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ABSTRACT

Eggs from plankton samples in lower Chesapeake Bay indicated that the 
spawning season of the bay anchovy Anchoa mitchilli in 1988 was from early May to 
mid-September. Oocyte stages in adults were used to determine daily spawning time 
and frequency, as well as batch fecundity. Spawning was temporally synchronized 
and lasted for about 1.5 h each night. Spawning time became later each month (2000 
h on 6 June to 2330 h on 31 August). Spawning frequency per individual was every 
4 d in early June and 1.3-1.9 d in other months. Batch fecundity was a linear 
function of fork length and body weight; regression slopes on 6 July and 4 August 
were significantly higher than those on 6 June and 31 August. Estimated mean total 
spawnings per female in 1988 was 54. Total egg production for a fish of average size 
was 45,110, which is equivalent to 346% of body biomass energy. Age 
determination based on lagenar otoliths showed that some fish spawned when as 
young as 2.5-3 months.

Transport of the adult bay anchovy in darkness was studied in laboratory and 
field experiments. In a hydraulic flume, 99% of all fish were transported to the end 
of the flume in darkness at a current speed of 30 cm s'1. In field experiments, fish 
marked with neutral red dye and released in a creek at flood tide were recaptured 5.1 
km upstream 4 h after release at night, and were recaptured within 200 m of the 
release site 3 h after release in daylight. This nocturnal transport phenomenon may 
also exist in other marine and estuarine pelagic fishes, and may help in understanding 
behavior and distribution of pelagic estuarine fishes.

Historical trawl survey data indicate that bay anchovy is the most abundant 
species in lower Chesapeake Bay. The standardized CPUE data show long-term 
population fluctuations on the order of ten-fold. The bay anchovy population also has 
extensive seasonal variations which appeared attributable to winter migration or 
mortality, high spring and summer predation, and peak recruitment in fall. A Fourier 
analysis removed the seasonal (short-term) variation from the long-term data series.
An autoregressive analysis of the residual series indicated that it contained a 
significant first-order autoregressive process component (r2 =  0.26, P <  0.0066), 
which was interpreted as a spawner-recruit relationship. Cross-correlation analysis 
indicated that bay anchovy population abundance was positively correlated with winter 
water temperature (r — 0.663, P <, 0.0001) and river flow (r =  0.376, P <  0.027), 
but negatively correlated with white perch abundance (r =  -0.437, P <  0.011) and 
the squared function of residual wind speed (r =  -0.377, P <  0.026). A multiple 
regression model indicated that temperature, white perch abundance and wind made 
significant contributions (accounting for 78% of the variation) to the model, with no 
significant contributions from other factors.
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Life History of the Bay Anchovy, Anchoa mitchilli

in Chesapeake Bay



GENERAL INTRODUCTION

The bay anchovy, Anchoa mitchiUi, is one of the most abundant food resources 

of larger predatory species in Chesapeake Bay (Hildebrand and Schroeder 1928, 

Hildebrand 1963a, 1963b), and is very important to the energetic processes of the 

ecosystem. Therefore, understanding the life history of bay anchovy and its 

production is vital to the resource management of the ecosystem. It is surprising that 

only fragmentary information is available on the life history of this species, 

considering its abundance and its wide geographical range which extends from Cape 

Cod, Mass., U.S.A. to Yucatan Peninsula, Mexico (Bigelow and Schroeder 1953, 

Hoese and Moore 1977, Byrne 1982, Morton 1989).

Bay anchovy is a short-lived fish. Newberger (1989) found that few 

individuals ( ^  0.1%) lived to age 3+ years, and that the annual mortality rate was 

89-95%. Adult bay anchovy attain a maximum size of 110 mm TL (Hildebrand 

1963), and a mean fork length of age 1 fish is 55 mm fork length (FL) in mid- 

Chesapeake Bay (Newberger 1989).
*

Bay anchovy is a highly schooling, nektonic, and euryhaline species, and can 

be found in all types of habitats, from oligohaline estuarine water to coastal marine 

water, from open bays to muddy coves, from river channels to intertidal creeks, and 

from grassy areas to sandy beaches (Hildebrand and Schroeder 1928, Bigelow and 

Schroeder 1953, Kilby 1955, Reid 1955, Vouglitois et al. 1987).

2
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Bay anchovy populations fluctuate widely from year to year. Although 

reliable estimates of population size are not available, preliminary analysis of trawl 

survey data from the Virginia Institute of Marine Science (VIMS) indicates 10-fold 

fluctuations in annual abundance of bay ainchovy in lower Chesapeake Bay and its 

tributaries. Indices of bay anchovy abundance from summer beach seine surveys 

conducted by the Maryland Department of Natural Resource show variations more 

than 100-fold from 1958 to 1989 (Newberger 1989). Trawl survey data in mid- 

Chesapeake Bay indicate bay anchovy catch per unit of effort (CPUE) in 1986 was 

almost six times higher than that in 1987 (Newberger 1989).

Bay anchovy population fluctuations may have indirect effect on other 

commercially and recreationally important species because it is a key species in the 

Chesapeake Bay food web. Bay anchovy feeds mostly on zooplankton by selecting 

individual particles. Larvae prey mainly on copepod nauplii and rotifers. Juveniles 

feed on copepoda, crab zoea and other pelagic zooplankton. Adults are able to add 

mysids, ostracods, small fishes, small benthic mollusks, and crustaceans to their diets 

(Reid 1954, Darnell 1958, Sheridan 1978, Vazquez 1989, Johnson et al. 1990). Bay 

anchovy consumes 86, 90, 90, and 73% of total zooplankton consumed by all 

planktivorous fishes in summer, fall, winter, and spring, respectively, in mid- 

Chesapeake Bay (Baird and Ulanowicz 1989). Bay anchovy is an important food 

source for many larger species. Its predators include weakfish, striped bass, summer 

flounder, white perch, bluefish, and white catfish (Hollis 1952, Merriner 1975, Chao 

and Musick 1977, Homer and Boynton 1978, Safina and Burger 1989, Baird and



Ulanowicz 1989). Bay anchovy contributes 70, 90, and 60% to the diets of larger 

predatory fishes in summer , fall, and spring, respectively, in mid-Chesapeake Bay 

(Baird and Ulanowicz 1989). Therefore, to understand the dynamics of the ecosystem 

it is very important to understand the life history and the dynamics of bay anchovy.

A variety of natural factors are likely contributors to fluctuations in the 

population size of bay anchovy: (1) variability of spawning success o f adult bay 

anchovy; (2) variability of egg and larval mortalities; (3) variability of predation 

pressure on juvenile and adult bay anchovy; and (4) variability of weather conditions 

causing changes in emigration and immigration patterns of bay anchovy in 

Chesapeake Bay, or extreme weather causing mortality.

Egg production is controlled primarily by the nutritional history of spawners, 

the availability of suitable spawning habitats, and the duration of the spawning season, 

and secondarily by abiotic and biotic environmental factors such as water temperature, 

salinity, dissolved oxygen, food abundance, and population density (Bagenal 1973, 

Dando 1984, Rothschild 1987, Jennings and Beverton 1991).

Recruitment variability due to changes in mortality rates of eggs and larvae is 

believed to be the cause of fluctuations in population size of many fish species 

(Cushing 1975, Steele e ta l. 1980, Houde 1987, 1989a, 1989b). Starvation, 

predation, and lethal environmental conditions are suggested major factors responsible 

for controlling the mortality rates of fish eggs and larvae. Starvation has long been 

considered an important factor in causing larval mortality (Hjort 1914) and may be a 

result of a temporal mismatch of seasonal plankton bloom with spawning (Cushing



1975) or the destruction of critical food patchiness (Lasker 1975, 1978). Houde 

(1978, 1987) suggested that a minimum food level of approximately 100 prey/1 was 

required for larval growth and survival of bay anchovy based on laboratory 

experiments. But, in later in situ enclosure experiments in the Patuxent River, MD., 

Cowan and Houde (1990) obtained high growth rates and high survival rates at 

microzooplankton concentrations as low as 50 prey/1. More recently, some workers 

(Bailey and Houde 1989, Leak and Houde 1987, Houde 1987) have implicated 

predation as the major cause of early life mortality of fishes. Leak and Houde (1987) 

reported high egg mortality (85.6% / d) and high larval mortality (26 to 36% / d) of 

bay anchovy in Biscayne Bay, Florida. Govoni and Olney (1991) estimated maximum 

ctenophore (Mnemiopsis leidyi) predation on bay anchovy eggs ranging from 24.1 

eggs/m3/day to 753.8 eggs/m3/day. Monteleone and Duguay (1988) also 

demonstrated in laboratory experiments that the ctenophore was an effective predator 

of bay anchovy eggs and larvae. Other potential predators are medusa Chrysaora 

quinquecirrha, adult bay anchovy, and other planktivorous fishes, such as Atlantic 

menhaden (Brevoortia tyrannus) and Atlantic silverside {Menidia menidia).

Predation pressure on juvenile and adult bay anchovy by larger species can be 

changed significantly if the population size of predatory species changes. Bay 

anchovy contributes a major portion to the diets of larger predatory fishes (Baird and 

Ulanowicz 1989). Studies have shown large fluctuations in year classes of striped 

bass (Boreman and Austin 1985, Kline 1990, McGovern 1991) and weakfish



(Merriner 1973, McHugh 1980, Mercer 1983, Szedlmayer 1988), both are major bay 

anchovy predators.

In part of its range, bay anchovy migrates to deeper water in bays or the inner 

continental shelf in winter, and back to shallower water in spring (Vouglitois et al. 

1987). The extent of migration is poorly known, but the process is probably 

controlled by water temperature. In colder winters it is probable that more bay 

anchovies migrate offshore than in warmer winters, and during extremely cold winters 

large numbers of bay anchovy can be killed by sudden drops of water temperature 

(Gunter and Hildebrand 1951, and personal observation).

In addition to seasonal migration, bay anchovy populations may exhibit short­

term (tidal period) movements within the estuary. This is, because bay anchovy 

schools break up after dark, and fish swim in all directions at a greatly reduced speed 

(pers. obs.). This behavior makes bay anchovies susceptible to transport by tidal 

currents at night. Since the duration of flood and ebb tidal currents at night are 

usually asymmetrical (such as 6-h flooding and 2-h ebbing, depending on the time of 

the lunar period, season and latitude), bay anchovies are likely transported and 

segregated upstream during a period when flooding is dominant at night, and 

downstream during a period when ebbing is dominant at night. The resulting change 

in the spatio-temporal distribution may affect its food availability therefore growth 

rate and reproduction success, and may affect the predation pressure from larger 

predatory fishes.



The general goal of this study was to investigate aspects of bay anchovy life 

history that may be important to biological success in the highly variable estuarine 

environment. Wilbur et al. (1974) suggested that understanding a life history strategy 

would usually require knowledge of at least the following: (1) juvenile and adult 

mortality schedules; (2) age at first reproduction; (3) reproductive life-span; (4) 

fecundity; (5) fecundity-age regression; (6) degree of parental care; (7) amount of 

resources allocated to reproductive effort.

A life history is controlled by three basic biological processes: maintenance, 

growth, and reproduction (Gadgil and Bossert 1970). Since any organism has limited 

resources of time and energy at its disposal, the life history strategy of a species is to 

give an optimal allocation of resources among maintenance, growth and reproduction. 

