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Abstract
The transport and fate of fine-grained sediments is a critical factor affecting the physical, 

chemical, and biological health of estuaries, coastal embayments, riverine, lacustrine, and 
continental shelf environments. A geophysical and sedimentological study of the York River as a 
part of the NSF Multi-disciplinary Benthic Exchange Dynamics (MUDBED) project was 
conducted to determine: 1 ) the primary drivers o f sediment erodibility within a fine-grained 
system, 2 ) if these drivers can be accurately measured through sedimentological and acoustic 
information, and 3) the spatial and seasonal variability o f erosion within the estuary. Previous 
studies indicate that increased erodibility within the York River Estuary is mainly due to recent 
ephemeral deposition, whereas lower erodibility is associated with eroded or biologically 
reworked conditions. By studying key physical and biological parameters in the York River 
estuary, we can more generally apply knowledge gained on relationships among sediment facies, 
seabed erodibility, and the recent history o f deposition, erosion, consolidation, and biological 
reworking.

Three different experiments were conducted to look at erosion, deposition, consolidation, 
and biological reworking in the Clay Bank region of the York River Estuary, each highlighting 
varying scales of temporal change. The first experimental approach utilized an Imagenex 881A 
rotary sonar for one- to three-month deployments to examine surficial changes o f the seabed, 
from hourly to monthly timescales, and allow scientists to track movement o f sediment in and 
out o f the system using sonar imagery. Optimized parameters were determined for cohesive 
sediment environments and a real-time observing rotary sonar was created to analyze the seabed 
on an hourly basis. In the second experiment, cores were collected on a weekly basis to 
investigate relationships between sediment properties and erodibility during the post-freshet 
dissipation of the mid-estuary turbidity maximum as well as over the spring-neap cycle. Grain 
size, water content, abundance of resilient pellets, the occurrence of 7 Be, and x-radiographs were 
analyzed and compared to the results o f Gust microcosm erosion tests to further constrain the 
controls on erodibility. The third experimental approach utilized seven high-resolution 
bathymetric surveys conducted between September 2008 and August 2009 within a 3.75 km 
region at Clay Bank. Seabed height was shown to vary both spatially and temporally in 
association with the spring freshet, likely related to the presence and migration o f a local 
secondary turbidity maximum.
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Chapter 1: Introduction



1.1. Background

Estuaries, coastal embayments, riverine shelves, and continental slope regions are often 

covered with muddy fine-grained sediment. Generally exhibiting a cohesive nature, muds have a 

defining “stickiness” that is difficult to predict and which fundamentally affects its mobility and 

the transport o f sediment (Whitehouse, 2000). The sediment dynamics occurring within less 

cohesive sandy environments have been relatively well documented, with the finding that the 

dominant particle size o f the bed sediment drives the behavior o f the distribution and fate o f the 

grains (van Rijn, 1984a; van Rijn, 1984b; van Rijn, 1984c; Nielsen, 1992; Soulsby, 1997; 

Komar, 1998). In contrast, less is known about the transport and dynamics o f fine-grained 

sediment, despite the importance of particle dispersal within fine-grained environments.

Previous studies have shown that fine-grained sediment can have a detrimental impact on 

water quality and ecology, especially in estuarine systems. Often a considerable amount of 

sediment enters the system via runoff, riverine input, and the bay or ocean. However, the 

amount of sediment entering tidally energetic estuaries is often much less than that which is 

found within the water column. The surplus o f sediment in suspension is thought to be due to 

the repeated resuspension of fine-grained sediment from the seabed (Kennedy, 1984; Dyer, 

1986). Large quantities o f suspended sediment can result in negative impacts within the estuary, 

including enhanced light attenuation, disruption and change of benthic community structure and 

distribution, modified transport o f organic carbon, and changes in the location and duration of 

eutrophication and hypoxia (Whitehouse, 2000; Hardisty, 2007). In addition, contaminants are 

often concentrated in fine-grained systems. Due to physio-chemical attraction and large surface 

area, these fine cohesive particles are highly susceptible to contaminant adsorbtion (Olsen et al., 

1993; Mitra et al., 1999; Whitehouse, 2000).
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Previous studies have shown that the erodibility of sediment beds is a complex function of 

grain size, water content, mineralogical composition, deposition and erosion history, and 

biological activity. A number of techniques, including: laboratory flume tests, in-situ 

measurements using submersible flumes, and core analysis, have been developed to investigate 

controls on fine sediment erosion, but the general scientific consensus is that it is very difficult to 

predict (Parchure and Mehta, 1985; McNeil et al., 1996; Maa et al., 1993). More recent 

technology, incorporating Gust microcosms and Acoustic Doppler Velocimeters (ADVs), for 

example, has allowed for a deeper and a more field-oriented understanding of sediment erosion 

(Thome and Hanes, 2002; Tolhurst et al., 2002; Betteridge et al., 2003; Porter et al., 2004; 

Dickhudt, 2008; Friedrichs et al., 2008). However, these techniques remain labor intensive and 

spatially limited in scope. If scientists were able to utilize remote sensing techniques to examine 

sediment erosion and deposition over various temporal and spatial scales, it would not only 

decrease the need for large-scale field operations but would allow for more continuous and 

widespread seabed measurements.

Over the past few decades, hundreds o f studies have utilized geologic acoustic mapping in 

order to analyze the seabed. Many of the early studies came about during the era o f World War 

II, using sonar to map the world’s oceans (Jones, 1999). As acoustical theory and technology 

developed over the next few decades, improved measurements were collected and publications 

such as Heezen and Tharpe’s (1957) “Physiographic Map of the North Atlantic” became 

available. Recent strides in technology have supplied researchers with equipment that can now 

provide measurement accuracies of mapping on centimeter scale. Geologic mapping of the 

seabed has been found to be of great importance for several applications including mapping and 

managing habitats, providing navigation information, as well as tracking environmental



conditions on multiple spatial and temporal scales (Caiti et al., 2006). As of late, estuaries have 

become a particular focus of mapping for habitat assessment, for improving navigational safety, 

and for national security protection (Hardisty, 2007).

1.2 Sediment Properties ~ Flocculation and Deposition

Depending on the degree of convergent sediment transport and the strength of waves and 

currents, fine-grained estuarine sediment particles can exist in four various states: mobile- 

suspended sediment (including various degrees of particle aggregation), high near bed sediment 

concentrations (e.g., fluid mud), unconsolidated sediment deposits, or consolidated sediment 

bed. If the fine-grained cohesive particles are in suspension, they are often susceptible to 

collision and cohesion with other sediment particles, resulting in particle flocculation and 

aggregation (Dyer, 1986). Factors affecting the aggregation of particles can be a result o f 

physiochemical or biologic processes. Flocculation via particle collisions can be due to three 

mechanisms: Brownian motion for weak floes, small-scale fluid shear which forms stronger 

flocculates, and differential rates of particle settling (Dyer, 1995). Conversely, biological 

processes may contribute to particle aggregation via biodeposition and organic binding. The 

size and abundance of flocculates and aggregates depends on sediment concentration, grain 

mineralogy, pH, organic content, and ionic strength, as well as biological packaging. It is 

important to consider this because flocculation and biological aggregation greatly enhance 

settling velocity. When comparing flocculated/aggregated grains to individual primary 

particles, the settling velocity can range several orders o f magnitude greater (Dyer, 1995; Hill 

and McCave, 2001; Mikkelsen et al., 2007).
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If the amount of deposition exceeds the rate o f resuspension/erosion of the seabed, 

accretion will result. In physically dominated regions, multiple lamination layers may be present 

within the seabed due to discrete deposition events. Schaffiier et al. (2001) defined the upper 

York River estuary as being predominately controlled by physical processes, where the primary 

sediment structures of the bed are laminations, and the majority o f the physical sediment 

disturbance occurs on a scale o f weeks to months. The authors found that the sediment record 

provided by these laminations supply a history of the estuary, illustrating erosional pockets 

between depositional periods ranging from centimeters to 1 0 ’s o f centimeters in sediment 

thickness. It was found in this area, storms provided a major source of erosion o f the seabed, 

disturbing 10’s -100’s o f centimeters o f sediment. However, storms are infrequent, and 

therefore tides were identified as the primary mechanism for resuspending and eroding sediments 

during more quiescent periods (Schaffiier et al., 2001).

1.3 Sediment Properties ~  Erosion

As stated previously, not all sediment is deposited and consolidated on the seabed. When 

the bottom shear stress, caused by the friction of water flowing over the bed surface, exceeds the 

seabed’s resistance to erosion, sediment is resuspended (Whitehouse, 2000). Laboratory 

experiments have shown that the erosive potential o f a mud matrix can be correlated to bed 

density (Thom and Parsons, 1980), but grain size, degree of aggregation, sediment fabric, 

deposition/erosion history, and organic constituents also need to be considered. This concept 

differs from non-cohesive sandy systems where the erodibility o f the seabed depends primarily 

on grain size. Density and consolidation of the cohesive grains is crucial in determining the 

magnitude of the critical shear stress needed for erosion and resuspension.
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The greater the shear stress o f water acting on the sediment surface, the higher the 

erosion potential. If the stress produced by the velocity o f the wave orbitals and/or currents 

continues to increase, erosion and resuspension will continue until a maximum critical shear 

stress threshold is reached or the sediment matrix is consolidated enough to where the critical 

erosion shear stress of the bed is no longer exceeded by the externally imposed bed stress 

(Whitehouse, 2000). In estuarine systems, Dyer (1995) found that erodibility could be closely 

related to the nature o f the bed layers existing very near the surface o f the seabed. The author 

found that at slack water two bed layers were present, a thin fluid type mud and the underlying 

firm consolidated bed. The upper layer o f fluid mud was found to be easily erodible and 

resuspended by incoming tides. Conversely, the lower unit was more difficult to erode, needing 

more intense conditions (i.e. storms, biological reworking, and extreme tides) with higher 

stresses to invoke sediment resuspension (Dyer, 1995).

1.4 Biostabilization and Biodestabilization.

Biostabilizers of the seabed have been documented for decades and are effective at 

reducing sediment erodibility by stabilizing the surface. Various studies over time have 

researched the impact o f the mucilaginous secretions, known as extracellular polymeric 

substances (EPS), produced by diverse benthic creatures (Young and Southard, 1978; Dade et 

al., 1996; Taylor and Paterson, 1998; Noffke et al., 2001; Tolhurst et al., 2002). Organisms such 

as microalgae, worms, and crustaceans can pelletize sediment as they feed as well as excrete a 

protective adhesive matrix that allows for increased organism mobility, habitat protection, and 

desiccation prevention. The mucous layer can bind the sediment particles and strengthens the 

upper seabed matrix, thereby decreasing the rate o f erosion acting upon the surface (Whitehouse, 

2000). Dade et al. (1996) analyzed how Alteromonus atlantica, common marine benthic



bacteria, affected kaolinite clay in terms o f yield stress. The authors found that as the bacteria 

began to secrete the exopolymer glue, the natural cohesive kaolinite particles became more 

resistant to shear stress resuspension. Fecal pellets and pseudofeces, often defined as 

biodeposition, can also have an impact on erodibility of the seabed, where it can either increase 

or decrease erosion (Whitehouse, 2000; Dickhudt, 2009). Dickhudt (2009) stated that 

pelletization of the seabed could be the cause of varying rates of erodibility within the York 

River. The author found that when erodibility o f the seabed was low, the surficial sediment o f 

the cores was dominated by fecal pellets; whereas at times of high sediment erosion, less 

strongly aggregated fine-grained sediment was prevalent with little to no fecal pellets present 

(Dickhudt, 2008).

Conversely, benthic organisms can have the opposite effect on the seabed by altering the 

bed roughness and erodibility potential of the surface sediment. As organisms create burrows, 

travel, or forage for food, the sediment may become weakened and susceptible to erosion 

(Eckman et al., 1981). The destabilization impact on the seabed can be a function o f the 

population density o f the benthic organisms, as well as seasonality (Schaffiier et al., 2001; 

Anderson, 2005). In addition, as benthic activity intensifies and the degree of bioturbation 

increases, the friction of the seabed and the overlying water flow is altered and ultimately the 

amount o f sediment resuspended may increase (Widdows et al., 2000; Patterson et al., 2000). A 

previous study of the Ems Do Hard estuary in the Netherlands showed the impact o f a benthic 

amphipod, Corophium volutator, on sediment transport (Komman and deDeckere, 1998). The 

authors found that in 1996 the sediment erodibility within the estuary was significantly different 

between March and August due to biological activity. A March diatom bloom resulted in high 

levels o f EPS concentrations within the sediment, which seemed correlated to the documented
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decrease in suspended sediment concentrations within the study area. As the diatom adhesive 

EPS matrix degraded and amphipod bioturbation and grazing increased, the sediment 

concentration within the Ems Dollard estuary increased, linking the impacts o f biological and 

physical forcings o f fine-grained systems (Komman and deDeckere, 1998).

1.5 Turbidity Maxima

Fine sediment resuspension is commonly noted within estuarine turbidity maxima 

(ETMs) (Geyer, 1993; Dyer, 1995). Residual water circulation and salinity fronts are thought to 

be the primary mechanisms for forming ETMs in partially-mixed estuaries, while tidal 

asymmetry is thought to be increasingly important as tidal energy increases (Dyer, 1986; Geyer, 

1993). Classically, the ETM in partially-mixed estuaries is a region of high-suspended sediment 

concentrations that results from convergence near the salt limit (Postma, 1967; Burchard et al., 

2004). In the York River, a primary ETM is often present near the head of salt in the region of 

the confluence of the Pamunkey and Mattaponi Rivers. Lin and Kuo (2001) found that the 

York’s primary ETM is formed by both gravitational circulation and tidal asymmetry, with an 

additional factor being the inhibition of turbulence by estuarine stratification. The ETM often 

moves with the tides, with the location further upstream after the flood tide and downstream after 

ebb tide (Dyer, 1995). Tides provide the main source of energy for the ETM for short-term 

resuspension, with spatial evolution of the ETM occurring in response to changes in river 

discharge and the spring-neap cycle, and drastic changes of the ETM occurring during major 

storms and floods.

In addition to primary turbidity maxima, some estuaries can develop a secondary 

turbidity maximum (STM). Estuaries such as the Hudson River, Danshuei River, Paxtuxent
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River, and the York River have all had STMs documented (Roberts and Pierce, 1976; Geyer et 

al., 2001; Lin and Kuo, 2003). Lin and Kuo (2003) found that the STM in the York River 

Estuary is formed as a result o f four major mechanisms: resuspension o f bottom sediments, 

bottom residual flow convergence, tidal asymmetries, and the suppression of turbulent diffusion 

due to stratification of the water column. The York River STM identified by Lin and Kuo (2001) 

is generally located about 40 kilometers up estuary, near the area known as Clay Bank. Because 

of channel shoaling in the region, this location is conducive to STM development as it is often a 

stratification transition zone from well-mixed to partially stratified (Lin and Kuo, 2003). 

Generally, STMs are ephemeral features whose appearance are largely controlled by the spring- 

neap tidal cycle and riverine discharge (and the effects of each on the estuarine salinity field). 

Both ETMs and STMs contain high amounts of mobile fine sediment that is constantly being 

deposited, reworked, and resuspended back into the water column. The sediment mass o f the 

turbidity maximums are variable and dependent on hydrodynamic, seabed, and biological 

factors.

1.6 Acoustic Mapping

Over the past two centuries, hydrographic surveys have been conducted to map bathymetry 

of the world’s oceans, coasts, and navigable waterways (Van Der Wal and Pye, 2003). Early 

mapping techniques utilized lead lines or sounding poles with triangular positioning in order to 

capture sounding depths (Cohen, 1970; Gustavson, 1975). With the advent of acoustic 

technology, new mapping tools became available to increase the accuracy of bathymetric maps 

using echo-sounders (Wright and Bartlett, 2000; Van Der Wal and Pye, 2003). Further advances 

in technology led to a shift to digital from paper data and allowed for a greater resolution via the 

development o f swath bathymetry, airborne laser, sidescan sonar, etc. Currently, many regions



worldwide, especially estuaries due to their direct impact on human health, recreation, and 

industry, are being heavily surveyed. Regions such as San Francisco Bay, Narragansett Bay, Tay 

Estuary, and the Hudson River are prime examples o f extensively mapped areas (Valente et a l, 

1992; Wewetzer and Duck, 1999; Foxgrover et al., 2004; Levinton and Waldman, 2006).

Levinton and Waldman (ed., 2006) compiled various mapping studies to capture the dynamic 

interdisciplinary nature o f the Hudson River Estuary, evaluating parameters ranging from sub

bottom seismics and surface bathymetry, to contaminant distribution and biological influences. 

By taking into account bathymetry, sub-bottom profiles, and sidescan imagery, scientists were 

able to infer and understand more about the Hudson system than if they only had one data set 

(Bell et al., 2006).

The timing of the mapping surveys is very important, and extreme events and extraneous 

conditions need to be taken into account while processing the data (Hardisty, 2007). Often these 

mapping efforts are time consuming and capture a snapshot in time; however, the spatial extent 

of the acoustic surveys greatly exceeds what is possible via a typical coring field study. By using 

swath bathymetry, chirp, and sidescan, one is able to get a detailed image of the seabed on a 

large spatial scale, but depending on the frequency of sampling, not always a good temporal 

trend. Within the last few years, scientists have begun deploying rotary sonars on the seabed in 

order to gain temporal information of particular areas of interest in various environments (Hay 

and Wilson, 1994; Irish et al., 1999; Mayer et al., 2007; Cheel and Hay, 2008). For example, 

Cheel and Hay (2008) used a rotating sonar to investigate how directional properties of incident 

waves affected cross-ripple bed formation. They captured 8 -meter diameter images o f the 

seabed at 30-minute intervals during quiescent times and every 10 minutes during storm events. 

By monitoring the seabed on a sub-hourly basis during 11 storms, Cheel and Hay (2008) were
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able to relate changes of the seabed to unimodal incident wave directions. The combination of 

spatial and temporal studies is crucial for a detailed understanding of sediment transport and 

variable seabed changes, as well as providing valuable information to allow for better public 

policy and comprehension of the world’s waterways.

1.7 Isotope Dating

In order to estimate the sediment mixing and accumulation rates occurring within a 

particular system, including biological effects, researchers have utilized particle-reactive 

radionuclides such as 7Be and 137Cs as chronological dating tools. 7Be (53.3 day half-life) is 

useful in determining short-term rates of accumulation, seabed mixing and erosion (Dibb and 

Rice 1989a; Dibb and Rice, 1989b; Wallbrink and Murray, 1993; Cornett et al., 1994; Clifton et 

al., 1995; Papastafanou et al., 1995; Feng et al., 1999), while 137Cs (30.13 year half-life) is better 

suited for detecting yearly and decadal changes within the seabed (Papastafanou et al., 1995; 

Kostaschuk et al., 2008). 7Be is a naturally occurring radioisotope, formed by nuclear spallation 

as a consequence of secondary cosmic rays neutrons bombarding oxygen and nitrogen. 7Be is 

usually produced in the stratosphere; however, a minimal portion o f the isotope is created in the 

troposphere (Turekian et al. 1983). In order for the cosmogenic nuclides to be transported to 

earth, the isotopic particles circulate from the stratosphere to the troposphere where they attach 

to aerosols and are deposited on earth generally by precipitation (Kim et al., 2000). Most 

commonly, the stratosphere-troposphere mixing occurs during the spring and fall. At this time 

the layer between the two atmospheric layers, the tropopause, thins and allows for a greater 

amount of gas exchange to occur between the two layers (Turekian et al. 1983; Kim et al., 2000; 

Grew, 2002).
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Unlike the naturally occurring radioisotope 7 Be, 137Cs is a thermonuclear byproduct.

When nuclear weapons were tested throughout the 1950’s and 1960’s, large quantities of 137Cs 

were released into the atmosphere until atmospheric H-bomb testing ceased in 1972 (Sharma et 

al., 1987; Walling et al., 1999). The rates o f atmospheric fallout varied over time but it was 

determined that the peak nuclear fallout occurred in 1963 ± 2 years (Sharma et al., 1987). The 

max 137Cs atmospheric fallout generally corresponds with the highest Cs activities present in the 

sediment, allowing this radioisotope to be used as a dating horizon marker. The novel approach 

to the 1963 marker application is the 137Cs has the monitoring ability to date upward mixing 

bioturbation (Bradshaw et al., 2006). Furthermore, 137Cs has been found to be a valuable tool in 

bioturbation studies, especially in fine-grained environments because of the easy absorption of 

the nuclide to clay particles and organic matter (Robbins et al., 1979).

1.8 High-Resolution Core Characterization Methods

Within the last few decades, modem core logging systems have been developed to allow for 

continuous high-resolution data collection and incorporating multiple sensors capable of 

measuring a variety of parameters (Gunn and Best, 1998). The VIMS GEOTEK core logger is 

outfitted with gamma-ray attenuation, P-wave velocity, and color spectrophotometer sensors.

The gamma-ray sensor allows for measurements of sediment bulk density, porosity, and water 

content (Weber et al., 1997; Best and Gunn, 1999). The P-wave velocity sensor helps determine 

variations in grain size, assess core quality, and, along with the gamma-ray sensor, helps provide 

information needed to construct synthetic seismograms of the sediment core (Weber et al., 1997; 

Best and Gunn, 1999). Lastly, the color spectrophotometer is able to detect small-scale changes 

in sediment color variability, and if applicable identify paleoclimatic cycles and events (Rothwell 

and Rack, 2006). In 2004, Carbotte et al. combined geophysical mapping data (chirp and
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sidescan) with a collection o f shallow gravity cores to look at environmental changes within the 

Hudson River estuary. Measurements o f p-wave velocity, magnetic susceptibility, and gamma- 

ray attenuation were determined with a GEOTEK core logger. By combining the mapping and 

core logging data sets, the authors were able to map fossil oyster beds throughout the estuary and 

found that anthropogenic influences significantly impacted the paleo-oyster beds and the 

estuarine environment overall (Carbotte et al., 2004)

In muddy environments, visualization of the core sediment may not reveal as much 

information as a core collected within a sandy environment, due to the opacity o f the sediment 

(Rothwell and Rack, 2006). Therefore, x-radiography has been utilized to envision bed 

structures and infer fine-scale density changes within fine-grained cores, which cannot be seen 

with the naked eye. Through the use o f x-ray technology, processes such as sediment deposition, 

bioturbation, physical alteration, and erosion can be better recognized. Dickhudt (2008) 

collected x-rays concurrently with erosion cores, in order to compare properties o f the seabed to 

the dominating physical and biological parameters o f the study areas within the York River 

estuary. In the study, the author identified two end-member x-ray types, which were categorized 

by the dominating forces acting on the sediment bed. Laminated x-rays from Gloucester Point 

and Clay Bank were inferred to represent recent deposition and the samples were thought to be 

controlled by physical forcings. Laminated x-rays either had few to no bioturbators, or the 

physical parameters overwhelmed any biological activity at that site. Conversely, benthic 

biologically dominated systems produced mixed or mottled x-rays, indicating either high 

amounts of biotic influence or little to no recent sediment deposition (Dickhudt, 2008).
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1.9. Estuarine Sediment Transport Modeling.
When sedimentological data is combined with mathematical modeling, scientists can

develop a deeper understanding of how various factors are likely to influence the estuary and 

seabed. When modeling estuarine sediment transport, it is important to understand the 

hydrodynamics of the system, as well as the physics behind each transport mechanism.

Sediment transport can be modeled various ways and in different dimensions, such as 3D, 2DH 

(horizontal), 2DV (vertical), 2D 2 layer, ID, point models, and Lagrangian (particle) models 

(Whitehouse, 2000; Hardisty, 2007). Field data can be used to constrain sediment transport 

models, for example by helping to define sources of mud or providing measurements of 

suspended sediment concentrations for calibration. Field measurements can be used to adjust the 

model in order to provide a more realistic concept o f the influencing parameters within an 

estuary, and the model can be utilized to predict the rate of sediment transport, along with 

locations o f erosion and deposition. If field data is unavailable, mathematical models can still 

help determine dominate parameters within a system or set up various schematic tests to help in 

assessing hypotheses (Whitehouse, 2000).

In 2008, Rinehimer applied ID and 3D models to the York River estuary focusing on 

sediment transport in this muddy fine-grained environment. The models were implemented 

specifically to look at feedback mechanisms between sediment flux and erodibility. The ID 

model focused on the sensitivity of erodibility to forcing and bed parameters o f the model and 

the influence of spatial and seasonal variations. Rinehimer et al. (2008) found that when the 

cohesive sediment bed model was implemented for the York River, it performed well when a 

constant erosion rate parameter was utilized in conjunction with a depth-varying critical erosion 

shear stress. Furthermore, it was documented that the spring-neap tidal cycle impacted 

erodibility and bed consolidation, which then fed back to influence turbidity (Rinehimer et al.,

14



2008). The 3D model calculated sediment concentrations and erodibility throughout the estuary 

and compared the results to observational data collected by Dickhudt (2008) (Rinehimer, 2008). 

