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ABSTRACT 

The research projects presented in this dissertation used multiple tagging 
technologies to examine the movements, growth, and mortality rates of summer 
flounder tagged and released in Chesapeake Bay. In the first two chapters, I used 
acoustic, archival, and conventional tags to examine the behavior of summer 
flounder on different spatial scales. Investigating the movement behavior of 
individuals on different scales is an important step towards understanding how 
large-scale distributions of a population are established. Based on the observed 
behaviors of summer flounder, I hypothesize that the movements of these fish are 
primarily related to foraging behavior while they are resident in Chesapeake Bay. 
In the third chapter, I use growth models to investigate hypotheses regarding 
recreational angler noncompliance with minimum size regulations in Virginia. 
Angler noncompliance with management regulations can severely degrade the 
ability of fishery managers to prevent overexploitation of fish populations. Using a 
growth model fit to recreational angler mark-recapture data, I demonstrate that 
recreational anglers in Virginia responded to changes in summer flounder 
management regulations, but considerable levels of noncompliance were detected 
in years when management agencies drastically increased the minimum size 
regulations. In the final chapter, I attempt to estimate natural and fishing mortality 
rates of summer flounder using conventional mark-recapture data collected by an 
angler tagging program. These mortality rates were estimated using a Barker 
model, which is a generalization of the Cormack-Jolly-Seber tagging model. Results 
from this study indicated that sublegal summer flounder experience different 
emigration or mortality processes than do larger fish. Furthermore, handling and 
tagging mortality rates of summer flounder were much larger than the recreational 
discard mortality rate currently used in the stock assessment, implying that the 
recreational discard mortality rate should be reexamined. The research presented 
in this dissertation provides information that could be used by management 
agencies to further understand the behavior of summer flounder, and how to most 
effectively manage this population. 
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Movements, Growth, and Mortality of Chesapeake Bay Summer Flounder Based on 
Multiple Tagging Technologies 



INTRODUCTION 

Summer flounder Paralichthys dentatus are one of the most targeted and 

valuable fish species of the US Atlantic coast, making effective management essential 

to ensure the sustainability of the population (Terceiro, 2002). Regulations of the 

summer flounder fishery in the mid-Atlantic region have been especially critical in 

recent years, during which the Atlantic States Marine Fisheries Commission and the 

Mid-Atlantic Fishery Management Council instituted a rebuilding plan for the 

summer flounder population in response to large declines in abundance observed 

during the early 1990s. Summer flounder range from Nova Scotia to Florida but are 

primarily targeted by the commercial and recreational fisheries from Massachusetts 

to North Carolina, where the population abundance is high (Terceiro, 2002). The 

commercial fishery primarily occurs offshore during the winter months when 

summer flounder spawn along the edge of the continental shelf (Morse 1981, Kraus 

and Musick 2001). In contrast, the recreational fishery primarily occurs in the 

spring and summer when fish return to coastal bays and estuaries to feed (Kraus 

and Musick 2001). The success of the rebuilding plan depends on instituting 

effective management regulations, which rely on understanding the ecology, 

growth, and mortality rates of the summer flounder population (Hilborn and 

Walters 1992, NRC 2000). 

One important aspect of summer flounder ecology that is not well 

understood is their behavior while fish are resident in inshore habitats. 
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Understanding habitat use and movement patterns of individual fish is becoming 

increasingly important as researchers recognize the connection between individual 

behavior and a population's vital rates (e.g., recruitment, mortality, and emigration; 

Sutherland 1996). Linkages between habitat, movement behaviors, and population 

dynamics have been investigated using individual-based models (Lomnicki 1999, 

Humston et al 2004, Hayes et al 2009), which provide a mechanism to understand 

how large-scale species distributions are established from small-scale behavioral 

decisions (Roshier et al 2008, Humston et al2004). However, such models often 

suffer from a lack of information on the movement behaviors of individual fish 

relative to environmental conditions (Humston et al 2004, Hayes et al 2009). In the 

case of summer flounder, large-scale seasonal migrations have been well studied 

with conventional mark-recapture techniques, but few studies have examined the 

fine- (<1 meter) and small- (100s of meters) scale movements of these fish. The 

small-scale studies that have been conducted indicate that summer flounder 

behavior is related to tidal state (Szedlmayer and Able 1993), dissolved oxygen 

levels (Miller 2010), and time of day (Capossela 2010, Miller 2010). Although 

suggestive, these studies primarily observed dispersal patterns or individual 

behaviors over brief time periods (24-48 hours). Further investigation into the 

long-term (i.e. months) movement patterns of these fish on different spatial scales 

could provide a better understand of how the population will respond to variations 

in environmental conditions, such as those associated with climate change. 
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Although understanding fish behavior is necessary to properly manage an 

exploited population, it is also crucial that management agencies implement 

regulations that ensure the sustainability of the species while also considering the 

interests of the different fishing sectors. To regulate the harvest of the summer 

flounder recreational fishery, managers throughout the Atlantic states have 

primarily implemented bag and size limits that change annually. However, 

accurately estimating the catch of the recreational fishery sector is challenging, 

which may partially explain why the recreational fishery has exceeding its allotted 

quota in multiple years (Terceiro 2002). Angler noncompliance with management 

regulations can severely degrade the ability of fishery managers to prevent 

overexploitation of fish populations (Gigliotti and Taylor 1990, Sullivan 2002, Hicks 

2002). A simulation study indicated that even moderate levels of noncompliance 

could result in severe declines in the number oflegal sized fish harvested (Gigliotti 

and Taylor 1990). Quantifying the extent of angler noncompliance is a challenging 

task, because noncompliance is difficult to measure accurately (Schill and Kline 

1995, Sullivan 2002). For example, Pierce and Tomcko (1998) found that angler 

noncompliance estimates based on creel surveys and citation records were biased 

low and concluded that anglers concealed their sublegal catches from creel clerks 

and enforcement officers. Developing a method to accurately quantify 

noncompliance with regulations would allow managers to assess the effectiveness 

of different policies and to determine if any modifications might be necessary to 

increase the compliance rate. One method that could provide some indication of the 
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level of angler noncompliance would be to use a mark-recapture growth model to 

investigate if the length measurements of tagged fish that were recaptured by 

recreational anglers suffered from any biases, especially if the recaptured fish was 

harvested by the angler. 

Another important component of fisheries management is developing 

accurate stock assessments that can be used to estimate the optimal exploitation 

rate and target spawning stock biomass. The instantaneous natural mortality rate 

(M), which is the rate that individuals are lost from the population due to reasons 

other than exploitation (e.g., death, predation, permanent emigration, etc.), is 

integral to the stock assessment and influences the estimates of stock productivity, 

optimal exploitation rate, and the target spawning stock biomass. Estimation of M is 

notoriously difficult because in situ natural mortality processes cannot be observed 

directly, and currently M is one of the greatest uncertainties in the summer flounder 

stock assessment (Maunder and Wong 2011). For summer flounder stock 

assessments, M was historically assigned a value of 0.2, which is a value commonly 

used in many fisheries stock assessments and appeared to be a suitable estimate for 

summer flounder (NEFSC 1997; NRC 2000). For the 2009 summer flounder stock 

assessment, M was revised to account for potential age-based differences in natural 

mortality rates (Terceiro 2009). Using the revised estimates of age-specific M 

(mean= 0.25), the 2009 stock assessment concluded that overfishing was not 

occurring and the summer flounder stock was classified as not overfished. 

However, stock assessments are highly sensitive to estimates of M. For example, if a 
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constant value of 0.2 was used for M, the summer flounder stock would have been 

considered overfished and overfishing would have been occurring (NEFSC 2008). 

For these assessments, estimates of M were obtained using life-history-based 

models that relate natural mortality to longevity, growth, reproductive effort, or 

maximum size. None of these life-history-based models were specifically designed 

to estimate M for summer flounder (Maunder and Wong 2011), but were instead, 

developed to provide estimates of M for multiple species. Due to the importance of 

M in the summer flounder stock assessment, it is critical that studies on summer 

flounder are conducted to develop a more accurate estimate of this parameter. One 

recent study suggested that a tagging program may be the best option for accurately 

estimating M for summer flounder (Maunder and Wong 2011). 