But fitness is measured in terms of the contribution made to the gene pool of the next 

generation, and that is in terms of reproductive success (Mayr 1966). Since selection 

is in favor of reproductive success, the advantage of devoting resources to 

maintenance and growth occurs only so far as this enhances reproduction at further 

stages in the life history. Maintenance is essential to enable an organism to survive to 

reproductive age, and growth may enhance both survival and reproductive ability 

(Gadgil and Bossert 1970).

This dissertation consists of three chapters. The first chapter focuses on the 

characteristics of the reproductive biology of bay anchovy. This part of the study was 

designed to determine age and growth of larval and juvenile bay anchovy, age and 

size at sexual maturity, spawning time, spawning frequency, and batch fecundity.



The second chapter describes an important behavioral phenomenon: "tidal transport 

in darkness", which can be used to explain a variety of other behaviors of bay 

anchovy. The third chapter attempts to incorporate available life history information 

and available biological and physical data to determine possible factors causing 

fluctuations in population size.



CHAPTER 1 

Reproductive Biology of the Bay Anchovy 

in Chesapeake Bay

9



INTRODUCTION

The bay anchovy, Anchoa mitchilli, exhibits a protracted spawning season (late 

April to late September) in Chesapeake Bay (Hildebrand and Schroeder 1928; Dovel 

1971; Olney 1983; Dalton 1987). Rapid summer growth presumably allows it to 

spawn in late summer at an age of 3 months because individuals as small as 35-40 

mm FL (fork length) can be mature (Hildebrand and Cable 1930; Fives et ah 1986). 

Alternatively, fish of this size may be as old as 10 months (Dovel 1971), but no daily 

age data are available for Chesapeake Bay. Stevenson (1958) believed that the bay 

anchovy spawned only once per year in Delaware Bay because he found a few fish 

with fully developed ovaries. Recent studies have shown that ovaries with hydrated 

oocytes are not rare in most engraulids, though they may seem rare because they are 

found only at particular times of year for a few hours each day (Hunter et ah 1985; 

Clarke 1987). The purpose of my study was to determine age and size at first sexual 

maturity, spawning frequency, and batch fecundity in bay anchovy from lower 

Chesapeake Bay.

MATERIALS AND METHODS

Age validation

I used laboratory-hatched fish and caged wild-caught fish to validate daily 

increments of lagenar otoliths. In the laboratory, bay anchovies were raised from

10



eggs held at 25 +  2 °C by methods similar to those of Houde (1978 and references 

therein). On 11 September, I immersed about 150 wild-caught bay anchovies in a 

200-300 mg/L tetracycline bath for 24 h (Choate 1964; Weber and Ridgway 1967; 

Hettler 1984) after they had been acclimatized in a holding tank for a week. I then 

transferred the tetracycline-marked fish to a cage in the York River, a Virginia 

tributary of lower Chesapeake Bay. The cage was made of 6 mm nylon mesh and 

was 2 m in height and 1 m in diameter. No additional food was given to these fish.

I assumed that natural planktonic prey organisms could pass easily through the mesh 

because most caged fish sampled had full stomachs.

Fish were removed periodically from laboratory (2-7 d) and cage (2-3 weeks) 

treatments, measured, and weighed. I removed otoliths (saccular and lagenar) from 

otic capsules and mounted them on glass slides with Flo-texx mounting medium. 

Otoliths were ground with 600 grit sandpaper and polished against a piece of 

microcloth containing 0.3 /im alumina oxide polishing compound. Polished otoliths 

were rinsed with water and etched with 5% EDTA (adjusted to pH 7.5 with KOH) for 

30-60 s (Haake et al. 1982; Casselman 1983). I read prepared otoliths under a 

compound microscope.

Reproductive biology

To determine ovarian stage, spawning frequency, batch fecundity, and diel 

spawning time, I collected eggs and adult bay anchovies in lower Chesapeake Bay on 

6 June, 6 July, 4 August, and 31 August 1988 over a 24-h period. I deployed a 5-m
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semiballoon otter trawl with a 3-mm mesh cod end liner and a 0.5-m diameter, 505- 

/tm-mesh plankton net at 1-2 h intervals. An extra float was tied to the float line to 

keep the trawl off the bottom. The trawl was towed 5-10 min over bottom depths of 

6-8 m. Adult bay anchovies were preserved in 10% formalin, and plankton samples 

were preserved in 50% isopropanol. In addition, adult bay anchovies were attracted 

with a light and collected with a 1-m diameter plankton net at a pier in the lower 

York River at night on 1, 2, 3, 8, 9, 10, 11, 12, and 14 July 1988. All these fish 

were examined for the presence of hydrated oocytes in fresh ovaries. During the 

nonspawning season (September-May), monthly samples were collected from a trawl 

survey.

Ovarian maturation.—I calculated the gonadosomatic index (GSI) as GSI =  100* 

GWT/BWT; GWT is gonad wet weight (mg) and BWT is gonad-free wet body weight 

(mg). Female bay anchovies from 6 July collections were classified as spawners if 

their ovaries contained oocytes greater than 0.34 mm in diameter; otherwise they 

were classified as nonspawners. To estimate the rates of oocyte development, ovaries 

of 10 spawners from each sample collected on 6 July (140 fish) were teased apart on 

a glass slide, and a few drops of glycerin were added to spread the oocytes. The 

major axis of 10 oocytes in the most advanced mode (represented by the darkest 

oocytes under transmitted light before hydration and by transparent oocytes after 

hydration) was measured to the nearest 0.01 mm with an ocular micrometer. To 

determine the oocyte size frequency distribution, I selected a fish with a mean oocyte
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size close to the grand mean of all fish in the sample, and we measured all oocytes 

larger than 0.30 mm in a 20-30 mg subsample (about 200 oocytes). Several ovaries 

of different developmental stages were examined histologically as described by Hunter 

and Macewicz (1985).

Spawning season and time.—From May to September 1988,1 obtained plankton 

samples periodically (3-6 d) at a pier in the lower York River to determine the 

beginning and end of the spawning season. I used the presence of bay anchovy eggs 

in plankton samples as an indication of spawning activity because bay anchovy eggs 

hatch in about 24 h.

Eggs from plankton samples collected on 6 June, 6 July, and 31 August were 

classified in two categories; recently-spawned (stage I and II in Moser and Ahlstrom 

1985), and well-developed (stage IX-XI) to determine the diel periodicity of spawning 

during the 1988 spawning season. I identified the start of spawning time by the first 

appearance of recently-spawned eggs (which were usually much less than 1 % of total 

eggs), and the end of spawning time by the disappearance of ovaries with hydrated 

oocytes. No cruise was made in May to estimate spawning time, and on 4 August the 

cruise was not completed because of bad weather.

Spawning frequency and batch fecundity.-Because the hydrated oocyte stage lasted 

less than 4 h, spawning frequency (fraction of mature females spawning per day) was 

estimated as the percentage of females with hydrated oocytes (DeMartini and Fountain 

1981; Hunter and Macewicz 1985; Hunter et al. 1985). Only samples collected 0.5
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to 2 h before spawning time were used in estimating the spawning frequency and 

batch fecundity (number of eggs per spawn). I used a 10-20 mg subsample of the 

ovaries to estimate batch fecundities. The step-by-step procedure (hydrated oocyte 

method) is outlined in Hunter et al. (1985). I estimated the total number of batches 

spawned per female by integrating the area under the spawning frequency curve 

according to the method of Hunter and Leong (1981). Relative batch fecundity was 

defined as the number of eggs per spawn per gram body weight. Relative daily 

fecundity was defined as the number of eggs spawned per day per gram body weight.

I estimated energy output of spawning per day (Ep) as Ep =  F* EWT* QJd, 

where F is batch fecundity, EWT is dry egg weight (g), Qe is egg energy value (J/g 

dry eggs), and d  is spawning interval (d/batch). I estimated percentage of body 

energy spawned per day by dividing Ep by the body energy of bay anchovy. Dry egg 

weight data and egg energy value (22,916 J/g) of bay anchovy were from Tucker 

(1983). I used the energy value of 17,276(±739 SD) (J/g dry weight) for northern 

anchovy, Engraulis mordax, (Hunter and Leong 1981) to estimate the body energy of 

bay anchovy. I define spawning peak as a period when the daily energy output of 

spawning is at least 90% of the highest value.

Age and size at maturity.—I aged 93 bay anchovies collected on 31 August and 

examined them for maturity stages. The logistic equation was fitted to the percentage 

of mature individuals in each size class and in each age class (Gunderson 1977; Ni 

and Sandeman 1984).
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Statistical procedures

I used simple linear regression with a 99% confidence interval of mean 

predicted value to evaluate the relationship between number of otolith increments and 

age of laboratory-hatched bay anchovy. I used Student’s Mest to compare mean 

number of increments deposited after tetracycline marking with the number of days 

after tetracycline treatment. I performed analysis of covariance on percent mature 

fish as a function of age and size. I also tested heterogeneity of slopes for regressions 

of batch fecundity on size (both length and weight) and month with analysis of 

covariance. The square root of the mean square error for the regression of batch 

fecundity on fork length and on weight was used to compare the fit of the relationship 

(Hunter et al. 1985). The acceptable level for all type I errors was set at P  =  0.05.

RESULTS

Age validation

Laboratory experiments ended 47 d after hatching when the fish were 18.6 -

24.1 mm FL (mean 21.7 mm). The slope (0.98) of the regression of number of 

otolith increments on age of fish was not significantly different from 1.0 (Mest, P = 

0.50, Figure 1.1). The intercept was -23.1 d and the 99% confidence interval of 

mean predicted values extended from -21 to -25 d. This indicated increments were 

formed daily in the lagenar otoliths after their formation at the age of 23 ±  2 d.

Most cage-cultured fish sampled 18, 32, and 53 d after tetracycline treatment 

had a clear tetracycline mark in the lagenar otoliths (Table 1.1). Mean increment
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Figure 1.1 Linear regression line (solid line) and 99% confidence limits (dashed 

lines) of mean predicted values of lagenar otolith increments versus known ages based 

on data from laboratory-raised bay anchovies. Several points represent more than one 

value.
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Table 1.1 Number of growth increments of lagenar otoliths after tetracycline 

treatment and growth rates of caged bay anchovies in Chesapeake Bay, 1988.

Date Temperature 
( c )

N
Fork length fmrat Days after 

treatment
Number of Increments Growthrate

(mm/d)mean SD mean SD
12 Sep 23.3 14 39.7 4.8 0 0 0
30 Sep 21.9 10 49.4 2.0 18 18.6 1.1 0.52
14 Oct 16.4 20 54.1 3.9 32 30.8 4.5 0.34
4 Nov 11.5 30 56.4 3.2 53 45.9 7.4 0.11
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counts after the mark were 18.6, 30.8, and 45.9 respectively. Statistical analysis (t- 

test) indicated that the mean number of increments was not significantly different 

from the number of days after marking for the first two periods when water 

temperature exceeded 15°C (P = 0.1114 and 0.2694 respectively) and that it was 

significantly different for the third period when the temperature was below 12°C (P = 

0.0001).

Reproductive biology

Ovarian maturation.--Oocytes smaller than 0.15 mm were found throughout the year, 

but those larger than 0.15 mm were found only during the spawning season (May to 

September). Histological sections revealed that these oocytes, in the primary growth 

stage (Wallace and Selman 1981), consisted of a scant basophilic cytoplasm and a 

disproportionately larger, centrally located nucleus containing either a single large 

basophilic nucleolus (oocytes smaller than 0.05 mm) or multiple perinuclear nucleoli 

(oocytes of 0.05-0.15 mm). The follicular epithelium was not well developed at this 

stage.