By using an average grid spacing of 170 meters along-channel and 140 meters across-channel, 

the ROMS model was run for a 200-day period that coincided with field data collection. 

Rinehimer (2008) found that areas of persistently high concentration in the York River near Clay 

Bank were associated with transport convergence zones, recent deposition, and high bed 

erodibility.

1.10. Study Area

Over the years, many research projects have been conducted within the York River 

(Figure. 1-1) making it an increasingly well-documented study locale. Though the studies have 

ranged from biological fauna to watershed management, many have looked at the physical and 

geologic properties of the estuary. Most recently, these research initiatives have included 

various interdisciplinary components. Examples include research focusing on the biological and 

physical controls on seabed properties within the estuary (Dellapenna et al., 1998,2003; 

Schaffiier et al., 2001; Hinchey, 2002; Kniskem and Kuehl, 2003), tidal asymmetry, bed stress 

and stratification (Friedrichs et al., 2000; Kim et al., 2000; Scully and Friedrichs, 2003), turbidity 

maxima (Lin and Kuo, 2001; Lin and Kuo, 2003; Romine, 2004), and controls on bed erodibility 

and settling velocity (Friedrichs et al., 2008; Dickhudt et al., 2009, 2011; Cartwright et al., 2009, 

2011).

The York River is a partially mixed sub-estuary of the Chesapeake Bay that extends 56 

kilometers from the Bay to the confluence of the Pamunkey and Mattaponi Rivers. Although 

microtidal, the tidal currents within the river, particularly in the middle and upper portions o f the
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estuary, have been documented as being strong enough to regularly resuspended bottom 

sediments (Dellapenna et al., 1998). The main channel of the estuary averages about 10 meters 

in depth and is thought to be controlled by antecedent geology of an incised Paleo-river valley 

(Carron, 1976). The main channel bifurcates near Page's Rock Light and a shallower (~ 5 meter 

deep) secondary channel, which is considered partially abandoned, extends northward on the 

western flank o f the main channel (Dellapenna et al., 2003). Two shoals flank the channels and 

have an average depth of ~ 2 meters.

Researchers have found that physical seabed processes dominate in the upper regions of 

the York River estuary, whereas biological processes are more dominant closer to the mouth 

(Kniskern and Kuehl, 2003) (Dellapenna et al., 1998). Schaffner and Dellapenna (Dellapenna et 

al., 1998; Dellapenna et al., 2001; and Dellapenna et al., 2003), along with other collaborators 

have done a tremendous amount o f research within the York River. The work found that there 

are several distinct regions in the estuary. The broadest of the generalizations classify the 

estuary into three areas: upper, middle, and lower York. Due to the influences o f river discharge 

and tidal energies, along with the location o f the main estuarine turbidity maximum, little 

biological reworking takes place in the upper York, and the system there is physically dominated 

(Figure 1-2.) Conversely, the physical energy decreases further down estuary and biological 

conditions dominate in the lower York (Schaffner et al., 2001; Dellapenna et a l, 2003).

Moving seaward through the middle portion of the York River estuary, the depth and 

cross-sectional area increase, and the middle York acts as a transition zone between the head and 

mouth of the estuary. Due to the deeper water and gradients in physical energy, this is often a 

region of changing stratification and convergent sediment transport (Lin and Kuo, 2001) (Lin 

and Kuo, 2003). There is also decreased physical reworking o f the seabed within the middle part
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of the system, and biological activity begins to become more prevalent. Another distinguishing 

characteristic o f the middle part o f the estuary is the secondary turbidity maximum (STM). The 

STM migrates throughout the middle section of the York and is present only at certain periods, 

typically following periods of increased river discharge. The ephemeral deposition and physical 

mixing associated with the STM is very intense at the seabed and seasonally creates conditions 

that are unfavorable to benthic activity (Lin and Kuo, 2003) (Figure 1 -3).

Recently, several studies within the MUDBED project have been completed. Both 

Dickhudt (2008) and Rinehimer (2008) looked at the physical, geologic, and hydrodynamic 

forces acting upon Gloucester Point and Clay Bank to determine sediment characteristics and 

bed properties o f each region. Dickhudt (2008) measured sediment erodibility o f the three main 

MUDBED study sites over a 14-month time period. Cores were collected throughout the course 

of the study and spatial and temporal erodibility estimates were calculated using a Gust erosion 

microcosm. In addition to erodibility measurements, x-radiographs and the solids volume 

fraction were used to relate geologic facies to sediment transport; the results illustrated that 

erodibility was found to vary seasonally. High erodibility was associated with the secondary 

turbidity maxima at Clay Bank, and biological influences had a more systematic impact on the 

erodibility at Gloucester Point. Incorporating observations collected by Dickhudt, Rinehimer 

(2008) developed a three-dimensional numerical model to look at erodibility and movement of 

sediment within the York River estuary. The model showed a transient layer of sediment that 

moved in and out of the mid-estuary STM, and overall the model calculations appeared to be 

reproduce observed patterns. Rinehimer’s results suggested that the ephemeral deposits o f mud 

driving the STM tend to accumulate on the SW flank of the main channel, presumably as a result 

o f lateral circulation patterns.



1.11. Overall Aim and Organization

This study focuses on a tidally energetic, fine-grained estuary, to assess and evaluate 

sediment erosion and deposition as a part the large cooperative and interdisciplinary 

investigation Multi-benthic Benthic Exchange Dynamics (MUDBED) project. The Clay Bank 

region of the York River was surveyed over several years to investigate a variety of time scales 

acting upon the surface of the seabed in a muddy, cohesive environment. The overall purpose is 

to assess patterns of deposition, erosion, and biological reworking on very short time scales 

(hourly/daily) (Chapter 2), as well as weekly (Chapter 3) and seasonal (Chapter 4) timescales.

By investigating the spatial and temporal sediment deposition/erosion/biological reworking 

patterns, we aim to provide a greater understanding of sediment properties and their relationship 

with bed erodibility and hydrodynamic variability in cohesive estuarine environments.

By studying various physical and biological parameters in the York River estuary, we can 

ultimately use them to increase our knowledge of the relationships among sediment facies, 

seabed erodibility, and the recent history o f deposition, erosion, and biological reworking on 

larger scales elsewhere. For example, current invasive techniques for measuring erodibility 

cannot easily be expanded to broader scales, but acoustic measurements ground-truthed with 

sedimentological data can potentially be used as a proxy for such key seabed properties over 

much more expansive spatial scales.

The results of this effort are presented in the following chapters. Chapter Two used a 

rotary sonar to document hourly and daily changes of the seabed by utilizing a furrow, or 

longitudinal sedimentary bedform, to identify period of erosion and deposition. Using a rotary 

sonar system both qualitatively and quantitatively can capture seabed changes at hourly and daily 

timescales, which are often missed when conducting cruise field surveys. Furthermore, a
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methodology was created to analyze sediment bed erosion and deposition within a muddy 

environment, where rotary sonars are typically not employed, while incorporating a real-time 

component that allows fine tuning of the instrument in order to achieve optimal seafloor images.

Chapter Three evaluates changes in bed conditions and properties over the course of 

dissipation of a secondary turbidity maximum on a weekly time scales. The study aimed to look 

at identifying key differences in the bed and/or hydrodynamics for low versus high erodibility 

cores and determining if consolidation could be documented and measured as the spring freshet 

dissipates throughout the estuary, with samples being collected at the Clay Bank region. By 

investigating sediment properties, including grain size, organic and water content, 7Be activity, 

along with sediment matrix and resilient pellet content, a weekly short-term analysis documents 

appropriate parameterization of time-dependent erodibility o f muddy seabeds, thereby providing 

an improved understanding and accurate modeling of sediment dynamics.

Chapter Four presents a seasonal survey of bathymetric changes o f the Clay Bank region 

of the York River Estuary aimed to better understand spatial sediment deposition patterns and 

associated sediment-trapping mechanisms in the central portion of a tidally energetic partially 

mixed estuary. Utilizing an interferometric swath system, high-resolution bathymetry was 

obtained for seven surveys over a one-year period. Overall, the cumulative Clay Bank 

bathymetric data set provides a comprehensive bathymetric change analysis, not often conducted 

in estuarine environments, contrasting monthly changes o f seabed elevation as it related to the 

presence of the secondary turbidity maximum zones.
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York River Estuary, Chesapeake Bay VA, USA
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Figure 1-1. Map of York River Estuary. Location of Clay Bank study site indicated by black 
dot. Locations of US EPA long-term monitoring stations closest to Clay Bank indicated by 
red squares.
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Figure 1-2. Map of Chesapeake Bay, highlighting the bathymetry and turbidity maximum 
zones throughout the region. The study area is delineated by a star, located in the Clay 
Bank region of the York River (modified from Newell et al., 2004).
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Figure 1-3. The York River biological and physical gradient.
X-rays: West Point ~ June 1981 (Schaffner et al., 2001), Clay Bank STM ~ February 2009, Clay 
Bank no STM ~ March 2009, Gloucester Point ~ February 2009, and Chesapeake Bay ~ January 
1995 (Schaffner et al., 2001)
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Abstract

Resuspension of fine-grained sediments is a critical factor affecting the physical, chemical, and 

biological health of estuarine and coastal environments. As a part of the MUDBED (Multi

disciplinary Benthic Exchange Dynamics) Project, a multi-frequency/multi-ranging rotary sonar 

was used to help assess the relationship between seabed properties and resulting bed erodibility 

in the York River sub-estuary, Chesapeake Bay, VA. A tripod-mounted Imagenex 881A rotary 

sonar was deployed to obtain 360° surface images on an hourly basis, capturing a nearly 

continuous time series of side-scan backscatter. Rotary sonar instrumentation is a versatile tool 

for the observation of seafloor morphology with a wide variety o f potential applications. This 

chapter presents a review of rotary sonar development and implementation, followed by analysis 

of seafloor morphological evolution based on rotary sonar observations low-energy cohesive 

environment, the York River Estuary. Optimized parameters were determined for cohesive 

sediment environments and a real-time observing rotary sonar was created to analyze the seabed 

on an hourly basis. A methodological approach for rotary sonar deployment, utilization, and data 

analysis is provided which can also be utilized in other cohesive estuarine environments.

Though it can be difficult to utilize rotary sonars in fine grained environments, this study found 

key tunable parameter sequences for cohesive estuarine environments, including using 

frequencies o f 675 and 1000kHz,. 0.5 m above the bed.

2.1 Introduction

Precise observations o f the dynamic processes interacting at the sediment-water interface 

are crucial to understanding seafloor morphology and associated chemical and biological 

processes. The magnitude and frequency o f hydrodynamic forcing often dictates the resulting
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morphologic response. Large-scale events, including extratropical storms and nor’easters, can be 

a catalyst for abrupt changes that may dissipate quickly; conversely, daily processes acting on 

the seafloor (i.e. tides, waves, and currents) may not provide an instantaneous response, but 

rather yield gradual changes and environmental modifications over longer timescales. Rotary 

sonar technology has allowed for precise observations of seabed morphologic evolution.

The transport and fate of seafloor sediments are critical factors affecting the physical 

conditions, chemical composition, and the biological health o f ecosystems, especially in 

estuaries, along shorelines, and on continental shelf environments (Whitehouse, 2000). The 

erodibility potential o f sediment beds is a complex function o f grain size, bed roughness, water 

content, mineralogical composition, deposition and erosion history, physical water column 

conditions, and local biological activity (Soulsby, 1997; Whitehouse, 2000). General models of 

sediment transport relate sediment mobility to hydrodynamic shear stress exerted on the bed by 

wave orbital and current velocities, the degree to which flow is turbulent, seafloor roughness, 

and sediment grain size (Soulsby, 1997).

Transport of sands, or non-cohesive sediment ($10% of grains smaller than 63 pm), is

important to understand, as it is vital to harbor development (initial and maintenance dredging),

navigational channel administration (safety of commercial shipping and recreational boating),

shoreline maintenance (beach nourishment), coastal protection (shoreline structures), engineered

structures (platforms and pipelines), benthic habitat assessment, and commercial fisheries

management. The sediment dynamics occurring within non-cohesive sandy environments has

been relatively well documented (van Rijn, 1984a; van Rijn, 1984b; van Rijn, 1984c; Nielsen,

1992; Soulsby, 1997; Komar, 1998). General models of sediment transport relate sediment

mobility to hydrodynamic shear stress exerted on the bed by wave orbital and current velocities,
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the degree to which flow is turbulent, seafloor roughness, and sediment grain size (Soulsby, 

1997). It is generally understood that the dominant particle size o f the bed sediment drives the 

behavior and distribution of the grains within the system (van Rijn, 1984a; van Rijn, 1984b; van 

Rijn, 1984c; Nielsen, 1992; Soulsby, 1997; Komar, 1998). Grains larger than 2mm are classified 

as gravel and their transport behavior is primarily dependent upon bed permeability rather than 

grain size. In beds composed of mixed sand and mud, the effects of electrochemical and 

biological cohesion become important to transport processes if the relative mud composition 

exceeds 10%. Mixed sediments such as these are more resistant to erosion than either pure sands 

or pure mud (Soulsby, 1997).

In contrast, muds (cohesive sediment) have a “stickiness” that is difficult to define or 

predict, which fundamentally affects its mobility and transport (Whitehouse, 2000). Less is 

known about the transport and dynamics of fine-grained sediment, despite the importance of the 

particle dispersal within these environments. Often a considerable amount of sediment enters the 

system via surface runoff, riverine input, and oceanic influx. However, the amount o f sediment 

entering tidally energetic estuaries is often much less than that which is found within the water 

column. Even when sediment input is small, energetic tidal currents and waves can retain or 

resuspend sediment into the water column. The surplus of sediment in suspension is thought to 

be due to the repeated resuspension o f fine-grained sediment from the seabed (Kennedy, 1984; 

Dyer, 1986). Large quantities o f suspended sediment have negative impacts within an estuary, 

including enhanced light attenuation, disruption and change of benthic community structure and 

distribution, modified transport o f organic carbon, and changes in the location and duration of 

eutrophication and hypoxia (Whitehouse, 2000; Hardisty, 2007). In addition, contaminants are 

often concentrated in fine-grained systems. Due to physio-chemical attraction and large surface
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area, these fine cohesive particles are highly susceptible to contaminant adsorbtion (Olsen et al., 

1993; Mitra et al., 1999; Whitehouse, 2000). One method in which sediment transport can be 

estimated is by observation of the seabed over a variety o f timescales. The objective o f this 

paper is to address the use o f rotary sonar technology to assess changes in bedform morphology 

and determine sediment patterns o f erosion and deposition within cohesive fine-grained 

environments.

2.2 Development and Use o f  Rotary Sonar

In the past, in water SCUBA divers or optical instruments measurements were the only 

way to determine morphologic seabed changes. Initial field-based attempts to monitor the 

morphological state and evolution of the seafloor relied on SCUBA divers marking the bed 

profile on a semi-buried Plexiglas board with a grease pencil (Inman, 1957). This technique was 

not useful during time of high-suspended sediment concentrations, which obscured diver 

visibility and resulted in spatially and temporally limited observations due to the relatively short 

period of time divers could be on the bottom. Data collection was also necessarily limited to fair- 

weather conditions when diving was safe and bed evolution was least dynamic. Subsequent 

investigations utilized optical based systems, such as in-situ photography, which allowed for 

persistent observation of a field site. However, these were also often insufficient to provide 

consistently clear images of the seabed suitable for morphological interpretation due to the 

varying conditions of sediment suspension. Acoustic instrumentation overcame these early 

observational challenges, and over the past fifty years, sonar has become increasingly common 

in oceanographic research (Blondel, 2009; Irish et al., 1999; Traykovski et al., 1999).
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Sonar technology first appeared in the early 1900’s as a way to detect icebergs. Interest 

o f the sound navigation and ranging technology increased in the 1910’s during the eve of World 

War I to help military interests detect submarines by means o f echo location (Spindel, 1985). 

Since that time, towed side-scan sonar units have provided images of the seafloor around the 

world, with a resolution on the order of centimeters to meters. However towed side scan sonar is 

not designed for continuous monitoring o f a singular site and cannot easily make consistent time- 

lapse imagery of bed evolution.

Historic Applications o f Rotary Sonar

Since the 1970’s, rotary sonar technology has been widely used by the offshore

community for structural inspection and remotely operated vehicle navigation. Typically 

supplying a 360° image of the seabed rather than a swath pattern, rotary sonars have provided 

observations of the seabed morphology, allowing for insight into the acting hydrodynamic 

regimes affecting the surficial sediment of the seabed (Rubin et al., 1977). Within the scientific 

community, rotary sonars have primarily provided observations of seafloor morphology 

supporting investigations of interactions between seafloor sediments and hydrodynamic 

processes (Rubin et al., 1983). Notable sediment dynamics studies that have incorporated rotary 

sonar data include the Sandy Duck 97 experiment (Maier and Hay, 2009; Cheel and Hay, 2008; 

Hay and Mudge, 2005), the Sediment Acoustics Experiments in Florida (SAX99 and SAX04) 

(Tang et al., 2009; Hay, 2008;) mine burial off Martha’s Vineyard (Traykovski et al., 2007), 

shelf processes at the LEO-15 site in New Jersey (Traykovski, 2007; Irish et al., 1999; 

Traykovski et al., 1999) continental shelf analysis offshore of California (Irish et al., 1999), 

lacustrine research (Hay and Wilson, 1994), marine archaeology in the Black Sea (Trembanis et 

al., 2011), and lab experiments (Lacy et al., 2007).
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Of these studies, one of the first was Rubin et al. (1983) who used a rotating side scan- 

sonar to analyze bedform migration on varying time scales from a fixed point above the bed 

surface (2 meters) in the San Francisco Bay. Radial scans of the seafloor were taken at several 

locations for various lengths of time ranging from a few hours up to 8 months. These unique 

studies characterized both large storm events and longer-term seasonal cycles. Images captured 

by the instrument revealed ripples (wavelengths > 30cm) visible in high-resolution imagery of 

the seabed on short timescales, while long-term migration of sand waves were documented over 

an 8 month deployment (Rubin et al., 1983).

A decade later, Hay and Wilson (1994) used a 2.25 MHz rotary sonar offshore of Lake 

Huron. Images from the instrument showed the movement and transformation of ripples, cross 

ripples, and megaripples over 1-2 hour time scales within a 10-meter diameter. Also during this 

time, Irish et al. (1999) utilized rotary sonars to investigate sediment transport and changes in 

bottom roughness for the STRESS III experiment (Sediment Transport on Shelves and Slopes), 

off the coast o f northern California, the LEO-15 project, located within the mid-Atlantic bight, 

and lastly as a part o f the Strataform project, focused on sediment transport off the coast o f the 

Eel River. They found that even with contrasting environments on the east and west coasts, 

sector scanning rotary sonars could provide a unique and novel approach to capturing changes of 

bedform roughness. In contrast, Lacy et al. (2007) used a rotary sonar to look at morphology and 

evolution of bed forms in a closed, controlled system, specifically a four-meter wide sediment 

flume subjected to waves and currents. They were able to look at dominant orientation of each 

bed form and then compare results to previously predicted patterns thought to occur due to 

various hydrographic regimes and variables.
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More recently, long-term or permanent cabled installations o f rotary sonars at coastal 

observatories have become more common. Investigators have used long-term records collected at 

the Martha’s Vineyard Coastal Observatory (Traykovski et al., 1999), the Mid-Atlantic Coastal 

Ocean Observatory (Traykovski, 2007; Styles and Glenn, 2005), and the Southeast Coastal 

Ocean Observing System (Voulgaris and Morin, 2008), to investigate existing equilibrium ripple 

models and develop new non-equilibrium models.

Until recently rotary sonar technology has been underutilized but new studies along with 

those previously mentioned are demonstrating the potential o f this technology to provide 

transformative insight into the dynamic processes of seabed morphological evolution. For this 

paper, we present analysis o f seafloor morphological evolution based on rotary sonar 

observations made in the York River Estuary, a low-energy cohesive muddy environment. 

Additionally, we present a methodological approach for deployment o f rotary sonar 

instrumentation, and analysis o f resulting data.

2.3 Study Area- Cohesive Sediment Case Study ~  York River Estuary

The York River Estuary is a tidally-dominated system that forms at the confluence of the 

Mattaponi and Pamunkey Rivers in southeastern Virginia (Figure 2-1). This tidally-dominated 

estuary is microtidal (tidal range ~ 0.7m) but the tidal currents within the system have been 

documented as strong enough to resuspend bottom sediments (Dellapenna et al., 1998, Maa and 

Kim, 2002). Tidal currents within the river are on average greater than 60 cm s '1 but velocities 

tend to decrease near the river mouth to 40 cm s*1. The York River Estuary is defined as a 

cohesive sediment environment, with a predominate grain size of less than 63 pm, with muds 

occasionally exceeding 80% of the total sediment. In terms of sediment resuspension, tides are
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generally the dominate processes acting upon the sediment, with waves increasing the erodibility 

in depths shallower than one meter (Friedrichs, 2009).

The main channel o f the York averages 10 meters deep throughout the estuary and is 

thought to be controlled by antecedent geology o f an incised Paleo-river valley (Carron, 1976). A 

secondary channel also exists in the estuary and begins where the main channel bifurcates near 

Page’s Rock Light. A much shallower channel, which is considered partially abandoned, extends 

northward on the western flank o f the main channel (Dellapenna et al., 2003). Additionally, the 

secondary channel is significantly shallower than the main channel, reaching an average depth of 

only 5 meters., Overall the region ranges from 2.5 - 6 meters in depth, is generally free from boat 

traffic during the winter months, and suitable for instrument deployment and surveying.

Furrows within the York River Estuary have been documented in both the main channel 

and secondary channel (Dellapenna et al., 2001) near the Clay Bank and Capahosic/Ferry Point 

regions. Furrows are rectilinear bedforms that are oriented parallel to water flow direction 

(Dyer, 1982). These sedimentary features were initially documented during a laboratory 

experiment when Allen (1969) observed them in a non-recirculating flume. The experiment was 

designed to analyze the effects of bedforms, Reynolds Number, and a mean current velocity. 

Often observed in depositional areas with occasional strong flow conditions, historically, furrows 

range from 10s of meters to kilometers long. Additionally, these rectilinear bedforms have 

dimensions with spacing of 10-100 meters, widths approximately 1/10 o f the furrow spacing, and 

heights reaching 1-2 meters. The sedimentary features are found in various systems around the 

world, including the deep sea [Titanic (Cochonat et al., 1989), Saharan Rise (Lonsdal, 1978), 

Bahama Outer Ridge (Flood and Hollister, 1980), and Gulf of Mexico (Bryant et al., 2004)], 

deep lakes [Lake Superior (Flood, 1989; Viekman et al., 1992)], deltas [Mississippi delta front
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(Coleman et al., 1981)], Mediterranean Sea (Puig et al., 2008), and rivers and estuaries [Hudson 

(Flood and Bokuniewicz, 1986), Southampton (Flood, 1981), York River (Dellapenna et al., 

2001)]. In this study, we focused our survey efforts in the Clay Bank region within the 

secondary channel, where furrows have been found to be present at various times throughout the 

year.

First identified as a ridge and furrow bedform system, Dellapenna et al (2001) mapped 

these features in the York River Estuary in January of 1995. The authors found that these 

features were present during conditions o f low river flow and had a spacing ranging from 0.7 to 7 

meters. Over three years these rectilinear bedforms were mapped and were suspected to be 

transient in nature. Overall, Dellapenna et al. (2001) used the presence of furrows to classify 

three main morphologies present within the York River, near the Clay Bank region: 1. well- 

developed furrows (found at times of lowest mean currents), 2. meandering furrows (found at 

times of intermediate mean current), and 3. no furrows (found at times of high current 

conditions).

For this study, furrows were used as an evaluation marker, or stationary feature used for 

observation, in order to track sediment transition and movement processes within the middle of 

the York River estuary. Previous studies have shown that furrows act an area o f deposition and 

erosion, but the dynamics of how the two processes interact is not well understood (Viekman et 

al., 1992 and Dellapenna et al., 2001).

2.4 Methods
A tripod-mounted Imagenex 881A rotary sonar, in conjunction with an ASL IRIS data 

logger, was used to assess the relationship between erosion and deposition on short-term scales
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(e.g. hourly and daily) in the York River Estuary (Figure 2-2). The 881A instrument is a tunable 

multi-frequency/ranging digital profiling imaging sonar, equipped with frequencies from 280 

kHz to 1.1 MHz and radius range scales from varying increments o f 1 to 200 meters. Other 

variables, such as pulse length and absorption, can also be adjusted on the rotary sonar to obtain 

the best quality sonar images. For this study, a real-time data transfer was utilized in the data 

collection process, where a communication cable extended from the rotary sonar to a radio 

modem on the surface, which sent data back to the lab every hour. This two-way connection 

allows for in situ tuning of the sonar settings and real-time observations, enabling strategic 

timing of rapid response cruises to collect samples of the seabed following changes in bed 

conditions. In addition to the real-time connection, the rotary sonar was connected to an ASL Iris 

Data Logger for internal logging purposes and sonar run commands, which allowed for four 

independent programmable sequences to be run. The proprietary data logger software, IrisLink, 

providing the capabilities that allow for real-time data downloads, checking instrument status, 

and modifying instrument parameters for the optimization of the images based on the current 

conditions (Figure 2-2).

