.991
2003 0.099 0.354 0.399 3.581
2004 0.114 0.338 0.461 2.954
2005 0.078 0.298 0.313 3.835
2006 0.082 0.340 0.329 4.157
2007 0.094 0.311 0.380 3.299
2008 0.125 0.333 0.502 2.671
2009 0.124 0.340 0.501 2.738
2010 0.107 0.329 0.432 3.072
BFE: Year, MinT, Region, Season 
BRE: Year*Region 
PFE: Year, Region, Lightstick 
PRE: Year*Region
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Table A18. Silky shark (FAL) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 1.408 2.226 3.693 1.580
1993 1.042 1.755 2.734 1.684
1994 0.649 1.409 1.701 2.172
1995 0.870 1.650 2.282 1.896
1996 0.697 1.717 1.828 2.463
1997 0.401 1.278 1.052 3.188
1998 0.259 1.097 0.679 4.232
1999 0.326 1.344 0.855 4.124
2000 0.417 1.338 1.093 3.208
2001 0.245 1.085 0.641 4.436
2002 0.241 0.860 0.633 3.563
2003 0.444 1.174 1.165 2.643
2004 0.245 0.697 0.643 2.841
2005 0.279 0.878 0.731 3.150
2006 0.434 0.951 1.138 2.193
2007 0.310 0.842 0.812 2.720
2008 0.299 0.881 0.784 2.947
2009 0.208 0.835 0.545 4.017
2010 0.377 0.949 0.989 2.516
BFE: Year, MinT, Region, Time, Lightstick 
BRE: Year*Region
PFE: Year, Region, Lightstick, Region:Lightstick 
PRE: Year*Region, Year*Lightstick
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Table A19. Dusky shark (DUS) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.351 0.746 4.080 2.129
1993 0.398 0.818 4.628 2.059
1994 0.193 0.462 2.247 2.394
1995 0.144 0.379 1.682 2.626
1996 0.198 0.460 2.309 2.317
1997 0.086 0.340 1.007 3.928
1998 0.073 0.306 0.846 4.212
1999 0.077 0.335 0.895 4.352
2000 0.070 0.286 0.811 4.101
2001 0.035 0.227 0.412 6.429
2002 0.042 0.234 0.493 5.525
2003 0.059 0.328 0.689 5.546
2004 0.052 0.326 0.601 6.307
2005 0.058 0.280 0.681 4.788
2006 0.055 0.252 0.640 4.583
2007 0.060 0.263 0.693 4.426
2008 0.036 0.231 0.423 6.349
2009 0.036 0.247 0.423 6.795
2010 0.038 0.254 0.440 6.731
BFE: Year, MinT, Region 
BRE: Year*Region
PFE: Year, Region, Lightstick, Region.Lightstick 
PRE: Year*Region, Year*Lightstick
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Table A20. Bigeye thresher shark (BTH) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 1.380 0.003 17625.917
1992 0.075 0.822 2.926 10.981
1993 0.063 0.631 2.473 9.980
1994 0.054 0.678 2.104 12.595
1995 0.048 0.557 1.862 11.695
1996 0.040 0.652 1.580 16.138
1997 0.036 0.619 1.393 17.371
1998 0.028 0.623 1.109 21.967
1999 0.028 0.626 1.111 22.022
2000 0.028 0.597 1.088 21.471
2001 0.023 0.603 0.906 26.003
2002 0.018 0.525 0.690 29.728
2003 0.015 0.478 0.572 32.691
2004 0.015 0.432 0.604 27.947
2005 0.031 0.540 1.224 17.247
2006 0.028 0.466 1.099 16.574
2007 0.023 0.424 0.889 18.662
2008 0.024 0.391 0.951 16.080
2009 0.022 0.510 0.865 23.045
2010 0.014 0.415 0.552 29.406
BFE: Year, MinT, Region, Season, MinT* Season, Region*Season
BRE: Year*Region, Year*Season
PFE: Year, MinT, Region, Lightstick
PRE: Year*MinT, Year*Region, Year*Lightstick
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Table A21. Thresher shark (ALV) index of abundance, standard errors (SE), index standardized 
to mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.397 0.896 4.097 2.259
1988 0.345 0.892 3.564 2.585
1989 0.390 0.876 4.028 2.246
1990 0.261 0.852 . 2.692 3.269
1991 0.242 0.798 2.502 3.296
1992 0.059 0.866 0.614 14.566
1993 0.066 0.653 0.684 9.871
1994 0.045 0.686 0.468 15.131
1995 0.044 0.697 0.456 15.797
1996 0.036 0.603 0.377 16.544
1997 0.023 0.552 0.237 24.071
1998 0.013 0.549 0.133 42.514
1999 0.028 0.582 0.288 20.888
2000 0.027 0.479 0.274 18.060
2001 0.023 0.439 0.236 19.251
2002 0.039 0.570 0.399 14.733
2003 0.036 0.582 0.373 16.104
2004 0.019 0.467 0.201 23.969
2005 0.039 0.534 0.399 13.837
2006 0.045 0.465 0.461 10.411
2007 0.030 0.516 0.310 17.203
2008 0.032 0.488 0.332 15.195
2009 0.050 0.501 0.512 10.112
2010 0.035 0.438 0.363 12.458
BFE: Year, MinT, Region, Season 
BRE: Year*MinT, Year*Region, Year* Season 
PFE: Year, MinT, Region, Lightstick 
PRE: Year*MinT, Year*Region

145



Table A22. Blacktip shark (CCL) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Yeiar Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
19.89 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 1.474 2.061 5.156 1.398
1993 1.005 1.898 3.513 1.889
1994 0.886 1.964 3.099 2.216
1995 0.515 1.447 1.800 2.812
1996 0.407 1.339 1.424 3.288
1997 0.335 1.376 1.171 4.108
1998 0.219 1.149 0.765 5.253
1999 0.214 1.688 0.750 7.873
2000 0.210 1.556 0.735 7.406
2001 0.223 1.473 0.781 6.598
2002 0.263 1.933 0.921 7.341
2003 0.307 1.414 1.075 4.602
2004 0.306 1.668 1.071 5.446
2005 0.164 1.641 0.575 9.974
2006 0.081 0.859 0.284 10.561
2007 0.095 1.006 0.331 10.641
2008 0.054 0.708 0.189 13.065
2009 0.068 0.913 0.239 13.337
2010 0.035 1.526 0.121 44.229
BFE: Year, MinT, Region 
BRE: Year*Region
PFE: Year, Region, Season, Time, Lightstick, HBF
PRE: Year*Region, Year*Season, Year'Lightstick, Year*HBF, Region*Season, Region*Lightstick
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Table A23. Sandbar shark (CCP) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.000 0.000 0.000 NA
1993 0.000 0.000 0.000 NA
1994 0.011 4.740 0.093 428.773
1995 0.296 4.015 2.480 13.572
1996 0.655 4.553 5.491 6.951
1997 0.185 3.390 1.549 18.347
1998 0.154 3.342 1.294 21.649
1999 0.165 4.477 1.384 27.126
2000 0.223 3.946 1.873 17.654
2001 0.171 3.409 1.430 19.989
2002 0.099 2.607 0.830 26.341
2003 0.139 3.575 1.166 25.706
2004 0.216 3.492 1.807 16.198
2005 0.118 3.120 0.993 26.340
2006 0.059 3.252 0.490 55.574
2007 0.115 3.885 0.960 33.918
2008 0.055 2.103 0.464 38.000
2009 0.102 3.161 0.859 30.853
2010 0.100 2.917 0.839 29.141
BFE: Year, Region, Season, Lightstick, Region* Season, Region*Lightstick, Season‘Lightstick 
BRE: Year*Region, Year*Season, Year*Lightstick 
PFE: Year, MinT, Region, Season, Lightstick, HBF
PRE: Year*Region, Year*Season, Year*Lightstick, Year*HBF, Region*Lightstick, Season*Lightstick
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Table A24. Oceanic whitetip shark (OCS) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.513 1.724 2.759 3.360
1993 0.325 1.691 1.747 5.203
1994 0.408 1.346 2.191 3.302
1995 0.317 1.248 1.703 3.938
1996 0.349 1.175 1.875 3.369
1997 0.328 1.143 1.764 3.484
1998 0.407 1.253 2.186 3.081
1999 0.254 1.179 1.367 4.635
2000 0.147 1.017 0.789 6.931
2001 0.166 1.002 0.890 6.052
2002 0.127 0.876 0.685 6.877
2003 0.170 0.959 0.914 5.641
2004 0.127 0.928 0.685 7.280
2005 0.160 0.947 0.859 5.926
2006 0.110 0.838 0.594 7.587
2007 0.143 0.858 0.769 5.997
2008 0.175 0.815 0.939 4.668
2009 0.129 0.734 0.692 5.705
2010 0.110 0.781 0.592 7.091
BFE: Year, MinT, Region
BRE: Year*Region
PFE: Year, MinT, Region, Lightstick
PRE: Year*Region, Year*Lightstick, Region* Lightstick
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Table A25. Spearfishes (SPR) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.061 1.914 1.090 31.601
1988 0.049 2.059 0.879 42.163
1989 0.072 1.440 1.301 19.907
1990 0.088 1.328 1.583 15.094
1991 0.053 1.051 0.946 19.989
1992 0.038 1.171 0.682 30.895
1993 0.080 1.078 1.434 13.532
1994 0.055 0.985 0.992 17.869
1995 0.086 0.966 1.552 11.202
1996 0.088 1.086 1.583 12.344
1997 0.065 0.875 1.176 13.385
1998 0.029 0.778 0.515 27.222
1999 0.033 0.825 0.588 25.242
2000 0.021 0.736 0.375 35.365
2001 0.034 0.650 0.611 19.154
2002 0.045 0.817 0.816 18.021
2003 0.034 0.747 0.603 22.312
2004 0.041 0.815 0.729 20.098
2005 0.052 0.682 0.937 13.096
2006 0.043 0.721 0.771 16.829
2007 0.047 0.704 0.848 14.940
2008 0.057 0.627 1.027 10.982
2009 0.095 0.690 1.710 7.261
2010 0.070 0.801 1.255 11.490
BFE: Year, MinT, Region
BRE: Year*MinT, Year*Region, MinT*Region
PFE: Year, Region
PRE: Year*Region
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Table A26. Skipjack tuna (SKJ) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.359 3.932 1.759 10.946
1992 0.591 4.231 2.892 7.163
1993 0.488 4.117 2.392 8.429
1994 0.374 2.806 1.833 7.495
1995 0.176 2.825 0.862 16.058
1996 0.132 1.869 0.649 14.110
1997 0.170 2.458 0.834 14.433
1998 0.363 2.547 1.777 7.018
1999 0.278 2.497 1.363 8.973
2000 0.268 2.411 1.313 8.988
2001 0.154 3.674 0.755 23.830
2002 0.168 2.288 0.823 13.614
2003 0.156 2.327 0.765 14.903
2004 0.263 3.044 1.286 11.591
2005 0.108 1.943 0.529 17.972
2006 0.220 2.086 1.076 9.499
2007 0.086 2.092 0.422 24.299
2008 0.163 1.899 0.799 11.634
2009 0.206 1.864 1.011 9.027
2010 0.176 2.080 0.862 11.813
BFE: Year, MinT, Region, Time, Lightstick
BRE: Year*Region, Year*Time, Year*Lightstick
PFE: Year, Region, Time, Lightstick, HBF
PRE: Year*Region, Year*Time, Year*Lightstick, Year*HBF
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Table A27. Night shark (CCS) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.195 2.923 4.050 14.984
1993 0.140 2.846 2.912 20.293
1994 0.111 2.540 2.305 22.880
1995 0.148 1.920 3.075 12.966
1996 0.085 1.965 1.766 23.101
1997 0.060 1.440 1.248 23.966
1998 0.026 1.668 0.549 63.130
1999 0.032 1.091 0.660 34.331
2000 0.051 1.505 1.058 29.546
2001 0.031 1.307 0.634 42.822
2002 0.011 1.186 0.238 103.618
2003 0.030 1.036 0.619 34.772
2004 0.013 1.169 0.271 89.604
2005 0.070 0.883 1.455 12.609
2006 0.028 0.893 0.584 31.717
2007 0.025 0.994 0.528 39.117
2008 0.034 0.682 0.710 19.946
2009 0.038 0.914 0.798 23.781
2010 0.026 0.960 0.540 36.916
BFE: Year, MinT, Region
BRE: Year*Region 
PFE: Year, Region 
PRE: Year*Region
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Table A28. Scalloped hammerhead shade (SPL) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.153 0.494 5.384 3.220
1993 0.167 0.449 5.859 2.687
1994 0.075 0.311 2.631 4.152
1995 0.082 0.312 2.880 3.803
1996 0.042 0.260 1.460 6.248
1997 0.029 0.183 1.010 6.358
1998 0.031 0.303 1.098 9.683
1999 0.032 0.233 1.132 7.226
2000 0.036 0.270 1.247 7.603
2001 0.020 0.256 0.688 13.049
2002 0.017 0.247 0.611 14.182
2003 0.000 0.000 0.000 NA
2004 0.000 0.000 0.000 NA
2005 0.000 0.000 0.000 NA
2006 0.000 0.000 0.000 NA
2007 0.000 0.000 0.000 NA
2008 0.000 0.000 0.000 NA
2009 0.000 0.000 0.000 NA
2010 0.000 0.000 0.000 NA
BFE: Year, MinT, Region 
BRE: Year* Region
PFE: Year, MinT, Region, Season, Lightstick, MinT*Season, Region*Season, Region*Lightstick, 
Season*Lightstick
PRE: Year*MinT, Year*Region, Year*Season, Year*Lightstick
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Table A29. Atlantic bonito (BON) index of abundance, standard errors (SE), index standardized 
to mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.000 0.000 0.000 NA
1993 0.353 3.929 1.788 11.120
1994 0.265 3.719 1.340 14.042
1995 1.746 5.560 8.833 3.185
1996 0.124 3.905 0.627 31.494
1997 0.299 4.570 1.511 15.297
1998 0.222 3.548 1.125 15.960
1999 0.281 5.268 1.419 18.782
2000 0.225 3.136 1.137 13.952
2001 0.087 2.446 0.439 28.211
2002 0.115 5.266 0.583 45.692
2003 0.098 4.118 0.494 42.196
2004 0.089 12.661 0.450 142.447
2005 0.221 9.203 1.117 41.670
2006 0.042 5.636 0.213 133.879
2007 0.068 4.638 0.343 68.440
2008 0.201 8.643 1.018 42.960
2009 0.247 7.909 1.248 32.058
2010 0.062 5.797 0.315 93.191
BFE: Year, MinT, Region, Season
BRE: Year*MinT, Year*Region, Year* Season, Region*Season
PFE: Year, MinT, Region
PRE: Year*MinT, Year*Region, MinT*Region