Ovaries in which the largest oocytes were 0.15-0.25 mm were found in 

maturing fish (maturing stage). These oocytes had a well-developed follicular 

epithelium and a dramatically increased basophilic cytoplasm in comparison with the 

primary growth stage. In the nucleus, basophilically stained nucleoli were seen at the 

perinuclear position. In the cytoplasm, neutrophilic spherical yolk vesicles appeared 

circumferentially at various depths. By the end of the maturing stage, yolk vesicles
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almost entirely filled the cytoplasm. These vesicles are the cortical alveoli 

precursors, and their contents cannot be termed yolk in the true sense (de Vlaming 

1983).

True vitellogenesis became evident only in oocytes larger than 0.25 mm 

(mature stage). At this stage yolk proteins were deposited as acidophilically stained 

yolk granules, and the oocytes increased in size rapidly, growing from 0.25 to 0.35 

mm over 24 h (6 July samples). As the accumulation of yolk continued, the germinal 

vesicle (nucleus) migrated toward the animal pole and the oocyte elongated. During 

the daily spawning peak, oocyte in the most advanced mode progressed very quickly 

toward maturation. The major axis increased from 0.35 to 0.60 mm and the 

gonadosomatic index increased from 3% to 8% in 20 h in spawners (Figure 1.2).

The most advanced mode was completely separated from the next mode at 1700 hours 

when hydration was first observed (Figure 1.3).

Hydration started when the germinal vesicle arrived at the animal pole (1700 

hours in 6 July samples, Figure 1.2). At the same time the dissolution of the 

germinal vesicle membrane occurred. During the 4-h process of hydration, oocytes 

rapidly absorbed fluids of lower specific gravity than seawater, and the yolk granules 

fused into yolk plates. The oocytes became progressively more transparent, and the 

major axis increased to 0.80-1.10 mm. The mean gonadosomatic index reached 20% 

at this stage.
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Figure 1.2 Development of spawning bay anchovy ovaries over a  day. Samples were 

collected from 1100 hours (Eastern Daylight Time) on 6 July to 0800 hours on 7 July 

1988. Solid line connects means of oocyte length; dashed line connects means of 

gonadosomatic index; vertical lines = standard deviation.
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Figure 1.3 Oocyte size frequencies of bay anchovy from 1120 hours to 2130 hours 

on 6 July 1988.
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Spawning season and time.—Eggs collected from plankton samples in the York River 

indicated that the spawning season of the bay anchovy in 1988 was from early May to 

mid-September. Spawning occurred when the oocytes were fully hydrated, and it 

lasted about 1.5 h each night. Bay anchovy started to spawn by 2000 hours on 6 

June, by 2100 hours on 6 July, and by 2300 hours on 1 August (Figure 1.4). One 

hour after spawning was first observed, the largest oocyte group in the ovaries had a 

mean of 0.35 mm and were at true vitellogenesis. At this time the postovulatory 

follicles were clearly distinguishable, but they were scarcely visible 16-21 h after 

spawning and none remained evident 21 h after spawning in July.

Spawning frequency and batch fecundity.--An analysis of data on ovaries with 

hydrated oocytes (Table 1.2) indicated that on average, bay anchovy spawned every 4 

d in early June (based on 6 June samples); every 1.9 d in the beginning of July; and 

every 1.3-1.4 d (2-3 batches in 3-4 d) from 6 July to 31 August. Each mature female 

would spawn an average of 54 times between 6 June and 31 August 1988 based on 

the integration of the area under the frequency curve (Figure 1.5).

Batch fecundity varied from month to month with a mean of 429 eggs per 

batch on 6 June, 893 on 6 July, 1,186 on 4 August, and 562 on 31 August (Table 

1.3). Batch fecundity was a linear function of fork length (Table 1.3) and of body 

weight (Figure 1.6). The square root of the mean square error showed no apparent 

differences between the relationship with fork length and with weight (142 versus 149
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Figure 1.4 Spawning times (Eastern Daylight Time) of bay anchovy on three days in 

1988. Circles represent percentage of spawning females; squares represent percentage 

of stage I and n  eggs in plankton samples; start =  start time of spawning; end =  end 

time of spawning.
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Table 1.2 Sex ratio, percentage of females with hydrated oocytes (N = sample 

number used in estimating the mean), and spawning interval for bay anchovies in 

Chesapeake Bay, 1988. Spawning interval is the inverse of spawning frequency {/).

Percentage of females 
Date t (°C) Sex ratio Number with hvdrated oocvteg Spawning

(% female) of fish mean (f) range (£) N interval (d)

6 Jun 20.0 44 709 25 18-29 3 4.0
1-3 Jul 23.0 54 264 54 21-70 5 1.9
6 Jul 24.6 57 502 78 68-83 5 1.3

8-10 Jul 25.2 57 566 72 45-90 14 1.4
11-14 Jul 25.5 45 492 75 53-92 4 1.3

4 Aug 28.6 51 59 70 62-78 2 1.4
31 Aug 25.4 45 327 76 71-81 2 1.3
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Figure 1.5 Fraction of mature bay anchovy females spawning per day (solid line) and 

percentage of body energy spawned per day for a fish of 55 mm fork length (dashed 

line) during the 1988 spawning season.
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Table 1.3 Statistics of least squares linear regressions of batch fecundity on fork 

length (FL, mm) and weight (mg) of bay anchovies, 1988. BF =  batch fecundity 

(eggs); RBF =  relative batch fecundity (eggs/g).

Statistics 6 June 6 July 4 Auauat 31 Auaust
FL Weight FL Weight FL Weight FL Weight

N 50 50 48 48 32 32 50 50
Intercept -1192 35 -2571 28 -2097 -74 -859 54
Coefficient 29.7 0.306 64.9 0.743 55.8 0.859 26.1 0.419
r2
P value of 
rejecting

0.73 0.71 0.70 0.70 0.28 0.43 0.55 0.52

b = 0 0 
Mean ovary-

.0001 0.0001 0.0001 0.0001 0.0016 0.0001 0.0001 0.0001

free weight - 1291 1165 - 1468 - 1212
Mean FL 54.6 53.4 58.8 _ 54.5
Mean BF 
Mean RBF 
BF for a 
55 mm fiah

429
334

425

893
740

999

1186
803

972

562
464

577
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Figure 1.6 Linear regressions (solid lines) and 95% confidence limits (dashed lines) 

of mean predicted values of batch fecundity with ovary-free body weight (mg) of bay 

anchovy for four days in 1988.
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on 6 June; 334 versus 334 on 6 July; 599 versus 537 on 4 Aug; 185 versus 192 on 31 

August), probably because of the limited size range of spawning fish and the large 

variation in batch fecundity. Analysis of covariance indicated that regression slopes 

on 6 July and 4 August were significantly higher than those on 6 June and 31 August 

(6 June versus 6 July, P = 0.0001; 6 June versus 4 August, P  =  0.0153; 6 June 

versus 31 August, P  =  0.6697; 6 July versus 4 August, P = 0.3983; 6 July versus 

31 August, P -  0.0001; 4 August versus 31 August, P = 0.0060). The overall egg 

production for the season was 45,110 eggs per female (55 mm FL fish), which was 

equivalent to 346% (area under the dashed line in Figure 1.5) of a females body 

energy. During peak spawning, daily spawning output was 6.3 ±  0.3% of body 

energy.

Age and size at maturity.—Maturity was determined by the presence of true 

vitellogenic oocytes. Histological examination showed that all oocytes larger than 

0.25 mm were in the process of true vitellogenesis, and the gonadosomatic indices of 

these fish were larger than 2%. Therefore, this oocyte size and the index were used 

as criteria to determine the maturity of fish that were not examined histologically. 

Logistic curves fitted to the data of size, age and maturity indicated that the size at 

50% maturity was 36.9 mm FL (% =  100/(1 +  e(‘0,3Si'L +13Q2>), r2-  0.88) and the 

age at 50% maturity was 80 d (% =  100/(1 +  e*-0-1022* ^ 8-1”), r*= 0.75, Figure 

1.7). A plot of gonadosomatic index on fork length (FL in mm) and age (in days) 

showed that in each age group, the percent mature was higher in larger fish than in
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Figure 1.7 (A) percentage of maturity versus age and (B) percentage of maturity 

versus fork length of bay anchovy. Curves are fitted logistic functions; dashed lines 

indicate age and size at 50% maturity.
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Figure 1.8 Age and size at sexual maturity of bay anchovy. GSI =  gonadosomatic 

index; pyramid =  mature fish (GSI > 2); cube =  immature fish (GSI <  2).
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smaller fish, and in each size group, percent maturity for older fish was higher than 

for younger fish (Figure 1.8). Analysis of covariance indicated that age had an effect 

on the maturity-size relationship (P = 0.0019, 0.0001, and 0.0311 for age, length, 

and length x age, respectively; for the model overall, R2 = 0.83, P  =  0.0004). The 

smallest fish with ovaries containing hydrated oocytes found in this study was 31 mm 

FL and 63 d old.

DISCUSSION

The lagenar otoliths (asterisci) in bay anchovy are useful for daily aging of 

juvenile and 3-4 month old adult fish. In most fishes, the lagenar otoliths are usually 

the smallest of the three pairs, but in clupeids, the lapilli are the smallest (Brothers 

1983). My study shows that the asterisci in bay anchovy are thin and well defined, 

and they are well suited for aging juvenile fish. However, they cannot be used to age 

larval fish because they do not appear until 23 +. 2 d after hatching.

Although increments of lagenar otoliths in bay anchovy were deposited during 

summer, they were not deposited daily during winter. Cessation of daily increment 

formation could be a result of cessation of fish growth at low temperatures (Taubert 

and Coble 1977; Campana and Neilson 1985), given that the stomachs of my fish 

were full or at least half full. My later cage-culturing experiment showed that from 

21 November 1988 to 15 March 1989, when water temperature was between 5 and 

12°C, not a single increment was deposited on otoliths o f bay anchovies (the 12 fish 

out of 60 that survived this 86 d experiment showed no growth).
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Bay anchovy in Chesapeake Bay mature at a younger age and smaller size than 

I had expected. I found that fish hatched early in the spawning season were mature 

and able to spawn during the latter part of the season. Fast growth (0.45 +. 0.05 

mm/d) during summer (temperature range 20-28 °C) enabled them to reach spawning 

size (36.9 mm; size at 50% maturity) in about 80 d (age at 50% maturity), and back- 

calculated birth dates indicated that these fish were hatched in May and June.

However, first sexual maturity depended both on age and size. My study indicated 

that larger fish matured at younger ages and older fish matured at smaller sizes.

The spawning season of bay anchovy in Chesapeake Bay varies from year to 

year; the earliest spawning season reported lasted from 22 April to 22 August 1963 

(Dovel 1971) and the latest from 13 June to 26 October 1974 (Dalton 1987). The 

most common estimates are from May to September (Dovel 1971; Olney 1983;

Dalton 1987). I found that the 1988 spawning season ranged from early May to mid 

September.

My estimate of the time of day at which bay anchovy spawn differs from other 

reports. Bay anchovy at Beaufort, North Carolina (Hildebrand and Cable 1930) and 

at Peconic Bays, New York (Ferraro 1980) spawned between 1800 and 2100 hours. 

Zastrow et al. (1991) reported that bay anchovy in mid-Chesapeake Bay spawned 

between 2100 and 2400 hours in 1986 and 1988. My data showed that spawning time 

varied from month to month; it was delayed as the season progressed (2000 hours on 

6 June to 2330 hours on 31 August, Figure 4). If the day-to-day variation of 

spawning time within a month was small, there must have been some factor
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responsible for the delay. There are many explanations for diel spawning periodicity, 

including synchronized reproduction between sexes (Aschoff 1964; Marshall 1967), 

reproductive isolation (Marshall 1967), avoidance of high levels of solar radiation 

(Bell and Hoar 1950; Perlmutter 1961), and predation reduction (Nikolsky 1963).