Dissertation Objectives 

In this dissertation, I use three types of tags (i.e., acoustic, archival, and 

conventional) to: 1) observe and describe summer flounder movements in Virginia 

waters on different spatial scales (Chapters 1 and 2), 2) assess angler 

noncompliance with minimum size limits based on predictions of growth from 

mark-recapture data collected by an angler tagging program in Virginia (Chapter 3), 

and 3) estimate mortality rates of summer flounder using 12 years of mark

recapture data (Chapter 4). This research should be useful to ecologists and 

managers who seek a better understanding of this species to ensure its 

sustainability for future generations. 
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CHAPTER1 

Movement Patterns of Summer Flounder Near an Artificial Reef: 

Effects of Fish Size and Environmental Cues 
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Abstract 

Acoustic telemetry was used to understand the influence of fish size and 
environmental cues on the behavior of summer flounder near an artificial reef in the 
lower Chesapeake Bay. Recent studies have used acoustic telemetry to monitor 
summer flounder dispersal patterns and movements throughout large regions, but 
less is known about factors that influence the small-scale movements of this species 
during their inshore residency period. We used passive acoustic telemetry to 
monitor the small-scale (100s of meters) 2-dimensional movements of 42 summer 
flounder while fish were resident at the artificial reef site. The mean residency time 
for summer flounder at the artificial reef was 54 ± 10.7 days, which was a sufficient 
duration_to observe movements relative to a spectrum of tidal stages, times of day, 
lunar phases, and temperatures. To understand the importance of biological and 
environmental factors on summer flounder behavior, we fit repeated measures 
generalized linear mixed models to these data. Results suggest that summer 
flounder are generally sedentary while residing in inshore habitats, but that activity 
levels are influenced by fish size, tidal stage, and the interaction between time of day 
and lunar phase. In general, the highest activity levels were observed among small 
fish and all fish were more likely to move during the rising tide and on nights 
nearest the quarter moons. Based on these movement patterns, we hypothesize 
that summer flounder activity levels were predominantly influenced by the 
behavior of their preferred prey. 
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Introduction 

Understanding habitat use and movement patterns of individual fish is 

becoming increasingly important as researchers recognize the connection between 

individual behavior and a population's vital rates (e.g., recruitment, mortality, and 

emigration; Sutherland 1996). Linkages between habitat, fish movements, and 

population dynamics have been investigated using individual-based models, but 

such models often suffer from a lack of information on the behavior of individual 

fish relative to environmental conditions (Lomnicki 1999, Humston et al 2004, 

Hayes et al 2009). Fish move over a range of spatial and temporal scales in 

response to ontogenetic changes (Dahlgren and Eggleston 2000) and various 

environmental cues, including tidal currents (Szedlmayer and Able 1993, Hartill et 

al 2003, Childs et al 2008), light level (Cote et al 2002, Payne et al 2010), lunar 

phase (Vinagre et al 2006, Hanson et al 2008), and season (Kraus and Musick 2001, 

Hunter et al. 2003). In this study, we investigate the short-term movement patterns 

of summer flounder relative to these biological and environmental factors. 

Artificial reefs are ideal locations to study small-scale fish movements 

because many species are attracted to these complex habitats and can remain 

resident for long durations (Lowe and Bray 2006, Topping and Szedlmayer 2011). 

The attraction of fish to structured habitats, such as artificial reefs, is primarily due 

to the increased availability of shelter and prey resources (Allen 1985, Eklund 

1997). Previous studies have used passive acoustic telemetry to show that some 

species remain closely associated with a single artificial reef for extended durations, 
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in some cases for nearly two years (Reynolds et al. 2010, Topping and Szedlmayer 

2011). Although passive acoustic telemetry is primarily used to observe whether 

individuals are present or absent within a habitat, it is also possible to use this 

technology to observe small-scale movements of marine species (Simpendorfer et 

al. 2002, Humston et al. 2005). We chose to focus our study on the movement 

patterns of summer flounder (Paralichthys dentatus), one of the most targeted and 

commercially valuable fish species on the US Atlantic coast. 

Summer flounder exhibit a seasonal migration pattern and are lrnown to use 

different offshore and coastal habitats throughout their life history (Morse 1981, 

Kraus and Musick 2001). The recreational fishery targets adult summer flounder in 

the spring and summer when they migrate into coastal and estuarine waters to feed, 

grow, and prepare for spawning. In Chesapeake Bay, adult and juvenile summer 

flounder inhabit the estuary from March through November (Desfosse 1995, 

Fabrizio et al. 2007, Latour et al. 2008). Adult fish migrate towards the continental 

shelfbreak from October through December to spawn off the coast of New Jersey, 

Virginia, North Carolina, or south of Cape Hatteras (Desfosse 1995, Kraus and 

Musick 2001). Although large-scale movement patterns of summer flounder are 

well known, only recently have researchers begun to study their small-scale 

movements during their residency in inshore waters. 

Summer flounder are generally associated with structured habitats during 

their residency periods in coastal waters. Conventional mark-recapture program 

have shown that some individuals remain associated with structured sites (e.g., 
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piers, bridges, and artificial reefs) in Chesapeake Bay for as long as 150 days during 

the period of inshore residency (Lucy and Bain 2007). Recreational anglers often 

target these sites, an observation which implies that summer flounder aggregate 

near structured habitats. However, data from conventional tagging programs do not 

provide information on summer flounder behavior between the times of release and 

recapture. 

In recent years, summer flounder acoustic telemetry studies, conducted 

while fish occupied inshore habitats, have provided information on their residency, 

habitat preferences, and behavior. Using acoustic telemetry, researchers have 

shown that summer flounder remain resident in coastal bays and lagoons from 40-

86 days (Sackett et al. 2007, Capossela 2010), prefer habitats with increased 

temperatures and dissolved oxygen levels (Sackett et al. 2008), and move in 

response to changes in tidal currents (Szedlmayer and Able 1993). Although 

suggestive, previous studies were designed primarily to observe dispersal patterns, 

occupancy within large (lOs of km2) regions, and individual behaviors over brief 

time periods (24-48 hours). As a result, these studies do not provide insight into the 

small-scale movements of summer flounder during their inshore residency. Only 

one previous study used acoustic telemetry to continuously monitor summer 

flounder movement over a small-scale (100s of meters) for an extended period of 

time (Fabrizio et al. 2005). Preliminary results from that study, which took place on 

the continental shelf, suggest that activity decreases with increasing size of fish. 
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However, it is unknown if summer flounder on the continental shelf exhibit similar 

movement patterns to those within an enclosed estuary, such as Chesapeake Bay. 

The goal of this study was to understand the distribution and movement 

patterns of summer flounder near an artificial reef in the lower Chesapeake Bay. 

The specific objectives were: 1) to estimate duration of summer flounder residency 

at an artificial reef in Chesapeake Bay, 2) to observe habitat preferences and 

behaviors of both small and large summer flounder, and 3) to examine how 

exogenous cues influenced summer flounder movement patterns. 

Methods 

Study site 

The Back River artificial reef in lower Chesapeake Bay was selected as the 

study site due to the known presence of summer flounder at the site throughout the 

summer Q. Lucy, personal observation). The artificial reefis located 3 nautical miles 

east of Virginia's western shore of the Chesapeake Bay and consists of over 2250 

metric tons of concrete igloos, rubble, pipe, piles, and bridge sections spread over an 

area of approximately 49 hectares (Figure 1 ). The bathymetry of the artificial reef is 

relatively flat, but there is a deep navigation channel near the northeast corner of 

the reef and the bottom along the western edge of the reef slopes from 7 m to 4.5 m. 

The mean tidal range observed at the site throughout this study was 67 em, which is 

typical of mid-Atlantic estuaries. 

Prior to deployment of acoustic receivers at the study site, we conducted a 

range test to determine the maximum distance at which an in situ acoustic 
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transmitter could be detected. Range tests are essential for telemetry studies 

because the detection range of acoustic transmitters varies depending on site

specific environmental parameters (depth, salinity, vegetation, etc.). We conducted 

range tests from a small vessel using a single moored VR2 (VEMCO) receiver 

equipped with an omnidirectional hydrophone. In order to determine the distance 

at which the receiver no longer detects the acoustic signal emitted by a transmitter, 

we placed an acoustic transmitter (V9-2L-R256, transmitting at 69 kHz; VEMCO) 

near the bottom of the water column at progressively greater distances from the 

receiver. Based on results from this test, we estimated the optimal detection 

distance at Back River Reef was 400 m (Fabrizio et al. 2007). On 13 June 2006 we 

deployed 12 acoustic receivers around the artificial reef ensuring that the detection 

range of adjacent receivers overlapped slightly (Figure 1). Each receiver was placed 

approximately 3 meters from the seafloor and tethered to a 91 kg mushroom 

anchor. In addition to the receivers, we also deployed temperature loggers directly 

above the receivers on the moorings at the corners of the array to record water 

temperatures throughout the study. The location of each receiver was marked with 

a surface buoy. Data from the acoustic receivers were downloaded on two 

occasions: 22 August 2006 and 27 March 2007. Receivers were redeployed only 

after the August retrieval, as the study was completed in March. We were unable to 

recover five receivers during the March retrieval due to missing surface buoys. 

Scuba divers subsequently retrieved three of the five missing receivers in June 2007. 

Acoustic Tagging 
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Summer flounder (258 to 612 mm TL), captured by hook and line and small 

trawls, were implanted with acoustic transmitters between 15 June 2006 and 10 

July 2006 and released in lower Chesapeake Bay. Forty fish were captured and 

released near Back River reef and an additional 80 fish were released at two nearby 

sites as part of a related study (Fabrizio et al. 2007). Each fish was surgically 

implanted with an acoustic transmitter designed to emit a unique acoustic code to 

allow identification of individual fish. Transmitters were configured to emit signals 

every 60 to 180 seconds to ensure battery power through the one-year duration of 

the study. To implant the transmitters we used surgical procedures previously 

established for summer flounder (Fabrizio and Pessutti 2007). Briefly, fish were 

anesthetized with 60 mg L·1 AQUI-S (a clove oil derivative approved for use as an 

anesthetic in Australia and New Zealand), a small incision was made on the non

pigmented side of the fish, a beeswax- coated transmitter (9mm x 30 mm; V9-2L

R256, VEMCO) was inserted into the peritoneal cavity, and the incision was stitched 

using non-absorbable sutures in an interrupted pattern. While the fish remained 

under anesthesia, size and weight measurements were collected, and an individually 

numbered T -bar anchor tag (Hall print tags) was inserted into the dorsal 

musculature near the tail. Anchor tags were labeled with a phone number so that 

recreational anglers could report their recaptures. Fish were then resuscitated 

using ram ventilation and released near the center of the acoustic array at Back 

River reef. 