A variety o f frequencies and instrument heights above the bed were tested to determine 

the best parameters for a cohesive sediment environment. Frequencies o f 280, 500, 675,900, 

1000, and 1175 kHz were tested. In addition, the instrument was placed 10, 25, 50, 80,100, 110, 

and 135 centimeters above the bed to determine optimal visualization of bedform features. 

Furthermore, a separate study was conducted at Clay Bank to determine the optimal parameter 

settings for gain and absorption to establish sequences that could be used during monthly 

deployments at the study area. In conjunction with this study, a YSI 6600 CTD Sonde was 

deployed simultaneously to see how the sonar responded to increasing and decreasing turbidity

4 1



over tidal cycles, and to establish parameter sequences that could be used during monthly 

deployments at the study area.

Once initial settings were chosen, the tripod was deployed for one month (between 

August 27, 2009 to September 30, 2009) to obtain 360° surface images on an hourly basis, 

capturing a nearly continuous time series o f the seabed (Table 2-1). Four sequences were 

programmed to be run every hour through the data logger. The first of these sequences was run 

four times consecutively every hour, and the images were temporally averaged in Matlab® to 

reduce the effect o f background noise and improve the overall image quality. All rotary sonar 

images were processed in Matlab® using modified scripts to convert sonar files into viewable 

imagery and accessible acoustic backscatter measurements (Figure 2-3a).

Due to the prevalence of fine-grained sediments, at o f Clay Bank, it was thought rotary 

sonars may not be as useful as they have been in coarser grained environments, as the presence 

of rapidly evolving bedforms are not as prevalent within York River Estuary benthic 

environment. However, on occasion furrow formations have been observed on the sediment 

surface. During the September 2009 rotary deployment, two features were present within the 

sonar field o f view, helping to categorize the changes occurring on the seafloor: an elongated 

furrow (upper right quadrant) and intermittent exposure of oyster clutch (lower left quadrant). 

Hourly changes o f acoustic backscatter were calculated along four transects, at azimuths of 45°, 

90°, 180°, and 225°, and analyzed to investigate exact points at 5m and 7m along of each 

transect to look at specific locations within the sonar’s field of view (Figure 2-3b).

2.5 Results and Discussion
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Within the York River Estuary, optimal parameter settings for fine-grained environments 

were determined using the 881A rotary sonar. During the testing phase, it was concluded that 

675, 1000, and 1175 kHz provided the best images of the seabed for fine-grained sedimentary 

environments. In addition, the optimal transducer position above the surface was at least 1 meter 

above the bed, where 1.0,1.1, and 1.35 meters yielded the best results. Furthermore, when the 

rotary sonar was deployed in the real-time setting over the course of a tidal cycle, there appeared 

to be no adverse effect to the images due to an increase in suspended sediment concentrations 

during maximum flow conditions.

In order to correlate rotary sonar images to seafloor morphology changes, regional 

mapping surveys were conducted prior to the main analysis in February of 2008. The objective 

was to establish a suitable rotary sonar tripod location and image the seafloor, utilizing a 900 

kHz Marine Sonic sidescan sonar towfish. During the study, sedimentary furrows were 

identified and located within the study area. The rotary sonar tripod was deployed twice to 

finalize optimal cohesive sediment-estuarine environmental parameters o f the sensor, while 

capturing the sedimentary furrow bedforms within the study area.

During the first deployment, well-developed furrows were observed using sidescan sonar. 

It is important to note, that less than a week before the deployment a large storm event swept 

through the region, bringing high winds and large amounts of rainfall (Figure 2-4). An 

abundance of longitudinal furrows were mapped using the sidescan sonar and general trends and 

observations were recorded at the start o f the first deployment. The sidescan sonar analysis 

identified 15+ furrows greater than 150 meters in length in the study region, most of which had a 

width of between 0.5 and 1 meter. Observations showed that the most well-developed bedforms 

usually occurred in the presence of an old piling or similar structure within the furrow channel
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(Figure 2-5). These pilings are wide spread since one of the historic fishing practices in this 

study area utilized staked gill nets. Furthermore, smaller seafloor ripples were observed on top of 

the large furrows at several locations.

The rotary tripod was retrieved after several days in the field to analyze the quality o f the 

sonar images. The initial deployment of the rotary sonar used frequencies of 675 and 1175 kHz 

at a height on 1 meter about the seabed. Once retrieved, the images were analyzed and it was 

determine that the first deployment returned dark images, often too difficult to visualize furrows 

and other bedform morphologies. Therefore, it was concluded that gain and absorption values of 

the rotary sonar system needed to be adjusted in order to optimize image quality.

The second rotary sonar deployment occurred about a week later with adjusted sensor 

settings. During that time, current speeds and wind conditions were considerably lower than the 

previous survey. At the end of the rotary deployment, the seabed was mapped again with the 

sidescan sonar towfish, to locate bedforms to use as a comparison of seafloor morphology 

between deployments and with the rotary sonar images. Furrows were found to be less abundant 

and were not as well-defined as previously observed (Figure 2-5b). Even though the 

sedimentary bedforms were not as prominent as during the second rotary deployment, images 

from the sensor were of high quality. These images were able to capture bedform changes 

during the deployment and were found to be suitable for longer term deployment and analysis.

The main rotary sonar survey occurred in 2009 and results for the Clay Bank experiment 

showed that upon examination of each transect, there was little change in the characteristic 

backscatter at 90 and 225 degree transects over time (Figure 2-6). Hourly acoustic backscatter 

counts are plotted (color) with a smoothing filter (black) to help eliminate noise and enhancing 

daily change patterns that occur upon the seabed. Conversely, an increase in the acoustic
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backscatter at the 5 meter point along the 180° transect was observed on the beginning o f 

September 18,2009. These large backscatter values continued to persist for several days and 

then returned to average conditions. This change o f higher backscatter values appears to coincide 

with both an increase in wind speed and an increasing maximum wind gust in the area as well as 

a period when winds shifted direction from across the estuary to along river. With the high wind 

energy oriented along the estuary, it appears that a layer of fine-grained sediment was 

resuspended off the seabed, exposing the underlying relict oyster reef found in the secondary 

channel o f the York River Estuary. Oyster shell has a characteristically high backscatter count 

due to the strong return of the acoustic signal on the hard surface of the shell (Blondel, 2009). As 

the time elapsed, backscatter attenuation counts decreased as the wind energy dissipated, 

providing conditions favorable to sediment deposition. When the reef became buried by a layer 

o f fine-grained sediment, the muds dampened the acoustic signal, providing weaker backscatter 

intensity compared to the hard, solid surface o f the exposed oyster shell.

The 45° transect showed the most abrupt change in backscatter intensity in comparison to 

the other three transects (Figure 2-6). The main difference in this transect is that the elongated 

furrow intersects the survey line between 4 and 7 meters away from the sonar transducer. 

Throughout the deployment, the backscatter values remained relatively constant, but a large 

increase in the attenuation was observed around September 20, 2009. The meteorological 

conditions showed an abrupt change in the wind direction, showing a brief shift o f a day from 

blowing along the estuary to across the estuary and the furrow. The increase in the backscatter 

amplitude shows a decrease in the slope of flanks of the furrow, which may correspond to the 

acoustic shadow created by the higher elevation o f the furrow flank in comparison to the seabed 

elevation (Figure 2-7). As the backscatter values increased during this time, the furrow began to
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narrow, providing a smaller acoustic shadow. In addition, the opposite slope of the furrow 

became more exposed, appearing acoustically brighter, thereby giving larger backscatter values. 

After this event, the wind shifted again back to the southeast, and the furrow appeared to return 

its previous state, when compared to the rest o f the deployment.

Using rotating side-scan sonars in cohesive systems is still in its early stages, yet there are 

many applications for which this technology would be useful. These studies should include a 

more robust comparison of data to hydrologic conditions, other localized scientific equipment 

(i.e. LISST, CTD, ADV, etc.), and a ground-truthing sediment analysis. Examples of possible 

future studies could include mapping movements of turbidity maxima to the more broad 

application o f monitoring channel morphology for shipping navigation.

2.6 Conclusions
Understanding seafloor morphology and its evolution is critical to scientific 

investigations of boundary layer processes. The papers reviewed and field studies presented in 

this document illustrate the versatility and applicability o f the rotary sonar instrument for 

morphological monitoring. Despite the fact that it is uniquely suited to a variety of seafloor 

investigation, rotary sonar instrumentation remains largely underutilized by the scientific 

community. The wider application of this tool for seafloor monitoring will yield greater scientific 

insights and improved engineering and management decisions.
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York River Estuary, Chesapeake Bay VA, USA
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Figure 2-1. Study location for the VIMS rotary tripod ~ Clay Bank within the York River Estuary. 
The tripod location is delineated by the red triangle.
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Figure 2-2. A depiction of the real-time rotary sonar capabilities developed utilize IrisLink 
software and a communication cable, extending from the instrument to a radio modem, that 
deliver data back to the lab at the Virginia Institute of Marine Science. The two-way connection 
allowed for in-situ timing of the sonar images, as well as real-time observations.
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Table 2-1. Rotary sonar scan sequences variables determined to be the optimal initial 
settings in a cohesive, fine-grained, estuarine environment.

Sequence 1 2 3 4

Range radius (m) 10 10 10 20

Frequency (kHz) 1000 1000 675 675

Gain (db) 18 24 18 18

Absorption (dB) 0.60 0.60 0.20 0.20

# of rotations per hour 4 1 1 2
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Figure 2-3. a) A Clay Bank 1 MHz rotary scan image, 1 meter above the bed (Range ~ 10m, 
24dB gain), b) Diagram showing the 4 transects analyzed for acoustic backscatter comparison.
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Figure 2-4. Wind speed, river discharge, and tidal data that correlated to the early 
rotary sonar studies in the York River.
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Figure 2-5. Sidescan sonar surveys during rotary sonar deployment in order to 
correlate rotary sonar images to seafloor morphology changes, a) The first survey 
showed well-developed longitudinal furrows extending up to 150m in length and 
0.5 to 1 meter wide, occurring shortly after a large storm event with heavy winds. 
The left image highlights the location of the rotary tripod and the image on the 
right shows a furrow with an old piling or similar structure within the bedform. b) 
The second survey was conducted at the end of the rotary sonar deployments and 
illustrates a smoother bottom and the same furrow with less definition.
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Figure 2-6. Time series of backscatter amplitude at 5 meters from the rotary transducer along of the 
4 transects (45°, 90°, 180°, and 225°).
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Figure 2-7. Conceptual diagram of York River furrow morphologic change throughout the 
study. As winds increased during the rotary sonar deployment, sediment was deposited 
within the furrow and then was eroded after the stormy conditions subsided.
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Chapter 3: Evolution o f the seabed o f the York River Estuary, Virginia, following dissipation 
o f a turbidity maximum: consolidation, pelletization and spring-neap disturbance
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Abstract:

Further investigation o f the muddy seabed properties that determine time-dependent 

erodibility is essential to improved understanding and modeling of sediment dynamics. During 

April and May of 2010, weekly cores were collected following dissipation of the York River 

Estuary’s secondary turbidity maximum, while also resolving the estuary’s spring-neap cycle. 

Erodibility o f the surface of the cores was determined via a Gust microcosm and cores were 

analyzed for sand/silt/clay, organic and water content, 7Be activity, response to x-radiography 

sediment structure, and based on gentle sieving, resilient pellet content. In general, common 

patterns in vertical structure and properties below 1-cm depth suggested that neither significant 

net erosion nor net deposition was responsible for observed variations in erodibility. Trends 

observed in the uppermost cm were consistent with simultaneous consolidation and bed 

armoring. As time passed, sand content, median sand size, percent pellets, and median pellet size 

were all observed to increase at the surface, while the percent water, organics, silt, 7Be activity 

and erodibility decreased. Along with a tendency for erodibility to decrease with time, this study 

identified a superimposed temporal oscillation in erodibility correlated to a 6-day low-pass of 

tidal range, presumably because strong tidal currents acting over several preceding days disturb 

the bed, partly counteracting the temporal effects of consolidation. Simultaneous consolidation 

and bed armoring, consolidation time-scales on the order o f several days to a week, and 

“resetting” of consolidation by resuspension are all qualitatively consistent with recently 

developed theoretical models for time-dependent mixed seabed erodibility.
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3.1. Introduction

Estuaries receive a mix o f non-cohesive and cohesive sediment from locations ranging 

from the continental shelf to upland riverine sources 7. Fine sand and muddy particles are 

deposited, eroded, and transported throughout many tidal estuaries in a repeating, quasi-cyclical 

pattern based on the ebb and flow of the daily and spring-neap tidal fluctuations interacting with 

seasonal and event-scale variations in freshwater input, waves, and wind forcing. This repetition 

is occasionally altered, as estuaries act as effective trapping mechanisms, characterizing the 

environment as sediment sinks (Meade, 1982; Wong and Moy, 1984; Dyer, 1988; Hobbs et a l, 

1992; Shen and Haas, 2004).

Fine-grained sediment strongly impacts estuarine ecosystems. As mud particles are 

suspended into the water column, light attenuation can significantly increase. Along with 

impacting light availability, intense fine sediment transport can diminish macrobenthic diversity 

and abundance, leading to a degraded habitat (Summerhayes et al., 1985; Angradi, 1999; 

Schaffher et al., 2001; Lowe and Bolger, 2002; Weigelhofer and Waringer, 2003; Salant and 

Renshaw, 2007). These adverse effects are further compounded as pollutants are introduced in 

the estuary. The greater percentage of fines on the seabed and within the water column, the 

greater chance for pollutants to remain within the estuary as contaminants are attracted and 

absorbed onto muddy particles (Olsen et al., 1982). As estuarine watersheds become 

progressively more populated, chances for erosion and input of contaminants (either point or 

non-point sources) increase dramatically.

Regions in estuaries where cycles o f fine sediment trapping and resuspension are clearly 

evident on event to seasonal time scales include estuarine turbidity maximums (ETMs), which 

are often associated with along-estuary changes in stratification associated with fronts,
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transitions in mixing and/or the landward limit o f the salt intrusion (ETM) (Roberts and Pierce, 

1976; Dyer, 1988; Geyer, 1993; Wolanski et al., 1995; Li and Zhang, 1998; Lin, 2001; Geyer et 

a l, 2001; Sanford, et al., 2001). As well as the primary ETM near the transition to freshwater, a 

secondary ETM may form within estuaries due to a variety of mechanisms, including: bottom 

residual flow convergence, tidal asymmetries, the suppression of turbulence diffusion due to 

stratification of the water column, and/or enhanced resuspension in a region of high erodibility 

(Nichols et al., 1991; Lin and Kuo, 2001; Dellapenna et al., 1998; Dellapenna et al., 2003; 

Dickhudt et al., 2009).

Sediment erodibility has been studied extensively for decades in numerous coastal, 

estuarine and laboratory settings (Gorsline, 1984; Mehta, 1988; Amos et al., 1992; Friedrichs et 

al., 2000; Geyer et al., 2001; Harris and Wiberg, 2001; Uncles, 2002; Harris et al., 2003; Schaaff 

et al., 2006; Sanford, 2008; Dickhudt et al., 2009; Friedrichs, 2009; Ralston and Geyer, 2009). 

Non-cohesive sediments, by definition, are controlled by gravitational and frictional resistance to 

motion, and the erosion potential mainly depends on grain size. Conversely, cohesive sediments 

are more difficult and complex to predict and model due to the dependence of erodibility on a 

greater number of factors, with physical/geological effects including: particle size distribution, 

porosity, bulk density, and surrounding fluid properties, which include salinity and water 

temperature (Dyer, 1986; Aberle et al., 2004; Andersen, 2001; Winterwerp, 2004; Debnath et al., 

2007). These variables factor into the inter-particle bonds resulting into cohesive forces between 

grains, which further depend upon the mineral composition. Classically, though, the dominant 

control on erodibility in cohesive sediment is thought to be its degree of consolidation, i.e., the 

strengthening of the bed due to dewatering and the rearrangement o f particles which together 

increase overall cohesion (e.g., Mehta and McAnally, 2008).
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Although physical sediment properties are important to erodibility, additional variables 

and processes associated with the benthic community can either enhance or reduce erodibility. 

Biological effects include mechanical bioturbation, formation of pellets by physical compaction, 

production of shells and other detritus, construction of sediment structures such as mounds, 

secretions which enhance cohesion such as extracellular polymeric substances (EPS), and direct 

biological suspension of sediment into the water column (Edelvang and Austen, 1997; Austen et 

al., 1999; Andersen, 2001; Andersen and Pejrup, 2002; Widdows et al., 2000; Perkins et al.,

2003; Perkins et al., 2004; Underwood and Paterson, 2003). Pellets formed by benthic organisms 

that repackage sediment can be transported intact even during strongly turbulent conditions. 

Pelletized sediment typically has a lighter density than that o f a comparable sand sized particle, 

allowing it to remain in suspension longer (Cartwright et al., 2011). Organisms including 

annelids (i.e. Heteromastus filiformis, Mediomastus ambiseta, Streblospio benedicti), mollusks 

(i.e. Hydrobia, Macoma baltica), etc. are responsible for creating these biogenic pellets which 

can make up more than 50% of the surficial sediment depending on the location and the current 

tidal condition (Kraeuter and Haven, 1970; Schaffner et al., 2001; Drake et al., 2002; Gillett and 

Schaffner, 2009).

Numerous physical and biological properties of the seabed have been qualitatively 

associated with changes in bed erodibility, yet few field studies to date have been able to 

demonstrate in situ the temporal changes in mud properties which lead to significant changes in 

erodibility over key consolidation time scales o f several days to a few weeks. Some success has 

been seen in this regard in intertidal flat environments, where changes in erodibility have been 

conclusively related to colonization by benthic algae (e.g., Andersen et al., 2010). However 

directly observed quantitative associations between bed properties and erodibility in subtidal
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(i.e., light-limited) cohesive environments have been especially elusive. Furthermore, the studies 

that have attempted to relate erodibility to seabed properties in subtidal environments have 

tended to focus on spatial and/or seasonal time-scales (e.g., Dickhudt et al., 2009,2011; Stevens 

et al., 2007; Wiberg et al., 2013) rather than the key, local consolidation time-scale o f days to 

weeks. Constraining relationships between bed properties and erodibility based on in situ data is 

extremely important to the sediment transport community given that bed erodibility is one of the 

most important, but least constrained parameters controlling the amount o f fine sediment in 

suspension in coastal and estuarine numerical models (Rinehimer et al., 2008; Sanford, 2008).

Recent studies in subtidal cohesive environments have been inconclusive regarding even 

seasonal controls on erodibility in subtidal muddy environments. Stevens et al. (2007) compared 

erodibility at nine muddy bottom sites along the western margin o f the Adriatic Sea to water 

content, organic and inorganic carbon, colloidal carbohydrate and sand-to-mud ratio in late 

winter versus early summer. No consistent seasonal changes in bed constituents could be related 

to temporal changes in erodibility, and the spatial trends that were observed were contrary to 

expectations, in that erodibility decreased with greater porosity. For a muddy tidal channel-flat 

complex in Willapa Bay, Wiberg et al. (2013) found that spatial variations in porosity just below 

the sediment surface in winter was a significant predictor o f spatial variations in bed erodibility, 

but porosity was not related to erodibility in spring or summer. Dickhudt et al. (2009,2011) 

related erodibility o f fine sediment to the surface content o f cores collected every one to two 

months over an 18-month period from the York River estuary, including percent water, total 

organics, colloidal carbohydrate, extracellular polymeric substances, and sand-silt-clay, but no 

relationships were found to be significant at 95% confidence. The only relationship significant at 

even 90% was increased erodibility with a lower clay: silt ratio. Based on upper seabed fabric



revealed by x-radiographs, Dickhudt et al. (2009,2011) concluded that seabed disturbance, in the 

form of periodic deposition and erosion associated with ETM migration, was the dominant 

control on subsequent bed erodibility.

The main goal o f this study was to investigate the influence of sedimentological 

properties versus seabed disturbance on the erodibility o f a cohesive seabed within a subtidal, 

muddy estuarine environment over several weeks during a time period when bed consolidation 

was likely occurring. As far as we are aware, this represents the first in-situ study to successfully 

and quantitatively relate classic bed properties (i.e., water content and grain size) to evolving 

erodibility over this key consolidation time-scale in a subtidal cohesive estuarine environment. 

Logistics and recent findings of others (e.g., Friedrichs et al., 2008; Dickhudt et al., 2009,2011; 

Rodriguez, 2010; Rodriguez and Kuehl, 2012) favored the Clay Bank region o f the York River 

estuary for this examination. Previous work at this same site (Dickhudt et al., 2009,2011) had 

documented a dramatic decrease in bed erodibility before and after dissipation of an STM, but 

these studies had been unable to quantitatively relate fine-scale properties o f the bed, such as 

water content and grain size, to changing bed erodibility. In addition, this study aimed to assess 

the role of spring-neap variations in tidal currents on the seabed erodibility. Previous coring 

efforts (e.g., Dellapenna et al., 2001; Dickhudt et al., 2009; Rodriguez and Kuehl, 2012) had 

been too coarse in time to capture spring-neap bed evolution, and undocumented spring-neap 

variation may have confounded previous attempts to relate erodibility to time-varying bed 

conditions. In the process, this study also proposed to resolve possible relationships between bed 

pelletization, consolidation and erodibility. Previous work (Dickhudt et al., 2009; Rodriguez, 

2010) hypothesized that non-pelletized mud was associated with times of high erodibility,
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whereas pellet-rich muddy beds were associated with times of low erodibility. But observations 

at monthly or longer intervals likewise limited past quantitative investigations of pelletization.

3.2. Study Area

The York River estuary (Figure 3-1) is located in southeastern Virginia on the Mid- 

Atlantic Coast of the United States and was created by the drowning of a river valley 

approximately 12,000 years ago due to the melting of glaciers during the beginning of the 

Holocene (Hobbs, 2009; Reay and Moore, 2009). Today, the estuary is formed at the confluence 

o f the Mattaponi and Pamunkey Rivers and empties into the Chesapeake Bay at its mouth. As 

the Chesapeake’s fifth largest tributary, the York River watershed encompasses an area 

approximated 6900 km2, slightly larger than the state of Delaware. The estuary has a mean depth 

o f 4.9 meters, with the deepest area located near the Gloucester Point region with a maximum 

depth of over 20 meters. The estuary’s main channel, which averages about 10 meters deep, 

bifurcates near Page's Rock Light, and a shallower (~ 6 meter deep) secondary channel extends 

northward on the western flank of the main channel. Two shoals flank the channels and have an 

average depth of ~ 2 meters. Salinity in the lower estuary is usually partially stratified, while the 

shallower upper estuary is weakly stratified (Friedrichs, 2009). Although microtidal, surface tidal 

currents within the middle and upper portions o f the estuary reach ~ 1 m/s at spring tide, and bed 

stress is strong enough to regularly resuspend bottom sediments (Schaffner et al., 2001).

The surficial sediments o f the main and secondary channels of the York River Estuary are 

muddy, with the percent clay plus silt generally exceeding 70% (Nichols et al., 1991). In the 

muddy reaches of the secondary channel, near the site of the present investigation, near-bed tidal 

suspensions can seasonally exceed 1 gram/liter (Friedrichs et al., 2000). There are seasonally
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persistent along-estuary peaks in turbidity along the York River estuary associated with two 

major ETMs. The main ETM is typically located near the head of the salt intrusion, while a 

secondary ETM is often found in the middle estuary, about 20 to 40 km from the mouth of the 

York after the winter/spring freshet, when there tends to be a decrease in stratification at that 

location (Lin and Kuo, 2001).

Radioisotope geochronology studies in the York River Estuary have shown that physical 

reworking, possibly associated with migration of furrowed bedforms or transport events in 

response to major storms, may result in annual to decadal physical disturbance and reworking to 

depths as much as 1 m (Dellapenna et al., 1998; Kniskem and Kuehl, 2003). Over seasonal or 

shorter time-scales associated with local ETMs, x-radiography and dual-frequency echo sounder 

surveys have identified ephemeral, migrating mud deposits on the order o f 10 cm that suppress 

macrobenthic activity and produce characteristic parallel laminations in x-rays (Schaffner et al., 

2001; Dickhudt et al., 2009; Rodriguez and Kuehl, 2012). In the absence of these ephemeral 

deposits, biological reworking eventually leads to at a mottled pattern in x-radiographs 

characteristic o f at least moderate bioturbation (Schaffner et al., 2001; Dickhudt et al., 2009). 

Dickhudt et al. (2009) and Rodriguez and Kuehl (2012) found that the seasonal deposition 

associated with the middle-estuary ETM led to low erodibility in the Clay Bank region of the 

middle estuary, but that after the ETM and associated deposits dissipated, erodibility increased 

once more.