None of these, however, explains the delay in time of spawning I observed.

One of the major assumptions underlying the estimation of spawning frequency 

from the fraction of females with ovaries containing hydrated oocytes is that a 

representative sample of the population is obtained. Spawning frequency would be 

overestimated if there were segregation of spawners and nonspawners or if 

nonspawners were less susceptible than spawners to capture by the sampling gear. 

However, I found only a small variation in percentage of females with hydrated 

ovaries in samples collected on 6 July (Figure 1.4), which indicated the samples came 

from a well-mixed population.

During the spawning peak, oocytes of bay anchovy developed from 0.35 mm 

to 0.90 mm (spawning size) in 24 h. This is the fastest rate reported for engraulids. 

Oocytes develop from 0.46 mm to the size at which hydration begins in about 7 d in 

northern anchovy (Hunter and Goldberg 1980) and about 6 d in Peruvian anchoveta 

E. ringens (Alheit et a l 1984, Alheit 1989). In Hawaiian anchovy Encrasicholim 

purpurea, 2 d are required for oocytes of 0.52 mm to develop to spawning size (0.80- 

LOO mm, Clarke 1987).

I saw postovulatory follicles only within 21 h after spawning occurred in July. 

They were clearly distinguishable up to the first 8 h after spawning. They were also



34

found in ovaries within 3-7 h of spawning, thus providing direct evidence that some 

bay anchovies spawned every day during the spawning peak. The spawning 

frequency estimated from the postovulatory follicles is 75%, which is very close to 

the 78% estimated from the fractions of females with hydrated ovaries on 6 July. 

Zastrow et al. (1991) reported that bay anchovy in mid-Chesapeake Bay spawned 

every day in July 1987.

Most spawning energy in bay anchovy must have been derived from daily 

feeding, not from fat reserves. In northern anchovy, 60% of spawning energy was 

supplied by fat reserves over the spawning season (20% of body energy, Hunter and 

Leong 1981). At the spawning peak, the daily energy output in bay anchovy was 

about 6% of body energy (Figure 5). If bay anchovy use 20% of body energy from 

fat reserves for spawning over the spawning season, less than 0.2% of body energy 

would be used daily. Therefore, the rest of the energy required has to be from daily 

feeding. Vazquez (1989) reported that bay anchovy were able to consume as much as 

28% of their own body weight each day with an assimilation efficiency of over 60%. 

Thus, the assimilated energy was about 18% of body energy, which would be 

sufficient to support observed spawning activity as well as body growth and 

maintenance. Therefore, I conclude that bay anchovy are capable of spawning every 

day during peak spawning if there is sufficient food. Conversely, any shortage of 

food will immediately affect spawning output.

Relative daily fecundity may be a better index than relative batch fecundity for 

comparing egg production of different species, because some fish spawn more
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frequently than others (Table 1.4). Compared with other anchovy species, the bay 

anchovy has much higher relative daily fecundity and greater reproductive potential. 

This is probably an adaptation to highly variable environmental conditions 

characteristic of Chesapeake Bay and other temperate estuaries.
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Table 1.4 Relative batch fecundity (RBF, eggs/g), spawning intervals (SPI, d), and 

relative daily fecundity (RDF, eggs/g/d) of four anchovy species (Engraulidae).

Species and sampling time
N RBF 

( A )
SPI 

( B )
RDF 

( A/B )
Reference 

and location
Anchoa mitchilli 

6 Jun 1988 50 306 4.0 77
This study 

(lower Chesapeake
6 Jul 1988 48 743 1.3 572 Bay, Virginia)
4 Aug 1988 32 859 1.4 614

31 Aug 1988 50 419 1.3 322
30 Jul 1986 10 643 1 642 Zastrow et al. (991)
30 Jun 1987 10 731 1 731 (mid-Chesapeake Bay)

Encrasicholina
purpurea
Summer 128 566 2 283

Clarke 1987 
(Kaneohe Bay,

Winter 94 368 2 184 Hawaii)
Engraulis capensis 

Spawning peak 530 5 106
Armstrong et al.(1987) 

(South Africa)
Engraulis mordax 
Central population 
(Spawning peak. 67 421 7 60

Hunter and 
Macewicz 1980 

(North Pacific,
Feb - Mar)

Engraulis ringens 
(Spawning peak, 

Aug - Sep) 83 651 6 109

off California)
Minano 1968 
(South Pacific, 

off Peru)
Aug/Sep 1981 254 637 6 106 Alheit (1989)
Aug/Sep 1985 58 568 6 95 (Peru )



CHAPTER 2 

Tidal Transport of the Bay Anchovy in Darkness
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INTRODUCTION

The schooling behavior of estuarine fishes has rarely been investigated in the 

field because of difficulties caused by low visibility and strong tidal currents. Most 

studies of fish schooling have been conducted in the open ocean, over coral reefs and 

in freshwater lakes, at times when visibility was high and water currents were weak. 

Moreover, most of these studies (reviewed in Pitcher 1986) emphasize the 

mechanisms and advantages of maintaining schools. Although it is widely known that 

schooling behavior in most fishes is not prevalent at night (Parr 1927; Loukashkin & 

Grant 1959, 1965; Blaxter & Holliday 1963; Whitney 1969; Shaw 1970, 1978; 

Radakov 1973; Blaxter & Batty 1985; Helfman 1986; Batty et al. 1990), there is little 

information about the fate of fish when schooling ceases.

The bay anchovy, Anchoa mitchilli (Valenciennes), is the most abundant fish 

in Chesapeake Bay (Chittenden 1989). It is a pelagic, schooling, and euryhaline 

species, and occurs in freshwater through salinities as high as 457*, (Robinette 1983). 

In holding tanks bay anchovy schools break up after dark, and fish swim in all 

directions at a greatly reduced speed (pers. obs.). Houde and Brandt (pers. 

communi.), using acoustic estimates and trawl catches, found throughout the year that 

during daylight bay anchovy are in tight schools near bottom, and that at night fish 

are scattered throughout the water column and form only loose or scattered schools.

If  this behavior is common, bay anchovies may be susceptible to transport by tidal

38
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currents at night. Since the duration of flood and ebb tidal currents at night are 

usually asymmetrical (such as 6-h flooding and 2-h ebbing), depending on the time of 

the lunar period, season and latitude, the transport distance and direction will vary. 

The resulting change in the spatio-temporal distribution may be important to the 

energetic processes in the ecosystem.

The purpose of this study, using laboratory flume experiments and a field 

mark-recapture study, was to determine whether bay anchovies are transported by 

currents when schooling ceases in darkness.

MATERIALS AND METHODS 

Definition of schooling 

Although there are many definitions of schooling (Shaw 1970; Partridge 1982; 

Pitcher 1983), it is important to use one that gives a clear concept about the social 

behavior of fish under investigation. In this study, I employ the term ’schooling’ for 

a synchronized swimming behavior as fish adjust speed and direction to that of their 

neighbors, and the term ’shoaling’ for a social gathering in which fish may be either 

polarized or nonpolarized (Pitcher 1983). By these definitions, all schools are shoals, 

but not all shoals are schools.

Collection of anchovies 

Bay anchovies were attracted with a light and collected by dip-netting at night 

with a 1-m, 505-um plankton net at a pier in the lower York River (Gloucester Point,
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Virginia, U.S.A.) from August to October 1989. The temperature was 25-28°C in 

August, 20-25°C in September and 16-20°C in October. Salinity was 19 +. 2°/^ 

throughout the study. After collection, the fish (usually 50-300 individuals for each 

dipping, size range of 30-65 mm fork length) were transferred into an open-seawater 

holding tank with flow-through river water.

For the flume experiment, bay anchovies were acclimatized to freshwater by 

dilution in the holding tank for a period of one week. No fish died during the 

acclimatization period.

Laboratory experiment 

An 18-m hydraulic flume filled with fresh water (22 +. 1°C) was used to test 

relative transport of bay anchovies in darkness. The test section of the flume was 12- 

m long, 0.9-m wide, and 1-m deep (water filled up to 0.9-m depth), and had a 

stainless steel bottom and glass side walls. Water speed in the test section could be 

adjusted from 2 to 75 cm s'1, with essentially uniform speed within a cross section, 

except near the walls and bottom. Current speed was determined by measuring the 

transit time of a drogue between two laser beams 50 cm apart. The test section of the 

flume could be divided into three segments by inserting 2-mm mesh plastic screen 

gates (Figure 2.1). The flume room had no windows and was illuminated with 30 

fluorescent lights (40 w each) on its ceiling. The light intensity measured on the 

surface of flume was about 400 lux. Darkness (<0.001 lux) was achieved by turning 

off all lights.



41

Figure 2.1 The test section of the hydraulic flume (the mechanical portion is not 

shown on the diagram).
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After a preliminary trial on 10 August 1989 (Table 2.1), fish were tested at 

four current speeds (11, 16, 21, 30 cm s'1) in trial 2 on 24 August 1989. First, all 

lights were turned on (about 400 lux) and the flume speed was adjusted to 5 cm sr1. 

About 100 fish were released into Segment I of the flume. After 5 min 

acclimatization, gates 2 and 3 were removed, and speed was increased to the test 

value. At that time most fish were schooling; those not schooling were removed 

from the flume. When the school was positioned in the upstream portion of segment 

I, lights were turned down slowly. Darkness (<  0.001 lux) was maintained for the 

length of time necessary for the water to traverse the test section (i.e. 40 s for 30 cm 

s'1 speed). Gates 2 and 3 were lowered prior to turning on the lights. Numbers of 

fish in each segment were recorded, then gates 2 and 3 were removed and bay 

anchovies were allowed to resume schooling. Damaged fish were removed from the 

flume and the remaining school was then tested again at the same speed. After the 

second test, all fish were removed from the flume and the water flow restored to 5 

cm s'1. A different group of 100 fish was used at each speed.

Field experiment

Bay anchovies were marked with neutral red dye. The suitability of this vital 

stain depended on dye concentration, immersion time and salinity. From preliminary 

experiments, the best combination for the bay anchovy was 0.01 g I'1 for 1 h at 8-14 

7o„ salinity. After immersion the whole body of bay anchovy was bright pink, the 

survival rate was 100%, and the stain remained easily visible for at least 2 d. Studies
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using neutral red dye with other fishes have been successful and have reported 

insignificant behavioral effects (Cantrelle 1984; Pavlov & Gorin 1985).

Mark-recapture experiments were conducted in Queen Creek, a York River 

tributary about 10 km in length, 30-60 m in width and 2-3 m deep in the channel 

(Figure 2.2). A 5-m, 3-mm mesh otter trawl towed with the current from an 8-meter 

boat was used to recapture the fish. An extra float was tied to the head line to 

increase the vertical range of net, and each tow covered about a 100 m distance.

The first mark-recapture experiment was performed on a flooding tide during 

evening hours on 18 September 1989. About 2,500 bay anchovies, which had been 

kept in holding tanks for 3-4 d, were loaded to three 150-1 tanks on the boat. Salinity 

in the tanks was adjusted to 14 +, l 0̂  by adding fresh water. At the release site, 

creek water (13700, 25°C) and neutral red dye (0.01 g l'1) were added to the tanks. 