Quality assurance 
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Information downloaded from acoustic receivers was carefully examined to 

remove erroneous data resulting from multiple detections of the same signal at 

adjacent receivers, spurious detections due to acoustic noise, or detections after 

mortality or tag loss. Occasionally, the same acoustic signal, or ping, was detected 

and recorded at multiple receivers because the detection ranges of adjacent 

receivers overlapped slightly. To simplify the data, and remove redundancies, 

detections of the same transmitter signal that occurred within 60 seconds were 

removed from the database. Sixty seconds was chosen because this was the 

minimum duration between pings for individual transmitters. We also deleted a 

small number of data records (n=83) that were known to be spurious. Examples of 

spurious detections include those that were recorded from: 1) transmitters prior to 

implantation and release, 2) transmitters known to be at another site based on 

detection history, and 3) transmitters removed from the study following angler 

capture. These erroneous detections are most likely the result of acoustic noise or 

simultaneous detections of multiple pings. Finally, the detections from one 

transmitter were removed because that transmitter was recorded at a single 

receiver throughout the study. This anomaly indicated that the fish either 

succumbed to tagging-related mortality or shed the transmitter shortly after 

release. 

Residency and distribution 

We used simple descriptive statistics to estimate residency durations and the 

size distributions of all summer flounder detected at Back River artificial reef, 
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including fish that were released at other sites. Summer flounder residency was 

defined as the number of days an individual was detected at Back River reef, 

without an absence of more than one week. To examine the distribution patterns of 

summer flounder near the artificial reef, we calculated the number of detections per 

individual recorded by each acoustic receiver. Size-related distribution patterns 

around Back River reef were examined using a weighted mean length for fish 

detected by each receiver. The weighted mean length at each receiver (I,) was 

calculated using: 

(1) 

where Li is the length at time of tagging for an individual fish (i), di,r is the total 

number of detections offish (i) at receiver (r), and n is the total number of fish 

detected at receiver (r). 

Minimum distance traveled 

Movements of summer flounder around the artificial reef were examined by 

calculating the minimum distance traveled (MDT) by a fish that would yield the 

observed detection history within the acoustic array. Although it is impossible to 

know the exact location of an individual fish within a receiver's detection range, an 

approximate location could be estimated for fish that moved between adjacent 

receivers. If the detection ranges of the two receivers overlapped, the approximate 

location was the mid-point between the two receivers. If the detection ranges of the 

receivers did not overlap, the approximate locations were estimated assuming: 1) 

the detection range of each receiver was 400 m, and 2) the fish moved in a straight 
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line between the receivers. All locations were estimated using Universal Transverse 

Mercator (UTM) coordinates. The MDT was then calculated as the total distance 

traveled between all the approximate locations within a given time period. Using 

these calculations, a fish may have an MDT of zero during a given time period if that 

fish was detected at a single receiver, or if that fish was detected consecutively at 

two adjacent receivers (because the detection ranges of adjacent receivers overlap it 

was possible for a fish to be detected at two different receivers without moving). 

Thus, it is important to note that we could not observe fine-scale movements and, 

therefore, we limit our discussion to summer flounder movement patterns on the 

scale of 100s of meters. 

Statistical analysis 

We restricted our analysis to dates when we were confident that observed 

movement patterns represented the behavior of summer flounder resident at Back 

River reef. To ensure that the movement patterns we observed were not influenced 

by the tagging procedure, we excluded detections within the first 48 hours after 

release. Likewise, to ensure that the observed behaviors were representative of 

resident fish, we excluded detections within one week of dispersal from the site. 

Based on these criteria, we observed movements of 42 fish from 22 June through 4 

October 2006. 

To examine summer flounder movements relative to various environmental 

cues, we examined subsets of the data based on tidal stage and determined the time 

of day, lunar phase, and mean temperature for each tidal stage over all days 
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considered. Finite time periods were selected to compare changes in movement 

patterns with respect to: tidal stage, time-of-day, lunar phase, and temperature. 

Because tides were reported to influence movements of summer flounder 

(Szedlmayer and Able 1993, Miller 2010), we used 1.5 hour time periods centered 

around four tidal stages: low, rising (the mid-point between low and high tide), high, 

and falling (the mid-point between high and low tide). Although the 1.5-hour time 

period meant that we excluded approximately half the detections in our data set, 

this strategy increased the independence between successive observations. Tidal 

predictions for Messick Point, estimated with the Tides and Currents ® 2.0 software 

program, were used to determine tidal stages at Back River reef. Messick Point is 

approximately 5 nautical miles west of Back River reef and was expected to have 

similar tidal patterns. We also used Tides and Currents® to estimate times of 

sunrise and sunset, which were then used to assign a time of day to each tidal stage. 

If the mid-point of the tidal time period occurred prior to sunrise or after sunset the 

time of day was considered 'night,' otherwise the time of day was considered 'day'. 

Lunar phase was assigned based on the moon phase output from Tides and 

Currents®. Based on the proportion of the moon that was illuminated, the lunar 

cycle was categorized in eight phases: new moon, wax crescent, 1st quarter, wax 

gibbous, full, wan gibbous, 3rd quarter, wan crescent. Temperatures at receiver 

locations that did not have associated temperature loggers were estimated using 

inverse distance weighting. All temperatures were rounded to the near degree 

Celsius, except for those at the extreme high and low ends. To avoid problems with 
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small sample sizes, we assigned 22 observations between 21.0 and 21.5°C to the 

22°C temperature bin. We also assigned five observations at 29.1 octo the 28°C 

temperature bin. 

Two linear mixed models were used to investigate the movement patterns of 

summer flounder relative to biological and environmental factors. Fish length and 

hours-at-large were centered (i.e., the mean was subtracted from individual 

observations) to reduce collinearity between continuous variables (Quinn and 

Keough 2002). Our data were characterized by a large number of time periods for 

which the observed MDT for an individual fish was zero, and thus the data were 

non-normal. This violates one of the assumptions of general linear models, so we 

used two separate models to analyze these detection data. The first model was a 

generalized linear mixed model (GzLMM) fit to a binomial response (moved vs. not-

moved) to examine the influence of various factors on the probability of movement. 

The second model was a general linear mixed model (GLMM) fit to the positive 

values of MDT to determine the effect of biological and environmental factors on the 

distance traveled by an individual fish during periods of activity. 

Prior to fitting the GLMM, we transformed the positive values of MDT using a 

Box-Cox transformation (Box and Cox 1964) to meet the normality assumption of 

this model. The Box-Cox transformation is calculated by: 

{ 
l'-1 

y<-t> = -A-, 

' log(y;), 
(2) 

ifA.=O 
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Where >-fA> is the transformed response, .Y; is the untransformed response, and A is a 

power parameter. The value of A was estimated with maximum likelihood using the 

solver function in Microsoft® Excel (2010). 

A repeated measures approach was used to fit the general and generalized 

linear mixed models due to the temporal autocorrelation between repeated 

observations of individuals through time. Repeated measures models incorporate 

specialized variance-covariance structures to account for these serial correlations 

(Littell et al. 2006, Rogers and White 2007). Mixed models were used because a 

combination of fixed effects (i.e., fish length, hours at large, tidal state, time of day, 

lunar phase, and temperature) and a random effect due to individual fish was 

included in the models (Littell et al. 2006, Bolker et al. 2008). The GLIMMIX 

procedure in SAS/STAT (version 9.2) was used to fit the repeated measures GzLMM, 

with a logit link function, to the binomial response (moved vs. not moved). We used 

the MIXED procedure in SAS/STAT (version 9.2) to fit the repeated measures GLMM 

to the transformed MDT data. We selected the most appropriate model (i.e., most 

parsimonious with the best fit to the data) using a three-step process (Figure 2). 

The first step was to select a preliminary variance-covariance structure and 

then determine if the between-subject variability contributed to the total random 

variation. We refer to the combination of the variance-covariance structure and the 

individual fish random effect as the 'random effects structure.' The preliminary 

random effects structure was selected using a model that contained the six fixed 

effects with no interactions. Restricted maximum likelihood (REML) was used to fit 
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GLMM models with different random effects and variance-covariance structures 

(Pinheiro and Bates 2000, Zuur et al 2007). Because GzLMMs do not have an exact 

likelihood solution, we used Laplace's method to integrate over the random-effects 

distribution and to approximate the likelihood function. This method is believed to 

be a more appropriate approximation technique than pseudo-likelihood, which is 

the default computation method in SAS software (Bolker et al. 2008). Models were 

fit using the following variance-covariance structures to describe the correlations 

between the repeated measures: variance components, compound symmetry, first

order autoregressive, and first-order autoregressive-moving average (Verbeke and 

Molenberghs 2000, Littell et al. 2006). For each variance-covariance structure, we 

fit models that included and excluded individual fish as a random effect. For the 

GLMM, we used the Kenward-Roger approximation to calculate the denominator 

degrees of freedom and adjust the estimated standard errors (Littell et al. 2006, 

Bolker et al. 2008). We used the containment method to estimate the denominator 

degrees of freedom for the GzLMM because the Ken ward-Roger approximation is 

not possible when using Laplace's method to approximate the likelihood (SAS 

2009). For both models, we selected the preliminary random effects structure that 

best described the data as the model with the lowest value of Akaike's Information 

Criterion corrected for small sample size (AICc; Akaike 1973, Burnham and 

Anderson 2002). 