3.3 Methods

3.3.1. Sediment Coring

Seabed coring was conducted from a small vessel (~ 8-m length) once a week for five

weeks in the spring of 2010 (Table 3-1). The sampling occurred at the Clay Bank Secondary
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Channel study location in water depths averaging ~ 6 m. During each research cruise, the vessel 

was anchored and allowed to drift slightly around the anchoring site. At a local scale, this 

allowed random sampling o f the seabed. Sediment samples were collected using an Ocean 

Instruments Gomex box corer (surface area 625 cm2) (Figure 3-2a), in order to preserve the 

sediment-water interface. The collections occurred at slack tide to best ensure even and level 

core penetration, and the box core was generally able to penetrate 15 to 30 cm into the seabed. 

Intact GOMEX box cores were immediately subsampled for a variety of laboratory analyses. 

Acrylic subcores were then pushed by hand into the top o f the retrieved box core and removed 

for further analysis. Unfortunately, on occasion box-cores were discarded because o f “blow

outs”, where large shells or other objects impeded the closure of the box core, thereby allowing 

sediment and water to escape.

The subcores were sampled for grain size, water content, organic content, 7Be activity, 

presence of resilient pellets/aggregates, and erodibility, and were also imaged with digital x- 

radiography. Samples for the first three analyses were extruded, sliced, and separated on board at 

1-cm intervals down to the bottom of each subcore. For the Be samples, 2-cm intervals were 

obtained after the first ten 1 -cm intervals, to reduce costs and data analysis time. Analysis for 

resilient pellets/aggregates was limited to the top two intervals (i.e., 0-1 cm and 1-2 cm). Sliced 

samples were immediately put in airtight containers and placed on ice in order to preserve the 

integrity of the sample and prevent moisture loss. Whole cores were obtained concurrently for 

Gust microcosm erosion experiments and for x-radiography slabs. Together, these samples were 

collected in hopes o f gaining a deeper understanding of how erodibility may be related to the 

composition and structure of the upper-most seabed.

3.3.2. Water Content, Organics, and Disaggregated Sediment Components
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Water content samples were processed immediately after returning from the field to help 

ensure accurate sediment moisture measurements. The standard wet weight vs. dry weight 

method was utilized to determine percent moisture vs. solids of each 1 -cm interval sample. Each 

wet sediment sub-sample was homogenized, and ~ 200 to 300 mg was placed in a foil dish and 

weighed to provide the wet sample weight. The dish was then placed in an oven at 103°C until 

the sample visually appeared completely dry. Each dry sample was then weighed, returned to the 

oven for an additional hour, and reweighed until consecutive weight differences were less than 

0.5 mg. This approach includes salt (typically -1%  of the total weight) within the sediment 

portion of the measurements. The total solids vs. water volume was calculated using the dry 

sediment weight and the assumed density o f the sediment grains (2.65 g/cm3) and water (1.0 

g/cm). Total organics content was determined for previously dried samples by determining the 

loss on ignition (LOI) after at least one hour in a muffle oven, set to 550°C. The remaining ash 

weight was assumed to be sediment particles that were entirely inorganic.

Grain size for the mud component was determined by using the wet pipetting method for 

grains less than 63 pm. The sediment was initially disaggregated using 10 mL of dispersant, 

sonicated for an hour, and passed through a 63pm mesh sieve to isolate the mud component. 

Using standard pipetting practices, each 1-cm sample was analyzed at 1 phi intervals between 4 

and 10 phi, based on settling velocities established using Stokes Law. Percent sand was 

determined by the fraction of total sediment dry weight caught on the 63 pm mesh sieve.

3.3.3. Pellets and Other Pellet-Sized Grains

The presence of resilient fecal pellets and/or biologically compacted mud aggregates 

(from now on referred to simply as pellets) were determined for the depth intervals o f 0-1 cm 

and 1-2 cm using a combination and modification of the Black et al. (2002) and Rodriguez-
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Calderon (2010) pellet calculation methods. For each depth interval in each core, two 10.00- 

gram (± 10-mg) wet sediment samples were sieved through four mesh sieves (150 micron, 90 

micron, 63 micron, and 45 micron). The first set of sediment was sieved using traditional sieving 

methods, where the sediment was initially disaggregated using dispersants and sonification in 

distilled water. The aim o f disaggregation was to capture the original population 

(tPdissaggregated) ° f  relatively large particles (e.g., fine sand and coarse silt, small shell 

fragments, plant debris) in the absence of pelletization (Figure 3-2b). The sediment caught on 

each sieve was dried at 103°C and weighed to determine mass percentages of each size class and 

then muffled at 550°C to determine the LOI of the non-pellet sediment sample.

Conversely, the second sample set was not disaggregated, and careful attention was paid 

as to minimize physical disturbance of the sample. Using the same amount of sediment (10.00 

grams ±10  mg), the second sample was gently sieved through the same four sieve sizes, using 

water with similar salinity to the field site (~ 15 ppt) rather than distilled. Each sample was 

gently shaken within a porcelain bowl and no direct contact or pressured water spray was placed 

on the grains. This continued until all the sediment particles were sieved and the water ran clear. 

Sediment from each sieve was then dried to obtain the weight of the intact pellet-sized sediment 

in the form it was collected from the box core <pgentie sieve (Figure 3-2b). The intact wet 

sieved sample was also muffled to determine its LOI. The pellet weight in each size class 

{(ppeiiet) was then given by

VPellet ~  *Pgentle jsieve Vdisaagregated

3.3.4. Beryllium-7

Sediment samples for measurement of 7Be activity were sliced onboard the research vessel at 

1-cm intervals for the first 10 cm and 2-cm intervals for the rest o f the core. Back in the lab,

7 0



sediment collected from each depth horizon was individually homogenized, and if excess water 

was present, the sample was centrifuged, and the extraneous water was decanted. Each sample 

was measured using a semi-planar intrinsic germanium detector to analyze the gamma decay of 

the 7Be isotope, in conjunction with a multi-channel analyzer. Three detectors at VIMS were 

used in the analyses (a Low Energy Germanium detector (LeGe), a Broad Energy Germanium 

detector (BeGe), and, occasionally, a Well-shaped Intrinsic Germanium detector (WeGe), to 

assess net count activity rates of each sample at 477 KeV. Samples counted in the BeGe and 

LeGe detectors were run for 25 hours or on the WeGe for 50 hours in order to sufficiently 

determine the disintegrations per minute (dpm). Each sample was then corrected for decay that 

occurred due to time elapsed between sediment collection and counting. Activity rates (dpm/g) 

for each sample were calculated and then normalized based on both sediment weight and grain 

size, as 7Be intrinsically attaches more easily to mud particles, rather than sand particles. In 

addition, the 7Be inventories (I) were calculated for the upper 3cm of each core applying the 

equation:

I= (A /p s(l- (p ))

Where Ai = the specific activity based on the efficiency factors at 477Kev, ps = average particle 

density o f 2.65 gem'3 and <p = the porosity (Dibb and Rice, 1989; Kniskern and Kuehl, 2003; 

Romine, 2004; Rodriquez and Kuehl, 2013).

3.3.5. DigitalX-radiography

Sediment slabs (12 cm x 2.5 cm x (up to) 30 cm) were collected from the Gomex box-

cores each week and imaged back at VIMS using a Varian Paxscan digital x-radiographic panel. 

Following Schaffner et al. (2001) and Dickhudt et al. (2011), the sediment fabric apparent in the
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grayscale images from each x-ray allowed a visual assessment o f the degree of physical layering 

versus biological reworking of bed. In addition, changes in the darkness o f each image from top 

to bottom provided a proxy for vertical variations in density. Here we present x-rays as negatives 

such that lighter shades o f gray indicate higher density, and darker shades indicate lower density.

3.3.6. Erodibility

On each cruise, two subcores were obtained from separate box-cores and brought back to 

the lab (< 1 hour by boat) for immediate erodibility analysis using a Gust erosion microcosm 

(Figure 3-3). Subcores (10-cm inside diameter) were carefully selected, making sure both cores 

appeared level, uniform, and with an undisturbed sediment-water interface. The erodibility 

measurements utilized two concurrent microcosm experiments with a rotating disc placed at the 

top of each core (Gust and Muller, 1997; Dickhudt et al., 2011). The setup required that the 

sediment surface was located 10 cm from the revolving disc and that local water filled the upper 

10 cm. When the disc rotated, it produced a circulation pattern that applied a uniform shear stress 

over the sediment-water interface. Over the course of 2.5 hours, seven shear stresses were 

applied to the seabed within the core (nominally set to 0.01,0.05, 0.1,0.2, 0.3,0.45, and 0.6 Pa). 

The first setting of 0.01 Pa was considered to act as a flushing mechanism to remove any 

“washload” initially present in the core tube, and it is operationally defined that zero true bed 

erosion occurs at this very low stress. After 30 min at 0.01 Pa setting, the Gust microcosm 

increased rotation to each larger shear stress for 20 min. Actual disc rotation rates, which were 

recorded by the Gust system during each experiment, were used to after the experiment to more 

precisely calculate the true shear stresses applied. It was discovered after the final Gust 

experiment that the nominal 0.6 Pa setting did not function correctly.
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As the rotating disc began applying stress, a constant stream of water was suctioned from 

the core and the effluent was passed through a flow-cell o f a Hach 2100-N turbidimeter, which 

provided NTU readings o f the suspended sediment withdrawn from the core. Concurrently, 

estuarine water collected at the field site was pumped into the microcosm the same rate. The 

effluent from each shear stress step was then filtered onto a 0.7pm glass-fiber filter to calibrate 

the turbidimeter and determine the total mass of sediment eroded from the core. The 

measurements o f eroded mass (m) from the bed as a function of time (t) were analyzed using 

Sanford and Maa’s (2001) erosion rate formulation as implemented by Dickhudt et al. (2011):

E(m,t) = M(m)[xb(t) -  tc(m)] 

where E is the erosion rate, M is the depth-varying erosion rate “constant”, xb is shear stress, and 

xc is the critical shear stress for erosion. The key output o f fitting observed data to the above 

relation is the profile o f xc into the bed as a function of eroded mass, m. For each core, a least - 

squares regression was applied to xc vs. m for stress levels 2 through 5 in order to quantify 

changes in erodibility from week to week.

3.3.7. Statistical Tests

P-values were used to determine statistical significance, with a significance cut-off o f p <

0.1 (i.e., less than a 10% chance that randomly selected observations would not produce a 

similarly significant result if none in fact existed). A one-way ANOVA was used to distinguish 

whether population means were different. P-values associated with linear regressions were used 

to test the one-sided null hypothesis in correlations. The p-values themselves were calculated by 

routines provided by the software package MATLAB (MathWorks, 2013).

3.4 Results
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3.4.1. Water Content, Organics, and Disaggregated Sediment Components

A consistent pattern seen in all the cores was a decrease in water content and organics

with depth down-core, accompanied by an increase in content o f disaggregated sand-sized 

particles (Figure 3-4a-c, Table 3-2) (p < 0.01 for all cores except p > 0.1 for % sand on 5 May). 

Percent water was determined relative to the initial weight of the wet sediment, while percent 

organics and sand were relative to the sediment’s dry weight. Dickhudt et al. (2011) found that 

for similar York River Estuary cores collected in 2007, sediment samples that were muddier 

tended to contain more water and organics than samples that were sandier. To further examine 

patterns in water and organic content while normalizing for the sand content, the water and 

organic percentages were replotted relative to the mud matrix alone, i.e., by effectively removing 

the sand-sized (presumably inorganic) particles while leaving the water, mud and organics 

behind in the calculation (Figure 3-4d-e).

Once the sand had been removed from the calculation, the water content and organic 

content did indeed vary less in the upper part o f the cores. The standard deviation (SD) was used 

to quantify the degree of variability within the upper part a given core (depth shallower than 8  

cm) for water content and organic content. The standard deviation (SD) for percent water for 

depths shallower than 8  cm depth dropped from 5.6 to 3.8 percentage points when considering 

the mud matrix alone, and the SD of organic content dropped from 1.20 to 0.93 percentage 

points, changes that were both found to be significant at p < 0.1. Lower in the cores (deeper than 

8  cm), normalizing for sand content actually increased the inter-core variability in water and 

organic content. Sources o f increased heterogeneity below 8  cm may include inherent spatial 

variability (the week-to-week cores were collected at least 10s o f meters apart -  see Table 3-1). 

The extreme excursion in normalized values at ~10 cm for April 29th may be due to the presence
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of relatively large pieces organic detritus -  it is important to recognize that organics may 

occasionally be present as sand-sized component particles (i.e., even after disaggregation).

The mass of the disaggregated silt-size fraction relative to the mud matrix (Figure 3-4f; 

calculated from data in Table 3-3) was generally similar from core to core. Except for the May 

5th case, the silt fraction of mud was about 40% from the surface down to ~11 cm. All five cores 

then exhibited an increase in silt o f about 1 0  percentage points between 1 1  cm and the bottom of 

the core. Omitting a few anomalous measurements on May 5th (those below 30%), the silt 

content of the mud matrix shallower than 11 cm averaged 39.6%, while the silt content deeper 

than 12 cm averaged 47.4 %. This increase in silt content deeper than 12 cm on all dates was 

significant at p < 0 .0 0 0 1 .

3.4.2. Pellets and Other Pellet-Sized Grains

Overall, the size distributions for the pellets and the pellet-sized disaggregated particles

(i.e., “disaggregated” coarse silt and fine sand) were roughly similar (Figure 3-5a,b; calculated 

from data in Table 3-4), with the most abundant size by mass always found on either the 63 or 

the 90-micron sieve. Also, in all cases, the third most mass was caught on the 45-micron sieve, 

and the least was caught on the 150-micron sieve. Thus the range of sieves chosen successfully 

spanned the peak of the size distribution in every case. The 50th percentile size (dso) for pellet 

size distributions in Figure 5a averaged 81.0 microns, while the dso for the “disaggregated” 

silt/sand size distributions in Figure 3-5b was virtually identical and statistically 

indistinguishable (p > 0.7) from the pellet samples with an average value of 80.3 microns. 

However, the pellets exhibited more variability in their size distribution between samples, as 

quantified by the standard deviation of the pellet size distribution around the mean of 5.7%. In 

contrast, the SD for the “disaggregated” silt/sand size distribution around the mean was
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significantly less (p < 0.001) at only 2.4 percentage points. Also, the mean fraction o f pellets 

larger than 150 microns (8.4 %) was significantly larger (p < 0.001) than the mean fraction of 

“disaggregated” particles (3.3 %), while the mean fraction of pellets in the 90 to 150 microns 

class was significantly less than “disaggregated” particle fraction (28.4 % vs. 34.4 %, p < 0.02). 

Differences in the mean fractions of pellets versus “disaggregated” particles for the other two 

size classes were insignificant (p > 0 .6 ).

The pellets contained significantly more organic matter than the “disaggregated” silt and 

sand grains on average for every size class (p < 0.001) (Figure 3-5c-d). When summed over all 

four size classes according to the classes’ relative abundance, the average organic content was 

9.4 % for the pellets and only 1.5 % for the “disaggregated” particles (difference significant at p 

< 0.0001). For both pellets and “disaggregated” material, percent organic matter was 

significantly higher for the largest size class (p < 0 .0 0 2 ), averaging 15.2 and 6 . 1  percent, 

respectively. This is likely due to the occasional presence of larger pieces o f organic detritus in 

both the pelletized and “disaggregated” particle populations. Since the abundance of the largest 

size class was small in each case, the occasional pieces of large organic detritus did not strongly 

affect the organic content averaged across size classes for either the pellets or the coarse silt/fine 

sand.

When weighted for relative abundance of size classes, pellets made up an average o f 36.2 

% of the mass contained in the total “gentle sieve” (i.e., pellet plus “disaggregated”) particles 

caught on 45 micron or larger sized sieves (Figure 3-5e). The percentage of pellets relative to 

total particle mass was largest for the >150 micron size class, at 59.2 % (p < 0.001). Examining 

percent water and organics relative to the mud matrix reduced variance in the upper section of 

cores (see Section 3.4.1). Thus the percentage mass of pellets relative the total mud matrix was
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also examined. To estimate the total mud content in the core slices used for pellet analysis, the 

values for disaggregated sand-sized content caught on sieves > 63 microns during the 

“disaggregated” particle analysis (contained in Table 3-4) were scaled in percentage terms to 

match the percent sand content for the corresponding dates and depths in Table 3-2. Consistent 

scaling factors where then used determine the percent o f pellets relative to total dry sediment.

The resulting values for mass percent o f mud contained in pellets relative to the total dry mass of 

the mud matrix are displayed in Figure 3-3f. Unlike the percent water or percent organics (or 

percent silt) in Figure 3-4c-e, however, percent mass contained in pellets was highly variable as a 

percent o f total mud from core to core (Figure 3-5 f). Summed across all four size classes within 

individual cores, pellet content ranged from a low o f 5.1 % o f all mud to a high of 29.0 % o f all 

mud.

3.4.3. Beryllium-7

All of the cores exhibited ?Be activity that was clearly detectable above background and 

which dropped off at relatively similar rates with depth into the bed. Beryllium-7 activity per 

gram of dry sediment as a function of depth into the bed (corrected for decay time since field 

collection) is contained in Table 3-5 and plotted in Figure 3-6 for the five sampling cruises. The 

profiles in Figure 3-6 have additionally been normalized using information from Table 3-2 to 

“remove” the sand so that the 7Be activity is plotted as activity per gram of mud. This was done 

because 7Be in the York River Estuary is known to adsorb much more efficiently to the greater 

surface area per mass of mud versus sand (Romine, 2004). All o f the cores exhibited relatively 

strong activities of at least 0 . 8  dpm per gram of dry mud at least as deep the 1  - 2  cm depth 

interval. Moving downward from the surface, eight of the ten cores last exhibited an activity 

greater than 0.2 dpm/g of mud within 1 -cm thick horizons centered at 4.5 to 6.5 cm. There was
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also notable variability from core to core. Activities at the surface ranged from 3.0 to 1.0 dpm/g 

of mud, and the SD for activity among the 0-1 and 0-2 cm slices across all ten cores was 0.89 

dpm/g. However, when the top two slices for the two cores from each sampling date were 

grouped, there was found to be no significant difference (p > 0 . 1 ) in mean activity between any 

two dates, likely due in part to the small number of samples.

3.4.4. DigitalX-radiography

X-radiography revealed mottled patterns of light and dark banding within ~ 1 cm of the

surface on every coring date (Figure 3-7a-e), characteristic o f moderate bioturbation (e.g., 

Dickhudt et al. 2009). There were no obvious sequences o f several cm-thick parallel laminations 

at the surface of the cores, such as those Dickhudt et al. (2009) associated with periods o f rapid 

seasonal deposition at Clay Bank. In every x-radiograph, there was an overall increase in gray

scale brightness from the top of the core toward the bottom, consistent with an overall decrease 

in water content with depth. There was also evidence on every cruise date o f a step-like increase 

in brightness between about 7 and 10 cm below the sediment-water interface. In an effort to 

examine this transition in brightness semi-quantitatively, pixel intensity across each x-radiograph 

in Figure 7a-e was averaged and then plotted as a function of depth between 1 and 14 cm. The 0- 

1  cm interval was not included because of ambiguities in brightness associated with averaging 

across the slightly uneven core surface. The width-averaged pixel intensity was then normalized 

on a scale of zero to one such that the lowest width-averaged intensity between 1  and 14 cm for 

each core was set to zero, and the highest width-averaged intensity was set to one (Figure 3-7f). 

In every core, this analysis highlighted a zone of gradually increasing pixel brightness from 1 to 

~ 7 cm, a rapidly increasing intensity layer located in the vicinity o f 7 to 10 cm, and a layer of 

nearly uniform pixel intensity between ~ 10 cm to 14 cm.
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3.4.5. Erodibility

All ten o f the erodibility experiments associated with the five coring cruises (Table 3-6; 

Figure 3-8) clearly exhibited Type 1 depth-limited erosion, as was also the case for the York 

River Estuary cores eroded in Gust chambers by Dickhudt et al. (2009, 2011). Each time stress 

was increased in the Gust microcosm for the experiments displayed Figure 3-8, erosion occurred 

rapidly at first and then dramatically slowed as the eroded depth in the core approached the depth 

where the critical erosion stress, xc, equaled the external stress applied by the microcosm. When 

a seabed in a tidal estuary is characterized by strongly depth-limited erosion, as was the case 

here, the erodibility of a given core can be fully characterized by the relationship between eroded 

mass and t c, as plotted in Figure 3-8. This is because the time-scale over which erosion reaches 

the depth where xc nearly equals the externally applied bed stress (~ 10 minutes for most York 

cores) is much shorter than the characteristic time scale over which tidal stress changes (~ 2  

hours). As a result, the depth-varying erosion rate “constant” (which is poorly constrained in any 

case), is not important to determining how much sediment is eroded.

To compare erodibility between dates, eroded mass values from Figure 3-8 were 

interpolated to 0.2 Pa, and then paired cores for each date were grouped. A stress o f 0.2 Pa was 

used because field observations of bed stress at Clay Bank have indicated 0.2 Pa to be a typical 

amplitude for bed stress at maximum tidal velocity (Friedrichs et al., 2008). In comparing 

erodibility among dates, mean erodibility was lowest (0.083 kg/m at 0.2 Pa) on 11 May
>y

(significantly so against all but 20 May, p < 0.1), and mean erodibility was highest (0.228 kg/m 

at 0.2 Pa) on 29 April, although it was not significantly greater on 29 April than on 5 May or 27 

May (p > 0.1). As was the case for Be, the low number o f significant differences may be due in
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part to the small sample size. Pooling all 10 cores together, the mean eroded mass at 0.2 Pa was 

0.147 kg/m2  with a SD of 0.068 kg/m2.

3.4.6 Correlations Between Core Properties Within the Top Centimeter

In order to statistically identify likely influences on and signatures of sediment erodibility

and consolidation, correlation analysis was performed on the various sediment properties 

measured within the uppermost centimeter o f the seabed ( Dickhudt et al., 2009, 2011; Stevens et 

al., 2007; Wiberg et al., 2013). If more than one observation of a given property was obtained 

from the 0 - 1  cm interval on a given cruise date, the multiple values for that date were averaged 

before the correlations across cruise dates were applied. The application o f correlation analysis 

was limited to the uppermost centimeter because only a few millimeters or less o f sediment was 

eroded at 0.2 Pa during each Gust microcosm experiment. In Figure 3-8, 0.2 Pa corresponds to < 

~ 0.2 kg/m2, i.e., only ~ 0.02 grams/cm2. Even at 90% porosity, this would have corresponded to 

just 2  mm o f sediment o f erosion.

Table 3-7 contains a listing of correlation r-values and p-values among parameter values 

o f interest that were measured within the 0-1 cm interval. Significant correlations based on a 

one-sided p-value less than 0.1 are highlighted in Table 3-7 by dark shading. Correlations with 

0 . 1  < p < 0 . 2  are highlighted with light shading as trends that may be worth noting, although they 

did not actually satisfy our definition o f significance. Other than sand content and particle grain 

size, the properties examined were normalized relative to mud content, given that properties of 

the “mud matrix” are thought to be more important to erodibility of muddy beds than are 

properties involving sand content (Dickhudt et al., 2011). In addition to core properties, elapsed 

time (in days since the first cruise) was also considered.
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The results in Table 3-7 indicate that over the course o f time from late April to late May 

2 0 1 0 , the median size o f sand and pellets present became significantly coarser, and the organic 

content o f the mud decreased. In addition, the sand content tended to increase, the water and silt 

content of the mud tended to decrease, and the erodibility o f the bed tended to decrease. Among 

these tendencies, the decrease in erodibility was significantly correlated to the decrease in silt 

content. The concentration of pellets in the mud matrix was significantly correlated to the 

percentage of disaggregated sand in the bed as a whole and was negatively correlated to 7Be 

activity. There also was a tendency for pellet concentration to decrease as water content 

increased. In addition, 7Be activity per gram of dry mud was negatively correlated with percent 

sand, tended increase with mud water content, and tended to decrease as pellet size increased.

3.5. Discussion

3.5.1. Cruise Timing Relative to Seasonal Turbidity Transition and Spring-Neap Cycle

The York River Estuary coring cruises described above began a few weeks after the end

of the 2010 winter-to-spring freshet (Figure 3-9a), providing an opportunity to study in detail the

evolution of the seabed following the annual dissipation of the secondary turbidity maximum.

The general hydrodynamic setting before, during and after the coring cruises can be inferred

from daily river gauging data provided by the U.S. Geological Survey (USGS, 2013) and from

monthly water quality samples collected by the Environmental Protection Agency (EPA, 2013).