153



Table A30. White shark (WSH) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.325 1.336 2.397 4.118
1988 0.445 1.829 3.284 4.113
1989 0.535 1.950 3.950 3.647
1990 0.690 1.364 5.096 1.976
1991 0.569 1.400 4.203 2.461
1992 0.238 1.216 1.760 5.100
1993 0.030 0.733 0.221 24.465
1994 0.041 1.179 0.300 28.984
1995 0.051 0.726 0.375 14.307
1996 0.067 0.652 0.497 9.699
1997 0.029 0.692 0.212 24.130
1998 0.016 0.642 0.120 39.657
1999 0.032 0.583 0.238 18.083
2000 0.016 0.759 0.118 47.619
2001 0.030 0.648 0.224 21.409
2002 0.049 0.545 0.362 11.132
2003 0.022 0.679 0.161 31.047
2004 0.003 0.810 0.019 314.410
2005 0.000 0.000 0.000 NA
2006 0.009 0.685 0.070 72.693
2007 0.001 1.011 0.009 804.345
2008 0.000 0.000 0.000 NA
2009 0.006 1.085 0.043 188.168
2010 0.046 0.648 0.342 13.997
BFE: Year, MinT, Region
BRE: Year*Region
PFE: Year, Region, Lightstick
PRE: Year*Region, Year*Lightstick, Region*Lightstick
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Table A31. Smooth hammerhead shark (SPZ) index of abundance, standard errors (SE), index 
standardized to mean (Stdz. Index), and coefficients of variation (CV). The components of the 
delta GLM with the factors (* denotes interaction between factors) selected for generating the 
index are provided, including the binomial fixed effects (BFE), binomial random effects (BRE), 
positive fixed effects (PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.504 0.932 7.804 1.849
1993 0.350 0.802 5.422 2.291
1994 0.141 0.490 2.185 3.474
1995 0.105 0.407 1.627 3.874
1996 0.068 0.417 1.059 6.102
1997 0.048 0.343 0.737 7.200
1998 0.042 0.457 0.657 10.784
1999 0.111 0.520 1.714 4.695
2000 0.079 0.381 1.224 4.820
2001 0.065 0.520 1.002 8.039
2002 0.037 0.375 0.569 10.209
2003 0.000 0.000 0.000 NA
2004 0.000 0.000 0.000 NA
2005 0.000 0.000 0.000 NA
2006 0.000 0.000 0.000 NA
2007 0.000 0.000 0.000 NA
2008 0.000 0.000 0.000 NA
2009 0.000 0.000 0.000 NA
2010 0.000 0.000 0.000 NA
BFE: Year, MinT, Region 
BRE: Year*Region
PFE: Year, MinT, Region, Lightstick, HBF
PRE: Year*MinT, Year*Region, Year*Lightstick, Year*HBF, Region*Lightstick, Region*HBF, 
Lightstick*HBF
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Table A32. Porbeagle (POR) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including die binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.003 4.213 0.635 1238.282
1993 0.008 4.824 1.527 589.494
1994 0.007 10.569 1.397 1411.869
1995 0.003 2.280 0.586 725.483
1996 0.006 5.499 1.058 969.518
1997 0.005 3.887 0.971 746.613
1998 0.002 3.679 0.305 2249.082
1999 0.002 3.324 0.286 2169.283
2000 0.002 4.052 0.369 2048.695
2001 0.002 3.209 0.312 1918.276
2002 0.008 2.785 1.433 362.556
2003 0.007 3.918 1.246 586.762
2004 0.009 4.608 1.765 487.168
2005 0.008 5.785 1.469 734.548
2006 0.019 6.330 3.486 338.753
2007 0.016 3.632 2.941 230.424
2008 0.003 3.905 0.629 1159.088
2009 0.004 3.493 0.797 817.795
2010 0.015 3.922 2.790 262.242
BFE: Year, MinT, Region
BRE: Year* MinT, Year*Region
PFE: Year, MinT, Region, Lightstick
PRE: Year*MinT, Year*Region, Year*Lightstick
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Table A33. Bignose shark (CCA) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.522 3.026 4.190 5.802
1993 0.572 3.139 4.598 5.486
1994 0.398 1.776 3.197 4.463
1995 0.422 1.656 3.387 3.928
1996 0.142 1.116 1.137 7.885
1997 0.143 1.470 1.150 10.268
1998 0.028 1.838 0.228 64.651
1999 0.088 1.287 0.707 14.617
2000 0.122 1.135 0.979 9.316
2001 0.040 1.331 0.324 33.011
2002 0.046 2.363 0.369 51.404
2003 0.067 2.829 0.539 42.147
2004 0.014 3.244 0.112 232.044
2005 0.030 5.388 0.239 181.451
2006 0.043 1.246 0.348 28.787
2007 0.094 1.816 0.759 19.234
2008 0.038 2.430 0.309 63.169
2009 0.044 7.288 0.356 164.696
2010 0.133 4.919 1.072 36.867
BFE: Year, MinT, Region 
BRE: Year* MinT, Year*Region 
PFE: Year, MinT, Region 
PRE: Year’MinT, Year*Region
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Table A34. Spinner shark (CCB) index of abundance, standard errors (SE), index standardized to 
mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating the index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 0.000 0.000 0.000 NA
1989 0.000 0.000 0.000 NA
1990 0.000 0.000 0.000 NA
1991 0.000 0.000 0.000 NA
1992 0.091 0.968 7.769 10.602
1993 0.010 0.835 0.887 80.146
1994 0.010 0.905 0.851 90.528
1995 0.021 0.724 1.804 34.180
1996 0.028 1.185 2.375 42.477
1997 0.012 1.383 1.005 117.121
1998 0.019 2.463 1.654 126.774
1999 0.023 1.784 1.920 79.091
2000 0.003 0.714 0.239 254.222
2001 0.000 0.223 0.027 692.961
2002 0.000 3.333 0.041 6974.026
2003 0.016 0.969 1.350 61.111
2004 0.012 2.071 0.997 176.837
2005 0.002 0.335 0.158 180.243
2006 0.005 0.646 0.403 136.604
2007 0.008 0.826 0.724 97.243
2008 0.002 0.784 0.155 431.524
2009 0.008 0.617 0.677 77.594
2010 0.011 0.686 0.965 60.521
BFE: Year, MinT, Region, Season, HBF
BRE: Year*MinT, Year* Region, Year* Season, Year*HBF, Season*HBF 
PFE: Year, Region, Season, Lightstick, Season*Lightstick 
PRE: Year*Region, Year*Season, Year*Lightstick
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Table A35. King mackerel (KGM) index of abundance, standard errors (SE), index standardized 
to mean (Stdz. Index), and coefficients of variation (CV). The components of the delta GLM with 
the factors (* denotes interaction between factors) selected for generating die index are provided, 
including the binomial fixed effects (BFE), binomial random effects (BRE), positive fixed effects 
(PFE), and positive random effects (PRE).