The second step was to develop a global model to use in selecting the final 

random effects structure. A global model includes all the potential main effects as 
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well as any potential interactions between those main effects (Zuur et al. 2007). To 

avoid testing every possible combination of interactions, we individually added each 

potential two-way or three-way interaction to the model that included the main 

effects only. All possible two-way interactions, and all three-way interactions that 

included fish length, were included in this analysis. For the models that included 

three-way interactions, we also included all the component two-way interactions, as 

inclusion of lower order interactions is necessary to correctly interpret linear 

models (Hox 2010). The GzLMM models were fit using the procedure previously 

described to select the preliminary random effects structure. For the GLMM, each 

model was fit using maximum likelihood (ML) and the preliminary random effects 

structure previously discussed. We then compared the main effects-only model 

with the more complex model. All interactions that reduced the AICc value by more 

than 1 unit were graphically examined to determine if the interactions were of 

ecological interest or were the result of random variation (potentially due to small 

sample sizes). Interactions were included in the global model if they reduced the 

AICc value and were not the result of random variation. Using the global model, we 

then repeated the procedure used to select the preliminary random effects 

structure. This was necessary because changing the mean structure (i.e., the fixed 

effects included in the model) will influence the random effects model selection 

criteria calculated with REML (Littell et al. 2006). Thus, we needed to validate that 

the correct random effects structure was used to develop the global model. If a 

different random effects structure was selected using the global model, we repeated 
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the process until there was no difference between the random effects structure 

selected and the global model selected. 

Our final step was to select the fixed effects and interactions that best 

described the variation in movement behavior and to verify that the data satisfied 

the assumption of homogeneity of variance. For the GLMM and the GzLMM, we fit 

models with all possible combinations of main effects and the interactions selected 

when building the global model. To fit the GzLMM, we continued using Laplace's 

method to approximate the likelihood and·the containment method to estimate the 

denominator degrees of freedom. Because we were comparing models with 

different fixed effects, all of the GLMM models were fit using maximum likelihood. 

Once again, the degrees of freedom for the GLMM were estimated using the 

Kenward-Roger approximation and we used AICc to select the most parsimonious 

model with the best fit to the data. Once we selected the most appropriate model 

for the GLMM, we used REML to estimate the effect of each variable because the 

standard deviations calculated with REML are generally less biased than those 

estimated by maximum likelihood (Zuur et al. 2007, Bolker et al. 2008). After fitting 

both models, residual plots were used to verify that the assumption of homogeneity 

of variance was satisfied. 

Results 

Residency and site fidelity 

Residency of fish detected at Back River reef differed depending on whether 

the fish was released at the reef or at one of the other two sites in lower Chesapeake 
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Bay. Mean residency time for fish released at Back River reef was 54.2 ± 10.7 days. 

Of the 39 fish released alive at the reef, over half (54%) were resident through mid

August (figure 3). Only four fish did not remain resident at the reef for longer than 

two weeks following release. In addition, 21 fish that were not released at Back 

River reef were detected at the reef before mid-December 2006 (figure 3). Ten of 

these fish were first detected during summer (24 June- 30 July 2006) and had a 

mean residency time of 11.1 ± 7.5 days. The other 11 fish were first detected during 

fall (28 September- 7 December 2006) and had shorter residency periods (1.1 ± 0.5 

days). 

Dispersal from Back River reef was nearly constant during the summer, but a 

few fish established residency at the site during fall and winter. Fish that were 

resident at Back River reef for longer than two weeks dispersed in nearly equal 

numbers in July (nine fish), August (14 fish), September (10 fish), and October (five 

fish). Dispersal date was not related to fish length (Figure 4). Within one week in 

late August, 13 of the 18 (72%) fish remaining at the reef dispersed (Figure 5). 

Measurements from a nearby meteorological station revealed that this period of 

rapid dispersal occurred prior to, and during, a precipitous drop in barometric 

pressure and exceptionally high wind speeds associated with Tropical Storm 

Ernesto (Figure 6). Of the 13 fish that dispersed prior to the landfall of Ernesto, nine 

subsequently returned to the reef within one month. Three of the fish released at 

Back River reef were resident at the reef from October through late November I early 

December. Interestingly, each of these fish had left the detection range of the 
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acoustic array for extended durations (26-64 days) prior to their fall residency at 

the reef. From December 2006 through March 2007, only three tagged fish were 

detected at Back River reef. Two of these fish were tagged elsewhere in Chesapeake 

Bay and the third fish had not been detected for nearly 2 months prior to assuming 

winter residency at the reef. 

Several summer flounder released at Back River Reef returned to the site the 

following spring, suggesting fidelity to this site. Ten of the 39 fish (26%) released 

alive at Back River reef were subsequently detected within the acoustic array 

between March and June 2007. An additional six fish released at other sites in 

Chesapeake Bay were also detected at Back River reef during this time period. 

These numbers represent a minimum estimate of site fidelity for multiple reasons: 

1) the acoustic transmitters were near the end of their battery life so some fish that 

returned may not have been detected, 2) most of the receivers were retrieved in 

March 2007, leaving only three receivers to detect acoustic transmitters from March 

through June, 3) some fish may have returned to the site after the last receivers 

were retrieved in June, and 4) some fish may have been captured in the commercial 

fishery during the winter. 

Within·site distribution 

Summer flounder did not use all areas within the study site equally as 

evidenced by the number of detections at each receiver (Figure 7). Fish at Back 

River reef were more often detected at the receivers closest to the artificial reef 

structure, although the receivers on the slope to the southwest of the artificial reef 
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also had a large number of detections. We also observed variations in the mean 

length offish at individual receivers (range: 347.23-487.05 mm; Figure 7); 

interestingly, the largest individuals were observed at the receiver with the most 

detections per individual, whereas the smallest fish were observed at the receiver 

with the fewest detections per individual. In general, larger fish were detected in 

close proximity to the artificial reef structure and smaller fish were detected near 

the slope between the artificial reef and shallow nearshore areas. 

Movement patterns 

Many summer flounder established residency at Back River reef for long 

durations, but these fish were generally sedentary during their residency. Thirty-six 

of the fish released at Back River reef, and six fish released at other sites, were 

resident at the reef for longer than two weeks, which provided sufficient data to 

model their movement patterns. The mean number of tidal periods during which 

resident fish were present within the acoustic array was 234 (range: 8 to 646), and 

the combined total number of tidal periods for all fish was 9821. Only 35 resident 

fish exhibited non-zero MDT during 370 (3.8 o/o) of these tidal periods. The mean 

number of tidal periods that these fish were active was 10.6 (range: 1 to 57). Only 

16 fish had non-zero MDT for more than five tidal periods and only 11 fish had non

zero MDT for more than 10 tidal periods. 

Developing the global model for the GzLMM revealed that individual fish had 

different activity levels and that interactions existed between several of the main 

effects. The most appropriate variance-covariance structure was a simple variance 
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components model (Appendix 1). There was strong support for including individual 

fish as a random effect, as those models had much lower AICc values (66-70 units). 

In developing the global model, evidence existed for including the interaction 

between time of day and lunar phase (the AICc value for this model was 7.38 units 

less than the model with only main effects) as well as the interaction between length 

and hours at large (the AICc value for this model was 5.3 units less than the model 

with only main effects). Upon further graphical examination, we concluded that the 

interaction between length and hours at large was random through time and did not 

have an ecological interpretation (Appendix 1). Thus, we chose to omit the 

interaction between length and hours-at-large in the global model. The same 

random effects structure (i.e., variance components with individual fish as a random 

effect) was selected using this global model. 

The most appropriate fixed effects structure, based on AICc model selection 

criteria, included length, tide, and the interaction between time of day and lunar 

phase (Table 1; Appendix 1), although there was some support (MIC = 3.04) for the 

second best model, which excluded length as a main effect (Table 2). The statistical 

form for the model with the lowest AICc was: 

logit{y!ikl) = f.J +A, + (/Ji + Tt + t/J1 + ( rt/J)u + Y; + e!ikl 

where logit is the link function, Yiikl is the binomial response for fish (i) during tidal 

period (j), time of day (k), and lunar phase (I), J.l is the overall mean, A is the length 

of fish (i), <p is the tidal state (j=low, rising, high, falling), 't is the time of day (k=day, 

night),' is the lunar phase (l = new, wax crescent, 1st quarter, wax gibbous, full, wan 
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gibbous, 3rd quarter, wan crescent), 'tcjl is the interaction between time of day and 

lunar phase, y is the random effect for fish (i), and t is the random unexplained 

error. Based on this model, fish movement probability was inversely proportional 

to fish size. Although the largest summer flounder were generally sedentary, fish 

smaller than 550 mm exhibited both mobile and sedentary behavior patterns 

throughout the summer (Figure 8). Fish exhibited a higher tendency to move during 

rising tides, but movement probabilities were similar during other tidal phases 

(Figure 9). The interaction between time-of-day and lunar phase indicated that fish 

were slightly more active during the day near the quarter moons (Figure lOa). This 

pattern was more pronounced during the nighttime periods, when fish were much 

less active during nights closest to the new and full moons (Figure lOb). 

The small sample size of nonzero MDT values limited our ability to fit GLMMs 

and to make inferences regarding factors that influenced distances traveled by 

individual fish. The most appropriate preliminary variance-covariance structure 

was first-order autoregressive and there was no evidence that sufficient between

subject variability existed to include individual fish as a random effect (Appendix 1). 