In 2010, the seasonal pattern o f discharge, salinity and suspended sediment in the York River

Estuary (Figure 3-9a-c) followed the typical trend previously observed by others, i.e., a

progression from a wetter winter/spring to a drier summer/fall, with the transition in conditions

centered around the late spring to early summer (Lin and Kuo, 2001; Friedrichs et al., 2008;

Dickhudt et al., 2009; Fall, 2012).
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Although the EPA monitoring data in the York are sparse in time and space, the EPA 

data suggest that the coring cruises in this study were well-timed relative to the annually 

recurring, seasonal dissipation of the mid-estuary turbidity maximum as outlined by Dickhudt et 

al. (2009). Together with USGS discharge time-series, EPA data suggest that in spring 2010 a 

seasonal transition from high to low discharge (Figure 3-9a) led to a temporal shift in the middle- 

estuary from salinity stratification to more vertically mixed conditions (Figure 3-9b). The 

reduction in salinity stratification presumably eliminated the physical trapping mechanism that 

favored sediment accumulation in the middle estuary. So suspended sediment concentrations in 

the middle estuary then declined (Figure 3-9c). The data in Figure 3-9 capture the progressive 

temporal lag from decreasing discharge to decreasing stratification to decreasing TSS. These 

patterns are supported by an averaging of EPA data collected upstream and downstream o f the 

Clay Bank coring site, suggesting this is a spatially wide-spread phenomena (for EPA station 

locations see Figure 3-1). The 2010 coring cruises, which extended from late April to late May, 

encompassed the temporal change in stratification in the middle estuary and the resulting 

temporal change in near-bed suspended sediment concentration.

The approximate once-a-week spacing of the coring cruises in the York River Estuary 

also encompassed the spring-neap variability in tidal forcing typical o f the York River and many 

other tidal estuaries (Figure 3-9d). Continual monitoring of tidal elevation in the York River 

estuary was provided by a National Ocean and Atmospheric Administration tide gauge (NOAA, 

2013), mounted on the Yorktown Coast Guard Pier. Figure 9d displays the twice-daily range 

(high water minus low water) observed over the period o f the coring cruises, with the timing of 

each cruise indicated by a vertical line. Because of diurnal inequality between the two daily tidal
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cycles, the tide range did not simply oscillate from spring to neap each week. Nonetheless, the 

coring cruises still sampled the seabed in conjunction with a diverse set o f tidal conditions.

3.5.2. Bed Erodibility and Its Relation to Time and Tidal Disturbance

In comparison to the erodibility o f cores sampled at the same location in 2007 by

Dickhudt et al. (2009), the erodibility o f the April-May 2010 cores examined here was 

intermediate, consistent with a transition period of gradually increasing consolidation following 

the departure of the secondary turbidity maximum. Figure 3-10 displays the April through May 

2010 erosion data in comparison to the erosion data collected at Clay Bank between March and 

October 2007. For critical shear stresses between 0.1 and 0.3 Pa, cores from spring o f2007 

exhibited significantly more eroded mass (p < 0.0001) than those from 2010 (Figure 3-10a), 

whereas cores from summer and fall o f 2007 exhibited significantly less eroded mass (p < 0.02) 

than those from 2010 (Figure 3-10b). The 2007 cores, which were collected at monthly or longer 

intervals, were bimodal in character, in that erodibility was consistently high when the secondary 

turbidity maximum was present and much lower after the turbidity maximum had been dispersed 

(Dickhudt et al. 2009). It is likely that monthly sampling was too coarse in time for Dickhudt et 

al. (2009) to capture relatively rapid consolidation. In contrast, the more frequently collected data 

reported here from April through May 2010 allow an examination o f evolving erodibility over 

time-scales more consistent with the several days to a week or two expected for substantial 

changes in muddy bed consolidation (e.g., Mehta and McAnally, 2008).

An examination of the spring 2010 cores as a time-series revealed a tendency for 

erodibility to decrease with time along with a superimposed temporal oscillation correlated to 

low-passed tidal range (Figure 3-11). To evaluate erodibility as a time-series, eroded mass values 

from Figure 3-8 were interpolated to 0.2 Pa, and the paired cores were then averaged to produce
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a single value for each date (Figure 3-1 la). By testing a range of low-pass time-scales and lag- 

times, it was found that the correlation between eroded mass and low-passed tidal range peaked 

when tidal range was averaged over the 11 tidal cycles (5.7 days) immediately preceding core 

collection. Tested on its own, the tendency for erodibility to decrease in time was a trend rather 

than being statistically significant (see Table 3-7), but the correlation with low-passed tidal range 

was significant on its own (r = 0.76, p < 0.07; Figure 3-1 lb). Interestingly, a multiple linear 

regression of eroded mass versus both time and low-passed tidal range notably improved the 

overall correlation, increasing the r-value for the combination to r = 0.94 and decreasing the p- 

values associated with the proportionality coefficients to more significant values of p < 0.08 and 

p < 0.05 for time and tidal range, respectively. Together these correlations suggest that 

consolidation with time reduces erodibility, but disturbance by tidal resuspension tends to 

increase erodibility. The peak correlation with tidal range averaged over the previous 11 tidal 

cycles suggests a characteristic bed consolidation time scale o f about 5 to 6  days. Consolidation 

over several day time-scales, “reset” by intermittent resuspension events, is qualitatively 

consistent with recently developed models for time-dependent cohesive seabed erodibility 

(Rinehimer et al., 2008; Sanford, 2008).

3.5.3. Observations Suggest Consolidation and Bed Together, Despite Limited Resolution

Correlations of seabed properties with time and each other (see Table 3-7) suggest the

seabed of the York River Estuary was simultaneously subject to both consolidation and bed 

armoring following dispersal o f the turbidity maximum. Overall, the trends observed in this 

study are consistent with both dewatering and a progressive winnowing of the most easily 

suspended material from the sediment surface, including coarse silt, small pellets, and organic- 

rich floes, leaving behind and concentrating sand and larger pellets. As time passed, the sand
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content, median sand size, percent pellets, and median pellet size where all observed to increase 

at the surface (Table 3-7), while the percent water, organics, silt, 7Be activity and erodibility 

decreased. Although some of these correlations with time were weak, these parameters were 

often additionally correlated with each other in a sense that supports this overall interpretation.

Classically, a decrease in the percent water of the mud matrix, i.e., dewatering, is 

synonymous with cohesive consolidation (e.g., Dickhudt et al., 2011), whereas an increase in 

size and concentration o f sand-sized particles, i.e., coarsening of the bed, is synonymous with 

bed armoring (e.g., Wiberg et al., 1994). Consolidation and bed armoring each lead to lower 

erodibility. Typically, however, consolidation and bed armoring are each associated with 

cohesive and non-cohesive sediment, respectively and exclusively. The results of this study 

suggest that cohesive-like consolidation and non-cohesive-like bed armoring may occur 

simultaneously in mixtures of pelletized mud and sand, even when the overall concentration of 

disaggregated clay and silt would classically define the bed to behave more like pure mud (Law 

et al., 2008). The possible simultaneous occurrence o f consolidation and bed armoring in mixed 

muddy beds is also consistent with recent advances in cohesive bed modeling (Sanford, 2008).

In this study, it is likely that limited eroded mass, associated sampling complexities, a 

small overall number of cores, and confounding tidal variability all conspired to make a clearer 

resolution of the relationship between core properties and erodibility difficult. As described in 

Section 3.4.6, only about 2 mm o f sediment was likely to have been eroded in the Gust chamber 

at 0.2 Pa. Based on experience, the smallest surface core thickness interval that could reliably be 

sampled in the field while retaining representative water content was about 1 cm. If the top 1 cm 

did not optimally represent the key properties of the top 2  mm, then a strong correlation of 

parameters within the top 1 cm to erodibility might be difficult to obtain. Statistically speaking,
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the overall number of cores processed was also relatively small; however, collection and 

processing of any more cores any more frequently over a five-week period was not logistically 

possible. Finally, tidal disturbance likely affected erodibility significantly; but tidal range was 

not found to be notably correlated to any of the parameters in Table 3-6 other than erodibility, 

even at p < 0.2 (details o f correlations with tidal range not shown). Thus the imprint of tidal 

disturbance on erodibility in particular may have added additional “noise” to erodibility’ s 

potential correlation to other factors.

3.5.4. Controlling fo r  the Possible Role o f  Significant Net Erosion or Deposition

Evidence from -15 cm profiles of sediment properties from multiple cores collected

during this study argues against a dominant role for major deposition or erosion in modulating 

erodibility. Across the five weeks of coring examined here, a layer o f relatively less variable 

percent water of mud, less variable percent organic content of mud, and less variable x- 

radiography pixel intensity was consistently documented from the surface down to -  7 cm depth, 

below which notably greater variability was seen. This also roughly corresponded to the 

maximum depth across the multiple cores at which 7Be activity was last seen above background 

levels. If  notable net erosion or deposition had occurred during the five-week sampling period, 

one would have expected this transition to migrate upward or downward in time. The nature o f 

layering above -  7 cm from x-radiographs was also observed to be mottled on every cruise date, 

which additionally argued against significant deposition.

Clearly properties found any further than -  1 cm below the top o f the cores examined 

here cannot directly control surface erodibility, because mass erosion during a given tidal cycle 

can penetrate only several millimeters into the bed at most. Nonetheless, the relatively uniform 

properties found in each core between 1 and 7 cm below the surface is still an important finding
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in this study, because it simplifies a potentially confounding role for depositional history. At this 

same site, Dickhudt et al. (2009) found that periodic rapid deposition associated with seasonal 

formation o f the turbidity maximum was responsible for the dramatic seasonal increases in 

erodibility that they documented. Thanks to the relative seabed stability documented during the 

present study, this set of observations set may provide an especially useful data set for 

constraining relatively simple but time-dependent models for time-dependent consolidation 

and/or bed armoring of mixed grain muddy deposits in the absence of major erosion or 

deposition.

3.6. Summary and Conclusions
Appropriate parameterization of time-dependent erodibility o f muddy seabeds is a

significant barrier to improved understanding and accurate modeling of sediment dynamics in 

estuaries and coastal seas. This sedimentological study in the middle reaches o f the York River 

estuary investigated controls on cohesive bed erodibility by assessing changes in seabed 

properties over weekly timescales. As far as we are aware, this represents the first in-situ study to 

successfully and quantitatively relate classic bed properties (i.e., water content and grain size) to 

evolving erodibility over this key consolidation time-scale in a subtidal cohesive estuarine 

environment.

During April and May of 2010, multiple GOMEX box cores were collected over a five- 

week period chosen to correspond with the annual post-freshet dissipation of the York River 

Estuary’s secondary turbidity maximum, while also resolving the estuary’s spring-neap cycle. 

Once a week for five weeks, box cores were subsampled to a depth of ~ 15 cm for profiles of 

disaggregated sand/silt/clay, organic and water content, and 7Be activity. Based on gentle 

sieving, resilient pellet concentration and pellet size distribution was determined for the
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uppermost 2 cm. In addition, images o f internal fabric were collected via digital x-radiography, 

and erodibility o f the surface o f the cores was determined via a Gust microcosm.

All the cores across all five weeks were characterized by a decrease in water content and 

organics with depth, accompanied by an increase in content o f disaggregated sand-sized 

particles. When normalized by mud content, however, water and organic content in the upper 

part o f the cores (> 1-cm and < ~ 7-cm depth) varied only slightly. From ~ 1 to 7 cm, x- 

radiographs suggested persistent, moderate bioturbation, and 7Be was often present. Below ~ 7 

cm, variability in water and organic content of mud significantly increased, the pixel brightness 

of X-radiographs markedly increased, and 7Be was always absent. In general, these common 

patterns in vertical structure present during all five weeks suggested that neither significant net 

erosion nor net deposition was responsible for observed variations in erodibility.

In contrast to relatively stable properties below 1-cm depth in the cores, surficial 

properties evolved in response to the recent dissipation of the middle-estuary turbidity 

maximum. Overall, the trends observed in this study were consistent with both a dewatering and 

a progressive winnowing of the most easily suspended material from the uppermost cm. As time 

passed, the sand content, median sand size, percent pellets, and median pellet size were all 

observed to increase at the surface, while the percent water, organics, silt, 7Be activity and 

erodibility decreased. Consistent with recent advances in cohesive bed modeling, the results o f 

this study suggest that cohesive-like consolidation and non-cohesive-like bed armoring may 

occur simultaneously in mixtures o f pelletized mud and sand.

Motivated by previous studies which associated muddy seabed pelletization with 

decreased erodibility, this study developed a methodology to consistently sample for resilient
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muddy pellets and described their occurrence and size distribution in detail. The 50th percentile 

(dso) for pellet size distributions averaged 81.0 microns and significantly increased over the 

course o f the study. The organic content of the pellets averaged 9.4% compared to only 1.5% for 

the sand and coarse-silt-sized particles that survived classical laboratory disaggregation. Before 

disaggregation, mud pellets which survived gentle sieving made up, by dry weight, 36% of all 

particles > 45 microns and 59% of all particles > 150 microns.

Along with a tendency for erodibility to decrease with time, this study identified a 

superimposed temporal oscillation in erodibility correlated to low-passed tidal range, presumably 

because stronger tidal currents disturbed the bed, partly counteracting the temporal effects o f 

consolidation. It was found that the correlation between eroded mass and low-passed tidal range 

peaked when tidal range was averaged over the 1 1  tidal cycles immediately preceding core 

collection, suggesting a characteristic bed consolidation time scale o f about 5 to 6  days. 

Consolidation over a several day time-scales, “reset” by intermittent resuspension events, is also 

qualitatively consistent with recently developed models for time-dependent cohesive seabed 

erodibility.
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Figure 3-1. Map of York River Estuary. Location o f Clay Bank study site indicated by the black 
dot. Locations of EPA long-term monitoring stations and NOAA tide gauge closest to Clay Bank 
indicated by red squares. The aerial photograph inset shows the Clay Bank MUDBED sites. The 
Yellow star depicts the secondary channel core location for this study. The VIMS Clay Bank Piling 
(green dot) and the MUDBED main channel core location (white dot) are shown for data 
comparisons between studies.
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Table 3-1. Cruise date, location, and station numbers.

Cruise date
Latitude 

(minutes north 
o f 37 degrees)

Longitude 
(minutes west 
o f 76 degrees)

Log-book core 
numbers

29 April 2010 20.49 37.48 4872-4878

5 May 2010 20.46 37.44 4879-4885

11 May 2010 20.47 37.49 4886-4893

20 May 2010 20.45 37.47 4894-4901

27 May 2010 20.48 37.50 4902-4909
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Figure 3-2. (a) Example of GOMEX core sampling in Virginia estuary Map of York River Estuary 
(photo courtesy of G. Cartwright), (b) Disaggregated particles (top) and gently sieved particles 
(bottom). The pellet weight in each size class (<pMJ  was given by 9P,„„ =9gma,_ „ „ -



4

Figure 3-3. (a) Dual core Gust microcosm as arranged during an erosion experiment, (b) Close-up 
of sediment suspension in a Gust microcosm with water circulation pattern highlighted by arrows.
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Figure 3-4. Sediment mass profiles of (a) % water in wet sediment, (b) % organics in dry 
sediment, (c) % sand in dried sediment, (d) % water in wet mud matrix, (e) % organics in dry mud, 
and (f) % silt in dried mud. Size classes in figure reflect disaggregated sediment components.
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Table 3-2. Percent water content by weight of wet sediment, percent organic content by 
weight of dry sediment, and percent disaggregated sand-sized content by weight of dry 
sediment. Depth listed is center of 1-cm sample interval. Dashes indicate no data or bad 
data.

Depth
(cm)

29 April, 
Core 4874

5 May, 
Core 4881

11 May, 
Core 4893

h 2o Organ Sand h 2o Organ Sand h 2o Organ Sand
0.5 77.75 10.73 2.71 72.36 8.61 23.14 69.40 8.14 23.21
1.5 66.25 7.71 16.75 65.74 7.44 19.85 66.46 7.62 18.09
2.5 64.05 7.65 19.99 65.40 8.02 20.55 63.54 7.18 18.89
3.5 65.16 8.35 16.23 67.89 8.06 15.17 61.22 6.52 22.72
4.5 65.03 8.06 14.88 58.52 6.84 23.61 58.02 5.49 30.89
5.5 61.27 7.07 22.47 58.26 6.33 31.44 59.71 6.05 24.95
6.5 61.11 7.24 23.36 56.22 5.99 33.59 58.78 6.49 26.11
7.5 59.53 6.87 30.38 57.26 6.08 31.74 56.78 5.63 20.93
8.5 57.53 6.50 33.35 58.71 6.66 39.68 51.14 6.34 26.06
9.5 57.00 6.61 56.58 54.30 5.92 35.72 52.69 5.28 28.18
10.5 55.12 6.66 39.81 52.96 5.77 36.04 55.37 5.79 22.39
11.5 52.37 5.51 42.09 54.86 6.28 27.77 53.22 5.18 32.33
12.5 50.96 5.36 39.67 54.00 5.57 30.08 52.14 5.70 23.56
13.5 49.40 5.44 40.83 - - - - - -

Depth
(cm)

20 May, 
Core 4896

27 May, 
Core 490^

h 2o Organ Sand H20 Organ Sand
0.5 75.54 8.20 14.02 62.81 6.11 29.47
1.5 65.80 6.80 20.17 62.68 6.62 18.87
2.5 65.16 6.58 22.71 65.81 7.82 22.10
3.5 63.61 6.45 20.46 62.58 7.33 21.26
4.5 62.57 6.41 24.77 62.33 7.34 20.44
5.5 57.27 5.19 31.99 59.48 6.68 26.13
6.5 59.02 5.53 39.51 57.36 6.24 32.44
7.5 54.79 4.92 33.92 56.67 6.08 38.59
8.5 53.34 4.57 43.27 53.24 5.25 40.37
9.5 51.64 4.64 38.91 51.55 5.16 43.25
10.5 49.15 4.27 41.88 52.34 5.49 40.19
11.5 47.11 4.22 39.88 49.83 4.96 45.37
12.5 45.74 3.85 44.15 51.50 6.06 42.50
13.5 43.29 3.51 36.27 49.60 5.02 45.46
14.5 48.35 4.32 30.95 - - -

15.5 48.46 4.55 28.27 - - -
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Table 3-3. Phi class mud content by weight as percent of diy mud as determined by 
disaggregated grain pipette analysis. Depth listed is center of each 1-cm sample interval. 
Dashes indicate no data or bad data.

Phi Depth (cm)
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

29 April, Core 4874
4-5 14.1 11.7 15.4 11.7 11.3 12.3 - 8.6 11.6 11.1 5.4 - - 12.9 -

5-6 13.2 10.6 9.0 9.9 10.1 12.3 _ 8.4 11.4 11.8 12.6 - . 14.5 -
6-7 10.9 8.7 8.2 8.9 9.3 6.7 . 8.8 8.0 9.1 8.5 - - 11.8 .

7-8 8.7 5.3 6.4 6.5 6.9 10.1 - 8.2 6.5 7.6 8.8 - - 8.9 -

8-9 5.0 6.7 4.1 5.1 4.3 6.0 . 6.0 7.4 4.9 5.7 _ _ 9.6 .
9-10 6.1 4.2 9.8 5.9 7.7 8.3 . 7.7 7.5 8.6 8.4 _ . 5.0 -
>10 42.0 52.8 47.1 52.0 50.4 44.3 - 52.3 47.6 46.9 50.6 - - 37.3 -

5 May, Core 4881
4-5 _ 11.1 8.7 6.8 7.2 9.9 8.3 6.6 3.4 8.8 12.0 12.5 11.6 . .
5-6 - 13.9 9.8 4.6 7.3 6.8 6.7 9.4 3.5 9.0 12.5 12.1 13.3 - -
6-7 . 10.2 10.4 4.9 7.4 5.6 5.6 8.9 3.8 12.3 8.8 8.4 12.0 .
7-8 . 6.4 7.2 5.0 6.9 4.8 4.8 8.7 5.2 7.4 7.5 7.1 9.8 - .
8-9 - 7.7 5.2 3.6 4.4 4.6 3.8 8.5 7.2 7.1 6.9 6.3 9.3 - -

9-10 . 6.9 17.7 14.4 7.6 7.1 6.7 9.3 11.1 7.3 8.9 7.2 8.6 - -
>10 . 43.8 41.0 60.7 59.2 61.2 64.1 48.6 65.8 48.1 43.4 46.4 35.4 . .

11 May, Core 4893
4-5 12.3 10.4 11.6 13.9 11.8 10.5 9.3 10.8 11.6 11.6 10.5 12.1 13.8 . .
5-6 13.1 14.1 12.5 13.1 12.7 11.6 11.6 12.4 16.8 13.4 14.0 11.8 15.0 - .
6-7 8.8 9.6 9.4 9.1 13.1 9.5 9.4 9.7 4.8 9.0 9.8 10.1 10.2 . .
7-8 7.4 7.5 6.3 7.6 3.4 6.6 7.9 8.0 7.7 8.8 8.6 7.7 8.5 .

8-9 6.8 7.0 7.7 6.9 6.6 7.2 7.4 7.4 6.2 6.8 6.3 5.6 8.9 . .
9-10 9.3 8.5 5.6 8.3 8.3 8.2 8.3 8.5 8.2 8.2 8.8 7.2 6.1 . -
>10 42.3 42.9 46.9 41.1 44.1 46.4 46.1 43.2 44.7 42.2 42.0 45.5 37.5 . „

20 May, Core 4896
4-5 10.5 14.3 10.7 12.2 10.2 12.1 - 11.4 - 12.8 13.6 16.1 13.9 14.9 12.4
5-6 11.2 11.8 11.7 12.2 11.7 13.0 - 11.0 - 13.8 11.4 11.6 16.1 16.7 13.7
6-7 5.8 4.8 7.2 7.6 8.6 10.4 - 8.1 - 8.2 9.7 8.9 11.0 8.7 10.4
7-8 5.4 4.5 8.3 7.2 8.6 8.7 - 5.2 - 6.3 6.4 8.3 9.1 9.4 9.1
8-9 4.5 4.3 5.2 2.4 5.7 8.6 . 5.5 . 7.3 6.4 6.4 10.7 8.5 10.7
9-10 7.4 5.6 6.0 9.0 8.2 9.3 - 5.1 - 6.0 7.2 7.0 3.5 10.2 10.8
>10 55.2 54.7 50.9 49.4 47.0 37.9 - 53.7 - 45.6 45.3 41.7 35.7 31.6 32.9

27 May, Core 4904
4-5 15.3 10.7 12.7 10.7 12.6 13.0 11.5 10.5 10.7 10.9 8.8 12.8 . 11.0 .

5-6 12.1 10.6 12.3 13.3 11.0 13.9 13.5 11.1 11.5 13.6 10.9 11.3 . 13.2 .

6-7 8.1 8.8 9.5 8.8 9.7 10.1 8.0 11.9 9.0 7.6 11.1 10.0 . 10.7 _

7-8 6.0 8.1 8.1 8.9 6.7 6.7 8.4 7.2 8.0 8.1 7.0 8.6 . 9.3 .

8-9 5.8 4.7 6.4 6.8 6.7 8.3 8.8 6.3 7.0 5.3 5.3 7.5 . 12.2 _

9-10 7.7 7.7 8.0 8.2 7.1 9.2 8.3 9.8 9.4 10.1 10.1 9.8 1.3 .

>10 45.0 49.4 43.0 43.3 46.2 38.8 41.5 43.2 44.4 44.4 46.8 40.0 42.3 .
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Figure 3-5. Percent mass as a function of sieve size classes: (a) size distribution of pellets that 
withstood sieving but not disaggregation, (b) size distribution of “disaggregated” (i.e., coarse 
silt/fine sand and detritus that withstood disaggregation), (c) % organic o f pellets, (d) % organic of 
“disaggregated”, (e) % pellets of all “collected” >45 microns, (f) % pellets relative to total 
disaggregated mud.
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Table 3-4. Weights of sediment for sieve intervals from 10.00 g of wet sediment. Dashes 
indicate no data or bad data.

Size
(□m)

D=dupl.

