
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2004

Ultrasonic guided wave tomography of pipes: A development of Ultrasonic guided wave tomography of pipes: A development of

new techniques for the nondestructive evaluation of cylindrical new techniques for the nondestructive evaluation of cylindrical

geometries and guided wave multi-mode analysis geometries and guided wave multi-mode analysis

Kevin Raymond Leonard
College of William and Mary - Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Acoustics, Dynamics, and Controls Commons, and the Applied Mechanics Commons

Recommended Citation Recommended Citation
Leonard, Kevin Raymond, "Ultrasonic guided wave tomography of pipes: A development of new
techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode
analysis" (2004). Dissertations, Theses, and Masters Projects. Paper 1539616737.
https://dx.doi.org/doi:10.25773/v5-b5xv-ve64

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539616737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=scholarworks.wm.edu%2Fetd%2F1539616737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=scholarworks.wm.edu%2Fetd%2F1539616737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.25773/v5-b5xv-ve64
mailto:scholarworks@wm.edu

ULTRASONIC GUIDED WAVE TOMOGRAPHY OF PIPES

A Development of New Techniques for the Nondestructive Evaluation of Cylindrical
Geometries and Guided Wave Multi-mode Analysis

A Dissertation

Presented to

The Faculty of the Department of Applied Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Kevin Raymond Leonard

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

The requirements for the degree of

Doctor of Philosophy

Kevin Raymond Leonard

Approved by the Committee, May 2004

Mark K. Hinders, Chair

Gregory D. Smith

Zia-ur Rahman

Robert E. Welsh

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife and parents for all of their support, encouragement, and love

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgements vi

List of Tables. vii

List of Figures............... viii

Abstract xiii

Chapter 1 Introduction 2

1.1 Guided Waves... 2

1.2 T omography... 6

1.3 Helical Ultrasound Tomography (HUT), Meridional Ultrasound Tomography
(MUT) and Multi-Mode Analysis... 10

Chapter 2 Fundamentals 14

2.1 Lamb Waves... 14

2.2 Lamb Wave Experimental Considerations...21

2.2.1 Coupling.......................... 24
2.2.2 Transduction..................... 25
2.2.3 Bandwidth...28
2.2.4 Discussion .. 31

2.3 NDE Applications................. 32

2.4 Tomography 34

Chapter 3 Lamb Wave Tomography (LWT) 35

3.1 LWT Experimental Overview 37

3.2 Parallel Projection Tomography........................... 40

3.3 Fan Beam Tomography .. 44

3.4 Crosshole Tomography 49

3.4.1 Simultaneous Iterative Reconstruction Technique (SIRT). 55
3.4.2 Composite Plate Results............... .58
3.4.3 Blind Study Test............. 64

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Chapter Summary................... 73

Chapter 4 Helical and Meridional Ultrasound Tomography................ 75

4.1 Introduction... 75

4.2 Description of Setup and Experimental Results............................... 82

4.3 HUT Discussion............................ 86

4.4 Meridional Ultrasound Tomography...92

4.4.1 MUT Experimental Setup................................. 98
4.4.2 MUT Results and Discussion.. 102

Chapter 5 Advanced Signal Processing.. .. 108

5.1 Tomographic Frequency Compounding.......................... 109

5.2 Multi-Mode Arrival Time Extraction Algorithms.............. 115

5.2.1 Wavelet Analysis....................... 121
5.2.2 Dynamic Wavelet Fingerprinting.. 123
5.2.3 Sorting Algorithm...125

5.3 Discussion... 156

Chapter 6 Conclusions and Future Work 159

Appendix A Source Code for the Numerical Solution of the Lamb Wave Dispersion
Relations 165

Appendix B Matlab Code for Multi-mode Arrival Sorting... 211

Appendix C Source Code for the HUT Scanner.. 224

References.. 294

Vita 305

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First, I want to thank Professor Hinders for his guidance and support
throughout. Without his insight and mentor ship, this work would not be possible. I am
also grateful to Professors Smith, Rahman, and Welsh for their careful reading and
criticism of the manuscript. Furthermore, this work would not have been possible
without the assistance I’ve received in the lab from my colleagues - Jonathan Stevens for
the construction and ingenuity behind the mechanical scanners seen in this work, Dr.
Eugene Malyarenko for his mentorship and prior work on Lamb wave tomography, and
Jill Bingham, Kevin Rudd, Ian Groom, and Daniel Bowring for collecting data and
assisting with data analysis.

Lastly, I would like to thank my family — my parents for all they have done and
sacrificed for me, and my wife, Heather, without whose support, encouragement, and
love I wouldn’t have been able to finish

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1-1. Guided Wave Benefits 3

Table 5-1. Image Quality Parameters for Figure 5-1 114

Table 5-2. Image Quality Parameters for Figure 5-2 114

Table 5-3. Image Quality Parameters for the three flawed samples. 155

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1-1. Three different Lamb wave tomography geometries 8

Figure 1-2. Parallel circumferential arrays of transducers can be seen to give a cross
hole tomographic geometry when the pipe is mentally “unwrapped.”......................12

Figure 2-1. The two families of Lamb wave modes generated in a thin plate.................. 15

Figure 2-2. Coordinate system for a plate of thickness 2b 15

Figure 2-3. Phase and group velocity dispersion curves for a 3mm thick aluminum
plate, where cl = 6.32 mm/ps and ex = 3.13 mm/ps.. 22

Figure 2-4. Displacement curves for the two lowest order symmetric modes in an
aluminum plate at two frequency-thickness products.. 23

Figure 2-5. Diagram of an variable incidence angle block transducer..............................27

Figure 2-6. Plots demonstrating the effects of dispersion due to an input signal’s
bandwidth for a highly dispersive mode, So, and a non-dispersive mode, Ao.......... 29

Figure 3-1. Lamb wave dispersion curves showing phase velocity (a) and group
velocity (b) versus frequency-thickness product for aluminum................................ 39

Figure 3-2. The geometry for parallel-projection tomography is shown for the case
of seven parallel projections at four orientations.. 41

Figure 3-3. The parallel projection scanning system is shown schematically..................43

Figure 3-4. Tomographic reconstructions of a 3/32” thick aluminum plate with a 1”
diameter flat bottom hole 30% thickness loss: (a) parallel projection result, (b)
fanbeam result, and (c) multiple crosshole result where the scanned area is 20
cm x 20 cm 45

Figure 3-5. Schematic of Lamb wave fanbeam tomography scanner...............................47

Figure 3-6. Photograph of the laboratory fanbeam scanner... 48

Figure 3-7. Geometry for multiple crosshole Lamb wave tomography............................50

Figure 3-8. Six possible crosshole projections................................. 52

Figure 3-9. Lamb wave tomography scanning system with computer plug-in boards
in a PC running Linux .. 53

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-10. Photograph of the Lamb wave tomography scanner in the laboratory 54

Figure 3-11. (a) Parallel projection and (b) multiple crosshole scans of a woven
graphite epoxy sample with impact damage ..59

Figure 3-12. Cross-sectional slices of the images in Figure 3-11 at a horizontal mid
line through the flaw 60

Figure 3-13. (a) Parallel projection [6] and (b) multiple crosshole scans of a woven
graphite epoxy sample with a 1” through-hole .. 61

Figure 3-14. Cross-sectional slices of the images in Figure 3-13 at a horizontal mid
line through the flaw .. 62

Figure 3-15. LWT blind study results for plates 1-4....................................... 66

Figure 3-16. LWT blind study results for plates 5-8.......................................67

Figure 3-17. LWT blind study results for plates 9-12 . 68

Figure 3-18. LWT blind study results for plates 13-16. 69

Figure 3-19. LWT blind study results for plates 17-20...................................70

Figure 4-1. A pipe segment is shown with a transmitting transducer at A and a
receiving transducer at B ... 78

Figure 4-2. Parallel circumferential arrays of transducers can be seen to give a
crosshole tomographic geometry when the pipe is mentally “unwrapped.” 80

Figure 4-3. Helical ultrasound tomographic (HUT) reconstruction geometry
unwrapped... 81

Figure 4-4. Data acquisition block diagram for the computer-controlled HUT
scanner..................... 83

Figure 4-5. A thick-walled steel pipe sample is shown in the HUT scanner.................... 85

Figure 4-6. Four reconstructions are shown for increasing flaw size in the same
thick-walled steel sample shown in Figure 4 -5 87

Figure 4-7. Velocity scatter plots for the 180 x 180 (32400) recorded waveforms are
shown for unflawed pipe samples at (a) 0.5 MHz and (b) 1.35 MHz.....................88

Figure 4-8. Typical waveforms for (a) meridional and (b) helical guided wave
modes................... 90

Figure 4-9. Velocity scatter plots are shown for flawed samples from Figure 4-6 as
extracted by our algorithms versus ray number.. 91

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-10. Each graph represents a different horizontal cross-section of the
tomographic reconstruction shown in Figure 4-6(b)................ 93

Figure 4-11. A linear array of transducers along the axis of the cylinder can be seen
to give a cross-hole tomographic geometry when the pipe is mentally
“unwrapped” ... 94

Figure 4-12. Storage facility for depleted Uranium Hexaflouride (UF6)................. 96

Figure 4-13. A photograph of a large storage tank mockup scanner in the laboratory... 97

Figure 4-14. The linear array of transducers used in MUT is mimicked in the
laboratory by two transducers attached to linear scanners 99

Figure 4-15. Crosshole geometry for meridional ultrasound tomography (MUT) 101

Figure 4-16. Simulated reconstructions for attenuation MUT data................................. 103

Figure 4-17. Guided wave signals of an unflawed pipe sample for the first transmit
position and three different receive positions..104

Figure 4-18. Amplitude data for a flawed and unflawed sections of the aluminum
sample..106

Figure 4-19. MUT reconstructions of an aluminum pipe with an OD = 150 mm and
a thickness of 4 m m ... 107

Figure 5-1. Reconstructed images for ten frequency scans of a thick steel pipe with
an irregular 2” x 2” gouge on its ID...112

Figure 5-2. Compounded images using three methods (Mean, II, and RMS) for the
ten frequency images in Figure 5-1..113

Figure 5-3. An example of the thresholding arrival time extraction algorithm..............116

Figure 5-4. Arrival times for the first arriving mode in a clean aluminum sample
with a thickness of 3.17mm........ 118

Figure 5-5. HUT arrival times from a steel simulated gun barrel sample with an OD
of 175 mm and a thickness of 20mm..................... 119

Figure 5-6. The discrete wavelet transform can be seen as the signal being split into
its low frequency components - approximations - and its high frequency
components - details.. 124

Figure 5-7. Illustration of coiflet3 mother wavelet and scaling functions..................127

Figure 5-8. Typical Lamb wave signal demonstrating the difference between the
wavelength peak enveloping and wavelet enveloping techniques...........................128

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-9. Arrival times for the first three peaks of the Lamb wave signals recorded
in a tomographic scan of a clean aluminum plate......................... 130

Figure 5-10. The envelopes and waveforms of the recorded Lamb wave signals in
the clean aluminum plate sample for receiver positions 55-62................. 131

Figure 5-11. Frequency walk surface plots for the arrival times of the first transmit
position in a scan of a clean aluminum plate...................... 132

Figure 5-12. Arrival times for the first three peaks of a clean aluminum plate at the
first 100 receiver positions..................... 134

Figure 5-13. Arrival time plots for the first three peaks and predicted mode arrivals
for a complete tomographic projection...................... 135

Figure 5-14. Sorted arrival times for the first three modes of the clean plate data
shown in Figure 5-12..136

Figure 5-15. Arrival time scatter plots for the first mode in projection #1 of a clean
aluminum plate... ...138

Figure 5-16. Arrival time scatter plots for the second mode in projection #1 of a
clean aluminum plate..139

Figure 5-17. Arrival time scatter plots for the third mode in projection #1 of a clean
aluminum plate..140

Figure 5-18. Reconstructions for a flat bottomed hole in a 3.17mm thick aluminum
plate.. 141

Figure 5-19. (a) The first peak’s arrival times for the first 100 points of projection
#1 for the flat bottomed hole sample (b) Deviations of the arrival times from
the polynomial fit....................................... 143

Figure 5-20. (a) Frequency walk data for the first 100 arrivals of the first-arriving
mode in the flat bottomed hole sample, (b) Arrival times for the “flawed”
region between receiver positions #55 and #80...................................... 144

Figure 5-21. (a) Arrival time vs. frequency for the first three envelope peaks in
signal #65 (b) Arrival time vs. frequency for signal #598 where only the first
frequency missed the first arriving mode ... 146

Figure 5-22. Comparison of frequency walk data for the first arriving mode before
sorting and after sorting... 148

Figure 5-23. Tomographic reconstructions for the first three modes of a 3.17 mm
thick plate sample with a 2.2” diameter flat bottomed hole 149

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-24. Velocity line plots for the first three modes of a vertical line through
the center of the flat bottomed hole 150

Figure 5-25. Tomographic reconstructions for the first three modes of a 3.17 mm
thick plate sample with a 2.2” diameter successively dished-out flat bottomed
hole... 152

Figure 5-26. Tomographic reconstructions for the first three modes of a 3.17 mm
thick plate sample with a 54mm x 30mm rectangular thinned region with
rounded comers... 153

Figure 5-27. Tomographic reconstructions for the first three modes of a 3.17 mm
thick plate sample with a 51mm diameter circular flat bottomed hole...................154

Figure 5-28. Comparison of DWFP time extraction before sorting and after sorting.... 158

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This dissertation concentrates on the development of two new tomographic
techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe
as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT)
techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT)
uses Lamb-like guided wave modes transmitted and received by two circumferential
arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT)
creates the same crosshole geometry with a linear array of transducers along the axis of
the cylinder.

However, even though these new scanning geometries are similar to plates,
additional complexities arise because they are cylindrical structures. First, because it is a
single crosshole geometry, the wave vector coverage is poorer than in the full LWT
system. Second, since waves can travel in both directions around the circumference of
the pipe, modes can also constructively and destructively interfere with each other.
These complexities necessitate improved signal processing algorithms to produce
accurate and unambiguous tomographic reconstructions.

Consequently, this work also describes a new algorithm for improving the
extraction of multi-mode arrivals from guided wave signals. Previous work has relied
solely on the first arriving mode for the time-of-flight measurements. In order to improve
the LWT, HUT and MUT systems reconstructions, improved signal processing methods
are needed to extract information about the arrival times of the later arriving modes.
Because each mode has different through-thickness displacement values, they are
sensitive to different types of flaws, and the information gained from the multi-mode
analysis improves understanding of the structural integrity of the inspected material.
Both tomographic frequency compounding and mode sorting algorithms are introduced.
It is also shown that each of these methods improve the reconstructed images both
qualitatively and quantitatively.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ULTRASONIC GUIDED WAVE TOMOGRAPHY OF PIPES

Copyright

by

Kevin R. Leonard

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Guided Waves

Ultrasonic guided wave inspection techniques are increasingly being used for

nondestructive testing (NDT). In particular, Lamb waves have proven useful for

interrogating plate-like structures. Lamb waves are ultrasonic guided waves capable of

propagating relatively long distances and they provide an efficient means of detecting

disbonds, corrosion and delaminations [1,2]. In addition, as they propagate, the Lamb

waves involve the entire thickness of the plate in a complex elastic deformation and

recovery so that they are sensitive to flaws on both of the plate’s surfaces and throughout

its thickness. This “structural screening” has been a demonstrated benefit of Lamb waves

for over a decade, and puts Lamb wave ultrasonography in the same league with rapid

full-field techniques such as thermography and photoelasticity. Because of these

features, Lamb waves can be used for rapid and cost effective inspection of large-area

structures.

Furthermore, they are also able to inspect structures with limited access to their

surfaces. For example, underground or insulated piping systems are often restricted in

the places where they can be accessed. Lamb waves can be launched and received by

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

external transducer belts or by a wide variety of contact and non-contact transducer

configurations. By generating the guided waves at one access point and receiving the

signals at another, the entire structure in between can be inspected. This saves expensive

procedures such as removing insulation or temporarily taking the pipe out of service to

allow an internal pig to traverse an underground piping system.

These are just a few of the advantages gained by the use of ultrasonic guided

waves for the inspection of materials. Another benefit is that Lamb waves can follow the

curvature of a structure and allow detection of subsurface flaws with a single-sided pitch-

catch or pulse-echo measurement. A more complete, but not exhaustive, list of

advantages can be found in Table 1-1.

Traditionally, the use of bulk waves has been preferred over guided waves

because their inspection and data processing schemes are well understood and can be

reliably implemented by technicians in the field. Bulk wave signals are often less

complicated and easier to handle than guided wave signals. Guided wave signals can

consist of multiple modes, be affected by mode conversion and may also be dispersive.

Table 1-1. Guided Wave Benefits (adapted from [3])

• Inspection over long distances from a single probe position.
• Sensitivity often greater than that obtained in standard normal beam

ultrasonic inspection or other NDT techniques.
• Ability to inspect structures under water, coatings, insulation, multi-layer

structures or concrete with excellent sensitivity.
• Potential with multi-mode and frequency Lamb type, Surface or Horizontal

Shear waves to detect, locate, classify and size defects.
• Cost effectiveness because of inspection simplicity and speed. Often less

than 1/20 the cost of standard normal beam ultrasonic and other inspection
______techniques. ____________________ ______ ______________ __________

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

In addition, many inspection schemes depend on the accurate generation of a particular

guided wave mode and this can be difficult to accomplish outside of the laboratory.

Furthermore, there are some scenarios where traditional bulk wave inspections are

more advantageous. High resolution C-scans have proven extremely effective in

inspecting small custom-built components with irregular geometries. Obviously, guided

wave inspection of these types of materials wouldn’t be practical. However, for larger

structures - aircraft, piping systems, railroad rails, etc. - point-by-point bulk wave

measurements can be very time consuming and expensive. Unfortunately, to reduce costs

and save time, inspections of randomly chosen positions are often performed. This

compromise reduces the effectiveness of the scanning process because the detection of

hidden flaws may be missed. Guided ultrasonic waves are an excellent alternative

because they have the ability to probe the entire thickness of a wide area from a small

number of locations.

However, the physics behind guided waves are more complex than for bulk waves

because of the additional boundary conditions that exist in the fundamental problem.

This makes guided wave measurements extremely difficult to interpret. In the laboratory,

scientists have the ability to sort out subtle variations in complex waveforms by drawing

on their extensive background and intuitive understanding of the underlying physics. In

the field, technicians responsible for interpreting the NDT measurements do not. Often,

more than one propagating mode can exist at different frequencies, and these modes are

dispersive and change velocity as material properties change. Modes also scatter and are

converted to other modes at discontinuities and flaws. These are the types of

complexities that make the analysis of guided waves difficult and yet at the same time so

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

valuable. If the information that exists in the received guided wave signals can be

harnessed, extensive knowledge about a material’s structural integrity can be gained.

In order to overcome this fundamental barrier to the more complex guided wave

measurements, one solution is to simplify the inspection scheme so that it can be used by

a technician without the in-depth knowledge of guided wave physics. Presently, this is

how ultrasonic guided waves are being used within the nondestructive evaluation (NDE)

community. By generating a single mode that is known to be sensitive to the particular

flaw of interest, the inspection scheme can be simplified to one that is very similar to

traditional bulk wave pulse-echo measurements. This has allowed guided wave

inspections to become feasible for in-the-field use, but it ultimately limits the amount of

information gained about the structure being inspected. By limiting the inspection

scheme, the wealth of information that can be discovered from the physics of guided

wave propagation is lost.

Another way to enable more widespread use of guided waves for material

assessment is to develop intelligent algorithms that analyze the complete data set and

render it in a way that can be used by the technician responsible for the inspection. In the

past, the inability to store, process and analyze large data sets has prevented the use of

this method for guided wave inspections. However, the computational capabilities that

exist today are dramatically more extensive and far more inexpensive than those that

existed just a decade ago. Increased memory capacity, hardware functionality, processor

speed, and digital storage space have expanded the number of nondestructive evaluation

techniques that are practical for real world testing scenarios because the ability to handle

the complexities of guided wave ultrasonics now exists.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

The demand for faster and more reliable inspections has also increased recently.

This, combined with the complexities of guided wave physics, means that automatic

inspection techniques are needed to filter the data and provide accurate recommendations

to the technician responsible for the inspection. More advanced signal processing

techniques can analyze the data in higher phase spaces and from more dimensions than a

human would be able to. Also, the amount of data that can be collected, and needs to be

collected, would be overwhelming for an individual to sort through. Robust artificial

intelligence is the key to creating inspection algorithms that can rapidly and accurately

provide quantitative information about the structural integrity of the inspected material.

1.2 Tomography

Ultrasonic guided wave tomography takes individual Lamb wave measurements

and uses them to create an image of the material that unambiguously shows where flaws

exist. This allows the intricacies of guided wave physics to be reduced to an easily

interpretable representation of the material’s structural integrity. Tomography is a

method of creating a two-dimensional image of a three-dimensional object’s cross-

section [4]. It uses either transmission or reflection data recorded from many different

orientations to map out a specific property of the object within each cross-section. For

example, x-ray computerized tomography (CT) is a mature technology in medical

diagnostics that provides two-dimensional cross-sections of the human body. By

measuring the attenuation of x-rays at multiple orientations around the body and

employing a convolution-type reconstruction technique, these cross-sections can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stacked and rendered as three-dimensional images which are easier to interpret than

typical x-ray shadowgrams.

The key to this technology is the mathematics that takes the attenuation data and

transforms it into a two-dimensional image. In the case of Lamb waves, instead of

measuring the attenuation due to differences in density, we can record the change in

velocity as either the material’s thickness or elastic properties change. Then, using the

same reconstruction algorithms already refined for the medical industry, a reconstruction

of material thickness and integrity can be developed. Much work has been done by

Hinders et. al. [5-18] to develop and improve multiple ultrasonic guided wave

tomography techniques for the nondestructive evaluation of various materials. These

techniques are described briefly below and more in-depth in later chapters.

Parallel Projection Tomography

First-generation medical CAT scanners used the parallel projection geometry. In

a parallel projection tomography (PPT) measurement, the source receiver pair is linearly

scanned over the length of a projection, the source-receiver pair or sample is then rotated

and the next projection is scanned. This process is repeated until a specified number of

projections have been recorded (see Figure 1- 1(a)). Because of the extensive use of PPT

in the medical community and the maturity of this technique, the resulting

reconstructions can be extremely accurate. However, the method requires either rotation

of the sample or rotation of the transmitter-receiver assembly. Both are impractical for

in-the-field conditions where large objects are being scanned and there are real-time

requirements for the data acquisition process [8, 9, 17].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

135

0 degree scan

90

v

(a) (b)

a) feorfzMitel projection

c) upper right corner

e) lower left corjser

d) upper left corner

I) lower right corner
(C)

Figure 1-1. Three different Lamb wave tomography geometries, (a) Parallel Projection
Tomography (PPT) geometry. Scans are recorded along parallel lines and then these
lines are rotated and the scans are repeated. Four rotations at 45 degrees are shown, (b)
Fan Beam Tomography geometry. One transducer is used to generate the signal and the
others are used to receive the signal. This is repeated until all the transducers have been
used as the transmitter, (c) Multiple Crosshole Tomography geometry. As with the fan
beam geometry, each transducer pitches and catches the signal in turn. This geometry
has the advantage of being able to be implemented via a flexible square perimeter array.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Fan Beam Tomography

Modem CT scanners use a fan beam tomographic geometry to overcome some of

the practical problems encountered with PPT. By employing a different reconstruction

algorithm, the need for a rotating line of transmitters and receivers can be replaced by a

single source and an arc of receivers that rotate in tandem around the object of interest.

This can also be implemented as a circular array of pitch-catch elements as shown in

Figure l-l(b). This geometry is more practical for in-the-field ultrasonic nondestructive

testing because neither the sample nor the transducers need to be moved. Electronic

switching between elements allows all the possible transmit and receive combinations to

be realized. However, the area that the fan beam reconstructions are valid for is limited

by the effective ray vector coverage. Outside the area where the individual fans overlap,

the reconstructed image isn’t valid because the ray vector coverage is not dense enough

to provide accurate information for the tomographic algorithms. This is not a problem

for the medical community because the scanning circle can be large enough that the

entire cross-section of the body can fit within the valid center region. For fast and

quantitative nondestructive evaluation of plate-like structures this is a serious drawback

as large overlaps of many circles would have to occur among sequential scans in order to

cover the entire structure. In addition, small errors and uncertainties in the recorded data

causes large reconstruction artifacts in the final images [12, 17].

Cross-borehole Tomography

A different and more practical tomographic technique for NDE can be adapted

from work that uses seismic waves to image subsurface structures for the detection of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

mineral and oil deposits [19, 20]. In these tests it is impossible to access the region of

interest from all sides. To overcome this problem, two holes are bored in to the ground

and receivers and transmitters are placed in both boreholes and along the ground’s

surface. The reconstructions are then made using time-of-flight measurements of seismic

waves. In this technique, the inverse problem is solved using an Algebraic

Reconstruction Technique (ART) instead of the backprojection algorithms used in PPT

and fanbeam tomography. The ART uses a crisscross pattern of rays passing through the

region of interest to create the reconstruction.

Figure l-l(c) demonstrates how this technique has been adapted to use Lamb

waves for detecting flaws in aircraft structures. Specifically, the Lamb wave tomography

(LWT) system uses a square perimeter array of transducers that has the added benefit of

being able to access the sample from all four sides, an option not available to

seismologists. It has been found that the Sequential Iterative Reconstruction Technique

(SIRT), a variation of the ART, overcomes most of the barriers to nondestructive

evaluation found in the PPT and fan beam geometries. With the square perimeter array,

neither the sample nor the transducers need to be moved or rotated. Furthermore, the

entire region within the array produces valid reconstruction data, and small experimental

errors in the data do not cause severe artifacts [5-17].

1.3 Helical Ultrasound Tomography (HUT), Meridional Ultrasound Tomography
(MUT) and Multi-Mode Analysis

The first part of the work described in this dissertation will concentrate on the

development of two new tomographic techniques that enable wide-area inspection of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

pipe-like structures. Figure 1-2 shows how the problem is similar to the LWT system.

By envisioning a pipe as a plate wrapped around upon itself, we can treat cylindrical

structures in the same manner as a plate. Helical Ultrasound Tomography (HUT) uses

Lamb-like guided wave modes transmitted and received by two circumferential arrays in

a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the

same crosshole geometry with a linear array of transducers along the axis of the cylinder.

However, even though these new scanning geometries are similar to plates,

additional complexities arise because they are cylindrical structures. First, because it is a

single crosshole geometry, the wave vector coverage is poorer than in the full LWT

system. Second, since waves can travel in both directions around the circumference of

the pipe, modes can also constructively and destructively interfere with each other.

These complexities necessitate improved signal processing algorithms to produce

accurate and unambiguous tomographic reconstructions.

The rest of this dissertation will describe a new algorithm for improving the

extraction of multi-mode arrivals from guided wave signals. Previous work has relied

solely on the first arriving mode for the time-of-flight measurements. In order to improve

the LWT, HUT and MUT systems reconstructions, improved signal processing methods

are needed to extract information about the arrival times of the later arriving modes. For

each of these techniques, this would enable reconstructions to be made for more than one

mode. Because each mode has different through-thickness displacement values, they are

sensitive to different types of flaws, and the information gained from the multi-mode

analysis can improve our understanding about the structural integrity of the inspected

material. For both HUT and MUT, information about multiple modes also leads to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

c C 0 C 0

° 0 0 0 C C'

Figure 1-2. Parallel circumferential arrays of transducers can be seen to give a crosshole
tomographic geometry when the pipe is mentally “unwrapped.” The two identical parallel
circumferential array-belts of transducers wrap around the pipe. Each transducer in one
belt transmits helical Lamb waves, which are received by all of the transducers in the
other belt. Mentally break the pipe longitudinally along the line AB and then unwrap the
pipe to lie flat. The circumferential belts of transducers now lie along the lines AA and
BB in the “unwrapped” pipe. Note that the Lamb waves travel along the crisscross rays
shown above. Because the helical waves can wrap around the pipe more than once, we
can consider the “extra” regions to the left and right of AB. These longer ray paths can be
used to give better tomographic reconstructions because they pass through the sample
from additional angles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

improvement of the reconstructions by increasing the wave vector density of the scanning

geometry. Multi-mode analysis will allow us to extract time-of-flight information about

modes that travel more than once around the pipe before reaching the receiving

transducer. These steeper helical paths allow the ultrasonic energy to interact with the

material from different directions and angles and thus improve the reconstructed images.

This dissertation is organized as follows. Chapter 2 presents a review of guided

wave theory and ultrasonic inspection techniques, particularly as they relate to guided

wave tomography. In Chapter 3, guided wave tomography is introduced and the results

of a blind study with the LWT system are shown in addition to reconstructions of

composite samples. The development and proof-of-concept for both HUT and MUT is

demonstrated in Chapter 4. Chapter 5 discusses two new techniques - tomographic

frequency compounding and multi-mode sorting - for improving guided wave

tomographic reconstructions. Finally, Chapter 6 summarizes the findings in this work

and discusses recommendations for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Fundamentals

2.1 Lamb Waves

Elastic waves in extended solids are either longitudinal or transverse,

characterized by compressional or shear vibrations respectively. Boundaries cause mode

coupling and intermixing of these waves to the extent that it’s often no longer useful to

try to distinguish them. Plate-like structures have two boundaries and we refer to the

intermixed propagating compressional and shear vibrations as Lamb waves. Lamb waves

come in two families of modes: symmetric and antisymmetric. The lowest-order

symmetric mode is a thickness stretching and contraction while the lowest-order

antisymmetric mode is a constant-thickness flexing (Figure 2-1). Higher-order modes

have increasingly complex through-thickness displacements. In addition, each mode has

its own characteristic dispersion properties.

Many previous authors have discussed the fundamental solutions for Lamb waves

in various texts [1, 2, 21-24], The solution for ultrasonic guided waves in an isotropic

plate with traction-free boundaries is presented below. The plate (Figure 2-2) is assumed

to be infinite in the x and z directions and the boundaries at y = ± b are traction-free.

The fundamental equation of motion for an isotropic elastic solid in Cartesian

tensor notation is:

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

symmetric

“V V
asymmetric

Figure 2-1. The two families of Lamb wave modes generated in a thin plate [1].

Figure 2-2. Coordinate system for a plate of thickness 2b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

p d ~ U i - d j C 7 ^ = 0

with, ekl = (2-1)

and cr- = Cijkl£kl.

Here u(xlr x2, x3, t) is the displacement vector of a point within the material and q , is the

stress tensor at a point. The stress tensor is symmetric and thus q ; = q,. £a is the strain

tensor at a point and is directly proportional to the stress tensor. Qjki is a fourth rank

tensor of proportionality constants between the two. For an isotropic material such as

aluminum, it can be defined as:

The Lame parameters, A and //, are the elastic constants for a given material.

The governing wave equation for elastic waves is derived by substituting the

strain-displacement relation into the stress-strain relation and then substituting that result

into Eqn. (2-1). The resulting wave equation is called Navier’s equation and in both

Cartesian tensor and vector notation it is as follows:

At this point, either a solution method based on potentials or partial waves may be used.

The method of potentials is more widely used in the literature, but is limited to isotropic

materials, while the partial wave method is more general. The method of potentials will

be used in this work because it is conceptually simpler and can more succinctly illustrate

Cijki ~ + ^u^jk)a •
(2-2)

p d 2t Ui - / / a 2w,.- (A + f i f i i d j U j =0

pd]u - f N 2u ~{A + //)v (v • u)= 0 .

(2-3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

the characteristic properties of Lamb waves. However, both solution methods come to

the same conclusions about the behavior of guided ultrasonic waves in plates.

Navier’s equation, Eqn. (2-3), can be solved by applying a Helmholtz

decomposition. Clebsh’s theorem states that any vector field can be broken into a

longitudinal part, which has no curl, and a transverse part, which has no divergence. In

this case, <D and H are introduced so that:

u = uL Jr uT = V<D + V xH w here, V -H = 0 . (2-4)

Furthermore, by suppressing the e ta harmonic time variation of Navier’s equation, we

find that:

[k 2 + v 2)«- v(v-u)=o
v k)

i f t f twhere, K = — , k = — , (2-5)
CT CL

c 2 (A + M ' md c 2 M
P P

K and k are the wave numbers for the transverse and longitudinal waves respectively, and

cL and cT are the wave speeds for the longitudinal and transverse waves for a given

material. If we take the Helmholtz decomposition and substitute it into Eqn. (2.5), we

get:

(V2 +&2)d> = 0 and (v 2 + K 2)h p = 0 , (2-6)

where p = (x, y, z)• Solving Eqn. (2-6) by separation of variables, the following plane

wave solutions are derived:

<P = (Acosoy + B sm ay)e i^’ x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

H x = (C cos fty + D sin fiy) e

H y = {Ecosj3y + F sm fiy)e i^ x~a t \ (2-7)

H z = {G cos py + H sm fiy) X °)t\

where, a 2 = and 0 1 =

In addition, by excluding variations with respect to z, due to the geometry of the system

(see Figure 2-2), we can write the displacements as:

3 0 dH 7 dO dH dH d/7
ux =— - + ~ - u = — —^ ^ + — (2-8)

ox dy dy ox dy ox

Using the solutions found in (2-7) we get,

ux = \i%(Acosay + B sin ay)+ /? (-G sin f y + H cos J3y)]e1̂ x &t\

■[a(- A sin ay + B cos a y)-i^{G cos py + H sin J3y)]e^x (2-9)

= \fi{C sin f i y -D cos fy)+ i£ (E cos /3y + F sin /?y)]eẑ *

In order to solve for the 8 unknown coefficients, A-H, we need to apply the boundary

conditions. For the plate shown in Figure 2-2, with thickness 2b, infinite extent in the xz-

plane, and traction-free boundaries, the boundary conditions of the system are:

a y y = a * y = a zy = ° at y = +/> (2-10)

Finally, as defined above, the relevant stress components are:

dw-y „ dwv f duy ̂ ^ du

u y

u z

a y y = { Z + 2 j L i) - ^ - + Z ^ - , a x y = ^ i ° y z = V - ^ (2- 11)
dx dy Y yz dy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

These boundary conditions only give us six separate equations to solve for the eight

unknowns above. Two additional equations can be obtained from the gauge, V-H = 0,

used in the Helmholtz decomposition. This gives us:

dH dHv
_ ^ + _ i L = 0 at y = ±b. (2-12)

ox ay

The resulting system of equations is then:

{(A + 2 ju)a2 + Ag2 \ a cososb + Bsin ab)+ 2 ifi^fi{-G sin fib + H cosfib) = 0

\ a + 2fi)oc2 + A£2 \ a c o s a b - B s in ab) + 2iju^fi(G sin fib+ H cos

f i 2{C cos fib+ D sin fib) + i%fi{- E sin fib + F cos fib) — 0

f i 2{C cosfib-D sin fib)+it,fi{Esin fib + Fcosfib) = 0 ^

2 i^a (- A sin ocb +B cos ab)+{fi2 - f i2 \ g cos fiy + H sin /3b) = 0

2i%a{Asin ab + B cos ab)+{i;2 - f i 2\G c os fib - H sin fib) = 0
f i(- Esin fib + F cos fib)+i£(C cos fib + D sin fib) = 0
fi(E sin fib + F cos fib)+i£(C cos f ib -D sin fib) = 0

This is a system of eight homogeneous equations. In order to solve for the eight

unknown coefficients, A-H, we set the determinant of the coefficient matrix equal to zero.

This condition provides four separate solutions because the larger determinant can be

rearranged into four separate sub-determinants that disappear independently. This yields:

Solution I: A, B, D, E, G, H = 0 and C, F # 0,

Solution II: A, B, C, F, G, H = 0 and D, E ^ 0,

Solution HI: B, C, D, E, F, G = 0 and A, H ^ 0,

Solution IV: A, C, D, E, F, H = 0 and B, G^O.

Solutions I and II result in antisymmetric and symmetric SH modes. The SH modes are

shear horizontal displacements that occur in the z-direction. They are not of interest

because Lamb waves are two-dimensional waves with displacements in the xy-plane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Solutions III and IV are commonly referred to as the Rayleigh-Lamb equations. They

are:

Solution III:

{(1 + 2 jj.)a2 + 1 £ 2 }cos ab 2i/u^fi cos fib
- 2i£a sin ab (g2 - f i2)sin fib

ux =(i<^Acosccy + fiH cosfiy]el^ x 03 ̂

uy = - (aAsin ay + sin f i y] e ^ x 60 ̂

u z = 0

= 0

(2-14)

Solution IV:

(<£2 - f i 2)cosfib 2 i^a cos oi>
2i/u^fisin fib {(1 + 2 //)a2 + l £ 2}sin ab

= 0

= (i<fi3 sin ay - fiG sin fiy)e

- (aB cos ay - i^G cos fiy)e

{gx-cot)

i(£x-a>tj

uz - 0

(2-15)

The dispersion equations for the Lamb waves can be obtained by expanding the sub

determinants found in solutions III and IV. This yields the following relationships for the

symmetric and antisymmetric modes:

Symmetric Modes: Asymmetric Modes:

tm fib _ Aafi%"
tan ab

tan fib + f j 1 f
tan ab Aafifi2

(2-16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

These two equations give rise to the velocity dispersion relationships for Lamb waves.

Figure 2-3 shows the numerical solutions for the dispersion relations of an aluminum

plate.

It is interesting to note from this solution that Lamb waves are generated in two

different types of modes. Both the symmetric and antisymmetric families have an infinite

number of possible modes. The number of propagating modes present at a given

frequency-thickness product depends on both the cutoff frequencies for the individual

modes and the way in which the Lamb waves are generated (see Section 2.2.2). The

different modes, A„ and Sn, are named in order of their cutoff frequencies, where n =

0,1,2,... Except for the fundamental modes Ao and So, all the modes have a cutoff

frequency defined by:

In addition to their unique dispersion relationships, each mode also has different

displacement characteristics. Figure 2-4 displays both the out-of-plane and in-plane

displacements for the two lowest order symmetric modes. These different displacement

characteristics make individual modes sensitive to different types and locations of flaws.

2.2 Lamb Wave Experimental Considerations

There are many ways to experimentally generate Lamb waves in plate-like

materials. It is advantageous to discuss some of these methods as they relate to

(Oc - n n -^
c f 1) c
—; £DC — 7C n -\— for symmetric modes (2-17)
d y 2 J ctd

I) £ l .
2 Jd ’

Q)c - nn for antisymmetric modes. (2-18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

7

6 S5
S4

SO S3
5

S2</jn
■g
£ 4

io
oa)
> 3
a.3

A5

A4

A2
AO A3

...

iL2
CD

2

\ i‘ A8 /

J/S6 S71

0
8 96 70 2 3 4 5

Frequency (MHz)

20
A8 !a A6A2 A3 A4 A5

A7

S2 S3 S4 S7S6

S5

g 10

x .

so

AO

Frequency (MHz)

Figure 2-3. Phase and group velocity dispersion curves for a 3 mm thick aluminum plate,
where cl = 6.32 mm/ps and ct = 3.13 mm/ps. The solid lines represent the symmetric
mode family and the dashed-dot lines represent the antisymmetric family. Notice that as
the frequency increases, so does the number of generated Lamb wave modes. The modes
are numbered by the order of their cutoff frequency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

SO # = 2 3
M

1 3>

SO 0 * 3 3
i/2

n w

(a)

SJ # -3 3
d a

S I /&M.0
i n

■2.0 0.5

i '
- m

(b)

Figure 2-4. Displacement curves for the two lowest order symmetric modes in an
aluminum plate at two frequency-thickness products, (a) SO (b) SI. Dashed lines: out-
of-plane displacement; Solid lines: in-plane displacement [2],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

nondestructive evaluation. Any carefully designed inspection scheme needs to take into

consideration the type of signal desired (broadband or narrowband, number and type of

modes desired, etc.) and any physical constraints that the specimen or the inspection

scheme place on the type of transducer used (i.e. - size of transducer and coupling).

2.2.1 Coupling

The effectiveness of generating ultrasonic guided waves in a material through

surface perturbations is dependent upon coupling. For example, the perfect situation is

where the acoustic impedances of the transducer and the material are the same. In this

case, all of the ultrasonic energy will be transferred from the transducer to the material.

In less than ideal cases, a medium needs to be used that reduces the impedance mismatch

between the plate and transducer as much as possible. It turns out that water is a good

coupling agent as it does a relatively good job of matching impedances and is extremely

cost effective.

Coupling is an issue with contact transducers, but there are also non-contact

methods of generating ultrasonic guided waves. Air-coupled transducers use lower

frequency ultrasound that can propagate short distances in air without attenuating too

appreciably. As technologies improve, these types of transducers are becoming easier to

make. Because there is such a large impedance gap between gases and solids,

sophisticated construction is needed to overcome the signal loss inherent in transmission

and reception of the air-coupled signals. Air-coupled transducers have been used for the

nondestructive testing of various structures including railroad rails and metal plates [25,

26],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Laser ultrasound is another non-contact method of generating Lamb waves [27].

By Q-switching or chopping the laser beam, the surface of the material is periodically

heated. This heating and cooling of the surface produces thermal waves in the material

that penetrate to a certain depth. The thermal waves in turn cause the affected region to

expand and contract, thus generating elastic waves in the material. Lasers can also be

used to detect the ultrasonic signal through the use of optical interferometers. Certain

drawbacks of the use of laser generated ultrasound include damage to the sample through

ablation and low efficiency due to how the laser’s energy is transferred into the acoustic

signal.

Finally, Electro-Magnetic Acoustic Transducers (EMATs) are another fully non-

contact method used to generate Lamb waves [28]. EMATs can be used to generate

ultrasonic guided waves in ferrous metals. They consist of a large permanent magnet and

an electrical coil. The EMAT system induces eddy currents in the test material and

because of the presence of the permanent magnet, a Lorentz force is created that

generates acoustic waves in the conductor. By varying the orientation of the magnet and

the coil, longitudinal and shear displacements can be selectively generated.

2.2.2 Transduction

The most straightforward way to generate Lamb wave signals uses either normal

or shear vibrations on the surface of the plate. The number and type of modes generated

depend on the material properties and the frequency spectrum of the input signal. The

degree to which individual modes are excited also varies and depends on certain material

and transducer properties [29, 30]. This can cause the generated signals to include strong

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

unwanted modes, while the modes of interest are weak. In order to generate a specific

mode, specialized transducers are needed. Variable incidence and comb transducers

selectively generate specific modes by controlling the phase velocity and wavelength of

the input signal respectively.

Angle Block Transducers

Angle block transducers allow individual modes to be generated in the material by

varying the incidence angle of the input signal. By using Snell’s Law, the phase velocity

of the generated Lamb wave can be controlled (Figure 2-5). Assuming an infinite plane

wave source at incident angle, 0, the resulting phase velocity (Vph) can be calculated

using the following equation [1]:

sin 6

where V, is the longitudinal velocity of the wedge material. By controlling VPh, the

frequency of the carrier signal determines which mode is generated. However, in reality,

the source is finite and can not generate an infinite plane wave. This causes the phase

velocity spectrum to broaden, and allows multiple angles at which a particular mode can

be generated. Rajana et. al. have shown both theoretically and experimentally that the

mode’s excited amplitude is continuously dependent on the incident angle [31, 32].

Comb Transducers

Another way to generate specific Lamb wave modes is with a periodic linear

array of transducers also known as a comb transducer [1, 33-35]. Comb transducers

consist of a group of equally spaced elements that vibrate in phase with each other at a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

4

Transducer
Wedge

vT

s

Figure 2-5. Diagram of a variable incidence angle block transducer. The incident angle,
through Snell’s Law, determines the resulting Lamb wave phase velocity in the given
material. It also demonstrates that at the surface boundaries an incident compressional or
shear wave will mode convert into both a reflected shear and compressional wave. The
angle block transducer can be used to selectively generate specific Lamb wave modes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

given frequency. This generates Lamb waves with a wavelength X equal to the spacing

between the comb elements and at the given frequency/. In addition, it is possible to

control the direction that the resulting wave propagates by introducing a time-delay to

certain elements. By controlling the phase of the individual elements, through

constructive and destructive interference, the guided wave can be steered [36, 37].

Similarly, interdigital PVDF transducers are another type of “comb” transducer. These

transducers consist of a layer of piezoelectric polymer (PVDF) bonded to the bottom of a

flexible PCB with comb shaped electrodes. They control the wavelength of the generated

mode by specifying the spacing between electrodes instead of the individual transducers

[38],

2.2.3 Bandwidth

Finally, the dispersive characteristics of Lamb waves make it important to

consider the bandwidth of the input signal. For a given toneburst, as the signal

propagates, the different frequencies will travel at different velocities. This causes the

signal to spread over time, and in highly dispersive regions the shape of the signal will

drastically change. By convolving the plane wave solution with the Fourier transform of

the input signal, we can see how the dispersive nature of the individual modes spread the

wave packet [39]:

To illustrate this concept, Figure 2-6 shows how the So mode envelope spreads as its

propagation distance increases for a 5-cycle square-windowed toneburst at 0.7 MHz. In

(2-20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

30!