The global model selection procedure indicated there was no support for including 

any of the candidate interactions in the model (Appendix 1). Considering the fixed

effects structure of the model, eight different models were plausible (Table 3). Each 

of these models included fish length and time of day as a fixed effect. Only half the 

top models included hours at large, tide, and temperature. None of the top models 

included lunar phase. Based on these results, we selected the model that included 
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only length and time-of-day as fixed effects (Table 4, Appendix I). Parameter 

estimates from this model indicate that the MDT by individual fish decreases with 

increasing fish size and that fish tend to move longer distances at night (Table 4 ). 

Discussion 

Prior to our study, summer flounder in Chesapeake Bay were thought to 

exhibit some degree of site fidelity to structured sites, but the degree of fidelity and 

the small-scale movement patterns of individuals were unknown. Here, we showed 

that summer flounder remain associated with a single artificial reef for long periods 

of time (54 days) during their residency within Chesapeake Bay. Furthermore, at 

least 26% of the fish released at the site were detected near the artificial reef the 

following spring. The observed residency period in this study was shorter than that 

observed within Mid-Atlantic coastal harbors (86 days; Sackett et al. 2008) and 

lagoons (130 days; Capossela 2010). Likewise, the degree of site fidelity in our 

study (26%) was slightly less than the 35-39% previously observed (Sackett et al. 

2007, Capossela 2010). However, we note that the scale of observation in our study 

was considerably smaller, making direct comparisons with previous work difficult. 

The smaller spatial extent of our study provided an opportunity to observe summer 

flounder movements on the scale of 100s of meters and over long durations, which 

revealed patterns that were not apparent in previous studies. These observed 

small-scale movements indicated that summer flounder were primarily sedentary 

during their residency at the reef, but that activity levels were influenced by fish 

size, tidal stage, time of day, and lunar phase. Although previous studies have also 
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indicated that summer flounder movements are influenced by tidal stage 

(Szedlymayer and Able 1993, Miller 2010) and time of day (Capossela 2010, Miller 

2010), this is the first published study to discern behavioral differences due to fish 

size and lunar phase. 

We hypothesize that the size-related differences in distribution and activity 

levels we observed are the result of competitive exclusion and ontogenetic changes 

in foraging behaviors. In general, larger summer flounder were found in close 

proximity to the artificial reef structure, whereas smaller fish were more often 

detected closer to the slope habitats at the margins of our site. This may be the 

result oflarger fish exhibiting territoriality and excluding smaller fish from optimal 

foraging habitat closest to the artificial reef structure. Such competitive exclusion 

has often been suggested as an explanation for distributions of small and large fish 

(Lowe and Bray 2006). This habitat segregation, as well as differences in movement 

patterns with fish size, is most likely related to ontogenetic changes in the diet of 

summer flounder. A recent trophic dynamics study of summer flounder in 

Chesapeake Bay found that the diet of fish smaller than 375 mm was primarily 

dominated by mysids, and fish became more piscivorous with increasing length 

(Latour et al. 2008). Summer flounder primarily use ambush and active pursuit 

tactics to capture prey items (Staudinger and Juanes 2010), and different foraging 

strategies may have been employed to capture preferred prey items. Mysids 

generally exhibit a patchy distribution Oumars 2007) and have a low caloric 

content, so smaller fish may need to use more active foraging behaviors to find 
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sufficient prey to meet their metabolic requirements. In contrast, the more 

piscivorous diet of larger fish would allow them to reach their metabolic 

requirements with fewer meals. Furthermore, as the prey fish of larger flounder 

will generally be more evasive than invertebrates consumed by smaller flounder, 

larger fish are more likely to employ the more sedentary tactic of ambush predation. 

We also hypothesize that observed behavioral differences in response to 

environmental cues were related to foraging behavior, although predator avoidance 

may also have been a factor. Movement patterns of fish are primarily related to 

foraging behaviors, predator avoidance, and spawning behavior (Lowe and Bray 

2006). Spawning behavior can be excluded as an explanation for the observed 

localized movements, because summer flounder spawn on the continental shelf 

during fall and winter (Kraus and Musick 2001). Similarly, adult summer flounder 

comprise only a minor component of the diets oflarge predators, including different 

species of shark (Bowman 2000, Link et al. 2002, Ellis 2003); therefore, predator 

avoidance is most likely not a primary consideration affecting the behavior of 

summer flounder at Back River reef. Tidal state has previously been shown to 

influence the movements of summer flounder (Szedlmayer and Able 1993, Miller 

2010) as well as other flatfish (Hunter et al. 2003). These studies suggest that 

flatfishes use tidal currents to reduce the energetic requirement associated with 

moving to a new location. Although this may be true for long-distance movements, 

we postulate that the increased localized movement probabilities associated with 

the rising tide is due to summer flounder feeding on prey that may be moving in 
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association with the incoming tide. Zooplankton communities are associated with 

tidal fronts (Gomez-Gutierrez 2007), and increased density of zooplankton 

associated with the incoming tide may elicit summer flounder foraging behavior at 

this location. In addition, studies on the behavior and distribution of mysid shrimp 

have shown that these crustaceans are generally more abundant in the water 

column at night and that they respond to lunar periodicity (Hampel et al. 2003, 

Marques et al. 2009). Mysids may be more active near the quarter moons in 

response to changes in tidal currents. During the quarter moons the tidal range is at 

its minimum, decreasing the potential that mysids will be swept away from their 

preferred habitats by tidal currents (Kaartvedt 1989). Previous studies have also 

found that summer flounder activity increases at night (Capossela 2010, Miller 

2010), but these studies did not investigate the influence of the lunar cycle. 

Unfortunately, we did not sample for potential summer flounder prey near Back 

River reef during the course of this study, so our conclusions regarding the 

relationship between summer flounder foraging behavior and the observed 

movement patterns remain conjectural. 

Even though summer flounder activity responded to changes in 

environmental conditions, most individuals had low movement probabilities 

throughout their residency at the artificial reef. Due to the design of our study, 

individuals had to move at least 400 m within 1.5-hour time periods to have a non

zero movement probability. As a result, movement probabilities were low even 

when conditions were optimal (i.e., rising tide or on nights near the quarter moon). 
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Even the most active individuals in our study rarely moved large distances and had 

movement probabilities between 10 and 15% while they were resident at the 

artificial reef. This corroborates results from a previous acoustic telemetry study 

that found that actively tracked summer flounder rarely moved more than 180 m2 

within 3 to 6 hours (Sackett et al. 2008). Although the individuals in that study did 

not move large distances, they did remain in motion 7 4 ± 19% of the time they were 

tracked, implying that summer flounder are quite active but tend to inhabit small 

areas once they establish residency. We investigate the fine-scale movement 

patterns of Chesapeake Bay summer flounder in another study (ms. in prep.). 

In addition to improving our understanding of summer flounder localized 

movement patterns, this study also revealed that summer flounder move to 

different habitats in anticipation of an oncoming storm front Near the end of 

August a large percentage (72%) of the fish that were resident at Back River reef 

dispersed to habitats outside the detection range of the acoustic receivers. This 

dispersal event was immediately followed by a storm with strong winds that 

approached 90 km h-1. In the weeks following the storm, the majority (70%) of 

individuals that had dispersed in anticipation of the storm subsequently re~urned to 

the artificial reef; implying that this dispersal event occurred in response to 

changing environmental conditions related to the storm event A similar dispersal 

behavior was observed with juvenile blacktip sharks (Carcharhinus limbatus) that 

were resident in a coastal nursery area in Florida (Heupel et al. 2003). The authors 

of that study concluded that fish dispersed in response to declining barometric 
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pressure associated with the storm. Similarly, summer flounder are believed to 

disperse from coastal estuaries in response to changes in barometric pressure 

(Sackett et al. 2007). It is unclear from our results if the storm related dispersal was 

in response to changes in barometric pressure, or to other unobserved 

environmental cues. Summer flounder began to disperse as the barometric 

pressure declined, but continued dispersing when the barometric pressure returned 

to normal levels prior to the landfall of the storm. Based on these results, we 

suspect that summer flounder may not rely solely on barometric pressure to initiate 

dispersal prior to a storm. 

The detection histories of summer flounder released at Back River reef, and 

at other sites in the lower Chesapeake Bay, also provide some insight into the timing 

of seasonal dispersal from these sites. Back River reef is approximately 28 km from 

the mouth of Chesapeake Bay, and is closer to the mouth than either of the other 

two sites where fish were released (Fabrizio et al. 2007). Most of the fish that were 

resident at Back River reef throughout the summer had dispersed from the site by 

the end of October. Eleven fish that were not released at Back River were detected 

at the site for brief periods between October and December. The brief duration that 

individual fish remained at the reef during the fall months may indicate that these 

fish were exhibiting directed movement towards the mouth of the Chesapeake Bay 

as part of their annual spawning migration; this is consistent with the results from 

previous tagging studies in which summer flounder were observed dispersing from 

Chesapeake Bay from October through December (Desfosse 1995, Kraus and Musick 
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2001). The protracted time period over which these 'migrating' fish were detected 

suggests that fish travel independently and do not respond to a common exogenous 

cue (e.g., temperature, photoperiod) to initiate dispersal out of the bay. Only three 

fish were detected at Back River reef after December 2006, indicating that most of 

the tagged fish had dispersed from the site (possibly moving to offshore spawning 

locations). It is unclear if the fish that were detected during the winter had 

remained resident in Chesapeake Bay throughout the year or if they had 

participated in the spawning migration prior to, or following, their winter residency 

at Back River Reef. We suggest further work is necessary to elucidate the proximate 

factors that initiate summer flounder dispersal from Chesapeake Bay. 