Year Index SE Stdz. index CV
1987 0.000 0.000 0.000 NA
1988 4.756 7.613 15.499 1.601
1989 0.711 4.009 2.317 5.639
1990 0.000 0.000 0.000 NA
1991 0.694 8.500 2.263 12.244
1992 0.235 4.288 0.767 18.213
1993 0.073 4.313 0.239 58.757
1994 0.088 2.087 0.288 23.621
1995 0.327 1.443 1.066 4.413
1996 0.218 1.701 0.710 7.810
1997 0.012 1.755 0.040 141.794
1998 0.027 1.233 0.088 45.424
1999 0.139 1.821 0.454 13.067
2000 0.004 2.725 0.012 746.961
2001 0.002 1.410 0.005 848.663
2002 0.005 1.217 0.016 251.393
2003 0.000 0.000 0.000 NA
2004 0.002 2.201 0.008 934.077
2005 0.006 1.542 0.019 263.394
2006 0.000 0.000 0.000 NA
2007 0.039 28.764 0.128 733.616
2008 0.000 0.219 0.001 779.564
2009 0.022 18.150 0.072 819.905
2010 0.002 0.860 0.007 400.417
BFE: Year, Region 
BRE: Year*Region
PFE: Year, MinT, Region, Season, HBF
PRE: Year*MinT, Year*Region, Year*Season, Region’ Season
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CHAPTER 4

Performance o f a fisheries stock assessment model as related to abundance index quality: 

an evaluation o f the importance o f habitat when assessing Atlantic blue marlin
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ABSTRACT

Abundance indices are key inputs to fisheries stock assessments. For highly migratory species 
(HMS), abundance trends are estimated using fishery-dependent catch and effort data, which 
must be standardized to account for biases. However, despite being an important factor governing 
HMS catch rates, habitat effects are typically not directly considered in abundance index 
standardization. We used simulation to quantify the relative performance of a fisheries stock 
assessment model (Stock Synthesis) when different approaches to estimating abundance indices 
were used, including a method that explicitly accounts for habitats fished (HabGLM). We also 
considered a more traditional generalized linear modeling approach (GLMT), and nominal catch- 
per-unit-effort (CPUEN). While HabGLM has demonstrated superior abundance index accuracy 
over competing approaches, associated benefits to fisheries stock assessment have not been 
described. In general, there was less error associated with quantities output by the assessment 
model when abundance indices were estimated using HabGLM as opposed to GLMt or CPUEn. 
However, management quantities estimated in the HabGLM scenario were still overly optimistic, 
and performance regarding estimates of maximum sustainable yield (MSY) was best in the 
CPUEn scenario. Additionally, estimates of the fishing mortality rates at MSY (Fmsy) were nearly 
identical across scenarios. Because all scenarios overestimated F m s y ,  when we projected 
spawning biomass (SB) after SO years of fishing at F m s y ,  the final value for all scenarios was 
approximately 28% of the supposed management target ( S B m s y )-  We recommend the use of 
HabGLM in HMS stock assessments due to superior performance, but this study emphasized that 
the observed improvements would not likely overcome the limitations related to a reliance on 
fishery-dependent data. Consequently, independent scientific monitoring of HMS populations 
could substantially improve HMS assessment and management.
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INTRODUCTION

Fisheries stock assessment models provide understandings of fish population dynamics and the 

effects of fishing on those populations. Therefore, the ability for fisheries management to achieve 

its objectives directly relates to assessment model accuracy. A range of modeling options with 

differing data requirements are available to stock assessment scientists (Quinn and Deriso 1999), 

but one input common to nearly all approaches is a characterization of the historical pattern in 

abundance. Most assessment models estimate a biomass time series and other population 

parameters by fitting, or calibrating to observed changes in relative abundance (Maunder and 

Starr 2003). Given the role that indices of abundance play in stock assessments, it is important to 

characterize assessment model sensitivity to abundance index quality.

Evaluating the performance of a stock assessment model (or any statistical analysis) is best 

accomplished using simulation testing, where ‘true’ model parameters are known. Numerous 

studies have used simulation analyses to characterize assessment model performance as related to 

a range of data inputs and model assumptions (NRC 1998; Ianelli 2002; Punt 2003; Yin and 

Sampson 2004; Magnusson and Hilbom 2007; Wang et al. 2009; Conn et al. 2010; Wilberg and 

Bence 2010; Wetzell and Punt 2011; among others). Taken altogether, the affect of abundance 

index quality on assessment model performance is somewhat equivocal. A few studies 

emphasized the importance of a high quality index (NRC 1998; Wang et al. 2009; Conn et al. 

2010; Wilber and Bence 2010), while Yin and Sampson (2004), for example, placed more of an 

emphasis on alternative inputs, such as increased age composition sampling. Most previous 

simulation analyses were configured such that they captured the dynamics of a wide range of 

species life histories, and population and fisheiy dynamics. This is a very useful attribute of these 

studies, because their results can then serve as general guidelines that are broadly applicable
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across species. However, when conclusions are not entirely consistent across studies, such as 

those regarding the importance of abundance index quality, it may be necessaiy to conduct 

further studies that are more focused to address the model feature and/or species in question.

For many species, scientific programs have been developed to monitor population changes 

over time. In these cases, changes in abundance may be accurately characterized, resulting in less 

concern that corresponding indices of abundance will bias assessment results. However, for 

highly migratory species (HMS), monitoring programs are not in place and indices of abundance 

are typically derived from fisheries catch and effort data. To estimate trends in abundance, catch 

per unit effort (CPUE) time series from fisheries are ‘standardized’ to account for factors other 

than abundance that affect CPUE. There are numerous approaches available for standardizing 

CPUE (Maunder and Punt 2004), including habitat-based models (Hinton and Nakano 1996;, 

Maunder et al. 2006). Habitat-based standardization, as opposed to a more traditional linear 

modeling technique, has been proposed for HMS, because the fisheries responsible for a majority 

of HMS fishing mortality (longline fisheries) have changed target species and target habitats over 

time (Majkowski 2007). These changes highlight the need to include habitat when estimating the 

abundance of target and bycatch species from longline fisheries, because neither species group is 

caught randomly across their respective habitats. However, the application of habitat-based 

methods in real fisheries stock assessments has been resisted (particularly for Atlantic HMS), 

because associated assumptions and data inputs are considered highly uncertain (Goodyear et al. 

2003; Ward and Myers 2006).

Lynch et al. (2012) introduced a hybrid approach to CPUE standardization that 

incorporated habitat information into a generalized linear modeling framework (HabGLM). 

Through simulation analysis they demonstrated that HabGLM produced more accurate indices of 

abundance than other models tested, and was less sensitive to errors surrounding estimates of 

habitats fished. When the HabGLM was applied to fisher logbook data from the U.S. pelagic 

longline fishery, the habitat variable explained a significant portion of the variability in CPUE for
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34 out of 35 HMS analyzed (Chapter 3), further emphasizing the importance of including habitat 

in the standardization process. While the indices produced by HabGLM have been shown to be 

more reliable than those from competing methods, it is unclear to what degree these indices 

improve assessment model performance.

In this simulation study, we evaluate the influence of indices of abundance developed using 

HabGLM on the performance of a statistical model commonly applied in modem fisheries stock 

assessments (Stock Synthesis; Methot 2005; 2009). Stock Synthesis (SS) is considered an 

integrated analysis, or statistical-catch-at-age assessment model. We use this framework, in part 

because it is a flexible, widely applied, contemporary approach, but also because we are 

particularly interested in understanding how our results apply to the assessment of Atlantic blue 

marlin (Makaira nigricans). Blue marlin is an HMS that is incidentally captured in high seas tuna 

fisheries, and is a target of recreational and artisanal fisheries. The most recent blue marlin 

assessment (ICCAT 2012) was conducted using SS, and indices of abundance for that assessment 

were estimated using fisheiy-dependent CPUE. Based on the results of Lynch et al. (2012), 

HabGLM would likely provide the most accurate indices of abundance derived from longline 

fisheries; however, the indices for these fisheries in the blue marlin assessment did not 

incorporate habitat information (ICCAT 2012). By creating a simulation model with realistic blue 

marlin population and associated fishery dynamics, we are able to characterize the error 

surrounding select management quantities estimated by SS when different approaches to 

estimating abundance indices, including HabGLM, are used.
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MATERIALS AND METHODS 

The simulation framework used for testing assessment model performance consisted of several 

steps (Fig. 1). Initially, we developed an operating model with known parameters, and used that 

model to simulate population and fisheries data. Using the simulated longline fishery data, we 

estimated indices of abundance following three approaches: HabGLM, traditional GLM, and 

nominal CPUE (total annual CPUE). We established three stock assessment scenarios using the 

simulated data, changing only the indices of abundance. Each assessment scenario resulted in 

several estimated parameters and management quantities, and we used Markov Chain Monte 

Carlo simulation (MCMC) to capture their associated uncertainly. Finally, we compared the 

estimated quantities to the values specified in the operating model, and calculated performance 

metrics for each quantity in each assessment scenario. Generally, our experimental design was 

inspired by several previous simulation analyses (NRC 1998; Ianelli 2002; Punt 2003; Yin and 

Sampson 2004; Magnusson and Hilbom 2007; Wang et al. 2009; Conn et al. 2010; Wilberg and 

Bence 2010; Wetzell and Punt 2011). One aspect of this study that differs from many simulation 

analyses is that we used the estimation model (SS) under a deterministic configuration that 

replicates the operating model to calculate the ‘true’ fishing mortality rates and management 

quantities. This was done to prevent any issues related to how these quantities are defined by SS, 

and to quantify differences solely due to the indices of abundance.