20

a> 10
-o

Q.
E
< -10

-20

-30

0

Ipij
1

(a) ’

I
i f
!|if
ill
jiff!

20
Time4?ps) 60 80

20 40 60
Time (us)

20 40 60 80
Time (| j s)

40

-o 30

o>
® 20

10

A (g)
' \

i \

j [

Frequency (Mhiz)

100

80

60

40

20

t

(b)

N t i \

\I

i fW v w ™
1 2

Frequency (MHz)

20 40 60 80
Time (ps)

-10

-20

806020
Time (ms)

20 40 60 80
Time (qs)

Figure 2-6. Plots demonstrating the effects of dispersion due to an input signal’s
bandwidth for a highly dispersive mode, So, and a non-dispersive mode, Ao (refer to
Figure 2-3). (a) Simulated 0.7 MHz, 5-cycle toneburst input signal for a 3 mm thick
aluminum plate, (b) FFT of simulated input signal, (c) Simulated So mode after
propagating 100 mm. (d) So mode after traveling 200 mm. (e) Simulated Ao mode, d =
100 mm. (f) Ao mode, d = 200 mm, (g) FFT of input signal in (a) with Hanning window
applied, (h) Simulated So signal after 200 mm with Hanning windowed input signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

contrast, we see how a non-dispersive mode, Ao, retains its mode shape as it propagates.

By applying a Hanning window to the input signal, we can reduce the effective

bandwidth of the signal and reduce some of the dispersion effects.

The spread of the wave packet is important because it affects how the signals can

be analyzed. There is a tradeoff between the input signal’s pulse width and the

bandwidth of the signal. In order to diminish the effects of packet spreading, the

bandwidth of the signal can be reduced by lengthening the toneburst. However, as the

toneburst is lengthened to reduce packet spreading, mode arrivals begin to overlap

because of their length, thus creating the very problem that was trying to be eliminated.

When generating only a single mode, these effects can be less important. But, in

the presence of defects, modes scatter and mode convert. The spreading of a dispersive

mode can make it difficult to detect the presence of an additional mode or the scattered

signal from a flaw. For multi-mode analysis, the problem becomes even more important

as advanced artificial intelligence is needed to sort out the interfering modes from one

another.

Some theoretical work and experimental verification has been done on this

problem for single mode signals. By taking the received time-domain signal and

assuming it is received at x = 0, Wilcox et. al [39, 40] and Sicard et. a t [41] have shown

that by applying a backprojection method in the negative x-direction, the dispersed time-

domain wave packet can be transformed to a non-dispersive signal arriving at a distance

corresponding to the center group velocity of the initial toneburst:

h(x) = u(- x ',0) = ^G(a>)e~~lk̂ xda) . (2-21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Both authors also showed experimental results for single mode pulse-echo signals. In

addition, Wilcox et. al. showed experimentally how slower modes were affected by the

dispersion compensation algorithm. However, these signal processing algorithms assume

that only one mode is present and are not applicable to multi-mode signals in general.

Other time reversal techniques have also been applied to this problem. For

example, Alleyne et. al. [42] have shown that if the wave packet for a recorded Lamb

wave mode signal that has propagated a specified distance is reversed in the time domain,

and then used as the input signal, the received signal at the original propagation distance

will be the same simple shape as the initial toneburst. While this technique demonstrates

the dispersive nature of Lamb wave modes, it is not useful for practical inspection of

materials because it does not provide any experimental advantage for locating flaws.

2.2.4 Discussion

Guided wave tomography measurements require the signal to be omni-directional,

relatively narrow-banded, capable of traveling over long distances, and robust enough to

handle actual in-the-field testing environments. For these reasons, normal incidence

longitudinal transducers provide the best means for generating the Lamb wave signals to

be used for tomographic inspection. While angle blocks and comb transducers are able to

generate specific individual modes, they are not omni-directional. Laser ultrasound is too

broadbanded and PVDF transducers do not generate strong enough signals to propagate

long distances and through thick materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

2.3 NDE Applications

Lamb waves, and more generally ultrasonic guided waves, have been used to

solve many NDE problems. From the inspection of aerospace structures to storage tanks

and railroad rails, guided waves have unique properties that enable sophisticated

inspection schemes. This section describes a few of these applications and demonstrates

that guided waves can be used effectively to detect structural flaws in a variety of

geometries and materials.

Corrosion detection with Lamb waves, in its simplest form, consists of monitoring

the change in arrival times of the Lamb wave modes. At a given frequency-thickness

product, a small change in thickness due to corrosion will cause the individual modes to

speed up or slow down depending on their dispersive characteristics (Figure 2-3). Many

authors, including Rose et. al. [43], Jenot et. al. [44], Sun and Johnson [45, 46], and

Alleyne and Cawley [47] have performed studies using changes in arrival times to detect

corrosion in plates and pipes. Another method used for detecting corrosion generates

specific modes near their cutoff frequencies and looks for the mode to disappear in the

presence of a defect. Silva et. al. [48] demonstrate this technique on aircraft aluminum

structures using laser-generated ultrasound and wavelet transform signal analysis.

In addition to corrosion, guided waves can be used to detect discontinuities such

as cracks. Much theoretical and experimental work has been done to study how Lamb

waves interact with these types of flaws. Rose et. al. [49, 50] used a boundary element

method (BEM) to explore the use of reflection and transmission coefficients of incident

and mode converted signals to characterize and size crack and corrosion type flaws.

Chang and Mai [51] used a finite element method (FEM) to analyze the effect of a crack

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

at the edge of a rivet hole on the scattered signal. They tested their model against

experimental data and concluded that the crack’s presence could be seen in the frequency

spectrum of the scattered signal. Many other authors, including [52-56], have performed

similar theoretical studies on different discontinuities in plates and pipes.

Lamb waves can also be used to detect flaws in composites and joined materials.

Sun and Johnson [46] used time-of-flight and amplitude measurements to inspect for

disbonds in doublers and lap joints with and without rivets. Hayashi et. al. [57] used a

numerical technique similar to FEM and BEM to theoretically explore multiple

reflections at the boundaries of a delamination in a multi-layer composite plate.

Furthermore, Seale et. al. [58, 59] explored the use of Lamb waves to measure fatigue in

composite samples.

Other types of ultrasonic guided waves, such as surface waves, have also been

used in the nondestructive evaluation of materials. For example, Rayleigh surface waves

can be used to explore railroad rails for cracks. Bray et. al. [60-62] and Grewal [63] have

shown that in used railroad rail, a cold worked layer is formed that allows a higher-order

Rayleigh surface wave, also known as a Sezawa wave, to propagate with its energy just

under the surface. They have experimentally and theoretically shown that the Sezawa

wave is slightly faster than the fundamental Rayleigh wave. The Sezawa wave, unlike

the Rayleigh wave, is not affected by the rough surface properties but does interact

strongly with surface breaking cracks.

These are just a few examples of how Lamb waves, and ultrasonic guided waves

more generally, have been used to inspect various materials. Many others exist,

including pipe inspection (discussed further in Chapter 4), finding thermal damage in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

composites [64], use in acoustic emission [65], inspection of rockbolts and grouted

tendons [66, 67], etc. An extensive review of Lamb waves and their applications can be

found in [5]. Rose has also published a comprehensive review of ultrasonic guided wave

nondestructive evaluation in [3].

2.4 Tomography

Ultrasonic guided waves have great potential for nondestructive evaluation.

However, their complexities often make their use difficult in practical inspection

schemes. Tomography enables these intricacies to be represented in a format that is

easily interpreted by a layman. Much like CT scanners in the medical community that

create high resolution images of cross-sections of the human body, tomographic

algorithms can be used to create images of material thickness and integrity. Instead of

measuring x-ray attenuation, slight changes in the arrival time of the Lamb wave modes

can be used. As previous research has shown, various flaws can be detected by

monitoring the change in velocity of the ultrasonic guided wave modes for a given path

length. Coupled with tomographic reconstruction techniques, these measurements

provide an excellent method for converting the complicated physics into a readily

interpretable quantitative thickness map of the material. The resulting images then

enable quick and accurate detection of different types of flaws in multiple plate-like

structures. Ultimately, the goal is to considerably extend the usefulness of Lamb waves

by adding detailed and straightforward quantitative measurement capability without

sacrificing the rapid large-area capabilities inherent in the method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Lamb Wave Tomography (LWT)

Ultrasonic nondestructive evaluation of plate-like structures is of interest in many

areas including the inspection of military and civilian aircraft. On April 28, 1988 an

Aloha Airline’s Boeing 737 experienced a structural failure and explosive decompression

at 24,000 feet [68]. The aging plane lost an entire fuselage section because of cracks

emanating from rivet holes in its outer skin. Amazingly, the incident only killed one

person and injured sixty-five others. As the worldwide aviation fleet continues to age

and planes are expected to remain in service even after their expected lifetime has

expired, the Aloha Airlines accident remains as an example to the aerospace industry that

improved aircraft inspection techniques are needed. Methods for accurately detecting the

presence of structural flaws that compromise airworthiness also become increasingly

necessary as novel material systems are incorporated into primary structural elements. At

the same time, there is an increasing demand that inspections become more effective and

efficient. This can only be done if the interpretation of NDE sensor data is automated to

some degree.

Lamb wave tomography (LWT) is a viable solution to this problem and can be

implemented in a cost efficient, real-time and highly effective manner. Tomography

allows us to extend the usefulness of Lamb waves for structural inspections. In contrast

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

to typical point-by-point scans or pulse-echo guided wave schemes, if Lamb wave

measurements are made for a number of relative pitch-catch transducer positions, also

known as projections, then an image of a large region can be reconstructed

tomographically. The resulting image gives an easily interpretable quantitative map of

the parameter of interest. For example, one such parameter could be thickness loss due to

corrosion.

Key to this work, and to any practical Lamb wave tomography system, is a suite

of robust and reliable algorithms that reads in the digitized Lamb waveforms and

automatically interprets them. Unlike in bulk wave ultrasonics where gating and peak-

detection schemes are usually adequate, Lamb wave detection schemes must be more

complicated. With guided waves, much more sophisticated signal processing is required

in order to identify the various Lamb wave modes in the signals and then to extract the

feature of interest needed for the reconstruction algorithm. Fairly small errors in this

mode extraction step usually spoil the reconstruction completely. Also, for a practical

NDE system these algorithms must run in real time on portable hardware, and must be

able to deal with millions of digitized waveforms per minute. However, it is these signal

processing algorithms, coupled to tomographic reconstruction, that allow this inverse

problem to be solved so that Lamb wave tomography can be a viable inspection method.

Early Lamb wave tomography work by Hutchins et al. [25, 69-72], Achenbach

[73], and Degertekin [74] used a standard parallel projection geometry with the velocity

and/or attenuation of Lamb waves as input for the tomographic reconstructions. McKeon

and Hinders [5, 7-11] implemented this also, and then investigated a “crosshole”

tomographic scheme similar to a preliminary pipe inspection study done by Hildebrand et

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

al. [75] that has many practical advantages for aircraft NDE. Malyarenko and Hinders

[12] subsequently compared fan beam and double crosshole geometries, and found the

latter to be superior. A secondary conclusion of [12] is that the iterative reconstruction

algorithms from the seismological literature are much better suited to Lamb wave NDE

applications than are the convolution-backprojection type of algorithms from the medical

imaging literature. Malyarenko et al. [6, 14-16] have recently implemented a curved ray

tracing technique that accounts for scattering or refractive media and improves the

technique’s accuracy in sizing flaws. The rest of this chapter will discuss the current

state of the tomographic work presented in [5-12, 14-16] and recent work performed by

this author and others [13, 17] to test the robustness of Lamb wave tomography and its

application to composite structures.

3.1 LWT Experimental Overview

In our laboratory, a series of ultrasonic apparatus has been assembled that perform

Lamb wave scans using traditional parallel projection and fanbeam tomography as well

as the various crosshole geometries. Broadbanded contact piezoelectric transducers are

used to generate and receive the Lamb waves in a pitch-catch arrangement. Useful

diagnostic signals can be propagated many tens of inches in plate-like structures so it is

possible to rapidly interrogate large areas. However, scanning with contact transducers is

slow and prone to errors from variations in coupling of the ultrasonic energy in and out of

the plate. Neither of these is a concern in the laboratory, but they are a serious drawback

in service. Therefore, in order for the tomographic inspection schemes to be successful,

the scanning system has been designed to mimic arrays of transducers that would take

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

large area snapshots using Lamb waves. Such arrays of transducers can be

“electronically” scanned through all the various combinations that have thus far been

implemented in the lab with mechanical scanners.

The Lamb wave modes are generated by standard longitudinal contact transducers

excited with a tone burst. This is in contrast to other researchers who use angle-block or

comb transducers to select particular Lamb wave modes. We find that for measurements

outside the laboratory the careful coupling required to select particular modes via Snell’s

law with angle blocks is not practical, and the tomographic requirements for a small

transducer footprint and omni-directionality rule out comb transducers. Furthermore, we

typically add truncated-cone delay lines to minimize the footprint of the transducer. This

increases the spatial resolution of the final tomographic reconstruction because it allows

us to take smaller steps between measurements.

For corrosion detection in aluminum aircraft structures we find it convenient to

monitor changes in the arrival time of the So mode because of its dispersive properties.

Although amplitude measurements are often most sensitive to the presence of flaws,

because the received signals are strongly affected by the variations in coupling inherent

in field measurements, we usually record time-of-flight information instead. Our

measurements are typically performed at a frequency thickness product of fd ~ 2 MHz-

mm where only the lowest order symmetric and antisymmetric (So and Ao) modes

propagate appreciably in many materials. This is done to try and control the complexity

of the signals and ensure that the first arriving mode, So, is highly dispersive and that

higher-order modes are cut off or negligible. Figure 3-1 shows Lamb wave dispersion

curves for aluminum, along with a typical Lamb waveform recorded by our system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 6
Frequency-Thickness {mm-MHz) Frequency-Thickness (MHz-mm)

(a) (b)

Time, us

(c)

Figure 3-1. Lamb wave dispersion curves showing phase velocity (a) and group
velocity (b) versus frequency-thickness product for aluminum. The antisymmetric
modes are indicated by the dashed blue lines and the symmetric modes are indicated
by the solid red lines. Our measurements are typically made below a frequency-
thickness of 2 MHz-mm. A typical Lamb waveform recorded by our system is shown
in (c).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Since tomographic reconstructions require many individual measurements to

develop the projection data, we have concentrated our efforts on those measurement

schemes which have the most promise for being fully automated. Initially, parallel

projection and fan beam tomography were pursued because of their extensive use in the

medical community. However, certain limitations in their scanning geometries and

reconstruction fidelity led to the development of Lamb wave multiple crosshole

tomography [15]. Ultimately, all the tomographic reconstruction algorithms run in near

real time on modem PCs so there appears to be no inherent computational limits on the

implementation of these techniques in the field.

3.2 Parallel Projection Tomography

Figure 3-2 shows the geometry for the parallel-projection tomography system.

The transducers are scanned along parallel lines with the Lamb waves propagating

between them. At each position in the scan a measurement of the Lamb wave’s arrival

time is recorded. The waves are assumed to travel only in straight paths (rays) as shown.

Once the pitch-catch measurements for each ray in an individual orientation have been

taken, the sample is rotated by a fixed amount and the measurement is repeated.

Projections consisting of seven parallel rays (transducer-pair positions) for four

orientations (0, 45, 90 and 135 degrees) are shown in Figure 3-2. However, in practice

each projection would have about 100 rays, and projections would be taken at least every

5 degrees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 degree scan

Figure 3-2. The geometry for parallel-projection tomography is shown for the case of
seven parallel projections at four orientations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For any tomographic measurement, the “ray density” is critical to the quality of

the reconstruction. Ray density is a measure of the degree to which the various pitch-

catch Lamb wave measurements cover the region of interest. Note from Figure 3-2 that

the ray pattern within the scanning region is uniform for parallel projection tomography.

This is an important difference between the parallel projection and crosshole tomography

techniques. Similarly, having the rays pass through the region of interest from many

orientations is also important to the quality of the reconstruction. The rays for parallel

projection tomography cover all angles since projections must be evenly spaced over 180

degrees.

A schematic of the parallel projection scanner in our laboratory is shown in

Figure 3-3. At each location of the pitch-catch transducer pair, the phase shift of the SG

mode is acquired through pulsed-phase-locked-loop (P2L2) circuitry. This instrument

compares the phase of its pulsed output signal, which is sent to the transmitting

transducer, with that of the amplified and low-pass filtered returned signal from the

receiving transducer. A frequency counter is connected to the output of the P2L2, which

gives information on the phase difference of the two signals in terms of frequency. The

value of this reference frequency can be used to calculate both the time-of-flight and,

because the distance between two transducers is fixed, the integrated velocity of the

Lamb waves. In our setup, the sample is rotated by a fixed amount between each scan by

a computer-controlled rotary table in order to obtain data from the different orientations

necessary for tomographic measurements. A detailed description of the fairly standard

convolution-backprojection reconstruction algorithm can be found in previous work done

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Receive .
Transducer

_ Send
Transducer

, Sample on
Rotary Table

^ S te p p e r Motor for
Linear Scanner

Figure 3-3. The parallel projection scanning system is shown schematically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by McKeon and Hinders [9] or from Kak and Slaney [4], Figure 3-4 (a) shows a parallel

projection reconstruction of a flat-bottomed hole in an aluminum plate. From the

reconstructed image we can see that this technique has the ability to locate and size flaws

accurately. It also demonstrates how the images can be easily interpreted without any

knowledge of guided wave physics.

In a parallel projection tomography measurement, the source-receiver pair has to

linearly scan over the length of a projection, then rotate and scan the next projection until

a specified number of projections are recorded. The method requires either rotation of

the sample or rotation of the transmitter-receiver assembly. Both are slow, cumbersome,

and impractical for real world testing conditions where large objects need to be scanned

and the data acquisition process has to be in real-time. Transducer arrays cannot be used

to solve these problems because we cannot completely exclude mechanical motion in the

parallel projection tomography system. Furthermore, a fairly large ring surrounding the

region of interest (shaded area in Figure 3-2) must be free of obstructions due to the

mechanical motions required to record parallel line-scans at many angles. This also

makes scanning over large areas cumbersome because of the overlap needed between

scans to ensure that the entire region is thoroughly inspected.

3.3 Fan Beam Tomography

In order to overcome some of the mechanical limitations of parallel projection

tomography, a Lamb wave fanbeam tomography scanner was built. First-generation

medical CAT scanners used the parallel projection geometry, but modem CT scanners

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

(c)

Figure 3-4. Tomographic reconstructions of a 3/32” thick aluminum plate with a 1”
diameter flat bottom hole, 30% thickness loss: (a) parallel projection result, (b) fan beam
result, and (c) multiple crosshole result where the scanned area is 20 cm x 20 cm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

use a fan beam geometry [76] which employs a stationary ring of detectors to

dramatically increase the speed of data acquisition. This can also be done for Lamb wave

tomography via a ring of transducers surrounding the region of interest. Ultimately, each

transducer in the ring would act as both a transmitter and a receiver. Figure 3-5 and

Figure 3-6 show how this was implemented for testing in the lab. A commercial system

would implement this with a circular array of transducers. The reconstruction algorithms

are only slightly modified from the parallel projection case, but the varying path length

means that the P2L2 no longer works for extracting the Lamb wave arrival times.

Moreover, the “fill factor” - defined as the area where the reconstruction is valid -

associated with the fan beam geometry is quite poor. This is because the area free of

reconstruction artifacts is limited to the circular area where all the fans overlap.

Although this technique can be made to work [12], practical issues force one to conclude

that fan beam tomography is not viable for Lamb wave NDE.

Figure 3-4 (b) shows a fan beam reconstruction for the same flat-bottomed hole

sample as above. Again the flaw is accurately reconstructed in a readily interpretable

thickness map, but the artifacts demonstrate that the fill factor is disappointingly small. It

also should be noted that the convolution-backprojection family of algorithms is

surprisingly sensitive to the types of measurement noise and imprecision inherent, in any

in-the-field data acquisition scenario. These issues along with the impracticality of the

parallel projection geometry led to the development of the multiple crosshole technique

described below [6, 14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Top View

A.
Motor 1

\

i

c

/

W orm gear

Static arm
Swing arm

Side View
Transducers ^dtfa delay lines

»
Sample

Rotary table

Figure 3-5. Schematic of Lamb wave fan beam tomography scanner [6].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 ,fR§

Figure 3-6. Photograph of the laboratory fan beam scanner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

3.4 Crosshole Tomography

A fast and practical alternative to the parallel projection technique can be adapted

from cross-borehole tomography used by seismologists [19, 20]. In seismology, parallel

boreholes are driven into the ground adjacent to the region of interest, and seismic

sources and receivers are sequentially placed at many down-hole distances to record a

crisscross seismic ray pattern. To improve the ray density, seismologists often place a

line of receivers along the surface. In our case we are able to go a step further and use a

four-legged perimeter array of transducers surrounding the region of interest. This

technique is called multiple crosshole tomography.

The iterative families of algorithms developed in the seismological literature are

better suited to crosshole tomography than are the convolution-backprojection algorithms

developed for medical imaging and other applications [12-14, 17]. In particular, we find

that the simultaneous iterative reconstruction technique (SIRT) algorithm [4] is relatively

robust, computationally efficient, and insensitive to experimental noise. It also has the

inherent advantage of being widely applicable to a variety of geometries and incomplete

data sets. Moreover, the SIRT is able to be extended to account for material anisotropy

and “ray bending” due to scattering from flaws [14],

Figure 3-7 demonstrates the geometry of our multiple crosshole setup. The

circles about the perimeter of the grid represent the different transducer locations. An in-

the-field system would implement this type of setup with a square-perimeter array.

However, in our current laboratory system we use only one pair of independently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

... „ _ „ ---- - - - - --->*»> }, ni
i - transmitters; | - receivers; in, n - piiei c ©ordinates

Figure 3-7. Geometry for multiple crosshole Lamb wave tomography.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

scanning pitch-catch transducers. Therefore, only two positions are occupied at a time.

Both transducers are attached to linear slider screws and are moved back and forth by

computer controlled stepper motors. For each projection, the transmitting transducer

steps along a particular edge as the receiving transducer steps through all the positions on

a different edge. For example, in one of the double crosshole projections (see Figure 3-7)

the transmitting transducer steps along the lower edge from left to right incrementing i

from 0 to M -l. Meanwhile, the receiving transducer steps along the upper edge sweeping

all N available j-positions for each transmitter position. At each pitch-catch position the

entire waveform is digitized and recorded by stacking it into a data file.

As stated above, the quality of the resulting reconstruction is directly related to

the uniformity of the ray density within the scanning region. It was also noted that the

ray density is uniform for the parallel projection geometry, but not for the crosshole

scheme. To best overcome this deficiency in the crosshole geometry, we use the rays that

connect all the possible pairs of points in a discrete square-perimeter array. For testing in

the laboratory, the square array can be split into six sets of projections as shown in Figure

3-8. The data acquisition equipment and scanning system configuration are described in

Figure 3-9. In the lab, each of the different projections can be obtained by moving the

pair of linear slider screws to the different positions around the perimeter of the sample

(see Figure 3-10).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aj horizontal projection b) vertkal projection

c) upper riglit corner d) upper left corner

e) l o w e r l e f t corner f t l o w e r r i g h t c o r n e r

Figure 3-8. Six possible crosshole projections. Although four transducer positions
shown per side, in practice we use at least 100 positions per leg of the perimeter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

PC buck f»ne1

GAGE CS8012A DAQ Board

Ext Ch. A Serial port

mmm
Matec TB-1000 board

Trig. Sec. Out Rec. In. Pulse Out

magsmsgm ;

V e l i i i e x
$ m

controller

Figure 3-9. Lamb wave tomography scanning system with computer plug-in boards
in a PC running Linux.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

08

54

Figure 3-10. Photograph of the Lamb wave tomography scanner in the laboratory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

3.4.1 Simultaneous Iterative Reconstruction Technique (SIRT)

Crosshole tomography uses the SIRT to solve the inverse problem of recovering

an object from its projections. What makes this scheme useful for Lamb wave

tomography is its iterative nature and great flexibility. It allows practically any scanning

geometry and the existence of incomplete data sets. In contrast, the parallel projection

algorithm belongs to the convolution-backprojection family, which requires strictly

determined scanning configurations and is very sensitive to incompleteness or noise in

the experimental data.

For simplicity and brevity, the following discussion assumes that the waves travel

in straight paths and has ignored scattering effects. The multiple crosshole tomographic

reconstruction algorithm attempts to solve for the Lamb wave velocity within each grid

cell, v[m,n] (see Figure 3-7). In general, this can be done by solving for the slowness,

l/v[m,n], from the following system of linear equations:

TU, j] = = £ d[i j ,m n] ^ ^
m,neray[i j] m,neray[i, j] V|_/7Z, Yl\

In this system of equations, T[i,j] is the total time it takes the wave to travel from the

transmitter to the receiver and t[i,j,m,n\ is the amount of time that ray[/,y] travels within

the cell[m,«]. t [i,j,m,n\ is equivalent to the length of ray[i,j] in cell[m,n] - denoted by

d[i,j,m,n] - divided by the cell velocity v[m,«]. The segment lengths, d[i,j,m,n\, are

calculated theoretically and T[i,j] is measured experimentally. The solution of this

system of equations yields a velocity map over the entire region. Given the operating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

frequency, we can then convert this velocity map into a thickness map used to detect

flaws within the region of interest.

For our current scanning system, Eqn. (3-1) provides a system of N2 equations,

where typically N = 100. The limitation on the number of transducer elements (N) is a

combination of the footprint of the transducer, the allowable scanning time and desired

reconstruction quality. To avoid the computationally expensive inversion of such a large

matrix, the SIRT algorithm is used to solve this problem. The adaptation of the SIRT

algorithm to our problem has four main steps:

Step 1: First we determine the segment lengths d[i,j,m,n] theoretically. Then, using an

initial guess v°[m,n\ for the cell velocities, we calculate the initial estimated arrival times

for each ray:

n . .] = 1 ^

In subsequent iterations the estimated arrival times are calculated with the updated cell

velocities calculated below in Step (3):

rrkr v d[i,j,m,n]
T — Tr......7 ’ (3-3)

where k is the iteration number.

Step 2: For every ray calculate the difference between the velocities in the current

iteration from those in the previous iteration for each cell that the ray passes through:

1 _ T k[i , j] - T k~i[iJ]
(3-4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

where L[i,j] is the length of ray[zj] and T[i,j] is the experimentally measured arrival time

for the ray[zjJ. During each iteration, cycle through each ray and record how many times

each individual cell has a change in velocity and what that change is.

Step 3: Finally, update each cell’s velocity by taking the average of the differences

recorded for that cell in step (2) and adding it to the cell’s current velocity:

1 1 , A 1
fc+ir i ~ kr i AVG r i ’ W~5)v [m,n\ v [m,n] v[m,n\

Step 4: Steps (l)-(3) are repeated until the required accuracy is reached. Typically, fifty

global iterations are used.

Figure 3-4 shows a direct comparison of multiple crosshole tomography with the

fanbeam and parallel projection tomography results discussed earlier. The crosshole

measurements were done on a 100 x 100 square matrix with a step size between locations

of 2 mm. Therefore, the total number of captured waveforms was Ntot = 6 x 104. The

images are reconstructions based on the extraction of the first mode’s arrival time. In

order to remove some of the reconstruction artifacts that were due to erroneous data

points, the time-of-flight data was transformed into the velocity domain. In this domain

the data are less scattered and we can identify the points with outlying velocities and

truncate them using empirical rules. It has been shown previously that the extra

truncation step removes artifacts in the final reconstruction and is successful where other

techniques, such as smoothing or filtering time domain data, are not [6]. It can be seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

from these reconstructions that the multiple crosshole method is also effective in locating

and sizing the flaw. More importantly, the advantages of this geometry over both parallel

projection and fan beam tomography make it a feasible system for use in nondestructive

evaluation.

3.4.2 Composite Plate Results

Composite materials introduce additional complexities due to their anisotropic

nature. Consequently, the more complicated nature of these materials could adversely

effect the ability of the LWT system to inspect these types of materials. Figure 3-11(a)

and (b) are respectively a parallel projection and crosshole scan of an impact damaged

multi-layer woven graphite epoxy plate with a Cartesian grid pattern of through-thickness

Kevlar stitching. The sample was 1.75 mm thick. The impact damage was created by

hitting the center of the sample repeatedly with a hammer. The actual extent of the flaw

cannot be seen visually on either surface, but the reconstructions clearly show changes in

the material properties at the location of the defect. Figure 3-12 is a quantitative

comparison of the velocity profiles through the flaw region for the two reconstructions in

Figure 3-11(a) and (b). Figure 3-13(a) and (b) are parallel projection and multiple

crosshole scans of the same type of graphite epoxy sample with an approximately 25 mm

diameter irregular through-hole, i.e. a circular hole cut freehand with a jig saw. These

results clearly demonstrate that Lamb wave tomography is also useful for the NDE of

composites.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)

(b)

Figure 3-11. (a) Parallel projection [6] and (b) multiple crosshole scans of a woven
graphite epoxy sample with impact, damage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

4.5

4.4

4.3

4.2

£ 3.9

3.8

3.7

3.6

3.50 20 40 60 80 100 120 200140 160 180

Distance, mm

Figure 3-12. Cross-sectional slices of the images in Figure 3-11 at a horizontal mid-line
through the flaw. The dotted line is for the double crosshole scan and the solid line with
circles is for the parallel projection scan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)

(b)

Figure 3-13. (a) Parallel projection [6] and (b) multiple crosshole scans of a
woven graphite epoxy sample with a 1” through-hole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

4.5 r

4.4

4.3

4.2

a . 41
a
S
£ 4
i
£ 3.9

3.8

3.7

3.6

3.5
40 100

Distance, mm
12080 140 160 180 200

Figure 3-14. Cross-sectional slices of the images in Figure 3-13 at a horizontal mid-line
through the flaw. The dotted line is for the double crosshole scan and the solid line with
circles is for the parallel projection scan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Figure 3-14 is a quantitative comparison of the velocity profiles for the two

reconstructions in Figure 3-13(a) and (b). This graph plots the measured Lamb wave

velocity as a function of position for a particular horizontal cross-section of the image.

For this figure, a line through the center of the flaw was chosen. The solid line indicates

the position and width of the flaw. It can be seen that the crosshole scan slightly

oversizes the defect while the parallel projection scan more accurately sizes it. It is also

apparent that the effective scanning region is greatly reduced in the parallel projection

geometry. It is only over small regions (outside the flaw) that the measured velocity is at

the background level of 4.05 mm/ps. This is due to the reconstruction algorithm and how

it solves the inverse problem. We haven’t investigated techniques to correct this for

parallel projection tomography because the double crosshole scheme has so many

practical advantages.

One final thing to note is the peak that exists in the center of the flaw for the

multiple crosshole reconstruction. This feature is often seen in through-hole samples due

to the inability for the straight ray SIRT algorithms to account for the finite Lamb wave

beam. For flaws that are the same size or smaller than the diameter of the beam, some of

the energy will go around the flaw and some will interact with it. This type of

complicated effect is why certain artifacts, such as the null region in the middle of the

flaw, are introduced into the reconstructions. It is also the reason why work is being done

to adapt the diffraction tomography done in [14] to strongly anisotropic samples. Some

of the distortion we see in the reconstructions for the composite samples is due to

anisotropy, and we have begun to implement corrections for variation of Lamb wave

velocity with direction. In cases where we can scan an “unflawed” plate with the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

layup, our tomographic measurement provides the data necessary to correct for

anisotropy in the reconstructions. In cases where no pristine sample is available, an

approach similar to [59] can be used for calculating the Lamb wave dispersion curves

versus angle when the composite plate layup is known.

These results on composite plates are encouraging because they show the

applicability of the method to more complicated structures. In addition, they demonstrate

that the multiple crosshole tomographic scans can accurately image flaws despite the

irregular ray density in the measurements. Coupled with the advantages over parallel

projection tomography for a practical in-the-field scanner, these attributes are why we are

focusing on the multiple crosshole scheme for plate inspection.

3.4.3 Blind Study Test

As a test of the multiple crosshole Lamb wave tomography (LWT) scanning

apparatus and reconstruction algorithms, an experiment was constructed which is double

blind in the medical sense [13], Since our motivation is identifying flaws in aging

aircraft structures with the LWT system, we purchased a number of identical aluminum

plates and introduced representative flaws into them. After scanning the samples with the

LWT system, verification was independently done with traditional ultrasonic C-scans in

an immersion tank. Sample construction, LWT scanning, immersion tank testing, and

tomographic reconstruction were all performed by separate individuals. In addition, after

construction, the samples were covered so that the personnel responsible for scanning the

samples could not see or feel the different flaws. All the flaws were single-sided and

scanned from the backside.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Sample reconstructions from LWT scans are shown in Figure 3-15 thru Figure

3-19. The scanned region was 20 cm x 20 cm in every case. Outside of the personnel

responsible for constructing and scanning the flaws, a group of six individuals familiar

with nondestructive inspection of aerospace materials answered the following four

questions for each plate sample:

1. How many flaws?

2. What do you think the flaws are?

3. How severe are the flaws?

4. Describe the size, shape and orientation of the flaws?

The responses to each of the plates are indicated below, along with a description of the

actual flaws that had been introduced into each plate:

□ Plate #1: 2.2-inch diameter flat bottomed hole, 50% thickness loss. Everyone got this

one correct, although some read a bit more into the structure of the image.

□ Plate #2: 4-inch square belt-sander thinned area, -10% thickness loss. Some thought

this was a set of four perimeter troughs. The flaw was sized and localized correctly,

though.

□ Plate #3: Three flaws of the same diameter but different depths: 50%, 5% and -0%

thickness losses made by plunging an endmill. Since the third flaw was too minor (the

end mill didn’t even fully engage the material), the two-flaws, with one more severe

than the other, was considered a correct call.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Figure 3-15. LWT blind study results for plates 1-4. The first column is the LWT
tomographic reconstruction, the second column is the C-scan results and the third column
is a photograph of the actual sample. Note that the scanned area is smaller than the actual
plate size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Figure 3-16. LWT blind study results for plates 5-8. The first column is the LWT
tomographic reconstruction, the second column is the C-scan results and the third column
is a photograph of the actual sample. Note that the scanned area is smaller than the actual
plate size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Figure 3-17. LWT blind study results for plates 9-12. The first column is the LWT
tomographic reconstruction, the second column is the C-scan results and the third column
is a photograph of the actual sample. Note that the scanned area is smaller than the actual
plate size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Figure 3-18. LWT blind study results for plates 13-16. The first column is the LWT
tomographic reconstruction, the second column is the C-scan results and the third column
is a photograph of the actual sample. Note that the scanned area is smaller than the actual
plate size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-19. LWT blind study results for plates 17-20. The first column is the LWT
tomographic reconstruction, the second column is the C-scan results and the third column
is a photograph of the actual sample. Note that the scanned area is smaller than the actual
plate size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

□ Plate #4: Three intersecting channels at all the same depth - 20% thickness loss. All

but one of the evaluators got this exactly correct.

□ Plate #5: 2-inch dished-out circle, flat on the bottom with a maximum thickness loss of

60%. Although all found this, there was disagreement about the details of the flaw

shape.

□ Plate #6: l ”x 2” rectangular thinned region with rounded corners, 10% thickness loss.

Most thought this was a racetrack groove.

□ Plate #7: Two narrow slots “1” and “)”• Several thought there was a flaw connecting

the two slots, but all found the two psuedo-cracks.

□ Plate #8: Rectangular perimeter channel, a bit wider at top, ~2% thickness loss, and

deeper on right side and bottom, 30% thickness loss. All interpreted this correctly.

□ Plate #9: 2” flat-bottom circular hole similar to Plate #1, but with only 10% thickness

loss. Some thought this was a perimeter groove. A few thought it was diamond

shaped.

□ Plate #10: Milled circular ring, 55% thickness loss. There was disagreement about the

details of this flaw’s structure, but some got it right on.

□ Plate #11: Three geometric shapes made by center- punching the plate numerous times.

Only one person got this correct. Some guessed that there was not a flaw based on the

gray scale image even though more variation was clear in some of the false-color

images.

□ Plate #12: Rectangular flat-bottom hole, 10% thickness loss. Most called this a

channel.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□ Plate #13: Square thinned region, 25% thickness loss at the top and nothing at the

bottom. The left edge of the flaw is outside of the scanned region. One evaluator got

this correct, but others disagreed about the flaw details even though all located and

sized it correctly.

□ Plate #14: Four unevenly spaced rows of five flat bottom holes of the same size.

However, each hole had a different depth - ranging from 3% thickness loss to 50%

thickness loss. This was tough to interpret, although most noted the deepest flaws.

There was no consensus other than to go back over this region and look more closely.

□ Plate #15: Plate with no flaws. This fooled two evaluators who insisted on reading

something into the images. This demonstrates how our knowledge or preconceptions

on what flaws exist, or should exist, can cause one to see something in the

reconstructed images that isn’t there. This example also shows the importance of the

double-blind test.

□ Plate #16: A rectangular thinned region like in Plate #12 but vertical - 45% thickness

loss. Everyone called this flaw correctly.

□ Plate #17: Like Plate #6, a rectangular thinned region l ”x 2” with rounded comers, but

with a 45% thickness loss. Most called this flaw the same as Plate #16 but horizontal

and sized it spot on.

□ Plate #18: Matrix of small pits with one off all by itself. Nobody found the extra pit,

but all located and sized the cluster of flaws correctly.

□ Plate #19: Triangular thinned region that covers half of the plate with a 45% thickness

loss. Not surprisingly, everybody assessed this plate correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

□ Plate #20: Three interlaced Vi-inch wide C-channels. Each channel had a 15%

thickness loss. Some called this a ring with a flaw in the center. One said it was a

“bulls eye object.” All sized and located the flaw correctly.

If grades were to be assigned for each of the plates based on how well the group

called the flaws, the results would be as follows: plates 16 and 19 spot on, A+; plates

1,3,4,8,17 and 18 correct, A; plates 2,5,6,7,9,10,12 and 15 pretty close, B+/A-; plates 13

and 14 only a few got right, C; plate 11 only one evaluator got right, D. Except for a

couple of cases, all of the flaws were located and sized correctly. Because the

interpretation was done without any training, it is not realistic to expect the structural

details of the flaws to be interpreted correctly. Some rules of thumb about which

indications in the reconstructions correspond to which physical flaws have been

developed, but the information was deliberately withheld from those viewing the images.

Nevertheless, this was a successful exercise. In NDE it’s always dangerous to construct

complicated data processing schemes that successfully highlight flaws which are already

known to be present. It is important to evaluate the inspection schemes through tests like

this double-blind study. In real testing scenarios one needs to be confident that the

inspection process will reveal the flaws that are present and minimize the likelihood that

flaws will be missed or called incorrectly.

3.5 Chapter Summary

This chapter has discussed the current state of the Lamb wave tomography

system. It has shown that the LWT scanner successfully reconstructs various flaws in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

thin plates. The method has been applied to both metallic and composite structures with

positive results in each case. Furthermore, a blind study was conducted that

demonstrated that the reconstructed images can be interpreted reasonably well for most

types of flaws.

However, one major limitation to the current technique is that it can only scan flat

plate-like materials. It is capable of scanning slightly curved structures such as aircraft,

but would be ineffective for scanning pipes or other cylindrical geometries. A

tomographic guided wave inspection technique similar to the LWT system that could

interrogate underground and/or insulated piping systems would allow inspections of these

structures to be performed quicker and with less cost.

Another drawback of the LWT system is that the time extraction algorithms used

to make the reconstructed images only record information about the first arriving mode.

A wealth of information still exists in the rest of the signal that is being discarded. The

various Lamb wave modes interact with flaws differently because of their different

displacement properties. Certain modes may not even interact with certain flaws.

Furthermore, as we will see in the next chapter, a tomographic system for pipe-like

geometries does not have the ability to access the sample from all sides as in the multiple

crosshole system. This means that the ability to extract arrival times for multiple modes

becomes even more crucial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Helical and Meridional Ultrasound Tomography

4.1 Introduction

Early work on guided waves in hollow cylinders was done by Gazis [77, 78] and

others [79-82]. Many authors have recently used guided ultrasonic waves to detect flaws

in pipes and tubes [33, 35, 36, 38, 55, 83-96] by generating selected modes in the pipe

and using pulse-echo measurements to locate flaws. Alleyne et. al. [55, 88, 89] have

shown that a ring of transducers around the circumference of the pipe can excite axially

symmetric modes that propagate long distances down the pipe. By choosing a non-

dispersive mode they are able to retain the signal’s shape and amplitude as it propagates

even over tens of meters. Similarly, Rose et. al. have explored several methods for

selecting different modes for pipe inspection. These methods include using comb

transducers [33, 35] to generate longitudinal guided waves and partial circumferential

loading [36] to focus flexural modes to the area of interest in the pipe. Other authors

have also explored the use of EMATs [91-93] and PYDF [38] transducers.

Ultimately, any real world guided wave measurement scheme is complicated by

mode conversion at flaw interfaces, bends in the pipe, and loading on both the inner and

outer diameters [83, 94-102], This inherent complexity makes guided waves very

informative but at the same time very difficult to utilize. As previously mentioned, an

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

infinite number of modes are theoretically available for use, each with characteristic

dispersion and through-thickness displacement properties. At low frequencies,

longitudinal, torsional and flexural pipe modes dominate, but at higher frequencies these

structural modes are less important and the waves see the pipe more like a curved plate or

shell. It is these helical guided wave modes that are of interest in our measurements.

This is in contrast to previous work done in this area that has mostly concentrated on

generating the longitudinal and flexural pipe modes. Of course, it is important to point

out that there is no clear demarcation between these two perspectives once the guided

waves are non-axially symmetric, as in the work by Rose [37]. There are a wide variety

of models appropriate for studying this type of vibration in cylindrical shells [103-107].

Many of these studies come from the underwater sound community. One can even

formally connect plate waves to the corresponding Lamb-like waves in cylindrical shells

by replacing the source by a periodic array of equivalent “unwrapped” two-dimensional

plates [108]. A quite useful review of guided ultrasonic waves with an extensive

bibliography can be found in [3].

Because the helical modes can be considered similar to Lamb wave modes in

plates, our previous work on Lamb wave tomography [9, 10, 12-14, 17] can be extended

to pipe inspection systems. The Lamb-like guided waves form a series of helical

crisscross paths that are a useful tomographic geometry equivalent to what seismologists

use in cross-borehole tomography [4], However, even though pipe-like objects behave

similarly to curved plates, some additional complexities arise because the plate curves

around upon itself. First, the pipe as a whole can exhibit three families of propagating

modes: torsional, flexural and extensional. These can be distinct from, or intermingled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

with Lamb wave (plate) modes in the pipe. Generally speaking, we can hope to

distinguish pipe modes from plate modes in that the former are lower in frequency and

longer in range, while the latter are higher frequency more localized phenomena. Of

course, there is no clear demarcation between the two regimes, and in practice it’s

necessary to be able to sort them out or the unwanted modes will corrupt the data sets of

interest.

A second complexity that arises for pipe-like objects is that more than one helical

mode can travel between any two transmit and receive locations. In Figure 4-1 we show

schematically a pair of transducers on a pipe and several helical rays propagating away

from the transmitting transducer. One of these rays takes the most direct path part way

around the pipe to the receiving transducer while others, with steeper helical paths, will

travel further around the pipe circumferentially and will miss the receiver. Others will

make one or more complete loops around the pipe and end up at the receiver. Although

one could envision “aiming” the waves in a narrow enough beam to avoid this confusion,

tomographic considerations require that both the transmitting and receiving transducers

be as omni-directional as possible. This adds yet a third complexity; the helical waves

are generated in both clockwise and counter-clockwise directions. Depending on the

relative angular positions of the transmitting and receiving transducers, these pairs of

modes may interfere either constructively or destructively.

Furthermore, these complexities are what exist in the absence of any flaws. Flaws

scatter the guided waves, and even cause energy to be converted from one mode to

another. These effects can be severe for strongly scattering flaws such as cracks.

Thickness changes due to corrosion or gouging can cause some modes to be cut off,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

A

Figure 4-1. A pipe segment is shown with a transmitting transducer at A and a
receiving transducer at B. Six helical Lamb wave paths are shown, with the
shallowest only just beginning to wrap around the pipe before it reaches B. The
steepest possible helical path is the circumferential guided wave that will ring around
the pipe and be received at A. In between these two extremes, the guided wave
modes are launched at A for all helicities (4 are shown). Some of these will travel
around the pipe one, two and more times before being recorded at B. Note also by
symmetry that all of these waves go in the opposite directions as well, and these
mirror modes will, in general, overlap with the guided wave modes of interest at the
receiver B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resulting in a fairly dramatic reflection of those same modes or a dumping of the wave

energy into other modes. In the previous Lamb wave diffraction tomography work by

Malyarenko et. al. [14, 17], techniques were developed to handle much of this

complexity, and we have now found that we are able to deal satisfactorily with the added

difficulties of pipe-like geometries.