To our knowledge, we used the most appropriate telemetry techniques 

available at the time of our study, but results from a recent study suggest acoustic 

transmitter detection rates may be biased by fluctuating environmental conditions. 

Diel variations in receiver detection rates may influence the interpretation of 

acoustic telemetry data (Payne et al. 2010). One possible explanation for diel 

variation in detection rates is the interference with receiver detection efficiency by 

nocturnally active crustaceans (e.g. shrimp). The authors of that study recommend 

correcting the observed study animal detection probabilities using observed 

changes in the detection rate of stationary 'control' transmitters. In our study, 

which lacked control transmitters, we must assume that the detection rates were 

consistent through time and, therefore, that our observations were representative 

of summer flounder behavior. 

37 



We also must offer some caveats with regards to fitting generalized linear 

mixed models. To our knowledge, we used the best available model fitting and 

model selection techniques; however, the application of this modeling tool is an area 

of active study in statistics and there is uncertainty regarding the most appropriate 

method to fit these models. Using the wrong likelihood approximation technique 

could produce biased parameter estimates and inaccurate model inferences (Zhang 

et al2011). We recommend that ecologists consult with statisticians on the best 

available practice regarding GzLMMs before using them in their own analyses. 

Based on our experiences, we suggest that future acoustic telemetry studies 

consider sampling prey availability, measuring tidal currents, using tags that record 

water temperature, and designing acoustic arrays to observe dispersal. Our study 

did not sample the prey field available to summer flounder near Back River reef. We 

hypothesize that prey availability was the primary factor influencing summer 

flounder activity levels and believe that future acoustic telemetry studies would 

benefit from concurrently sampling prey field abundance. We also used tidal 

prediction models from a nearby site to estimate the tidal state at Back River reef. 

We believe that tidal current would be a better predictor of fish movement, but we 

chose not to use output from a tidal current prediction model because predictions 

were not available for Back River reef and because substantial variation in currents 

occur between different locations. Thus, we suggest deployment of water current 

meters in future studies where tidal currents are believed to influence movement 

patterns. Similarly, our measurements of water temperature were recorded by 

38 



temperature loggers fixed to the receiver moorings on the periphery of the array 

and may not be representative of temperatures experienced by the fish occupying 

the inner portion of the site. As temperature is often associated with fish 

physiological processes (Claireaux and Lagardere 1999), distribution patterns 

(Harrison and Whitfield 2006), and activity levels (Staaks et al. 1999), future studies 

may consider acoustic transmitters that also provide measurements of water 

temperature. Finally, we believe that it would be beneficial to deploy an acoustic 

array across the mouth of Chesapeake Bay to determine the timing of fish dispersal 

from the bay. Multiple species are known to use the bay during only part of the 

year, and observing the timing of individual dispersal from the bay would be useful 

to identify proximate factors that initiate seasonal migrations for different species. 

Each of these suggestions could improve the interpretability of data collected using 

acoustic telemetry, but researchers should also understand that the potential 

benefits might not outweigh the increased costs associated with gathering 

additional data. 
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Table 1. Model selection table for the repeated measures generalized linear mixed 
model designed to identify factors that influence the movement probability of 
summer flounder resident at Back River reef from June through September 2006. 
The model is based on a binomial response (moved vs not moved) for 42 individuals 
observed during 9821 time periods. The table shows the factors and interactions 
included in the top five models selected based on AICc model selection criteria. 
Possible factors include: fish length, hours at large, tidal stage (low, rising, high, or 
falling), time of day (day or night), lunar phase (new, wax crescent, 1st quarter, wax 
gibbous, full, wan gibbous, 3rd quarter, and wan crescent), and water temperature 
(Temp). The MICe value is the difference in AICc values between a given model and 
the model with the lowest AICc. 

Length 
Hours-

Tide 
Time 

Lunar Temp 
Time of day 

AICc MICe 
at-large of day *lunar 

X X X X X 2838.6 0 

X X X X 2841.6 3.0 

X X X X X X 2843.7 5.1 

X X X 2846.0 7.4 

X X X X X 2847.2 8.6 
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Table 2. Parameter estimates from the generalized linear mixed model with the 
lowestAICc value (see Table 3). Estimates for different tidal states are relative to 
the rising tide and estimates for the interaction of time-of-day and lunar phase are 
relative to nights during the same lunar phase. See text for description of factors. 

Variable Tide 
Time- Lunar Degrees of 

Estimate 
Standard 

of-day Phase Freedom Error 

Intercept 41 -3.83 0.35 

Length 9718 0.00 0.00 

Tide High 9718 -0.64 0.15 

Tide Falling 9718 -0.69 0.15 

Tide Low 9718 -0.83 0.16 

Tide Rising 0.00 

Time-of-day * 
Day New 9718 0.21 0.55 

Lunar phase 

Time-of-day * 
Day 

Wax 
9718 -0.23 0.47 

Lunar phase Cresent 

Time-of-day* 
Day 

1st 
9718 -0.86 0.43 

Lunar phase Quarter 

Time-of-day* 
Day 

Wax 
9718 -1.26 0.53 

Lunar phase Gibbous 

Time-of-day * 
Day Full 9718 0.44 0.61 

Lunar phase 

Time-of-day * 
Day 

Wan 
9718 -1.12 0.49 

Lunar phase Gibbous 

Time-of-day * 
Day 

3rd 
9718 -0.75 0.47 

Lunar phase Quarter 

Time-of-day* 
Day 

Wan 
0.00 

Lunar phase Cresent 
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Table 3. Model selection table for the general linear mixed model developed to 
identify factors that influenced the minimum distance traveled by 35 individual 
summer flounder resident at Back River reef from June through early-October 2006. 
This model is based on non-zero movements during 370 different time periods. The 
table shows the factors included in the top eight models selected based on AICc 
model selection criteria. Possible factors included: fish length, hours at large, tidal 
stage Oow, rising, high, or falling), time of day (day or night), lunar phase (new, wax 
crescent, 1st quarter, wax gibbous, full, wan gibbous, 3rd quarter, and wan crescent), 
and water temperature. The MICe value is the difference in AICc values between a 
given model and the model with the lowest AICc value. 

Length 
Hours-

Tide 
Time 

Lunar Temperature AICc MICe 
at-large of day 

X X X 646 0 

X X X 646.2 0.2 

X X 646.3 0.3 

X X X X 646.4 0.4 

X X X 646.5 0.5 

X X X X 646.7 0.7 

X X X X 647.2 1.2 

X X X X X 647.8 1.8 

48 



Table 4. Parameter estimates for the general linear mixed model that included 
length and time of day as predictors of minimum distance traveled (See Table 1). 
The estimate reported for 'day' is relative to the estimate for 'night'. 

Variable 
Degrees of 

Estimate 
Standard 

Freedom Error 

Intercept 313 2.294 0.047 

Length 231 -0.001 0.0004 

Day 348 -0.121 0.060 

49 



z 
b -• 
~ 

78"18'W 

. ·~ 
·~· 

... ~· . 
(;;1 

0 0.5 1 2 3 4 

Figure 1. Location of Back River artificial reef (hashed ellipse) and acoustic 
receivers (black circles) in lower Chesapeake Bay (inset). Contour lines depict 
water depths (m). 
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Random effects structure selection: 
GzLMM 
GLMM (REML) 

Global model selection: 
GzLMM 
GLMM (ML) 

Fixed effects selection: 
GzLMM 
GLMM (ML) 

Final parameter estimates: 
GzLMM 
GLMM (REML) 

No 

Figure 2. Conceptual diagram of the process used to select the most appropriate 
generalized (GzLMM) and general (GLMM) linear mixed model. For the GLMM we 
also show at each step whether the model was fit using restricted maximum 
likelihood (REML) or maximum likelihood (ML). The Laplace method was used to 
the fit the GzLMM at each step. The 'random effects structure' is comprised of the 
variance-covariance structure and whether or not individual fish is included in the 
model as a random effect. The 'global model' is the model that includes all the 
potential main effects as well as any interactions that may be of interest. In the 
'fixed effect selection' step we determine which of the main effects and interactions 
best describe the observed data. The 'final parameter estimates' are the estimates 
from the most appropriate model and are presented in the results section. 
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Figure 3. Individual detection histories at Back River (BR) reef for 39 fish released 
at Back River (black) and 26 fish released at other sites (Non-BR) in Chesapeake Bay 
(gray). 

52 



650 l 
I 
I 

600 • 
• • 

550 • • •• • 
- • • E 500 

1 

• • • .§. • .&:! ••• • • c: 450 
.3 • • • • .&:! 

j 
• lit 

ii: • 400 

• • • 
350 ~ • ·' • • 

j • • • 
300 

I • I • i 

250 I 

1~Jun 7-Jul 28-Jul 18-Aug 8-Sep 29-Sep 20-0ct 10-Nov 

Figure 4. Size (total length) and date of dispersal for 39 summer flounder released 
with acoustic transmitters at Back River reef during summer 2006. 
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Figure 5. Number of individual summer flounder detected daily at Back River Reef 
from June 2006 through March 2007. The six black squares identify release dates 
for fish implanted with acoustic transmitters. 
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Figure 6. Measurements of barometric pressure (a) and wind speed (b) recorded at 
a meteorological station in the lower Chesapeake Bay from mid-August through 
mid-September 2006 (gray lines). The time period when summer flounder rapidly 
dispersed away from Back River reef is indicated by the dashed black lines. 
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Figure 7. Number of detections per fish (gray circles) and weighted mean length of 
summer flounder (black bars) at each acoustic receiver from June through early
October 2006. Also depicted is the artificial reef structure ( +) and the water depth 
in meters (contour lines). 
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Figure 8. Mean movement probability and total length of 42 summer flounder 
resident at Back River reef from June through September 2006. Plot depicts the 
observed movement probabilities (filled circles) and movement probabilities 
predicted from the generalized linear mixed model (open circles). Error bars ( ± 1 
SE) are shown for the observed probabilities. 
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Figure 9. Mean movement probability for 42 summer flounder at low, rising, high, 
and falling tides during June through September 2006. Error bars are ± 1 standard 
error. 
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probabilities of 42 summer flounder resident at Back River reef from June
September 2006. Error bars are ± 1 standard error. 