Operating model

A comprehensive model was developed to simulate a single Atlantic blue marlin population. The 

simulation incorporated general spatial dynamics, age and sex structure, and catches from
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multiple fisheries using customary relationships defined for population (Table 1) and fishery 

(Table 2) dynamics (Quinn and Deriso 1999). In an attempt to simulate population dynamics that 

are most reflective of the actual blue marlin population over time, input parameters (Table 3) 

were obtained from multiple sources, including primary literature, secondary literature, and stock 

assessment reports. The simulation was initiated approximately one generation before fishing 

began (1935) and continued through 2010.

Spatial dynamics were simulated over seven defined regions (r) in the Atlantic Ocean (Fig.

2), including west tropical (WT), east tropical (ET), southwest subtropical (SW), southeast 

subtropical (SE), northwest subtropical (NW), northeast subtropical (NE), and Caribbean 

Sea/Gulf of Mexico (CG). Temporal dynamics were simulated by defining four seasons (S: 

January -  March, April -  June, July -  September, October - December). The spatiotemporal 

distribution of blue marlin was specified as the proportion of the population at age a in region r 

during season S {Pa,r,s- Table 4). The values for Pa.r,s were qualitatively determined, but generally 

followed seasonal population concentrations as defined by Nakamura (1985), and 27 -  28°C 

surface water isotherms (Goodyear 2003, Goodyear et al. 2008) using seasonal water 

temperatures from the National Oceanographic Data Center (NODC)4.

Our simulated population was subjected to fishing by five separate fisheries that operate in 

the Atlantic Ocean and adjacent seas: the pelagic longline fisheries from Japan (JAPLL) and the 

US (USLL), the gillnet fisheries from Venezuela (VENGN) and Ghana (GHAGN), and the US 

recreational fishery (USREC). We excluded other fisheries that capture blue marlin (and other 

HMS) in the Atlantic, to maintain model efficiency. Fishing effort (E) varied over years, seasons, 

and regions according to catch and effort dynamics reported for each respective fishery 

considered. With the exception of the USLL, effort data were obtained from the International

4 www.nodc.noaa.gov; data accessed September 20,2011.

166

http://www.nodc.noaa.gov


Commission for the Conservation of Atlantic Tunas (ICCAT)5. For the USLL, we used fisher 

logbook data obtained from the National Marine Fisheries Service on November 21,2011.

Catches were determined by specifying catchability (q), and relating effort dynamics to 

population dynamics within the appropriate year, region, and season. For all fisheries, q was 

specified in the first year of fishing by taking the average of the first three years of each fishery’s 

observed CPUE divided by the total biomass in those years estimated by the 2011 blue marlin 

stock assessment (ICCAT 2012) in the corresponding years. Initial q was then subjected to small 

random annual proportional increases to incorporate stochasticity, fisher experience, and 

technological improvements as demonstrated by Ward (2008). For the longline fisheries, catches 

were also related to the habitats fished by each hook within each set as a function of fishing 

depth. Habitat categories (H) were defined as temperature zones relative to sea surface 

temperature, binned by 1°C intervals. Therefore, fishing depth and temperature profiles in the 

area of fishing determined the habitats exploited per set (Fig. 3), and q was adjusted by summing 

over the habitat-specific catchabilities (Table 2). For gillnet and recreational fisheries, effort was 

assumed to be distributed in surface waters; therefore, catches for these fisheries were related to a 

single annual q and the spatiotemporal overlap between fishing effort and the distribution of blue 

marlin.

We used catenary algorithms (Bigelow et al., 2006; Yoshihara, 1951; 1954) and followed 

the approach described by Lynch et al. (2012) to specify fishing depths for the JAPLL. Longline 

gear components necessary for determining fishing depths included the number of hooks between 

floats (HBF), lengths of the branchline, floatline, and mainline between floats, and the angle 

between the tangent of the mainline where it attaches to the floatline and the horizon (catenary 

angle). Lynch et al. (2012) assumed a fixed value for the catenary angle; however, in this study, 

angles were specified as a normal random variable based on the number of hooks between floats 

(HBF) and the corresponding means and standard deviations observed by Bigelow et al. (2006).

5 www.iccat.int; data accessed September 23,2011.
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Otherwise, gear measurements were identical to those used by Lynch et al. (2012). For the USLL, 

catenary algorithms were also used, but we relied on fisher logbook data to specify measurements 

of the gear components. The hook depths specified for each set from the USLL and JAPLL were 

both reduced by a random proportion due to shoaling [NQi = 0.75, a  =  0.05)].

To relate fishing depth to temperature at depth, we used the temperature profile data 

obtained from NODC4 (e.g., Fig. 3). Each spatial region was equally divided into six sub-regions, 

and average temperature at depth was determined for each sub-region in each season. This 

resulted in 168 available temperature profiles (7 regions x 6 sub-regions x 4 seasons), and each 

longline set was randomly assigned one of the six available profiles corresponding to the 

region/season in which the set occurred (interannual variability was not incorporated). To assign a 

habitat category to each hook, temperature at fishing depth was specified as the value relative to 

surface water temperature, rounded to the nearest degree.

High resolution catch data were simulated according to the specified fishery/population 

dynamics and structure. For the gillnet fisheries, we assumed that captured individuals did not 

survive; thus, total catch equaled true removals (77?). However, a proportion of the catch was 

assumed to survive capture in the longline and recreational fisheries, and the year of fishing 

determined the live discard (LD) proportion for each fishery (Table 3). Furthermore, based on 

studies of post-release survival for Atlantic marlins caught in longline and recreational fisheries 

(Kerstetter et al., 2003; Graves and Horodysky, 2010), a proportion of LD was simulated to 

survive (DS). In the recreational fishery, DS was further related to the type of gear used (Table 3).

Abundance index scenarios

The goal of this study was to quantify the importance of using HabGLM when estimating indices 

of abundance for stock assessments of HMS (Atlantic blue marlin in particular). Thus, we 

evaluated the performance of the assessment model when HabGLM (Lynch et al. 2012; Chapter 

3) was used, but for comparative purposes, we used two additional approaches: traditional GLM
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without habitat information (GLMT), and nominal CPUE (CPUEN). Since habitat information has 

been demonstrated to be important when estimating abundance indices from pelagic longline data 

(Lynch et al. 2012), we evaluated indices from the longline fisheries only (JAPLL and USLL).

The only difference between HabGLM and GLMt was that a habitat explanatory variable 

was included in HabGLM and not GLMt. Otherwise, indices of abundance were estimated for 

these methods using a delta-lognormal generalized linear model (Aitchison 1955; Lo et al. 1992; 

Maunder and Punt 2004; Steffinsson 1996). The delta-lognormal GLM is a combination of two 

GLMs; one models the presence/absence of a species as a function of explanatory variables, 

assuming a binomial error distribution (logit link function), and the other models the log of 

positive CPUE as a function of explanatory variables, assuming Gaussian errors (identity link 

function). A categorical measure of time (usually expressed as years) is included in the 

explanatory variables for each model component of die delta GLM, and the product of the back- 

transformed, bias-corrected (Lo et al. 1992) time effects from each model is the index of 

abundance.

In addition to the year in which fishing occurred, we identified three other variables to be 

considered for constructing the GLM components of HabGLM and GLMt. These variables were 

all specified in the operating model and included Region, Season, and HBF (categorized with 

seven levels: 0 -  3,4 -  6,7 -  9,10 -  15,16 -  21,22 -  29,30+). These are common variables to 

consider when generating indices of abundance for HMS from longline data (e.g., Walter 2011). 

We did not include other variables commonly considered in these types of analyses (e.g., bait 

type, time of day, etc.), because these complexities were not included in the operating model. For 

the HabGLM, there were two habitat variables also considered: the minimum temperature fished 

by the longline (MinT), and the temperature associated with the deepest hook, relative to surface 

temperature, or maximum deviation from surface temperature (MaxAT). We treated both habitat 

variables as factors in the HabGLM, categorizing MinT with six levels (1 -  5,6 -  10,11 -  15,16 

-  20,21 -  25, and 26 -  30 °C), and rounding MaxAT to the nearest degree (see Fig. 3 for a
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visualization of the habitat variables). The MaxAT and MinT variables have both shown promise 

for improving abundance estimates from the JAPLL (Lynch et al. 2012) and the USLL (Chapter

3).

All variables used in the HabGLM and GLMT were specified in the operating model to 

affect catch rates to differing degrees. When incorporating these variables into our models, we 

used the true simulated values corresponding to each longline set. In practice, there would be 

error surrounding some of these variables; therefore, the abundance indices used in our evaluation 

represent best case scenarios.

For selecting variables to include in the binomial and positive components of the delta 

GLMs, we followed an approach commonly used when estimating abundance indices for HMS in 

the Atlantic Ocean (e.g., Walter 2011; Chapter 3). We evaluated each variable and corresponding 

first order interaction term in the context of deviance explained. Variables (and interaction terms) 

that explained at least 5% of the total deviance were included in the final models, and all others 

were excluded. Interaction terms selected for the final models were treated as random effects 

when they included the Year variable, or when they were determined to be rank deficient.