“Collected” (Gently sieved) “Original” (Disaggregated)
Dried (mg) Muffled (mg) Dried (mg) Muffled (mg)

0-1 cm 1-2 cm 0-1 cm 1-2 cm 0-1 cm 1-2 cm 0-1 cm 1-2 cm
29 April, Core 1874

45-63 103.6 239.7 95.9 230.5 41.5 162.8 41.1 159.3
63-90 125.6 411.8 116.3 398.3 46.4 317.4 45.9 312.3

90-150 77.4 321.1 72.2 315.4 47.5 248.9 47.3 246.2
>150 10.0 49.1 7.4 43.9 3.5 23.0 2.9 20.9

5 Vlay, Core 4 S81
45-63 222.2 252.2 213.7 242.6 143.2 164.7 141.7 161.3
63-90 349.5 451.5 336.3 434.9 183.2 246.0 183.1 244.3

90-150 242.3 325.0 232.9 314.3 168.8 200.0 167.6 199.5
>150 43.2 45.6 38.1 40.1 11.6 27.6 11.2 25.0

45-63 D - 301.8 - 291.4 - 164.6 - 162.8
63-90 D - 456.2 - 439.8 - 253.4 - 251.4
90-150 D - 330.6 - 320.2 - 257.5 - 255.7
>150 D - 52.1 - 45.7 - 15.5 - 14.9

11 May, Core1893
45-63 253.4 264.0 242.3 253.2 159.7 161.3 157.0 159.7
63-90 428.5 413.5 414.8 397.0 280.4 276.8 279.2 275.1

90-150 296.3 381.6 289.7 368.4 - 222.1 - 212.3
>150 71.1 68.6 63.7 60.2 24.2 22.8 23.3 21.3

45-63 D 260.5 251.1 251.0 240.3 169.7 177.9 167.5 175.3
63-90 D 465.7 433.4 450.1 415.1 317.6 287.8 317.1 285.8
90-150 D 376.1 389.6 369.0 376.0 267.3 248.4 266.3 243.5
>150 D 71.5 67.8 65.1 59.6 28.1 21.2 27.4 20.6

20 May, Core *896
45-63 146.9 261.9 140.8 251.4 92.3 171.4 91.0 169.8
63-90 237.6 515.0 227.7 497.7 131.3 327.2 130.6 323.6
90-150 183.4 373.4 175.7 362.7 124.2 285.2 123.4 281.0
>150 20.7 53.8 18.5 48.0 8.6 38.9 - 38.1

27 May, Core1904
45-63 321.0* 228.9 311.4* 220.0 233.0* 145.7 231.1* 143.4
63-90 661.2* 413.3 646.4* 398.5 448.9* 312.7 446.9* 308.9

90-150 690.8* 412.6 676.6* 400.4 461.3* 294.8 460.2* 291.8
>150 100.1* 80.6 92.8* 72.0 43.2* 28.9 42.5* 26.9

45-63 D - 237.0 - 228.6 - 164.8 - 162.4
63-90 D - 417.1 - 402.9 - - - -

90-150 D - 423.9 - 412.1 - 263.8 - 262.3
>150 D - 77.6 - 69.8 - - - -

*9.50 grams of wet sediment used instead of 10.00
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Table 3-5. Beryllium activity in dpm/gram dry sediment (including sand) ± confidence 
interval, corrected for decay between time o f core collection and analysis. Zero values 
indicate no 7Be peak detected. Dashes indicate no data or bad data. 7Be inventory in units 
o f  dpm/cm 2  integrated over the top 1 0  cm of each core is displayed in the final row.

Depth
(cm)

29 April 5 May 11 May 20 May 27 May

Core
4872

Core
4873

Core
4879

Core
4880

Core
4886

Core
4887

Core
4894

Core
4895

Core
4902

Core
4903

0-1
2.89
±.21 .95±.10 .94±.12 69±.08 1.23

±.13 .88±.l 1 1.84
±.16 - .69±.07 .79±.10

1-2 ,97±.09 .74±.09 ,80±.10 65±.08 1.05
±.11 .40±.07 ,74±.10 3.29

±.24 ,71±.10 83±.ll

2-3 .46±.09 1.21
±10

1.13
±.12 ,30±.06 .72±.09 ,80±.12 .00 .78±.09 .47±.06 .00

3-4 38±.08 .95±.10 .67±.10 .01 ±.04 .92±.09 .43±.07 .62±.07 .70±.09 32±.08 ,02±.07

4-5 ,08±.03 .05±.04 .43±.06 ,04±.05 ,08±.05 .60±.09 .49±.08 .58±.07 .21±.09 .02±,01

5-6 .26±.06 .00 .23±.07 .00 .39±.07 .00 ,07±.03 .01±.05 .13±.06 .05±.02

6-7 .00 ,23±.04 .34±.08 08±.09 .00 .00 .01 ±.03 .10±.04 .00 .00

7-8 .00 .00 .14±.04 ,07±.03 .00 .00 .00 ,02±.02 .00 ,02±.01

8-9 .01 ±.02 ,04±.Q2 .02±.03 .00 ,01±.04 .02±.03 .00 .00 .00 .00

9-10 .00 .00 .02±.02 .00 .00 .00 .00 .00 .00 .00

10-12 .03±.02 ,06±.02 .00 .1U.10 ,10±.01 .00 ,02±,01 .00 .00 .00

12-14 .00 .00 .00 .04±.02 .00 .00 .02±.01 ,02±.04 .00 .0U.01

14-16 .00 .00 .00 .05±.04 .05±.01 - .01 ±.02 ,02±.02 .00 ,06±.04

0-10 1.82
±.21

3.29
±.32

3.85
±.30

1.46
±18

3.50
±.34

2.49
±.27

1.71
±.22

1.61
±.21

2.11
±.24

1.46
±.27
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Figure 3-6. Beryllium-7 activity per mass o f dry mud, corrected for time between coring and 
counting, for weekly sampling at the Clay Bank site between late April and late May, 2010.
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Darker -> Lighter

Figure 3-7. (a)-(e) Example digital x-radiographs from cores collected on the five weekly sampling 
cruises, (f) Relative pixel intensity, averaged across the widths o f  the images in (a)-(e) width, for 
depths from 1 to 14 cm. The width-averaged pixel intensity was normalized on a scale o f  0 to 1 such 
that the lowest width-averaged intensity for each core was set to 0, and the highest width-averaged 
intensity was set to 1.
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Table 3-6. Eroded mass and critical erosion stress calculated from erodibility experiments.

Critical 
erosion 

stress (Pa)

Eroded
mass

(kg/m2)

Critical 
erosion 

stress (Pa)

Eroded
mass

(kg/m2)
29 April Core 4875 Core 4877

0.0478 0.0276 0.0377 0.0370
0.0702 0.0765 0.0643 0.0939
0.1201 0.1505 0.1123 0.1788
0.2129 0.2003 0.2481 0.3097
0.4007 0.3166 0.3716 0.4680

5 May Core 4882 Core 4883
0.0388 0.0229 0.0381 0.0276
0.0748 0.0585 0.0709 0.0550
0.1648 0.1106 0.1594 0.1129
0.2160 0.1849 0.2105 0.1946
0.3567 0.3118 0.3513 0.3237

11 May Core 4889 Core 4890
0.0419 0.0091 0.0433 0.0093
0.0854 0.0278 0.0934 0.0290
0.1663 0.0669 0.1838 0.0706
0.2647 0.1227 0.2621 0.1188
0.3660 0.2228 0.3810 0.1935

20 May Core 4899 Core 4900
0.0453 0.0151 0.0348 0.0141
0.0771 0.0358 0.0621 0.0427
0.1445 0.0617 0.1534 0.0958
0.2405 0.1010 0.2408 0.1490
0.3700 0.1491 0.4003 0.2336

May 27 Core 4907 Core 4908
0.0383 0.0193 0.0399 0.0194
0.0609 0.0467 0.0664 0.0374
0.1205 0.0972 0.1217 0.0775
0.2076 0.1725 0.2165 0.1432
0.3005 0.3379 0.3494 0.2667
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Figure 3-8. Eroded mass as a function o f critical erosion shear stress for weekly sampling at the Clay 
Bank site between late April and late May, 2010.
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Table 7. Correlation r-values and p-values. Correlations with p < 0.1 or 0.1 < p < 0.2 highlighted by dark or light shading, respectively.

7Be activity of mud 
Erosion at 0.2 Pa 

Days since 1* cruise 
*djo of sand plus coarse alt trapped by sieves after disaggregation as in Figure Sb.

Days 
since 1 ** 
cruise

% 
Organics 
of mud

Be 
activity 
of mud

% Silt of 
mud

% Pellets 
of mud

Erosion 
at 0.2 Pa

% Water 
of mudr-values Sand dso Pellet d5o

% Sand -0.457 -0.218 -0.534 0.633
*Sand O50 -0.131 0.390 -0.446 -0.408

% Water of mud -0.117 -0.528 0.680 -0.681
% Organics of mud -0.457 - 0.212 0.077 0.366

% Silt of mud -0.218 -0.117 0.475 -0.219 -0.183 -0.289
Pellet djo -0.219 0.684 -0.660

% Pellets of mud 0.390 -0.528 - 0.212 -0.183 0.684 -0.329 0.408
Be activity of mud -0.446 0.680 -0.289 -0.660 -0.199
Erosion at 0.2 Pa -0.534 -0.408 -0.329 0.072 -0.571-0.488

Days since 1 cruise -0.681 -0.611 -0.199 -0.571

%
Organics 
of mud

Be 
activity 
of mud

Days 
since 1 st% Pellets 

of mud
% Water 
of mud

% Silt of 
mud

Erosion 
at 0.2 PaOne-sided p-values % Sand *Sand dm Pellet dJ0

% Sand 0.1770.220 0.362 0.126
'"Sand dso 0.417 0.258 0.226 0.248

% Water of mud 0.104 0.180 0.104 0.103
% Organics of mud 0.220 0.366

% Silt of mud 0.426 0.384 0.319 0.137
Pellet dso 0.102 0.202

% Pellets of mud

0.177 0.3420.248 0.202
0.126 0.103

0.294 0.248
0.454 0.374

0.294 0.454 0.157
0.248 0.374 0.157
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Figure 3-9. Conditions in the York River estuary in 2010: (a) USGS data for riverine 
discharge (3-day low-pass of Pamunkey plus Mattaponi gaging stations). EPA monitoring 
data for (b) salinity and (c) total suspended solids (spatial averages of observations collected 
at stations LE4.1 and LE4.2). (d) Tidal range (high water minus low water) calculated from 
Yorktown NOAA tide gauge with dashed lines indicating dates o f coring cruises. (See Figure 
1 for locations of LE4.1, LE4.2 and tide gauge.)
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Figure 3-10. Comparison of eroded mass vs. stress for 2007 and 2010 cores collected at Clay Bank, 
(a) Mar-May 2007 monthly data compared to Apr-May 2010 weekly data; (b) Jun-Oct 2007 monthly 
data compared to Apr-May 2010 weekly data. 2007 data from Dickhudt et al. (2008).
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Appendix 1: Fecal Pellet Analysis Methodology

115



Pellet Analysis: 
Standard Operating Procedure

By L. Kraatz
Setup:
Tupperware to collect sediment samples Dl water bottles
2L graduated cylinders Small and Large porcelain bowls
Graduated cylinder mixing rod Sonicator
Eppendorf Pipette Scoopula
20 mL pipette rod Glass rods for stirring
10% Calgon Solution Stir plate and stir bars
Balance with accuracy to 0.0001 grams 150 micron sieve
ISO mL beakers (2 for each sample) 90 micron sieve
50 mL beakers (8 per each sample) 63 micron sieve
Aluminum trays (2 per each sample) 45 micron sieve

Prior to Experiment:

1. Muffle all beakers needed for experiment for one hour. Place in oven at 550°C.
2. Label graduated cylinders and 150 mL beaker to match each sample name.

***Note. There will be two analyses done for every sediment sample. One sample 
will have Calgon added to the sediment and sonicated to disaggregate any pellets and 
flocculants. This sample will be referred to as the ORIGINAL GRAINS sample. The second 
sample will have only water added and will be referred to as the FECAL PELLET sample.

3. Label and pre-weigh 50 mL beakers (you will need eight for every sample. 4 for each sieve and 1 
set for each type of sample)

a. Label beakers, place in oven (103-105‘C) for at least an hour and weigh twice (weights 
should be within 0.0005 g of each other)

b. Record weights in excel sheet.
***Note: you need to wear gloves anytime you handle the beakers that 

contain or will contain sediment!
4. Check Calgon solution to make sure you have enough for the experiment. If you are low this is 

how you make the CHSD Lab Calgon Solution:
To make 10% Calgon solution: In a small beaker, weigh out:
51g of Sodium Metaphosphate and

0.3g of Sodium Bicarbonate
Place this mixture in a lliter flask and stir vigorously until all of the powder is 

dissolved (you can use a stir plate/magnets to help this process along).

Prepping Samples:

1. Stir each sample to homogenize.
***Note. Be gentle with the sediment as to not break up the fecal pellets.

2. Weigh labeled 150 mL beaker, tare to zero
3. Weigh out 10.0 grams of each sample into beakers. Make sure to record these weights.

You want the weight of the sediment to  be the same for the ORIGINAL SEDIMENT sample 
and the FECAL PELLET sample.
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For the ORIGINAL SEDIMENT samples ONLY
4. Add 10 mL of 10% Calgon solution to the samples.
5. Add D! water to 60 mL using the Dl squirt bottles (also squirt down any sediment on the

sides)
6. Place samples in the sonicator for one hour.

For the FECAL PELLET samples ONLY

4. Add 60 mL of Dl water to the beakers. Carefully squirt down any sediment on the sides and 
only add water from the side of the beakers. Do not exude any extra force or pressure onto 
the FECAL PELLET samples.

5. Cover the beakers with parafilm.
6. Let samples sit in the refrigerator overnight. Do not let the samples sit out at room

temperature. You do not want any of the organic material to begin breaking down.

Sieving:

For the ORIGINAL SEDIMENT samples ONLY
1. Grab 150 micron, 90 micron, 63 micron, and 45 micron sieves, and 2-3 porcelain bowls
2. Once samples have been sonicated stir up the sample in the beaker with a glass rod. Try to 

rid the sample of any clumps before commencing the sieve process.
3. Place 150 micron sieve over bowl and pour sample onto sieve. Rinse beaker with Dl water 

bottle onto the sieve to make sure all sediment is removed from the container and captured 
for analysis.

4. Using the Dl squirt bottle (and as little water as possible), squirt all the mud and sand 
through the sieve into the bowl. Shells and other large particles should be caught on this 
sieve.

***Note. Sieving the sediment through the 150 micron sieve will be the most 
tedious of the sieves and will use the most water. Sieve the sample as diligently and use 
as little water as possible. When the sieved water is clear, you can stop sieving and 
continue to the next step. If the material is still running through the sieve after 700 mL 
of water has been used, continuing sieving for another 5 minutes and stop. At times 
sediment will continue to go through the sieve so in order to conserve water for the rest 
of the experiment, a cap is needed to continue the experiment.

5. Use Dl water hose from a sink and work all the shells to the bottom of the sieve, then use 
the Dl water squirt bottle to squirt sample from the sieve into its labeled beaker.

***Note. If sediment was still coming through the sieve after the allotted time, 
make a note on the spreadsheet and make sure to clean the remaining sediment on the 
sieve. We want to ensure that the sediment left on the sieve and moved to the beaker is 
indicative of sediment greater than 150 microns.

6. Place the labeled beaker in the oven (103-105*0) until water has evaporated.
7. Thoroughly rinse out the 150 micron sieve

***Note. To clean the sieve, make sure to turn sieve upside down and rinse from the 
bottom.

8. Next, place the small 90 micron sieve over second porcelain bowl
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9. Pour previously sieved sample (left in bowl) over the 90 micron sieve and use Dl squirt 
bottle to get all of the sediment out of the bowl. Use the Dl squirt bottle and work the 
sediment from one end of the sieve to the other, using as little water as possible

***Note. As you do this, empty the porcelain bowl into a neighboring porcelain 
bowl periodically to see keep track of your progress (the ultimate goal is for the water in 
the porcelain bowl to be clear without using more than 2000mL). You will need to 
continue to repeat the sieving of sediment until this goal is met!

10. Once the water runs clear, use Dl water hose from a sink and work all the sediment to the
bottom of the sieve, then use the Dl water squirt bottle to squirt sample from the sieve into 
its labeled beaker.

11. Place the labeled beaker in the oven (103-105‘C) until water has evaporated.
12. Thoroughly rinse out the 90 micron sieve
13. Next, place th e  small 63 m icron sieve over a n ew  porcelain bowl
14. Pour previously sieved sample (left in bowl) over the 63 micron sieve and use Dl squirt

bottle to get all of the sediment out of the bowl. Use the Dl squirt bottle and work the
sediment from one end of the sieve to the other, using as little water as possible

*** Note. Watch how much water you have used. Again, you can only use 2L.
15. Once the water runs clear, use Dl water hose from a sink and work all the sediment to the

bottom of the sieve, then use the Dl water squirt bottle to squirt sample from the sieve into 
its labeled beaker.

16. Place the labeled beaker in the oven (103-105‘C) until water has evaporated.
17. Thoroughly rinse out the 63 micron sieve
18. LAST SIEVE: Next, place th e  sm all 45 m icron sieve over th e  porcelain bowl
19. Pour previously sieved sample (left in bowl) over the 45 micron sieve and use Dl squirt

bottle to get all of the sediment out of the bowl. Use the Dl squirt bottle and work the 
sediment from one end of the sieve to the other, using as little water as possible

7. Once the water runs clear, pour the remaining sieved water into the graduate cylinder and
cover it with parafilm to ensure that no dust settles in them before the experiment is 
performed.

8. Place graduated cylinders to the side for pipette analysis and place beakers in the (103-
105‘C) oven for at least 24 hours then begin weighing procedure.

***Note. Place the cylinders in a region that is not easily disturbed once you start 
pipetting the area cannot be hit, bumped, etc., as it will disrupt the sediment fall velocity 
and mess up your results.

For the FECAL PELLET samples ONLY
1. Grab 150 micron, 90 micron, 63 micron, and 45 micron sieves, and 2-3 porcelain bowls.
2. First, place the 90 micron sieve in the bottom of the bowl.
3. Fill the porcelain bowl with Dl water, just to the top of the sieve surface.
4. Gently stir your FECAL PELLET sample beaker to break up as much of the clumps as possible.

***Note. DO NOT vigorously stir the sample. You want the pellets to remain intact. 
This process is just to get some of the sediment in suspension and not all in one clump.
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5. Pour the FECAL PELLET sample onto the 90 micron sieve and carefully rinse the beaker with 
Dl water onto the sieve to make sure all sediment is removed from the container and 
captured for analysis.

***Note. Try not put water on the sediment directly but rather on the beaker sides 
and let the water push down the sediment

6. Slowly move the bowl in circular motions to begin moving the sediment across the sieve 
surface.

7. Occasionally (once a minute), pick up the sieve to allow sediment to readjust and move the 
sediment.

8. Continue steps 6 and 7 for 5 minutes.
9. Place porcelain bowl on stir plate and put a medium size stir bar under the sieve. Place stir

plate on medium-high stir speed and let sit for 5 minutes.
10. Remove bowl from stir plate along with the stir bar. Rinse stir bar into bottom of bowl so no

sediment is lost.
11. Transfer sieved water from one bowl to new one and begin again to track the progress of 

how much sediment remaining is passing through the sieves.
12. Repeat steps 4-11 until water runs clear.

***Note. As you do this, empty the porcelain bowl into a neighboring porcelain 
bowl periodically to see keep track of your progress (the ultimate goal is for the water in 
the porcelain bowl to be clear without using more than 2000mL). You will need to 
continue to repeat the sieving of sediment until this goal is met!

13. Once the water runs clear, use Dl water hose from a sink to CAREFULLY work all the 
sediment to the bottom of the sieve, then use the Dl water squirt bottle to squirt sample 
from the sieve into its labeled beaker (ex. Sample#_0-lcm_90um_FP).

14. Keep this sediment beaker out. You will be sieving this sample again later.
15. Thoroughly rinse out the 90 micron sieve.
16. Pour previously sieved sample (left in bowl) over the 63 micron sieve and carefully rinse the 

beaker with Dl water onto the sieve to make sure all sediment is removed from the 
container and captured for analysis.

***Note. Try not put water on the sediment directly but rather on the beaker sides 
and let the water push down the sediment.

17. Follow the same procedure as before (steps 4-12). Once the water runs clear, use Dl water 
hose from a sink to CAREFULLY work all the sediment to the bottom of the sieve, then use 
the Dl water squirt bottle to squirt sample from the sieve into its labeled beaker (ex. 
Sample#_0-lcm_63um_FP)..

18. Place the labeled beaker in the oven (103-105’C) until water has evaporated.
19. Thoroughly rinse out the 63 micron sieve.
20. Next, pour previously sieved sample (left in bowl) over the 45 micron sieve and carefully 

rinse the beaker with Dl water onto the sieve to make sure all sediment is removed from the 
container and captured for analysis.

21. Follow the same procedure as before (steps 4-12). Once the water runs clear, pour the 
remaining sieved water into the graduate cylinder and cover it with parafilm to ensure that 
no dust settles in them before the experiment is performed.

22. Place graduated cylinders to the side for pipette analysis and place beakers in the (103- 
105°C) oven for at least 24 hours then begin weighing procedure.
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*Note. Place the cylinders in a region that is not easily disturbed once you start 
pipetting the area cannot be hit, bumped, etc., as it will disrupt the sediment fall velocity 
and mess up your results.

23. Thoroughly rinse out the 45 micron sieve.
24. Grab the 150 micron sieve and place the sieve in a large porcelain bowl.
25. Fill the porcelain bowl with Dl water, just to the top of the sieve surface.
26. Next, take the 90 micron sediment sample that was collected at the beginning of the sieving

procedure pour the FECAL PELLET sample onto the 150 micron sieve. Carefully rinse the 
beaker with Dl water onto the sieve to make sure all sediment is removed from the 
container and captured for analysis.

27. Slowly move the bowl in circular motions to begin moving the sediment across the sieve 
surface.

28. Occasionally (once a minute), pick up the sieve to allow sediment to readjust and move the 
sediment.

29. Continue steps 27 and 28 for 5 minutes.
30. Place porcelain bowl on stir plate and out a medium size stir bar under the sieve. Place stir

plate on medium-high stir speed and let sit for 5 minutes.
31. Remove bowl from stir plate along with the stir bar. Rinse stir bar into bottom of bowl so no

sediment is lost.
32. Transfer sieved water from one bowl to new one and begin again to track the progress of 

how much sediment remaining is passing through the sieves.
33. Repeat steps 27-32 until water runs clear.
34. Once the water runs clear, use Dl water hose from a sink to CAREFULLY work all the 

sediment to the bottom of the sieve, then use the Dl water squirt bottle to squirt sample 
from the sieve into its labeled beaker (ex. Sample#_0-lcm_150um_FP).

35. Place the labeled beaker in the oven (103-105’C) until water has evaporated.
36. Thoroughly rinse out the 150 micron sieve.
37. Finally, pour previously sieved sample (left in bowl) over the 90 micron sieve and carefully 

rinse the beaker with Dl water onto the sieve to make sure all sediment is removed from the 
container and captured for analysis.

38. Follow the same procedure as before (steps 27-32). The water that comes through the sieve 
should be clear and only sediment between 150 and 90 microns should remain.

39. Once the water runs clear, use Dl water hose from a sink to CAREFULLY work all the 
sediment to the bottom of the sieve, then use the Dl water squirt bottle to squirt sample 
from the sieve into its labeled beaker (ex. Sample#_0-lcm_90um_FP).

40. Place the labeled beaker in the oven (103-105’C) until water has evaporated.
41. Thoroughly rinse out the 90 micron sieve.

Pipette Analysis
Need Specifically: 2L graduated cylinders (2 for each sample)

Mixing rod
20 mL pipette with bulb 
Aluminum trays (4 per each sample)

9.
10. Label and Pre-weigh aluminum dishes. There will be two dishes for each sample (two for 

ORGINIAL SEDIMENT sample and two for FECAL PELLET sample)
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a. Label trays, place in oven (103-105°C\ for at least an hour and weigh twice (weights 
should be within 0.0005 g's of each other).

* Reminder: do not handle aluminum trays with bare hands. Use gloves or tweezers!

b. Record weights in excel sheet.

11. Check the room temperature (right at the location of the graduated cylinders). This 
temperature determines the length of time between the first withdrawal and 8 phi 
withdrawal times. For the first withdrawal, we are capturing sediment that is less than 45 
microns. 45 microns falls between 4 and 5 phi, which is considered silt.

Sediment Withdrawal

12. Withdrawal for mud is 20 mL (use pipette) at a depth of 20 cm. (mark your pipette with 
sharpie to make easier).

13. Rigorously stir sample for 20 seconds
14. Withdrawal 20 mL from the cylinder at 20 cm and place in correct aluminum tray.
15. Rinse the stirring rod in the first cylinder and clean again in the second to remove any extra 

sediment. Next rinse the pipette with the Dl water from the beaker between sediment 
withdrawing from each sample.

16. Watch the clock and use time sheet to know when to do each sample. There will be a long 
break between 4phi and 8phi. During this break recover the cylinders with parafilm and be 
sure not to bump the graduated cylinders and cover your 4 phi sample trays OR put them in 
the oven.

17. For 8 phi: DO NOT STIR BEFORE WITHDRAWLH! When it is time for 8phi simply withdrawal 
20 mL from the cylinder, but this time at 10 cm instead of 20cm and place in correct 
aluminum tray.

18. When experiment is complete place trays in oven (103-105’C) for at least 24 hours then 
begin weighing procedure.

Weighing Procedure

1. Place in oven (103-105’C) for at least 24 hours
After samples have been dried

2. Pull out of oven (103-105’C), let cool in desiccator (~20 minutes) and weigh; recording the 
weight in spreadsheet

3. Place back in oven for at least an hour (103-105’C) then reweigh
4. Repeat until weights are within 0.0005 grams of each other

Determine organic content
5. To determine organic content place in muffler (550‘C) for at least an hour
6. Pull out of muffler and transfer samples to a regular oven tray to cool for 15 minutes so that the 

samples don't melt the desiccator shelves.
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*Note: if you leave the samples out for more than 5 minutes then place them in the 
103-105X in order to remove any moisture that may have been absorbed.