59 



CHAPTER2 

Using Archival and Conventional Tags to Observe Summer Flounder Movements at 

Different Spatial Scales 
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Abstract 

Although large-scale movement patterns of summer flounder are well studied, 
factors that influence the small-scale movements of this species are not as well 
understood. We therefore used conventional and archival tags to examine the 
movement patterns of summer flounder across various spatial scales. Conventional 
tagging data were used to observe monthly movements, inter-annual site fidelity, 
and emigration of over 60,000 summer flounder tagged in Chesapeake Bay. We also 
used temperature and depth data collected with archival tags attached to 15 
summer flounder to investigate how fish of different size responded to changes in 
tidal state, time-of-day, lunar phase, and temperature. Results suggest that summer 
flounder remain in relatively small regions while resident in Chesapeake Bay and 
that a high percentage (63.1 ± 2.2%) return to the same regions in subsequent 
years. Fish that migrated from Chesapeake Bay were more likely to move north 
during the spring and summer and to move south during the winter. Fish activity 
levels were higher as water temperature increased, but this primarily occurred 
during the rising and the falling tides. Furthermore, flounder smaller than 400 mm 
were more active at night, whereas activity of larger fish was not influenced by the 
time-of-day. Results from this study fill a void in understanding the factors that 
influence small-scale movements of summer flounder, and could be incorporated 
into individual based models to understand how large-scale distributions arise from 
small-scale behavioral decisions. 
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Introduction 

Observing animal movements on different spatial scales provides a 

mechanism to understand how large-scale species distributions are established 

from small-scale behavioral decisions (Roshier et al. 2008, Humston et al. 2004). 

Individuals within a population alter their behavior in response to environmental 

heterogeneity to minimize physiological stress, minimize predation risk, and 

maximize foraging success (Wannamaker and Rice 2000, Lowe and Bray 2006). 

These individual behaviors subsequently influence the distribution and structure of 

populations (Humston et al. 2004). The scale of an individual's movement is 

expected to be proportional to the scale of variation in environmental conditions 

and resource availability (Roshier et al. 2008). As a result, examining animal 

movements on a range of spatial scales often provides greater insights into the 

factors that drive individual behavioral decisions. Although the large-scale 

distributions of populations are often well studied, movements of individuals on 

smaller spatial scales are not well known. In this study, we use conventional and 

archival tags to examine the movement patterns of summer flounder on three 

spatial scales: 1) within the Mid-Atlantic Bight (large scale; 100s ofkm), 2) within 

Chesapeake Bay and coastal Virginia waters (regional scale; lOs ofkm), and 3) 

within habitats while resident in Chesapeake Bay (fine scale; <1m). 

Summer flounder are an economically, and ecologically, important fish 

species that range throughout the east coast of North America. This species is one of 

the most highly targeted and valuable commercial and recreational fish species of 
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the US Atlantic coast (Terceiro 2002). In addition to their economic value, summer 

flounder are a valuable member of the ecosystem as an upper-trophic-level predator 

(Latour et al. 2008). Based on their consumption, summer flounder have the 

potential to influence community dynamics in coastal habitats through trophic 

interactions (Overholtz et al. 2000, Link et al. 2002). Thus, as fisheries management 

moves towards ecosystem-based approaches, it is important to understand the 

processes that influence summer flounder movement and distribution. 

Large-scale, seasonal migration patterns of summer flounder are well known 

from conventional mark-recapture studies conducted throughout most oftheir 

range (Poole 1962, Murawski 1970, Lux and Nichy 1981, Monaghan 1992, Desfosse 

1995, Burke et al. 2000, Kraus and Musick 2001). During fall and early winter, 

summer flounder migrate to the continental shelf to spawn. The initiation of the 

spawning migration is earlier in the north and progressively later at more southern 

latitudes. After spawning is complete, individuals return to coastal habitats, where 

they reside during the spring and summer. These fish tend to return to the same 

inshore location in subsequent years, but fish that emigrate tend to be recaptured in 

coastal habitats to the north of their release location. 

In contrast to these well documented seasonal migration patterns, 

movements between different coastal habitats (e.g., rivers, bays, seaside lagoons) 

during the period of inshore residency have not been examined, with the exception 

of one unpublished dissertation (Desfosse 1995). In his dissertation, Desfosse 

examined 3 years (1987-1989) of mark-recapture data and found that summer 
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flounder were generally recaptured near their tagging location within a few months 

after release. With only 3 years of data on a relatively sedentary species, Desfosse 

did not have sufficient tag-returns to discern intra-annual regional movement 

patterns. However, with sufficient tag-return data it should be possible to 

determine if fish are more likely to move into certain regions, and less likely to move 

into other regions. According to the ideal free distribution theory (reviewed in 

Kennedy and Gray 1993) we would expect more individuals to move into regions 

with the highest density of resources. Thus, observing these regional movements 

could provide some indication of relative habitat quality. Furthermore, observing 

the temporal variation in regional movements provides insight into the timing of the 

seasonal migration. 

Another way to gain insight into summer flounder behavior is to examine 

the small- and fine-scale movement patterns of individual fish relative to 

environmental conditions. For example, studies using acoustic telemetry have 

found that summer flounder move in response to changes in tidal state (Szedlmayer 

and Able 1993, Chapter 1), low dissolved oxygen concentrations (Miller 2010), 

oncoming storms (Sackett et al. 2007, Chapter 1), and decreased light levels at night 

(Capossela 2010, Miller 2010, Chapter 1). These studies examined movements over 

relatively large scales (100s to 1000s of meters) but could not discern fine-scale 

(<10m) movements in response to environmental variations. Archival tags 

continuously record environmental information (i.e., depth and temperature) over 

long durations, making them an ideal technology for observing the fine-scale 
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movements of fish (Block et al. 2001, Wilson et al. 2005). Furthermore, sequential 

measurements of fish depth and temperature can be used to examine large-scale 

migration patterns and identify spawning grounds (Hunter et al. 2003). 

Understanding these fine-scale behaviors is a critical component in developing 

individual-based models to examine how species distributions develop in response 

to various environmental conditions (Roshier et al. 2008, Humston et al. 2004). 

In this paper, we use conventional and archival tags to examine large-, 

regional-, and fine-scale movement patterns of summer flounder tagged in 

Chesapeake Bay and coastal waters of Virginia. The Chesapeake Bay is the largest 

estuary in the range of summer flounder and is believed to be an important seasonal 

habitat for both juveniles and adults (Packer et al. 1999). We used conventional 

tagging data from a recreational angler tagging program to examine the seasonal 

migration pattern of summer flounder (large-scale). These mark-recapture data are 

also used to investigate the movements of summer flounder within Chesapeake Bay 

and coastal waters of Virginia (regional-scale). Finally, we use temperature and 

depth data recorded with archival tags to observe fine-scale movements of summer 

flounder during their residency within, and dispersal from, Chesapeake Bay. 

Methods 

Large- and regional-scale movements 

Anglers participating in the Virginia Game Fish Tagging Program (VGFTP) 

have tagged and released summer flounder in Virginia waters since March 2000. 

Recreational anglers are trained to properly tag and release their catch and to 
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record all salient information about their tagged releases, such as fish length, tag 

number, release location, and release condition (Musick and Gillingham 2010). 

Small rewards (i.e., t-shirts, tackle boxes, and pewter pins) are offered to encourage 

commercial and recreational fishers to report their recaptures. Between 2000 and 

2009, participants in the VGFTP released 60,930 tagged summer flounder in 

Virginia waters. Tagging locations were primarily within Chesapeake Bay and its 

tributaries, but fish were also released in the nearshore coastal waters off Virginia 

Beach and the Eastern Shore (Figure 1, Table 1). Fish were tagged in the dorsal 

musculature near the tail with T -bar anchor tags (Hallprint). Each tag was labeled 

with a unique identifying number, a phone number to report recaptures, and a 

reward notice. 

Summer flounder tag and recapture data from all years were used to 

investigate monthly movement patterns and inter-annual site fidelity. Data from all 

years were combined under the assumption that movement patterns did not differ 

considerably among years. To examine the monthly movements of summer 

flounder, we calculated the monthly proportion of recaptured fish that were tagged 

and encountered in different regions (see Figure 1 for region boundaries). Inter

annual site fidelity was quantified as the proportion of fish released and recaptured 

in the same region, after being at liberty through a spawning season (November

March). We restricted the site fidelity analysis to fish recaptured between May and 

October to decrease the probability that the observed movements were related to 

the seasonal spawning migration. 
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We also used the conventional tagging data from the VGFfP to understand 

regional-scale movements of summer flounder within Virginia and large-scale 

migrations to locations outside of Virginia. Within-year movements between 

regions in Virginia were calculated as the proportion of fish released in a given 

region and subsequently recaptured elsewhere. Regions with less than 250 releases 

during the 10-year study period were excluded from the analysis to avoid potential 

biases due to small sample sizes. Finally, we used the VGFfP recapture data to 

examine the seasonal migration patterns of summer flounder to locations outside of 

Virginia. Due to lingering questions regarding the existence of two summer 

flounder stocks along the Atlantic coast (Kraus and Musick 2001, NRC 2000), we 

were primarily interested in determining if fish tagged in Virginia waters 

subsequently moved north or south. These data were summarized as the 

proportion offish recaptured outside of Virginia that moved in a given direction 

(i.e., north or south) during a given season (i.e., spring, summer, fall, and winter). 