To evaluate how well each index of abundance tracked the pattern specified in the 

operating model, the performance metrics used by Lynch et al. (2012) were calculated. The 

accuracy of each index was quantified as the median of the annual percent differences between 

‘true’ and estimated abundance. This median percent difference (MPD) is akin to another 

commonly used performance metric, the median of the absolute values of the relative errors (e.g., 

Punt 2003), but expressed as a percentage. Finally, to quantify variability in the error, the 

standard deviation of the percent differences (SDPD) was calculated.
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Estimation model

We evaluated the performance of SS (version 3.23b) as obtained from the NOAA Fisheries 

Toolbox6. The SS program represents a contemporary, and extremely flexible approach to 

fisheries stock assessment, offering a range of complexity over which models can be configured 

(Methot 2005; 2009). As mentioned, we used SS to ‘calculate’ the fishing mortality rates and 

management quantities corresponding to the dynamics specified in the operating model. These 

‘true’ values, which form the basis of the performance evaluation, were obtained by running SS 

under a deterministic configuration, where all parameters were fixed to the values specified in the 

operating model (for the most part, one of the growth coefficients of variation was estimated 

using a strong prior).

In general, the operating model was formulated to resemble the component models of SS to 

prevent confounding in the performance evaluation; however, there were a few discrepancies 

(e.g., the equations for length-at-age differed). Where there were discrepancies between 

formulations, the ‘true’ values of the parameters required by SS were estimated externally, by 

optimizing the sum of the squared differences between the dynamics (e.g., growth) specified in 

the operating model, and those predicted by the respective SS formulation. Furthermore, we 

configured SS to model a two-sex, age-structured population as specified in the operating model, 

but for simplicity, only one season and one area were specified, and rather than entering each 

fishery separately, total annual landings were aggregated into three gear groups: longline, gillnet, 

and sport.

Once true management quantities were calculated in the deterministic configuration, we fit 

SS using the three abundance index scenarios (HabGLM, GLMT, and CPUEn). For the 

deterministic configuration, two indices of abundance were specified: the total biomass and total 

age-0 recruitment time series from the operating model. For the index scenarios, we included only

6 NOAA Fisheries Toolbox. 2012. Stock Synthesis, Version 3.23b. [http://nft.nefsc.noaa.gov].
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the indices estimated using JAPLL and USLL data. Despite the JAPLL time series beginning in 

1956, we maintained initiation of the assessment model in the first year specified in the operating 

model (1935). Assessment models based on fisheiy-dependent data are often initiated in the first 

fishing year, but our goal was to quantify differences strictly due to the indices, not to the indices 

and the shortened assessment time series. We also ran the assessments following a more 

traditional approach that began in the first year of fishing, but we did not present these results 

because the relative comparisons were identical, yet the overall performance of SS in all 

scenarios was degraded due to the shortened time series.

In addition to using fisheiy-dependent indices of abundance, we specified the stock- 

recruitment parameters (steepness and virgin recruitment) to be freely estimated. This was 

important, because derived management quantities are strongly informed by steepness and virgin 

recruitment; thus, fixing or imposing strong priors on these parameters is essentially no different 

than predetermining the management quantities output by the assessment (Brooks et al. 2010). 

Furthermore, we did not include length or age composition data in the assessment evaluation, 

because fishery selectivity parameters were not estimated, and the inclusion of composition data 

caused model instability. Aside from these changes, SS was configured identically to the original 

deterministic run to directly quantify effects due to the abundance indices (note: the inclusion or 

exclusion of age/length composition data did not affect the output of the deterministic 

configuration).

Model performance

The parameters used in our performance evaluation included steepness (h), virgin recruitment 

(Ro), maximum sustainable yield (MSY), fishing mortality rate at MSY ( F m s y ) ,  spawning biomass 

at MSY (SBMSy), fishing mortality rate in the final year ( F 2oio)> spawning biomass in the final 

year (SB2010), and fishing mortality and spawning biomass ratios in the final year ( F 2oio/ F m s y  and 

SB2oio/SBMsy). For each abundance index scenario, parameter vectors were resampled using
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MCMC with 5 x 104 iterations, a thinning interval of 50, and a 10% burn-in period. We calculated 

the mean of the posterior distribution for each parameter to serve as the estimate, and we 

characterized uncertainty using the 95% highest posterior density interval (HDPI). The error 

surrounding parameter 6 (Ee) was calculated as the posterior mean minus the corresponding 

‘true’ value specified in the operating model. The magnitude and direction of the error are 

captured by Ee, but we also calculated %Ee to quantify relative error.

Management implications

One aspect of the stock assessment process that is particularly important to fisheries management 

is the determination of population (stock) status in the final (current) year of the assessment. 

Using MSY-based management quantities, a population is considered to be experiencing 

overfishing when the fishing mortality rate in the final year (in this case, F 2oio)  exceeds F msy, and 

the population is labeled overfished when spawning biomass in the final year is less than S B msy 

(or Bpinai < B Msy)- Thus, our final assessment year ratios (F 20io/F msy and S B 2oio/S B msy)  were used 

as indicators of final year stock status in each assessment scenario, and comparisons were made 

to the true stock status extracted from the operating model.

Furthermore, we evaluated the potential effects of error in management quantities on a 

projected future population. We used the deterministic configuration of SS to project spawning 

biomass for 4 0  years (2 0 1 1  -  2 0 5 0 )  using the F Msy estimated in each scenario. The projection 

assumed that, following the final assessment year, the management body fixed fishing mortality 

at the estimated F Msy without error. Then, to quantify management implications associated with 

each scenario, we calculated the ratio of spawning biomass in 2 0 5 0  (SB2oso) to the true S B m sy-

Implementation

With the exception of SS, the operating model and all analyses were coded using the statistical 

programming language R (R Core Team 2012). For efficient optimization, the SS program is
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coded in AD Model Builder (ADMB Project, 2011); however, we ran SS by generating input files 

and calling the program using R.
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RESULTS

Abundance indices

The operating model simulated realistic fishery data that were used to estimate indices of 

abundance for the JAPLL and USLL following three approaches (HabGLM, GLMT, CPUEN).

The abundance trends estimated by these methods characterized the true biomass pattern with 

differing degrees of accuracy (Fig. 4, Table 5). For both longline fisheries, the HabGLM provided 

the best representation of true abundance, while GLMT offered the worst. For the JAPLL, all 

indices exhibited hyperdepletion (i.e., were overly pessimistic) due to the change in fishing depth. 

By contrast, the USLL indices exhibited hyperstability. The USLL indices tracked the true pattern 

in abundance more closely than JAPLL indices; however, the USLL time series was much 

shorter.

Assessment model performance

Of the parameters and derived quantities estimated in the three stock assessment 

scenarios, nine were selected for the performance evaluation. The posterior mean and HDPI 

associated with these quantities were compared with the simulated true values from the operating 

model (Table 6). For most quantities, estimates from the HabGLM scenario were closer to the 

true values than those from the GLMT or CPUEN scenarios. Furthermore, true values for the 

quantities were contained within the HDPIs from the HabGLM scenario, while most were not 

surrounded by the HDPIs from the other scenarios. There were two clear exceptions to this 

general result; the CPUEn scenario provided the best estimate of MSY overall, and the GLMT 

scenario provided the best estimate of SB2oio/SBmsy- The estimate of Ro from the GLMT scenario 

was closest to the true value, but the associated HDPI did not contain true Ro.
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In general, plots of posterior distributions of the quantities further demonstrate that the 

HabGLM scenario performed better than the other scenarios (Fig. 5). For instance, the posterior 

distributions from the HabGLM scenario surrounded the true values of the quantities, where the 

true values were mostly outside the distributions from the other scenarios. The only exceptions to 

this were associated with F2010 from the GLMt scenario, MSY from the CPUEN scenario, and the 

stock status indicators from all scenarios.

We quantified the performance of each stock assessment scenario by calculating error, 

and % error for the select quantities (Table 7). Estimates from the HabGLM scenario exhibited 

the least amount of error on absolute and relative scales for most quantities. As previously 

observed (Table 6, Fig. 5), the HabGLM scenario performed best regarding F m sy, F 2oio, SB m sy, 

SB2010, F 2oio/Fmsy, and h, while CPUEN performed best with MSY and GLMT provided the best 

estimate of SB2oio/SBMsy- The error surrounding Ro was lowest in the GLMT scenario, but recall 

that the posterior distribution for Ro from the GLMt scenario did not contain true Ro, while the 

posterior from the HabGLM scenario did (Fig. 5). In general, the direction of the error 

surrounding MSY-based management quantities from all scenarios would encourage regulations 

that may be detrimental to the population (i.e., MSY and Fm sy were overestimated and S B Msy  was 

underestimated); however, MSY from the CPUEn scenario was slightly underestimated. While 

estimates for most MSY quantities were overly optimistic, all scenarios presented an overly 

pessimistic characterization of stock status in the final assessment year (i.e., F2010 was 

overestimated and SB2010 was underestimated). The % error for management quantities from the 

HabGLM scenario was relatively low (< 20%) for MSY, F2010/FMSY and S B 2oio/SB m sy, moderate 

(20 -  50%) for F2010, SB m sy, and SB2010, and was high (> 50%) for Fmsy- For the GLMT scenario, 

% error was low for S B 2oio/SB m sy, moderate for MSY, F 2oio, SB m sy, S B 2oio, and F 2oio/Fmsy and 

was also high for Fmsy- For the CPUEN scenario, % error was low for MSY, moderate for 

S B 2oio/SB Msy , and the remaining quantities were not estimated accurately, with the highest % 

error associated with F 2oio-
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Management implications

Based on the true values specified in the operating model our simulated population was 

subjected to overfishing in the final year (F2oio/Fmsy = 1-83), but was not overfished 

(S B 2oio/SB m sy =1.31). The results of the HabGLM and GLMt assessment scenarios lead to the 

correct characterization of stock status in the final year with less error surrounding the F ratio 

from the HabGLM scenario, and less error surrounding the SB ratio from the GLMT scenario 

(Table 7). Stock status from the CPUEN scenario was overly pessimistic, because in addition to 

severely overestimating the degree of overfishing, the population would be considered 

overfished.