7. Place samples in desiccator to cool (~20 minutes) and weigh; recording the weight in 
spreadsheet.

8. Place back in oven for at least an hour (103-105‘C) then reweigh
9. Repeat until weights are within 0.0005 grams of each other.

Timing for experiments
Temp Phi Time from start of stirring 

(HH:MM:SEC)

i* 4 « *.---

ry- [T 7 1 fT* F n- 73=8 - ; - 7-  ~

First withdrawal

First withdrawal 
8

First withdrawal 
8

01:56:32

01:53:49
—  -  |S :--v  y .  - - -  S T -7.T !,

01:51:12
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Chapter 4: Seasonal morphological change in the York River Estuary, Chesapeake Bay VA
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Abstract

Seasonal changes in seabed height within the Clay Bank region of the York River Estuary 

were assessed using, seven high-resolution bathymetric surveys conducted between September 

2008 and August, 2009. Classified as a dynamic fine-grained cohesive sediment environment, 

the Clay Bank region was surveyed using interferometric swath bathymetry to calculate seabed 

elevation within a 3.75 km2  region. Seabed height was shown to vary both spatially and 

temporally in association with the spring freshet, likely related to the presence and migration o f a 

local secondary turbidity maximum. Based on shifts in control points from cruise-to-cruise, 

confidence intervals on individual point measurements of bathymetric change in the main and 

secondary channel regions were estimated to be ± 0.46 m and ± 0.24 m, respectively. Averaging 

across many bathymetric soundings was then used to reduce uncertainties in estimates of 

regional values o f mean depth. Overall, bathymetric data suggested that significant seasonal net 

deposition, averaging 0.19 ± 0.07 m, occurred over the secondary channel sub-region in spring of 

2009, as calculated by the use of ground control points and tidal data comparisons. Across- 

channel transects in both the main channel and secondary channel sub-regions showed that 

surface elevations in depressions between bathymetric promontories tended to increase during 

spring, while the elevations of the promontories themselves remained relatively constant..

Though a more detailed understanding is needed to fully constrain the dynamic changes 

occurring in cohesive, estuarine seabeds such as that o f the York River, this study nonetheless 

demonstrated the types of spatial and morphologic changes that can be identified using high- 

resolution interferometric bathymetry.

4.1 Introduction

Estuaries are ubiquitous ecosystems that account for some of the most productive and
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diverse environments in the world. Estuaries are generally defined as semi-enclosed bodies of 

water, having a free connection with the open sea, where salinity throughout the system is 

measurably diluted by freshwater from land and riverine drainage (Pritchard, 1967). While 

estuaries are prominent along most coastlines, they are relatively short-lived geologic features 

that act as dynamic transitional environments between freshwater and oceanic ecosystems. 

Moreover, a variety o f factors including local geology, physical dynamics, biological and 

chemical processes, as well as anthropogenic effects influence these systems(Nichols and Biggs, 

1985). Many of these processes make estuaries effective traps for sediment that can enter from 

either upstream rivers or the mouth of the system where oceanic sediment influx can occur 

(Dalyrmple et al., 1992).

Within estuaries, areas o f high sediment resuspension occur in the estuarine turbidity 

maximum (ETM) zones (Eisma, 1993; Woodruff et al., 2001). Residual water circulation and 

salinity fronts are thought to be the primary mechanisms for forming ETMs in partially-mixed 

estuaries, while tidal asymmetry is thought to be increasingly important as tidal energy increases 

(Dyer, 1986; Geyer, 1993). Classically, the ETM in partially-mixed estuaries is a region o f high- 

suspended sediment concentrations that results from convergence near the salt limit (Postma, 

1967; Burchard et al., 2004). In addition to primary turbidity maxima, some estuaries develop a 

secondary turbidity maximum (STM). Generally, STMs are ephemeral features whose 

appearances are largely controlled by the spring-neap tidal cycle and riverine discharge, and the 

effects o f each on the estuarine salinity field. Both ETMs and STMs contain high amounts of 

mobile fme sediment that is constantly being deposited, reworked, and resuspended back into the 

water column. The sediment mass of the turbidity maximums is variable and dependent on 

hydrodynamic, seabed, and biological factors (Roberts and Pierce, 1976; Geyer et al., 2001; Lin
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and Kuo, 2003). In regions of the ETM and STM, resuspended particulate matter collides, 

favoring aggregation and flocculation of the fine-grained cohesive material (Whitehouse et al., 

2000; Winterwerp, 2002). The increased amounts o f aggregation and flocculation enhances the 

settling rate of the material and thereby deposition, favoring the formation of ephemeral deposits 

that migrate along with the ETMs (Eisma, 1991; Whitehouse et al., 2000; Guan et al., 2005).

The geologic reconnaissance survey described in this chapter was conducted as part of 

the NSF Multi-Disciplinary Benthic Exchange Dynamics “MUDBED” project with the aim of 

better understanding the relationship between physical, geologic, and biologic processes with the 

surficial and subsurface geology. The consideration of these interdisciplinary processes affords a 

broad picture of the ecosystem that allows for a more complete understanding of the intricacies 

o f this dynamic environment. This study aims to clarify processes that govern erodibility, and 

enhance the knowledge of transport and dynamics of fine-grained sediments using data collected 

during the MUDBED project. This study incorporated interferometric swath bathymetric surveys 

to create a time-varying three-dimensional representation o f the Clay Bank region in the York 

River sub-estuary.

4.2 Study Area

The York River estuary is located in southeastern Virginia on the Mid-Atlantic Coast of 

the United States (Figure 4-1), and was created by the drowning of a river valley approximately 

12,000 years ago when glaciers melted during the beginning of the Holocene (Hobbs et al.,

2009). Today, the estuary is formed at the confluence of the Mattaponi and Pamunkey Rivers 

and empties into the Chesapeake Bay at its mouth. As the Chesapeake’s fifth largest tributary, 

the York River watershed encompasses approximately 6900 square kilometers and is 

characterized as a humid sub-tropical climate, receiving an annual precipitation o f 1 1 2 - 1 2 0
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centimeters/year. Presently, the York’s watershed is relatively less developed compared to many 

other Chesapeake Bay tributaries and is predominately bounded by rural landmasses with forest 

cover as a majority o f the land classification, totaling 61%. The other 39% of the watershed is 

classified as agriculture (21%), wetlands (7%), and barren land (1%). The remaining area is 

covered by water (Nichols et a l, 1991; Reay and Moore, 2009).

The estuary has a mean depth of 4.9 meters, with the deepest area is located near 

Gloucester Point where the depth exceeds 20 meters. The main channel o f the estuary averages 

about 1 0  meters in depth and is thought to be controlled by antecedent geology of the incised 

paleo-river valley (Carron, 1976). The main channel bifurcates near Page's Rock Light and a 

shallower (~ 5 meter deep) secondary channel, which is considered partially abandoned, extends 

northward on the western flank of the main channel (Dellapenna et al., 2003). Two shoals flank 

the channels and have an average depth of ~ 2 meters. Although microtidal, the tidal currents 

within the river, particularly in the middle and upper portions of the estuary, have been 

documented as being strong enough to regularly resuspended bottom sediments (Dellapenna et 

al., 1998).

Over the years, many research projects have been conducted within the York River, 

ranging from studies o f biological fauna to watershed management practices, with many 

focusing on both physical and geologic properties o f the estuary. Most recently, these research 

initiatives have included interdisciplinary components, which have shed light on complex 

process interactions. Examples include research focusing on the biological and physical controls 

on seabed properties within the estuary (Dellapenna et al., 1998; Dellapenna et al., 2001; 

Schaffiier et al., 2001; Hinchey, 2002; Dellapenna et al., 2003; Kniskern and Kuehl, 2003; 

Dickhudt et al., 2009; Rodriquez-Calderon and Kuehl, 2012), tidal asymmetry, bed stress and
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stratification (Friedrichs et al., 2000; Kim et al., 2000; Scully and Friedrichs, 2003), turbidity 

maxima (Lin and Kuo, 2001; Lin and Kuo, 2003; Romine, 2004), modeling (Rinehimer, 2008, 

Fall, 2012), and controls on bed erodibility and settling velocity (Friedrichs et al., 2008; 

Cartwright et al., 2009; Dickhudt et al., 2009; Cartwright et al., 2011; Dickhudt et al., 2011).

Researchers have found that physical seabed processes dominate in the upper regions of 

the York River sub-estuary whereas biological processes are more dominant closer to the mouth 

of the river (Dellapenna et al., 1998; Dellapenna et al., 2001; Schaffiier et al., 2001; Dellapenna 

et al., 2003; Kniskern and Kuehl, 2003; and Gillett and Schaffiier, 2009). These previous studies 

distinguished several regions o f the river based on the relative influence of physical versus 

biological processes along the estuarine gradient. The broadest of the generalizations classify the 

river into three areas: the upper, middle, and lower York River. Due to the influences o f the river 

discharge, tidal energies, along with the location of the main estuarine turbidity maximum, little 

biological reworking takes place in the upper York, and the system there is physically 

dominated. Conversely, the physical energy decreases down river and biological conditions 

dominate in the lower York (Schaffiier et al., 2001).

The specific study site for this investigation was located in the Clay Bank region o f the 

estuary (Figure 4-2). Located approximately 30 kilometers from the mouth of the river and 6  

meters in depth, the Clay Bank region is influenced by both physical and biological factors. 

Based on various environmental parameters, the study site is often impacted by pelletization and 

flocculation. In addition, the region is also the location of an ephemeral deposit associated with 

the secondary turbidity maximum. Lin and Kuo (2003) attributed the presence of the STM in the 

York River Estuary to four major mechanisms: resuspension of bottom sediments, bottom 

residual flow convergence, tidal asymmetries, and the suppression of turbulent diffusion due to
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stratification of the water column. The York River STM identified by Lin and Kuo (2001) is 

generally located about 40 kilometers up estuary, near the area known as Clay Bank. Because of 

channel shoaling in the region, this location is conducive to STM development as it is often a 

stratification transition zone from well-mixed to partially stratified (Lin and Kuo, 2003). 

Rinehimer (2008) developed a three-dimensional numerical model to examine the erodibility and 

movement of sediment associated with the STM. The model showed a transient layer of 

sediment that moved in and out of the STM region.

Dickhudt et al. (2009) and Rodriguez and Kuehl (2012) also focused on the ephemeral 

deposit associated with the seasonal presence of the STM near Clay Bank. Dickhudt et al. (2009) 

identified depositional events from physical layering in x-radiographs and they determined the 

occurrence of recent deposition versus erosion to be by far the most important control on 

subsequent bed erodibility. In association with inferred deposition events, Dickhudt found 

physical layering to span the entire depth of ~ 20-centimeter x-ray cores. Along with x- 

radiography, Rodriguez et al. (2012) used dual frequency sonar to seasonally map the spatial 

distribution of the ephemeral mud deposit. Based on separation of the dual sonar reflections, 

Rodriguez et al. (2012) estimated seasonal deposition in the vicinity o f the STM to be on the 

order of 2 0  centimeters.

Both Dickhudt et al. (2009) and Rodriguez and Kuehl (2012) inferred the presence o f the 

ephemeral deposit indirectly via sediment properties associated with near-surface sediment. In an 

effort to observe seasonal deposition and erosion directly via changes in bed elevation, this study 

utilized an interferometric swath mapping system.

4.3 Methods
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4.3.1. General Surveying Approach and Associated Equipment

All surveys conducted for this study relied on equipment and research vessel availability, 

as well as suitable weather conditions for surveying. Originally, the study aimed to collect high- 

resolution bathymetry data for the Clay Bank region every month, but sampling during some 

months was prevented by various limitations. In total, seven months were surveyed between 

September, 2008 and August, 2009 for bathymetric analysis (Table 4-1), incorporating over 350 

kilometers o f high-resolution bathymetry data, repeatedly encompassing an area o f -3.75 square 

kilometers. Survey lines were established and used in each survey of the study site to provide 

near complete bathymetric swath coverage of the seafloor. Each data collection field sampling 

survey incorporated the same survey track lines as closely as possible, so the area mapped 

remained nearly constant throughout the study with slight variability due to the presence o f crab 

pots, gill nets, and various obstructions.

An interferometric swath system (Submetrix Series; 234 kHz) was used to map shallow 

water bathymetry (~1 -  15 meters) aboard the RV Elis Olsson. For each o f the seven surveys, 

position was spatially referenced in real-time using a Trimble 4700/5100 Real-time Kinematic 

(RTK)-GPS unit and related to the UTM18N/WGS84 and Geoid 03 NAVD8 8  datum geoids. An 

RTK base station was located within close proximity o f the study area, ideally allowing for 

horizontal and vertical control of ± 5 centimeters (McNinch, 2004). Bathymetry data were 

recorded in Submetrix’s proprietary software, Swath, which georeferenced each sounding with 

navigational information from the RTK-GPS. An IXSEA Octans Motion Sensor mounted on the 

survey vessel and equipped with a fiber optic gyroscope, corrected the data from variations o f 

pitch, roll, heave, surge, and sway of the boat during each survey in real-time. Five calibration 

survey lines were conducted at the beginning and end of each survey to provide correction
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parameters for both the port and starboard transducers during data processing. The calibration 

corrections were calculated to 0.005 meters in order to insure the greatest accuracy possible and 

remove any inconsistencies in pitch and roll o f the vessel throughout the duration o f each cruise.

4.3.2. Correction for Water Level Variation

Two tidal and water level variation sources were utilized for this study. By using Hypack, 

a hydrographic survey software package, the vertical change in water level due to the tidal 

variation was calculated in real-time utilizing RTK-GPS, ideally for direct incorporation into the 

bathymetric processing. A secondary water level source was collected using the VECOS Clay 

Bank continuous monitoring station (Figure 4-2). As part of VECOS, water depth measurements 

were collected every fifteen minutes using YSI 6600 data sondes with the Clean Sweep Extended 

Deployment System and were corrected for barometric pressure in post-processing. Due to 

Hypack failures associated with two surveys (September and August) along with significant 

Hypack data gaps during two other surveys (January and February), the VECOS data exclusively 

were used for water level correction during bathymetric processing. But periods with good 

Hypack data were still utilized to access potential sources of error by calculating the absolute 

differences between the VECOS and vertically shifted Hypack data, which is discussed later in 

the chapter.

4.3.3. Speed o f Sound Calculations

Speed of sound velocity measurements were calculated for each survey based on 

Coppen’s (1981) equation estimating speed of sound in sea-water as a function o f temperature 

and salinity for shallow water depth:
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c (S,t) = 1449.05 + 45.7t - 5.21t2  + 0.23t3 + (1.333 - 0.126t + 0.009t2)(S - 35) (eq.l)

where t = T/10, with T = temperature (Celsius), and S = salinity (ppt). The variables for each 

survey cruise were obtained from the VECOS Clay Bank continuous monitoring station at the 

study site, and the mean was used as an approximation of the speed of sound during data 

processing. Values ranged from 1,438 meters/second (February) to 1,523 meters/second 

(August) (Table 4-2). Each of these variables, i.e., roll, speed of sound, and tidal variability were 

applied to the bathymetric soundings during processing to increase the accuracy of the 

morphologic data.

4.3.4. Post-Processing in GRID and Fledermaus

With the input of roll calibration corrections, speed o f sound estimates, and tidal and 

water level variations, bathymetric soundings were processed at 1 -meter horizontal resolution 

and were then despiked, filtered, and smoothed in GRID, the Submetrix proprietary processing 

software. The data from each survey line were individually processed, filtered, and visually 

inspected within Fledermaus to remove any outliers, water column hits (i.e. boat wakes and fish), 

and bad data points. A single user conducted this estimation, in order to reduce additional 

subjective differences in data analysis that could be increased by multiple individuals 

contributing to the data processing. Although the Swath Interferometric system is capable o f 

collecting data from a swath of over 1 0  to 15 times water depth, the total swath width utilized in 

this survey was limited to no more than 6  times water depth in order to retain cleaner data 

(Gostnell et al., 2006).

4.3.5. Identification and Application o f Ground Control Points
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To help compensate for possible user inaccuracies and uncertainties associated with the 

set-up and usage of the RTK-GPS system, ground control points were identified throughout as 

much of the study area as possible. Over a majority o f the study region, the seabed is relatively 

smooth, with the exception of a few key locations along the edges of the main and secondary 

channel (Figure 4-3). For this reason, the optimal control points ended up being concentrated 

along rough areas within the main channel and the secondary channel regions of the study area, 

respectively, and not within the smoother region between these two areas. The concentration of 

control points in these two separate regions favored the focusing of further analysis on these two 

regions specifically, with less justification for further analysis o f the section in between, which 

contained no control points.

The main channel block is delineated by the purple dashed line toward the right side of 

Figure 4-3, whereas the secondary channel block is delineated by the light-blue dashed line 

toward the left side o f Figure 4-3. Due to the lack of control points within the central region 

(surrounded by white dashes in Figure 4-3) it was not analyzed further for monthly changes in 

bathymetry. A total o f twelve prominent points located on apparent mounds and/or promontories, 

which persisted and were assumed to remain relatively stable, were analyzed for depth 

comparison (Table 4-3). Five control points were located in the deep channel block (Figure 4-4), 

and seven control points were located in the secondary channel block (Figure 4-5).

For this study, the results of the December survey were selected to be the baseline 

bathymetry. After correcting for water level using the VECOS tide data, the bathymetric change 

since December was averaged across the twelve control points for each cruise in turn (Table 4- 

3). The average change in bathymetry across the control points for each cruise since December 

was then used to uniformly shift all of the bathymetry each month so that there was no longer
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any change in mean control point depth between cruises.

4.4 Uncertainties in Location and Elevation Associated with Bathymetric Surveys

In order to calculate reliable estimations of seabed elevation of a region, quantification of 

error and uncertainties is essential for bathymetric surveys. A rigorous understanding is critical 

to provide the most robust insights possible into the sediment transport pathways within a 

system, the magnitude of the transport, and a validation of any sediment budget calculated in 

subsequent analyses. Two fundamental measurements are the cornerstone of any bathymetric 

survey: the horizontal position (X-Y location) and vertical depth (underwater elevation of 

measured object) (Byrnes et al., 2002). Each measurement is associated with a variety o f errors 

and uncertainties based on the methodology of the study (Table 4-4) (Umbach, 1976).

As mentioned previously, the RTK-GPS System and base station control setup ideally 

allowed for horizontal control o f ± 5 centimeters (McNinch, 2004). With that level o f accuracy, 

any horizontal misalignment captured between bathymetric surveys could be identified if a 

particular feature can be recognized in multiple surveys. However, any shift in the X-Y direction 

requires careful interpretation, and for this study, any visual shifts in the horizontal position of 

prominent features are attributed to observation error and uncertainty, rather than real change. 

Over steep topography, such as along the flanks o f the deep channel, errors in horizontal control 

may be especially problematic because a slight horizontal offset from cruise-to-cruise may 

translate to apparently large but erroneous cruise-to-cruise changes in water depth.

Under ideal circumstances, collective uncertainties incorporating average density/spacing 

of soundings, vessel movement, GPS positioning, speed of sound, and acoustic attenuation are 

expected to lead to a local vertical bathymetric resolution of approximately ± 15-20 centimeters
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(McNinch, 2004). In our case, it was determined that human error in cruise-to-cruise control of 

the RTK-GPS vertical datum favored the use o f control points for establishing the absolute 

cruise-to-cruise vertical datum instead. In addition, failures in the Hypack recording o f time- 

varying vessel elevation meant that the local VECOS tide gauge was the best available choice for 

water level correction. Together, these substitutions suggest that the local uncertainty in 

bathymetry values for individual points in our case may be significantly more than ±15-20 

centimeters.

However, averaging of soundings in space has the potential o f significantly reducing 

uncertainty in mean elevations for whole regions relative to individual soundings by averaging 

across local uncertainties that are randomly distributed and/or may tend to cancel each other out. 

Uncertainties that contribute to local elevation errors but tend to be reduced by spatial averaging 

include boat rocking and small uncertainties in horizontal position over gentle topography.

Spatial averaging may also reduce effects of mean boat tilt if one assumes the resulting biases to 

each side of the vessel are of opposite sign. After spatial averaging, for example, McNinch 

(2004), found that ground truth comparisons between interferometric system measurements and 

more conventional physical soundings off Duck, NC differed by less than 1 cm.

4.5 Results

4.5.1. Results fo r  Uncertainties Based on Tide Gauge and Control Point Data

The likely magnitude of two sources o f uncertainty can be estimated directly from data 

collected during the surveys: (i) the remaining water level uncertainty during a single survey 

after the VECOS water level correction and (ii) the remaining vertical datum uncertainty 

between cruises after application of mean control point shifts. In order to assess the potential
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source of error in the difference between VECOS data and actual water height at the boat, as 

calculated by the RTK-GPS, the VECOS vs. Hypack data consistency were tested for the dates 

that had partially usable Hypack data (Figure 4-6). The average absolute differences between the 

VECOS and vertically shifted Hypack data were examined for each available cruise and ranged 

from 1.2 to 3.2 centimeters. According to the VECOS operators, the absolute uncertainty in 

VECOS water levels at the site o f the gauge is on the order o f ± 1  cm or less (D. Parrish, pers. 

comm.).

In order to assess the vertical accuracy o f the bathymetric datasets, the standard 

deviations o f the vertical shift in elevation required at the twelve control points for each month 

were examined in order to estimate the remaining month-to-month uncertainty in the vertical 

datum between cruises. The standard deviations for monthly bathymetric changes for all twelve 

control points (Table 4-3) ranged from 0.10 m to 0.26 m, averaging 0.17 m. With a population of 

twelve samples (assuming a normal distribution), an average standard deviation of 0.17 m 

translates to a 95% confidence bound on the mean of ± 0.10 m. In other words, the observed 

consistency among the month-to-month shifts across all twelve control points suggests the 

remaining uncertainty in vertical datum from cruise to cruise is about ± 0.10 m. This means that 

mean bed elevations averaged across the entire survey region have the potential of uncertainties 

as low as ± 0 . 1 0  m.

However, it is important to note that these statistics suggest that the mean uncertainty in 

vertical datum for the entire survey area, if considered as a whole, is on the order ± 0 . 1 0  m.

When analyzed separately, the standard deviations on the control point shifts were consistently 

larger in the main channel (averaging 0.23 m) than in the secondary channel (averaging 0.12 m). 

With a population of five control points in the main channel subregion and seven control points
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in the secondary channel subregion, the 95% uncertainty values for vertical control in the main 

channel and secondary channel subregions become approximately ± 0.22 m and ± 0.09 m, 

respectively.

Although the uncertainty in the mean datum from month to month is relatively low, the 

uncertainty in the elevation of individual bathymetric soundings relative to that datum is 

somewhat higher. Assuming that the elevation o f the control points did not change from cruise to 

cruise, then the remaining variability observed among the best-fit shifts for these twelve points 

for a given cruise can be used as an estimate o f individual point uncertainty. An average standard 

deviation in vertical shift of 0.17 m for the twelve individual control points that presumably 

shifted uniformly translates to a 95% confidence on these individual measurements o f about 

twice that, or ~ ± 0.34 m for individual points over the entire survey area. Furthermore, if we 

were to focus on the main channel, the 95% confidence on individual measurements there 

becomes about ± 0.46 m (including the main channel uncertainty o f 0.22m), and thereby the 95% 

confidence on individual measurements within the secondary channel becomes about ± 0.24 m 

(including the secondary channel uncertainty o f 0.09m).

4.5.2. Overall Results by Subregion

Monthly bathymetric maps for the main channel and secondary channel blocks, corrected

for estimated datum shifts (a total of fourteen maps), are presented in the appendix to this 

chapter. Given that the local uncertainties for observed changes between months for individual 

points were estimated to be relatively large (± 0.46 m in the main channel and ± 0.24 m in the 

secondary channel), it was helpful to reduce the uncertainties somewhat by averaging 

bathymetric changes across each of the two regions. Figure 4-7 presents time-series for mean 

depth, averaged entirely over each region, including their uncertainty ranges. Overall results
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from the main channel did not provide a signal for net change that exceeded or surpassed the 

uncertainty bounds (Figure 4-7a).

However, results from the secondary channel do show a significant change (Figure 4-7b), 

in that the mean depths in May, June and August o f2009 were each significantly less than the 

mean depths in September of 2008 and January of 2009. In other words, mean depth analysis for 

the secondary channel suggests significant net deposition was present in the secondary channel 

after May 2009 relative to conditions in the previous September and January. The statistics can 

also be examined for averages before and after May 1. For the secondary channel region, the 

average o f the three cruises after May 1 minus the average o f the four cruises before May 1 gives 

an average seasonal net change of 0.19 m. In this calculation, the monthly uncertainties in mean 

bed elevation (Ah = ± 0.09 m) propagate following an average of root means squares, i.e., the 

uncertainty in the average seasonal change of 0.19 m becomes approximately ((1/3) + (1/4) ) 1 / 2  

Ah = ± 0.07 m. Finally, the net seasonal change in the secondary channel region bed elevation is 

then estimated to be + 0.19 ± 0.07 m.