If we envision a series of pitch-catch helical guided wave measurements on a pipe

with a large number of transducers along two separated circumferential belts, the set of

helical crisscross ray paths is a single crosshole tomographic geometry. In Figure 4-2 we

illustrate this by showing a pipe that is “unwrapped” and laid flat. The transducers now

lie along parallel lines and form our traditional crosshole geometry. Because the helical

waves can wrap around the pipe more than once, we can consider the “extra” regions and

the longer ray paths to give better tomographic reconstructions because these rays pass

through the region of interest from additional angles. Figure 4-3 shows the SIRT

tomographic grid used to make reconstructions with the HUT system. It shows that the

HUT technique is similar to the LWT technique discussed in Section 3.4. The biggest

difference is that rays can wrap from the “top” of the grid to the “bottom”.

One of the fundamental limitations of HUT is that the wave vector coverage is

incomplete because rays don’t go through the region of interest from all angles. To

improve reconstructions in cross-borehole tomography, seismologists often place a line

of receivers on the surface of the ground between the boreholes. For tomographic plate

inspection with Lamb waves, we mimic a four-sided square perimeter array so that the

rays pass through the sample from all angles. Neither of these options are available for

an inspection scheme capable of examining a wide variety of piping systems. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

B
A

O Q O O O 'O O ■O O O O Q jO ■ O

0 0 0 - 0 0 0 0 0 0 -0 0 - 0
B B

Figure 4-2. Parallel circumferential arrays of transducers can be seen to give a
crosshole tomographic geometry when the pipe is mentally “unwrapped.” The two
identical parallel circumferential array-belts of transducers wrap around the pipe.
Each transducer in one belt transmits helical Lamb waves, which are received by all
of the transducers in the other belt. Mentally break the pipe longitudinally along the
line AB and then unwrap the pipe to lie flat. The circumferential belts of transducers
now lie along the lines AA and BB in the “unwrapped” pipe. Note that the Lamb
waves travel along the crisscross rays shown above. Because the helical waves can
wrap around the pipe more than once we can consider the “extra” regions to the left
and right of AB. These longer ray paths give better tomographic reconstructions
because they pass through the sample from additional angles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

(0°, 360°)

(360°,0°)

i - transmitters; j - receivers; m,n - pixel coordinates

Figure 4-3. Helical ultrasound tomograpy (HUT) reconstruction geometry unwrapped.
Transmitter and receiver locations are shown by the filled circles along the left and right
sides. Three different ray paths are shown via the dashed-line arrows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

initial proof-of-concept work on HUT only employs the first arriving modes, but as this

work will show, the desire for better reconstructions will require the use of the “twice

around” steep helical modes as well. Without using this additional information the

quality of the tomographic reconstruction is poorer because the wave vector coverage is

not as universal.

4.2 Description of Setup and Experimental Results

We have constructed the apparatus shown in Figure 4-4 to mimic two

circumferential belts of transducers via a pair of transducers incremented by stepper

motors under computer control. For each transmitter location a guided wave is launched

by exciting the contact transducer with a toneburst while the receiver is paused briefly in

turn at all of the circumferential positions to catch the various helical Lamb waves. The

frequency of the toneburst is chosen to select the guided wave modes of interest.

Typically these are the first arriving modes in order to minimize complications from the

overlapping modes. The recorded waveforms at each pitch-catch pair location are

digitized and processed on the computer to extract the arrival times of the modes of

interest. Additional projections are taken by stepping the transmitter in turn to all of the

circumferential positions and repeating the process. The complete set of arrival times or

amplitudes are then passed to the tomographic reconstruction codes.

A block diagram of the data acquisition equipment for the HUT scanner is also

shown in Figure 4-4. The Matec™ TB-1000 PC ISA board is used to form a tone burst

of typically 3-15 cycles. In the proof-of-concept reconstructions shown in this chapter, a

15-cycle 1.35 MHz tone burst drives the transmitting transducer, a 2.25 MHz center

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

PC Back Panel

GAGE CS8012A DAQ Board

f Ext. Ch. A ^

- o

Trig.

Serial Port

Matec TB-1000 Board

Rec. Out Rec. In Pulse Out

In Out HP 8447A
Q C H Amplifier

RS-232 Velmex Motion
Controller

 ___ V

A

Figure 4-4. Data acquisition block diagram for the computer-controlled HUT
scanner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

frequency broadband longitudinal transducer, which excites Lamb-like guided wave

modes in the pipe. The received signal is amplified, filtered, and then digitized by a

GAGE™ CS8012A DAQ board with 12-bit resolution and up to 100 MHz sampling rate.

Initial testing was performed on a steel pipe with an ID of 75 mm and an OD of 102 mm.

The distance between the transmitter and receiver at the same circumferential angle was

320 mm. Glycerin was used as a coupling agent because it provids good transmission of

the signal and has a high enough viscosity that the coupling was consistent even on the

bottom side of the pipe. Each recorded waveform was gated around the first arriving

mode, which in our measurements was the S6 mode. For this pipe sample, the S6 mode

has a group velocity of a little over 5 mm/ps and is reasonably dispersive. At this

frequency-thickness product, the next fastest modes have a group velocity of less than 4

mm/ps and there are also several slower modes present in the 3 - 4 mm/ps range.

Therefore, these slower modes are effectively separated out from the first arriving S6

mode. After the data was recorded, the arrival time for the fastest mode was extracted for

each waveform and then sent to the tomographic algorithm described above. The

resulting reconstructions are shown below. All of the signal processing algorithms are

fully automated since the large number of individual pitch-catch measurements precludes

any manual analysis of the waveforms. The waveform processing, mode-extraction and

tomographic reconstructions take only a total of a few seconds on a modem PC running

Linux.

Figure 4-5 is a photo of a thick-walled steel pipe sample with a flat rectangular

thinned region. This sample, with four different lengths of flaws, was used for the proof-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Figure 4-5. A thick-walled steel pipe sample is shown in the HUT scanner. Conical
delay lines are used on the spring-loaded contact transducers in order to minimize
their footprint.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

of-concept tests. The thickness loss in the flaw is about 25% at the center of the

rectangular flawed region, with only a surface slope change - but no thickness change -

at the circumferential edges and a varying-depth step discontinuity at the axial edges.

The photo also shows the conical delay lines that are used with the contact transducers in

order to minimize their footprint.

Figure 4-6 shows four reconstructions for increasing length of the rectangular

thinning. The red horizontal striations and the blue crisscross artifacts indicate the

location of the flaws, which can be seen to increase in size as expected. Note that the

scans are shown for different angular positions of the flaws, but all other scanning,

reconstruction and rendering parameters are remained unchanged. No additional image

processing or enhancement has been done to improve the appearance of these “raw”

reconstructions.

4.3 HUT Discussion

Figure 4-7 shows two scatter plots of the velocities extracted by our algorithms

versus ray number for the unflawed pipe. Figure 4-7(a) and Figure 4-7(b) were scanned

at 0.5 MHz and 1.35 MHz respectively. A “perfect” result would show all of the

velocities in the tight band around 2.9 mm/ps (Figure 4-7(a)) and 5.2 mm/ps (Figure

4-7(b)) - the velocities for the mode of interest at the two frequencies. Several things can

be noted from these plots. First, in Figure 4-7(a) two clusters of rays gave points between

3.2 and 3.4 mm/ps. This most likely means that the threshold used to ignore the early

pipe modes was not completely successful. Second, a weak, regular structure that has

two dips is also apparent. This seems to occur when the two counter-helically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Figure 4-6. Four reconstructions are shown for increasing flaw size in the same thick-
walled steel sample shown in Figure 4-5. The red horizontal striations and the blue
crisscross artifacts indicate the location of the flaws, which can be seen to increase in size
as expected. The vertical axis is in the circumferential direction, while the horizontal axis
is the axial direction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

3.4

3.2

2.8

2.6

0 10000 20000 30000

6

5.3

5

4.5

4

3.5

3
0 10000 20000 30000

Figure 4-7. Velocity scatter plots - velocity (mm/ps) vs. waveform # - for the 180 x 180
(32400) recorded waveforms are shown for unflawed pipe samples at (a) 0.5 MHz and
(b) 1.35 MHz. If our arrival-time extraction algorithms were perfect, all of the data
points would be clustered about the dark horizontal bands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

propagating mode pairs destructively interfere (pitch and catch directly opposite each

other) and thus the mode of interest zeros out. Consequently, our algorithms then pick

out the arrival time of an unwanted mode. Finally, in Figure 4-7(b) the cluster of points

seen in Figure 4-7(a) at higher velocities due to the unfiltered pipe modes are not present.

This is because the second scan was taken at a higher frequency. However, we see a fair

number of points where our algorithms appear to have missed the mode of interest and

instead picked out later arriving modes below the dark band at about 5.2 mm/ps.

Figure 4-8 shows two typical waveforms recorded by our system on the unflawed

pipe sample at 1.35 MHz. The first waveform is for a meridional wave where both

transducers are at the same angular position. The second was recorded when the

transducers were rotated 90° from one another. Both are single-shot without averaging

and are shown on an arbitrary amplitude scale that is consistent between them. Note that

the signals do not have distinct, isolated modes, and that the essential character of the

waveforms changes dramatically throughout the measurements even in the absence of

flaws. We have tended to use the subtle arrival-time changes in the first-arriving modes

because coupling variations in our laboratory scanning system introduce uncertainty into

amplitude measurements and because our standard mode identification and extraction

algorithms are not robust enough to deal with the later-arriving mutually overlapping

modes.

The four graphs in Figure 4-9 show velocity scatter plots for the flawed samples

reconstructed in Figure 4-6. For those rays that do not pass through the flaw, the velocity

is constant, and our algorithm reliably returns a velocity in the band just above 5 mm/jis -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

too

1000

100

Figure 4-8. Typical waveforms for (a) meridional and (b) helical guided wave modes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-9. Velocity scatter plots are shown for flawed samples from Figure 4-6 as
extracted by our algorithms versus ray number. The rays that pass through the flaws
indicate a different velocity because the modes we select for our measurements are
dispersive: instantaneous speed varies with local pipe wall thickness. A second effect
also occurs at the strongly scattering edges, which is a diffraction of the guided wave
modes. This also often shows up as a slowing, because the waves tend to skirt around the
flaw and hence take an effectively longer path from transmitter to receiver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

the theoretical velocity of the S6 mode for these scans. Because the modes selected for

these measurements are dispersive, their instantaneous speed varies with local pipe wall

thickness and the rays that pass through the flaws indicate a different velocity.

Additionally, diffraction of the guided wave modes occurs at the strongly scattering

edges of the flaws. This often shows up as a slowing of the guided wave modes, because

they tend to skirt around the flaw and thus take an effectively longer path from the

transmitter to the receiver. Figure 4-10 shows the tomographic velocity profiles for three

different horizontal slices through Figure 4~6(b). It can be seen that outside the flaw the

velocity remains close to the background level of about 5.25 mm/ps. The other two

profiles are taken from different locations within the flaw. Figure 4-10(c) shows how the

waves have an apparent decrease in velocity as they encounter the edges of the flaw and

an increase in velocity at the center of the flaw where they do not interact with strongly

scattering edges.

4.4 Meridional Ultrasound Tomography

In other cylindrical geometries, such as stacked storage tanks, access to the entire

circumference of the structure could be impractical or even impossible. This would

prevent the application of HUT to these types of structures. However, a tomographic

geometry similar to the single crosshole and HUT geometries can be created by placing a

line of receivers along the axis of the cylindrical structure. Figure 4-11 shows how the

meridional line of transducers forms the desired crosshole geometry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Distance (mm)Distance (mm)

Distance (mm)

(c)

Figure 4-10. Each graph represents a different horizontal cross-section of the
tomographic reconstruction shown in Figure 4-6(b). These velocity profiles can be
converted to thickness profiles, (a) A horizontal cross-section outside the flawed region.
The background level is around 5.25 mm/jis which is to be expected from the unflawed
portion of the sample, (b) This horizontal cross-section is taken from the red region that
can be seen on the top edge of the flaw in Figure 4-6(b). (c) The velocity profile for the
horizontal cross-section directly through the center of the flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

A B

B

'.LI Jr. .. 1l - y

BA

Figure 4-11. A linear array of transducers along the axis of the cylinder can be seen to
give a crosshole tomographic geometry when the pipe is mentally “unwrapped”. Each
transducer transmits helical Lamb waves which are received by all of the other
transducers in the array. Mentally break the pipe longitudinally along the line AB and
then unwrap the pipe to lie flat. The linear transducer array can now be envisioned to be
on both the top and bottom of the “plate”. Note that the waves of interest are those that
travel helically around the circumference of the pipe. The modes that travel directly
along the axis of the pipe from the transmitter to the receiver need to be ignored in the
signal processing of the recorded waveform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

This new inspection scheme provides excellent opportunities to quickly and

quantitatively interrogate previously hard to inspect stmctures. For example, Figure 4-12

shows how depleted Uranium Hexafluoride (UF6) tanks are stored. Approximately

50,000 storage tanks containing more than 500,000 metric tons of UF6 are kept at

facilities in Tennessee, Ohio and Kentucky. Some of the cylinders have been standing in

the storage yards since 1956 and many have corroded or even failed. The largest cylinder

breach resulted in a loss of approximately 110 pounds of material. Furthermore, the

Department of Energy’s (DOE) Office of Nuclear Energy issued a report in 1990

recommending that these structures be inspected at least twice a year [109]. The bottoms

of the tanks are most vulnerable to corrosion, but this area is also inaccessible because of

how the tanks are stacked. Also, because of the sheer number of these tanks, in order to

adhere to the inspection requirements a tank would need to be inspected every 5 minutes,

24 hours a day, 365 days a year. This necessitates a quick, quantitative and automatic

inspection scheme. Meridional Ultrasonic Tomography (MUT) would enable such a

process.

Some preliminary signal analysis was done on large storage tanks using the

laboratory mockup shown in Figure 4-13. The equipment that was used was unable to

generate strong enough signals to travel all the way around the tank. However, the tests

that were performed on the tank showed that Lamb-like waves could be generated on

curved plates and that they would travel in the helical directions. These results led to the

development of a smaller scale system in order to test the MUT geometry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Figure 4-12. Storage facility for depleted Uranium Hexaflouride (UF6). Tanks are
stacked in such a way that HUT would not be a viable inspection technique. Therefore,
meridional ultrasound tomography (MUT) is a better solution for this type of inspection.
Approximately 50,000 storage tanks containing more than 500,000 metric tons of UF6
are kept at facilities in Tennessee, Ohio and Kentucky [110].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-13. A picture of a large storage tank mockup scanner in the laboratory. The
receiving transducer was attached to a linear slider while the transmitting transducer was
placed at a single position on the tank. This setup was used to perform preliminary work
on guided wave signals in cylindrical structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Figure 4-14 shows how the MUT geometry was mimicked in the laboratory. Two

linear scanners were angled so that the delay lines of the transducers were in good contact

with the surface of the sample and as close together as possible. In a final system, this

setup would be implemented as a line array of transmit/receive transducers that would be

controlled by a multiplexer. This would allow each transducer to transmit and receive in

turn so that a full crosshole geometry could be realized. In the laboratory system, one

transducer transmits, while the receiving transducer steps through each of the positions

along the axis. Then the transmit transducer steps once and the receive transducer again

steps through each position. This is repeated until the transmit transducer has also

stepped through each axial position.

The largest barrier to MUT comes in the analysis of the recorded waveforms.

Because the transmitting and receiving transducers are along the same line, the portion of

the signal that we are interested in is no longer the first arriving. The first arriving mode

is the one that goes directly between the transducers along the axis, and not the helically

generated Lamb wave that provides the needed tomographic geometry. This is another

reason that more sophisticated multi-mode analysis is needed.

4.4.1 MUT Experimental Setup

For the preliminary investigations of MUT, a two foot long aluminum pipe with a

thickness of 4mm and OD of 150mm was used. The transmit and receive transducers

were 2.25 MHz center-frequency, broad-banded contact transducers with conical delay

lines to reduce the footprint of the transducers. The pipe had an irregular flaw on its ID

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Figure 4-14. The linear array of transducers used in MUT is mimicked in the laboratory
by two transducers attached to linear scanners. The scanners are tilted so that the
transducers are in good contact with the surface of the pipe. For each transmit position,
the transmitting transducer remains in place while the receiving transducer steps through
all of the receive positions. The transmit transducers is then stepped and this process
repeats until all the pitch-catch combinations have been recorded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

that was created to be representative of either gouging or corrosion. The flaw was

approximately 35mm in diameter with no more than 20% thickness loss at its deepest

point. The sample was placed in the lab apparatus so that the flaw was within the “sweet

spot” of the tomographic geometry - where the ray density is the highest.

Because of limitations in the original arrival time extraction algorithms [6], the

reconstruction algorithms were adapted for attenuation data. It was found that with fairly

reliable coupling, after gating the signal to cut out the direct wave from the transmitter to

the receiver, the amplitude of the helical mode of interest could be extracted. The

tomographic reconstruction algorithm is again based on the SIRT and is similar to the

velocity SIRT presented earlier. A simple model of attenuation is used where

A = A0<T^/Ĉ . In this equation, A is the measured amplitude, A0 is the initial amplitude,

ju is the attenuation coefficient, C is a constant that relates the attenuated amplitude to the

amount of attenuation, and x is the distance of propagation. For our tomographic

geometry this yields:

where (m,n) is the coordinates of an individual grid cell and [ij] denotes the ray defined

by transmitter position i and receiver position j (see Figure 4-15). Furthermore, the cells

are updated as follows (see Section 3.4.1 for full SIRT algorithm details):

4 / j]=A) (4-1)

AMm,m

(4-2)
juk+1[m,n] = juk\m,n\ + A AVGju[m,n].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

-r
\
\

~r
i
i

- H t - -H U -

/
r

\
\
\

i
t

t

/
//

\ i
\ t « i i i

>///
T 1 I 1

\ t I /
V

/
//

/

l\/ \
1 I

• V
//

i / l
! /*/

/
t / / / ' i/ i

(in, \
\
\
s

t/
f /

i
i /

\
\
\
X

(0°,360°)

(360°,0°)

i - transmitters; j - receivers; m,n - pixel coordinates

Figure 4-15. Crosshole geometry for meridional ultrasound tomography (MUT).
Transmitter and receiver locations are shown by the filled circles along the top and
bottom edges. Three different ray paths are shown via the dashed-line arrows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

4.4.2 MUT Results and Discussion

Figure 4-16(a) shows a simulated reconstruction of a flawless sample and Figure

4-16(b)-(d) show reconstructions for simulated square flaws of different dimensions. In

these simulations, C was derived so that for p = 1 and x = 200 mm, A = 0.5Ao. These

reconstructions show that the MUT geometry is able to detect flaws by measuring

attenuation data. However, they also show that because the technique only allows for a

single crosshole geometry, the flaw boundaries are not well defined. Because the array of

transducers are only along the top and bottom of the reconstructed image, we do not get

as much information from the horizontal direction. This causes the flaw boundaries to

smear in the vertical direction. Ultimately, the reconstructions do show the flaws, and if

the smearing effects are known a priori, one could effectively inspect materials with the

MUT technique.

Guided wave signals from a clean portion of the 4mm-thick aluminum pipe

sample are shown in Figure 4-17. Notice that in Figure 4-17(a) the mode of interest

arrives around 150 ps. The beginning of the signal is truncated to save storage space and

to eliminate the first-arriving direct signal. The mode of interest for these measurements

was the AO mode (3.06 mm/ps) because at the chosen carrier frequency it is a relatively

strong mode and since it is not as dispersive, it retains its envelope shape. It can be seen

from Figure 4-17 that the mode can be tracked relatively well between scans. Because

the mode of interest was not the first-arriving mode and wasn’t appreciably dispersive,

the signal was gated and amplitude data was used for reconstructions instead of arrival

time data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

(c) (d)

Figure 4-16. Simulated reconstructions for attenuation MUT data. Reconstructed area is
470 mm x 470 mm. The pitch and catch transducers were respectively located along the
top and bottom of the reconstructed areas, (a) Unflawed sample, (b) 50 mm x 50 mm
square flaw, (c) 100 mm x 100 mm square flaw, (d) 150 mm x 150 mm square flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Mode of
Interest£

-1000

Mode of
Interest

Mode of
Interest

-1000

240

240

Time (ps) 240

Figure 4-17. Guided wave signals of an unflawed pipe sample for the first transmit
position and three different receive positions. The mode of interest is the A0 mode with a
velocity of 3.06 mm/ps (a) Receive position #1, d = 464 mm. (b) Receive position #40, d
= 471 mm. (c) Receive position #80, d = 491 mm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r
105

Figure 4-18 shows an example of the extracted amplitude data for both the

flawless and damaged portions of the aluminum pipe. Figure 4-18(a) shows the extracted

amplitude data for transmitter position #45 - halfway through the scan. It can be seen

that the data fluctuates a great deal due to inconsistent coupling. One way that we

attempted to control this fluctuation was by measuring a ratio between the amplitude of

the first arriving mode and the first-arriving helical mode. However, because of

dispersion effects and the longer path length of the helical mode, this method did not

provide more consistent amplitude data. Ultimately, a moving average of five points was

used to smooth the extracted amplitude data. Figure 4-18(b) shows the smoothed

amplitude data for the unflawed portion of the sample. Figure 4-18(c) and (d) show the

raw and 5-point smoothed amplitude data respectively for transmitter position #45 -

halfway through the scan and approximately at the same axial location of the flaw - for

the flawed portion of the aluminum pipe. It can be seen that the amplitude data remains

mostly constant for the unflawed scan and that it drops down when the receiver moves

into the flawed region.

Reconstructions for the clean portion and flawed portion of the pipe sample are

shown in Figure 4-19(a) and (b) respectively. It can be seen that the method clearly

shows the existence of the flaw. As expected from the results of the simulated data, the

flaw is larger than its actual size and some artifacts exist in both the flawed and unflawed

scans due to the SIRT. It can be seen that the flaw is smeared in the circumferential

direction due to the single crosshole geometry. However, the technique shows promise to

be a powerful NDE technique. With improved multi-mode arrival time algorithms, the

reconstructions can be improved and the simple gating can be replaced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

20

15
q"D
| l 0

I M

20
(b)

■ 15

1 '• K
\ 1 \f V t i i M A *

N w 1
I f n i j

\ ! i
f t

! n
CD

X3
3

A a
 ̂ a

1/ “ y ^ y y I 4 f Q.1 0

5

080 80
Receiver Position # Receiver Position #

20 20

■a
i i o

) 40 (
Receiver Position #

8C 20 60
Receiver Position #

Figure 4-18. Amplitude data for the flawed and unflawed sections of the aluminum pipe
sample, (a) Amplitude data for the unflawed section, transmit position #45 (halfway
through scan), (b) 5-point sliding average of unflawed amplitude data in (a), (c)
Amplitude data for the flawed section of the pipe, transmit position #45. Flaw was an
irregularly gouged area with an approximate diameter of 35 mm. (d) 5-point sliding
average of data in (c).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

4k

*?-f

IV

S A
a its

kO
II 0
oc<DV-
£ , *
£3Ou
U

$* *.*
* *

.

*

i
'■ ■■ mi i n i* .11 n i. i i. ii m i l.

Axial Direction d = 180 mm

Figure 4-19. MUT reconstructions of an aluminum pipe with an OD = 150 mm and a
thickness of 4 mm. The image on the left is a reconstruction of an unflawed portion of
the sample. The image on the right is a reconstruction of the flawed region of the pipe.
The flaw was an irregularly gouged area with an approximate diameter of 35 mm. The
thickness loss within the flaw was 10-20 %.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Advanced Signal Processing

As we have seen in the previous chapters, guided wave tomography has the

capability to quantitatively inspect large plate-like structures quickly and robustly.

However, in both the HUT and MUT scanning systems, the single crosshole geometry

limits the accuracy of the resulting reconstructions. The current reconstruction

algorithms only extract the time-of-flight information for the first arriving mode at a

predetermined frequency. In HUT, this limits the ray vector coverage of the different

projections. Also, because the pipe and plate-like guided modes are intermixed, the first

arriving mode is not always the mode of interest. It can be seen that the arrival times

jump from one mode to another at certain times. Both of these factors reduce the quality

of the final reconstructions.

Similarly, multi-mode arrival time information could also improve the LWT

scanning system. LWT uses a multiple crosshole geometry and does not suffer from the

same wave vector coverage problems that HUT does. However, different modes are

sensitive to different types of flaws because of their displacement properties throughout

the thickness of the material. Arrival time information for later arriving modes can

further improve the LWT, HUT and MUT reconstructions.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Furthermore, this work will show that image compounding techniques are also

able to improve the guided wave tomographic reconstructions. Previously, only a single

frequency has been used when inspecting a material with ultrasonic tomography. In

order to choose an appropriate frequency, the dispersion curves for the material were

calculated before testing and the received waveforms were visually inspected to ensure

that a sufficient signal was generated. However, by recording data for different

frequencies at each pitch-catch location in the scanning geometry, additional valuable

information can be collected. The frequency “walking” described here has led to

improvements in both multi-mode extraction, through a sorting algorithm described

below, and the resulting reconstructions through frequency image compounding.

5.1 Tomographic Frequency Compounding

Spatial image compounding is a technique most widely used in ultrasonic B-

scanning. Different methods exist that allow B-scans to be taken from slightly different

spatial orientations to reduce the amount of speckle noise in the resulting images [111-

113]. Speckle noise arises from the constructive interference of backscattered echoes

from randomly spaced Rayleigh scatterers in the tissue [114]. By compounding the

images from different spatial locations, an effective “averaging” of the individual pixels

of the images, speckle noise is reduced and the contrast between the cysts/lesions and the

background is increased [115], This allows for better detection and location of the cysts

and lesions. It also increases the potential for automatic detection and level of suspicion

(LOS) calculations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

This same technique could be used in LWT, HUT and MUT by slightly varying

the location of the transducer arrays. However, the toneburst excitation modality makes

it more natural and easier to take different frequency measurements at each pitch-catch

location of the scanners. By varying the toneburst frequency slightly, we can utilize what

we call tomographic frequency compounding to improve the contrast-to-noise ratio in the

tomographic reconstructions.

The actual compounding of the images can be done in different ways. For

example, if there are three sources (Ai,A2 ,A3), the following equations are three different

ways to compound their data:

Average Compounding:

Kemp,mean = (A + K + K) K ’ (^’ l)

Root-Mean-Square Compounding:

Komp,rmS = ^{Al + A> + ̂ 3)/3 , (5' 2)

Geometric Mean Compounding:

Komp.U = a /A A A • (5-3)

Tests were performed on a steel pipe with an ID of 130 mm and an OD of 175

mm. Therefore, the thickness of the sample was 20 mm (~1”). A flaw was introduced on

the inside diameter approximately centered in the axial direction. The flaw is an

irregularly gouged, 2” x 2” square. A 10 ps long tone burst was used to drive the

transmitting transducer at frequencies between 900 kHz and 990 kHz. In total, ten

tomographic scans were taken for different frequencies in this frequency range. At each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

pitch-catch position in the scan, waveforms were recorded at 10 kHz steps. The distance

between the transmitter and receiver at the same circumferential angle was 320 mm.

After the data was recorded, the arrival time for the first arriving mode was extracted for

each waveform.

Figure 5-1 shows filled contour plots of the reconstructed flawed pipe sample for

the ten frequency scans taken between 900 kHz and 990 kHz. The flaw can clearly be

seen in the middle of each of the reconstructions. The lighter horizontal bands on the top

and bottom of the flaw are artifacts. However, they are often found to be indicators of

the size and location of the flaw. These artifacts likely arise from scattering and mode

conversion of the incident Lamb waves due to the flaw. Because these were only single

crosshole measurements, these types of effects are more noticeable. It is also apparent

that a lot of noise is present in the reconstructed images. This occurs because of the

added complexity of trying to locate a flaw on the inner diameter of a thick pipe, while

the measurements were taken from the outer surface of the sample.

Frequency compounding allows us to improve the fidelity of these measurements.

Figure 5-2 shows three reconstructions of the flawed sample after compounding the data

from the ten different frequency scans with the three methods described above.

Comparing these results with those in Figure 5-1, it can be seen that the tomographic

frequency compounding enhances the contrast between the flawed and unflawed regions

and reduces some of the noise in the backgrounds of the images. This demonstrates

clearly that the flaw is visually more pronounced after compounding.

Furthermore, the effects of compounding on the tomographic reconstruction’s

quality can be quantified with the following image quality parameters - contrast-to-noise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Figure 5-1. Reconstructed images for ten frequency scans of a thick steel pipe with an
irregular 2” x 2” gouge on its ID. The flaw was approximately centered in the axial
direction. Pipe thickness = 20 mm; OD = 175 mm. Horizontal axis is along the axis of
the pipe (d = 320 mm). Vertical axis is the circumference (d = 550 mm).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Mean

Figure 5-2. Compounded images using the 3 methods described above (Mean, II, and
RMS) for the ten frequency images in Figure 5-1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

ratio (CNR), flaw signal-to-noise ratio (FSNR), and speckle signal-to-noise ratio (SNR).

These image quality parameters are similar to those defined in [115]:

FSNR = (jl, - A ,) /V of+ff,2 , (5-4)

SNR = mJ<t.

where ps is the mean of the flaw data, pn is the mean of the noise outside of the flaw area,

an is the standard deviation of the noise outside of the flaw, and os is the standard

deviation of the flaw data. Table 5-1 and Table 5-2 show the results of these statistics for

Figure 5-1 and Figure 5-2 respectively. It can clearly be seen that the tomographic

frequency compounding technique significantly improves both quantitatively and

qualitatively the reconstructed images.

Table 5-1. Image Quality Parameters for Figure 5-1

Individual Frequency Imaces (kHz)

900 910 920 930 940 950 960 970 980 990

CNR
FSNR

SNR

-1.31
-1.06

5.95

-1.32
-1.06

6.11

-1.33
-1.05
6.44

-1.37
-1.06

6.86

-1.33
-1.01
7.12

-1.25
-0.94

7.34

-1.12
-0.87

6.04

-1.15
-0.88

6.28

-1.17
-0.90

6.50

-1.18
-0.91
6.62

Table 5-2. Image Quality Parameters for Figure 5-2

Compounded Images Average % Improvement
Mean Pi RMS Mean Pi RMS

CNR -1.52 -1.49 -1.54 17.56 16.14 18.49
FSNR -1.20 -1.19 -1.22 19.11 17.94 19.89
SNR 7.87 7.74 7.96 17.04 15.62 18.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

5.2 Multi-Mode Arrival Time Extraction Algorithms

Even with the improvements of frequency compounding, the quality of the

reconstructions that are generated by the guided wave tomographic systems are highly

dependent on the accuracy of the arrival time measurements. Hardware modifications

have been made to generate the cleanest signal possible (i.e. - a highly filtered signal

with a narrow bandwidth), but the software time extraction algorithms still have to be

robust enough to handle the noisy data that is inevitable in any real testing scenario. The

method currently used to extract the arrival times of the fastest Lamb wave modes is

based on enveloping the signal and is described below. It is a simple method, but it is

computationally inexpensive and has been shown to perform better than other more

complicated and time consuming time-ffequency methods [6].

When the sample is being scanned, each projection is digitized and stored for

subsequent data analysis. The waveforms are typically sampled at 50 or 25 MHz and are

approximately 60 ps in duration. They are usually gated in a manner that allows us to

store as little information as possible in order to save memory. For example, if a 20 cm x

20 cm area was scanned on a 3mm-thick aluminum plate at 1.2MHz, the waveforms

could be recorded from the 2000th sampled point (t = 40 ps) to the 5000th point (t = 100

ps).

The time extraction algorithm begins by finding the global maximum within the

recorded waveform. If at any point the waveform is truncated by the digitizer, then the

first occurrence of the truncation is marked as the global maximum. The algorithm then

iterates backwards and locates the local maximums for each wavelength. When it

reaches the beginning of the recorded signal an array has been created that stores the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

1500

Envelope
Points Threshold1000 -

Interpolation

500a9

1 1
c?
TS
3
Z.
E 500

1000

1500
14 34 44

Time, fis

Arrival Time

Figure 5-3. An example of the thresholding arrival time extraction algorithm. The Lamb
wave signal is enveloped by selecting the peak values for each wavelength (red dots).
Once enveloped, the first point that crosses the predetermined threshold value (dashed
line) is marked. A linear interpolation (blue dotted line) is then computed from the
adjacent envelope values to find the beginning of the envelope. This point along the time
axis is marked as the arrival time for the first mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

outline of the envelope for the signal (see Figure 5-3).

The algorithm then locates the first position where the envelope reaches a

particular amplitude threshold. This value is set above the noise of the signal to locate

the fastest arriving mode. It can also be set at a higher level to locate a later arriving

mode as long as the amplitudes of the faster modes remain below the threshold. This

latter feature has been advantageous for the initial HUT tests because it has allowed the

lower energy pipe modes that arrive first to be ignored. Once the location where the

envelope crosses the threshold is found, using the envelope values immediately preceding

and following it, the system interpolates backwards on a straight line to locate where in

time the envelope begins. The interpolation is necessary, because this front edge is often

masked by the noise present in the signal.

Figure 5-4 and Figure 5-5 show arrival time scatter plots for LWT and HUT

respectively. These types of plots have been found to be a very useful intermediate

representation of the tomographic data. For example, Figure 5-4 shows the arrival times

for a single parallel projection of a flawless aluminum plate in the LWT system. The x-

axis is called the pitch-catch, or waveform, number. In the LWT scanner, the transmit

transducer remains stationary while the receive transducer steps through the 100 scan

positions. Once the receive transducer has stepped through all the positions, the transmit

transducer steps a single position. The receive transducer then steps through its 100

positions in reverse until it reaches its original starting position. Again, the transmit

position steps once and the receive transducer then steps through all of its positions. This

process is repeated until the transmit transducer has stepped through all 100 positions.

Therefore, the pitch-catch number - or waveform number - is: (transmit_position-1)* 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

(0
ZL

<D
E

to
>

1 ; 11

* t t t t t t t t

Pitch-Catch #

10000

Figure 5-4. Arrival times for the first arriving mode in a clean aluminum sample with a
thickness of 3.17mm. For each transmit position, there are 100 receiver positions. The
pitch-catch position number is: (transmitter_position-1)* 100 + receiver_position. The
symmetrical pattern of the arrival times provide an intermediate representation to assess
the validity of the recorded data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

160

150- *

1°% 10000 20000 30000
Pitch-Catch Position Number

1601-----------------------------------1------------------------ -— i------------------------------- 1--------------------------------------1----------- —------------- 1—

$
150-

p II ii |! I; I a S s 5 5 5 s i S :i «1:? ;i g 8 *; II li S 3 S i! 1

100' 1 ' ' '------------- L— 10 1000 2000 3000 4000 5000
Pitch-Catch Position Number

Figure 5-5. HUT arrival times from a steel simulated gun barrel sample with an OD of
175 mm and a thickness of 20 mm. The top graph is for a full scan with 180 pitch and
180 catch positions. The bottom graph is just a zoomed in portion of the complete scan.
You can see the oscillatory nature of the arrival times. The pattern differs from the LWT
arrival time scatter plot because the “plate” is wrapped around itself in the case of the
HUT geometry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

+ receive_position. This also explains why the arrival times as a whole seem to decrease

and then increase again in a symmetrical pattern. This occurs as the transmit transducer

moves through all of its scanning positions. For a clean plate, this pattern should be very

symmetrical as shown. For HUT, the pattern is slightly different. The transducers step

through 180 positions (every 2 degrees) and since the first arriving mode only travels

180° around the pipe, the pattern is seen more as an up and down oscillation of the arrival

times. As with the velocity scatter plots shown earlier, flaws appear in these

representations as deviations from the symmetrical flawless patterns. This intermediate

representation allows us to make sure that the data was recorded properly and it also can

serve as a measure of the performance of different time extraction algorithms since errors

in the arrival times show up as extreme deviations from the expected pattern.

Even though the simple thresholding arrival time extraction algorithm is effective,

certain limitations still exist. For instance, if the amplitude of the mode of interest drops

below the threshold level - as it often does when interacting with a flaw - then the

extraction algorithm will pick up a later mode. In the case of HUT, the first arriving pipe

modes, which are not of interest in our tomographic measurements, may have a larger

amplitude than the true mode of interest. This also causes the current time extraction

scheme to provide incorrect arrival time values. Furthermore, it is incapable of providing

arrival time information for multiple modes. This limits the detection capability in the

pipe geometry to waves that only travel halfway around the pipe, thus further degrading

the image quality because of poorer wave vector coverage.

Many other methods have been explored by various authors to improve the

accuracy of the arrival times and to extract the time-of-flight information for multiple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

modes. Artificial neural networks (ANNs) were explored by this author [116] as a

method to locate the arrival times, but the particular backprojection training algorithm

used was unable to reliably pick out the first-arriving mode. It was found that the ANN

was effective in removing some of the systematic errors present in the arrival time data,

but that it was unable to recognize the arrival of the first mode. ANNs are extremely

useful for pattern recognition problems, but because of the dispersive nature of Lamb

waves (see Section 2.2.3), the mode shapes change and make it more difficult for them to

be recognized automatically.

Malyarenko [6] explored various time-frequency methods to try and improve the

arrival time extraction methods. However, Wigner-Ville distributions, short-time Fourier

transforms (STFT), and positive distributions did not sufficiently improve the accuracy of

the arrival times. Malyarenko suggested that wavelet time-scale analysis be explored in

future work.

5.2.1 Wavelet Analysis

Due to the suggestion of Malyarenko and recent work done by Hou et. al. [117,

118], wavelet analysis was explored here as a better solution to the current arrival time

extraction problem. Wavelets have become popular in many different types of signal and

image processing techniques. They are particularly advantageous for both the denoising

and compression of signals. For example, the FBI chose to use wavelets over STFT to

compress and transmit fingerprint data. The fingerprints can be compressed with

wavelets about 20-fold without any loss of information [119].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 2

The wavelet transform is different from other time-frequency techniques because

its basis functions - which are called wavelets - are local, finite signals. When using the

Fourier transform, signals are broken into a sum of sines and cosines and we gain

information about only the frequency content of the signal. To represent a local function

- one that vanishes outside a short interval of space or time - a global basis requires

extreme cancellations. Reasonable accuracy thus requires many terms in the Fourier

series. One solution to this problem is to use a windowed Fourier transform, also known

as the short-time Fourier transform. The STFT breaks the signal into time segments that

are transformed individually. However, the time window length is fixed, and this can be

a major drawback to the method. The STFT does not allow one to simultaneously look at

events that happen on different time scales.

In contrast, the wavelet transform has the ability to vary both the time window

and frequency, or scale, of its basis functions. Because the wavelet transform is just a

correlation between the signal and the set of wavelets, it allows the signal to be broken

down into a more natural representation. The variability of the wavelet basis functions

allows the signal to be broken into large time windows for low frequency components

and shorter time frames for higher frequencies. This ability is often referred to as a time-

scale analysis, as we will see below, and is a more natural way to look at things. In a

single decomposition one can look at both large and fine features.

The continuous wavelet transform is defined as:

where, g ab(t)= g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Wg(a,b) is defined as the wavelet coefficient for the translation b and the scale a. ga,b is

the scaling function which is calculated from the mother wavelet g(f). By varying the

translation and scale parameters, one can inspect the signal from different time and scale

representations. This flexibility is a great advantage over the traditional Fourier analysis

and STFT.

In our case, the signals being processed are discrete signals. The discrete wavelet

transform (DWT) implements the CWT for discrete signals. Conceptually, the DWT can

be viewed as a series of filters as in Figure 5-6. The input signal is broken down into a

low frequency approximation and a high frequency detail signal. The approximation

signal can then be broken down further through the same process. The result will be an

approximation signal with a number of detail signals. Each of the detail signals are a set

of wavelet transform coefficients at the next finer scale. Denoising and compression are

accomplished by setting a threshold value for the resulting coefficients. For most signals,

the majority of information is contained within only a few coefficients. Furthermore,

because the details are the high frequency components, by removing these coefficients,

one can also reduce the noise in the signal - which is often higher in frequency, smaller

in scale. This allows one to eliminate the noise, while keeping the information that is

desired.

5.2.2 Dynamic Wavelet Fingerprinting

Hou [117, 118] has shown that wavelet analysis can be used in the classification

of multi-mode signals. The wavelet fingerprinting technique Hou developed transforms

the one-dimensional signal identification problem into a two-dimensional image

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

s

Single Level
Decomposition

Lowpass Filter Highpass Filter

Multiple Level
Decomposition

Figure 5-6. The discrete wavelet transform can be seen as the signal being split into its
low frequency components - approximations - and its high frequency components -
details. Subsequent decompositions can be done on the resulting approximations, and
this further separates out the details of the signal from its approximation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recognition problem. The individual Lamb wave signals are converted into unique

fingerprint images through the wavelet transform. Once the wavelet coefficients have

been calculated using an appropriate wavelet, a slice projection operation is used to

project four equally-spaced slices of the wavelet coefficients onto the time-scale plane.

These wavelet fingerprints allow image matching techniques to be used to locate the

arrivals of the different modes. By identifying the feature of interest in these images that

relates to the arrival of a particular Lamb wave mode, classification algorithms can be

written to extract the time-of-flight data needed by the reconstruction algorithms.

Dynamic wavelet fingerprints (DWFPs) have shown success in identifying and separating

out multi-mode Lamb wave signals.

5.2.3 Sorting Algorithm

The work on DWFPs done by Hou was conducted in parallel to this research and

is reported elsewhere [117]. Therefore, in order to generate representative data, a less

sophisticated scheme was used to extract the arrival times for the multiple modes. The

method presented below uses a version of the DWT to generate smooth envelopes for the

Lamb wave signals. The peaks of these different envelopes are then used as the arrival

times of the multiple Lamb wave modes. One of the problems with the extraction of

multiple arrivals is that destructive interference between two modes may cause one of the

modes to seemingly disappear in the signal. Because the DWFP algorithm assumes that

the modes remain in the same arrival order throughout the scan, this causes an arrival

time that belongs in the second or third mode to actually appear in the first or second

mode series respectively. The goal of the sorting algorithm presented in this section is to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

try and counteract this problem by using the frequency walk information to sort the

arrival times into their correct mode series.

Ultimately, arrival time information is needed for the multiple guided wave

modes in order to improve the accuracy of the HUT technique. However, because of the

more complicated signals and geometry, preliminary work to solve this problem has been

done on plates. The plate samples do not have the added complexities of the

constructively and destructively interfering counter-helical modes and the existence of

non-helical pipe modes.

For the multi-mode analysis of the Lamb wave signals, it is useful to use wavelets

to both denoise and envelope the signal. As discussed above, the current time extraction

algorithm relies on the accurate enveloping of the signal. In the past this had been done

using the peak values of each wavelength. However, when trying to track more than the

just the first arriving mode, the unsmooth nature of this type of envelope made it difficult

to detect subsequent modes. Therefore, wavelets were used to simultaneously de-noise

and envelope the signal with a pruning procedure [120] based on the discrete stationary

wavelet transform [121],

Matlab™ was used to compute the wavelet transform of the Lamb wave signals

using an 8 level coiflet3 decomposition. Figure 5-7 graphically shows what the coifletS

wavelet looks like. The absolute value of each signal was decomposed using the

stationary wavelet transform. The first five levels of coefficients were zeroed and the

remaining levels were inverse transformed to provide the envelope values. The ability of

the wavelet transform to separate out the high frequency noise and oscillations of the

signal into the first 5 levels of detail is what makes this technique possible. Figure 5-8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Coiflet3 Scaling Function
1.5

1

0.5

0

-0.5

' 10 2 4 6 8 10 12 14 16

1

0.8

0.6

0.4

0.2

0
-0.2

-0.4

-0.6

- 0.8

' 10 2 4 6 8 10 12 14 16 11

Decomposition Low Pass Filter

A i A A

Coiflet3 Wavelet Function

~

I
I
i
i

Ij
p _
I

\ J*«} y

0 2 4 6 8 10 12 14 16

Decomposition High Pass Filter

© ̂!
j

° A (I ̂ "

'10 2 4 6 8 10 12 14 16 18

Figure 5-7. Illustration of coiflet3 wavelet and scaling functions. The low and high pass
filters for the coiflet3 wavelet are also shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

2500

2000

1500

1000

cd 500
X }

a.
< -500

-1000

-1500

-2000

-25« ; 119 159139
Time (ps)

2500

2000

1500

1000

500

CL

< -500

-1000

-1500

-2000

-25« 79 119 139 159
Time (|j s)

Figure 5-8. Typical Lamb wave signal demonstrating the difference between the
wavelength peak enveloping (top graph) and wavelet enveloping (bottom graph)
techniques. Notice that the wavelet envelopes are smoother and do not enhance some of
the subtle peaks that are due to interference or signal variation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

shows a typical signal and compares the peak enveloping and wavelet enveloping

techniques. It can be seen that the wavelet enveloping technique provides a smoother

envelope and identifies fewer “false peaks”.