After 1 h immersion in the dye solution, all fish were transferred to a nylon screen 

cage (2-mm mesh, 1 m diameter and 1.5 m high) in the creek. At 2100 hours (about 

30 min after the fish were caged) all fish were released by immersing the whole cage 

under water, turning it upside down and pulling it out of the water. At the same 

time, a lighted hydrographic near-surface drogue was released to monitor water 

movement. The drogue was designed to float 1 m below the surface. At 2200 hours 

the first otter trawl tow was made at the release site. Subsequently, 9 tows within 

200 m of the drogue were made during the next 3 h, then 3 fixed stations were 

sampled after the drogue was picked up at the upper most station (Figure 2.2).
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Similarly, a daytime experiment was conducted on 22 October 1989 in the 

same creek. Surface temperature was 16°C and salinity was 10 Bay anchovies 

and the drogue were released at 1400 hours during flooding tide. Tows were made 

from 1500 to 1730 hours.

RESULTS 

Laboratory experiment

In flume experiments, schools of bay anchovies were able to maintain position 

against a current (up to the maximum flume speed of 75 cm s'1) during daylight 

conditions. All fish remained in Segment I during extended periods of light (400 

lux). Schools broke up during nighttime conditions. In darkness, only 53% of fish 

were able to maintain position at a current speed of 5 cm s’1 (Table 2.1). As current 

speed was increased, most of the fish were flushed to the end of the flume and the 

percentage of fish in Segment I decreased. At 30 cm sr1, no fish were found in 

Segment I and 99% of the fish were found in Segment in (Table 2.1).

The percentage of fish transported to the end of the flume increased 

exponentially as the speed increased (Figure 2.3). The following model was used to 

analyze the relationship:



45

Table 2.1 Distribution of bay anchovies in the flume at different velocities in 

darkness.

Measured 
velocity 
cm s*1

Seament 1 Seament II Seament III Total
countcount (%> count <%) count <%>

Trial 1
5 24 (53) 6 (13) 15 (34) 45

14 6 (14) 13 (31) 23 (55) 42
25 1 ( 4) 3 (12) 21 (84) 25

Trial 2
11 18 (22) 16 (19) 49 (59) 83
11 7 (16) 9 (20) 28 (64) 44
16 1 ( 1) 14 (16) 75 (83) 90
16 2 ( 3) 19 (27) 49 (70) 70
21 0 ( 0) 6 ( 7) 85 (93) 91
21 0 ( 0) 5 (14) 31 (86) 36
30 0 ( 0) 1 ( 1) 78 (99) 79
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Figure 2.2 Map of the study site; for the night experiment, A is the release site; 1, 

2, ..10 are tow numbers and F (tow 11, 12 and 13) is the fixed station; for the day 

experiment, B is the release site and the cross-hatched area is where all marked fish 

were recaptured.
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Figure 2.3 Exponential relation between percent of transport and current speed; the 

vertical axis is the percent of fish in segment III; horizontal axis is the current speed; 

stars are data points from trial 1; squares are data points from trial 2.
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where Y is the percent of fish in Segment m , u is the measured current speed 

(cm s'1), a  and b are parameters to be estimated, and 100% is the asymptote of the 

model. Analysis of covariance indicated no significant difference between the two 

trials (P — 0.1037) and data in Table 1 were pooled to estimate the parameters: a = 

0.0889, b =  1.02 (r2 =  0.97, p =  0.0001).

Field experiment

In the night experiment, marked bay anchovies were captured in the vicinity of 

the drogue in trawls as much as 5.1 km upstream from the release point for as long as 

4 h after release. The drogue was picked up at this point because the boat could not 

go under a bridge across the creek (station 10 in Figure 2.2). The average current 

speed in the creek, estimated from the distance (5.1 km) and time interval (4 h), was 

35 cm s'1. Fifty-four marked fish all captured within 200 m of the drogue were 

collected in 9 tows (tow # 2-10 in Table 2.2). Marked fish comprised 0.7%-13.4% 

of the bay anchovies in each tow. No marked fish were captured at three fixed 

stations (tow 11-13 in Table 2.2) sampled after the drogue had passed. These stations 

were 1300, 3000 and 4500 m downstream from the bridge (tow locations are 

indicated in Figure 2.2).

In the day experiment, tows were made within 500 m downstream and 300 m 

upstream of the release site for 1-3 h after release (Table 2.3). Marked bay anchovies 

comprised 1.5-6.2% of those collected and were captured only within 200 m of the 

release site. The cross-hatched area in Figure 2.2 indicates the location where
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Table 2.2 Distribution of recaptured bay anchovies in Queen Creek from night 

experiment; DFRS is the distance from the release site; DFHD is distance from the 

hydrographic drogue; slack before flood tide was at 2000 h.

DFRS DFHD Anchovies Marked % of marked
Tow # Time ( m ) ( m ) in catch anchovies anchovies

Release 21:00 0 0
1 22:00 0 1000 73 0
2 22:05 900 100 67 9 13.4 %
3 22:20 1200 200 166 2 1.2 %
4 22:30 1500 100 166 17 10.2 %
5 22:50 2100 100 150 9 6.0 %
6 23:20 3000 100 33 3 9.1 %
7 23:40 3500 100 99 2 2.2 %
8 00:10 4000 100 137 1 0.7 %
9 00:30 4500 100 69 3 4.3 %
10 00:55 5100 100 78 8 10.3 %
11 01:15 4000 fixed 166 0
12 01:35 2300 fixed 235 0
13 02:00 1000 fixed 160 0
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Table 2.3 Distribution of recaptured bay anchovies in Queen Creek from day 

experiment; DFRS is distance from the release site, upstream positive, downstream 

negative; slack before flood tide was at 1300 h.

DFRS Anchovies Marked % of marked
Tow # Time ( m ) in catch anchovies anchovies

Release 14:00 0
1 15:15 100 133 2 1.5 %
2 15:35 150 226 14 6.2 %
3 15:55 250 10 0
4 16:15 -500 20 0
5 16:30 -400 52 0
6 16:45 0 34 0
7 16:55 200 111 0
8 17:10 0 205 4 2.0 %
9 17:30 0 125 6 4.8 %
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marked fish were collected, but not all tows within the area captured marked fish. 

Current speed could not be determined because the drogue was stranded by gusty NW 

wind.

DISCUSSION

Results of the laboratory and field experiments in this study suggest that in 

darkness, bay anchovy schools break up and fish are transported by currents. The 

positive exponential relationship between percent of anchovies transported and current 

speed indicated that bay anchovies swam in darkness, but at slower speeds and in 

random directions. Blaxter & Batty (1985), using an infra-red television system, 

observed that herring schools broke up in darkness and individuals swam at greatly 

reduced speeds.

Parr (1927) and Shaw (1970) believed that schools broke up in darkness 

because vision was required for fish to school. Although some laboratory studies 

have shown that temporarily blindfolded fish were able to school if their posterior 

lateral lines were not cut (Partridge & Pitcher 1980), it is unknown whether this 

behavioral pattern applies to fish in the natural environment because fish in 

confinement have a much greater chance of encounter than fish in the natural 

environment. Partridge & Pitcher (1980) concluded from their study that vision is 

important for maintaining position and the lateral line system is important for 

monitoring speed and direction of other fish in the school. In addition, anchovies
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(and other clupeoids) have no posterior lateral lines; thus, vision probably plays a 

central role in anchovy schooling.

Mark-recapture experiments supported the results of the laboratory 

experiments. Daylight observations revealed that bay anchovies maintained a 

relatively fixed location. The night experiment showed bay anchovies were 

transported by tidal currents. From flume experiments and the estimated average 

current speed (35 cm s'1) in the creek during the night experiment, it could be 

predicted that at least 95% of fish would be transported. The prediction is supported 

in that all marked fish were caught within 200 m of the drogue in the night 

experiment. In the York River, the average current speed is about 20 cm s 1 at neap 

tide and about 52 cm s'1 at spring tide (U. S. Department of Commerce, NOAA/NOS 

1988).

Lyon (1904, 1909), Hoar (1953), Harden Jones (1968), and Smith (1985) 

suggested that fish which are both out of sight and touch of the bottom drift with the 

current. Pavlov et al. (1977) concluded from a study of juvenile fish migration that 

passive transport was associated with the loss of visual orientation by fishes and was 

observed only during nighttime. Arnold (1981) stated that loss of visual reference 

points at night may account for the downstream displacement of salmonid fry.

The threshold of light intensity for schooling was not investigated in this 

study. The lowest light intensity where feeding and schooling can be performed by 

clupeoids is 0.2-0.001 lux (Blaxter and Hunter 1982; Batty et al. 1990). It is
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expected that in a turbulent estuarine environment, the light intensity at night is well 

below O.OOl lux most of the time (Whitney 1969).

Transport of bay anchovies by currents at night may play an important 

ecological role in estuarine environments. In addition to seasonal migration, bay 

anchovies are likely transported and segregated upstream during a period when 

flooding is dominant at night, and downstream during a period when ebbing is 

dominant at night. This may affect food availability, growth rate and reproduction. 

This pattern of spatio-temporal distribution is also important to studies on fish 

community structure in estuaries. There have been some suggestions that 

microgeographic subpopulations of bay anchovy may exist in Chesapeake Bay and its 

tributaries. Conversely, the passive nocturnal transport noted in the present study 

would more likely lead to a panmictic population structure within the ecosystem 

although further studies are necessary.

This behavior may also exist in other marine and estuarine pelagic species. 

Preliminary tests with the Atlantic silverside (Menidia menidia L.) in a flume showed 

that its schools also broke up in darkness and fish were transported by currents 

(Unpubl. data).
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INTRODUCTION 

The bay anchovy, Anchoa mitchitti, like most other anchovies, is a small 

species with rapid growth and early maturity; an ’r ’ selected species. Such species 

may exhibit large population fluctuations but little information is available about the 

population dynamics and factors affecting the population size of bay anchovy. 

Overfishing, often associated with fluctuation of fish populations, is not applicable to 

bay anchovy because there is no commercial fishing or bycatch of this species.

The purpose of this study is to examine a data set derived from a long-term 

trawl survey in order to define temporal patterns in population size of bay anchovy in 

Lower Chesapeake Bay, and to identify the possible factors which cause population 

fluctuations.

MATERIALS AND METHODS 

Catch data were obtained from a long-term trawl survey program of the 

Virginia Institute of Marine Science (VIMS). A total of 15,438 tows was made from 

1955-1990 covering the area from the mouth of Chesapeake Bay to the freshwater 

interface of the James, York, and Rappahannock Rivers. From 1955 to 1987 monthly 

samples were collected mainly in rivers, whereas from 1988 to 1990 both the bay and 

rivers were sampled extensively. Because trawls of different sizes have been used 

during the years, all catch and effort data were standardized to a unit effort: 5 min

55



56

bottom time of a 30 foot semi-balloon otter trawl with 1.5" stretch mesh body, and a 

1/4" stretch mesh cod end liner (Table 3.1). I standardized the sampling efforts of 

different gears by computing the ratio of the average catch of selected fish species in 

each gear relative to the average catch of the standard gear fished during the same 

time period.

To analyze the spatial distribution of bay anchovy, data from 1987 to 1989 

were pooled within four seasonal periods: spring (Mar-May), summer (Jun-Aug), fall 

(Sep-Nov), and winter (Dec-Feb). In each season, samples were split into four 

horizontal (lower bay, lower rivers, middle rivers, and upper rivers), and four bottom 

depth (< 7  m, 7-9 m, 9-13 m, and >  13 m) strata. I chose horizontal and depth 

strata arbitrarily to give similar numbers of samples in each section. Analysis of 

variance was used to determine whether there were significant differences in 

horizontal and depth distributions of bay anchovy from season to season, and the 

significance level was set at a  — 0.05 throughout this study.