Using estimates of F msy from the three assessment scenarios, we projected spawning 

biomass and compared SB2050 from each F Msy with true S B m sy- While most quantities exhibited 

variability across assessment scenarios, F Msy was relatively constant and overestimated (the small 

differences in F msy are not realized in Table 6 due to rounding). Thus, SB was projected to 

decrease substantially in all assessment scenarios, stabilizing well below S B msy- The percent of 

true S B msy projected in 2050 for the HabGLM, GLMT, and CPUEN scenarios was 28.21,27.87, 

and 27.98 %, respectively. Therefore, in terms of F msy, the HabGLM scenario offers the most 

accurate management advice, but the realized differences among the three scenarios are 

negligible.
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DISCUSSION

Stock assessments of HMS rely, almost exclusively, on fishery-dependent data. To support 

effective HMS management and promote confidence in assessment model output, it is important 

to (1) understand what inherent biases may be present in the data, (2) develop methods that 

account for these biases, and (3) evaluate assessment model performance when different 

approaches are taken. Due to changes in fishing practices over time, nominal (raw) fishery- 

dependent CPUE does not likely capture true HMS abundance patterns; thus, numerous 

approaches to CPUE standardization have been developed to correct for biases in CPUE and 

extract an index that is proportional to abundance (Maunder and Punt 2004; Maunder et al. 2006; 

Lynch et al. 2012). Our results demonstrate superior assessment model performance when 

HabGLM is used to estimate indices of abundance from pelagic longline data as opposed to 

GLMt or CPUEN. The assessment scenario that incorporated the HabGLM index led to the 

correct determination of current stock status (overfishing occurring, but not overfished), the least 

amount of error surrounding most management quantities, and posterior distributions and HDPIs 

that surrounded the true values of all quantities evaluated.

It is not unexpected that assessment model performance in the HabGLM scenario was 

better overall than in other scenarios. Several previous studies have demonstrated a relationship 

between abundance index quality and assessment model performance (NRC 1998; Wang et al. 

2009; Conn et al. 2010; Wilberg and Bence 2010). The HabGLM index has been shown to 

provide better abundance indices from pelagic longline fisheries than GLMT or CPUEN (Lynch et 

al. 2012), and in this study, HabGLM provided the most accurate reflection of true biomass over 

time. Thus, it stands to reason that the HabGLM assessment scenario was superior to those that
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relied on lower quality abundance indices. However, in addition to simply ranking the scenarios 

evaluated, our goal was to quantify their influence on assessment model performance.

Understanding the effects of different approaches to estimating abundance is particularly 

important for HMS assessments, because of the international approach utilized by the regional 

fisheiy management organizations (RFMOs) responsible for setting most HMS regulations. With 

ICCAT, stock assessments are conducted by scientists from various member nations, and some 

contribute indices of abundance from their respective fisheries. Without a formal process in place, 

it is up to each scientist to determine how their abundance index is estimated, and due to their 

proprietary nature, the raw fishery data used for their analyses are typically not available for error 

checking or reanalysis by the assessment committee. Inevitably, indices of varying quality are 

contributed, and the committee is faced with the difficult decision of determining which indices 

to include in the assessment, and how to do so. Therefore, studies such as ours can help guide 

discussions among assessment committees, and provide scientific justification for the exclusion, 

inclusion, or weighting of various indices.

In addition to our study (and others that underscore the importance of abundance index 

quality), there are a number of simulation analyses that offer other useful guidelines for 

implementing statistical catch-at-age assessment models. For example, reliability of productivity 

estimates is related to several variables (Ianelli 2002; Conn et al. 2010), length and/or age 

composition data have been highlighted as important inputs (Yin and Sampson 2004; Wetzel and 

Punt 2011), and the safest assumption regarding catchability may be that it varies over time 

(Wilberg and Bence 2010). Overall, these previous simulation studies evaluated effects of 

numerous assumptions and data inputs over a wide range of theorized population and fishery 

dynamics. This general approach makes the results broadly applicable; however, a common 

conclusion of most studies is that additional analyses are required to test specific questions, or to 

quantify effects for a particular stock. This led many studies to include specific test cases. Our
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results may well extend to HMS worldwide, but our study was specifically configured to quantify 

the performance of the Atlantic blue marlin stock assessment as related to indices of abundance.

Overall, the case to be made for using HabGLM in blue marlin and other HMS stock 

assessments is strong, but we did not observe superior performance for every aspect of the 

assessment model. For instance, the GLMt scenario provided estimates of Ro and SB2oio/SBmsy 

with the least amount of error, and the error surrounding MSY was lowest in the CPUEN scenario. 

While Ro from the GLMT scenario is closest to the true value, the corresponding HDPI and 

posterior distribution did not contain the true value. Since true Ro was contained in the HDPI and 

posterior distribution from the HabGLM scenario, there is some probability that an assessment 

using HabGLM would arrive at the true estimate, and we maintain that HabGLM is superior to 

GLMt for HMS assessments. However, the estimate of MSY from the CPUEn scenario is clearly 

superior to MSY estimates from the other scenarios. This quantity can be of particular importance 

to management agencies, but we were unable to determine why the CPUEN scenario performed so 

well with regard to MSY. Nevertheless, the CPUEn scenario did not perform well overall (largest 

% error for most quantities and incorrectly declared the population overfished); hence, we would 

not recommend the use of fishery-dependent nominal CPUE as index of abundance in any 

assessment.

While the HabGLM scenario performed best of those evaluated, this study raises 

concerns surrounding HMS stock assessments in general. As with many assessment model 

performance evaluations, the population and fishery dynamics specified in the estimation model 

were identical to those in the operating model, with the exception of the variable of interest (the 

abundance indices, in this case). This approach is important for evaluating effects due to a 

specific attribute of an assessment model, because incorporating multiple sources of variability 

may confound the analyses. However, accurate knowledge of all aspects (except one) of a 

population and associated fisheries is unrealistic in a real-world assessment. A typical stock 

assessment would likely be faced with substantial parameter and model misspecification (Yin and
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Sampson 2004; Conn et al. 2010). Thus, the performance quantified for the various assessment 

scenarios likely represents their best case. Unfortunately, the scenario that performed best overall 

(HabGLM), still exhibited large relative errors for all quantities (Table 7). In fact, if the 

management agency implemented regulations (without implementation error) that fixed fishing 

mortality at Fmsy estimated by the HabGLM scenario, spawning biomass would decline over the 

subsequent 40 year period to a level that is 28.21% of their target spawning biomass ( S B m s y )-  

Consequently, even when the best available approach to index standardization is used without 

error in input data, and when an accurate characterization of population and fishery dynamics is 

specified in the assessment model, derived management quantities may still be overly optimistic. 

Hence, in the best case scenario, there exists the potential for inadvertent mismanagement and 

substantial decline of an important natural resource. We believe that this is the consequence of a 

strict reliance on fishery-dependent data; therefore, we cannot overemphasize the importance of 

independent research and monitoring programs for all exploited organisms. For HMS, 

comprehensive monitoring programs are considered cost prohibitive due to the geographic scale 

over which these programs would need to be conducted; however, if sustainable HMS 

management is a high priority, these investments are crucial.

Further evaluation is required to understand why estimates of MSY-based quantities from 

all scenarios were overly optimistic. Estimates of steepness were overestimated across all 

scenarios, which likely caused the overly optimistic management quantities (Conn et al. 2010), 

but we were unable to determine how the abundance indices led to overestimates of steepness. 

The JAPLL index offered a longer time series than the USLL index, deviated more from the true 

biomass pattern, and exhibited hyperdepletion, where the USLL index exhibited hyperstability. 

Since the two indices were equally weighted in the assessment, we would suspect that the length 

of the JAPLL time series would have caused it to be more influential over assessment results, and 

given that the JAPLL index exhibited hyperdepletion, we would expect steepness to be 

underestimated rather than overestimated. While we are not certain of the exact cause of
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steepness overestimates, it may be due to the relative influence of the USLL index or the fact that 

true steepness was close to the lower bound for this parameter. Additionally, the degree to which 

F m s y  estimates were overestimated was similar across scenarios. Thus, the importance of 

abundance index quality is not realized with regard to F m s y -

The results of our study are partially conditioned on one important feature: in the 

operating model, we specified a vertical catchability profile that followed thermal habitats. This 

profile caused catches to be partitioned by habitat, thereby driving the importance of the habitat 

variables included in HabGLM. In general, we configured the operating model to follow a 

contemporary understanding of the population dynamics of Atlantic blue marlin, and there is a 

wealth of information to suggest that catchability for blue marlin (and other HMS) is not constant 

over vertical temperature regimes. Archival tagging studies have demonstrated that HMS are not 

homogeneously distributed across vertical habitat, and Brill and Lutcavage (2001) assert that 

HMS depth distributions are governed by the relative change in water temperature with depth. In 

other words, HMS are physiologically confined to a thermal envelope irrespective of absolute 

temperature. It is for this reason that we specified our vertical catchability profile according to 

relative temperature. A valid argument has been made that catchability does not necessarily 

correlate with a species’ vertical distribution, because vertical migrations are likely motivated by 

feeding (Goodyear et al. 2003). While we agree it is unlikely that blue marlin vertical catchability 

is linearly related to their vertical distribution, we contend that the catchability profile specified in 

our operating model (highest probability of capture in surface waters) is a best approximation of 

the true profile. Many archival tagging studies have demonstrated that blue marlin distribute 

predominately in surface waters with occasional deep dives (Graves et al. 2002; Kerstetter et al. 

2003; Saito et al. 2004; Kraus and Rooker 2007; Goodyear et al. 2008; Dutton 2010). 

Furthermore, the recreational fishery catches blue marlin in surface waters. Based on the fact that 

blue marlin spend the majority of their time in surface or near-surface waters, and will take a
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baited hook in surface waters, we maintain that catchability is likely highest at the surface, and 

may indeed follow a profile similar to that specified in the operating model.