The wavelet enveloping allows us to extract the arrival times of the envelope

peaks after the first arriving mode. Figure 5-9 shows the arrival times for the first three

peaks for the first transmitter position in a scan of a clean aluminum plate at 920 kHz. It

can be seen that the first peak’s arrival time is extracted cleanly, but that the subsequent

peaks are often scattered. The uncertainty in the arrival times of the later arriving peaks

arises from constructive and destructive interference between dispersive modes. As was

shown earlier, the individual modes spread as they propagate and they do not retain their

initial pulse shape. This is intentional because dispersion is being used to provide

sensitivity to thickness changes.

In Figure 5-9 it can also be seen that at receiver position #61 the second arrival

jumps to the curve where the third arrival had been appearing. Because this is a clean

sample, this is not due to a flaw, but rather to the disappearance of the second peak in the

enveloped signal due to interference between modes. Figure 5-10 shows the signal

envelopes and waveforms from receiver positions 55 to 62. This sequence highlights

how the envelope peaks combine. The disappearance of the peak is less of an issue than

the intermixing of the mode series. In order to generate a tomographic image from the

later arriving mode arrival times, they need to be separated from each other. However,

this problem becomes nontrivial because the data series jump between modes as certain

modes interfere with each other.

To gain more information, at each pitch-catch position the frequency was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

QO------------------ 1------------------ 1------------------ 1------------------ 1------------------
0 20 40 60 80 100

Receiver Position Number for First Transmit Position

Figure 5-9. Arrival times for the first three peaks of the Lamb wave signals recorded in a
tomographic scan of a clean aluminum plate. Only the arrivals for the first transmit
position are shown. Notice that the first arrival is very clean, while subsequent arrivals
are more scattered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

"O

Q.

63 7139 47 55
Time (p s)

200C
-200C

200C
-200t
200C

-200c
■D200C
%200l
E200C
< f

-200c
200

-2 i

200
- 200 '

200 '

-200!

000
000

T“
T

j — — — — —
1 ‘ *

....... I 1
1

1 “ > >•........................ 3

i -

i -

_______________________I_______________l__________1....... J

39 47 63 7155
Time (ps)

Figure 5-10. The envelopes and waveforms of the recorded Lamb wave signals in the
clean aluminum plate sample for receiver positions 55-62 (top to bottom). As the second
and third wave packets interfere, the second peak disappears while the third peak
increases in amplitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3k -Frequency 9̂ Qnn
(kHz) yuu

20 40 60
Receiver Position Number

Frequency g20900
(kHz)

20 40 60
Receiver Position Number

100

Figure 5-11. Frequency walk surface plots for the arrival times of the first transmit
position in a scan of a clean aluminum plate. Times recorded for ten evenly spaced
frequencies between 900 and 990 kHz. (a) Arrival times for the first peak, (b) Arrival
times for the second peak.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

incremented at equally spaced intervals. The frequency walking technique provides an

extra dimension in order to solve the arrival time sorting problem Figure 5-11 shows the

same arrival times as in Figure 5-9, but separates them by mode and has the additional

frequency walk information. The first mode is a smooth distribution between the

different frequencies and the arrival times can be seen to generally get later as the

frequency increases. The second peak’s arrival time can again be seen to jump from a

time consistent with the second mode to one consistent with the third mode at about

receiver position #61. It can then be seen to oscillate between the two values for a

period.

For the clean plate, the arrival times can be sorted into their correct series by

fitting the individual series with a 3rd-order polynomial fit. This provides a guess for

where the missing points should lie and provides a measure to determine whether a mode

has been missed. Figure 5-12 shows the arrival times for the first three envelope peaks

and the polynomial fit for each data series. It can be seen that the polynomial fit

effectively estimates where the mode should be and also shows how at receiver position

#61, the second recorded peak arrival is actually the arrival time for the third mode.

Figure 5-13 shows how the polynomial fit performs for a complete projection and

different zoomed-in portions of the scan.

In order to use the polynomial fit to sort the arrival times into their appropriate

mode numbers, we compare the times to the fitted mode curves. For the clean plate, the

arrival times are sorted into the series that corresponds to the fitted curve that they are

closest to. If a particular mode is not present, we store the fitted value at that waveform

number into the arrival time data. Figure 5-14 shows the same data as in Figure 5-12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

120r

110

'ST 100

6 0 1 ■ 1 • ■-------------------
0 20 40 60 80 100

Receiver Position #

Figure 5-12. Arrival times for the first three peaks of a clean aluminum plate at the first ,
100 receiver positions (blue - peak 1; red - peak 2; purple - peak 3). The solid lines are
the fitted mode predictions (green - mode 1; light blue - mode 2; yellow - mode 3). It
can be seen that using a polynomial fit on the raw data provides an effective estimation of
where the mode should arrive. It is also apparent that starting at position #61, the second
peak arrives closer to the expected arrival of mode 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

120

2000 / 4000 6000 \ 8000

/ Pitch-Catch Position # \
10000

-Vf W # ¥»-# **> a* % '{ *4*-
I v j V , v ! V , fj* v vf t %' ,1 v*

A A (I A l\ f\ A A Jv V v v y V V V v v

Pitch-Catch Position # Pitch-Catch Position #

Figure 5-13. Arrival time plots for the first three peaks (dots) and predicted mode
arrivals (solid lines) for a complete tomographic projection. The zoomed-in portions
show how the arrival times change in a symmetrical pattern and how the fitted mode
curves follow the peak arrivals for the entire scan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

120

110

100
Receiver Postion #

Figure 5-14. Sorted arrival times (points) for the first three modes of the clean plate data
shown in Figure 5-12. The original arrival times (peak 1 - green line; peak 2 - turquoise
line; peak 3 - yellow line) are shown for comparison. It can be seen that the algorithm
successfully sorts the different peaks into their correct data series.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

after being sorted. It can be seen that the points that jumped from mode two to mode

three in the second series are now correctly sorted into the series that represent their

mode number. Now that we have sorted some of the points, we can refit the mode data

and sort again to further improve the arrival times for the clean sample.

The sorting algorithm compared to both the theoretical and predicted arrival times

reduced the mean square error (MSE) of the measurement. The MSE for the unsorted

arrival times compared to theoretical arrival times was 3.01ps, 6.32 ps, and 8.26 ps for

the first three modes respectively. After sorting, the MSE was reduced to 3.01 ps, 5.77

ps, and 7.47 ps. Part of the large discrepancy between the theoretical and experimental

arrival times of the modes is due to how the times were extracted. The arrival times are

determined by the location of the envelope’s peak. Dispersion of the mode shapes due to

the bandwidth of the input signal can cause variations in the peak arrival. A more

effective measure of arrival times has been found to be the location of the front of the

envelope [6]. However, for later arriving modes, this position is hard to obtain. In

contrast, the MSE between the unsorted arrival times and the predicted arrivals (the fitted

data) was 0.24 ps, 2.24 ps, and 3.48 ps for the first three modes and for the sorted times,

the MSE was 0.24 ps, 1.47 ps, and 1.71 ps. Figure 5-15, Figure 5-16, and Figure 5-17

show the arrival time scatter plots before and after the sorting algorithm was applied for

the first three modes. As expected, the first arrival time is fairly accurate and is not

affected by the sorting algorithm. These figures show that for the first projection of the

clean plate scan the second and third modes are both improved by the sorting algorithm.

The previous algorithm works well for a clean sample, but will blur actual flaws

in the tomographic reconstructions because it assumes that any deviation from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

600 2000 4000 6000 8000 10000
Prtch-C atch #

901----------------------.-----------------------.----------------------,----------------------,-----------------------

*0 2000 4000 6000 8000 10000

Pitch-C atch #

90

600 2000 4000 6000 8000 10000
Pitch-C atch #

Figure 5-15. Arrival time scatter plots for the first mode in projection #1 of a clean
aluminum plate, (a) Raw data of the first envelope peak arrival, (b) Theoretical data for
first arriving mode Ai - 3.25 mm/ps. (c) Sorted data for the first arriving mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2000 4000 6000 8000 10000
Pitch-Catch #

>002000 4000 6000
Pitch-C atch #

2000 4000 6000

Pitch-C atch #
8000 10000

Figure 5-16. Arrival time scatter plots for the second mode in projection #1 of a clean
aluminum plate, (a) Raw data of the second envelope peak arrival, (b) Theoretical data
for second mode Aq - 3.14 mm/ps. (c) Sorted arrival times for the second mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

120 p
115 t

110J .
i :

650 2000 4000 6000 8000 10000
Pitch-C atch #

1201 , . , ,--------------
115-

1 1 0 -

105

“ 100 i

g g i________________________ I________________________ I--------------------------------------I— J------------------------------- 1
0 2000 4000 6000 8000 10000

Pitch-Catch #

1201 . . . ,-------------
115

1 1 0 -

70

6 5 1 1 1 1--------------------
0 2000 4000 6000 8000 10000

Pitch-C atch #

Figure 5-17. Arrival time scatter plots for the third mode in projection #1 of a clean
aluminum plate, (a) Raw data of the third envelope peak arrival, (b) Theoretical data
for third mode So - 2.85 mm/ps. (c) Sorted arrival times for the third mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Sorted Data

Mode 1

Mode 2

Mode 3

Figure 5-18. Reconstructions for a flat bottomed hole in a 3.17mm thick aluminum plate
50% thickness loss within the flaw (Plate #1 in the blind study test). Left column is for
the unsorted envelope arrival times. The right column shows the reconstructions of the
sample after the mode data was sorted with only the first order comparison to the fitted
mode curves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

predicted curves are due to interference. Figure 5-18 shows reconstructions for a sample

with a flat bottomed hole (this was the same sample as Plate #1 from the blind study tests

- see Section 3.4.3). The images show results for the first three modes both with and

without applying the mode sorting algorithm. The contrast between the flawed area and

the outlying regions is a lot poorer after the data has been sorted. This occurs because the

flaws are seen as deviations of the arrival times from the expected arrivals and thus are

sorted to a different series and replaced with the expected times. To extend the

usefulness of the sorting algorithm to flawed samples, more information is needed to

determine whether the individual arrival times are due to a flaw, a missed mode, or a bad

data point resulting from poor coupling or digitization.

As mentioned above, the first arrival is accurately detected and is not affected by

the clean plate sorting algorithm. Therefore, we can use the first arrival as a measure to

see whether the subsequent arrivals can be seen as “clean” arrivals or need to be handled

as “potential flaw” arrivals. Figure 5-19(a) shows the first 100 points of projection #1 for

the flat bottomed hole sample. From the geometry of this sample and the scanner, the

Lamb wave data should begin to interact with the flaw around receiver position #55 for

the first transmit position. The arrival time plot shows how the first mode speeds up as it

interacts with the flaw. It also should be noted that the second arrival also speeds up and

arrives where the first mode would be located on a clean sample. This causes the sorting

algorithm to choose the second arrival time as the first mode and thus discounts the actual

“flaw” arrivals. In Figure 5-19(b) the deviations for the arrival times in the flawed

sample are also shown. It can be seen that at position #55 - where the Lamb wave data

begins to interact with the flaw - the deviation in the measurement from the fitted data is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

85

80

75

70

65

60, 1006020
Receiver Position Number

20 40 60 80 100

Receiver Position Number

Figure 5-19. (a) The first peak’s arrival times for the first 100 points of projection #1 for
the flat bottomed hole sample (red line is the polynomial fit of the arrival times for the
first mode), (b) Deviations of the arrival times from the polynomial fit. Notice that a
deviation threshold of 1.5 ps can be used to differentiate between the flawed and
unflawed regions of the plate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Receiver Position #

Receiver Position #

Figure 5-20. (a) Frequency walk data for the first 100 arrivals of the first arriving mode
in the flat bottomed hole sample, (b) Arrival times for the “flawed” region between
receiver positions #55 and #80.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

greater than 1.5 ps. Therefore, in order to delineate the suspected “clean” arrivals from

suspected “flaw” arrivals, a deviation of 1.5 ps from the expected arrival was used as a

threshold level.

Once the arrival times are able to be separated, it is still necessary to determine

which mode they belong to and whether they are actual arrivals or erroneous data points.

Figure 5-20(a) shows the first 100 points of the frequency walk data for the first mode’s

arrival time in the same flat-bottomed hole sample as above. Some frequencies interact

with the flaw before the other frequencies. Also, due to coupling, mode interference, or

other factors, in the middle of the flawed area the first arriving peak in the higher

frequencies can be seen to jump from the first mode to the second mode. Thus, even

within the suspected flaw regions the data needs to be sorted so that the correct arrivals

are included in the correct mode series.

The frequency walk data actually provides enough information to determine

which mode series the arrival times should belong to. Figure 5-21(a) is a plot of the first

three arrival times versus frequency number for pitch-catch position #65 (where the first

peak’s arrival for the higher frequencies seems to jump to the second mode). From this

graph it is seen that the first arrival for the higher frequencies, along with the second

arrival for the lower frequencies, form a line. This shows that something is occurring to

mask the first mode arrival and that the higher frequencies are actually locating the

second mode as the first arriving peak. In the same way, Figure 5-21(b) shows a similar

plot for waveform #598 (the 98th receive position for the 5th transmitter position) in the

flawed sample. In this graph, it can be seen that the first arrival for 900 kHz was missed.

Therefore, the first arrival will have been marked as a potential flaw area by the sorting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

100

co 85
a)
E
i-
ro
■g
<

Peak 1
Peak 2
Peak 3

38.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Frequency (MHz)

90

85

_ 80

3
CD '

p 75

^ 70

65

• Peak 1
► Peak 2
*■ Peak 3

68.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Frequency (MHz)

Figure 5-21. (a) Arrival time vs. frequency for the first three envelope peaks in signal
#65. This waveform was chosen because it interacts with the flaw and an anomaly was
seen in the frequency walk data in Figure 5-20. (b) Arrival time vs. frequency for signal
#598 where only the first frequency missed the first arriving mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

algorithm. However, the frequency data shows that the first arrival actually belongs with

the second mode and can be resorted without affecting the resulting reconstruction.

Therefore, using both the predicted mode curves and the frequency data, the multiple

peak arrival times can be sorted into the correct mode series both inside and outside a

flawed region. First, each of the original peak arrival series is fitted with a third-order

polynomial. Then each arrival time is compared with these expected mode arrivals. If

the deviation between the actual arrival and the expected arrival is greater than 1.5 ps,

then the data point is marked as a potential flaw area. After all the arrivals of each

frequency scan have been marked, the predicted mode values are updated by fitting only

the arrivals which were not marked as a potential flaw. The non-flaw points are then

sorted by the same algorithm used above to sort the clean plate arrivals. Finally, the flaw

points are sorted using the frequency walk data. By sorting the frequency data into linear

series as in Figure 5-21, the arrival times within a flaw region can be sorted to the correct

mode series.

Figure 5-22 shows the results of the sorting algorithm for the frequency walk data

of the first 100 pitch-catch positions on the flat-bottomed hole sample. Figure 5-23 also

shows the effects of the sorting algorithm on the tomographic reconstructions of the flat

bottomed hole sample for the first three modes. These reconstructions are for only the

two parallel crosshole projections as opposed to the full six projections in multiple

crosshole tomography so there are some unavoidable artifacts in the reconstructed

images. The goal of the sorting algorithm is to improve the multi-mode extraction for the

single parallel crosshole pipe geometry, so we focused only on the parallel crosshole

projections. It can be seen that the flaws are more accurately sized by the sorted data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

5> 80

< 70

60
100

n----------------7“--------— ~r
60 40 20

Receiver Position #
900 Frecl-

0 (kHz)

® 80

- * ■ ■>. • '
k ■■ ; . .■r:,v ■/.' •*. .'* f *. ■ ■» < 1 ■ j-

< 70

900 Freq.~7----------------7“--------------r
60 40 20

Receiver Position # (kHz)

Figure 5-22. Comparison of frequency walk data for the first arriving mode before
sorting (top) and after sorting (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Figure 5-23. Tomographic reconstructions for the first three modes of a 3.17 mm thick
plate sample with a 2.2” diameter flat bottomed hole. Thickness loss within the flaw was
50%. (a) Mode 1, unsorted, (b) Mode 1, sorted, (c) Mode 2, unsorted, (d) Mode 2,
sorted, (e) Mode 3, unsorted, (f) Mode 3, sorted. The dashed line in each reconstruction
represents the actual location and size of the flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

£ 4.5£

o<D
>

Z5o

. a i
!
;

> f'
i A \
\ 1

. %,!

! IV
lh~̂ \ n

. Ajjj y W J
I

1
80 120

Distance (mm)

Distance (mm)

o 3.5

A,**

5.5

' 5

4.5

' 4

3.5

3

2.5

120

Distance (mm)

11
II

Ah r v y wr
LA!

80 120

Distance (mm)

A i\A
A hfij \i ! / U I S ‘"Hi/ 1 ' 1/ Ur- far—V / \ i \ J \ N / \

V \ / ^

80 120

Distance (mm) Distance (mm)

Figure 5-24. Velocity line plots for the first three modes of a vertical line through the
center of the flat-bottomed hole. The dashed line represents the theoretical mode velocity
for the measured firequency-thickness product. The red portion highlights the flawed
region, (a) Mode 1, unsorted, (b) Mode 1, sorted, (c) Mode 2, unsorted, (d) Mode 2,
sorted, (e) Mode 3, unsorted, (f) Mode 3, sorted. The second mode, Aq, is not dispersive
and the velocity does not change much in and out of the flawed region. The/if product
within the flaw is also below the cutoff frequency for the third mode so its velocity in the
flawed region should be zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

than the unsorted mode data. This is also illustrated in Figure 5-24 where a velocity line

plot is given for a vertical line that runs through the center of the flaw. The dashed lines

in Figure 5-24 represent the theoretical velocities for the measured frequency-thickness

(fd) product both within and outside of the flaw. The second arriving mode, Ao, is not

very dispersive and thus its theoretical velocity does not change much within the flaw.

However, the reconstructed data shows a higher velocity within the flaw. This is most

likely due to mode conversion and scattering at the flaw. Similarly, the-fd product within

the flaw is also below the cutoff frequency of the third mode, Aj. Again, the velocity

profile most likely shows a non-zero value because of mode conversion, scattering, and

beam spreading.

Similar results have been found for other flawed samples. Figure 5-25 shows the

reconstructions for the first 3 modes of a sample with a gradually dished out flat-

bottomed hole the same diameter as the flat bottomed hole sample above (Plate #5 from

blind study). The maximum thickness loss at the center of this flaw was 60%. The

plate’s thickness was again 3.17 mm. In addition, Figure 5-26 shows the same type of

reconstructions for a sample with a 54 mm x 30 mm thinned rectangular region with

rounded corners (Plate #6). This flaw was more difficult to detect because the thinned

area was only a 10% thickness loss. Finally, Figure 5-27 shows a 2” flat-bottomed hole

with a 12% thickness loss (Plate #9). It can be seen for this subtle flaw that the sorting

algorithm improved the overall shape of the flaw for the first mode.

In order to quantitatively analyze the effectiveness of the sorting algorithm in

improving the reconstructed images, the same image quality parameters used with

frequency compounding - CNR, FSNR, and SNR - were applied to the sorted images.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

a""- • - g J ib

Figure 5-25. Tomographic reconstructions for the first three modes of a 3.17 mm thick
plate sample with a 2.2” diameter successively dished-out flat bottomed hole. Maximum
thickness loss within the center of the flaw was 60%. (a) Mode 1, unsorted, (b) Mode 1,
sorted, (c) Mode 2, unsorted, (d) Mode 2, sorted, (e) Mode 3, unsorted, (f) Mode 3,
sorted. The dashed line in each reconstruction represents the actual location and size of
the flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

C t a

Figure 5-26. Tomographic reconstructions for the first three modes of a 3.17 mm thick
plate sample with a 54 mm x 30 mm rectangular thinned region with rounded corners.
Thickness loss was only 10%.within the flaw, (a) Mode 1, unsorted, (b) Mode 1, sorted,
(c) Mode 2, unsorted, (d) Mode 2, sorted, (e) Mode 3, unsorted, (f) Mode 3, sorted.
The dashed line in each reconstruction represents the actual location and size of the flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Figure 5-27. Tomographic reconstructions for the first three modes of a 3.17 mm thick
plate sample with a 5 lmm diameter circular flat-bottomed hole. Thickness loss was only
12%.within the flaw, (a) Mode 1, unsorted, (b) Mode 1, sorted, (c) Mode 2, unsorted,
(d) Mode 2, sorted, (e) Mode 3, unsorted, (f) Mode 3, sorted. The dashed line in each
reconstruction represents the actual location and size of the flaw.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Table 5-3. Image Quality Parameters for the four flawed samples. (Plate 1 - Flat
bottomed hole; Plate 2 - Successively dished out flat bottomed hole; Plate 3 -
Rectangular thinning with rounded corners; Plate 4 - Thin flat bottomed hole, 2”
diameter)

Unsorted Plate 1 - 900 kHz Sorted Plate 1 - 900 kHz % Difference
Model Mode2 Mode3 Model Mode2 ModeS 1 2 3

CNR 2.56 1.80 1.36 2.85 2.36 1.85 11 31 36
FSNR 0.76 0.70 0.65 0.89 0.80 0.82 16 14 26
SNR 14.28 7.25 6.35 15.27 8.30 7.06 7 14 11

Unsorted Plate 2 - 900 kHz Sorted Plate 2 - 900 kHz % Difference
Model Mode2 Mode3 Model Mode2 Mode3 1 2 3

CNR -0.60 -0.34 -0.09 -0.72 -0.42 -0.10 19 23 4
FSNR -0.24 -0.19 -0.06 -0.28 -0.21 -0.05 18 10 -11
SNR 10.35 7.51 6.29 10.05 9.06 8.57 -3 21 36

Unsorted Plate 3 - 900 kHz Sorted Plate 3 - 900 kHz % Difference
Model Mode2 Mode3 Model Mode2 Mode3 1 2 3

CNR 0.79 0.52 0.32 0.71 0.63 0.42 -9 22 30
FSNR 0.63 0.39 0.25 0.58 0.51 0.33 -9 29 30
SNR 20.71 9.20 7.33 20.20 10.04 8.41 -2 9 15

Unsortec Plate 4 - 900 kHz Sorted Plate 4 - 900 kHz % Difference
Model Mode2 Mode3 Model Mode2 ModeS 1 2 3

CNR 1.44 0.84 0.57 1.20 0.84 0.77 -17 0 35
FSNR 1.13 0.64 0.44 0.92 0.65 0.59 -19 2 34
SNR 18.6 7.94 6.67 16.93 5.57 6.10 -9 -30 -9

Table 5-3 summarizes their results. It can be seen that the sorting algorithm does

improve the overall image quality of the individual modes for each sample. From this

data it can be seen that the sorting algorithm improves the contrast-to-noise ratio of the

flaw for the second two modes the best. In terms of the contrast-to-noise ratio, only the

first mode’s reconstruction for the subtle rectangular thinning was not improved after the

data was sorted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

5.3 Discussion

In this chapter, two new methods were presented to attempt to improve the

tomographic reconstructions for LWT and HUT. Tomographic frequency compounding

was shown to greatly reduce the noise in reconstructions from a thick walled pipe sample

with a flaw on the ID. It also enhanced the contrast between the flawed and unflawed

areas. This ultimately can enable better automatic flaw recognition. In addition, it also

demonstrated that even without knowing a priori what frequency is best for the scanning

geometry, that representative reconstructions of high quality can still be made. This is

especially advantageous for the general use of this technique for rapid scanning of piping

systems.

Mode sorting was introduced in order to improve the arrival time extraction of

multi-mode guided wave signals. The method was demonstrated on plate samples with

different flaws and was shown to improve the accuracy of the reconstructions. Because

this work was done in parallel with [117], only a limited amount of data was available for

comparison. However, as can be seen from Figure 5-28, the sorting algorithm improves

the multi-mode arrivals and resulting reconstructions for the arrival times extracted using

the dynamic wavelet fingerprinting technique.

Ultimately, it is desired to locate the modes that travel around the pipe multiple

times. This work, along with [117], have laid the groundwork for this to be done. The

simple peak detection algorithm used to generate the multi-mode arrivals in this chapter

did not provide accurate enough arrival times from the more complicated pipe signals for

the sorting algorithm to work. However, the DWFP technique has the capability to

extract these more accurate arrivals and to ignore the unwanted pipe modes that exist in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

the signal. Combined, the two techniques have the potential to lead to even better

reconstructions that accurately locate and size flaws in both pipes and plates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Figure 5-28. Comparison of DWFP time extraction before sorting (top) and after sorting
(bottom). Reconstructions are of the flat bottomed hole sample at 990 kHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

The main motivation of this work was to extend the current Lamb wave

tomographic scanning system to pipe-like geometries. Ultrasonic guided waves can

interrogate large areas quickly and quantitatively. Furthermore, because their

propagation involves the entire thickness of the structure, they can be used to inspect hard

to reach or inaccessible areas. Pipes are often placed underground or covered by

insulation, but ultrasonic guided waves provide an efficient means to inspect these

structures quickly and cost effectively without excavating or removing insulation.

However, extracting the necessary information from the guided wave signals and

rendering it in an effective manner can often be complicated.

Helical Ultrasound Tomography (HUT) was shown to be an effective solution to

this problem. By adapting the Lamb wave tomography (LWT) system used to inspect

plate-like structures, a scanning system was developed that was able to inspect cylindrical

structures. Furthermore, the tomographic imaging techniques provide an effective way to

render the ultrasonic data. The images provide a false-color image of the inspected area

and flaws can readily be located and sized.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Initial tests were performed on a steel pipe segment with different sized flaws

machined on the outside of the structure. As the flaw was enlarged on the sample, the

resulting reconstructions effectively showed the changes in the sample. In addition, it

was seen that the single crosshole geometry seemed to exaggerate the flaw size slightly

because of the ineffective ray vector coverage. The reconstructions also showed artifacts

around the edge of the flaws that were due to scattering. Overall the technique was

proven to be useful for locating and sizing flaws in pipe-like structures.

In addition to the initial steel pipe segment with a flaw on the outside diameter, a

thicker steel pipe with a flaw on the inner diameter was also scanned. This sample

showed that the HUT technique is capable of detecting flaws on the inside diameter when

only the outside circumference can be accessed. Furthermore, a tomographic frequency

compounding technique was introduced that provides clearer reconstructions. This is an

added benefit for the HUT technique because it smoothes out some of the noise and

artifacts that appear in the HUT reconstructions due to the more complicated cylindrical

geometry as compared to the plate geometry of LWT.

In addition to the HUT technique, another tomographic geometry capable of

scanning cylindrical pipes and tanks was introduced. Instead of using two

circumferential transducer array belts, Meridional Ultrasound Tomography (MUT) uses a

linear array of transducers along the axis of the cylinder. This enables a different

inspection geometry and is useful if the entire circumference is not accessible. One

immediate application for the MUT technique is for the inspection of large, stacked

depleted uranium hexafluoride storage tanks. Because the tanks are stacked on top of one

another, the only accessible area is an axial line along the top of the tank.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Through tests on an aluminum pipe, it was shown that MUT can be used to image

corrosion and other flaws on the inner diameter. Unlike HUT and LWT, which used

arrival time data, MUT used attenuation data as an input to the tomographic

reconstruction algorithms. Since the mode of interest was not the first arriving mode, the

existing arrival time extraction algorithms were unable to reliably measure its time-of-

flight. However, by gating the signal around the mode of interest, and smoothing the

amplitude data, tomographic images were obtained that reliably showed the presence of a

flaw.

These initial experiences with both HUT and MUT demonstrated the need for

improved reconstruction and data analysis. In both cases the cylindrical geometry

eliminates the added scanning orientations available in LWT. In other words, the

technique is limited to only the single crosshole geometry. However, because the pipe

can be viewed as a plate wrapped around upon itself, waves that travel multiple times

around the structure can be used to provide the additional information from different

orientations needed to generate more accurate reconstructions.

Furthermore, as the LWT blind test results demonstrated, certain reconstructions

did not represent the flaws accurately and some flaws weren’t able to be detected. Since

the LWT technique only relies on the arrival time of the first mode, its detection

capabilities are limited. Different modes have different displacement properties and are

thus able to detect different types and locations of flaws. If the arrival times for more

than just the first arriving mode can be extracted, then more information can be provided

to the tomographic algorithms to improve the resulting reconstructions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

For this reason, the balance of this work focused on developing an improved time

extraction algorithm capable of detecting multiple modes within the guided wave signal.

Dynamic wavelet fingerprinting has shown promise for being able to separate out these

different mode arrivals. Therefore, a sorting algorithm was developed that uses multiple

frequency scans to better determine which mode individual arrivals belong to. Due to

dispersion and interference between modes, information can be lost in the signal. The

DWFP algorithm assumes that each of the modes arrives in the same order, but it was

shown that this is not always the case. The mode sorting algorithm introduced in this

work successfully demonstrated that the arrivals can be sorted to their correct mode series

and that this improves the overall quality of the tomographic reconstructions.

The sorting algorithm was demonstrated on four of the plate samples from the

blind study test. It was seen that after sorting the arrival times, the reconstructions did a

better job of sizing the flaws. Another result from these tests was that after sorting, the

tomographic data better represented the actual velocity data within the flawed area for the

first mode. The deeper flaws showed up better in the reconstructions, but scattering from

the edges of the flaw caused the reconstructed mode velocities within the flaw to be less

accurate for the later modes. In contrast, the sorting algorithm improved the quantitative

accuracy - both in size and velocity reconstruction - for the subtle flaws, but the actual

reconstructed images for the second and third modes did not highlight the flaw as well.

However, this demonstrates the validity of the statement that the individual modes will

interact with the flaws differently. The second mode is non-dispersive around the

ffequency-thickness product that we are operating and thus we would not expect to see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

the flaw in these reconstructions anyway. The fact that the flaw is seen in the

reconstructed images and velocity data is because of scattering and mode conversion.

Ultimately, our goal is to extract the arrival times of the modes that travel around

the pipe multiple times. Future work needs to pursue the application of the sorting and

frequency compounding algorithms combined with the DWFP technique to HUT. In

order for the steeper helical arrivals to be obtained, a systematic study needs to be

conducted on pipe data in order to obtain the correct fingerprint patterns for the different

arrivals. Furthermore, as suggested by Hou [117], different wavelets need to be studied

to determine which basis is best to solve this problem.

Finally, a systematic theoretical and experimental study of a representative flaw

would be extremely beneficial. Since the calculations of the theoretical arrival times of

the various modes in a flawed sample are nontrivial, it is hard to provide an accurate

measure of the success of the multi-mode extraction algorithms. If a systematic study

was done with a simple type of flaw that was slowly enlarged, both theoretical

simulations - such as FEM, BEM, FDTD, etc. - and experimental data could be

collected. This would allow for a comparison of the DWFP and sorting algorithms to

theoretical data and would provide a clearer understanding of how the individual guided

wave modes interact with a characteristic flaw.

Helical ultrasound tomography and meridional ultrasound tomography have been

shown to be effective ways to inspect cylindrical structures. Furthermore, image and

signal processing techniques such as frequency compounding and mode sorting have

been shown to improve the resulting tomographic images. These images demonstrate the

existence of flaws in various materials and they can be used to accurately size and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

determine the severity of the flaws. In the future, these techniques will also be the basis

for a more sophisticated analysis of the cylindrical geometries that will allow even more

accurate reconstructions to be produced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Source Code for the Numerical Solution of the Lamb Wave
Dispersion Relations

l a m b l ib .h ***********/

#ifdef LAMB LIB

//LAMBLIB should be defined in all of the DLL's source code
//files before this header file is included.

//All functions/variables are being exported.

#else

//This header file is included by the EXE source code
//files.

//Indicate that all functions/variables are being imported.
#define LAMBLIB declspec(dllimport)

#endif

1 % ̂ sjs ̂ # >jc s{c >je ijs 5̂ % ^ ^ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

Define any data structures and symbols here.
^ ̂ ^ ^ ^ ^ ̂ ̂ kj* ^ ^ j

typedef struct FCOMPLEX { double r, i; } fcomplex;
typedef vector<double> doubles;

 ̂ ̂ ̂̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂ ̂
Define exported variables here: (Note: Avoid exporting
variables if possible)

r{C r|« rji ̂ ̂ ̂ ̂ ̂ ^ «{« ̂ ^ ^ ̂ ^ ̂ ̂ ^ ̂ jJj ^ ^ ̂ j

//None

End exported variables.
j|C 5fC 5jC 5̂C ^ ̂ ^ sjc 5̂» 5jC 5(C ̂ ?jC -ji -Jc ?fc 5jC jjt 5jc ̂ 5{C j|C jji ^ ̂ ^ ̂ j

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

Define exported function prototypes here:

//Definitions for file Complex.cpp
LAMBLIB fcomplex complex_sqrt(double a);
LAMBLIB fcomplex complex_sin(fcomplex a);
LAMBLIB fcomplex complex_cos(fcomplex a);
LAMBLIB fcomplex Caddffcomplex a, fcomplex b);
LAMBLIB fcomplex Csub(fcomplex a, fcomplex b);
LAMBLIB fcomplex Cmulffcomplex a, fcomplex b);
LAMBLIB fcomplex Complex(double re, double im);
LAMBLIB fcomplex Conjgffcomplex z);
LAMBLIB fcomplex Cdivffcomplex a, fcomplex b);
LAMBLIB double Cabs(fcomplex z);
LAMBLIB fcomplex Csqrtffcomplex z);
LAMBLIB fcomplex RCmul(double x, fcomplex a);
//end Complex.cpp

//Definitions for file EvalLambEqn.cppp
LAMBLIB double EvalEqnJV(double ffeq, double Vph, double cL, double cT,

double halfjhick, int type);
LAMBLIB double EvalEqnfdouble ffeq, double k, double cL, double cT,

double halfjhick, int type);
LAMBLIB double SymEqnfdouble ffeq, double k, double cL, double cT,

double halfjhick);
LAMBLIB double AsymEqnfdouble ffeq, double k, double cL, double cT,

double halfjhick);
//end EvalLambEqn.cppp

//Definitions for file MinimumSweep.cpp
LAMBLIB vector<doubles> EvalSweep(double ffeql, double Vphl, double freq2,

double Vph2, double ffeq_step, double cL,
double cT, double halfjhick, int type);

LAMBLIB vector<doubles> FindSweepMins(vector<doubles> eval_vector);
LAMBLIB vector<doubles> FindMinRoots(vector<doubles> min_vector, double cL,

double cT, double step_size, double
tolerance, double halfjhick, int type);

LAMBLIB vector<doubles> MinimumSweepfdouble ffeql, double Vphl, double ffeq2,
double Vph2, double ffeq_step, double cL,
double cT, double halfjhick, double
type);

//end MinimumSweep.cpp

//Definitions for file Trace.cpp
LAMBLIB vector<double> GetRoot_vf(double ffeq, double Vph, double cL, double cT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

double step_size, double tolerance,
double halfjhick, double type);

LAMBLIB vector<double> GetRoot_fk(double freq, double k, double cL, double cT,
step_size, double k_step_size, double tolerance,
double halfjhick, double type, double
percentage);

LAMBLIB vector<doubles> TraceModeBack(vector<doubles> curve, double
k_step_size, double f_step_size, double
cL, double cT, double halfjhick, int type,
double tolerance);

LAMBLIB vector<doubles> TraceMode(double freql, double Vph, double k_step_size,
f_step_size, double cL, double cT, double
halfjhick, int type, double tolerance, int
fundamental, double maxjreq);

LAMBLIB vector<double> LinearExtrapolateRoot(vector<double> point 1,
vector<double> point2,
double k_step_size);

LAMBLIB vector<double> QuadExtrapolateRoot(vector<double> pointl,
vector<double> point2,
vector<double> point3,
vector<double> point4,
double k_step_size);

LAMBLIB vector<double> GetFirstRoot(double freq, double k, double cL,
double cT, double f_step_size, double
tolerance, double halfjhick, double type);

//end Trace.cpp

//Definitions for file Dispersion.cpp
LAMBLIB void GetDispersionfdouble cL, double cT, double thickness, double

tolerance, double max_ffeq);
//end Dispersion.cpp

//Definitions for file group.cpp
LAMBLIB void group_velocity(vector<doubles> mode_data, FILE * group j>ut, double

thickness);
//end group.cpp

End exported functions.

LAMBLIB.H*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

GOLDEN.H***********/

 ̂% >k ̂ ̂̂ ̂̂ ̂̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂̂ ̂
This header file is taken mainly from Numerical Recipes in C.
It is the declarations for the functions used in bracketing a
minimum and then searching for the minimum in a fast and efficient
manner.

#ifndef _NR_UTILS_H_
#define _NR_UTILS_H_

#define GOLD 1.618034 //Successible ratio by which successive intervals are
magnified

#define GLIMIT 100.0 //maximum magnification allowed for a parabolic-fit step
#define TINY 1.0e-20
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);

#define R 0.61803399
#defme C (1.0-R)
#define SHFT2(a,b,c) (a)=(b);(b)=(c);

static double maxargl, maxarg2;
#define FMAX(a,b) (maxarg 1 =(a), maxarg2=(b), (maxarg 1) > (maxarg2) ?\
(m axargl): (maxarg2))

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a): -fabs(a))

double test_func(double x, double y);

double golden_search(double a, double b, double c, double x_curr, double cL,
double cT, double halfjhick, int type,
double (*ftes)(double, double, double, double,
double, int), double tol, double *xmin);

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
double *fc, double x_curr, double cL, double cT, double halfjhick, int type,
double (*func)(double, double, double, double, double, int));

#endif

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

/**********g£Qj]sj g o l d e n .c p p ***********/

#include <cmath>
#include "golden.h"

j lj\ JjC jjs jji j}C ^ ^ ^)[c «jc *{» ^ 5ji 5jC ^ ^ rjc 3jc 3fC *|C ^ *{*

Taken from Numerical Recipes in C: www.nr.com
Given a function 'func', and given distinct initial points 'ax' and 'bx', this routine
searches in the downhill direction (defined by the function as evaluated at the initial

points)
and return new points 'ax', 'bx', 'cx' that bracket a minimum of the function. Also

returned
are the function values at the three points, 'fa', ’fb’, and ’fc’.

void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double x_curr, double cL, double cT, double halfjhick, int type, double (*func)(double,
double, double, double, double, int)) {

double ulim, u, r, q, fu, dum;

*fa = (*func)(*ax, x_curr, cL, cT, halfjhick, type);
*fb = (*func)(*bx, x_curr, cL, cT, halfjhick, type);

if (*fb > *fa) {

SHFT(dum,*ax,*bx,dum) //Switch roles of a and b, so that we
SHFT(dum,*fb,*fa,dum) //can go downhill in the direction from

//a to b

}
*cx = (*bx) + GOLD*(*bx-*ax); //First guess for c.
*fc = (*func)(*cx, x_curr, cL, cT, halfjhick, type);

while (*fb > *fc) { //Loop until we bracket

r = (*bx - *ax)*(*fb - *fc);
q = (*bx - *cx)*(*fb - *fa);

//Compute u by parabolic extrapolation from a,b,c. TINY is used to
//prevent any possible division by zero.

u = (*bx) - ((*bx - *cx)*q - (*bx - *ax)*r)/
(2.0*SIGN(FMAX(fabs(q - r), TINY), (q - r)));

ulim = (*bx) + GLIMIT*(*cx - *bx);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.nr.com

170

if ((*bx - u)*(u - *cx) > 0.0) { //Parabolic u is between b and
lie: try it.

fa = (*fanc)(u, x_curr, cL, cT, half_thick, type);
if (fa < *fc) { //Got a minimum between b and c.

*ax = (*bx);
*bx = u;
*fa=(*fb);
*fb = fa;
return;

} else if (fa > *fb) { //Got a minimum between a and u.

*cx = u;
*fc = fa;
return;

}

//Parabolic fit was no use, Use default magnification.
u = (*cx) + GOLD*(*cx - *bx);
fa = (*fanc)(u, x_curr, cL, cT, halfjhick, type);

} else if (((*cx - u)*(u - ulim)) > 0.0) { //Parabolic fit is between c and its allowed
//limit.

fa = (*fanc)(u, x_curr, cL, cT, halfjhick, type);
if (fa < *fc) {

SHFT(*bx, *cx, u, *cx + GOLD*(*cx-*bx))
SHFT(*fb, *fc, fa, (*fanc)(u, x_curr, cL, cT, half_thick,type))

}

} else if (((u - ulim)*(ulim - *cx)) >= 0.0) { //Limit parabolic
// u to maximum allowed value.

u = ulim;
fa = (*fanc)(u, x_curr, cL, cT, halfjhick, type);

} else { //Reject parabolic u, use default magnification

u = (*cx) + GOLD*(*cx-*bx);
fa = (*fanc)(u, x_curr, cL, cT, half_thick, type);

}
SHFT(*ax, *bx, *cx,u) //Eliminate oldest point and continue.
SHFT(*fa,*fb,*fc,fa)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

}
}

Taken from Numerical Recipes in C: www.nr.com
This function takes as input 3 points which bracket a minimum.
It then searches for and returns the minimum.

double golden_search(double a, double b, double c, double x_curr,
double cL, double cT, double halfjhick, int type,
double (*f)(double, double, double, double,
double, int), double tol, double *xmin) {

double fl, f2, xO, xl, x2, x3; //At any given time we will keep
//track of four points,xO, xl, x2, x3.

xO = a;
x3 = c;

//tol =.00001;

if (fabs(c - b) > fabs(b - a)) { //Make xO to xl the smaller segment,

xl = b;
x2 = b + C*(c - b); //and fill in the new point to be tried.

} else {

x2 = b;
xl = b - C*(b - a);

}

fl = (*f)(xl, x_curr, cL, cT, halfjhick, type); //The initial function evaluations. Note
//we never need to

f2 = (*f)(x2, x_curr, cL, cT, halfjhick, type); //evaluate the functions at the original
//endpoints.

while (fabs(x3 - xO) > (fabs(xl) + fabs(x2))*tol) {

if (12 < fl) { //One possible outcome

SHFT(xO, xl, x2, R*xl + C*x3)
SHFT2(fl, f2, (*f)(x2, x_curr, cL, cT, halfjhick, type))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.nr.com

172

} else { //The other possible outcome

SHFT(x3, x2, x l, R*x2 + C*xO)
SHFT2(12, fl, (*f)(xl, x_curr, cL, cT, halfjhick, type))

}

} //Back to see if we are done.

if (fl < £2) { //We are done. Output the best of the two current values.