From 1955-1985, usually only the fork lengths of 25 individuals were recorded 

from each sample. From 1986-1990, all individual lengths were measured or a 

subsample of 100-1000 individuals were measured if  the total sample was too large to 

be practically measured. In this study, I selected the 1988 and 1989 length data for 

analysis of seasonal length-frequency distributions.

A multiple linear regression model was used to determine which factors could 

have caused bay anchovy population variation. Six types of data were used: bay 

anchovy CPUE, water temperature, wind speed, river flow, weakfish CPUE, and
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Table 3.1 Major sampling gears used in VIMS trawl survey. Standardization was 

made by comparing the catches of different gears in the same year period. Q is the 

ratio of catch of any type of gear to the catch of the 30’ lined semi-balloon trawl. A 

catch in each of the gears is multiplied by Q to obtain the CPUE.

Gear Gear description Q
code {Years used) Bay anchovy Weakfish White perch

10 30' semi-balloon trawl,
unlined. (1955-72) 7 1.3 1.2

33 30' semi-balloon trawl,
lined. (1973-80) 1 1 1

35 16' semi-balloon trawl,
lined. (1970-79) 2.2 3.8 4.3

70 30' semi-balloon trawl, lined,
chain, bridle. (1980-90) 1 1 1
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white perch CPUE. First, all data sets were transformed into compatible forms by a 

Fourier analysis. The purpose of Fourier analysis was to remove the seasonal 

variation from a data set, and to leave long-term variations for modelling. Then, 

cross-correlation analyses were performed on all the variable pairs after each series 

was filtered with an autoregressive process if it showed any significant 

autocorrelation. This is because "the interpretation of the sample cross-correlation 

function can be fraught with danger unless one uses the prefiltering procedure..." 

(Chatfield 1989, p. 139).

Fourier analysis was based on the following equation:

(ff/2)-l
yt=a0+ £  [apcos (2npt) +jbpsin (2irpfc) ] +aff/2cos (rcifffc) +5t

p - i

where t =  year - 64 +  (month-l)/12 for monthly index and t — year-64 +  (season - 

l)/4 for seasonal index, Yt is the observation (In[CPUE], log[FLOW], Wind speed 

and Temperature) at time t, N is the number of observations in a year, £t is an error 

term, a ,̂ a,,, bp, aN/2 are parameters to be estimated from data, and p is a integer from 

1 to (N/2 - 1). Only harmonics with significant contributions (P < 0.05) were used 

to predict the seasonal variation:

K
“ao+E  UpCos (2%pt) +Jbpsin(2npt) ] 

p-i

where K equals the number of significant harmonics. Residuals (R,) were obtained 

from the difference of the observed Yt and the predicted Yt: R1 — Yt - Yt.
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Monthly bay anchovy CPUE was calculated for years when the sample size 

was larger than 100 collections (1964-1990). The Fourier analysis was performed on 

the natural logarithms of the monthly CPUE to remove seasonal variations. The 

residuals of the Fourier analysis were averaged by year to produce a  yearly bay 

anchovy abundance index (BAAI, Table 3.2). Spawner index (SPAWNERI) was the 

first lag of BAAI because the prior year’s fish are the parents of the subsequent year- 

class.

The yearly abundance index of weakfish (WFISHI), Cynoscion regatis, and 

white perch (WPERCHI), Morone americana, were calculated similarly to the bay 

anchovy from VIMS trawl survey data, and were used as predator indices because 

they were the most abundant known bay anchovy predators in the trawl catches. The 

predator indices were calculated with seasonal CPUE rather than monthly CPUE 

because of frequent missing values.

Average monthly river flow data were from the CBP Computer Center, EPA 

Chesapeake Bay Program, Annapolis, Maryland. The river flow index (FLOWI) was 

calculated from the sum of the river flow of James, York, and Rappahannock rivers 

in the same way as the bay anchovy index except that base ten logarithms were used 

instead of natural logarithms.

Water temperature and wind also were selected as abiotic factors.

Temperature data were obtained from VIMS pier ambient monitoring program, 

recorded at Ferry pier. Wind speed data were obtained from National Weather 

Service, recorded at Norfolk International Airport. The Fourier analysis was
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Table 3.2 Indices calculated from the residuals of the variables in Fourier analysis. 

BAAI is bay anchovy abundance index; FLOWI is the sum river flow index of James, 

York, and Rappahannock river; WFISHI is weakfish abundance index; WPERCHI is 

white perch abundance index; WINDI is summer wind speed index; and TEMPI is 

winter temperature index.

aar BAAI FLOWI WFISHI WPERCHI WINDI TEMPI

64 -1.073 -0.148 0.946 0.905 -0.084 -0.943
65 -1.047 -0.227 0.661 0.884 3.520 0.447
66 -0.957 -0.130 -0.366 0.701 1.370 -0.193
67 0.340 -0.385 0.777 1.365 -0.472 0.094
68 -0.474 0.009 0.272 0.983 -1.530 -0.910
69 -0.304 -0.076 -0.220 0.749 -1.030 -1.296
70 -1.112 -0.076 1.083 0.190 -2.239 -1.663
71 -0.037 -0.079 -0.001 0.713 -0.436 0.500
72 0.062 0.022 -0.589 -0.155 1.480 1.16773 0.550 0.293 -1.004 -0.293 0.738 1.054
74 1.667 0.306 -2.020 0.278 0.137 2.777
75 1.648 0.079 -1.501 -2.223 0.178 2.770
76 0.893 0.168 -0.620 -1.637 0.072 0.554
77 -0.142 0.109 -0.920 0.346 -0.790 -2.826
78 -1.723 -0.117 -0.195 0.744 -2.260 -1.160
79 -0.749 0.153 -0.481 -0.882 -1.074 0.160
80 0.766 0.097 -0.060 -0.158 -0.853 -0.651
81 -0.051 0.236 -0.594 0.047 -2.066 0.251
82 -0.868 -0.316 0.492 0.398 0.755 -1.290
83 0.467 -0.011 0.358 -0.186 -2.249 1.670
84 0.352 -0.006 -0.518 -0.122 1.999 -0.050
85 0.590 0.200 0.377 -0.180 1.870 0.924
86 0.823 -0.047 0.526 -0.646 1.295 0.620
87 0.717 -0.049 0.439 -0.755 1.093 0.764
88 0.597 -0.047 1.271 -1.900 1.005 -0.230
89 1.153 -0.043 0.191 0.029 -0.083 0.974
90 -0.383 -0.301 0.618 -0.275 0.815 0.217



performed on monthly average temperature (°C) and monthly average wind speed 

(km/h). The temperature index (TEMPI) was the mean residual temperature o f winter 

months (Dec, Jan, and Feb). The wind index (WIND]) was initially calculated by 

averaging the residual wind speed of summer months (June, July, and August), 

because wind conditions are presumed to have effects on the survival of eggs and 

larvae of bay anchovy during these months. However, after preliminary analysis 

indicated that August wind did not give a significant contribution, only the residuals 

of June and July were used.

The data set of this study was combined from historic data sets of a variety of 

projects with different objectives. Most data of this type lack consistency in 

sampling space, sampling method, and sampling time interval. This type of data is 

not ideal, but often it is the only data available to them. Although I have made my 

best effort to reduce the effects of inconsistencies in sampling, I could not rule out the 

probability that some aspects of the results were artifacts of the data.

RESULTS

Spatial distribution of bay anchovy:

Horizontal.—Th& bay anchovy was the most abundant species in the trawl survey 

catches and was found throughout the entire sampling area. In the 1987-1989 

analysis, bay anchovies generally were more concentrated in the lower part of the 

rivers and in the Bay, but the spatial distribution showed some degree of seasonal 

variation (Figure 3.1). In fall, bay anchovies were relatively evenly distributed over
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the whole area when young-of-the-year recruited to the sampled population. Analysis 

of variance (ANOVA) indicated that fall CPUEs were not significantly different (P 

<  0.073) among areas. In winter, some bay anchovies migrated downriver and 

concentrated in the lower part of the rivers and in the Bay. The ANOVA indicated 

that winter CPUEs were significantly different (P £  0.0046) among areas. In spring, 

some bay anchovy migrated upstream. Although the spring CPUE was higher in the 

Bay and lower and middle parts of the rivers, there were no significant differences 

(P <  0.068) among areas. In summer, the CPUE was significantly lower (P £  

0.035) upstream.

Depth.-Although trawl collections were made at bottom depths ranging from 3 to 30 

m, most of the samples (94%) were collected in depths ranging from 5 to 20 m.

Only 4% of the samples were collected in depths less than 5 m, and 2% in depths 

greater than 20 m. The pattern of depth distribution was related to horizontal 

distribution because the deeper waters are mostly in the Bay and mouths of the rivers. 

In general, the CPUE was higher at deeper water stations, but depth distribution also 

varied in some degree from season to season (Figure 3.2). Bay anchovies were 

nearly uniformly distributed over the depth range in fall when the young-of-the-year 

recruited to the population. Analysis of variance indicated no significant differences 

in fall (P £  0.164) over the depth range. In winter, many fish withdrew from 

shallow water to deeper water, and the ANOVA indicated that the CPUEs were 

significantly higher (P £  0.0005) at the deeper water stations. In spring, although
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some fish moved back to the shallow water, the CPUEs were still significantly higher 

(P <  0.0035) in deeper water. In summer, the CPUEs were not significantly 

different (p — 0.2301) over the entire depth range.

Variation in seasonal abundance of bay anchovy:

Bay anchovy populations showed great seasonal fluctuations. The seasonal 

variation is composed of a basic one year sinusoidal curve and its second and third 

harmonics (Table 3.3, Figure 3.3). Seasonal variation was the average over the 27 

year period and contributed 17% of total variation. On the average, the highest 

CPUE was in November when young-of-the-year bay anchovy fully recruited to the 

population. In December and January, when water temperature dropped to its lowest 

value, CPUE dropped sharply due to probable offshore migration and migration to the 

deeper parts of the Bay where sampling was not conducted. CPUE reached its lowest 

values in January and February. In March, CPUE increased quickly as temperature 

rose and fish migrated back into the bay and its tributaries. By April, CPUE reached 

a secondary peak. After April the CPUE decreased sharply, presumably due to 

predation and migration of fish to other Bay areas. By June, CPUE reached a 

secondary low value, at the time when most fish were one year old, and were mature. 

Although fish started to spawn in May, young-of-the-year had not recruited yet to the 

sampling gear. In July-September, CPUE increased gradually as the young-of-the- 

year recruited to the population (Figure 3.4a, b).
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Figure 3.1 Horizontal distribution of bay anchovy (average from 1987-1989). The 

height of block is the ratio of each stratum CPUE within a season to the sum CPUE 

of the same season. Horizontal strata were chosen arbitrarily to give similar numbers 

of samples in each stratum.
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Figure 3.2 Depth zone distribution of bay anchovy (average from 1987-1989). The 

height of block is the ratio of each stratum CPUE within a season to the sum CPUE 

of the same season. Depth strata were chosen arbitrarily to give similar numbers of 

samples in each stratum.
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Figure 3.3 Seasonal bay anchovy abundance derived from a Fourier analysis of 27- 

years of monthly CPUE data. It consisted of a basic one-year period sinusoidal curve 

and its second and third harmonics.
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Table 3.3 Parameters of Fourier analysis. Estimated from multiple regression 

model. The period of the basic sinusoidal curve is one year.