Our study emphasizes the importance of implementing HabGLM when using pelagic 

longline data to estimate HMS abundance for stock assessments; however, there are several 

limitations that should be considered. Despite our attempts to replicate true population and 

fishery dynamics, the operating model is inherently a simplification of extremely complex 

processes. This is true of all modeling efforts, and while results may vary over differing levels of 

complexity, it is difficult, if not impossible, to identify the ideal level for a given study. Secondly, 

the effects of abundance index quality were evaluated in isolation. There are many unknowns in 

fish stock assessments (e.g., growth dynamics, natural mortality rates, fishery selectivity, etc.), 

but in our estimation model, these were fixed at their known values. In reality, additional 

uncertainties may combine to obscure effects due to abundance indices quantified herein. Next, 

slight inconsistencies between operating and estimation models may have contributed a small 

amount of error to the performance evaluation, but we feel our approach to correcting for 

inconsistencies drastically minimized any error. Additionally, the catchability profile specified in 

the operating model was strictly related to relative temperature, but Prince et al. (2010) 

demonstrated that the dissolved oxygen content of the water by depth may also influence HMS 

catch rates in the Atlantic Ocean. Dissolved oxygen limitation is most relevant in the eastern 

tropical Atlantic, but we did not incorporate this attribute in any region. Finally, the fisheiy and 

oceanographic data used in the HabGLM index estimation were incorporated without error. 

However, these uncertainties may not drastically affect the results, because Lynch et al. (2012) 

showed that HabGLM was not particularly sensitive to error in estimates of fishing depth. Given 

the complexity of fisheiy stock assessments, there are many potential sources of uncertainty. 

While numerous studies have been conducted, we recommend continued research to quantify 

effects of multiple inputs and assumptions in isolation, in combination, and for general and 

specific scenarios.
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TABLES

Table 1. Formulation of the population dynamics component of the operating model.

Quantity Symbol Definition
Length at age by sex 

Weight at age by sex

Proportion mature at age by sex

Natural mortality rate at age by sex 

Total mortality rate at age by sex and year* 

Abundance at age by sex and year N,<w

Wax =  [ax

Tn“'* 1 + e-’,(a-a"u!«>
Maj  = MuWabiX

%ay,y ~  +  Fay,y

N ly .l9 3 S  =  F q/ 2

Na+ijs,i93S =  WaAi93Sc-M“J‘ V a  e  (0, ...,A — 1)

N,'Ay,1935 ~  Na -  1,*,193S

Nly,y+1 = 0.5 ^

1 — e~M** 
0,8RohS By

0.2SBo( l  -  h) +  (h -  0.2)SBy 

N a + I * jr +1 =  Najc,ye - Z°*s V a  €  (0,..., A -  1)

NAy,y =

a,x.yBiomass at age by sex and year Bt

Spawning biomass of females by year SBy

B a y .y  ^ a y ,y  w a y

S B y  — ^ ' ® a ,/em al* ,y  ^ a ,fe m a le  
a

*Faiy was zero in years with no fishing (1935 -1955).
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Table 2. Formulation of the fisheiy dynamics component of the operating model.

Quantity Symbol Definition
Selectivity at age by sex 
and fisheiy

Catchability by fishery 
and fishing year

Longline catchability by 
fisheiy and habitat

Proportion of overall 
catchability by habitat

Catch at age by sex, 
fisheiy, effort unit, 
region, season, and year

True removals at age by 
sex, fisheiy, effort unit, 
region, season, and year

Reported landings at age 
by sex, fisheiy, effort 
unit, region, season, and 
year

Fishing mortality rate by 
age, sex, and year

Annual fishing mortality 
rate

■W

qujtfy

Ph

-ayJEM.r.S.y

' axy

Sa-* s  1 g-lJ/fa-Orso.*)

£ ( ^ ) / 3
fy m 1 '  1 '

Q f.fy  =  r f y i 1 +  £/ , / y)  v  fy e  (2< ••• < F Y )  

R u ji .i  =  R u ,i * Ph

PH=i V H e ( 0  26)

Cax.ffu.rXy Qfjt.y E f f u r f j i y P  o B  e [t ijc.rJSu.rSy~0S(‘rf )  ]r a,r£ Dajc,y 7 v 1

TRa.xJ.Eur.Sy T R ^ f g u .T f .y  — C a x f f u x X y  ( l  — I’B ffiu .rfi.y  D Sf,B u ,rf,y)

RLajcjEarSy R L a xJ fu .rX y  ~  Cax.f£u,rS,y ( l  “  LDf,Eu,rJ,y )

Calculated as the value for that optimizes the following:

- s- -  [1 ^  c‘" w ~ “ )1 

Calculated as the value for Fy  that optimizes the following:

T R a  * a x .ffu ,r fiy
ax.fX.rS  \  ax
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Table 3. Input variables for the operating model.

Variable Definition_____________________________________ Value(s)
a  Discrete ages (A: beginning of plus group) 0 -1 9 +

x  Sex categories

y  Discrete years

Lmx von Bertalanffy asymptotic size*

kx von Bertalanffy growth rate*

t0 von Bertalanffy age at size 0*

ax Length-weight constant1

px Length-weight constant

Tj Slope parameter for logistic maturity function*

flmso,* Age at 50% maturity* (M = natural mortality rate
averaged over ages)

Mu Natural mortality rate at unit weight (1 g)5

b Allometric scaling factor9

R0 Asymptotic recruitment at F = 0*

h Steepness*

Ey Recruitment deviations'

/  Fisheiy

ijf  Slope parameter for logistic selectivity function*

as5o^ Age at 50% selectivity*

f y  Counter for fishing year per fisheiy

nCPUEf Nominal catch-per-unit-effort observed per fishery

fjfy  Total estimated abundance per fishing year*

e* Catchability deviations per fisheiy

H Temperature change relative to surface in 1°C bins

PDh Value of probability density function (PDF) per H

Eu Effort units per fisheiy

S Season (calendar quarter)

Male, female 

1935 -  2050 

178.64 (x = male) 

247.07 (x = female) 

0.90 (x = male)

0.78 (x = female)

- 0.2

2.47 x 10"6 (x = male) 

1.90 x 10"6 (x = female) 

3.22 (x = male)

3.28 (x = female)

1.0

3.69 

-0.31 

1.80 xlO5 

0.36

NQi =  0,oR =  0.4)

Longline (LL) from US or Japan, gillnet (GN) from Venezuela 
or Ghana, US recreational (REC)

2.0 (f=  LL)

2.5 (f=  GN)

1.8 (f=  REC)

6.0 (x = male)

5.5 (x = female)

1 -  final fy

Data obtained from http://www.iccat.int1 

Variable, depending on fishing year per fishery 

N(ji =  5 x 10-3, <tr  =  1 x 10-3)

1 - 2 6

?D¥[N(ji = 0 ,0  =  1.2)]

Individual set (f=  LL)

Sets per year, region, season i f  -  GN)

Fishing hours per year, region, season ( f  = REC)

Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
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L D ,

Effort

Process error to model stochastic fishing: 
N  Cu =  0,ff/)

Proportion of catch discarded alive* (LDGN =  0)

Per hooks (f  = LL)

Per set <f= GN)

Per hour (f=  REC) 

afi. =  0-05 

ffCN = 0.025 

Grec = 0.06
0 Vy < 2001
N(0.3,0.02) V y e  (2001,... ,2050)

0

LD,JAPLL

LDusll — N(0.3,0.02) 
N  (0.47,0.02)

Vy <  1988 
V y e  (1988,...,2003) 
V y 6 (2004,...,2050)

LD;
✓ e 0.1y-199.9 V y < 1999

*sc I N(0.97,0.01) V y 6  (1999,... ,2050)

DSf Proportion of discards that survive from L L ^ , and 
REC

DSu.~N(p.99,S x 10“3) 

DSrEC~N(M hk.yi 5 X 10-3)

V-hk.y Weighted mean proportion of discards that survive 
based on REC hook type

Phk.y =  0.5 [PCy/If +  ( l  — PCy)/iy]

Mean proportion of discards that survive in the REC 
fisheiy caught on circle (C) or J-style (J) hookstt

Hj = 0.93, He = 0-99

P C y Proportion of circle hook use 0 V y  <  2006
0.05,0.1,0.2 fo r  y  =  2007,2008,2009 
0.25 V y >  2009

*Based on the results of the 2011 Atlantic blue marlin stock assessment (ICCAT 2012). 
tObtained from Prager et al. (1995). 
tFollowing Conn et al. (2010).
•Following mortality at age for oceanic fishes from Lorenzen (1996).
'Value for aR reflects a relatively low estimate considering Beddington and Cooke (1983). 
'Data accessed September 27,2011.
"Based on Diaz (2008) for longlines.
♦♦Obtained from Kerstetter et al. (2003).
^Obtained from Graves and Horodysky (2010).
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Table 4. Proportional distribution of Atlantic blue marlin by age, region and season assumed in 
the operating model.

Region
Age WT ET SW SE NW NE CG
Season: Jan •■Mar
0 0.25 0.75 0 0 0 0 0
1 0.1 0.4 0.3 0.05 0.05 0 0.1
2 0.1 0.3 0.3 0.05 0.05 0.05 0.15
3+ 0.05 0.25 0.3 0.05 0.1 0.05 0.2

Season: Apr -Jun
0 0.25 0.75 0 0 0 0 0
1 0.1 0.3 0.25 0.05 0.1 0.05 0.15
2 0.1 0.25 0.25 0.05 0.1 0.05 0.2
3+ 0.05 0.2 0.25 0.05 0.2 0.05 0.2

Season: Jul - Sep
0 0.25 0.75 0 0 0 0 0
1 0.1 0.4 0.05 0 0.3 0.05 0.1
2 0.1 0.3 0.05 0.05 0.3 0.05 0.15
3+ 0.05 0.25 0.1 0.05 0.3 0.05 0.2

Season: Jul - Sep
0 0.25 0.75 0 0 0 0 0
1 0.1 0.3 0.15 0.05 0.2 0.05 0.15
2 0.1 0.25 0.15 0.05 0.2 0.05 0.2
3+ 0.05 0.2 0.2 0.05 0.25 0.05 0.2
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Table 5. Summary of models from the abundance index scenarios used in the performance 
evaluation. Three scenarios were used to generate abundance indices from data simulated for 
the pelagic longline fisheries of Japan (JAPLL) and the US (USLL). The explanatory variables 
for the binomial (B) and positive (P) components of the delta-lognormal GLMs were provided, 
as well as median percent difference (MPD) and standard deviation of percent difference 
(SDPD) for each index relative to simulated biomass.