*xmin = x l ;
return f l ;

} else {

*xmin = x2;
return f2;

}

}

/**********g N D g o l d e n cpp***********/

/**********ggGIN COMPLEX.CPP***********/

DLL Module: Complex.c

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <cmath>
#include <vector>
#include <iterator>

using namespace std;

//This DLL source code file exports functions and variables.
#define LAMBLIB declspec(dllexport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

//Takes the square root of a negative number and
//creates a complex number struct out of it.
fcomplex complex_sqrt(double a) {

fcomplex b;

if (a < 0) {

b.i = sqrt(-a);
b.r = 0.0;

}
else {

b.r = sqrt(a);
b.i = 0.0;

}

return b;

}

//Evaluates sin() for a complex number struct
fcomplex complex_sin(fcomplex a) {

fcomplex b;

b.r = sin(a.r)*cosh(a.i);
b.i = cos(a.r)*sinh(a.i);

return b;

}

//Evaluates cos() for a complex number struct
fcomplex complex_cos(fcomplex a) {

fcomplex b;

b.r = cos(a.r)*cosh(a.i);
b.i = -sin(a.r)*sinh(a.i);

return b;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Adds two complex number structs
fcomplex Cadd(fcomplex a, fcomplex b) {

fcomplex c;
c.r = a.r + b.r;
c.i = a.i + b.i;
return c;

}

//Subtracts two complex number structs
fcomplex Csub(fcomplex a, fcomplex b) {

fcomplex c;
c.r = a.r - b.r;
c.i = a.i - b.i;
return c;

}

//Multiplies two complex number structs
fcomplex Cmul(fcomplex a, fcomplex b) {

fcomplex c;
c.r = a.r*b.r - a.i*b.i;
c.i = a.i*b.r + a.r*b.i;
return c;

}

//Creates a complex number struct with the real and imaginary double
//values as input
fcomplex Complex/double re, double im) {

fcomplex c;
c.r = re;
c.i = im;

return c;

}

//Evaluates the conjugate of a complex number struct
fcomplex Conjg(fcomplex z) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

fcomplex c;
c.r = z.r;
c.i = -z.i;
return c;

}

//Divides two complex number structs
fcomplex Cdiv(fcomplex a, fcomplex b) {

fcomplex c;
double r, den;
if (fabs(b.r) >= fabs(b.i)) {
r = b.i/b.r;
den = b.r + r*b.i;
c.r = (a.r + r*a.i)/den;
c.i = (a.i - r*a.r)/den;

1
else {
r = b.r/b.i;
den = b.i + r*b.r;
c.r = (a.r*r + a.i)/den;
c.i = (a.i*r - a.r)/den;

}
return c;

}

//Evaluates the absolute value of a complex number struct
double Cabs(fcomplex z) {

double x, y, ans, temp;
x = fabs(z.r);
y = fabs(z.i);

if (x == 0.0)
ans = y;

else if (y == 0.0)

ans = x;
else if (x > y) {

temp = y/x;
ans = x * sqrt(1.0 + temp*temp);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

} else {

temp = x/y;
ans = y * sqrt(1.0 + temp*temp);

}
return ans;

}

//Takes the square root of a complex number struct
fcomplex Csqrtffcomplex z) {

fcomplex c;
double x, y, w, r;

if ((z.r == 0.0) && (z.i == 0.0)) {
c.r = 0.0;
c.i = 0.0;
return c;

} else {

x = fabs(z.r);
y = fabs(z.i);

if (x >= y) {
r = y/x;
w = sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r)));

} else {
r = x/y;
w = sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r)));

}

if (z.r >= 0.0) {

c.r = w;
c.i = z.i/(2.0*w);

} else {
c.i = (z.i >= 0) ? w : -w;
c.r = z.i/(2.0*c.i);

}
return c;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

//Multiplies a double with a complex number struct
fcomplex RCmul(double x, fcomplex a) {

fcomplex c;
c.r = x * a.r;
c.i = x * a.i;
return c;

}

COMPLEX CPP***********/

XEST CPP****

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <iostream>
#include <cmath>
#include <vector>
#include <iterator>
#include <cstdio>
#include <cstdlib>

using namespace std;

//This DLL source code file exports functions and variables.
#define LAMBLIB declspec(dllimport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

//This executable takes 5 arguments in the command line. Respectively
//Longitudinal Bulk Velocity, Transverse Bulk Velocity, Thickness, Tolerance,
//and Maximum Frequency. It then computes the mode curves given this information
//and stores them in temp_curve.dat
int main(int argc, char* argv[]) {

double cL; //longitudinal bulk velocity
double cT; //transverse bulk velocity
double thickness; //material thickness
double tolerance; //solution tolerance
double max_freq; //maximum frequency desired

//Get command line arguments
cL = atof(argv[l]);
cT = atof(argv[2]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

thickness = atof(argv[3]);
tolerance = atof(argv[4]);
max_freq = atof(argv[5]);

GetDispersio n(cL, cT, thickness, tolerance, max_freq);

return 0;
}

TEST CPP***********/

/**********Be g IN DISPERSION.CPP*

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <cmath>
#include <vector>
#include <iterator>

using namespace std;

//This DLL source code file exports functions and variables.
#defme LAMBLIB declspec(dllexport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

j ^ ^ ^ ̂ ^ ̂ ^ ̂ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ^ ^ ^ ^ ̂ jj# jjj

This function is like the main() of the .dll

It takes the initial paramaters and calls the appropriate functions to find
the initial roots and then calls the routines need to evaluate the symmetric and
antisymmetric fundamental and higher-order modes. This data is all printed to the
temp_curve.dat file. Modes are delimited by '-100'. Also, this file contains the

 ̂f-k, Vph-f, and Vgr-f data.

void GetDispersionfdouble cL, double cT, double thickness, double tolerance, double
max_freq) {

double ffeql = .1; //Set initial frequency to a low enough value
double Vphl = cL + 0.5*cT; //Set initial Vph for sweep line to

//appropriate value
double ffeq2 = max_freq*thickness; //Set end frequency for sweep line to

//maximum ffeq

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

double Vph2 = cL + cT; //Set end Vph for sweep line to appropriate
//value

double halfjhick = .5 /*thickness/2.0*/; //Evaluate half thickness

int fundamental, n; //for higher-order fundamental = 0,
//otherwise fundamental = 1

double ffeq_step_size = .003;
double k_step_size = .02;
double PI = 3.1415927;

vector<doubles> initial_sym_mins;

vector<doubles> initial_asym_mins;
vector<doubles> fun_sym_mins;
vector<doubles> fun_asym_mins;
vector<doubles> sym_curve;

vector<doubles> asym_curve;

vector<doubles> fun_sym_curve;
vector<doubles> fun_asym_curve;

FILE* out;
char out_finame[100];

sprintf(out_fname,"temp_curve.dat");
out = fopen(out_fname, "wb");

//Set small frequency step size
//likewise for wavenumber

//vector of 'double' vectors for
//symmetric mode minimums
//holds antisymmetric minimums

//Temporary placeholder for
//symmetric mode curves
//Temporary placeholder for
//antisymmetric curves

//output file pointer

//Set output file to: temp_curve.dat
//Open file

if(!out) {
printf("Could not open file for writing\n");
exit(-l);

}

printf("Finding Fundamental Mode Root (Antissymetric) ");

//Set to fundamental mode evaluation
fundamental = 1;
//Find antisymmetric initial minimums for the fundamental mode
fun_asym_mins = MinimumSweep(freq 1, 0.8*cT, 3, 0.8*cT, freq_step_size,

cL, cT, halfjhick, 1);

if (fim_asym_mins. size() == 0) {
printf("Didn't find any root for A0\n");

} else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

printf("Done\n");

printf("Tracing Assymetric Fundamental Mode............... ");
//Trace mode in positive wavenumber direction from initial minimum
//point
fun_asym_curve = T raceMode(fun_asy m_mins [0] [0],

fun_asym_mins[0] [1], k_step_size, freq_step_size,
cL, cT, halfjhick, 1, tolerance, fundamental,
ffeq2);

//Trace mode in negative wavenumber direction from initial minimum
//point
fun_asym_curve = TraceModeBack(fun_asym_curve, k_step_size,

freq_step_size, cL, cT, halfjhick, 1, tolerance);
printf("Done\n");

}

//Do the same for the symmetric mode
printf("Finding Fundamental Mode Root (Symmetric).. ");
fun_sym_mins = MinimumSweep(freql, 1.5*cT, 3, 1.5*cT, freq_step_size,

cL, cT, halfjhick, 0);

if (fun_sym_mins.size() == 0) {
printf("Didn't find any root for S0\n");

} else {

printf("Done\n");

printf("Tracing Symmetric Fundamental Mode.................");
fun_sym_curve = TraceMode(fun_sym_mins[0] [0], fun_sym_mins [0] [1],

k_step_size, freq_step_size, cL, cT,
halfjhick, 0, tolerance, fundamental, freq2);

fun_sym_curve = TraceModeBack(fun_sym_curve, k_step_size,
freq_step_size, cL, cT, halfjhick, 0, tolerance);

printf("Done\n");
}

//Now move on to the higher-order modes for both symmetric and antisymmetric
fundamental = 0;
printf("Finding Higher Order Mode Roots (Antisymmetric)...");
initial_asym_mins = MinimumSweep(freq 1, Vphl, ffeq2, Vph2, ffeq_step_size,

cL, cT, halfjhick, 1);

if (initial_asym_mins.size() == 0) {
printf("Didn't find any root for higher-order A modes\n");

} else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

printf("Done\n");
}

printf("Finding Higher Order Mode Roots (Symmetric) ");
initial_sym_mins = MinimumSweep(freql, Vphl, freq2, Vph2, freq_step_size,

cL, cT, half_thick, 0);

if (initial_sym_mins. size() == 0) {
printf("Didn't find any root for higher-order S modes\n");

} else {
printf("Done\n");

}

if (fun_sym_mins.size() == 0 || fun_asym_mins.size() == 0) {
exit(-l);

}
//Print number of antisymmetric modes and symmetric modes on first line of file
//Separated by a tab.
fprintf(out, "%d\t%d\n", initial_asym_mins.size()+1, initial_sym_mins. size()+1);

//On each line of out file print frequency and Vph separated by a tab
for (int k = 0; k < fun_asym_curve. size(); k++) {

fprintf(out, "%f\t%f\n", fun_asym_curve[k][0]/thickness,
fun_asym_curve[k] [1]);

}

//Print '-100' to separate curves from one another
fprintf(out, "-100\n");

//Evaluate and print group velocities
group_velocity(fun_asym_curve, out, thickness);

//Evaluate and print f vs. k data
for(n = 0; n < fan_asym_curve.size(); n++) {

fprintf(out, "%f\t%f\n", (fim_asym_curve[n][0] / thickness) /
fun_asym_curve[n] [1], fan_asym_curve[n][0]/thickness);

}
fprintf(out, "-100\n");

//Now trace and print the higher-order mode antisymmetric curves
for (int i = 0; i < initial_asym_mins.size(); i++) {

printf("Tracing mode A%d ", i);
asym_curve = TraceMode(initial_asym_mins[i] [0],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

initial_asym_mins [i] [1], k_step_size,
freq_step_size, cL, cT, half_thick, 1, tolerance,
fundamental, lfeq2);

asym_curve = TraceModeB ack(asym_curve, k_step_size, freq_step_size,
cL, cT, halfjhick, 1, tolerance);

for(int j = 0; j < asym_curve. size(); j++) {
fprintf(out, "%f\t%f\n", asym_curve[j][0]/thickness,

asym_curve[j] [1]);
}
fprintf(out, "-10Q\n");
group_velocity(asym_curve, out, thickness);
for(n = 0; n < asym_curve. size(); n++) {

fprintf(out, "%f\t%f\n", (asym_curve[n][0]/thickness) /
asym_curve[n][1], asym_curve[n][0]/thickness);

1
lprintf(out, "-100\n");

printf("Done\n");
}

//Print the fundamental symmetric mode to output file
for (int 1 = 0; 1 < fun_sym_curve.size(); 1++) {

fprintf(out, "%f\t%f\n", fun_sym_curve[l][0]/thickness,
fun_sym_curve [1] [1]);

}
fprintf(out, "-100\n");
group_velocity(fun_sym_curve, out, thickness);
for(n = 0; n < ftm_sym_curve.size(); n++) {

fprintf(out, "%f\t%f\n", (fun_sym_curve[n][0]/thickness) /
fun_sym_curve[n][1], fun_sym_curve[n][0]/thickness);

}
fprintf(out, "-100\n");

//Now trace and print the higher-order symmetric mode curves
for (int m = 0; m < initial_sym_mins.size(); m++) {

printf("Tracing mode S%d.....................", m);
sym_curve = TraceMode(initial_sym_mins[m] [0],

initialjym jnins[m][1], k_step_size,
freq_step_size, cL, cT, halfjhick, 0, tolerance,
fundamental, ffeq2);

sym_curve = TraceModeB ack(sym_curve, k_step_size, freq_step_size,
cL, cT, halfjhick, 0, tolerance);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

for(n = 0; n < sym_curve.size(); n++) {
fprintf(out, "%f\t%f\n", sym_curve[n][0]/thickness,

sym_curve[n][l]);
}
fprintf(out, "-100\n");
group_velocity(sym_curve, out, thickness);
for(n = 0; n < sym_curve.size(); n++) {

fprintf(out, "%f\t%f\n", (sym_curve[n][0]/thickness) /
sym_curve[n] [1], sym_curve[n] [0]/thickness);

}
fprintf(out, "-100\n");

printf("Done\n");
}

fclose(out); //Close output file and return

}

/* * * * * * * * * * £ N D d is p e r s io n .c p p *

/**********BEGINEVALLAMBEQN.CPP***********/

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <cmath>
#include <vector>
#include <iterator>

using namespace std;

//This DLL source code file exports functions and variables.
#define LAMBLIB declspec(dllexport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

^ ^ ^ ^ ^ ^ ^ *1̂ ^ ^ ^ ^ ^ jj* jj/ jj/ ^ jS; ^ jjj ^ ^

This function, given the type and (freq, Vph) point, calls the appropriate
characteristic equation, and transforms the Vph-f domain into the f-k domain

^ ^ ^ ^ ̂ ̂ ^ ̂ ^ ^ ^ ^ ̂ ^ ^ ̂ ^ ^ j

double EvalEqn_V (double freq, double Vph, double cL, double cT, double halfjhick,
inttype) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double soln; //Solution to Characteristic Equation at given freq, k

double PI = 3.1415927;

if (type == 0) { //Call Symmetric Equation

soln = SymEqn(freq, 2*PI*freq/Vph, cL, cT, half_thick);

} else { //Call Antisymmetric Eqn

soln = AsymEqn(freq, 2*PI*freq/Vph, cL, cT, halfjhick);

}

return soln;

}

This function, given the type and (k, f) point, calls the appropriate
characteristic equation.

double EvalEqn(double freq, double k, double cL, double cT, double halfjhick,
inttype) {

double soln; //Solution to Characteristic Equation at given freq, k

if (type == 0) { //Call symmetric equation

soln = SymEqn(freq, k, cL, cT, halfjhick);

} else { //Call antisymmetric eqn

soln = AsymEqn(freq, k, cL, cT, halfjhick);

}

return soln;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

Given the appropriate values (freq, wavenumber, longitudinal velocity, transverse
velociy, and half-thickness), this funtion evaluates the symmetric dispersion
relationship at the given (k,f)-point.

double SymEqn(double freq, double k, double cL, double cT, double halfjhick) {

double omega, //Circular frequency = 2*pi*f
xsi; //Wavenumber = omega/v, where v is phase velocity

fcomplex Solnl, Soln2, den_const; //Temporary solution variables

fcomplex c_alpha, //Separability Constant (related to cL — longitudinal
// bulk velocity)

c_beta, //Separability Constant (related to cT — transverse
// bulk velocity)

tan_alpha, //tan(alpha*halfjhick)
tan_beta; //tan(beta*halfjhick)

double PI = 3.1415927;

omega = 2*PI*freq;
xsi = k;

//evaluate alpha and beta for current f and k
c_alpha = complex_sqrt((omega/cL)*(omega/cL) - xsi*xsi);
c_beta = complex_sqrt((omega/cT)*(omega/cT) - xsi*xsi);

//(sin(beta*halfJhick)/cos(beta*halfJhick))/beta
tan_beta = Cdiv(comp!ex_sin(RCmul(halfjhick, c Joeta)),

complex_cos(RCmul(halfjhick, c_beta))) ;
Solnl = Cdiv(tan_beta, c_beta);

//(betaA2 - xsiA2)A2
den_const = Csub(Cmul(cJ)eta, cjaeta), Complex(xsi*xsi,0));
den_const = Cmul(den_const,den_const);

//4*xsiA2*alpha*tan(alpha*halfjhick)/(betaA2-xsiA2)A2
tan_alpha = Cdiv(complex_sin(RCmul(halfjhick, c_alpha)),

complex_cos(RCmul(halfjhick, c_alpha))) ;
Soln2 = Cdiv(RCmul(4.0*xsi*xsi, Cmul(c_alpha, tan_alpha)),

den_const);

// return val: abs {real [tan(beta*half Jhick)/beta] +
// real[4*xsiA2*alpha*tan(alpha*half_thick)/(betaA2-xsiA2)A2]}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

return fabs(Solnl.r + Soln2.r);

}

Given the appropriate values (freq, wavenumber, longitudinal velocity, transverse
velociy, and half-thickness), this funtion evaluates the antisymmetric dispersion
relationship at the given (k,f)-point.

s{c ^ ^ jj* ^ ^ ^ ^ ^ jj# ^ ^ jjj jj* ^ ^ ^ j

double AsymEqn(double freq, double k, double cL, double cT, double halfjhick) {

double omega, //Circular frequency = 2*pi*f
xsi; //Wavenumber = omega/v, where v is phase velocity

fcomplex Solnl, Soln2, den_const; //Temporary solution variables

fcomplex c_alpha, //Separability Constant (related to cL — longitudinal
// bulk velocity)

c_beta, //Separability Constant (related to cT — transverse
// bulk velocity)

tan_alpha, //tan(alpha*half_thick)
tan_beta; //tan(beta*half_thick)

double PI = 3.1415927;

omega = 2*PI*freq;
xsi = k;

//evaluate alpha and beta for current f and k
c_alpha = complex_sqrt((omega/cL)*(omega/cL) - xsi*xsi);
c_beta = complex_sqrt((omega/cT) * (omega/ cT) - xsi*xsi);

//(sin(beta*half_thick)/cos(beta*half_thick))/beta
tan_beta = Cdiv(complex_sin(RCmul(halfjhick, c_beta)),

complex_cos(RCmul(halfjhick, c_beta)));
Solnl = Cmul(tan_beta, c_beta);

//(betaA2 - xsiA2)A2
den_const = Csub(Cmul(cJ>eta, c_beta), Complex/xsi*xsi,0));
den_const = Cmul(den_const,den_const);

//4*xsiA2 * alp ha*tan(alpha* half_thick)/(betaA2-xsiA2)A2
tan_alpha = Cdiv(complex_sin(RCmul(halfjhick, c_alpha)),

complex_cos(RCmul(half_thick, c_alpha))) ;
Soln2 = Cdiv(Cmul(den_const, tan_alpha),

RCmul(4.0*xsi*xsi, c_alpha));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

/ / return val: abs{real[tan(beta*half_thick)*beta] +
// real[tan(beta*half_thick)*(betaA2-xsiA2)A2/(4*xsiA2*alpha)]}
return fabs(Solnl.r + Soln2.r);

E Y A L L A M B E Q N Qpp***********/

/** * * * * * * * * g g Q jjq t r a c e c p p * * * * * ****** /

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <cmath>
#include <vector>
#include <iterator>
#include <cstdio>
#include "golden, h"

using namespace std;

//This DLL source code file exports functions and variables.
#defme LAMBLIB declspec(dllexport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

This function takes a guess for the location of the mode's minimum (f, k) as
input. Then, using routines from Numerical Recipes for C, brackets and searches
for the minimum given the initial guess. At this point, error checking is done
to make sure that the solution is not jumping modes, that two modes crossing
doesn't mess things up, and that it is finding the right minimum. The solution to
the mode equation at the given k is returned (f, Vph).

vector<double> GetRoot_fk(double freq, //Estimated frequency to begin searching
double k, //Fixed wavenumber to search at
double cL, //Longitudinal velocity
double cT, //Transverse velocity
double f_step_size, //frequency step size
double k_step_size, //wavenumber step size
double tolerance, //tolerance for minimum solution
double half_thick, //half thickness of material
double type, //== 0 for asymmetric, == 1 for symmetric
double percentage) //error tolerance from initial guess

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

//Pointer to the characteristic equation solver
double (*char_eqn)(double, double, double, double, double, int);

//Used to store return value. root[0] = freq, root[l] = Vph
vector<double> root(2);

double PI = 3.1415927;
double fl = freq,

f2 = freq+f_step_size,
13 = 0,
min_f,
golden_out = 0,
k_orig = k,
temp_f_step;

//Initialize bracket point 1 to freq guess
//bracket point 2 is one f step further
//bracket point 3

//Solution (or minimum) to characteristic eqn
//Value of characteristic eqn at min_f

//Have to adjust f_step, so used to temporarily store
//original value to reset if needed.

double f_fl = 0,
f_f2 = 0,
f_B = 0,
check_f;

//Value of character eqn. at fl
IfValue of character eqn. at f2
//Value of character eqn. at B
//Used to store initial min_f, while we check
//to see if there is a "better" minimum.

char_eqn = EvalEqn; //Set function pointer to EvalEqnQ

//
//DEBUG CODE — Used to stop program to allow step through
//if(k > 6.03) {
// PI =3.1415927;
//}
//

int found = 0; //"Boolean" variable used as condition for when sol'n
// is found.

int reduced = 0; //First time through solution error checking, used as
// a boolean condition to reduce the f_step_size. Once
// step size is reduced, this is set to = 1.

temp_f_step = f_step_size; //Keep "global" track of f_step_size so it can be
// reset to original value if needed.

//Loop until acceptable minimum is found
while (! found) {

//Using initial guess, bracket minimum and then search for it to within tolerance
//Holds k constant and searches in f-direction for minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

mnbrak(&fl, &£2, &f3, &f_fl, &f_f2, &f_f3, k, cL, cT, half_thick, type,
char_eqn);

golden_out = golden_search(fl, 12,13, k, cL, cT, half_thick, type,
char_eqn, tolerance, &min_f);

//
//DEBUG
//printf("k: %f, freq: %f, min_f: %f, delta_f: %f\n",k, freq, min_f,
// fabs(min_f-freq)/freq);
//printf("k: %f, freq: %f, min_f: %f, deltaJVph: %f\n", k, freq, min_f,
// fabs((2*PI*min_f7k) - (2*PI*freq/k))/(2*PI*freq));
//

Begin Minimum Error Checking

//If first minimum isn't good, then don't need
//to waste the search time for a close nearby minimum

if (fabs(min_f - freq)/freq < percentage) {

check_f = min_f; //Temporary storage to keep track of
// current minimum while we check it is
//the right one

//Sometimes the guess point (k, f) is on the wrong side of the maximum hill and the
//minimum that is returned is not the correct minimum. This is seen for symmetric
//modes, and occurs on the side of the maximum away from the origin. It often occurs
//when the minimum is just a small feature on the downhill side of a larger feature. By
//walking uphill towards the origin and then bracketing the next minimum, we can see if
//this has happened. If a second minimum is found closer to the origin, then this is the
//minimum that we want.

fl = min_f;
//start at current minimum

12 = min_f - f_step_size;
//go 1 step closer to origin

f_fl = EvalEqn(fl, k, cL, cT, halfjhick, type);
f_£2 = EvalEqn(f2, k, cL, cT, halfjhick, type);

//Walk uphill until maximum is reached
while (f_f2 > f_fl) {

fl =12;
f_fl = f_f2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

12 = 12 - f_step_size;

if (fabs(f2 - freq)/freq > (percentage +.01)) {

f2 = -1;

} else {

f J 2 = EvalEqn(f2, k, cL, cT, halfjhick, type);

}

} //end while — uphill walk to maximum

if (f2 > 0) {

//Now that we are out of the current valley, find the previous minimum to min_f by
//bracketing and then using golden search

mnbrak(&fl, &f2, &f3, &f_fl, & fJ2, & fJ3, k, cL, cT,
halfjhick, type, char_eqn);

golden_out = golden_search(fl, f2, f3, k, cL, cT,
halfjhick, type, char_eqn,
tolerance, &min_f);

//If better minimum is not found, put check_f back into min_f.
//Otherwise discard and proceed with better minimum

if (fabs(min_f - check_f)/check_f > .002) {

min_f = check_f;

} //end if — better minimum check

}

}

if (fabs(min_f - freq)/freq < percentage) { //Check to make sure
// solution is not too far from
// guess freq. More than 2%
// error seems to be a good
// condition.

root[0] = m in j;
root[l] = 2*PI*minJ7k;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

found = 1; //acceptable root was found, no need to do more
//robust/time-consuming search

} else { //If solution is not good enough, then need to try
//other methods to get accurate solution.

if (reduced == 0 || reduced == 1) {
//if step size hasn't been reduced

if (reduced == 0) {
f_step_size = f_step_size/1000;

//reduce by a factor of 100
reduced = 1;

} else {
f_step_size = f_step_size*10;
reduced = 2;

}
fl = freq; //reset fl, f2, fi, and min_f
f2 = freq + f_step_size;
0 = 0;
min_f= 0;

//reduced = 1; //set reduced = 1 to prevent from
//reducing further

} else { //if f_step_size has already been reduced

Check for a small local minimum

fl = freq;
f2 = freq + f_step_size;
f_fl = EvalEqn(fl, k, cL, cT, halfjhick, type);
f_£2 = EvalEqn(f2, k, cL, cT, halfjhick, type);

if (f_f2 > f_fl) { //Downhill towards origin

//Walk towards origin until minimum
while (f j l < f_f2 && fabs(fl - freq)/freq <

(percentage +.01)) {

f2 = fl;
f_f2 = f_f 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

f 1 = f 1 - f_step_size;
f_fl = EvalEqn(fl, k, cL, cT, half_thick,

type);

} //end while — towards origin walk

fl = f2; //Set fl to the minimum for storage
// when exiting if/else statement.

} else {

//Walk away from origin until minimum
while (f_f2 < f_fl && fabs(fl - freq)/freq <

(percentage +.01)) {

fl = f2;
f_fl = f_f2;
f2 = f2 + f_step_size;
f_f2 = EvalEqn(f2, k, cL, cT, half_thick,

type);

} //end while — away from origin walk

/No need to switch, because minimum is already stored in fl.

} //end if-else for small minimum

End small local minimum check

if (fabs(fl - freq)/freq > percentage) { //Check to see if
// small local minimum check solved the incorrect minimum problem

//Need to walk uphill in brute force manner,
fl = freq;
f2 = freq + f_step_size;
f3 = freq - f_step_size;
f_fl = EvalEqn(fl, k, cL, cT, halfjhick, type);
f_f2 = EvalEqn(f2, k, cL, cT, half_thick, type);
f_f3 = EvalEqn(f3, k, cL, cT, halfjhick, type);

if(f_fl > f_f2) { //uphill is towards origin

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

while (f_fl > f_f2 && fabs(fl - freq)/freq <
(percentage +.01)) {

f2 = fl;
f_f2 = f_f 1;
fl = fl - f_step_size;
f_fl = EvalEqn(fl, k, cL, cT,

half_thick, type);

while (f_fl < f_f2 && fabs(fl - freq)/ffeq <
(percentage +.01)) {

f2 = fl;
f_£2 = f_f 1;
f 1 = fl - f_step_size;
f_fl = EvalEqn(fl, k, cL, cT,
halfjhick, type);

} else { //uphill is away from origin

while (f_fl < f_f2 && fabs(f2 - freq)/freq <
(percentage +.01)) {

fl =f2;
f j l = fJ2 ;
f2 = f2 + f_step_size;
f J 2 = EvalEqn(f2, k, cL, cT,

halfjhick, type);

}

while (f_fl > f_f2 && fabs(f2 - freq)/freq <
(percentage +.01)) {

fl =f2;
f j l = f_f2;
f2 = f2 + f_step_size;
f_f2 = EvalEqn(f2, k, cL, cT,

halfjhick, type);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

}

}

//Check to see if brute force method found an acceptable
//minimum
if (fabs(fl - freq)/freq < percentage) {

root[0] = f l ;
root[l] = 2*PI*fl/k;

found = 1;

} else { //try adjusting k slightly and retrying to locate
//an acceptable minimum

k = k + k_step_size/2.0;
found = 0;
reduced = 0;
f_step_size = temp_f_step;

if(fabs((k_orig - k)/k_step_size) > 10) {

exit(-l);

1

}

} //end if-else — after f_step_size has been reduced

} //end if-else — for more intensive/brute force error checking methods

}// end while/!found)

return root; //return the root that was found

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

This function takes the initial guess for the root of the characteristic equation.
It does not do any error-checking on its result because the initial minimum and the
output of this function are needed for the inputs to trace the rest of the curve.
There is not enough information to do any acceptability checks yet.

vector<double> GetFirstRoot(double freq, //Estimated frequency to begin searching
double k, //Fixed wavenumber to search at
double cL, //Longitudinal velocity
double cT, //Transverse velocity
double f_step_size, //frequency step size
double tolerance, //tolerance for minimum solution
double halfjhick, //half thickness of material
double type) //== 0 for asymmetric, == 1 for symmetric

{
double (*char_eqn)(double, double, double, double, double, int);

vector <double> root(2);

double PI = 3.1415927;

double fl = freq, //initial frequency for bracketing
f2 = freq+f_step_size, //second frequency for bracketing

f3 = 0, //third frequency for bracketing
m in j, //Used to store frequency of function minimum
goldenj>ut = 0;

double f_fl = 0, //value of function at fl
f_£2 = 0, //value of function at £2
f_£3 = 0; //value of function at £3

char_eqn = EvalEqn; //set to correct characteristic equation

//Bracket and locate minimum by holding k constant and walking in f-direction

mnbrak(&fl, &£2, &£3, &f_fl, &f_£2, & fJ3, k, cL, cT, halfjhick, type,
char_eqn);

golden_out = golden_search(fl, £2, G, k, cL, cT, halfjhick, type, char_eqn,
tolerance, &min_f);

root[0] = min_f;
root[l] = 2*PI*min f/k;

////////////////Debug//////////////////////
//printf("First root: %f, %f\n", root[0], root[l]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

///

return root;

}

This function is used to search for minimums in the v-f domain
instead of in the f-k domain. It is similar to GetRoot_fk in all
other respects. It is mainly used in the initial minimum sweep

vector<double> GetRoot_vf(double freq,
double Vph,
double cL,
double cT,
double step_size,
double tolerance,
double halfjhick,
double type)

{

double (*char_eqn)(double, double, double, double, double, int);

vector<double> root(2);

double PI = 3.1415927;

double fl = freq,
f2 = freq+step_size/1000,
0 = 0,
min_f,
golden_out = 0;

double f_fl = 0,
f_f2 = 0,

f J 3 = 0;

char_eqn = EvalEqn_V;

mnbrak(&fl, &f2, &G, &f_fl, &f_f2, & fJ3, Vph, cL, cT, halfjhick, type,
char_eqn);

golden_out = golden_search(fl, f2, O, Vph, cL, cT, halfjhick, type, char_eqn,
tolerance, &min_f);

root[0] = min_f;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

root[l] = Vph;

return root;

}
^ ^ ^ ^ ^ *{C 5|C ^ *|c 5jC ?f* jjs *j£ ?jC

This function takes two points as input [(fl,Vphl),(f2,Vph2)]
and returns a new point [(f_new,Vph_new)] based on a linear
extrapolation in the f-k domain. It converts from Vph-f domain
into f-k domain, performs extrapolation, and then converts back

to Vph-f domain.

vector<double> LinearExtrapolateRoot(vector<double> point 1,
vector<double> point2,
double k_step_size)

{
slope, //slope of line
intercept, //y-intercept (f value)
fl, //frequency point 1
f2, //frequency point 2
new f, //frequency guess
kl, //wavenumber point 1
k2, //wavenumber point 2
new_k; //wavenumber guess

double PI = 3.1415927;

vector<double> new_point(2); //vector used to store (f,v) guess

fl = point 1 [0];
f2 = point2[0];
k l = 2*PI*fl/pointl[l];
k2 = 2*PI*f2/point2[1];

slope = (f2 - fl)/(k2 - kl); //calculate slope
intercept = f2 - slope*k2; //calculate intercept

new_k = k2 + k_step_size; //find newjk with step_size
new_f = slope*new_k + intercept; //y = mx + b

new_point[0] = new_f;
new_point[l] = 2*PI*new_f/new_k;

return new_point;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

This function takes 4 points as input [(fl ,Vphl),(f2,Vph2), etc.]
and returns a new point [(f_new,Vph_new)] based on a quadratic
extrapolation in the f-k domain. It converts from Vph-f domain
into f-k domain, performs extrapolation, and then converts back
to Vph-f domain.

vector<double> QuadExtrapolateRoot(vector<double> point 1,
vector<double> point2,
vector<double> point3,
vector<double> point4,
double k_step_size)

{
double new_f,

new_k;

double PI = 3.1415927;

vector<double> new_point(2);

new_k = 2*PI*point4[0]/point4[l] + k_step_size;
//Quadratic Extrapolation steps

new_f = point 1[0] - 3*point2[0] + 3*point3[0];

new_point[0] = new_f;
new_point[l] = 2*PPnew_Enew_k;

return new_point;

}

^ 5k ^ ̂ ^ ̂ ^ ^ ^ H* H4 ^ ^ ^ sH ̂ ̂ ̂

This function does the same thing as QuadExtrapolateRoot, but in the
negative k direction. This allows us to trace the modes back to the
origin in f-k space.

vector<doubles> TraceModeBack(vector<doubles> curve,
double k_step_size,
double f_step_size,
double cL,
double cT,
double half_thick,
int type,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

double tolerance)

double PI = 3.1415927;

vector<double> mode_point(2);
vector<doubles>: iterator p;

double k_new = (2*PI*curve[0] [0])/curve[0] [1];

while (k_new > .2) {

p = curve.beginO;
mode_point = QuadExtrapolateRoot(curve[5], curve[3], curvefl],

curve[0], -k_step_size);
//Note -k_step_size

k jiew = (2*PPmode_point [0])/mode_point [1]/* - k_step_size*/;
mode_point = GetRoot_lk(mode_point [0], k_new, cL, cT, f_step_size, -

k_step_size, tolerance, half_thick, type, .02);

curve.insert(p, 1, mode_point);
}

return curve;

This function takes the original minimum for a mode curve from the original
sweep. It then finds a second root by stepping once in the k-direction and
following the slope of the characteristic equation. Using the first 2 points, it
linearly extrapolates the third. It repeats this same step using the 2nd and 3rd
points to get the fourth and so on until 7 initial points are calculated. Then using a
quadratic extrapolation routine, the mode is traced and returned.

vector<doubles> TraceModefdouble freq 1, //frequency
double Vph, //phase velocity
double k_step_size, //wavenumber step size
double f_step_size, //frequency step size
double cL, //longitudinal bulk velocity
double cT, //transverse bulk velocity
double half_thick, //half thickness
int type, //mode type: 0 - symmetric,

III - antisymmetric
double tolerance, //tolerance for root
int fundamental, //Is it a fundamental mode, 0 = no,

III = yes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0

double max_freq) //max frequency desired; stop point.

double PI = 3.1415927;
double percentage; //value used for error checking

vector<doubles> mode_curve;
vector<double> mode_point(2);

mode_point[0] = ffeql;
mode_point[l] = Vph;

mode_curve.push_back(mode_point); //enter sweep minimum into mode curve

double ffeq2 = freql + f_step_size, //step once in frequency direction
freq3 = 0, //used to store third frequency

//needed for min. bracketing
k_new, //new wavenumber value
golden_out = 0,
f_fl = 0, //value of function at fl
f_f2 = 0, //value of function at f2
f_f3 = 0, //value of function at f3
size; //total number of points in mode curve

//Get second point in mode by taking 1 small step in k and
//searching in the freq direction for minimum
k_new = (2*PI*freql)/Vph + k_step_size;

//If fundamental mode, neet to use GetFirstRoot in order to get accurate enough
//seeds for the mode tracing routines
if (fundamental) {

mode_point = GetFirstRootffreql, k_new, cL, cT, f_step_size, tolerance,
half_thick, type);

} else { //Higher order modes can use GetRoot_fk.

mode_point = GetRoot_fk(freq 1, k_new, cL, cT, f_step_size, k_step_size,
tolerance, half_thick, type, .04);

}

mode_curve.push_back(mode_point); //Store new point in mode curve.

//Get third point in mode by linearly extrapolating from the
//first two points to get a guess for the third point. Then, using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 1

//that guess, iterate to a minimum near that guess.
mode_point = LinearExtrapolateRoot(mode_curve[0], mode_curve[l],

k_step_size);
k_new = (2*PPmode_point[0])/mode_point[l] /*+ k_step_size*/;
mode_point = GetRoot_fk(mode_point[0], k_new, cL, cT, f_step_size,

k_step_size, tolerance, half_thick, type, .04);

mode_curve.push_back(mode_point);

//Get fourth point in mode by linearly extrapolating form the first
//and third points to get a guess for the fourth point. Then, using
//that guess, iterate to a minimum near that guess.
mode_point = LinearExtrapolateRoot(mode_curve[0], mode_curve[2],

k_step_size);
k_new = (2*PPmode_point[0])/mode_point[l] /*+ k_step_size*/;
mode_point = GetRoot_fk(mode_point[0], k_new, cL, cT, f_step_size,

k_step_size, tolerance, halfjhick, type, .04);
mode_curve.push_back(mode_point);

//Get fifth point by using quadratic extrapolation with the first 4
mode_point = QuadExtrapolateRoot(mode_eurve[0], mode_curve[l],

mode_curve[2], mode_curve[3],
k_step_size);

k_new = (2*PPmode_point[0])/mode_point[1]/* + k_step_size*/;
mode_point = GetRoot_fk(mode_point[0], k_new, cL, cT, f_step_size,

k_step_size, tolerance, halfjhick, type, .04);
mode_curve.push_back(mode_point);

//Get sixth point in the same way
mode_point = QuadExtrapolateRoot(mode_curve[1], mode_curve[2],

mode_curve[3], mode_curve[4],
k_step_size);

k_new = (2*PPmode_point[0])/mode_point[l]/* + k_step_size*/;
mode_point = GetRoot_fk(mode_point[0], k_new, cL, cT, f_step_size,

k_step_size, tolerance, halfjhick, type, .04);
mode_curve.push_back(mode_point);

//Get seventh point in the same way
mode_point = QuadExtrapolateRoot(mode_curve[2], mode_curve[3],

mode_curve[4], mode_curve[5],
k_step_size);

k_new = (2*PPmode_point[0])/mode_point[l]/* + k_step_size*/;
mode_point = GetRoot_fk(mode_point[0], k_new, cL, cT, f_step_size,

k_step_size, tolerance, half_thick, type, .04);
mode_curve. push_back(mode_point);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

//We can now use every other point to allow our quadratic extrapolation
//to be numerically more stable. As it approaches and crosses other mode curves
//it has less tendency to jump between them.
while(mode_point[0] < max_freq) {

size = mode_curve. size();
mode_point = QuadExtrapolateRoot(mode_curve[size-6],

mode_curve[size-4],
mode_curve[size-2],
mode_curve[size-1],
k_step_size);

k_new = (2*PI*mode_point[0])/mode_point[l];

//Change percentage accpetance value based on the distance between the
// previous 2 roots. But, don't let it be larger than .02 or 2% difference
percentage = (4*fabs(mode_curve[size-1] [0] - mode_curve[size-2][0])) /

mode_curve[size-1] [0];
percentage = (percentage < .02) ? (percentage): (.02);

mode_point = GetRoot_fk(mode_point [0], k_new, cL, cT, f_step_size,
k_step_size, tolerance, halfjhick, type,
percentage);

mode_curve.push_back(mode_point);

return mode_curve;
}

TRACE C P P * * * * * * * * * * * /

/* * * * * * * * * * B E G IN M IN IM U M S W E E P .C P P * * * * * * * * * * * /

//Include the standard Windows and C-Runtime header files here.
#include <windows.h>
#include <cmath>
#include <vector>
#include <iterator>
#include <cstdio>

using namespace std;

//This DLL source code file exports functions and variables.
#defme LAMB LIB declspect dllexport)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

Function takes an initial (f,v) point and a final (f,v) point and evaluates
the characteristic function along this line at intervals determined by
the frequency step size. Returns a vector of length, floor((ffeq2-ffeq 1)/step_size,
with the values of the characteristic function stored in it. Rows = # of points,
Coll = freq, Col2 = Vph, Col3 = eqn value @ (freq,Vph)

vector<doubles> EvalSweep(double freql,
double Vphl,
double freq2,
double Vph2,
double freq_step,
double cL,
double cT,

//Start point (freql, Vphl) for
//minimum sweep line
//End point (lfeq2, Vph2) for
//minimum sweep line
//Frequency step size
//Longitudinal bulk velocity
//Transverse bulk velocity

double half_thick, //half thickness of material
int type) // = 0 if symmetric; = 1 if asymmetric

double sweep_flength,
sweep_slope,
sweep_intercept,
freq,
Vph;

//Variable for sweep line length
//Slope of sweep line
//y-intercept of sweep line

//frequency at which function is being evaluated
//velocity at which function is being evaluated

vector<doubles> eval_vector;
vector<double> temp_vector(3); //temporary vector to store column entries

int i,
num_steps;

//iteration counter
//Given sweep_flength and freq_step, # of
//steps to be taken along sweep line

double PI = 3.1415927;

sweep_flength = freq2 - freql;
sweep_slope = (Vph2 - Vphl)/(freq2 - freql); //Will be used to find the
sweep_intercept = Vphl - sweep_slope*freq 1; //point along the sweep line

//at the current frequency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

freq_step = freq_step/3;

num_steps = (int) floor(sweep_flength/freq_step);

//iterate through sweep line at fixed frequency intervals, and
//evaluate the characteristic function. Store into min_array[][]
for (i = 0; i < num_steps; i++) {

freq = freql + i*freq_step;
Vph = sweep_slope*freq + sweepjntercept;

temp_vector[0] = freq;
//printf(" % f\n", temp_vector[0]);
temp_vector[l] = Vph;
//printf(" % l\n", temp_vector [1]);
temp_vector[2] = EvalEqn(freq, 2.0*PI*freq/Vph, cL, cT, halfjhick,

type);
//printf("%f\n", temp_vector[2]);

eval_vector.push_back(temp_vector);
}

//return vector of function values along requested line
return eval_vector;

}

This function takes the evaluation vector of the sweep line
and extracts the mini mums. Because locating each minimum is
so important at this stage, no bisection is used and a brute force
minimum find is performed. The function returns a vector of the
minimum points, with the value of the characteristic eqn at those
points. It is in the same format as the input vector.

sji rj* A 5̂ jj* ̂ j

vector<doubles> FindSweepMins(vector<doubles> eval_vector)
{

int startjocation = 0, //Marks the initial location when
// entering the while loops

currjocation = 0, //Keeps track of the current location
// of the search iterator

size = eval_vector.size(); //Size of the eval vector

vector<doubles> min_vector; //Vector to store minimum locations in.
// In same format as eval_vector

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

vector<double> temp_vector(3); //Temporary vector used for temp
// storage

of mins.