4.5.3. Small Subsection Results

Particular regions of interest within the study area were further investigated with detailed,

small sub-section analyses. Two locations were chosen that included ground control points and 

other features that were present in all surveys. The first sub-section location was selected in the 

northern portion o f the study site, within the main channel. This area had prominent, stable 

mound features in each monthly survey. Along-channel and across-channel transects were 

analyzed to qualitatively assess bathymetric changes within the main channel (Figure 4-8).

Based on visual analysis, the along channel transects displayed very little change of the course o f 

the study, maintaining similar profiles for all seven months mapped. In contrast, the across-



channel transects recorded variations in bed elevation between the mounds and the northeast 

flank of the main channel. During the September, December, and January surveys the depth of 

the seabed between the mounds was -9 .5  meters. As time progressed, the bathymetric transects 

show the surface elevation between the mounds shifting to -9.0 meters in May, June, and 

August.

Similarly, a sub-section analysis of the secondary channel was completed. For this 

inquiry only an across-channel profile was evaluated. The area was chosen once again because 

of prominent morphologic features that were easily identifiable in all surveys and were in the 

vicinity o f ground control points. Over time, the transect analysis showed changes in seabed 

elevation between the mound features (Figure 4-9). The transects for the surveys between 

September and February depict a ridge and runnel type feature with a deeper seabed between two 

ridges. As spring approached, the elevation difference between the ridge and trough dissipated, 

showing a more flattened topography and shallower seabed elevation in May and June than were 

previously mapped. Eventually, the August profile showed the seabed returning to a more 

pronounced ridge and runnel feature, similar to those mapped in the fall and winter cruises.

4.6 Discussion

4.6.1 Relationship to Previous Studies o f Sediment Dynamics at Clay Bank

The Clay Bank region within the York River Estuary provides an excellent natural

laboratory for studying a wide range of estuarine processes associated with cohesive sediment

dynamics and benthic community structure, and it has been well studied over the last few

decades. (Nichols et al., 1991; Wright et al., 1995; Dellapenna et al., 1998; Dellapenna et al.,

2001; Schaffner et al., 2001; Dellapenna et al., 2003; Kniskern et al. 2003; Rinehimer, 2008;

Dickhudt et al., 2009; Gillett and Schaffner, 2009; Cartwright et al., 2011; Dickhudt et al., 2011;
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Fall, 2012; Rodriguez-Calderon and Kuehl, 2012; Cartwright, 2013). Most recently, the 

MUDBED program has conducted a variety of experiments which aimed to provide a greater 

understanding of sediment properties and their relationship with bed erodibility and 

hydrodynamic variability.

Dickhudt et al. (2009) illustrated seasonal patterns o f erodibility within the York River 

Estuary with a conceptual model, highlighting various physical parameters impacting the seabed 

at Clay Bank. The conceptual model was based on monthly surveys o f sediment properties in 

2006 and 2007, including Gust microcosm erodibility measurements, grain size, and water 

content (Figure 4-10). These instantaneous monthly snapshots of data from the Clay Bank 

region, in the main and secondary channel, provided the input data for a three-dimensional 

computational model, developed by Rinehimer (2008), to further investigate mechanisms driving 

seabed evolution. Overall, both studies concluded that deposition in association with the spring 

freshet resulted in higher erodibility o f the seabed during spring months at the study site, whereas 

a decrease in erodibility was documented in the late summer and fall following lower discharge 

conditions (Rinehimer, 2008; Dickhudt et al., 2009).

The overall trend of seabed erodibility at Clay Bank can be complicated by a variety of 

conditions, including: stratification, sediment flux, and the presence and migration of the local 

secondary turbidity max (STM). Previous studies detailing the STM have associated it with an 

easily resuspended pool o f sediment that migrates between the middle and upper York River (20- 

45km from the mouth o f the river) depending on the riverine discharge and gravitational 

circulation of the estuary (Lin and Kuo, 2001; Romine, 2004). With low river discharge, the 

STM moves further upstream. Conversely, with high discharge from the Mattaponi and 

Pamunkey rivers, the STM migrates further downstream potentially into the Clay Bank region
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(Romine, 2004).

In addition to these previous studies, several acoustic sub-bottom surveys were conducted 

between April 2008 and March 2009 (Rodriguez-Calderon and Kuehl, 2012), three of which 

were collected simultaneously with the high-resolution bathymetric mapping reported here. 

Following the same survey lines as those tracked in this study, Rodriguez-Calderon and Kuehl 

(2 0 1 2 ) utilized the differences in bottom depth obtained by two channels in a dual-frequency 

echosounder as a proxy of the thickness of the layer o f soft mud present at the surface (Figure 4- 

11). The dual-channel echosounder utilized a higher frequency (200 kHz) to capture the upper 

surface of the soft mud layer and lower frequencies (10-100 kHz) to capture seabed reflectors 

possibly associated with the bottom of the soft mud layer. Rodriguez-Calderon and Kuehl (2012) 

found that between April 2008 and March 2009, the thickest soft layers occurred during spring 

and the thinnest occurred during fall, providing more evidence of the seasonal cycle has that 

been discussed by others (e.g., Lin and Kuo, 2001; Rinehimer, 2008; Dickhudt et al., 2009).

4.6.2 River Discharge and Corresponding Regionally-Averaged Patterns o f  Deposition

As the presence of the STM at Clay Bank is generally associated with an increase in

freshwater discharge from the Mattaponi and Pamunkey Rivers, USGS discharge data were 

examined to characterize river flow during 2008-2009 study period (Figure 4-12). The May and 

June cruises each occurred a few weeks after the highest pair of discharge events o f the year. 

Often a lag time o f a few weeks is apparent between discharge and the presence of an STM 

(Dickhudt et al., 2009), and these bathymetric collection surveys fell within the allotted 

timeframe o f highly suitable conditions for the STM. Therefore, after each of the large discharge 

events, a new pool o f material may have moved into the region and been deposited. The data also 

correlate with trends in Rodriguez-Calderon and Kuehl’s (2012) analysis o f variations in soft

141



mud layer thickness in the Clay Bank region, where mud layer thickness also increased in 

association with discharge events. The average depth analysis presented here for the secondary 

channel revealed a statistically significant increase in bed elevation consistent with deposition in 

the May to June STM time-frame (see Figure 4-7b). This trend is once again consistent with the 

conceptual model of the Clay Bank region, where sediment is deposited following the wettest 

periods of the year versus little to no deposition or erosion during drier conditions.

Unfortunately the uncertainty bounds were larger for elevation change in the main channel, and 

the effect of the STM could not be statistically established for the main channel region as a 

whole.

4.6.3 Distinct Seabed Changes within Sub-environments

Sediment exchange between sub-environments can affect the seabed height, as movement

of bed material between the shoal and the channels, especially during storm events and increased 

wave and current conditions can be significant (Dellapenna et al., 2003). In the Clay Bank 

region, Kniskem and Kuehl (2003) assessed four sub-environments (shoal, flank, secondary 

channel, and main channel) and examined the changes in these sub-environments over time 

based on spring-neap cycles and seasonal events. Rodriquez-Calderon and Kuehl (2012) further 

examined across channel gradients and determined differences in the soft mud layer thickness 

between the main and secondary channels. For April 2008 to March 2009, they found that 

overall mud layer thicknesses were generally greater in the secondary channel, except in March 

2009 when the soft mud layer thickness was more prominent in the main channel. In the 

following paragraphs, seabed elevation changes are discussed focusing specifically on the Clay 

Bank region’s sub-environments.

For the main channel sub-environment, the STM has been found to play a strong role in
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both deposition and reworking of the sediment in this region of the study area, with seabed 

mixing depths ranging from 30-100cm historically (Dellapenna et al., 2003) and sometimes up to 

150cm (Kniskem and Kuehl, 2003). Generally dominated by physical processes and typically 

comprised of laminations, the sediment composition is mostly mud and long-term accretion rates 

are low. Interesting bathymetric changes within the main channel sub-environment are visible in 

the maps of the main channel contained in the Appendix. However, given the uncertainties 

calculated for point measurements, the sub-region specific findings discussed here must be 

considered only as possible qualitative trends. Between September and February, the bathymetric 

maps of the main channel displayed little obvious elevation change; however, apparent 

deposition on the seabed could be seen locally on the northwestern flank of the main channel 

between May and June, possibly in response to the presence of the annual spring STM. These 

changes generally correspond in time with the infilling between mounds seen in Figure 4-8.

After the May and June surveys, the main channel appeared to return to an equilibrium state. 

These localized bathymetric changes seem to reinforce the pattern documented by previous 

studies.

Another key sub-environment examined during this study was the secondary channel. 

Dellapenna et al. (2003) found that this region was typically dominated by deep physical mixing, 

with short-term deposition rates up to 20-50 cm in a given year. During 2008 and 2009, 

Rodriguez-Calderon and Kuehl (2012) specifically identified the northern portion of the 

secondary channel as physically dominated, usually comprised of thick sedimentary laminations 

due to the presence and migration o f the STM. However, further south, laminations were only 

apparent in the late fall and winter. In the bathymetric maps in the Appendix, spatially varying 

patterns in the secondary channel are likewise seen. For example, in December through January,
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a gradient of apparent deposition can be seen moving along channel to the secondary channel, 

where the sediment may have been deposited. The secondary channel was seen to experience 

changes consistent with deposition and infilling after the spring freshet (see Figure 4-9). By 

August, the secondary channel appeared to have been scoured once more. It is important to note 

that this region is quite complex, with the presence of sedimentary furrow bedforms during neap 

tide conditions previously documented in the northern portion of the secondary channel, 

highlighting its spatial heterogeneity (Dellapenna et al., 1999).

Though not analyzed as part o f this study, it is important to mention the shoal region 

associated with an inactive oyster reef is situated between the main and secondary channels. 

Found to be influenced by both physical and biological processes, the seabed in this shoal sub

environment follows a typical pattern of laminations in the fall and winter and bioturbation in the 

spring and summer (Schaffner et al., 2001; Dellapenna et al., 2003; Kniskem and Kuehl, 2003; 

Dickhudt et al., 2009; and Rodriguez-Calderon and Kuehl, 2013). This particular region o f the 

seabed was found by others to have sandier sediment than either the main or secondary channel 

as well as a higher elevation, forming a concave morphology between the two channels.

4.6.4 Possible Role o f storms

The highest average bed elevations recorded in this study for the secondary channel

region occurred in June 2009, soon after several large storms moved through the York River 

estuary. For several days in June, wind gusts blew at or greater than 30 mph (> 13 m s '1) and 

riverine discharge reached over 2 0 0  mV1, the largest of all discharge events throughout the year

long set of surveys. This stormy period may have contributed to the significant changes in 

observed seabed elevation, when the secondary channel became relatively filled with sediment, 

possibly because of erosion from neighboring shallows and/or transport o f sediment from the
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upper York. The upper York River Estuary had previously been documented as being susceptible 

to occasional large seabed mixing events, which can include extreme tides, extratropical storms, 

nor’easters, as well as flooding events (Dellapenna et al., 2003).

4.7 Historical Bathymetry

Though the seven high-resolution bathymetric surveys completed in 2008 and 2009 

provided insight to the seasonal variation o f the morphology of Clay Bank, a deeper historic 

understanding of the historic nature of the system would be beneficial. Digitized echosounder 

data collected by the National Ocean Service in 1947 was located, which surveyed the Clay Bank 

and Aberdeen Creek Region of the York River (NOS Survey H07189). The original sounding 

data were corrected for actual sound velocity. In order to compare modem surveys to the 

historic digital echosounder data, the 1947 collected bathymetry points were interpolated using a 

linear kriging method (Figure 4-13). Though the resolution of the historic bathymetry is 

considerably coarser than the surveys completed for this study (Figure 4-14), the comparison 

shows that the slumps found within the main channel and used for the postage stamp analysis 

have been present for more than 50 years. This provides a greater confidence in our selection of 

ground control points in the region, providing a historic reference that the features have been 

persistent for decades. Unfortunately, the spacing of the 1947 sounding was too great for a more 

quantitative analysis, especially with regards to the secondary channel.

4.8 Conclusions

Seven high-resolution bathymetric surveys were conducted between September 2008 and 

August 2009 in the Clay Bank region of the York River Estuary. This environment, which is 

composed of mostly fine-grained cohesive sediment, is dynamic in nature and experiences event
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to seasonal-scale cycles in erosion and deposition as energy and circulation patterns change in 

response to storms, spring-neap tidal oscillations, and fluctuating fresh water discharge.

Overall, the data presented here suggest that significant seasonal net deposition, 

averaging 0.19 ± 0.07 m, occurred over the secondary channel subregion o f Clay Bank in 2009 

in response to the spring freshet and associated secondary turbidity maximum. This result is 

consistent with the timing and cause of depositional patterns inferred in this region by other 

investigators using different methods. Nonetheless, this is the first time that seasonal net 

deposition has been directly documented in the York River Estuary by changes in bed elevation 

rather than inferred indirectly by changes in bed properties. Although significant net deposition 

was broadly observed across the secondary channel region in this study, results from the main 

channel did not provide a regional signal of net change that exceeded the uncertainty bounds.

Examination o f small subsections o f bathymetric surveys at locations near control points 

provided additional insights into patterns o f deposition in both the main and secondary channel 

subregions in association with the likely presence of the STM. Across-channel transects in both 

subregions showed that surface elevations in depressions between bathymetric promontories 

increased during spring, while the elevations o f the promontories themselves remained relatively 

constant. This pattern was likewise consistent with the migration o f mobile pools of mud 

downstream toward the Clay Bank region in response to the spring freshet.

Cohesive estuarine environments are among the most challenging of all for quantitatively 

mapping seasonal bathymetric changes. Given the relatively subtle bathymetric changes, 

continual time variation in water elevation, and relatively low number of prominent bed features 

to use as control points, uncertainties in individual bathymetric point measurements may be 

large. In this project we were fortunate to have high quality VECOS tide gauge data continually
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available immediately adjacent to our study region. The times when the vessel-based Real-time 

Kinematic (RTK)-GPS was operating reliably indicated that use o f the VECOS water level data 

rather than RTK-GPS added only ~ 1 to 3 cm of uncertainty to individual depth observations.

Difficulties associated with translating a consistent, RTK-GPS-based vertical datum to 

our small vessel from one survey to the next led us to utilize a dozen identifiable bathymetric 

promontories as control points that were assumed not to change in elevation between cruises. 

Based on the standard deviation of control point shifts from cruise-to-cruise, the confidence 

intervals on individual point measurements o f bathymetric change in the main and secondary 

channel regions were then estimated to be ± 0.46 m and ± 0.24 m, respectively. Averaging across 

many bathymetric soundings was then used to reduce uncertainties in estimates of regional 

values of mean depth. This approach improved uncertainty estimates for average depths across 

the main and secondary channel regions for individual cruises to ± 0.22 m and ± 0.09 m.

Though a more detailed understanding is needed to fully constrain the dynamic changes 

occurring in cohesive, estuarine seabeds such as that o f the York River, this study nonetheless 

demonstrates the types o f spatial and morphologic changes that can be identified using high- 

resolution interferometric bathymetry. Overall, this study helped to provide a high-resolution 

analysis o f seabed evolution within the York River Estuary on a seasonal scale. Further studies 

are needed to elucidate the changes associated with events that occur on even shorter time scales 

and to reduce uncertainties in depth estimates associated with individual bathymetric soundings.
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York River Estuary, Chesapeake Bay VA, USA
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Figure 4-1. Map of the York River Estuary. Location of the Clay Bank high-resohition 
bathymetry surveys are indicated by the yellow box. The dot represents the VIMS Clay Bank 
Observing station and the red lines represent the survey lines repeated on each cruise.
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Figure 4-2. Location of the VECOS monitoring station in relation to the 2008-2009 
bathymetric surveys. The VIMS Clay Bank Piling and the MUDBED core locations are 
shown far data comparisons between studies.
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Table 4-1. Cruise survey dates, day elapsed between sampling, and the tidal regime during 
the bathymetric surveys.

Bathvmetric Survev Dates Davs between surveys Tidal Reeime
SeptemeberSand 9,2008 Neap tide one day before (9/7)

100
Decemberl7, 2008 Neap tide two days later (12/19)

28
January 13, 2009 Spring tide three days earlier (1/10)

23
February4, 2009 Neap tide two days earlier (2/2)

106
May 20, 2009 Neap tide three days earlier (5/17)

36
June 24, 2009 Spring tide two days earlier (6/22)

58
August 20, 2009 Full Spring tide
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Table 4-2. Estimated mean speed o f sound velocities for each survey based on the Coppen 
(1981) shallow depth equation as a function o f temperature and salinity.

Survey Speed of Sound Velocity (m/s) Std.Dev
S ep t 8 1512 1.46
S ep t 9 1521 0.79

Dec 1463 1.47

Jan 1452 4.18

Feb 1438 3.52
May 1499 2.14

June 1515 1.84
Aug 1525 1.53
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Figure 4-3 . A bathymetry plot generated from the intexferometric system covers a 3.75km2 
section of the Yazk River Estuary. This example is from the December 2008 cruise. For this 
study, the survey area was divided into three blocks based on bathymetry and the availability for 
quality ground control points. The main channel block is delineated by the purple dashed line 
and the secondary channeL'shoal region is highlighted by the light-blue dashed line. Between the 
main channel and secondary channel no reliable ground control points could be found, and 
therefore the region in white is not further analyzed within this study.
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Table 4-3. Seabed elevation for ground control points, along with calculated bathymetric 
change between surveys before the control points were used to shift the bathymetry. The 
December surv ey was used as the baseline bed elevation for this study. The overall average 
bathymetric change value between cruises was then used as the shift variable to align seabed 
elevations with the December survey.

Control Points D epth Bathymetric Change from December Survey

a T Pt. Sept Dec Jan Feb M ay June Sept-OecChana Oec-JanChann Dec-Feb C h an s Dec-May Dec-Jun« Dec-Aup
355888.3 4134371.7 1 2.94 3.05 3.29 2.8 3.12 3.42 3.09 0.11 -0.24 0.25 ■0.07 •0.37 -0.04
356021.6 4134236.0 2 3.41 3.45 3.97 3.27 3.35 3.83 3X 5 0.04 -0X2 0.18 0.1 ■0.38 ■0.1
3558801 413452S.8 3 3.17 3.3 3.64 2.9 3.09 3.28 3X 6 0.13 -0.34 0.4 0.21 0.02 ■0.06
356329.1 4133957.3 4 2.71 2.75 3.04 2.46 2.72 2.8 2.79 0.04 -0.29 0.29 0.03 -0.05 -0.04
355883.5 4134404.3 5 3.09 3.12 3.56 2.96 3.19 3.66 3.41 0.03 -0.44 0.16 •0.07 ■0X4 •0.29
3561142 4134252.8 6 3.05 2.99 3.32 2.75 2.84 3.09 3.04 -0.06 -0.33 0.24 0.15 -0.1 -0.05
355891.3 4134368.4 7 2.99 3.09 3.38 2.85 3.16 3.58 3.31 0.1 -0.29 0.24 -0.07 -0.49 •0.22

Average 0 .06 -0.35 0.2S 0X 4  -0.27 -0.11
Std.Oev. 0 .06  0 .10  0 .08 0 .12 0.23 0.10

M ain Channel
■ * Pt. Sept Dec Jan Feb May June Aug Sept-Oec Chana Dec-Jan Chance Dec-Feb C h an s Dec-Mav Dec-Jura Dec-Aug

356578.8 41351388 8 8.42 8.33 8.73 8.41 8.46 8.56 8.71 -0.09 ■0.4 -0.08 -0.13 X .23 -0.38
356470.3 4134812.0 9 4X 2 4.61 5.05 4.28 4.68 4.64 4.27 0.09 ■0.44 0.33 -0.07 -0.03 0.34
357499.1 4133899.9 10 f-7? M ? ( J t 6.95 -0.17 -0.18 0.12 0 .16 ■0.45 -0.41
357167.3 4133921.2 11 4.39 4.47 4.92 4.09 4.67 4.89 4.5 0.08 -0 45 0.38 -0.2 -0.42 -0.03
356692.7 4135062.4 12 7.87 7.79 8.09 6.96 7.61 7.47 7.54 -0.08 ■0.3 0.83 0.18 0.32 0.25

Average
Std. Dev.

-0X3
0.11

-0X5
0.11

0X 2
0.34

•OX1
0.17

-0.16
0.32

-oxs
0.3S

Ova rail Average 
Standard Dev.

0.02
0.10

-0.35
0.10

oxa
0.22

0X 2
0.14

X .23
0.26

-0.09
0.22
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Figure 4-4. Location map of ground control points (ted circles) selected in Section 1 of the 
study area. This region is consists of the main channel, southeast flank, and shod.
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Figure 4-5. Location map of ground control points (red circles) selected in Section 3 of the 
study area. This region is consists of the secondary channel and shoal.
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Table 4-4. Potential errors and uncertainties associated with bathymetric 
surveying (Modified from Umbadc, 1976 and Bymes et al., 2002).

Horizontal Positioning Vertical Positioning
Station Control
•  Incorrect geodetic datum
•  Use of unadjusted or incorrect 

geodetic positions
•  Nfiadentification of control stations
•  Incorrectly plotted control
• Loss of RTK signal
• Base station movement (pier settling, 

human movemert, etc.)

Tidal and water level observations
•  Incorrect water depth measurements 

coEected with YSI6600 data sondes 
with the Clean Sweep Extended 
Deployment System

• Data gaps between YSI data 
collection o f 15-minute intervals

• Undetectedtide or water level 
anomalies caused by meteorological 
conditions

• Improper correction for barometric 
pressure

• Distance o f survey for tidal gauge 
location

• Vessel positioning shift throughout 
the survey

Vessel Control
•  Improper use of calibration or field 

check data
• Undetected errors of jumps in distance
• Electronic interferences with the 

position system
• Use of improper operative frequencies
• Failure to reduce electronic center of 

the ship to transducer location
• Fluctuation of vessel speed throughout 

each survey

Transducer errors
• Incorrectly measurement of 

transducer to RTK-GPS, motion 
sensor, and data collection computer

•  Electronic interferences with the 
swath b atbymetrv transducers

•  Improper estimation of speed of 
sound variation pro files

•  Angle and depth errors
•  Additive external noise

Depth recorder errors
• Inconect threshold receiving 

frequency
• Inconect calibration
• Scaling errors
• Improperlv accounted heave

Errors effecting Horizontal and Vertical Positioning
• Measurement method
• Sea State
• Meteorological Conditions
• Water temperature and salinity
• Transducer beam width
• Bottom sediment type and surface irregularity
• Vessel heave, pitch, and roll
• Survey line overlap
• Inter-instrument connectivity
• Human error
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Figure 4-6. Comparison analysis to assess the consistency between the VECOS tide gauge 
data and water height elevation captured in real-time during the surveys with Hypack. The 
mean absolute difference between the VECOS and despikedlow-passed filtered data for 
the 5 surveys averaged 2.2 centimeters. Values for each month are found within their 
respective sub-plots. Note that the analysis for the February comparison was for only the 
last 1.5 hours of the cruise.
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(a) Average depth of main channel lines after control point correction
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Figure 4-7. TIme-series of mean seabed elevation of the (a)tnain channel and (b) 
secondary channel. Error bars indicate 95% confidence intervals.
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Figure 4-8. Hm e-series of tnnsect analyses of the Clay Bank main channel sub-section.
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Figure 4-9. Hm e-series of transect analyses of the Clay Bank secondary channel sub-section.
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Figure 4-10. Dickhudt et al. (2009) conceptual diagram depicting sediment transport processes in the 
York River Estuary.
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Figure 4-11. April 2008 through March 2009 soft mud layer thickness contour maps for Clay Bank 
captured using a dual-channel edtosounder (from Rodriguez-Calderon and Kuehl, 2012). The last 
panel identifies the location of each of the channel sub-environments: main channel NE flank (MCNE). 
main channel (MC). main channel SW flank (MCSW), inactive oyster reef (IOR), secondary channel 
(SC), secondary channel flank (SCF).
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Figure 4-12. USGS riverine discharge data for the Mattaponi plus Pamunkey Riven between 
September 2008 and August 2009 (USGS, 2009: http://waterdata.usgs.govAiwis).
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Bathymetric Map of Clay Bank -  1947
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Figure 4-13. Bathymetric map of NOAA Digital Echo Sounder Data collected in 1947 
(Survey H07181). Data was corrected for actual sound velocity andreprqjected from 
NAD27 to NAD83, maintaining MLW as the vertical datum. Original sound positions 
are delineated by the circles. The bathymetric taster was interpolated using the kriging 
method. The slump mounds within the main channel, used for the postage stamp 
analysis, are highlighted by the red aide.
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Bathymetric Map of Clay Bank -  Dec. 2008
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Figure 4-14. Bathymetric map of the Clay Bank region in December o f2008 used for 
comparison of the historic NO AA data. The slump mounds within the main channel,, 
used for the postage stamp analysis, are highlighted by the red cirde.
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Appendix II: Monthly bathymetric maps fo r  the Clay Bank main channelfor seven months 
between 2008 and 2009, corrected fo r  datum shift
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