Fishery Index scenario Explanatory variables MPD SDPD
JAPLL HabGLM B: Year, Area, MaxDT 

P: Year, Area, Season, MaxDT
16.44 28.16

GLMt B: Year, Area, Season, ’Year* Area, *Area*Season
P: Year, Area, Season, ’Year* Area, ’Year* Season, ’Area* Season

98.05 129.92

CPUEn NA 52.08 31.20

USLL HabGLM B: Year, Area, Season, MaxDT 
P: Year, Season, MaxDT

8.80 12.86

GLMt B: Year, Area, Season
P: Year, Area, Season, ’Year* Season, ’Area* Season

95.55 36.49

CPUEn NA 57.00 29.30

Interaction term fitted as random effect

193



Table 6. Posterior mean values for select parameters and management quantities estimated by 
Stock Synthesis (SS), including maximum sustainable yield (MSY), the fishing mortality rate 
(F) and spawning biomass (SB) at MSY and in the final assessment year (2010), final 
assessment year status indicators (F2ok/Fmsy and SB2<ho/SBmsy), steepness {h), and virgin 
recruitment (Ro). Values were provided for scenarios where SS was fitted using abundance 
indices that were estimated following three approaches (HabGLM, GLMt, and CPUEn). The 
true values from the operating model are also included. Uncertainty was characterized using the 
95% highest posterior density interval (HPDI).

Quantity True value Scenario 1: HabGLM (HPDI) Scenario 2: GLMt (HPDI) Scenario 3: CPUEn (HPDI)
F msy 0.04 0.07(0.02,0.11) 0.07 (0.06,0.09) 0.07 (0.05,0.10)

Fano 0.06 0.09 (0.05,0.12) 0.09(0.07,0.13) 0.18(0.11,0.27)

S B msy (1 0 4 1) 3.21 1.99(0.92,3.37) 1.90(1.61,2.25) 1.45 (0.96,1.98)

SB2010(104t) 4.21 2.95(1.68,4.41) 2.62(1.59,3.58) 1.30(0.72,1.88)

MSY (1031) 1.96 2.31(1.58,3.31) 2.68 (2.50,2.89) 1.91(1.67,2.23)

F 2ok/ F msy 1.83 1.50(0.53,2.58) 1.25 (0.89,1.74) 2.69(1.32,4.39)

S B 20i( /S B MSy 1.31 1.56 (0.95,2.47) 1.38(0.91, 1.85) 0.92 (0.50,1.46)

h 0.36 0.50(0.28,0.68) 0.53 (0.48,0.59) 0.52 (0.42,0.65)

Ro (10s n) 1.81 1.30(0.95,1.87) 1.35(1.24, 1.50) 1.00(0.83,1.28)

194



Table 7. Performance of the Stock Synthesis (SS) assessment model expressed in terms of select 
parameters, including maximum sustainable yield (MSY), the fishing mortality rate (F) and 
spawning biomass (SB) at MSY and in the final assessment year (2010), final assessment year 
status indicators (F2oio/Fmsy and SB2oio/SBMsy), steepness (h), and virgin recruitment (Ro). 
Performance metrics include error, and % error. For the assessment scenarios, SS was fitted 
using abundance indices that were estimated following three approaches (HabGLM, GLMt, and 
CPUEn). Assessment scenarios corresponding to the best performance metric are highlighted 
(grey).

Error % error

Quantity HabGLM GLMT CPUEN HabGLM GLMT CPUEN 

Fm sy  

F2010

SBmsy (t)

SB2010 (t)

MSY (t)

F201(/FmsY 
S B 2 0 1 0 /S B M S Y  

h
Ro( n)
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FIGURES

Fig. 1. Overview of the simulation procedure.
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Fig. 2. Map of regions defined in the operating model for simulating fishery and population 
dynamics related to blue marlin in the Atlantic Ocean and adjacent seas. Regions include 
northwest (NW), northeast (NE), Caribbean Sea/Gulf of Mexico (CG), western tropical (WT), 
eastern tropical (ET), southwest (SW), and southeast (SE).
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2 4 6 8 10 12 14

Hook number

Fig. 3. Visualization of a longline set, depicting the fishing depth of each hook (filled circles) in a 
single panel, predicted using catenary algorithms and realistic gear dimensions for a moderately 
deep set (14 hooks between floats). A temperature profile (gradient, ° C) was assigned to this 
example, demonstrating one potential relationship between fishing depth and temperature. Also, 
the HabGLM habitat variables, including minimum temperature fished (MinT) and maximum 
deviation from surface temperature (MaxAT) that would be extracted for this longline set are 
displayed.
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Fig. 4. Indices of abundance estimated from simulated data for the Japanese longline (a, JAPLL), 
and US longline (b, USLL) fisheries, following three approaches (HabGLM, GLMT, and 
C PU E n). The indices are scaled for comparison with the simulated true biomass pattern.
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Fig. 5. Posterior distributions of select parameters and derived quantities estimated by Stock 
Synthesis (SS), including maximum sustainable yield (MSY), the fishing mortality rate (F) and 
spawning biomass (SB) at MSY and in the final assessment year (2010), final assessment year 
status indicators (F 2oio/Fmsy and S B 2oio/SB m sy), steepness (h ), and virgin recruitment ( R o ) . For the 
assessment scenarios, SS was fitted using abundance indices that were estimated following three 
approaches (HabGLM, GLMT, and CPUEn). Vertical dashed lines represent the simulated true 
value of the quantities.
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CONCLUSIONS

The research studies that comprise this dissertation focused on the role of habitat in 

understanding the population dynamics, and assessing the stocks of highly migratory species 

(HMS). The results of each study have direct implications for HMS management. For instance, 

when habitat was directly incorporated into methods used for estimating abundance, the accuracy 

of abundance estimates improved. Accordingly, higher quality abundance indices resulted in 

enhanced performance of a stock assessment model. Therefore, these studies suggest that when 

habitat is accounted for in HMS assessments, management agencies are more equipped to enact 

measures that promote sustainability.

Additionally, when estimated abundance trends incorporated habitat, the Atlantic HMS 

community was portrayed as generally depleted. Conversely, substantial decreases in abundance 

were not observed for several species, while others exhibited signs of growth and/or recovery. 

These mixed results align with those of Worm et al. (2009), who posited that the current status of 

global fisheries is transitioning from being mostly overexploited to being managed sustainably.

While habitat considerations advance the stock assessment and management of HMS, the 

advancements, unfortunately, do not necessarily lead to adequate results. Even when accounting 

for all sources of bias, including habitat, indices of abundance estimated from fishery-dependent 

catch rates still may not reflect true abundance trends. Thus, bias may persist in the stock 

assessments even in best case scenarios. This clearly emphasizes that independent stock 

monitoring programs are essential for effective fisheries management. Given vast spatial 

distributions, the cost of monitoring programs for HMS would be substantial. However, it is 

reckless to exploit renewable resources when there is no reason to suggest that management 

regulations can reliably achieve their goals. Therefore, nations with an interest in harvesting these
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important internationally-shared resources should collaborate to support implementation of 

comprehensive scientific monitoring programs.

Unfortunately, the establishment of HMS monitoring programs is a nontrivial enterprise 

that would require significant time and resources. Thus, it is unlikely that HMS will be 

extensively monitored in the near future. Moreover, given a long history of exploitation without 

scientific monitoring, any established programs would be most useful for characterizing future 

population dynamics, while fishery-dependent data would continue to serve as the basis for 

understanding historical abundance patterns.

A projected reliance on fishery-dependent data highlights the relevance of this 

dissertation research, and emphasizes the importance of continuing and expanding the research. 

For instance, it would be fairly straightforward to incorporate additional considerations in the 

method proposed for estimating HMS abundance trends (HabGLM; Chapters 2,3, and 4). 

Fisheries that catch HMS do not distribute randomly over space; therefore, abundance patterns 

estimated using catches from select geographic areas may not reflect abundance trends in areas 

that were not fished. Hence, failure to account for dynamics in unfished spatial cells can bias 

abundance estimates (Walters 2003). An analytical approach has been described that utilizes data 

imputation to account for biases due to spatial dynamics (Carruthers et al. 2011), and since this 

approach was cast in a linear modeling framework, it could easily be merged with the HabGLM.

The HabGLM could be further expanded to incorporate habitat variables, in addition to 

temperature, that may influence fishery catch rates. For example, HMS habitat compression has 

been linked to oxygen limitation in areas with relatively shallow oxygen minimum zones 

(OMZs), such as the eastern tropical Atlantic Ocean (Prince et al. 2010). This localized habitat 

compression likely causes spatial variations in catchability, and therefore should be accounted for 

when estimating HMS abundance trends. To incorporate oxygen limitation in the HabGLM when 

using pelagic longline data, either the corresponding OMZ depth could be estimated and 

categorized for each set, or spatial regions with similar OMZ depths could be defined. There are
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many additional habitat/environmental variables worth researching to determine their effects on 

HMS populations. A subset of these relevant variables includes phytoplankton biomass 

(chlorophyll a concentration), salinity, predator/prey biomass, solar radiation, lunar phase, and 

sea surface height.

Beyond expanding the HabGLM, there are several areas of more general research that I 

am particularly interested in pursuing. For one, I hope to continue investigating environmental 

influences on fish populations, and how to incorporate those influences into fisheiy stock 

assessments. Secondly, relating natural influences to population dynamics facilitates a transition 

from single-species stock assessments to more holistic ecosystem assessments. This transition 

may be imminent, because living resources affect, and are affected by various ecosystem features. 

I would like to contribute to the development of ecosystem assessments in the context of marine 

resource management by researching the influences of habitat on fish community dynamics. 

Finally, the goal of my research was to advance HMS stock assessments by improving methods 

used to understand historical population trends. With improved assessment accuracy, fisheiy 

managers can use historical stock assessments to set future harvests at levels that promote long­

term sustainability. However, given changing environments, harvest levels may need to vary over 

time to meet management objectives. Fortunately, global climate models can be used to project 

future habitat; thus, if habitat is incorporated in stock assessments, population projections could 

simultaneously account for the effects of climate change, climate variability, and harvesting. It is 

my goal to research the coupling of fishery stock assessment models/ecosystem assessment 

models and global climate models to further advance fishery stock assessments and projections 

under various management scenarios.
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