//Continue to search for minimums until currjocation is at end of vector.
//Remember that size of vector is one off the last index number (off by one)
//We need to access the next location, so to prevent an "overrun” error, we
//need to make sure that we are "2" away from eval_vector.size()
while (curr_location + 2 < size) {

start_location = currjocation;

//Iterate until curr location is at a local minimum or end of vector
while((eval_vector[curr_location] [2] > eval_vect or [currjocation + 1][2])

&& curr_location + 2 < size) {

currJocation++;

} //end while

//If the current location is the same as the start location, then the
//minimum was found at the beginning of the search and we need to iterate
//until we get a maximum, and then iterate again until a min is found,
if (currjocation == startjocation) {

//Iterate to maximum or end of vector
while((eval_vector[currJocation] [2] < eval_vector[currjocation

+ 1][2]) && currjocation + 2 < size) {

currJocation++;

} //end while

//Now iterate to minimum or end of vector
while((eval_vector[currJocation] [2] > eval_vector[currJocation

+ 1][2]) && currjocation + 2 < size) {

currJocation++;

} //end while
} //end if(start == curr)

//If the end of the vector was not reached, at this point we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

//found a legitimate minimum and need to store it into min vector,
if (curr_location + 2 1= size) {

temp_vector[0] = eval_vector[currJocation] [0];
temp_vector[l] = eval_vector [currjocation] [1];
temp_vector[2] = eval_vector[curr_location] [2];

min_vector. push_back(temp_vector);

} else { //If end of vector is reached, return

return min_vector;
//have to test if min_vect.or is empty before using

} //end if-else

} //end main while loop

}

This function takes a vector of minimums and searches
in the phase velocity-frequency domain for the root
closest to that minimum by holding the Vph constant and
varying the frequency. It returns a vector of roots to be
the seeds for the curve tracing routines.

vector<doubles> FindMinRoots(vector<doubles> min_vector, //vector of minimums

double cL,
double cT,
double step_size,
double tolerance,
double halfjhick,
inttype)

//longitudinal bulk vel.
//transverse bulk vel
//freq step size
//solution tolerance level
//half thickness

//characteristic eqn
//symmetric == 0, antisym == 1

double freq,
Vph;

vector<double> root; //Root Locaton (freq, Vph)

//Find root for each minimum
for (int i = 0; i < min_vector.size(); i++) {

freq = min_vector[i][0];
Vph = min_vector[i][l];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

////////////////////////////////////
//Debug Code
//if (Vph >5.57) {
// ffeq=ffeq;
//}
/////////////////.///////////////////

//Function returns root after searching in Vph-freq domain
root = GetRoot_vf(freq, Vph, cL, cT, step_size, tolerance, half_thick,

type);

//store root in minimum vector replacing previous estimation of root
min_vector[i][0] = root[0];
min_vector[i] [1] = root [1];

return min_vector; //return vector of initial roots for modes

This function takes the initial material parameters and
sweep line coordinates (freql,Vphl) to (freq2, Vph2), and updates
min_array with the minimum points stored in it (min_array[i][0] = freq,
min_array[i][l] = Vph). It also returns the number of minimums in the
array.

vector<doubles> MinimumSweep(double freql, //Start point (freql, Vphl) for
double Vphl, //minimum sweep line
double freq2, //End point (freq2, Vph2) for
double Vph2, //minimum sweep line
double freq_step, //Frequency step size
double cL, //Longitudinal bulk velocity
double cT, //Transverse bulk velocity
double halfjhick, //half thickness of material
double type) // = 0 if symmetric; = 1 if asymmetric

{

vector<doubles> eval_vector; //Stores function values along sweep line
vector<doubles> min_vector; //Stores the minimums along the sweep line

//Evaluate the function along the line (freql, Vphl) to (freq2, Vph2) at the
//freq_step interval

eval_vector = EvalSweep(freql, Vphl, freq2, Vph2, freq_step,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

cL, cT, halfjhick, type);

if (eval_vector. size() == 0) {
exit(-l);

}

//Find the minimums of the function evaluation done with EvalSweepO
min_vector = FindS weepMins(e val_vector);

/////////////////////////
//DEBUG CODE
//
//for (int j = 0; j < min_vector.size(); j+ +) {
// printf("Sweep Minimum[%d]: %f %f\n", j, min_vector[j][0],
// min_vector[j][l]);
//}
/////////////////////////

//Using the minimum points as a start, find the roots corresponding to those
//minimums
min_vector = FindMinRoots(min_vector, cL, cT, ffeq_step, .0000001, halfjhick,

type);

////////////////////////
//DEBUG Code
//
//for (int i = 0; i < min_vector. size(); i++) {
// printf("Root Minimum[%d]: %f %f\n", i, min_vector[i][0],
// min_vector[i][l]);
//}
////////////////////////

return min_vector; //return roots

}

m i n i m u m s w e e p .c p p * * * * * * * * * * * /

/* * * * * * * * * g r o u p .c p p * * * * * * * * * * * /

#include <cmath>
#include <cstdio>
#include <vector>
#include <iterator>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

using namespace std;

//This DLL source code file exports functions and variables.
#define LAMBLIB declspec(dllexport)

//Include the exported data structures, symbols, functions, and variables.
#include "LambLib.h"

Function takes a vector of a mode's phase velocity data and computes
the group velocity. It then outputs this to the data file, group_out, that
is passed in as one of the parameters.

void group_velocity(vector<doubles> mode_data, FILE *group_out, double thickness) {

double x_prev, vf_prev; // i-3 frequency and phase velocity values
double x_cur, vf_cur; // i-2 frequency and phase velocity values
double x_cur_next, vf_cur_next; // i-1 frequency and phase velocity values
double x_next, vf_next; // i frequency and phase velocity values
double dx, dvf; // delta frequency and delta phase velocity
double vg, vg_last; // current and last group velocities

//Initialize the prior values before entering loop.
//Prior values used to reduce numerical error in the derivative.
x_prev = mode_data[0][0]/thickness;
vf_prev = mode_data[0][l];
x_cur = mode_data[1] [0]/thickness;
vf_cur = mode_data[l][l];
x_cur_next = mode_data[2] [0]/thickness;
vf_cur_next = mode_data[2][l];

//Loop through the remaining phase velocity data points
for (int i = 3; i < mode_data.size(); i++) {

//Initialize current variables
x_next = mode_data[i] [0]/thickness;
vf_next = mode_data[i][l];

//Find deltas
dvf = vf_next - vf_prev;
dx = x_next - x_prev;

//Move and update variables for next iteration
x_prev = x_cur;
vf_prev = vf_cur;
x_cur = x_cur_next;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vf_cur = vf_cur_next;
x_cur_next = x_next;
vf_cur_next = vf_next;

/*
now we'll determine the group velocity from two points
this will be the quantity Vg/Vtl because yr=Vph/Vtl
Mulitple variables are used to try and eliminate numerical error in derivative

*/
vg = vf_next / (1.0 - x_next * dvf/vf_next / dx);

//Also used to eliminate numerical error; rarely used
if(dvf == 0) {

vg = vgjast;
} //end if

//Print group velocity to file
fprintf(group_out, "%f\t%l\n", x_cur+x_cur_next/2.0, vg);

v g jast = vg;

} /* end for */
//add delimiter to mark end of mode
lprintf(group_out, "-100\n");

return;

} //end group_velocity()

g r o u p c p p ***********/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Matlab Code for Multi-mode Arrival Sorting

PE AK_ARRIV AL.M

clear
%freq_num =10
%for filter_num = 3:4
tic
for ffeq_num = 1:10

%filterfile = ['filters\filter_4_99.mat'];
%filterfile = ['filters\filter_5' int2str(ffeq_num - 1) '_4band.mat'];
% load(filterfile);

ffeq_char = '900';

dir_name = ['plate 15-2_9' int2str(freq_num - 1) 'OkHzY];

if (~exist(['jillY dir_name],'dir'))
mkdir('jill\’, dir_name);
mkdir(['jill\' dir_name], 'signals\');

end

fname = ['Plate 15-2_freqwlk_.9-.99MHz_1500_6500_6us_bin_freq' int2str(freq_num)];
fname_out = ['Plate 15-2_9' int2str(freq_num-1) '0khz_100projs'];
read_dir= ['D:\data\jill\'];
save_dir = ['jill\' dir_name];
fname_arrplot = ['Platel5-2_9' int2str(freq_num-1) 'Okhz_arrivals']; %
int2str(2050+(freq_num -1)*10) 'khz_3us_wavelet'];

pipe = 0;
step_size = 2;

if pipe
size = 180;

else
size = 100*100;

end

start_point = 1500;
orig_signal_length = 6500;
wavelet_level = 8;

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

num_zero_levels = 6; %changed from 5

% adj_signal_length = ceil(signal_length/(2Awavelet_level));
% adj_signal_length = (2Awavelet_level)*adj_signal_length;

sample_rate = 25;
delay_line = 21.1; %15 for the .5" transducers

delay_filter = 0;
%delay_filter = ceil(1229.5);

total_delay = delay_filter/sample_rate + delayjine - start_point/sample_rate;

thresh = 100;
scale = 0; %in decibles

bool_envelope = 0;
bool_signal = 0;

reproducible = 0; % boolean value
rep_projection = 1; % projection number for reproducibility test

bool_ffont = 0;
fid = fopen([read_dir fname], 'r');
r = zeros(size,15);
temp = l:size;
temp = temp';

for m = l:size

signal_length = orig_signal_length;

m_out = [int2str(freq_num)int2str(m)]

signal = fread(fid, signaljength, 'intl6');
signal = signal - mean(signal);

% signal = filter(Num, Den, signal);

% Output the signal
if (bool_signal ==1)

sigfile = [save_dir 'signals)' fname_out '_waveform_' int2str(m)];
%sigout = signal';
save(sigfile, 'signal', '-ASCII')

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adj_signal_length = ceil(signal_length/(2Awavelet_level));
adj_signal_length = (2Awavelet_level)*adj_signal_length;

signal = abs(signal);
signal = signal* 10A(scale/20);

%Create envelope with wavelet transform
signal(signal_length+1: adj_signal_length)=0;
[swa,swd] = swt(signal, wavelet_level, 'coif3');
swd(l :num_zero_levels,:) = 0;
env = iswt(swa, swd, 'coif3');

%Read in envelope from multiple.c
%fenv = ['al4\clean_0.9MHz_1250_2500pts_bin_envelope' int2str(m)];
%fenv = [fenv '.dat'];
%fid2 = fopen(fenv, 'r');
%env = fscanf(fid2, '%i', 2048);
%env = env’;
%fclose(fid2);

% Output the envelope
if (bool_envelope ==1)

outfile=[save_dir ’signals)’ fname_out ’_envelope_’ int2str(m)];
envout = env’;
save(outfile, ’envout’, ’-ASCII’)

end

x = diff(env);
yR = [0 x];
yL = [x 0];

big = (yL >= 0);
small = (yL < 0);
yL(big) = 5;
yL(small) = 1;

big = (yR >= 0);
small = (yR < 0);
yR(big) = 1;
yR(small) = -5;

peak_index = find(yR == yL);

count = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

clear arrivaljndex;
t= 1;
while t < length(peak_index)

if (t == 1 & env(peak_index(t)) < thresh)
while (env(peak_index(t)) < thresh & t < length(peak_index))

t = t+ 1;
end

if (t >= length(peak_index))
arrival_index = find((peak_index >= 100) & (env(peak_index) >= thresh));

end

%measured_arrival = env(peak_index(t), l)/sample_rate - total_delay;
%est_dist = sqrt((step_size*(m- 1))A2 + sample_lengthA2);
%est_arrival = est_dist/est_vel;

%if (abs(measured_arrival - est_arrival)/est_arrival > .4)
%
% t = 1;
% scale = 20*log10(1000/max(env(: ,2)));
% env(:,2) = env(: ,2) * 10A(scale/20);
%
%end

else

arrival_index(count) = t;
count = count + 1;
t = t+ 1;

end
end

%arrival_index = find((peak_index >= 100) & (env(peak_index) >= thresh));

for t = 1 :length(arrival_index)
p(t) = peak_index(arrival_index(t));

%Begin Front Edge Locator (To use, set ffont=l above)
index = p(t) - 1;
% while (env(index) > (l/exp(l))*env(p(t)+l))
% index = index - 1;
%end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

if (bool_front & env(index) < env(index+l) & env(index+l) < env(index+2) &
env(index+2) < env(index+3) & env(index+3) < env(index+4))

index_a= index;
index_b = index+4;
point_a = env(index_a);
point_b = env(index_b);

slope = 1.0 * (point_b - point_a) / (index_b - index_a);
b = 1.0 * (point_a*index_b - point_b* index_a) / (index_b - index_a);

interp_val = (point_a + point_b)/2;
p(t) = floor((interp_val - b)/slope);

if (p(t) < 0)
p(t) = 0;

end
end
%End Front Edge Location

end

%if (length(arrival_index) >= 2)
%
% first_env_indices(2) = p(l);
% index_env_values(2) = env(p(l));
% first_env_indices(3) = p(2);
% index_env_values(3) = env(p(2));
%
% first_env_indices(l) = first_env_indices(2) - 1;
% i = first_env_indices(1);
% while(env(i) > index_env_values(3))
%
% i = i - 1;
% end
% first_env_indices(l) = i;
% index_env_values(1) = env(i);
%
% energy = 0;
% for i = first_env_indices(1): first_env_indices(3)
% energy = energy + env(i);
% end
%
% center_index = 0;
% center_energy = 0;
% while (center_energy < (energy/2))
% center_index = center_index + 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

% center_energy = center_energy + env(center_index);
% end

%figure
%xl = lrlength(env);
%x2(l:3) = fir st_env_indices(1:3);
%x3 = center_index;
%plot(xl,env,x2,index_env_values,x3,env(center_index),'+')
% r(m, 1) = center_index/ sample_rate;
% r(m,2) = first_env_indices(2)/sample_rate;
%end

for i = 1 :length(arrival_index)
r(m,i) = p(i)/sample_rate - total_delay;
%r(m,i) = (p(i) + start_point)/sample_rate - total_delay;
%r(m,i) = p(i);

end

end

fclose(fid);

y = sqrt((step_size*((1: size)-1)). A2 + 200A2);
for i = 1:8

vel(:,i) = y'-/(r(:,i));
end

rtemp = [temp(:,l) r(:,l) r(:,2) r(:,3) r(:,4) r(:,5) r(:,6) r(:,7) r(:,8) r(:,9) r(:,10) r(:,ll)
r(:,12) vel(:,l) vel(:,2) vel(:,3) vel(:,4) vel(:,5)];

outfile=[save_dir fname_out '_peaks.txt'];
fid3 = fopen(outfile, 'w');
fprintf(fid3, '%d %d %d %d %d %d %d %d %d %d %d %d %d\t\t\t%d %d %d %d
%d\n', rtemp');
fclose(fid3);

figure
plot(temp,r(:, 1:8),'LineStyle','none VMarker','.');
%plot(temp,r(:, 1:14),'LineStyle','none','Marker
%ylim([40 140]);
print('-djpeg', [save_dir fname_arrplot]);
close

% figure
%plot(temp,vel,7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

%ylim([1.5 5.5]);
%print('-djpeg', [save_dir fname_arrplot '_vel.jpg']);
%close

end
toe

SORT_ALGORITHM.M

function [mode_data] = sort_algorithm(mode_data, num_modes)

tic
%Mode data's format is: mode_data(mode #, freq #, waveform #)
% j k i
num_ffeqwalk = 10;

data_size = size(mode_data(l,l,:),3)

%generate x values for scanning geometry
x_scan_generator;

% generate predicted curves
for j = l:num_modes+l

for k = l:num_freqwalk
pred_data(j,k,:) = polyval(polyfit(x(j,k,:), mode_data(j,k,:), 4),

reshape(x(j,k,:), 1 ,data_size));
end

end

%earmark potential flaw areas by points that deviate more than 1.5 std deviations
for k = l:num_ffeqwalk

diff(k,:) = abs(mode_data(1 ,k,:) - pred_data(l,k,:));
dev_thresh(k) = 1.5*std(diff(k,:));

end

for j = l:num_modes+l
for k = 1:10

size_tempx = 1;
for i=l:data_size

if (abs(mode_data(1 ,k,i) - pred_data(l,k,i)) < dev_thresh(k))
temp_x(size_tempx)=x(1,1,i);
temp_data(size_tempx) = mode_data(j,k,i);
size_tempx = size_tempx + 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

end
end
pred_data(j,k,:) = polyval(polyfit(terap_x,temp_data,4),reshape(x(j,k,:),l,data_size));
clear temp_x;
clear temp_data;

end
end

for k = 1 :num_freqwalk
diff(k,:) = abs(mode_data(1 ,k,:) - pred_data(l,k,:));
dev_thresh(k) = 1.5*std(diff(k,:));

end

['Mode2 — Prior error:']
std(abs(mode_data(2,1 , - pred_data(2,1,:)))

for i=l :data_size
i

status = 0;
for k = 1 :num_freqwalk

if (abs(mode_data(1 ,k,i) - pred_data(l,k,i)) > dev_thresh(k))
status = 1;

end
end

num_freq_modes = 1;
if (status)

%look at ffeqdata within flaw

%set the first series as the first frequency's data point
freq_modes(num_freq_modes, 1) = mode_data(l,l,i);
size_freq_modes(1) = 1;

%loop through the remaining frequencies and try to sort them accordingly
for j = l:num_modes+l

for k = 1 :num_freqwalk
if(i==53)

i=53;
end

if (j == 1 & k== 1)
%set the first series as the first frequency's data point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

freq_modes(num_freq_modes,l) = mode_data(l,l,i);
size_freq_modes(1) = 1 ;

end

temp = 1 ;
%loop through the frequency data points until an appropriate series is found. If

one
%is found, set temp = - 1 , otherwise temp will be 1 greater than number of

frequencies.
while (temp <= num_freq_modes & temp > 0)

%Check to see if the data point belongs in the current series
if (abs(mode_data(j,k,i) -

freq_modes(temp,size_freq_modes(temp)))/mode_data(],k,i) < .0 2)
freq_modes(temp,k) = mode_data(j,k,i);
size_freq_modes(temp) = k;
temp = - 1 ;

else
temp = temp + 1 ;

end

end
%If a series wasn't found, create a new one
if (temp > 0)

freq_modes(num_freq_modes+ 1 ,k) = mode_data(j,k,i);
num_freq_modes = num_freq_modes + 1 ;
size_freq_modes(num_freq_modes) = k;

end
end

end

%now we have freq data sorted into approx. linear series, we need to adjust the
mode data

%as appropriate.

max_val = max(freq_modes,[],2);

[sort_min, IX] = sort(max_val);

%Need to fit missing fwalk data after sorting into series and determining series'
order

j = i ;
found_modes = 1 ;
while (found_modes <= numjmodes & j <= size(IX,l))

x2 = 1 :1 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 0

temp_size = 0 ;
for temp_k = 1 :num_freqwalk

if (freq_modes(IX(j),temp_k) > 0)
temp_size = temp_size + 1 ;
temp_mode(temp_size, 1) = temp_k;
temp_mode(temp_size,2) = fr eq_modes(IX(j) ,temp_k);

end
end
if (temp_size > 3)

p_freq_mode_fit = polyfit(temp_mode(:, l),temp_mode(:,2), 1);
freq_mode_fit = poly val(p_freq_mode_fit,x2);
for temp_k = 1 :num_freqwalk

if (freq_modes(IX(j),temp_k) > 0)
mode_data(found_modes,temp_k,i) = ffeq_modes(IX(j),temp_k);

else
mode_data(found_modes,temp_k,i) = freq_mode_fit(temp_k);

end
end
found_modes = found_modes + 1 ;

end
j = j + 1 ;
clear temp_mode
clear freq_mode_fit

end

clear temp_size
clear p_freq_mode_fit
clear max_val
clear sort_min
clear IX
clear freq_modes
clear size_freq_modes

else %Normal sorting outside of suspected flaw region. Should I try and sort this data
with

%or without the flaw points? In other words, should I predict the data without the
flaw too?

for k = 1 :num_freqwalk
current = 1 ;
next = current + 1 ;
best_fit = comparef mode_data(current,k,i), mode_data(next,k,i),

pred_data(current,k,i));

if (best_fit == mode_data(next, k, i))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

for j = current :num_modes
mode_data(j,k,i) = mode_data(j+ 1 ,k,i);

end

end

best_fit = compare(mode_data(current,k,i), mode_data(next,k,i), pred_data(next,k,i)
);

if (best_fit — mode_data(current,k,i))

if (abs(mode_data(current,k,i) - pred_data(next,k,i)) < abs(mode_data(current,k,i)
- pred_data(current,k,i)))

for j = num_modes: - 1 :current
mode_data(j+1 ,k, i) = mode_data(j,k,i);

end
mode_data(cuirent,k,i) = pred_data(current,k,i);

end

end

for 1 = 2 :num_modes

if(i = 14)
i = 14;

end

current = current + 1 ;
next = next + 1 ;

best_fit = compare(mode_data(current,k,i), mode_data(next,k,i),
pred_data(current,k,i));

if (best_fit == mode_data(next,k,i))

for j = current:num_modes
mode_data(j,k,i) = mode_data(j+ 1 ,k,i);

end

end

best_fit = compare(mode_data(current,k,i), mode_data(next,k,i),
pred_data(next,k,i));

if (best_fit == mode_data(current,k,i))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 2

if (abs(mode_data(current, k, i) - pred_data(next,k,i)) <
abs(mode_data(current,k,i) - pred_data(current,k,i)))

for j = num_modes: - 1 xurrent
mode_data(j+ 1 ,k, i) = mode_data(j ,k,i);

end
mode_data(current,k,i) = pred_data(current,k,i);

end

end

end

end

end

end

['Mode2 — After error:']
std(abs(mode_data(2 , 1 ,:) - pred_data(2 ,

toe

function [best_fit] = compare(current, next, predicted)

if (abs(current - predicted) <= abs(next - predicted))

best_fit = current;

else

best_fit = next;

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

X_S C AN_GENERATOR.M

clear pred
count = 1;
max = 99;
for i = 0:max

if (mod(i,2) == 0)

for j = 0:max
if j >= i

%pred(count) = poly val(p,abs(((j+ 1)-i)));
temp(count) = j+l-i;
count = count + 1 ;

else
%pred(count) = polyval(p2 ,abs(((j+l)-i)));
temp(count) = (j+l-i);
count = count + 1 ;

end
end

else

for j = 0:max
if (max - j) >= i

%pred(count) = polyval(p,abs((max-(j)-i)));
temp(count) = max-(j)-i;
count = count + 1 ;

else
%pred(count) = polyval(p2 ,abs((max-(j)-i)));
temp(count) = (max-(j)-i);
count = count + 1 ;

end
end

end

end
clear count;

for i= 1:4
for j= l: 1 0

x(i,j,:) = temp;
end

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Source Code for the HUT Scanner

Note: For full reconstruction source code see [6]. Only code which was changed for the
HUT geometry has been included here.

/ * * * * * * * * * * * * p j p e g AGE c g **** **************/

/* Serial motor driver for Cross Borehole Tomography + Gage acquisition board
This is the main module of the scanning software.
It opens and initializes COM-port, then calls read and write
functions to drive motor, sets the scanning geometry

Written by Eugene Malyarenko
Adapted by Kevin Leonard
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <errno.h> /* to track errors while doing 1 0 */

#include "tblOOO.h"
#include "typedefs.h"

#define FALSE 0
#define TRUE 1
#define WAIT 1

static char cmd[130] ,cmd 1 [130];
static short int *d;
static short int *avg_signal;
//float *d;
int chan3 = 0 ;

extern SINT32 boardNo;

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

^ ̂ sj? *f» *i» »K »t» 'i*»{' *K v dcdSTStlOflS fox* SCn l̂ H* ̂ H* »i* ̂“J* “H H* H'H* •i'*{*y
#define BAUDRATE B9600
#define MOTOR "/dev/ttySO" /* change for your port */
#define _POSIX_SOURCE 1 /* POSIX compliant source */

#define FALSE 0
#define TRUE 1
#define WAIT 1

static double ticktime = 5.0e-3;

#ifndef LINUX
#define LINUX /* for waitasec */
#endif
#include <math.h> /* for waitasec */
#include <time.h> /* for waitasec */

static void waitasecfconst double dt = ticktime)
{
#ifdef LINUX

struct timespec reqt;
reqt.tv_sec = int(dt);
reqt.tv_nsec = long(1.0e9 * fmodfdt, 1.0));
if(reqt.tv_nsec > 999999999.0)
reqt.tv_nsec = 999999999;

nanosleep(&reqt, 0);
#else

//unixusec(int(dt * le 6));
printf("waitasec: please define unixusec()\n");

#endif

}

static int STOP_MOTORl=FALSE, STOP_MOTOR2=FALSE;

#include "softscope.hh"
#include "ScopeWiggleCommand.hh"
#include "GageBank.hh"

void ScopeWiggleCommand: :cbh_pipe(int first, int n_samples, char * filename,
int ascii_or_bin) {

FILE *fp;

int i, j, k, sec, STEPS_MOTORl, STEPS_MOTOR2, NSTEPS;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

int STEP_CNT, STEP;
char fname[1 0 0];
char temp[1 0 0];

int format = ascii_or_bin; /*write data in format: binary(O) or ascii(l) */

variables

extern int ermo; /*my addition from man ermo*/
int fd, readnumber;
struct termios oldtio, newtio;
char bufl[40], buf2[40];

y;}; ijs;}; sfc :]c;|i ;]c ;]c 3{i s]s ;Jc i f i j lIlltl3.1lZStlOIl ̂̂ *** ̂ ̂"̂1
g|| 1T1 fOTTOat 10H 111 IXltlXl teTOUOS

fd = open(MOTOR, 0_RDWR | 0_N0CTTY | 0_N 0N B L0C K);
if (fd <0) {perror(MOTOR); printf("opening"); exit(-l); }

tcgetattr(fd,&oldtio); /* save current serial port settings */
bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

I*
BAUDRATE: Set bps rate. You could also use cfsetispeed and cfsetospeed.
CRTSCTS : output hardware flow control (only used if the cable has
all necessary lines. See sect. 7 of Serial-HOWTO)
CS8 : 8 nl (8 bit,no parity, 1 stopbit)
CLOCAL : local connection, no modem contol
CREAD : enable receiving characters

*/
newtio.c_cflag = BAUDRATE | PARENB | CSTOPB | CS7 | CREAD;

/*
IGNPAR : ignore bytes with parity errors
ICRNL : map CR to NL (otherwise a CR input on the other computer
will not terminate input)
otherwise make device raw (no other input processing)

*/
newtio.cjflag = INPCK | IGNPAR;

/*
Raw output.

*/
newtio.c_oflag = OPOST;

/*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

ICANON : enable canonical input
disable all echo functionality, and don't send signals to calling program

*/

newtio. c_lflag = 0 ;

/*
initialize all control characters
default values can be found in /usr/include/termios.h, and are given
in the comments, but we don't need them here

*/
newtio.c_cc[VINTR] =0; /* Ctrl-c */
newtio.c_cc[VQUIT] =0; /* CtrlA */
newtio.c_cc[VERASE] = 0; /* del */
newtio.c_cc[VKILL] =0; /* @ */
newtio.c_cc[VEOF] = 4; /* Ctrl-d */
newtio.c_cc[VTIME] = 0; /* inter-character timer unused */
newtio.c_cc[VMIN] =1; /* blocking read until 1 character arrives */
newtio.c_cc[VSWTC] = 0; /* ’\0' */
newtio.c_cc[VSTART] = 0; /* Ctrl-q */
newtio.c_cc[VSTOP] = 0; /* Ctrl-s */
newtio.c_cc[VSUSP] = 0; /* Ctrl-z */
newtio.c_cc[VEOL] = 0; /* '\0' */
newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */
newtio.c_cc[VDISCARD] = 0; /* Ctrl-u */
newtio.c_cc[VWERASE] = 0; /* Ctrl-w */
newtio.c_cc[VLNEXT] = 0; /* Ctrl-v */
newtio.c_cc[VEOL2] = 0; /* '\0' */

/*
now clean the modem line and activate the settings for the port

*/
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCS ANO W, &newtio);

strcpy(cmd,”FN"); /* remote enable (no echo) and write error detection*/
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }
strcpy(cmd,"C S2M450,A2M1,S1M600,A1M2"); //6000 and 10 were default
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }

printf("\nYour serial port and motor port have been initialized dude\n");
end initialization

^******************** scanner programming block

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

//printf("Enter the number of steps per scanAn");
//scanf("%d", &NSTEPS);
//printf("Enter the step size (mm)An");
//scanf("%d", &STEP_CNT);
//STEP=STEP_CNT*78; /*lmm=78 motor steps for motors 3,4*/
NSTEPS = 180;
STEP_CNT = 0;
STEP = 40;

//printf("Enter the output filename An");
//scanf(”%40s", fname);
//printf("Data format: binary(O) ascii(l):\n");
//scanf("%d", &format);

d = (short int *)calloc((*wmp)(chan3,0)->samples(), sizeof(short int));
//for(j=0;j<5120;j++) d[j]=0 ;
//d = (float *) calloc((*wmp)(chan3,0)->samples(), sizeof(float));

fp=fopen(filename,"wb"); /* opening file for writing */

for(STEPS_MOTORl=0;STEPS_MOTORl <NSTEPS ;STEPS_MOTORl ++) {
printf(" SCAN #%d\n",STEPS_MOTORl);

if(STEPS_MOTOR 1 %2==0) sprintf(cmdl,"C IlM-%d,R",STEP);/*motion
direction*/

else sprintf(cmdl,"C IlM%d,R",STEP);

for(STEPS_MOTOR2=0;STEPS_MOTOR2<NSTEPS ;STEPS_MOTOR2++) {

write(fd,cmd 1 ,strlen(cmd 1));
STOP_MOTORl =FALSE;
bufl[0]='a';

while (STOP_MOTORl==FALSE) {
readnumber = read(fd,bufl,l);
/*if (readnumber <0) {perror(MOTOR); printf("reading error/n"); }*/
bufl [readnumber]=0 ;
/* printf(":%s:%d ermo=%d\n", bufl, readnumber,ermo);*/
if (bufl [0] == 'A') STOP_MOTOR 1 =TRUE;

}

- s*■j*- i*^•{*"i1 ̂ waveform. acquisition block

//app->CheckEvents(); /* IMPORTANT!!!, updates screen */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

//swcmdp-> realKeyIn('n’, 0); /* fetches the next sample */

j*f--i*-i*si'sfcsjs ^qqJ usg of Uly fetch

while(!gsp->triggered())
waitasecQ;

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples); /* fetches trace into d */

gsp->startcapture(); /* without it no trigger */

j sfc >{c s}: % 5$: Sy: sjc ^ 5{s ̂ sj< ?}c 5{c ?{c jjc j{s % j

//app->AcquireControl(); // activate if we want to update screen

// forfint i = 0; i < (*wmp)(chan3,0)->samples(); i++)
//d[i] = ((*wmp)(chan3,0)->internal())[i];

//for(j=0;j< (*wmp)(chan3,0)->samples(); j++) {

switch(format) {
case 0 : //binary format

for(j = 0 ; j < n_samples; j++)
fwrite(&d[j], sizeof(short int), 1 , fp);

break;

case 1 : //ascii format
for(j = 0 ; j < n_samples; j++) {

fjprintf(fp,"%d\n",d[j]);
}
break;

default:
printf("please restart and input valid data format...\n");
exit(l);

}
} /*end loop over STEPS_MOTOR2 */

/*motor2 has completed the cycle, now moving motor 1 one step*/
sprintf(cmd,"C I2M%d,R",STEP); /*command for the first motor to

move*/
write(fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

buf2 [0]='a';

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,buf2 ,l);
buf2 [readnumber] =0 ;
if (buf2[0] = w) STOP_MOTOR2=TRUE;

}
/* printf(":%s:%d \n", buf2 , readnumber);*/

} /*end loop over STEPS_MOTORl */

fclose(fp); /* closing data file */

/*************now move motor back after pressing any key***********/

sprintf(cmd,"C S2M4000,A2M10,12M-%d,R",STEP*NSTEPS); /*all the way
back*/

write(fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;
bufl[0]='a’;

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,bufl,l);
bufl [readnumber]=0 ;
if (bufl [0] == ,A') STOP_MOTOR2=TRUE;

}

^ jg tit StSrtlll^ |30Sltl0Xl ^ *** ̂ ̂ ^ /

j 'H¥* f ' ' H ^ ^ ^ • i ' V ^ ()1q5][||̂ tlHCl 5fC % 5k 5jc ijc ̂ ̂ jJc jJc ijc ?}• y
strcpy(cmd,"Q"); /*set off-line mode*/
write(fd,cmd,strlen(cmd));
tcsetattr(fd,TCSANOW,&oldtio); /* restore the old port settings */

close(fd);

gsp->scan_info (fname); /* output scan protocol into a file */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

} /* end cbh_serial */

void ScopeWiggleCommand::cbh_pipe_freq(int first, int n_samples,
char * filename, int ascii_or_bin) {

FILE *tp, *freq_out[10];
int number_of_fr equencies; //Max of 10
float frequency [1 0];

int freq,i, j, k, sec, STEPS_MOTORl, STEPS_MOTOR2, NSTEPS;
int STEP_CNT, STEP;

char temp[1 0 0];

int format = ascii_or_bin; /*■write data in format: binary(O) or ascii(l) */

^ ^ ^ ^ ^ ^ ^ V 3 T 1 3 , b l c S

extern int ermo; /*my addition from man ermo*/
int fd, readnumber;
stmct termios oldtio, newtio;
char bufl [40], buf2[40];

serial initialization
*{*h * h * ^ ^ ' K ^ ^ f||| |-jj0 information m maxi termios

fd = open(MOTOR, 0_RDWR | 0_NOCTTY | 0_NONBLOCK);
if (fd <0) {perror(MOTOR); printf("opening"); exit(-l); }

tcgetattr(fd,&oldtio); /* save current serial port settings */
bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

BAUDRATE: Set bps rate. You could also use cfsetispeed and cfsetospeed.
CRTSCTS : output hardware flow control (only used if the cable has
all necessary lines. See sect. 7 of Serial-HOWTO)
CS8 : 8 nl (8 bit,no parity, 1 stopbit)
CLOCAL : local connection, no modem contol
CREAD : enable receiving characters

*/
newtio.c_cflag = BAUDRATE | PARENB | CSTOPB | CS7 | CREAD;

/*
IGNPAR : ignore bytes with parity errors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

ICRNL : map CR to NL (otherwise a CR input on the other computer
will not terminate input)
otherwise make device raw (no other input processing)

*/
newtio.c_iflag = INPCK | IGNPAR;

/*
Raw output.

*/
newtio.c_oflag = OPOST;

/*
ICANON : enable canonical input
disable all echo functionality, and don't send signals to calling program

*/
newtio.c_lflag = 0 ;

/*
initialize all control characters
default values can be found in /usr/include/termios. h, and are given
in the comments, but we don't need them here

*/
newtio.c_cc[VINTR] = 0; /* Ctrl-c */
newtio .c_cc[VQUIT] = 0; /* CtrlA */
newtio.c_cc[VERASE] = 0; /* del */
newtio.c_cc[VKILL] = 0 ; /* @ * /

newtio.c_cc[VEOF] = 4; /* Ctrl-d */
newtio.c_cc[YTIME] = 0; /* inter-character timer unused */
newtio .c_cc [VMIN] =1; /* blocking read until 1 character arrives */
newtio.c_cc[VSWTC] = 0; /* '\0' */
newtio.c_cc[VSTART] = 0; /* Ctrl-q */
newtio.c_cc[VSTOP] = 0; /* Ctrl-s */
newtio.c_cc[VSUSP] = 0; /* Ctrl-z */
newtio.c_cc[VEOL] = 0; /* \0' */
newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */
newtio.c_cc[VDISCARD] = 0; /* Ctrl-u */
newtio.c_cc[VWERASE] = 0; /* Ctrl-w */
newtio.c_cc[VLNEXT] = 0; /* Ctrl-v */
newtio.c_cc[VEOL2] = 0; /* '\0' */

/*
now clean the modem line and activate the settings for the port

*/
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCS AN OW,&newtio);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

strcpy(cmd,"FN"); /* remote enable (no echo) and write error detection*/
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) (perror(MOTOR); printf("writing"); exit(-l); }
strcpy(cmd,"C S2M6000,A2M10,S1M6000,A1M10");
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }

printf("\nYour serial port and motor port have been initialized dudeVn");

/********************* scanner programming block

NSTEPS = 180;
STEP_CNT = 0;
STEP = 40;

d = (short int *)calloc((*wmp)(chan3,0)->samples(), sizeof(short int));

//for(j=0;j<5120;j++) d[j]=0 ;
//d = (float *) calloc((*wmp)(chan3,0)->samples(), sizeof(float));

printf("Enter the number of frequencies (max 10):\n");
scanf("%d", &number_of_frequencies);
for (j = 0 ; j < number_of_ffequencies; j++) {

printf("Enter frequency %d (in MHz):\n", j+1);
scanf("%fr, &frequency[j]);
sprintf(temp, "%s_freq%d", filename, j+ 1);
freq_out[j] = fopen(temp,"wb");

}

for(STEPS_MOTORl=0;STEPS_MOTORl < NSTEPS;STEPS_MOTORl++){
printf(" SCAN #%d\n",STEPS_MOTORl);

if(STEPS_MOTORl%2==0) sprintf(cmdl,"C IlM-%d,R",STEP);/*motion
direction*/

else sprintf(cmdl,"C IlM%d,R",STEP);

for(STEPS_MOTOR2=0;STEPS_MOTOR2<NSTEPS ;STEPS_MOTOR2++) {

write(fd,cmd 1 ,strlen(cmd 1));
STOP_MOTOR 1 =FALSE;
bufl[0]='a';

while (STOP_MOTOR 1 ==FALSE) {
readnumber = read(fd,bufl,l);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

/*if (readnumber <0) {perror(MOTOR); printf("reading error/n"); }*/
bufl [readnumber] =0 ;
/* printf(":%s:%d errno=%d\n", bufl, readnumber,ermo);*/
if (bufl [0] = ,A') STOP_MOTORl=TRUE;

' J * ' i * ' I - ^ 3 - C q U l S l t l O l l block

//app->CheckEvents(); /* IMPORTANT!!!, updates screen */
//swcmdp-> realKeyIn('n’, 0); /* fetches the next sample */

j -k 'j-^̂ * { * h* (^qqJ use of my fetch

for(freq = 0 ; freq < number_of_frequencies; freq++) {

_SetFrequency(boardNo, double (frequency[freq]* 1000000));

waitasecO;
_SetFrequency(boardNo, double (frequency[freq] * 1000000));

for(k = 0 ; k<2 ; k++) {

while(!gsp->triggered())
waitasec();

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples); /* fetches trace
into d */

gsp->startcapture(); /* without it no trigger */

//app->AcquireControl(); // activate if we want to update screen

switch(format) {
case 0 : //binary format

if (k = 1){

for (j = 0 ; j < n_samples; j++) {
fwrite(&d[j], sizeof(short int), 1 ,

freq_out[freq]);
}

}
break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

case 1 : //ascii format
if(k == 1){

for (j = 0 ; j < n_samples; j++) {
fprintf(freq_out[freq], "%d\n", d[j]);

}
}
break;

default:
printf("please restart and input valid data format...\n");
exit(l);

}
} //end for k

} /*end of frequency loop*/

} /*end loop over STEPS_MOTOR2 */

/*motor2 has completed the cycle, now moving motor 1 one step*/

sprintf(cmd,"C I2M%d,R",STEP); //command for the first motor to move
write(fd,cmd,strlen(cmd));
S T O P _M O T O R 2= F A L S E ;
buf2 [0]='a';

while (S T O P _ M O T O R 2 = = F A L S E) {
readnumber = read(fd,buf2,l);
buf2 [readnumber] =0 ;
if (buf2[0] = w) STOP_MOTOR2=TRUE;

}

/* printf(":%s:%d \n", buf2, readnumber);*/
} /*end loop over STEPS_MOTORl */

for(j = 0 ; j < number_of_frequencies; j++) {
fclo se(fireq_out [j]);

}

^ ^ d s t 3 . C03.lGCt.10H.

move motor back after pressing any key***********/

sprintf(cmd,"C S 2 M 4 0 0 0 ,A 2 M 1 0 ,I2M-%d,R",STEP*NSTEPS); /*all the way
back*/ //CHANGE BACK TO 2M- FOR FULL SCAN!!!!

write(fd,cmd,strlen(cmd));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

ST0P_M0T0R2=FALSE;
bufl [0]='a';

while (ST0P_M0T0R2==FALSE) {
readnumber = read(fd,bufl,l);
bufl [readnumber] =0 ;
if (bufl [0] == w) STOP_MOTOR2=TRUE;

}

/*******motor is again at starting position **********************/

EtHCl *[! rj* l]S JjS *{» *js »{! <[C 5J* 'J' H* ̂̂
strcpy(cmd,"Q"); /*set off-line mode*/
write(fd,cmd,strlen(cmd));
tcsetattr(fd,TCSANOW,&oldtio); /* restore the old port settings */

close(fd);

gsp->scan_info (filename); /* output scan protocol into a file */

} /* end cbh_serial_freq */

void ScopeWiggleCommand::cbh_pipe_freq_avg(int first, int n_samples,
char * filename, int ascii_or_bin) {

FILE *fp, *freq_out[10];
int number_of_ff equencies; //Max of 10
float frequency! 1 0];

int ffeq,i, j, k, sec, STEPS_MOTORl, STEPS_MOTOR2, NSTEPS, i_avg;
int STEP_CNT, STEP;

char temp [1 0 0];

int format = ascii_or_bin; /*write data in format: binary(O) or ascii(l) */

extern int ermo; /*my addition from man ermo*/
int fd, readnumber;
stmct termios oldtio, newtio;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

char bufl [40], bu£2[40];

SCricll 1T1 lt~_13 117,3tlOT1
3 ,1.1 Ĵ| 0 information m man tcrnuos

fd = open(MOTOR, 0_RDWR | 0_N0CTTY | 0_N 0N B L0C K);
if (fd <0) {perror(MOTOR); printf("opening"); exit(-l); }

tcgetattr(fd,&oldtio); /* save current serial port settings */
bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

/*
BAUDRATE: Set bps rate. You could also use cfsetispeed and cfsetospeed.
CRTSCTS : output hardware flow control (only used if the cable has
all necessary lines. See sect. 7 of Serial-HOWTO)
CS8 : 8 nl (8 bit,no parity, 1 stopbit)
CLOCAL : local connection, no modem contol
CREAD : enable receiving characters

*/
newtio.c_cflag = BAUDRATE | PARENB | CSTOPB | CS7 | CREAD;

/*
IGNPAR : ignore bytes with parity errors
ICRNL : map CR to NL (otherwise a CR input on the other computer
will not terminate input)
otherwise make device raw (no other input processing)

*/
newtio.c_iflag = INPCK | IGNPAR;

/*
Raw output.