Series Parameters of significant harmonics R2
a0 (a, b,) (a2 b2) (a3 b3)

CPUE 4.402 (-0.403,-0.350) (-0.737,-0.106) (0.257,-0.281) .17
WFISH 1.417 (-1.399, -1.531) (-0.371, *) .69
WPERCH 3.143 ( 1.192, 0.057) (-0.262, *) .42
FLOW 4.045 ( 0.229, 0.262) .42
WIND 13.454 ( 1.884, 0.627) (-0.380, 0.051) (0.006, 0.329) .41
TEMP 15.660 (-11.097 ,-3.052) (-0.420,-0.014) .97

* Seasonal observations and its nyquist frequency is 2; b2 is not present in the 

equation.
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Figure 3.4 Monthly length frequency distribution of bay anchovy in 1988 (a) and in 

1989 (b). Length is fork length in mm; vertical axis is a 3 point moving average of 

number of fish in each length unit (mm).
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Variation in long-term abundance of bay anchovy:

Trawl survey catch rates showed that bay anchovy population size has varied 

as much as 10-fold from year to year (Figure 3.5).

Autocorrelation analysis (Figure 3.6A) suggests that the bay anchovy 

abundance index time series contained a first-order autoregressive process: X( =  

a^Xn+Zt, (i2 =  0.26, oil =  0.497, P  <  0.0066), where xt is the index at year t; xt.i 

is the index of the previous year; and Z, is an error process which may be controlled 

by other factors. Autocorrelation also showed that WFISHI and WPERCHI series 

contained significant first-order autoregressive processes (i2 =  0.29, =  0.528, P

<  0.0039; i2 =  0.20, a, =  0.434, P  <  0.0210, respectively).

To identify other factors, I performed cross-correlation analysis on all variable 

pairs. Results indicated that Zt was significantly correlated with lag(0) TEMPI (r„ = 

0.662, P  <  0.0001), lag(l) FLOWI (r, =  0.376, P  <  0.027), lag(l) F-WPERCHI 

(the prefix F indicating a filtered series, rt =  -0.437, P < 0.011), and lag(0) of the 

square function of WINDI (SQWINDI, r0 = -0.377, P < 0.026), but was not 

significantly correlated with F-WFISHI in any lag (Table 3.4). There also were 

significant correlations between TEMPI and FLOWI1, and between TEMPI and F- 

WFISHI, which made it difficult to identify the true correlations between any pair of 

variables (i,e. they were not independent). Partial correlation using TEMPI as a 

controlling variable (remove the effect of TEMPI) resulted in a better correlation 

between Zt and F-WPERCHI 1, and between Zl and SQWINDI, but reduced the 

correlation between Z, and FLOWI1, and between Zt and F-WFISHI.
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Figure 3.5 Annual average bay anchovy catch per unit effort (CPUE) ffom 1964 to 

1990. A unit effort is a 5 min bottom time of a 30-foot semi-balloon otter trawl with 

1.5 inch stretch mesh body, and a 0.25 inch stretch mesh cod end liner; catch is 

number of fish.
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Figure 3.6 Autocorrelation of bay anchovy abundance index (BAAI). A) before 

modelling; B) after modelling. Dashed lines are 95% confidence limits.
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Table 3.4 Pearson correlation between Z,, FLOWI1, F-WFISHI, F-WPERCHI1, 

SQWINDI, and TEMPI. Values above the leading diagonal are simple correlations 

and those below are first-order partial correlations with the effect of temperature 

removed. The values in parentheses are the P-values that the correlation is 

significantly different from 0

z, FLOW11 F-WFISHI F-WPERCHI1 SQWINDI TEMPI

z, 1 .3759 -.2950 -.4366 -.3774 .6625
(.027)* (.068) (.011)* (.026)* (.000)*

FLOWI1 .2091 1 -.5467 -.3210 -.1465 .3455
(.153) (.002)* (.051) (.233) (.039)*

F-WFISHI -.0915 -.4846 1 .0642 -.1697 -.3484
(.328) (.006)* (.375) (.199) (.037)*

F-WPERCHI1 -.5083 -.3114 -.0365 1 -.2737 -.0864
(.004)* (.061) (.430) (.084) (.334)

SQWINDI -.4521 -.1345 .1592 .2700 1 -.0595
(.010)* (.256) (.219) (.091) (.384)

* Significant at 0.05 level.
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A step-wise multiple regression model was constructed from information in the 

cross-correlation analysis. The dependent variable was the BAAI, and the 

independent variables were SPAWNERI, WFISHI, WPERCHI1, FLOWI1,

SQWINDI, and TEMPI. In the first step, the BAAI was regressed on each variable 

independently, and five out of six variables were significant (Table 3.5). The 

TEMPI-model was the best one-variable model, and accountable for 46% of the total 

variance. In the second step, other variables were added into the TEMPI-model, and 

three of them gave additional significant contributions to the model. The TEMPI- 

SPAWNERI-model and the TEMPI-SQWINDI-model accounted for 61% and 64% of 

total variances, respectively, and the TEMPI-WPERCHIl-model was the best two- 

variable model, accounting for 71% of the total variance. In the third step, variables 

were added into the TEMPI-WPERCHIl-model, only SQWINDI gave an additional 

significant contribution to the model. The TEMPI-WPERCHIl-SQWINDI-model 

explained 78% of the total variance and was selected as a final predictive model 

because in the fourth to sixth steps none of the remaining variables gave additional 

significant contributions. The model is shown as below:

X0f c=0 . 207+0 . 4 33Tt-0  . 384 fW3t_1-0  . 0893Wt2+et

where X0it is the observed bay anchovy abundance index (BAAI) in year t; Tt is the 

temperature index (TEMPI) in year t; WPt.i is the white perch abundance index of the 

previous year (WPERCHI1); Wt is the wind index (WINDI) in year t, and et is the
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Table 3.5 The improvement in R2 in a step-wise multiple regression model. The 

dependent variable was the bay anchovy abundance index (BAAI) and the independent 

variables were added to the model such as to maximize the increase in R2

Step Variables included R2 P value of
last var

1 FLOWI 0.21 0.0170
SQWINDI 0.24 0.0108
SPAWNERI 0.26 0.0066
WPERCHI1 0.28 0.0049
TEMPI 0.46 0.0001

2 TEMPI, SPAWNERI 0.61 0.0060
TEMPI, SQWINDI 0.67 0.0021
TEMPI, WPERCHI1 0.71 0.0001

3 TEMPI, WPERCHI1, SQWINDI 0.78 0.0185
4 TEMPI, WPERCHI1, SQWINDI, FLOWI1 0.78 0.3852
5 TEMPI, WPERCHI1, SQWINDI, FLOWI1, WFISHI 0.79 0.3274
6 TEMPI, WPERCHI1, SQWINDI, FLOWI1, WFISHI,

SPAWNERI 0.80 0.3593



Figure 3.7 Observed (square) and predicted (plus and solid line) bay anchovy 

abundance index, and two standard errors (dashed lines).
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residual error term of the model. The standard error (s,,) of each estimate of 

regression coefficient (b) is 0.0688, 0.105, and 0.0351 for T„ WPt.lt Wt2, 

respectively. The standardized partial regression coefficient (b’), which indicates the 

relative contribution of each independent variable to the dependent variable (Zar 

1972), is 0.637, -0.400, and -0.279, respectively. Autocorrelation analysis indicated 

that et is not significantly different from a random process (Figure 3.6b), which 

supported the choice of the model.

The observed and predicted bay anchovy abundance indices are shown in 

Figure 3.7. The bay anchovy population was below average level during the late 60’s 

and late 70’s, mostly due to low winter temperatures during those time periods. The 

population was much above its average level during the middle 70’s, when there were 

extremely warm winters. From the beginning of the 80’s to present, the bay anchovy 

population has been slightly above the average level.

DISCUSSION

Six independent variables (spawner, temperature, white perch, weakfish, river 

flow, and wind speed) selected for modelling in this study all had some physical or 

biological significance. But only three (temperature, white perch abundance, and 

wind speed) gave significant contributions to the multiple regression model (78%), 

and reduced the model residual to a white noise series. Other potentially important 

variables, such as the abundance of copepods known as major food of bay anchovy 

(Reid 1954, Darnell 1958, Sheridan 1978, Vazquez 1989) and the abundances of
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gelatinous zooplankton known as the major predators on eggs and larvae of bay 

anchovy (Monteleone and Duguay 1988, Govoni and Olney 1991), were not included 

in the analysis because I was not able to obtain a long-series of data of these 

variables. By omitting these factors, it is assumed that these variables were constant 

over the years. Salinity was also not included in the analysis because bay anchovy is 

a euryhaline species and the variation in salinity among years was very small 

compared with bay anchovy’s wide salinity range (Massmann 1954, Simmons 1957, 

Dovel 1971). On the other hand, the fluctuation in salinity should have been reflected 

very well by the river flow index.

The bay anchovy abundance index was significantly correlated with the 

previous year’s index (r2 =  0.27, P  <  0.005, b =  0.3824 +. 0.2436). This 

relationship can be interpreted as a spawner-recruit relationship, because the bay 

anchovy is a short-lived fish and all individuals are mature at less than one year of 

age (Chapter 1). Thus, the prior year’s recruits are the parents of the subsequent 

year-class. It is difficult to interpret the exact nature of the spawner-recruit 

relationship because of the transformed data. For a better interpretation, the bay 

anchovy abundance index was converted back to the same units as the CPUE after the 

effects of temperature were removed. Among three models (linear, Ricker, and 

Beverton-Holt model), the Ricker model was the only significant model (Yr =

2.603*X* e"0 00915*, r2 =  0.52, P =  0.0001, Figure 3.8), which suggests that bay 

anchovy population recruitment dynamics was density-dependent in Chesapeake Bay.
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Figure 3.8 Ricker spawner-recruit model: Yr =  2.603X* e-0,00915*, r2 =  0.52, P 

~  0.0001; where Yr and X are the recruit and spawner CPUEs with the effect of 

temperature removed.
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The lower left-hand comer of the spawner-recruit curve shows that recruitment is 

nearly proportional to spawner stock. As the spawner stock increases, the rate of 

recruit begin t decline. This decline in recruitment is believed to reflect the operation 

of density-dependent factors in the relation of spawner stock to recruitment. Ricker 

(1954) suggested that cannibalism is the most natural candidate for density-dependent 

early mortality of eggs and larvae.

Winter water temperature made the most significant contribution to the model. 

The temperature effect can be explained in two ways. During colder winters, more 

fish migrated into deeper parts of the bay where sampling was not conducted (Marlde 

1976) or to offshore deeper waters (Vouglitois et al. 1987) where mortality might be 

higher (because most predators are in offshore deeper water in winter, i.e. striped 

bass, weakfish) and some fish may not return the following spring. During extremely 

cold winters (surface water temperature below 1°C), bay anchovies probably were 

killed by the low temperature in the bay and rivers (Gunter and Hildebrand 1951; 

personal observation).

Weakfish and white perch are major predators of the bay anchovy in the 

Chesapeake Bay (Baird and Ulanowicz 1989), therefore they were expected to have a 

negative effect on the bay anchovy abundance. This study showed that both were 

negatively correlated with bay anchovy abundance but only the white perch had a 

significant effect in the model. This can be explained partially by the natural 

distribution difference of the two species. The white perch is a resident species in the 

rivers and upper Bay. Weakfish is a seasonal visitor to the Bay system and is more
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abundant in the Bay than in the rivers. Since the data were primarily collected in 

rivers before 1988, it was more likely that the abundance index for white perch was 

better than that for weakfish. The result would be the opposite if the data were 

collected mainly in the Bay.