* /
newtio.c_oflag = OPOST;

/*
ICANON : enable canonical input
disable all echo functionality, and don't send signals to calling program

*/
newtio.c_lflag = 0;

/*
initialize all control characters
default values can be found in /usr/include/termios.h, and are given
in the comments, but we don't need them here

*/
newtio.c_cc[VINTR] = 0; /* Ctrl-c */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

newtio.c_cc[VQUIT] = 0; /* CtrlA */
newtio.c_cc[VERASE] = 0; /* del */
newtio.c_cc[VKILL] =0; /* @ */
newtio.c_cc[VEOF] = 4; /* Ctrl-d */
newtio.c_ce[VTIME] = 0; /* inter-character timer unused */
newtio.c_cc[VMIN] =1; /* blocking read until 1 character arrives */
newtio.c_cc[VSWTC] = 0; /* ’\0' */
newtio.c_cc[VSTART] = 0; /* Ctrl-q */
newtio.c_cc[VSTOP] = 0; /* Ctrl-s */
newtio.c_cc[VSUSP] = 0; /* Ctrl-z */
newtio.c_cc [VEOL] = 0; /* M)' */
newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */
newtio.c_cc[VDISCARD] = 0; /* Ctrl-u */
newtio.c_cc[VWERASE] = 0; /* Ctrl-w */
newtio.c_cc[VLNEXT] = 0; /* Ctrl-v */
newtio.c_cc[VEOL2] = 0; /* A0' */

/*
now clean the modem line and activate the settings for the port

*/
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtio);

strcpy(cmd,"FN"); /* remote enable (no echo) and write error detection*/
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }
strcpy(cmd,"C S2M6000,A2M10,S1M6000,A1M10");
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }

printf("\nYour serial port and motor port have been initialized dude\n");

scanner programming block

NSTEPS = 180;
STEP_CNT = 0;
STEP = 40;

d = (short int *)calloc((*wmp)(chan3,0)->samples(), sizeof(short int));
avg_signal = (short int *)calloc(n_samples, sizeof(short int));

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

//for(j=0;j<5120;j ++) d[j]=0 ;
lid = (float *) calloc((*wmp)(chan3,0)->samples(), sizeof(float));

printf("Enter the number of frequencies (max 10):\n");
scanf("%d", &number_of_frequencies);
for (j = 0 ; j < number_of_frequencies; j++) {

printf("Enter frequency %d (in MHz):\n", j+1);
scanf("%f', &frequency[j]);
sprintf(temp, "%s_freq%d", filename, j+ 1);
freq_out[j] = fopen(temp," wb");

}

for(STEPS_MOTOR 1 =0;STEPS_MOTOR1 <NSTEPS ;STEPS_MOTOR 1 ++) {
printf(" SCAN #%d\n",STEPS_MOTORl);

if(STEPS_MOTORl%2==0) sprintf(cmdl,"C IlM-%d,R",STEP);/*motion
direction*/

else sprintf(cmdl,"C IlM%d,R",STEP);

for(STEPS_MOTOR2=0;STEPS_MOTOR2<NSTEPS ;STEPS_MOTOR2++) {

write(fd,cmd 1 ,strlen(cmd 1));
STOP_MOTOR 1 =FALSE;
bufl[0]='a';

while (STOP_MOTORl==FALSE) {
readnumber = read(fd,bufl,l);
/*if (readnumber <0) {perror(MOTOR); printf("reading error/n"); }*/
bufl [readnumber]=0 ;
I* printf(":%s:%d ermo=%d\n", bufl, readnumber,errno);*/
if (bufl [0] == 'A') STOP_MOTOR 1 =TRUE;

}

3,C(JUlSltlOIl blOCk

//app->CheckEvents(); I* IMPORTANT!!!, updates screen */
//swcmdp-> realKeylnfn1, 0); I* fetches the next sample */

Cool use of my fetch

for(freq = 0 ; fireq < number_of_frequencies; freq++) {

_SetFrequency(boardNo, double (frequency[freq]* 1000000));
waitasec();
_SetFrequency(boardNo, double (frequency[freq]* 1000000));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

for(k = 0 ; k<2 ; k + +) {

while(!gsp->triggered())
waitasec();

while(gsp->busy())
waitasec();

gsp->my_fetch(0, d, first, n_samples); I* fetches trace
into d */

gsp->startcapture(); /* without it no trigger *1

//app->AcquireControl(); // activate if we want to update screen

switch(format) {
case 0 : //binary format

if (k == 1){

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

}
for (i_avg = 0 ; i_avg < 1 0 ; i_avg++) {

while/ !gsp->triggered())
waitasec();

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples);
gsp->startcapture(); /* without it no trigger */

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = avg_signal[j] + d[j];

}
}
for (j = 0 ; j < n_samples; j++) {

avg_signal[j] = avg_signal[j]/1 0 .0 ;
fwrite(&avg_signal|j], sizeof(short int), 1 ,

freq_out[freq]);
}

}
break;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

case 1 : //ascii format
if(k == 1){

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

}
for (i_avg = 0 ; i_avg < 1 0 ; i_avg++) {

while(!gsp->triggered())
waitasec();

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples);
gsp->startcapture(); /* without it no trigger */

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = avg_signal[j] + d[j];

}
}
for (j = 0 ; j < n_samples; j++) {

avg_signal[j] = avg_signal[j]/10.0;
lprintf(freq_out[freq], "%d\n", avg_signal[j]);

}

}
break;

default:
printf("please restart and input valid data format...\n");
exit(l);

}
} //end for k

} /*end of frequency loop*/

} /*end loop over STEPS_MOTOR2 */

/*motor2 has completed the cycle, now moving motor 1 one step*/
sprintf(cmd,"C I2M%d,R",STEP); /*command for the first motor to move*/
write(fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;
buf2[0]='a';

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,buf2,l);
buf2 [readnumber]=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

if (buf2[0] = ’A') STOP_MOTOR2=TRUE;
}
/* printf(":%s:%d \n", buf2 , readnumber);*/

} /*end loop over STEPS_MOTORl */

for(j = 0 ; j < number_of_frequencies; j++) {
fclose(freq_out[j]);

}

j •1' N* 'l' ̂ ^ 'f' ¥ 'H 'fc 'f' ■$* d&tS COll6CtlOIl S{lJtljJC5lCiiC5fC3|ci|C5fc5ti5fc3{!5i!5{*5|C5i»5}»2fc5|C5H»i'̂

move motor back after pressing any key***********/

sprintf(cmd,"C S2M4000,A2M10,I2M-%d,R",STEP*NSTEPS); /*all the way back*/

write(fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;
bufl [0]=’a’;

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,buf 1 ,1);
bufl [readnumber]=0 ;
if (bufl [0] == ,A') STOP_MOTOR2=TRUE;

}

^ ̂ ̂ ̂ ̂ ̂ ̂ jjjotor is cî cim stsrtin^ position

cloSlTi ̂cUltl CXltlfl ̂ ^ ^
strcpy(cmd,"Q"); /*set off-line mode*/
write(fd,cmd,strlen(cmd));
tcsetattr(fd,TCSANOW,&oldtio); /* restore the old port settings */

close(fd);

gsp->scan_info (filename); /* output scan protocol into a file */

} /* end cbh_serial_fireq_avg */

void ScopeWiggleCommand::cbh_pipe_avg(int first, int n_samples,
char *filename, int ascii_or_bin) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

243

FILE *fp;

int i, j, k, sec, STEPS_MOTORl, STEPS_M0T0R2, NSTEPS, i_avg;
int STEP_CNT, STEP;

char temp [1 0 0];

int format = ascii_or_bin; /*write data in format: binary(O) or ascii(l) */

j 5̂ SjC 5|» ̂ 5{c jjc jjc ^ ̂ ^ ^ jjC ^ g ^ ^ ̂ 5,S 5}C 3̂ 3jC 3̂ »]» 3|3 ^ ?]» jjc 3̂ 3]C 3j* 3js 3j» j

extern int ermo; /*my addition from man ermo*/
int fd, readnumber;
struct termios oldtio, newtio;
char bufl [40], bu£2[40];

Hlltl3.1lZ3tlOIl i}? Sfi ?fc 5j< 5|C >j! 5}C *f»'J'H*'fc 'f''fc * i ' '{''}»
j^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^jj j'ĵ g information m man tormios

fd = open(MOTOR, 0_RDWR | 0_N0CTTY | 0_NONBLOCK);
if (fd <0) {perror(MOTOR); printf("opening"); exit(-l); }

tcgetattr(fd,&oldtio); /* save current serial port settings */
bzero(&newtio, sizeof(newtio)); /* clear struct for new port settings */

/*
BAUDRATE: Set bps rate. You could also use cfsetispeed and cfsetospeed.
CRTSCTS : output hardware flow control (only used if the cable has
all necessary lines. See sect. 7 of Serial-HO WTO)
CS8 : 8 nl (8 bit,no parity, 1 stopbit)
CLOCAL : local connection, no modem contol
CREAD : enable receiving characters

*/
newtio.c_cflag = BAUDRATE | PARENB | CSTOPB | CS7 | CREAD;

/*
IGNPAR : ignore bytes with parity errors
ICRNL : map CR to NL (otherwise a CR input on the other computer
will not terminate input)
otherwise make device raw (no other input processing)

*/
newtio.c_iflag = INPCK | IGNPAR;

/*
Raw output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

*/
newtio.c_oflag = OPOST;

/*
ICANON : enable canonical input
disable all echo functionality, and don't send signals to calling program

*/
newtio.cjflag = 0 ;

/*
initialize all control characters
default values can be found in /usr/include/termios. h, and are given
in the comments, but we don't need them here

* /
newtio.c_cc[VINTR] = 0; /* Ctrl-c */
newtio.c_cc [VQUIT] = 0; /* Ctrl-\ */
newtio.c_cc[VERASE] = 0; /* del */
newtio.c_cc[VKILL] =0; /* @ */
newtio.c_cc[VEOF] = 4; /* Ctrl-d */
newtio.c_cc[VTIME] = 0; /* inter-character timer unused */
newtio.c_cc[VMIN] =1; /* blocking read until 1 character arrives */
newtio.c_cc[VSWTC] = 0; /* \0' */
newtio.c_cc[VSTART] = 0; /* Ctrl-q */
newtio.c_cc[VSTOP] = 0; /* Ctrl-s */
newtio.c_cc[VSUSP] = 0; /* Ctrl-z */
newtio.c_cc[VEOL] = 0; /* '\0' */
newtio.c_cc[VREPRINT] = 0; /* Ctrl-r */
newtio.c_cc [VDISCARD] = 0; /* Ctrl-u */
newtio.c_cc[VWERASE] = 0; f* Ctrl-w */
newtio .c_cc [VLNEXT] = 0; /* Ctrl-v */
newtio.c_cc[VEOL2] = 0; /* \0' */

/*
now clean the modem line and activate the settings for the port

*/
tcflushffd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtio);

strcpy(cmd, "FN"); /* remote enable (no echo) and write error detection*/
readnumber= write(fd,cmd,strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }
strcpy(cmd,"C S2M6000,A2M10,S 1M2500,A1M2");
readnumber= write(fd,cmd, strlen(cmd));
if (readnumber <0) {perror(MOTOR); printf("writing"); exit(-l); }

printf("\nYour serial port and motor port have been initialized dudeVn");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245

/********************* scanner programming block

NSTEPS = 180;
STEP_CNT = 0;
STEP = 40;

fp=fopen(filename," wb");

d = (short int *)calloc((*wmp)(chan3,0)->samples(), sizeof(short int));
avg_signal = (short int *)calloc(n_samples, sizeof(short int));

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

}

//for(j=0;j<5120;j++) d[j]=0;
//d = (float *) calloc((*wmp)(chan3,0)->samples(), sizeof(float));

for(STEPS_MOT OR 1 =0 ;STEPS_MOTOR 1 <NSTEPS ;STEPS_MOTOR 1 ++) {
printf(".......SCAN #%d\n",STEPS JVfOTORl);

if(STEPS_MOTORl%2==0) sprintf(cmdl,"C IlM-%d,R",STEP);/*motion
direction*/

else sprintf(cmdl,"C IlM%d,R",STEP);

for(STEPS_MOTOR2=0;STEPS_MOTOR2<NSTEPS;STEPS_MOTOR2++){

write(fd,cmd 1 , strlen(cmd 1));
STOP_MOTORl=FALSE;
bufl [0]='a';

while (STOP_MOTOR 1 ==FALSE) {
readnumber = read(fd,bufl,l);
/*if (readnumber <0) {perror(MOTOR); printf("reading error/n"); }*/
bufl [readnumber]=0;
/* printf(":%s:%d errno=%d\n", bufl, readnumber,ermo);*/
if (bufl [0] == w) STOP_MOTORl=TRUE;

}

y ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ acquisition block

//app->CheckEvents(); /* IMPORTANT!!!, updates screen */
//swcmdp-> realKeyIn(’n', 0); /* fetches the next sample */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

246

q og\ u.so of my fetch

while(!gsp->triggered())
waitasec();

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples); /* fetches trace
into d */

gsp->startcapture(); /* without it no trigger */

//app->AcquireControl(); // activate if we want to update screen

switch(format) {
case 0 : //binary format

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

1

for (i_avg = 0 ; i_avg < 1 0 ; i_avg++) {

while(!gsp->triggered())
waitasecQ;

while(gsp->busy())
waitasec();

gsp->my_fetch(0 , d, first, n_samples);
gsp->startcapture(); /* without it no trigger */

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = avg_signal[j] + d[j];

}
}
for (j = 0 ; j < n_samples; j++) {

avg_signal[j] = avg_signal[j]/1 0 .0 ;
fwrite(&avg_signal[j], sizeof(short int), 1 ,

fp);
}

break;

case 1 : //ascii format

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = 0 ;

}
for (i_avg = 0 ; i_avg < 1 0 ; i_avg++) {

while(!gsp->triggered())
waitasecf);

while(gsp->busy())
waitasecf);

gsp->my_fetch(0 , d, first, n_samples);
gsp->startcapture(); /* without it no trigger */

for (j = 0 ; j < n_samples; j++) {
avg_signal[j] = avg_signal[j] + d[j];

}
}
for (j = 0 ; j < n_samples; j++) {
avg_signal[i] = avg_signal[j]/1 0 .0 ;
fprintf(fp, "%d\n", avg_signal[j]);

}
break;

default:
printf("please restart and input valid data format..An");
exit(l);

}

} /*end loop over STEPS_MOTOR2 */

/*motor2 has completed the cycle, now moving motor 1 one step*/
sprintf(cmd,"C I2M%d,R",STEP); /*command for the first motor to move*/
write(fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;
buf2 [0]='a';

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,buf2,l);
buf2 [readnumber]=0 ;
if (buf2[0] == ’A’) STOP_MOTOR2=TRUE;

}
/* printf(":%s:%d \n", buf2 , readnumber);*/

} /*end loop over STEPS JVfOTORl */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

248

fclose(fp);

• I * * i * v *1**1*H**i'^*i*^*H* 0j|jJ clcltil collection

/************=Hnow move motor back after pressing any key***********/

sprintf(cmd,"C S2M4000,A2M10,I2M-%d,R",STEP*NSTEPS); /*all the way back*/

write/fd,cmd,strlen(cmd));
STOP_MOTOR2=FALSE;
bufl[0]='a';

while (STOP_MOTOR2==FALSE) {
readnumber = read(fd,bufl,l);
bufl [readnumber] =0;
if (bufl [0] == 'A') STOP_MOTOR2=TRUE;

}

jg ^^3,in 3t starting position

j ^^ ^ •I' 'l' ^ "J* ^ •i' *i* *i* *i' 'fc *i* ^ ̂ ^ 'f* ¥ ^-i’H'•I* *1*'i'^ ^ •f'•i'^

strcpy(cmd,"Q"); /*set off-line mode*/
write(fd,cmd,strlen(cmd));
tcsetattr(fd,TCSANOW,&oldtio); /* restore the old port settings */

close(fd);

gsp->scan_info (filename); /* output scan protocol into a file */

} /* end cbh_serial_avg */

/ * * * * * * * * * p i p e g a g e g c ******************/

/****** TRACER H*******************/

/*
Definitions for Lamb Wave Tomographic Reconstructions

*/

#include "graphapp.h" //for GUI

#include <stdio.h>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

#include <math.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

coiHnioii definitions ^ ^ " * * ^ ^ ^ I

int TRANS JPER_ARRAY; /* = # of pixels in the image array */
double DIST_BET_TRANS; /* in mm (this is the cell length) */
#defme ITERATIONS 1

iterations at different stages 'i'********************/

#defme GLOBALJtTERATIONS 1 /* # of image tracings, used in "main" *1
#defme STRAIGHTJTERATIONS 50 /* # of iterations used in staright_SIRT
*/
#defme CURYEDJTERATIONS 50 /* # of iterations used in curved_SIRT */

straight-ray definitions
#defme SAMPLING_RATE 2.5E7 /^current SR is 100 MHz */
#define SAMPLINGJNTERVAL 1.0E6/SAMPLING_RATE /* in microseconds */

int NUMBER_OF_POINTS; /* points in the trace */
int FIRST_POINT; /* first point after trigger */
int DELAY;

int FREQ;
#defme DAC_RESOLUTION 4096 /* for 12-bit card */
#define EST_VELOCITY 4.8 /* in mm/us */
int NUMBER_OF_R AY S;

int WAVELENGTH;

j»i* H" 'i' *f* sf* ̂ 'I- •i' ̂ *!* ̂ *}* % *i* ̂ ̂ dcfilHtlOIlS ̂ ^^^ ̂̂ ̂ ̂ ̂ ^

#define CORNER_STEPS 14

int STEPS_IN_J;

int CORNER_POINTS; /* points in the trace */

int CORNERJHRST_POINT; /* first point after trigger */

int CORNER_DELAY;

/******=}:***:}:************ other definitions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

int THRESH_CONTROL_POINT;

#define NUM_RAYHOLDERS 2 /* we need 2 rayholders to switch *1

#defme NUM_PRO JECTIONS 1 /*!!!!# of projections used for
reconstruction */

#defme true 1
#define false 0

#define right 1
#define left 0

#define boolean int

#defme SQUARE(x) ((x) * (x))
#defme MAX(a,b) (((a) > (b)) ? (a) : (b))
#defme MIN(a,b) (((a) < (b)) ? (a) : (b))

#defxne sqr(x) ((x) * (x))
#defme max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

j *i' “S' 'i' ̂ r* 1 ion ̂ 't’ *i* j

window W;
window Wjxuncate;

field threshold_control_point;
field truncate_high_gate, truncate_low_gate;
field frequency_field, number_of_steps_field, step_size_field;
field parallel_low_gate_limit, parallel_high_gate_limit;
field corner_lo w_gate_limit, corner_high_gate_limit, number_corner_steps;
radiobutton corner_scan_type, parallel_scan_type;
radiobutton binary_data_type, ascii_data_type;
radiogroup scan_type_group, data_type_group;

typedef struct InitParams {

double i_frequency;
int Lnumberofsteps;
double i_stepsize;
int Lpftrstpoint;
int i_pnumberofpoints;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

int i_cfirstpoint;
int i_cnumbero fpo ints;
int i_controlpoint;

} InitParams;

typedef struct Point {
double x;
double y;

} Point;

typedef struct vortex {
boolean last; /* it is true only for the last point of the ray */
Point pt; /* vortex point in the ray */

} vortex;

typedef struct segment_params /* the same as for the straight ray case */
{
short int p; /*p,q are coordinates of the cell the segment belongs to */
short int q; /* we take p=bottom and q=left sides of the cell */
double length; /* the length of the segment */

} segment_par ams;

ExtCfUSl 3,IT2.y dCCl3T3.tlOIlS

double **exp_data; /* arrival times from the data file */
double **contrast_image; /* an image array with stretched contrast */
double **Image; /* an array containing evolving image*/

//short int
cell_count [TRANS_PER_ARR A Y] [NUM_PRO JECTION S *TRAN S_PER_ARR A Y] ;//c
ells the ray crosses
short int **cell_count;
//double
curved_ray_length[TRAN S_PER_ARRA Y] [NUM_PROJECTIONS *TRANS_PER_AR
RAY]; //ray lengths
double **curved_ray_length;

vortex **Ray_Holder; /* stores traced ray, we need 2 of them */

segment_params * * * segment_data; /* stores curved ray data */

/***** beiow are function declarations and corresponding source files *****/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

flic ĝGttXIXXOS C

void get_times(char filename[], int scan_type, int data_type, int control_point);
double coraer_ray_length (int i, int j);

fpg- parallel scale c *********************/

void parallel_scale(char filename!]);
void comer_scale(char filename!]);

fj]^" |*eC0Jl Q * ̂ * * * * * * ̂ ̂ ^ ̂ ^ ̂ ^ ̂ ̂ ̂ ̂ ^ ^ /

void get_reconstruction(char filename!]);

void truncatetimes(char filename!], int scan_type, double low_gate, double high_gate);

uig. mem0ry funcs 0 ^ £]C 5̂ jfc *[• ̂ ^ 5fC j]i >j£ ?[C *]■ 2j> ̂ ^ ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ j

void init_images (int N);
void init_segment_table(int N);
void init_rayholders(int N);

void insert_ray_information
(
int i,
int j,
int Q_num
);

void free_segment_pointers
(
int start_proj,
int end_proj,
int N
);

void free_segment_table(int N);
double roundoff(double x);

file* shooting C
int golden_shooting
(
double **image_array,
Point Start,
Point End,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

253

int j //second ray index
);

double golden
(
double **image_array,
Point Start,
Point End,
double ax,
double bx,
double cx
);

ilH cigC p iD C C

void construct_fantom(double **image_array);

void subtract_reference
(
double ** result,
double ** array 1,
double **array2,
int N
);

void smooth_image (double **image_array, int MASK_SIZE); /*SIZE is odd */
void Sort(double * array, int size);
void median_filter(double **input_array, int MASK_SIZE); /*SIZE is odd */

1%: # ̂ ̂̂ * # * # * ̂ ̂ ̂ ̂ * * * * * fije* io funcs c

typedef struct pgm jm age /* holds all necessary components of *.pgm */
{

int Nrow;
int Ncol;
int gray_levels;
unsigned char **image_data;

}PGM;

void print_rayholder(int Q_num);
int display_data (double **image_array, int flag, char *tag);
int display_raw_data (double **image_array, int flag, char *tag);
int display_inverted_data (double **image_array, int flag, char *tag);
void get_data (char filename[], double **exp_data);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254

void overwrite_image(double **frona, double **to);
void overwrite_contrast_image(double **ffom, double **to);
void overwrite_inverted_contrast_image(double **ffom, double **to);
void read_pgm(char *fname, double **image_array);
void read_float (double **image_array, char *fname, int N);
void save_float (double **image_array, char *fname, int N);
void write_pgm (PGM *P, char *out_fname, double ** array);

4* vl* -J** 4* '•!*• 4* 4« *1* 4/ *1* 4« 4« 4* 4> sU 4̂ , ‘ , • , 4* *1* -4* 4< 41 4« 4̂ 4« 4* 4< 4* 4* 4* 4< 4< 4< 4f 4< *4" 4̂ 4** 4' 4* 4f 4* 4> ̂ 4̂ 4? *1* 4* /j /f. 4̂ 4* 4* ^ ^ ^ *r* •T' *?■ g jQ|̂ SITX C 4* v 4' v ■4* v v *r* 4' 4* v v *v 4̂ v 'T' v v -r* v v v t v v v 'T' 'i* •'«' *r j

int straight_ray_sirt(void);

double hamming(int M, int m); /* Hamming (hanning) window function */

int sirt
(
int start_proj,
int end_proj,
int ray_type,
int map
);

void estimate_times /* estimates traveltimes alone curved rays */
(
double **est_times,
double **velocities,
int i,
int j
);

void update_velocities
(
double **exp_data,
double **est_times,
double ** delta,
int **cnt,
int i,
int j
);

tracer c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

double rk4 /* sigle Runge-Kutta step for the Snell's law ODE */
(
double **image_array,
double theta, /* value of the variable */
double dtheta_ds, /* value of the first derivative at x */
Point pt, /* image point */
double ds /* fixed stepsize along the ray, independent variable*/
);

typedef struct time_dist
{
double t;
double last_chunk;
} time_dist;

time_dist rk_dumb_tracer /* Fixed stepsize 4-th order Runge-Kutta tracer */
(
double **image_array,
Point Start,
Point End,
double theta_start,
int Q_num
);

double derivs /* returns deivative dtheta/ds according to the ODE */
(
double **image_array,
double theta,
double x, /* the raypoint */
double y
);

int retrace_ray
(
int Q_num
);

int trace_line_segment
(
Point Start,
Point End,
int Q_num, /* # of the rayholder to insert the segment */
int counter /* current value of the counter in the rayholder Qnum*/
);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256

double get_last_chunk_new
(
double **image_array,
Point Start,
Point End,
int Q_num, /* # of the rayholder to put the rest of the ray */
int counter /* current value of the counter in the rayholder Qnum*/
);

double get_last_chunk_time
(
double **image_array,
Point Start,
Point End
);

bilmcsr interpolation c

double bilinear_v /* bilinear 2d interpolation of the velocity*/
(
double **image_array,
Point pt /* image point */
);

double bilinear_dvdx /* bilinear 2d interpolation of the dv/dx */
(
double **image_array,
Point pt /* image point */
);

double bilinear_dvdy /* bilinear 2d interpolation of the dv/dy */
(
double **image_array,
Point pt /* image point */
);

int cyclic /* imposes cyclic boundary condition on a square array indices */
(
int k, /* the index (i or j) to be checked or modified */
int N
);

s ^ «£« fcV vl* vj, *L* vi* vt* 4' 'U 4- vL* A j, ̂ 1- l̂* t 1 1 , . *2* j, 4* 4* ■4- 4' vl» 4* *2* 4* 4* 4 4 4 4 4 4 4* 4 4* 4 4f 4 4 4 4̂ /

int trace_straight_ray /* traces straight ray(i,j) into rayholder[0] */
(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

257

int i,
int j
);

j 5fC 3j? 5ji 5|C 5$C 5ji ^ ^ 5jc ?}C *[C ^ ̂ *JC C U i T V C ^ t l ^ S * O 0 r Q ^ *{• ^ ^ 5jc 5|* J{{ J|C ^ *jc 5jC 5jC jj? £{c 3}C j |i 5jc *}C #|C J

int trace_curved_ray /* traces curved ray(i,j) */
(
int i,
int j
);

#defme straight 1
#define curved 2

/*
traces straight or curved rays into memory
depending on the "ray_type"
traces only projections from "start_proj" to "end_proj"

*1
int trace_rays
(
int start_proj,
int end_proj,
int ray_type
);

int trace_ray /* traces ray(i,j) depending on its type*/
(
int i,
int j,
int ray_type // can be straight or curved
);

/****** *********gXD TRACER jj******************/

/******* ********ggQpvj XRECON c******************/

j ̂ ^ ̂ ^ *|j *[# jj# jjj ^ jjj *ij ̂ ^ ̂ ^ \j* ^ ̂ \j- ̂ ̂

* xrecon.c
* _________

*

* GraphApp front end GUI for Lamb Wave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258

* Tomography reconstructions
*
* Author: Kevin Leonard
*
*

^ jj* ^ 4̂ jJ# «|4 «|4 *J4 ̂ 4 ̂ 4 4̂ ̂ 4 ̂ 4 ̂ 4 ̂ 4 4̂4 ̂ 4 J*4 *J> ̂ 4 4*4 ̂ 4 4̂4 4̂4 4̂4 4̂4 ̂

#include "tracer.h"

int VAR_STATUS = 0;

extern void settextfont(control, font);

void save_and_exit(button b) {

FILE *fp;
InitParams configuration_settings;

configuration_settings. i_frequency = atof(gettext(frequency_field));
configuration_settings.i_numberofsteps = atoi(gettext(number_of_steps_field));
configuration_settings. i_stepsize = atof(gettext(step_size_field));

configuration_settings. i_pfir stpoint = atoi(gettext(parallel_lo w_gate_limit));
configuration_settings.i_pnumberofpoints = atoi(gettext(parallel_high_gate_limit));
configuration_settings. i_cfirstpoint = atoi(gettext(comer_low_gate_limit));
configuration_settings.i_cnumberofpoints = atoi(gettext(corner_high_gate_limit));

configuration_settings.i_controlpoint = atoi(gettext(threshold_control_point));

fp = fopen("xrecon.conf',"wb");

if(fp) {
fwrite(&configuration_settings, sizeof(InitParams), 1, fp);
fclose(fp);

}
else {

askok("Error Saving");
return;

}

exitapp();

}

void update_params(void) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

259

FILE *fp;
InitParams configuration_settings;
char dummy_string[20];

fp = fopen("xrecon.conf',"rb");
if(fp) {
ffead(&configuration_settings , sizeof(InitParams), 1, ip);
fclose(fp);

sprintf(dummy_string, "% f, configuration_settings.i_frequency);
settext(ffequency_field, dummy_string);

sprintf(dummy_string, "%d", configuration_settings.i_numberofsteps);
settext(number_of_steps_field, dummy_string);

sprintf(dummy_string, "% f, configuration_settings.i_stepsize);
settext(step_size_field, dummy_string);

sprintf(dummy_string, " %d", configuration_settings.i_pfirstpoint);
settext(parallel_low_gate_limit, dummy_string);

sprintf(dummy_string, "%d”, configuration_settings.i_pnumberofpoints);
settext(parallel_high_gate_limit, dummy_string);

sprintf(dummy_string, "%d", confIguration_settings.i_cfirstpoint);
settext(corner_low_gate_limit, dummy_string);

sprintf(dummy_string, "%d", configuration_settings.i_cnumberofpoints);
settext(corner_high_gate_limit, dummy_string);

sprintf(dummy_string, "%d", configuration_settings.i_controlpoint);
settext(threshold_control_point, dummy_string);

}
else {

askok("Error Reading Configuration File");
}

}

void button_released(button b, int buttons, point p) {

unhighlight (b);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260

void init_variables(button b) {
int i;

TRANS_PER_ARRAY = atoi(gettext(number_of_steps_field));

DIST_BET_TRANS = atof(gettext(step_size_field));

NUMBER_OF_POINTS = atoi(gettext(parallel_high_gateJimit));

FIRST_POINT = atoi(gettext(parallel_low_gate_limit));

DELAY = FIRSTJPOINT * SAMPLINGJNTERVAL - 21.1; /* us, 21.1 is a
delay-line time */

FREQ = (int) (atof(gettext(frequency_field))* 1000000); /*MHz, used only in my
function get_window_start*/

WAVELENGTH = floor(1.0 * SAMPLING_RATE / FREQ);

THRESH_CONTROL_POINT = atoi(gettext(threshold_control_point));

CORNERJ’OINTS = atoi(gettext(comer_high_gate_limit));

CORNER_FIRS T_POINT = atoi(gettext(corner_low_gate_limit));

CORNER_DELAY = (CORNER_FIRST_POINT * SAMPLINGJNTERVAL -
21. 1);

NUMBER_OFJRAYS = TRANS_PER_ARRAY * TRANS J>ER_ ARRAY;

STEPS_INJ = TRANS_PER_ARRAY - CORNER_STEPS;

cell_count = (short int **)calloc(TRANS_PER_ARRAY, sizeof(short int *));
for (i = 0; i < TRANS JPER_ARRAY; i++)

cell_count[i] = (short int
*)calloc(NUM_PROJECTIONS*TRANS_PER_ARRAY, sizeof(short int));

curved_rayjength = (double **)calloc(TRANS_PER_ARRAY, sizeof(double
*));

for (i = 0; i < TRANS_PER_ARRAY; i++)
curved_ray_length[i] = (double

*)calloc(NUM_PROJECTIONS*TRANS_PER_ARRAY, sizeof(double));

askok("Variables have been initialized.");
VAR_STATUS = 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

261

}

void save_dialog(menuitem mi) {

char * filename = NULL;
int result = askyesnocancel("Save Changes?");

i f (result == YES) {

filename = askfilename("Save the file as:", "xrecon.conf");

if (filename != NULL)
printf("Saving %s\n”, filename);
askok("The file was succesfiilly saved.");

}
}

void get_times_dialogue(button b) {

int option, data_type, scan_type;
char filename[100];
char temp_name[100];

printf("l\n");
if (VAR_STATUS == 0) {

askok("You must initialize variables first!");
return;

}
else {

printf("2\n");
sprintf(filename,"%s",askfilename("Select File to Process Times:",""));

if (filename != NULL) {

if (ischecked(binary_data_type)) {

data_type = 0 ;
}
else {

if (ischecked(ascii_data_type)) {

data_type = 1;
}
else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262

askok("You must select either ASCII or Binary data
type!");

return;
1

}

if (ischecked(parallel_scan_type)) {

scan_type = 0;
}
else {

if (ischecked(corner_scan_type)) {

scan_type = 1;
}
else {

askok("You must select either Comer or Parallel Scan

return;
}

Geometry");

}
get_times(filename, scan_type, data_type, THRESH_CONTROL_POINT);

option = askyesnocancel("Would you like to scale these times?");
if (option == YES) {

if (scan_type = = 1)
corner_scale(filename);

else
parallel_scale(filename);

sprintf(temp_name," % s has been created!", filename);
askok(temp_name);

}

}

void tmncate_times_window(button b) {

int data_type, scan_type;

if (VARJSTATUS == 0) {
askok("You must initialize variables first!");
return;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

263

}

if (ischecked(binary_data_type)) {

data_type = 0;
}
else {

if (ischecked(ascii_data_type)) {

data_type = 1;
}
else {

askok("You must select either ASCII or Binary data type!");
return;

}
}

if (ischecked(parallel_scan_type)) {

scan_type = 0;
}
else {

if (ischecked(corner_scan_type)) {

scan_type = 1;
}
else {

askok("You must select either Comer or Parallel Scan Geometry");
return;

}

}

sho w(W_truncate);
}

void close_truncate_window(button b) {

show(W);
hide(W_truncate);

1

void truncate_dialogue(button b) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264

int scan_type;
double first, last;

char *filename;
char out_name[100], temp_name [100];
int option;

if (ischecked(parallel_scan_type)) {

scanjype = 0 ;
}
else {

scan_type = 1;
}

first = atof(gettext(truncate_lo w_gate));
last = atof(gettext(truncate_high_gate));

if (first == 0 || last == 0) {
askok("You need to put in a gate!");
return;

}

filename = askfilename("Select File to Truncate Times:","");

if(filename != NULL) {

truncatetimes(filename, scanjype, first, last);

}
else {

askok("Error opening file");
return;

}

option = askyesnocancel("Would you like to scale these times?");

sprintf(out_name, "%s_tr", filename);

if (option == YES) {

if (scanjype = = 1)
corner_scale(out jiam e);

else
parallel_scale(out jiam e);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

265

}

sprintf(temp_name," %s has been created!",out_name);
askok(temp_name);

}

void get_recon_dialogue(button b) {

char * filename;

if (VAR_STATUS == 0) {
askok("You must initialize variables first!");
return;

}

filename = askfilename("Select File to Reconstruct","");

if (filename != NULL) {
get_reconstruction(filename);

}
else {

askok("Recon Cancelled (Bad Filename or User Cancel");
1

void build_time_file_dialogue(button b) {

char temp_string[100];
char system_string[100];
char *filename;

int i;

for (i = 0; i < NUM_PROJECTIONS; i++) {

sprintf(temp_string,"Choose projection %d time file:",i+l);
askok(temp_string);
filename = askfilename(temp_string,"");

if (filename = NULL) {
if (i > 0) {

system("rm -f times");
}

return;
}
if (i == 0) {

sprintf(system_string,"cp %s times",filename);
system(system_string);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

266

}
else {

sprintf(system_string,"cat %s » times",filename);
system(system_string);

}
}
askok("'times' has been created");

void scale_dialogue(button b) {

char * filename;

if (VAR_STATUS == 0) {
askok("You must initialize variables first!");
return;

}

filename = askfilename("Select File to Reconstruct","");

if (filename != NULL) {
parallel_scale(filename);

}
else {

askok("Recon Cancelled (Bad Filename or User Cancel");
}

}

void init_interface(void)
{

label 1;
button b_gettimes, b_init_vars, b_truncate, b_close;

button b_bui ld_time_file, bjruncatetimes, b_recon, b_scale;
menu file_menu;
menuitem quit_item;
menuitem line_l;

W_truncate = newwindow("Truncate Times", rect(200,200,300,150),
T itlebar+Resize+Minimize+Maximize);

setbackground(W_truncate, LightBlue);

W = newwindow("Lamb Wave Tomography Reconstruction", rect(0,0,700,375),
StandardWindow);

setbackground(W, LightBlue);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

267

file_menu = newmenu("Settings");
line_l = newmenuitem("-", 0, NULL);
quit_item= newmenuitem("Exit", 'O', save_and_exit);

1 = newlabel("Lamb Wave Tomography Reconstruction",
rect(0,4,700,45), Center);

settextfont(l, newfont("Times", Bold, 24));

X"3.X1S COIltrolS

1 = newlabel("----------------------------------- ",
rect(0,28,700,15),Center);

settextfont(l,newfont("Times", Bold, 20));

1 = newlabel("Frequency: ", rect(10,60,90,20), 0);
settextfont(l, newfont("Times", Bold, 18));
frequency_field = newfield(NULL, rect(110,61,60,20));
1 = newlabel("(MHz)",rect(175,60,60,22), AlignLeft);
settextfont(l,newfont("Times", 0, 18));

1 = newlabel("# of Steps:", rect(250,60,80,20), 0);
settextfont(l, newfont("Times", Bold, 18));
number_of_steps_field = newfield(NULL, rect(340,61,60,20));

1 = newlabel("Step Size: ", rect(420,60,80,20), 0);
settextfont(l, newfont("Times", Bold, 18));
step_size_field = newfield(NULL, rect(505,61,60,20));
1 = newlabel("(mm)",rect(570,60,50,22), 0);
settextfont(l,newfont("Times",0,18));

/*
scan_type_group = newr adiogroup();
1 = newlabel("Scan Geometry:", rect(550,60,150,20),0);
settextfont(l, newfont("Times", Bold, 18));
parallel_scan_type = newradiobutton("Parallel Scan",

rect(575,85,130,20),NULL);
corner_scan_type = newradiobutton("Corner Scan", rect(575,105,130,20),NULL);

data_type_group = newradiogroupQ;
1 = newlabel("Data Type:", rect(550,140,150,20),0);

settextfont(l, newfont("Times", Bold, 18));
binary_data_type = newradiobutton("Binary", rect(575,165,130,20),NULL);
ascii_data_type = newradiobutton("ASCII", rect(575,185,130,20),NULL);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

268

scan_type_group = newradiogroupO;
1 = newlabel("Scan Geometry:", rect(370,110,150,20),0);
settextfont(l, newfont("Times", Bold, 18));
parallel_scan_type = newradiobutton("Parallel Scan",

rect(405,135,130,20),NULL);
corner_scan_type = newradiobutton("Corner Scan", rect(405,155,130,20),NULL);

data_type_group = newradiogroupO;
1 = newlabel("Data Type:", rect(550,110,150,20),0);

settextfont(l, newfont("Times", Bold, 18));
binary_data_type = newradiobutton("Binary", rect(585,135,130,20),NULL);
ascii_data_type = newradiobutton("AS CII", rect(585,155,130,20) ,NULL);

1 = newlabel("Parallel Scan Parameters:", rect(10,l 10,300,20),0);
settextfont(l, newfont("Times", Bold, 18));

1 = newlabel("First Point:", rect(10,140,90,20),0);
settextfont(l, newfont("Times", 0, 18));
parallel_low_gate_limit = newfield(NULL, rect(110,141,60,20));

1 = newlabel("# of Points:", rect(186,140,90,20),0);
settextfont(l, newfont(”Times", 0, 18));
parallel_high_gate_limit = newfield(NULL, rect(284,141,59,20));

1 = newlabel("Comer Scan Parameters:", rect(10,190,200,20),0);
settextfont(l, newfont("Times", Bold, 18));

1 = newlabel("First Point:", rect(10,220,90,20),0);
settextfont(l, newfont("Times", 0, 18));
corner_low_gate_limit = newfield(NULL, rect(110,221,60,20));

1 = newlabel("# of Points:", rect(186,220,90,20),0);
settextfont(l, newfont("Times", 0, 18));
corner_high_gate_limit = newfield(NULL, rect(284,221,59,20));

1 = newlabel("Threshold:", rect(370,220,90,20),0);
settextfont(l, newfont("Times", 0, 18));
threshold_control_point = newfield(NULL, rect(470,221,60,20));

b_init_vars = newbutton("Initialize", rect(585,215,90,30),
init_variables);

setbackground(b_init_vars, Green); *

1 = newlabel("--- "
"--------------- ",rect(0,265,700,15),Center);

settextfont(l, newfont("Times", Bold, 20));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

269

b_gettimes = newbutton("Get Times", rect(100,300,80,30),
get_times_dialogue);

setbackground(b_gettimes, Green);

b_truncate = newbutton("Truncate", rect(190,300,80,30),
truncate_times_window);

setbackground(b_truncate, Green);

b_build_time_file = newbutton("Build Times", rect(280,300,90,30),
build_time_file_dialogue);

setbackground(b_build_time_file,Green);

b_recon = newbutton("Reconstruct", rect(470,300,110,30),
get_recon_dialogue);

setbackground(b_recon, Red);

b_scale = newbutton("Scale", rect(370,300,80,30),
scale_dialogue);

setbackground(b_scale, Green);

addto (Wjxuncate);

1 = newlabel("Low Gate:", rect(80,30,80,20),0);
settextfont(l, newfont("Times", 0, 18));
truncate_low_gate = newfield(NULL, rect(165,29,60,20));

1 = newlabel("High Gate:", rect(80,60,80,20),0);
settextfont(l, newfont("Times", 0, 18));
truncate_high_gate = newfield(NULL, rect(165,59,60,20));

b_close = newbutton("Close Window", rect(155,110,110,30),
close_truncate_window);

setbackground(b_close, Green);

b_truncatetimes = newbutton("Truncate Times", rect(35,110,110,30),
truncate_dialogue);

setbackground(b_truncatetimes,Green);

setclose(W,save_and_exit);

show(W);

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

main ()
{

init_interface();

update_params();

mainloopO;
}

XRECON c******************/

/* * * * * * * * * * * * g e t t i m e s g * * * * * * * * * * * * * * * * * * * /

!!!!! reads all waveforms from the initial datafile !!!!!!

!!!!IMODIFIED for the comer case!!!!!
All the functions now have number_of_points
parameter.

E.V. Malyarenko
Modified by Kevin Leonard

empirical function to extract SO arrival times
from recorded Lamb waveforms.
All scan parameters shouls be put into the
"full_config.h" file. The behaviour can also
be controlled through several entry points scattered in the code.

IMPORTANT!!! works with highly-filtered and narrow-banded
waveforms. Other types ow waves should be analysed, say,
by time-frequency or pattern-matching routines.

jjc ̂ ^ rjc j

Pipes
********/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "tracer.h"

void parallel_gettimes(char * filename, int data_type, int control_point);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

271

void corner_gettimes(char filename!], int data_type, int control_point);
void subtract_mean (short int *data, int number_of_points);
void find_maxima(int init, int final);
void rescale_waveform (short int *data, int number_of_points, int scale);
void corner_rescale_waveform (short int *data, int number_of_points, int scale);
void output_test_ray(int row, int number_of_points);
int line_int(int control_point, int number_of_points);
void find_maxima_simple(int number_of_points);
int locate_fastest_mode(int number_of_points, int control_point);
void parallel_set_times (char *in_name, char data_fname[]);
void corner_set_times (char *in_name, char data_fname[]);
//int CORNER_STEPS;

short int *orig_values;
short int *envelope_values;
int *est_arr_time;
int maxi;
double *sl;
double *s2;
double *s3;

struct point_params
{
short int value;
int coord;

};

void get_times(char filename!], int scan_type, int data_type, int controLpoint) {

if (scanjype = 0)
parallel_gettimes(filename, data_type, controLpoint);

else
corner_gettimes(filename, data_type, controLpoint);

}

//Need to switch from NUMBER_OF_POINTS to number_of_points in common
functions
void parallel_gettimes (char filename!], int data_type, int controLpoint)
{
extern short int *orig_values;
extern short int *envelope_values;
extern int *est_arr_time;
short int *data;
FILE *in, *pos_env;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

272

int i,j, m,k,count,max,i_max,Nrays;
int rayN, pointN;
int shift, interpolated_value;
char *times_fname = "parallel_time_simplest";
double est_time;
int number_of_points;

int il,i2,i0,max2,max0;
extern int m axi;
extern double slope,b;
int first_mode_max;

Nrays = NUMBER_OF_RAY S;

number_of_points = NUMBER_OF_POINTS;

data = (short int *)calloc(NUMBER_OF_POINTS, sizeof(short int));
orig_values = (short int *)calloc(NUMBER_OF_POINTS, sizeof(short int));
envelope_values = (short int *)calloc(NUMBER_OFJPOINTS, sizeoftshort int));
est_arr_time = (int *)calloc(Nrays, sizeof(int));

^ ^ ^ h*'{■'i-'K;i'^'K-i*^^h* now the rc^ulsr pro^Tcun starts

in = fopen(filename, "rb");

pos_env = fopen (times_fname,"wb");

for (rayN = 1; rayN < (Nrays+1); ++rayN) {

for (pointN = 0; pointN < NUMBER_OF_POINTS; ++pointN) {
if(data_type ==1)

fscanf (in, "%d", &data[pointN]);
else

firead(&data[pointN], sizeof(short int), 1, in);
}

/* find and subtract mean value to make zero offset */

subtract_mean (data, number_of_points); /* necessary */
//rescale_waveform (data, NUMBER_OF_POINTS, 600); /* helps a lot */

/*we compose envelope out of both positive and negative values to increase number of
points available for interpolation. On the other hand, this may degrade quality of the
resulting envelope */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

273

for (pointN=0; poimtN<NUMBER_OF_POINTS; ++pointN) {
if(data[pointN] < 0) orig_values[pointN] = 0; //-data[pointN];
else orig_values[pointN] = data[pointN];

}
for (i = 0; i < NUMBER_OF_POINTS; ++i) envelope_values[i] = 0;

find_maxima(l, NUMBER_OF_POINTS);

first_mode_max = locate_fastest_mode(number_of_points, controLpoint);
if(first_mode_max == 0)

goto failure; /* use previous time instead */

j if: ifc sjs :jc ^ sjc ̂ ^ sfc % % $z >Jc % ^ sfc sjc % s{: sj: sjc sjc sjc sjc sjc Jfc ^ ̂ ^ ̂ ^ ^ ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

**/
/* now we'll repeat the same with the real envelope and first_mode_max */

/*
for (pointN = 0; pointN < NUMBER_OF_POINTS; ++pointN) {

if(data[pointN] < 0) orig_values[pointN] = 0;
else orig_values[pointN] = data[pointN];

}
for (i = 0; i < NUMBER_OF_POINTS; ++i) envelope_values[i] = 0;

find_maxima(1 ,first_mode_max);

/***
now we find the abscissa of the envelope point with given value,
interpolation is done using first envelope points. The error is
smaller if we interpolate between existing points

interpolated_value = line_mt(control_point, number_of_points);

if (interpolated_value != 0.0)
est_arr_time [rayN -1] = interpolated_value;

else {
failure:

est_arr_time[rayN-l] = est_arr_time[rayN-2];
}

est_time=est_arr_time [rayN-1] * SAMPLINGJNTERVAL + DELAY;
fprintf(pos_env," %f\n" ,est_time);

printf("%d time= %d \n", rayN, est_arr_time[rayN-l]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

274

//output_test_ray(rayN); //the output function helps visualize envelopes

}/*end loop over rayN*/

fclose(pos_env);
fclose(in);

parallel_set_times (times_fname, filename); /* rearrange times */

firee(data);
free(orig_values);
free(envelope_values);
free(est_arr_time);

}

void corner_gettimes (char filename[], int data_type, int controLpoint)
{
extern short int *orig_values;
extern short int *envelope_values;
extern int *est_arr_time;
short int *data;
FILE *in, *pos_env;
int i,j,m,k,count,max,i_max,Nrays;
int rayN, pointN;
int shift, interpolated_value;
int interp_vl, interp_v2;
char *times_fname = "corner_tkrie_simplest";
double est_time;
int number_of_points;

int theor_value;
double ray_length;

int il,i2,i0,max2,max0;
extern int maxi;
extern double slope,b;
int first_mode_max;

//int stop_steps;
//stop_steps = TRANS_PER_ARRAY - (TRANS_PER_ARRAY*DIST_BET_TRANS-

STOP_DIST)
/ / /D IS T _ B E T _ T R A N S ;
//if(stop_steps%2 == 0)
// CORNER_STEPS = stop_steps;
//else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

275

// CORNER_STEPS = stop_steps - 1;

Nrays = NUMBER_OF_RAYS - SQUARE(CORNER_STEPS); /* comer effect */

number_of_points = CORNER_POINTS; /^number of points in the comer trace*/

data = (short int *)calloc(number_of_points, sizeof(short int));
orig_values = (short int *)calloc(number_of_points, sizeof(short int));
envelope_values = (short int *)calloc(number_of_points, sizeof(short int));
est_arr_time = (int *)calloc(Nrays, sizeof(int));

ijs ̂̂ -{c ̂ ̂ ̂ ̂ XlOW tllC Ifll* prÔ rS.111 Starts

in = fopen(filename, "rb");

pos_env = fopen (times_fname, "wb");

for (rayN = 1; rayN < (Nrays+1); ++rayN) {

for (pointN = 0; pointN < number_of_points; ++pointN) {
if (data_type == 0)

ffead(&data[pointN],sizeof(short int), 1,in);
else

fscanf (in, "%d", &data[pointN]);
}

/* find and subtract mean value to make zero offset */

subtract_mean (data, number_of_points);
//comer_rescale_waveform (data, number_of_points, 500);