River flow was significantly positively correlated with bay anchovy abundance 

although it did not significantly contribute to the multiple regression model. This may 

be because river flow is positively correlated with water temperature. That is, the 

effects of river flow can be explained to some extent by the effects of temperature. 

Normally, increases in river flow would increase the primary production (Malone et 

al. 1988), thus increasing the secondary production and increasing the food of bay 

anchovy (Vazquez 1989).

This study found that bay anchovy abundance was not significantly correlated 

with the linear function of the wind index, but the squared function of the wind index 

(BAAI =  0.318 - 0.138*W2, r2 =  0.34, P = <, 0.002; Figure 3.9), which also 

made a significant contribution to the multiple regression model. In this study, only 

the June-July wind index gave a significant contribution to the model. This is because 

the spawning peak of bay anchovy is usually in July and about 75% of total annual 

eggs are produced in June and July (Zastrow et al. 1991, Luo and Musick 1991).

The highest wind index in this study is 3.52 km/h (Figure 3.9) which is a result of a 

storm occurred during 14-17 June 1965. It is seemly that this extreme point drives 

the relationship, but by excluding this point in the analysis it still results a significant 

quadratic function (BAAI = 0.378 - 0.158-W2, r2 =  0.21, P <  0.020).
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Figure 3.9 Wind-recruit relationship (r2 =  0.34, P <  0.002) of bay anchovy. The 

vertical axis is the bay anchovy abundance index with the effect of temperature 

removed, the horizontal axis is wind index.
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The effect of wind on the bay anchovy population is not a simple case. The 

ideal condition is moderate winds. Moderate winds increase the contact rates between 

larvae and their prey without reducing their feeding success (Mackenzie and Leggett 

1991). High winds could generate an extremely turbulent environment which would 

allow prey to pass through the larval visual field without being successfully captured 

because larva reaction times may be too slow to respond to fast-moving prey 

(Checkley 1982, Govoni et al. 1986), or because the reduced visibility of the water 

column reduces the ability of larvae to see their prey (Mackenzie and Leggett 1991). 

High winds would also destroy the patchiness of food that is essential during the early 

larval stage of fish (Lasker 1978). On the other hand, extended calm periods would 

reduce turbulence which otherwise increases contact rates, and could result in vertical 

stability of the water column leading to hypoxia in the lower water column (Goodrich 

et al. 1987) and a reduction in secondary production and the available space for adult 

fish.

Some of the unexplained variance in the model could have been caused from 

the errors in estimating the CPUE. That is, the CPUE might not indicate the true bay 

anchovy abundance in the Chesapeake Bay due to the following possible factors: (1) 

inconsistency in sampling locations, such as in some years more samples were 

collected in the rivers and in other years more in the Bay; (2) variability in 

catchability coefficient (q) of the same gear at different depths, i.e. in deeper water 

the otter trawl did not sample the overlying water column as effectively as in 

shallower water therefore under-estimating the abundance relative to shallower water;
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(3) changes in gear from year to year (although some standardization has been 

applied, gear variation still is a major source of error in estimating the CPUE because 

of a lack of well-designed experiments).

The fluctuation in abundance of bay anchovy may have potential effects on the 

Bay ecosystem because it is a key species in the Chesapeake Bay food web. Bay 

anchovy links the zooplankton production to the biomass of larger predatory fishes. 

Therefore, the lower the abundance of bay anchovy the less zooplankton production 

will be converted into food for larger predatory fishes and the lower the fisheries 

output in the subsequent year or years. But many more studies are needed to 

quantitatively understand the importance of bay anchovy in the Chesapeake Bay food 

web.

In summary, this study indicated that the bay anchovy population size in lower 

Chesapeake Bay was mainly controlled by winter water temperature and the previous 

year’s white perch abundances. When the environmental conditions were unfavorable 

(extreme low temperature in winter, strong or little wind in summer), the bay 

anchovy populations could drop five-fold from its average level in one year. On the 

other hand, during a favorable period (warm winter and moderate wind in summer), 

the bay anchovy population could recover quickly to its average level or above. An 

earlier study (chapter 1) indicated that bay anchovy has the reproductive potential 

(reproductive output is about 350% of body energy per year) to produce an almost 

explosive increase in population size.



GENERAL DISCUSSION

The present study examines certain important aspects of the life history of the 

bay anchovy. The life history of organisms represents a series of selective 

compromises to a suite of environmental variables. Components, such as age and size 

at maturity, fecundity, spawning frequency, body size, and longevity, constitute a life 

history "strategy", which implies a suite of adaptive responses accumulated over 

evolutionary time (Wilbur et al. 1974). Age and size at maturity are the life-history 

parameters most sensitive to environmental stress. An organism that encounters an 

unavoidable stress that results in slower growth its age at maturity could be changed 

to keep fitness as high as possible despite slower growth (Steams and Grandall 1984). 

According to Giesel (1976), life histories that should be selected for are those in 

which the age-specific reproductive effort schedule is such that the overall fitness of 

the life history is maximized. He also noted that early reproduction, all else being 

equal, increases fitness over late reproduction.

The present study has shown that bay anchovies hatched in May and June 

could mature at a size of 36.9 mm FL in about 80 days. Fish which hatched early 

had high growth rates in summer and spawned before temperature and other 

environmental factors fell below optimal spawning conditions in late September. Fish 

hatched in July and August experienced different environmental conditions and

84
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nutrient levels from fish hatched earlier, and although they also were able to reach 

35-40 mm by late September and October, the water temperature was usually too low 

for spawning. These fish delayed maturity until the next spawning season (May to 

September of next year) at an age of about 10 months and size of 45-55 mm. These 

results support Giesel's (1976) contention that reproductive effort and allocation of 

available energy may be regulated in response to variations in nutrient level and other 

environmental conditions, and that such phenotypic plasticity within reproductive 

patterns sometimes constitutes the major part of a reproductive strategy.

This study revealed that an individual bay anchovy spawns repeatedly in a 

spawning season. The spawning frequency was 0.25 batches per day (1 spawning 

every 4 days) at the beginning of the season (May to June) and increased to about 

0.75 batches per day (3 spawnings every 4 days) in July and August. The estimated 

total number of batches in the 1988 spawning season was about 54. Calow (1979) 

suggested that life-span expressed in terms of the number of breeding seasons between 

birth and death is likely to be a more important criterion of life-history strategy than 

is longevity. Although multiple spawning in a season and iteroparity (repeated 

breeding at different ages, Cole 1954) are different by definition, their contributions 

to populations are the same: spreading of reproduction over a long time period to 

overcome the reproductive uncertainty resulting from variable biotic and abiotic 

environments. Moreover, multiple spawning in a  season has some advantages over 

iteroparity: (1) multiple spawning increases the annual egg production; (2) high adult
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mortality has more of an effect on populations with iteroparity than on populations 

with multiple spawning.

Bay anchovy in Chesapeake Bay has high relative fecundity. The annual 

relative fecundity of 1-yr-old bay anchovy is about 450 times that of 4-yr-old striped 

bass and 8 times that of 12-yr-old striped bass (Westin and Rogers 1978), Among all 

anchovy species investigated (Table 3.4), the bay anchovy has highest relative daily 

fecundity. Calow (1979) suggested that the most satisfactory measure of the cost of 

reproduction is energy invested in reproduction as a proportion of energy taken in 

since it expresses reproductive output in terms of nutrient input. This study estimates 

that bay anchovy invests about 20% of calories consumed daily into daily 

reproductive output at spawning peak (Chapter 1). Hunter and Goldberg (1980) 

reported that for 1-yr-old female northern anchovy, 8% of consumed calories were 

used for reproduction.

The passive tidal transport of adult bay anchovy in darkness described in 

chapter 2 is an important ecological phenomenon. This transport pattern is important 

to studies on fish community structure in the estuaries because it is likely to result in 

unique spatio-temporal distribution of pelagic fishes. Disassociadon of schools and 

drift may explain why most pelagic schooling fishes spawn in the evening or at night 

(Ferraro 1980), because the sterotypic polarized schooling behavior in daylight may 

preclude the complex behavioral interrelations that are required between mates for 

successful spawning. In terms of population genetics, tidal transport in darkness 

could result in a panmictic population structure within Chesapeake Bay.
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The multiple linear model analysis (Chapter 3) suggested that the bay anchovy 

population in Chesapeake bay is primarily regulated by winter water temperature, 

predator abundance, and summer wind speed. Other studies (Lasker 1975, 1978, 

Hayman and Tyler 1980, Henderson and Holmes 1990) have shown that water 

temperature and wind conditions are two important density-independent factors that 

cause fluctuations in fish populations. Predation has been known as a major factor 

for regulating population sizes of small forage species (Wilbur et al. 1974), but 

quantitative studies of prey-predator relationships are rare. Other potentially 

important variables, such as the abundance of copepods known as the major food of 

bay anchovy (Reid 1954, Darnell 1958, Sheridan 1978, Vazquez 1989), and the 

abundance of gelatinous zooplankton known as the major predators on eggs and larvae 

of bay anchovy (Monteleone and Duguay 1988, Govoni and Olney 1991), were not 

included in the analysis because I was not able to obtain long-series data of these 

variables. The analysis also showed that bay anchovy abundance of a current year is 

significantly correlated with that o f the previous year. The Ricker spawner-recruit 

model suggests that there may be a density-dependent mechanism in the bay anchovy 

population recruitment in Chesapeake Bay. The large variation of the observed values 

about the model indicated that the bay anchovy is a typical ’r ’ selected species.

Life history patterns have evolved along two major lines (Williams 1966, 

Muiphy 1968, Schaffer 1974a, 1974b, Giesel 1976): (1) species that face high pre- 

reproductive mortality or low probability of reproductive success per reproductive 

effort should have long life, late maturity, and repeated reproduction (iteroparity); (2)
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species that characteristically suffer high adult mortality should maximize early 

reproduction and have short life. Muiphy (1967, 1968) suggested that fishes that face 

both high variable pre-reproductive mortality and high variable adult mortality would 

be unobservable because of extinction. Studies have shown that the bay anchovy 

suffers high adult mortality from larger carnivores and has a short life span 

(Hildebrand and Schroeder 1928, Stevenson 1958, Newberger 1989, Baird and 

Ulanowicz 1989). Other studies also have shown that bay anchovy suffers high egg 

and larval mortalities (Leak and Houde 1987). According to Murphy’s theory, the 

bay anchovy should have become extinct: instead it is one of the most abundant fish 

species in Chesapeake Bay. Murphy did not consider the possibility of multiple- 

spawning of individual fish in a spawning season because batch spawning was poorly 

known until the 1980’s (Hunter and Goldberg 1980, Hunter et al. 1985, Clarke 

1987). It is probably this type of spawning tactic that overcomes the high egg and 

larval mortality, and ensures the reproductive success of the bay anchovy in 

Chesapeake Bay.
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VITA

ANN E. ANCHOA MITCHILLI

Bom in the long, hot summer,
In the mouth of the York River.

Thrown out from the nursery one day after, 
With thousands of brothers and sisters.

4

Most brothers and sisters died 
Before reaching day nine.

Hard work traded for fast growth,
Harsh life matured them early.

Sexually active as teenagers,
With hundreds of unknown lovers.

Had many thousands of sons and daughters, 
But only a few were survivors.

Called useless by politicians,
But deserves the highest recognition,

For being the important link in the chain, 
That serves Chesapeake Bay.
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