/*we compose envelope out of both positive and negative values to increase number of
points available for interpolation. On the other hand, this may degrade quality of the
resulting envelope */

for (pointN=0; pointN<number_of_points; ++pointN) {
if(data[pointN] < 0) orig_values[pointN] = 0; //-data[pointN];
else orig_values [pointN] = data[pointN];

}
for (i = 0; i < number_of_points; ++i) envelope_values[i] = 0;

fmd_maxima(1, number_oLpoints);

first_mode_max = locate_fastest_mode(number_of_points, controLpoint);
if(first_mode_max == 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

276

goto failure; /* use previous time instead */

'I' ^ 5̂ jj' 3j3 3|» 3j» 3|» 5{* 3}i 3jC 3j% 3jj 5̂C ijc #$» 3̂ 5̂ rjC ?|C jjC ̂ 3jC ?j3 3|C 3|C 3|C ?jC ̂ 3$C 5{v 5§C jj(5̂C 3}c rJC 3{> 3̂C #|3 3{« 3̂ 3̂% 3|« 3}% 3fC 3|c «|C 3{«

**/
/* now we'll repeat the same with the real envelope and first_mode_max */

/* for (pointN = 0; pointN < number_of_points; ++pointN) {
if(data[pointN] < 0) orig_values[pointN] = 0;
else orig_values[pointN] = data[pointN];

}
for (i = 0; i < number_of_points; ++i) envelope_values[i] = 0;

find_maxima(1, first_mode_max);
*/

/***
now we find the abscissa of the envelope point with given value,
interpolation is done using first envelope points. The error is
smaller if we interpolate between existing points

***!

interpolated_value = line_int(control_point, number_of_points);

/*lower the threshold if detects the next mode */
//if((interpolated_value - est_arr_time [rayN-2]) > 3 * WAVELENGTH)
//interpolated_value = line_int(50, number_of_points);

/***** determine raylength from the filenumber in three raws below ******/
/* j=(rayN-l) % TRANS_PER_ARRAY;
i=((rayN-l)-j) / TRANS_PER_ARRAY;
if(i%2 != 0)
j = TRANS_PER_ARRAY - 1 - j;

rayjength = DIST_BET_TRANS * sqrt(1.0*SQUARE(TRANS_PER_ARRAY-i-0.5)
+ 1.0*SQUARE(j+0.5));

theor_value = (ray_length / EST_VELOCITY - CORNER_DELAY) /
SAMPLING_INTERVAL;

if((interpolated_value - theor_value) > 3*WAVELENGTH)
interpolated_value = line_int(80, number_of_points);

if((interpolated_value - theor_value) > 3 * WAVELENGTH)
interpolated_value = line_int(60, number_of_points);

*/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

277

if (interpolated_value != 0.0)
est_arr_time[rayN-1] = interpolated_value;

else {
failure:

est_arr_time[rayN-1] = est_arr_time[rayN-2];
}

est_time = est_arr_time [rayN-1] * SAMPLING_INTERVAL + CORNER_DELAY;
lprintf(pos_env,"%f\n",est_time);

printf("%d time= %d \n", rayN, est_arr_time[rayN-1]);

//output_test_ray(rayN, number_of_points); //the output function helps visualize
envelopes

}/*end loop over rayN*/

fclose(pos_env);
fclose(in);

corner_set_times (times_fname, filename); /* rearrange times */

ffee(data);
free(orig_values);
free(envelope_values);
firee(est_arr_time);

}

void subtract_mean (short int *data, int number_of_points)
{
int i;
double sum, aver;
short int mean;

sum = 0;

for(i = 0; i < number_of_points; + + i)
sum+= 1.0 * data[i];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

278

aver = sum / number_of_points;
mean = (short int) floor (aver);

for(i = 0; i < number_of_points; ++i)
data[i] -= (short int) aver;

} //end subtract_mean

/* rescales positive part of the wafeform
*/

void corner_rescale_waveform (short int *data, int number_of_points, int scale)
{
int i;
int max = 10000;
double factor;

for(i = 0; i < number_of_points; ++i) {
if(data[i] > max)

max = datafi];
}

factor = 1.0 * scale / max;

for(i = 0; i < number_of_points; ++i)
data[i] = (short int) (data[i] * factor);

} //end rescale_waveform

/ * * *

function that finds maxima and
determines the envelope
I T E R A T I V E version

void find_maxima(int init, int final)
{
extern short int * envelope_values;
extern short int *orig_values;
int i,max,i_max;

while(init > 0) {

max = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

279

for(i = init; i < final; ++i) { //find absolute max betw. init and final
if(orig_values[i] > max) {

max = orig_values[i];
i_max = i;
if(max >= DAC_RESOLUTION / 2) { /*it may be bigger due to mean shift*/

//printf("First truncated value: max = %d\n",max);
break; /* found first truncated value, no need to go further*/

}
}

}
envelope_values[i_max] = max;

/****
it may happen that there is no positive maximum, (i.e. between
different modes). In this case we
simulate it stepping back one wavelength from the real maximum

******/

if(max == 0)
i_max -= (int) WAVELENGTH; //step 1 wavelength from the preceding maximum

*/

i = i_max;

/* now we step 1.5 wavelengths back and look for the preceding maximum */
while((orig_values[i] > 0) && (i > 0))

- i;

final = i;
iff final > WAVELENGTH)
init = final - (int) WAVELENGTH; // go back one wavelength

else
break; /* cannot step further back */

} /*end big while */

//if(max == 0)
//printf("find_maxima: max = 0 \n");

} /* end find_maxima */

/*function that finds maxima */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

280

void find_maxima_simple(int number_of_points) {

extern short int *envelope_values;
extern short int *orig_values;

int i,max;

max=0;
for(i = 0; i < number_of_points; ++i) {
if(orig_values [i] >max) {

max=orig_values[i];
envelope_values[i] = max;

}
}

}/* end find_maxima_simple */

int locate_fastest_mode(int number_of_points, int controLpoint) {

extern short int *envelope_values;
struct point_params env[800]; //temporary array to store envelope points
int i,k;
int max_k,start = 0,finish,max_i;

for(i = 0; i < 800; i++) { //initializing structure each time
env[i]. value = 0;
env[i] .coord = 0;

}

k=0;
for(i = 0; i < number_of_points; i++) { //fill struct with envelope points
if(envelope_values[i] != 0) {

env[k]. value = envelope_values[i];
env[k].coord = i;
k++;

}
}
max_k = k; //the number of points in the structure (we hope it is < 100)

for(i = 0; i < max_k; i++) { //finding maximum of the first coming mode

if((env[i].value < env[i+l].value) &&

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(env[i+l].value >= controLpoint) && /**** !!! CONTROL POINT !
***/

(env[i+l].value < env[i+2], value) &&
(env[i+2],value < env[i+3].value))

{
start = i;
goto found;

}
1

found:
i=start;
while((env[ij.value < env[i+l],value))

i++;

max_i = i; /* this should be the maximum of the first packet */

//printf("max_i=%d\n",env[max_i]-coord);

retum(env[max_i] .coord); /* returns position of the first mode's maximum */

} /* end locate fastest mode */

/**** good function for debugging (to plot rays and envelopes)*****/
void output_test_ray(int row, int number_of_points) {

extern short int *envelope_values;
FILE *fpl;
int i;
char env_name[25];

sprintf(env_name,"./TEMP_DATA/envelope%d",row);
//printf ("%s\n", env_name);

fpl = fopen (env_name, "wb");
for(i=0;i<number_of_points;i++) {
Iprint f(fp 1, ” % d\n!", envelope_values [i]);

}
fclose(lpl);

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* straight line interpolation between envelope points
supplied is value p, output is abscissa of p */

int line_int(int controLpoint, int number_of_points) {

extern short int *envelope_values;
double b, slope;
int i , j , i l , i 2 , m a x l , m a x 2 ;

int i_max, i _ m in , max, min;

int p = controLpoint;

/*first we have to find those two points in the envelope that we need
they either embrace p or not (short envelope).
but if there is only one point in the envelope or points belong to slower
modes, that is not this function's fault, envelope should be cleaned earlier */

max = 0; //now we'll f i n d global max and min
min = 60000;
for(i = 0; i < number_of_points; i++) {

if(envelope_values[i] > max) {
i_max = i;
max = envelope_values [i];

}
if((envelope_values[i]<min) && (envelope_values[i] != 0)) {

i _ m i n = i;
min=envelope_values [i];

}
}

/* for(i=0; i<number_of_po ints; i++) {
if(envelope_values[i] = p) { retum(i); }
}

* /

if((p < max) && (p > min)) { //if p is embraced
i=0;
while(envelope_values[i] < p) i++;
i2 = i;

max2 = envelope_values[i2];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

283

i--;
while ((envelope_values[i] == 0) && (i!=0))

i--;

il = i;
maxi = envelope_values[i 1];

}
else if (p < min) { //if p< envelope's min use first 2 points of envelope

11 = i_min;
maxi = min;

i = il + 10;
while ((envelope_values[i] == 0) && (i != 4995))

i++;

12 = i;
max2 = envelope_values[i2];

}

else { //in this case p>=max, use 2 last points of the envelope

i2 = i_max;
max2 = max;

i = i2 - 10;
while ((envelope_values[i] == 0) && (i != 0))

i--;

il = i;
maxi = envelope_values [i 1];

}

slope = 1.0 * (max2 - maxi) / (i2 - il);
b = 1.0 * (maxl*i2 - max2*il) / (i2-il);

j = (int) floor((p - b) / slope); // we find the intersection coordinate

if(j<0)
j = 0;

if(j > number_of_points - 1)
j = number_of_points - 1;

envelope_values[j] = p;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

284

return®;

} /* end line_int.......

/*
calculates length of the comer ray (i,j)

*/
double corner_ray_length (int i, int j) {

double r_l;
int N = TRANS_PER_ARRAY;

r_l = DIST_BET_TRANS * sqrt(1.0*SQUARE(N-i-0.5) + 1.0*SQUARE(j+0.5));

return r_l;
}

/* This is a function to read in the file of times found by
the time_finding routine
and reverse the order of every other set of TRANS_PER_ARRAY,
so the order will match that expected by the code
the output filename is the same as for the original projection file
plus the word "time" at the and.
This file is to be truncated and scaled and is almost ready for
the reconstruction.

*/

void corner_set_times (char *times_fname, char data_fname[])
{
int i, j, 1, length;
double fvalue;//, *sl, *s2, *s3;
char *out_name;
char temp_name[100];
FILE *in, *out;
int corner_length, actual_num_of_rays;
int Ml_length_rays;

length = TRANS_PER_ARRAY;
corner_length = STEPS_IN_J;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actual_num_of_rays = NUMBER_OF_RAYS - SQUARE(CORNER_STEPS);
full_length_rays = (TRANS_PER_ARRAY -

CORNER_STEPS)*TRANS_PER_ARRAY;

si = (double *)calloc(actual_num_of_rays, sizeof(double));
s2 = (double *)calloc(NUMBER_OF_RAYS, sizeof(double));
s3 = (double *)calloc(NUMBER_OF_RAYS, sizeof(double));

sprintf(temp_name,"%s_time'', datajfname);
out_name = tempjname;

if ((in = fopen (times_fname, "r")) == NULL)
printf ("Can't open %s for readingAn", times_fname);

else {
printf ("reading in the data\n");

for (i = 0; i < actual_num_of_rays; + + i) {
fscanf (in, "% lf& fvalue);
sl[i] = fvalue;

}
printf ("switching the data\n");

/* first rearrange full rays as before, BUT j starts from the comer */

for (j = 0; j < (full_length_rays - 2*length + 1); j += 2*length) {
for (i = j; i < (j + length); i++)

s2[i] = sl[j + (j+(length-l) - i)];
}
for (j = length; j < (full_length_rays - length + 1); j += 2*length) {

for (i = j; i < (j + length); i++)
s2[i] = sl[i];

}

/******* done with full-length rays, start arranging short ones *******/

for (j = full_length_rays; j < (actual_num_of_rays - 2*comer_length + 1); j +=
2*comer_length) {

for (i = j; i < (j + comerjength); i++)
s2[i] = si [j + (j+(comer_length-1) - i)];

}
for (j = full_length_rays+corner_length; j < (actual_num_of_rays - corner_length

; j += 2*corner_length) {
for (i = j; i < (j + comerjength); i++)

s2[i] = s 1 [i];
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y ^ C 5 |< ^ ^ C ^ 5 j <

now fill gaps for comer rays with theoretical times
theor_time = ray_length / ESTIMATED_YELOCITY

* * * *K

for(l = 0; 1 < full_length_rays; 1++) //first copy times for usual rays
s3[l] = s2[l];

for(l = full_length_rays; 1 < NUMBER_OF_RAYS; 1++) {
j = 1 % TRANS_PER_ARRAY;
i = (1 - j) / TRANS_PER_ARRAY;
if(j < CORNER_STEPS)

s3[l] = corner_ray_length(i,j) / EST_VELOCITY; //!!!!! CONTROL !!!!
else

s3[l] = s2[1- (i - STEPS_IN_J + l)*CORNER_STEPS];
}

if ((out = fopen (out_name, "w")) == NULL)
printf ("Can’t open %s for writingAn", out_name);

else
{

printf ("outputing the data\n");

for (i = 0; i < NUMBER_OF_RAYS; ++i)
{
fprintf (out, "%f\n", s3[i]);

}
}

}
strcpy(data_fname, out_name);
fclose(in);
fclose(out);

free(sl);
free(s2);
free(s3);

}

/* rescales positive part of the wafeform
*/

void rescale_waveform (short int *data, int number_of_points, int scale)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

287

int i;
int max = 0;
double factor;

for(i = 0; i < number_of_points; ++i) {
if(data[i] > max)

max = data[i];
}

factor = 1.0 * scale / max;

for(i = 0; i < number_of_points; ++i)
datafi] = (short int) data[i] * factor;

} //end rescale_waveform

void parallel_set_times (char *times_fname, char data_fname[])
{
int i, j, k, 1, length;
char* out_name;
char temp_name[100];
FILE *in, *out;

length = TRANS_PER_ARRAY;

si = (double *)calloc(NUMBER_OF_RAYS, sizeof(double)); //memory for s i,2
s2 = (double *)calloc(NUMBER_OF_RAYS, sizeof(double));

sprintf(temp_name,"%s_time", data_fname);
out_name = temp_name;

if ((in = fopen (times_fname, "r")) == NULL)
printf ("Can't open %s for readingAn", times_fname);

else {
printf ("reading in the data\n");

for (i = 0; i < NUMBER_OF_RAYS; + + i) {
fscanf(in, "% lf, &sl[i]);

//si [i] = fvalue;
}
printf ("switching the data\n");

for (j = 0; j < (NUMBER_OF_RAYS - 2*length + 1); j += 2*length) {
for (1 = j; 1 < (j + length); 1++) s2[l] = sl[j + (j+(length-l) -1)];

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

288

for (k = length; k < (N U M B E R _ O F _ R A Y S - length + 1) ; k += 2*length) {
for (i = k; i < (k + length); i++) s2[i] = s 1 [i];

}

if ((out = fopen (temp_name, "w")) == NULL)
printf ("Can't open %s for writing.Nn", temp_name);

else
{

printf ("outputing the data\n");

for (i = 0; i < NUMBER_OF_RAYS; + + i)
{
Iprintf (out, "%l\n", s2[i]);

}
}

}
strcpy(data_fname, out_name);
fclose(in);
fclose(out);
printf("here\n");

free(sl);
Ifee(s2);

}

GETTTMES g ******************/

/***************ggQjN TRACE RAYS C******************/

/***** Eugene Malyarenko, June, 2000
Kevin Leonard May, 2002

Updated for projection 1 to be adapted for pipe scans
where rays wrap around the pipe.

EV COMMENTS-------------------------------------

Traces both
!!!!!!!!!! straight and curved !!!!!!!!!!!
rays depending on the parameter
"ray_type".

Traces rays into rayholder for subsequent
insertion into memory. Indices (i,j) have different meanings
for rays belonging to different projections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

289

i is always in the range (0,N) while j increases
with projection number:

There are total 6 projections (6*N*N rays). We assume rays going
only in one direction. Flipping the direction physically
changes nothing but the number of rays doubles and the
measurement errors could be reduced. The acquisition time also doubles.

1. Parallel verticals: i and j start from upper left and right comers
2. Parallel horizontals: i and j start from left bottom and top comers
3. LOW LEFT CORNER: i starts from top left, j from bottom left
4. LOW RIGHT CORNER: i starts from bottom left, j from bottom right
5. TOP RIGHT CORNER: i starts from bottom right, j from top right
6. TOP LEFT CORNER: i starts from top right, j from top left

Actual scanning MUST ALWAYS be performed in the same order unless
someone desides to change all the programs.

#include "tracer.h"

/*
traces straight or curved rays into memory
depending on the "ray_type"
traces only projections from "start_proj" to "end_proj"

* /

int trace_rays
(
int start_proj,
int end_proj,
int ray_type
)
{
int N = TRANS_PER_ARRAY;
int i,j, k;

/********* initialize external arrays to zero before tracing **********/
for(i = 0; i < N; i++) {
for(j = 0; j < NUM_PROJECTIONS*N; j+ +) {

cell_count[i][j] = 0; /* initialize segment counters */
curved_ray_length[i][j] = 0.0; /* initialize ray lengths */

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

290

}

/* trace rays for specified projections into memory */

for(k = start_proj; k <= end_proj; k++) {
printf("projection #%d\n", k);
for (i = 0; i < N; ++i)

for (j = (k-l)*N; j < k*N; ++j)
trace_ray (i,j, ray_type); /* trace straight or curved rays */

}

} /* end trace_rays */

/*
Traces the ray(i,j) into rayholder[0]

*/

int trace_ray (int i, int j, int ray_type)
{
double a = DIST_BET_TRANS;
int N = TRANS_PER_ARRAY;
int counter;
Point Start, End; /* ray endpoints*/
int Q_num; /* rayholder number */
int trace_type = ray_type;

counter = 0; /* initialize counter */

/* in the 1 projection i and j start from upper left and right corners */

if(j < N) { /* 1 projection, 0 <= j < N */
Start.x = 0.0;
Start.y = a*(N-i-0.5);
End.x = N*a;
End.y = a*(N-j-0.5);

II vX-dd^d- TVTay 2002
// Makes sure ray is never longer than halfway around pipe

if ((j - 0 > (N/2)) {

Start.y = Start.y - (N*a);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

291

}
else {

if ((i - j) > (N/2)) {

End.y = End.y - (N*a);

}

)/*****♦ ******************** *********** *******•*•***

/* in the 2 projection i and j start from left bottom and top comers */

else if(j < 2*N) { /* 2 projection, N <= j < 2N */
Start.x = a*(i+0.5);
Start.y = 0.0;
End.x = a*(j+0.5-N);
End.y = N*a;

}

/* 3. LOW LEFT CORNER: i starts from top left, j from bottom left */

else if(j < 3*N) { /* 3 projection, 2N <= j < 3N */
Start.x = 0.0;
Start.y = a*(N-i-0.5);
End.x = a*(j+0.5-2*N);
End.y = 0.0;
if((i >= 95) &&(j < 2*N+5))

trace_type = straight; //in the very comer trace straight
}

I* 4. LOW RIGHT CORNER: i starts from bottom left, j from bottom right */

else if(j < 4*N) { /* 4 projection, 3N <= j < 4N */
Start.x = a*(i+0.5);
Start.y = 0.0;
End.x = N*a;
End.y = a*(j+0.5-3*N);
if((i >= 95) && (j < 3*N+5))
trace_type = straight; //in the very comer trace straight

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

292

/* 5. TOP RIGHT CORNER: i starts from bottom right, j from top right */

else if(j < 5*N) { /* 5 projection, 4N <= j < 5N */
Start.x = N*a;
Start.y = a*(i+0.5);
End.x = a*(5*N-j-0.5);
End.y = N*a;
if((i >= 95) && (j < 4*N+5))

trace_type = straight; //in the very corner trace straight
}

/* 6. TOP LEFT CORNER: i starts from top right, j from top left */

else if(j < 6*N) { /* 6 projection, 5N <= j < 6N */
Start.x = a*(N-i-0.5);
Start.y = N*a;
End.x = 0.0;
End.y = a*(6*N-j-0.5);
if((i >= 95) && (j < 5*N+5))

trace_type = straight; //in the very corner trace straight
}

/****** knowing start and end, trace the ray depending on its type ********/

switch(trace_type) {

case straight:
Q_num = 0;
counter = trace_line_segment(Start, End, Q_num, counter);
if(counter <= 3) /* some bug when inserting short rays */

Ray_Holder[Q_num] [counter].last = true; /*mark it for subsequent search*/
else

Ray_Holder[Q_num] [counter-1] .last = true;

//print_rayholder(Q_num);
insert_ray_information(i,j,Q_num); /* segment pointers must be freed */
//printf("trace_ray: ray(%d, %d) Start.y: %f End.y: %f ...done\n",i,j,Start.y, End.y);
break;

case curved: /*!!!!! trace contrast image !!!!!*/
Q_num= golden_shooting(contrast_image, Start, End, j);
//print_rayholder(Q_num);
insert_ray_information(i,j,Q_num); /* segment pointers must be freed */
printf("trace_ray: ray(%d, %d)\n",i,j);
break;

default:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

293

printf("ray type should be either ""straight" or "'curved"\n");
exit(l);

} //end switch;

return (0);
}

* j? TRACE RAY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Viktorov, LA., Rayleigh and Lamb Waves — Physical Theory and Applications.
1967, New York: Plenum.

[2] Rose, J.L., Ultrasonic Waves in Solid Media. 1999, Cambridge: Cambridge
University Press.

[3] Rose, J.L., A Baseline and Vision o f Ultrasonic Guided Wave Inspection
Potential. Journal of Pressure Vessel Technology, 2002. 124: p. 273-282.

[4] Kak, A.C. and M. Slaney, Principles o f Computerized Tomographic Imaging.
1988, New York: IEEE.

[5] McKeon, J.C.P., Tomography Applied to Lamb Wave Contact Scanning, in Dept,
of Applied Science. 1998, College of William and Mary: Williamsburg.

[6] Malyarenko, E.V., Lamb Wave Diffraction Tomography, in Dept, o f Applied
Science. 2000, College of William and Mary: Williamsburg, VA.

[7] Hinders, M.K. and J.C.P. McKeon. Lamb Wave Tomography for Corrosion
Mapping, in Proceedings o f the 2nd Joint NASA/FAA/DoD Conference on Aging
Aircraft. 1999. p. 732-740

[8] Hinders, M.K., E.V. Malyarenko, and J.C.P. McKeon, Contact scanning Lamb
wave tomography. J. Acoust. Soc. Am., 1998. 104: p. 1790(A).

[9] McKeon, J.C.P. and M.K. Hinders, Parallel projection and crosshole contact
scanning Lamb wave tomography. J. Acoust. Soc. Am., 1999. 106: p. 2568-2577.

[10] McKeon, J.C.P. and M.K. Hinders. Lamb Wave Contact Scanning Tomography.
in Review o f Progress in QNDE. 1999: Plenum, New York. p. 951-958

[11] Hinders, M.K., E.V. Malyarenko, and J.C.P. McKeon. Ultrasonic Lamb Wave
Tomographic Scanning, in Proceedings o f SPIE. 1999. p. 279-291

294

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

295

[12] Malyarenko, E.V. and M.K. Hinders, Fan beam and double crosshole Lamb wave
tomography for mapping flaws in aging aircraft structures. J. Acoust. Soc. Am.,
2000. 108(4): p. 1631-1639.

[13] Hinders, M.K., K.R. Leonard, and E.V. Malyarenko. Blind test o f Lamb wave
diffraction tomography, in Review o f Progress in QNDE. 2000. Melville, NY:
American Institute of Physics, p. 173-180

[14] Malyarenko, E.V. and M.K. Hinders, Ultrasonic Lamb wave diffraction
tomography. Ultrasonics, 2001. 39(4): p. 269-281.

[15] Malyarenko, E.V. and M.K. Hinders. Comparison o f Double Crosshole and
Fanbeam Lamb Wave Tomography, in Review o f Progress in QNDE. 2001:
Plenum, p. 732-739

[16] Malyarenko, E.V., J.S. Heyman, and M.K. Hinders. Lamb Wave Tomography for
Monitoring Aircraft Structural Integrity, in USAF Aircraft Structural Integrity
Program Conference Proceedings. 2001. p.

[17] Leonard, K.R., E.V. Malyarenko, and M.K. Hinders, Ultrasonic Lamb wave
tomography. Inverse Probl., 2002. 18: p. 1795-1808.

[18] Leonard, K.R. and M.K. Hinders, Guided wave helical ultrasonic tomography o f
pipes. I. Acoust. Soc. Am., 2003.114(2): p. 767-774.

[19] Bregman, N.D., R.C. Baily, and C.H. Chapman, Crosshole seismic tomography.
Geophysics, 1989. 54(2): p. 200-215.

[20] Pratt, R.G. and N.R. Goulty, Combining wave-equation imaging with traveltime
tomography to form high resolution images from crosshole data. Geophysics,
1991. 56(2): p. 208-224.

[21] Graff, K., Wave Motion in Elastic Solids. 1975, New York: Dover Publications,
Inc.

[22] Kolsky, H., Stress Waves in Solids. 1963, New York: Dover Publications, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

296

[23] Achenbach, J.D., Wave Propagation in Elastic Solids. 1973, Amsterdam: North-
Holland.

[24] Auld, B.A., Acoustic Fields and Waves in Solids. 2nd ed. Vol. II. 1990, Florida:
Krieger Publishing Company.

[25] Wright, W., et al., Air-coupled Lamb wave tomography. IEEE Trans. Ultrason.
Ferroelectr. Freq. Contr., 1997. 44(1): p. 53-59.

[26] Kenderian, S., D. B.B., and R.E. Green Jr., Laser Based and Air Coupled
Ultrasound as Noncontact and Remote Techniques fo r Testing of Railroad
Tracks. Materials Evaluation, 2002. 60(1): p. 65-70.

[27] Scruby, C.B., et al., Quantitative studies o f thermally generated elastic waves in
laser-irradiated metals. J. Appl. Phys., 1980. 51(12): p. 6210.

[28] Bray, D.E. and R.K. Stanley, Nondestructive Evaluation: A Tool in Design,
Manufacturing, and Service. 1997, New York: CRC Press.

[29] Wilcox, P.D., M.J.S. Lowe, and P. Cawley, Mode and Transducer Selection for
Long Range Lamb Wave Inspection. J. Intellig. Mat. Sys. Struct., 2001. 12(8).

[30] Alleyne, D.N. and P. Cawley, Optimization o f Lamb wave inspection techniques.
NDT&E International, 1992. 25(1): p. 11-19.

[31] Ditri, J.J. and K.M. Rajana, Analysis o f the Wedge Method o f Generating Guided
Waves. Rev. Prog, in QNDE, 1995. 14: p. 163-170.

[32] Rajana, K.M., D.D. Hongerholt, and J.L. Rose, Analysis o f the Generation of
Guided Waves using Finite Sources: An Experimental Approach. Rev. Prog, in
QNDE, 1995. 14: p. 171-178.

[33] Rose, J.L., D. Jiao, and J. Spanner Jr., Ultrasonic Guided Wave ND Efor Piping.
Materials Evaluation, 1996. 54(11): p. 1310-1313.

[34] Hay, T.R. and J.L. Rose, Guided Wave Testing Optimization. Materials
Evaluation, 2002. 60(10): p. 1239-1244.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

297

[35] Quarry, M. and J.L. Rose, Multimode guided wave inspection of piping using
Comb transducers. Material Evaluation, 1999. 57(10): p. 1089-1090.

[36] Sun, Z., et al., Flexural Mode Tuning in Pipe Inspection. Rev. Prog, in QNDE,
2002. 21: p. 262-269.

[37] Rose, J.L., et al., Guided Wave Flexural Mode Tuning and Focusing fo r Pipe
Testing. Materials Evaluation, 2003. 61(2): p. 162-167.

[38] Wilcox, P., et al., An Example of the Use of Interdigital PVDF Transducers to
Generate and Receive a High Order Lamb Wave Mode in a Pipe. Rev. Prog, in
QNDE, 1997. 16: p. 919-926.

[39] Wilcox, P., M. Lowe, and P. Cawley, The effect o f dispersion on long-range
inspection using ultrasonic guided waves. NDT&E International, 2001. 34(1): p.
1-9.

[40] Wilcox, P.D., M.J.S. Lowe, and P. Cawley, A Signal Processing Technique to
Remove the Effect of Dispersion From Guided Wave Signals. Rev. Prog, in
QNDE, 2001. 20: p. 555-562.

[41] Sicard, R., J. Goyette, and D. Zellouf, A numerical dispersion compensation
technique fo r time recompression o f Lamb wave signals. Ultrasonics, 2002. 40: p.
727-732.

[42] Alleyne, D.N., T.P. Pialucha, and P. Cawley, A signal regeneration technique for
long-range propagation of dispersive Lamb waves. Ultrasonics, 1993. 31(3): p.
201-204.

[43] Zfau, W., et al., Ultrasonic guided wave NDTfor hidden corrosion detection. Res.
Nondestr. Eval., 1998.10: p. 205-225.

[44] Jenot, F., et al., Corrosion thickness gauging in plates using Lamb wave group
velocity measurements. Meas. Sci. Technol., 2001.12(8): p. 1287-1293.

[45] Sun, K.J. and P.H. Johnston, Effect o f Rivet Rows on Propagation o f Lamb Waves
in Mechanically Fastened Two-Layer Aluminum Plates. Rev. Prog, in QNDE,
1995.14: p. 1569-1576.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

298

[46] Sun, K.J. and P.H. Johnston, Disbond Detection in Bonded Aluminum Joints
Using Lamb Wave Amplitude and Time-of-flight. Rev. Prog, in QNDE, 1994. 13:
p. 1507-1513.

[47] Alleyne, D. and P. Cawley, The Long Range Detection of Corrosion in Pipes
Using Lamb Waves. Rev. Prog, in QNDE, 1995. 14: p. 2073-2080.

[48] Silva, M.Z., R. Gouyon, and F. Lepoutre, Hidden corrosion detection in aircraft
aluminum structures using laser ultrasonics and wavelet transform signal
analysis. Ultrasonics, 2003. 41(4): p. 301-305.

[49] Cho, Y., D.D. Hongerholt, and J.L. Rose, Lamb Wave Scattering Analysis for
Reflector Characterization. IEEE Trans. Ultrason., Ferroelectr., and Freq. Contr.,
1997. 44(1): p. 44-52.

[50] Zhao, X. and J.L. Rose, Boundary element modeling fo r defect characterization
potential in a wave guide. Int. J. Solids Struct., 2003. 40(11): p. 2645-2658.

[51] Chang, Z. and A. Mai, Scattering o f Lamb waves from a rivet hole with edge
cracks. Mechanics of Materials, 1999. 31(3): p. 197-204.

[52] Verdict, G.S., P.H. Gien, and C.P. Burger, Finite Element Study of Lamb Wave
Interactions with Holes and Through Thickness Defects in Thin Metal Plates.
Rev. Prog, in QNDE, 1992.11: p. 97-104.

[53] Alleyne, D. and P. Cawley, The Interaction o f Lamb Waves with Defects. IEEE
Trans. Ultrason., Ferroelectr., and Freq. Contr., 1992. 39(3): p. 381-396.

[54] Lowe, M., D. Alleyne, and P. Cawley, Mode Conversion o f Guided Waves by
Defects in Pipes. Rev. Prog, in QNDE, 1997.16: p. 1261-1268.

[55] Lowe, M.J.S., D.N. Alleyne, and P. Cawley, Defect detection in pipes using
guided waves. Ultrasonics, 1998. 36(1-5): p. 147-154.

[56] Clezio, E.L., M. Castaings, and B. Hosten, The interaction o f the SO Lamb mode
with vertical cracks in an aluminum plate. Ultrasonics, 2002. 40(1-8): p. 187-192.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

299

[57] Hayashi, T. and K. Kawashima, Multiple reflections o f Lamb waves at a
delamination. Ultrasonics, 2002. 40(1-8): p. 193-197.

[58] Seale, M.D., et al., Lamb Wave Response o f Fatigued Composite Samples. Rev.
Prog, in QNDE, 1994. 13: p. 1261-1266.

[59] Seale, M.D., Propagation o f Guided Acoustic Waves in Composite Media, in
Dept. Applied Science. 1996, College of William and Mary: Williamsburg, VA.

[60] Bray, D.E., D.M. Egle, and L. Reiter, Rayleigh wave dispersion in the cold-
worked layer o f used railroad rail. J. Acoust. Soc. Am., 1978. 64(3): p. 845-851.

[61] Bray, D.E. Higher-order Mode Rayleigh Waves in the Cold-Worked Zone o f
Railroad Rails, in Proceedings Fourteenth Symposium on Nondestructive
Evaluation. 1983. Nondestructive Testing and Analysis Center (NTIAC) San
Antonio, Texas, p. 520-525

[62] Bray, D.E., Application of the First Higher-Order (M21) Mode Rayleigh Wave to
the Inspection of Stainless Steel Overlays. Transactions of the ASME, 1990. 112:
p. 298-300.

[63] Grewal, D.S., Improved Ultrasonic Testing of Railroad Rail fo r Transverse
Discontinuities in the Rail Head Using Higher Order Rayleigh (M21) Waves.
Materials Evaluation, 1996. 54(9): p. 983-986.

[64] Seale, M.D. and B.T. Smith. Lamb wave propagation in thermally damaged
composites, in Rev. Prog, in QNDE. 1996. p. 261

[65] Grondel, S., et al., Fatigue crack monitoring of riveted aluminium strap joints by
Lamb wave analysis and acoustic emission measurement techniques. NDT&E
International, 2002. 35(3): p. 137-146.

[66] Beard, M.D., M.J.S. Lowe, and P. Cawley, Inspection of Rockbolts Using Guided
Ultrasonic Waves. Rev. Prog, in QNDE, 2001. 20: p. 1156-1163.

[67] Beard, M.D., M.J.S. Lowe, and P. Cawley, Ultrasonic Guided Waves for
Inspection o f Grouted Tendons and Bolts. Journal of Materials in Civil
Engineering, 2003. 15(3): p. 212-218.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300

[68] National Transportation Safety Board. Aircraft Accident Report: Aloha Airlines,
Flight 243, Boeing 737-200, n73711, near Maui, Hawaii, April 28, 1988. 1989,
National Technical Information Service.

[69] Jansen, D.P. and D.A. Hutchins, Lamb Wave Tomography. IEEE 1990
Ultrasonics Symposium, 1990. 2: p. 871-874.

[70] Hutchins, D.A., D.P. Jansen, and C. Edwards, Lamb-wave tomography using non-
contact transduction. Ultrasonics, 1993. 31(2): p. 97-103.

[71] Jansen, D.P. and D.A. Hutchins, Immersion tomography using Rayleigh and
Lamb waves. Ultrasonics, 1992. 30(4): p. 245-254.

[72] Jansen, D.P., D.A. Hutchins, and J.T. Mottram, Lamb wave tomography of
advanced composite laminates containing damage. Ultrasonics, 1994. 32(2): p.
83-89.

[73] Nagata, Y., et al., Lamb Wave Tomography Using Laser-Based Ultrasonics. Rev.
Prog, in QNDE, 1995. 14: p. 561-568.

[74] Degertekin, F.L., et al., In situ acoustic temperature tomography o f semiconducter
wafers. Appl. Phys. Lett., 1994. 64(11): p. 1338-1340.

[75] Hildebrand, B.P., et al., Lamb Wave Tomography for Imaging Erosion/Corrosion
in Piping. Rev. Prog, in QNDE, 1999.18: p. 967-973.

[76] Webb, S., The Physics o f Medical Imaging. 1988, London: IOP Publishing Ltd.

[77] Gazis, D.C., Three-Dimensional Investigation of the Propagation o f Waves in
Hollow Circular Cylinders. I. Analytical Foundation. J. Acoust. Soc. Am., 1959.
31(5): p. 568-573.

[78] Gazis, D.C., Three-Dimensional Investigation of the Propagation o f Waves in
Hollow Circular Cylinders. II. Numerical Results. J. Acoust. Soc. Am., 1959.
31(5): p. 573- 578.

[79] Silk, M.G. and K.F. Bainton, The propagation in metal tubing of ultrasonic wave
modes equivalent to Lamb waves. Ultrasonics, 1979. 17(1): p. 11-19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

301

[80] Mohr, W. and P. Holler, On Inspection of Thin-Walled Tubes for Transverse and
Longitudinal Flaws by Guided Ultrasonic Waves. IEEE Trans. Sonics and
Ultrasonics., 1976. SU-23(5): p. 369-374.

[81] Zemanek Jr., J., An Experimental and Theoretical Investigation of Elastic Wave
Propagation in a Cylinder. J. Acoust. Soc. Am., 1972. 51(1): p. 265-283.

[82] Meeker, T.R. and A.H. Meitzler, Guided wave propagation in elongated cylinders
and plates. Phys. Acoust., 1964. 1A: p. 111-167.

[83] Sun, Z., et al., Investigation on Interaction of Lamb Waves and Circumferential
Notch in Pipe by Means of Wavelet Transform. IEEE 2000 Ultrasonics
Symposium, 2000: p. 827-830.

[84] Ditri, J.J., Utilization o f guided elastic waves for the characterization of
circumferential cracks in hollow cylinders. J. Acoust. Soc. Am., 1994. 96: p.
3769-3775.

[85] Rose, J.L., et al., A guided wave inspection technique fo r nuclear steam generator
tubing. NDT&E International, 1994. 27: p. 307-330.

[86] Rose, J.L., K.M. Rajana, and F.T. Carr, Ultrasonic Guided Wave Inspection
Concepts for Steam Generator Tubing. Materials Evaluation, 1994. 52(2): p. 307-
311.

[87] Alleyne, D.N. and P. Cawley, The Excitation of Lamb Waves in Pipes Using Dry-
Coupled Piezoelectric Transducers. Journal of Nondestructive Evaluation, 1996.
15(1): p. 11-20.

[88] Alleyne, D.N. and P. Cawley, Long Range Propagation o f Lamb Waves in
Chemical Plant Pipework. Materials Evaluation, 1997. 55(4): p. 504-508.

[89] Alleyne, D., et al. The Lamb wave inspection o f chemical plant pipework, in
Review o f Progress in QNDE. 1997: Plenum, New York. p. 1269-1276

[90] Guo, D. and T. Kundu, A new transducer holder mechanism for pipe inspection.
J. Acoust. Soc. Am., 2001. 110(1): p. 303-309.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

302

[91] Bottger, W., H. Schneider, and W. Weingarten, Prototype EM AT System fo r Tube
Inspection with Guided Ultrasonic Waves. Nuclear Engineering and Design,
1987. 102(3): p. 369-376.

[92] Hirao, M. and H. Ogi, An SH-wave EM AT technique for gase pipeline inspection.
NDT&E International, 1999. 32(3): p. 127-132.

[93] Alers, G.A. and J.D. McColskey, Measurement o f Residual Stress in Bent
Pipelines. Rev. Prog, in QNDE, 2002. 21: p. 1681-1687.

[94] Alleyne, D.N., M.J.S. Lowe, and P. Cawley, The reflection o f guided waves from
circumferential notches in pipes. J. Appl. Mech., 1998. 65: p. 635-641.

[95] Lowe, M.J.S., The mode conversion o f a guided wave by a part-circumferential
notch in a pipe. J. Appl. Mech., 1998. 65: p. 649-656.

[96] Demma, A., P. Cawley, and M.J.S. Lowe, Guided Waves in Curved Pipes. Rev.
Prog, in QNDE, 2002. 21: p. 157-164.

[97] Aristegui, C , M.J.S. Lowe, and P. Cawley, Guided waves in fluid-filled pipes
surrounded by different fluids. Ultrasonics, 2001. 39(5): p. 367-375.

[98] Barshinger, J.N. and J.L. Rose, Ultrasonic Guided Wave Propagation in Pipes
with Viscoelastic Coatings. Rev. Prog, in QNDE, 2002. 21: p. 239-246.

[99] Long, R., et al., The Effect o f Soil Properties on Acoustic Wave Propagation in
BUried Iron Water Pipes. Rev. Prog, in QNDE, 2002. 21: p. 1310-1317.

[100] Shannon, K., et al., Mode conversion and the path o f acoustic energy in a
partially water-filled aluminum tube. Ultrasonics, 1999. 37(4).

[101] Cheeke, J.D.N., X. Li, and Z. Wang, Observation o f flexural Lamb waves (A0
mode) on water-filled cylindrical shells. J. Acoust. Soc. Am., 1998. 104(6): p.
3678-3680.

[102] Aristegui, C., P. Cawley, and M. Lowe, Reflection and Mode Conversion of
Guided Waves at Bends in Pipes. Rev. Prog, in QNDE, 2000. 19: p. 209-216.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

303

[103] Junger, M.C. and D. Feit, Sound, Structures, and Their Interaction. 1972,
Cambridge, MA: The MIT Press.

[104] Callahan, J. and H. Baruh, A closed-form solution procedure fo r circular
cylindrical shell vibrations. Int. I. Solids Struct., 1999. 36: p. 2973-3013.

[105] Kovalev, V.A., L.Y. Kossovich, and A.V. Nikonov, Transient waves in a
cylindrical shell subjected to sudden harmonic loads. Mech. Solids, 2000. 35: p.
143-152.

[106] Poruchikov, V.B., Response o f a cylindrical elastic shell to an applied impulse.
Mech. Solids, 2000. 35: p. 147-152.

[107] Blonigen, F.J. and P.L. Marston, Leaky helical flexural wave scattering
contributions from tilted cylindrical shells: Ray theory and wave-vector
anisotropy. J. Acoust. Soc. Am., 2001.110: p. 1764-1760.

[108] Pierce, A.D. and H.-G. Kil, Elastic Wave Propagation from Point Excitations on
Thin-Walled Cylindrical Shells. Journal of Vibration and Acoustics, 1990. 112: p.
399-406.

[109] Grover, D., et al., Integrity o f Uranium Hexafluoride Cylinders: Defense Nuclear
Facilities Safety Board Technical Report. 1995.

[110] Office of Depleted Uranium Hexafluoride, U.S.D.o.E.

[I l l] Jespersen, S., J. Wilhjelm, and H. Sillesen, Multi-angle compounding imaging.
Ultrasonic Imaging, 1998. 20: p. 82-102.

[112] Trahey, G., S. Smith, and O. van Ramm, Speckle pattern correlation with lateral
aperture translation: experimental results and implications fo r spatial
compounding. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 1986. 33: p. 257-
264.

[113] Wilhjelm, J., et al. Some imaging strategies in multi-angle spatial compounding.
in IEEE 2000 Ultrasonics Symposium. 2000. p. 1237-1243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

304

[114] Wells, P.N.T. and M. Halliwell, Speckle in ultrasonic imaging. Ultrasonics, 1981.
19: p. 225-229.

[115] Behar, V., D. Adam, and Z. Friedman, A new method of spatial compounding
imaging. Ultrasonics, 2003. 41(5): p. 377-384.

[116] Leonard, K.R., Neural Network Technology and Lamb Wave Tomography, in
Department of Physics. 1999, College of William and Mary: Williamsburg.

[117] Hou, J., Ultrasonic signal detection and recognition using dynamic wavelet
fingerprints, in Dept. Applied Science. 2004, College of William and Mary:
Williamsburg, VA.

[118] Hou, J. and M.K. Hinders, Dynamic Wavelet Fingerprint Identification of
Ultrasound Signals. Materials Evaluation, 2002. 60(9): p. 1089-1093.

[119] Strang, G., Wavelets, in American Scientist. 1994. p. 250-255.

[120] Abbate, A., et al., Signal detection and noise suppression using a wavelet
transform signal processor: application to ultrasonic flaw detection. IEEE Trans.
Ultrason. Ferroelectr. Freq. Contr., 1997. 44: p. 14-26.

[121] Coifman, R.R. and D.L. Donoho, Translation invariant de-noising. Lecture Notes
in Statistics, 1995. 103: p. 125-150.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

305

Vita

Kevin Leonard was bom in Rota, Spain on June 14, 1977 to Raymond and

Barbara Leonard. He received a B.S. degree in Physics and Government from the

College of William and Mary in 1999. During his senior year at William and Mary he

also received high honors for his research on neural networks and Lamb wave

tomography. In August 2000, Kevin entered the College of William and Mary as a

graduate assistant in the Department of Applied Science. He received an M.S. degree in

Applied Science with a concentration in Nondestructive Evaluation in 2002. Kevin

successfully defended his dissertation on May 28, 2004. He currently lives in Richmond,

Virginia with his wife, Heather.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Ultrasonic guided wave tomography of pipes: A development of new techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode analysis
	Recommended Citation

	tmp.1539716419.pdf.8zpPu