We used a chi-square test to determine if the proportion offish that moved north or 

south varied among seasons. A multiple comparison test for proportions was used 

to determine the season in which proportions differed. These test statistics were 

calculated using the methods described by Zar (1999), and were assessed using a 

significance level of 0.05. We also used an analysis of variance (AN OVA), 

implemented in R, to determine if the mean length at tagging differed between 

summer flounder that moved north or south in a given season. Tukey's honestly 
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significant difference method was used to test for equality of mean fish length for 

fish moving in a given direction each season. 

Fine-scale movements 

During 16 days in August and September 2009 we released 262 summer 

flounder in the lower Chesapeake Bay with archival tags. Fish were primarily 

captured with hook-and-line gear near the mouth of the Chesapeake Bay. A small 

percentage offish (1.5%) were captured in September 2009 using a 13.7-m bottom 

trawl towed for 30-minutes at a single site in the eastern portion of the lower 

Chesapeake Bay (Chesapeake Bay Multispecies Monitoring and Assessment 

Program; Bonzek et al. 2010). The total length for each fish was measured prior to 

the external attachment of a Star-Oddi DST milli-L archival tag measuring 12.5 mm 

in diameter by 38.4 mm in length and weighing 5 gin water. To maintain 

consistency in the tagging procedure, only one scientist (MJH) attached all 262 

archival tags. These tags recorded water temperature (range: -1 to +40 °C, 

resolution:± 0.03 °C) and depth (range: 1 to 250m, resolution:± 0.08 m) of the 

habitat occupied by each fish. Tags were configured to record temperature every 60 

minutes and depth every 20 minutes. To maximize survival of fish after tag 

attachment, and avoid abnormal behaviors associated with application of a tag that 

was too heavy, only fish that exceeded 290 mm total length were tagged (range: 295 

-714mm; mean: 413 mm). 

Archival tags were attached externally to allow for identification by 

recreational anglers and commercial fishers upon recapture (Figure 2a). The 
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external attachment method was modified from a procedure used to attach similar 

archival tags to yellowtail flounder (Cadrin and Moser 2006). Tags were attached to 

the pigmented side of the fish with 2 nickel pins that pierced the dorsal 

musculature. On the non-pigmented side of the fish, small plastic discs were used to 

protect the fish's epidermis from the nickel pins (Figure 2b). We allowed about 4 

mm of space between the plastics discs and the epidermis of the fish to permit 

growth. A rubber earring backing was used to secure the plastic discs, and nickel 

pins were clipped and crimped around the earring backing to secure the archival tag 

to the fish. AT -bar anchor tag (Hall print) was also inserted into the dorsal 

musculature as a secondary identification tool and to ascertain shedding rates of 

archival tags. 

It was necessary to recover the archival tags to retrieve the recorded 

temperature and depth data, which were subsequently examined to remove 

erroneous or spurious recordings. To increase the probability that recovered 

archival tags were returned, we offered a $200 reward and instituted an extensive 

advertising campaign at ports and fish processing houses throughout the Mid

Atlantic coast Data from recovered tags were downloaded and processed to 

remove all temperature and depth measurements recorded prior to the tag's 

deployment date and after the tag's retrieval date. Negative depth measurements 

(i.e., above the sea surface) were reassigned to a depth of 1 meter. These small 

number of negative depth measurements were most likely the result of inaccurate 

recordings when the fish occupied very shallow or near-surface waters. 
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We used depth data recorded by the archival tags to examine the fine-scale 

movement patterns of summer flounder during their residency in Chesapeake Bay. 

To ensure that the observed movement patterns were not influenced by the tagging 

procedure, we excluded recordings within 24 hours of release. We also restricted 

our analysis to dates prior to 15 October 2009 to ensure that we had at least 5 fish 

available to observe movements. This prevented potential biases related to small 

sample size. Fine-scale summer flounder movements were inferred from changes in 

depth between subsequent measurements from the same fish. While fish were 

resident in Chesapeake Bay, we corrected for tide-related changes in depth by 

subtracting the predicted change in tidal amplitude from the observed depth 

change; tidal amplitudes were estimated using the Tides and Currents® software 

program. Because we did not know an exact location for each fish, we calculated a 

mean tidal amplitude for the lower Chesapeake Bay. Based on tidal corrections used 

to predict tides at various locations in the lower Chesapeake Bay, we estimate that 

the mean tidal amplitudes were within 20 minutes of the actual tides experienced 

by our tagged fish. 

We followed procedures described in Chapter 1 to estimate the tidal stage, 

time-of-day, and lunar phase during finite time periods while fish were resident 

within Chesapeake Bay. Due to importance of tidal state in the movements of 

summer flounder (Szedlmayer and Able 1993, Chapter 1), we elected to examine 

movements during 1.5-hour time periods centered around four tidal stages: low, 

rising (the mid-point between low and high tide), high, and falling (the mid-point 
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between high and low tide). The time-of-day for each tidal period was assigned 

based on the times of sunrise and sunset, which were obtained from Tides and 

Currents®. If the mid-point of the tidal time period occurred prior to sunrise, or 

after sunset, the time-of-day for that time period was specified as 'night', otherwise 

the time-of-day was specified as 'day'. Lunar phase was assigned using the moon 

phase output from Tides and Currents software program. Based on the percent of 

the moon illuminated, the lunar cycle was divided into eight phases: new moon, wax 

crescent, 1st quarter, wax gibbous, full, wan gibbous, 3n1 quarter, wan crescent. 

We developed a general linear mixed model (GLMM) to investigate the effect 

of fish length, tidal state, time-of-day, lunar phase, and temperature on the 

movements of summer flounder resident in Chesapeake Bay. Length and 

temperature data were centered (i.e., the mean was subtracted from each 

observation) to reduce collinearity (Quinn and Keogh 2002). The response variable, 

which was the cumulative absolute depth change observed in each tidal period, was 

transformed using a Box-Cox transformation (Box and Cox 1964). The data were 

transformed because the untransformed data did not satisfy the linear model 

assumption of normality. The Box-Cox transformation is calculated by: 

{ 

yf -1 "f 1 0 
(.1.) _ --;--, I A ':# 

Y; - A 

log(y; ), if A. = 0 
(1) 

Where ~A> is the transformed response, yj is the untransformed response, and A. is a 

power parameter. The most appropriate value for A was estimated with maximum 
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likelihood using the solver function in Microsoft® Excel (2010). We then used the 

MIXED procedure in SAS to fit a repeated measures GLMM to the transformed 

depth-change data. A mixed model was used because our data included both fixed 

effects (i.e., fish size, tidal state, time-of-day, lunar phase, and temperature) as well 

as an individual fish random effect (Littell et al. 2006, Bolker et al. 2008). A 

repeated measures model was used because observations of the same fish recorded 

closely in time were serially correlated. The repeated factor in the model was the 

number of hours an individual was at liberty. To account for this serial correlation 

and to estimate unbiased model parameters, a repeated measures model 

incorporates a specialized variance-covariance structure (Rogers and White 2002, 

Littell et al. 2006). We selected the most parsimonious model using a three-step 

process. 

The first step was to identify a preliminary variance-covariance structure 

and determine if the between-subject variability contributed to the total random 

variation. We refer to the combination of the variance-covariance structure and the 

individual fish random effect as the 'random effects structure'. We selected a 

preliminary random effects structure using models that contained the five main 

effects and no interactions. Restricted maximum likelihood (REML) was used to 

compare models with different random effects structures (Pinheiro and Bates 2000, 

Zuur et al. 2007). The variance-covariance structures tested were: variance 

components, compound symmetry, first order autoregressive, and first order 

autoregressive-moving average. These variance-covariance structures allowed us to 
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model the correlation between the repeated measures response, which for these 

data was depth change recorded by the archival tags. As recommended for repeated 

measures models, the Kenward-Roger approximation was used to calculate the 

degrees of freedom and adjust the estimated standard errors (Littell et al. 2006, 

Bolker et al. 2008). We selected the preliminary random effects structure that best 

described the data as the model with the lowest value of Akaike's Information 

Criterion corrected for small sample size (AICc; Akaike 1973, Burnham and 

Anderson 2002). Although we believed our sample sizes were sufficient, Burnham 

and Anderson (2002) recommend using AICc because it is a more appropriate 

criterion at small sample sizes and converges with AIC as sample sizes increase. 

After identifying the random effects structure we developed a global model 

that included all the main effects as well as any potential interactions (Zuur et al. 

2007). To avoid testing thousands of models with every combination of main effects 

and interactions, we individually added each two-way or three-way interaction to 

the model with only the main effects. All possible two-way interactions and all 

three-way interactions that included fish length were evaluated in this analysis. For 

models with three-way interactions we also included the component two-way 

interactions to ensure correct interpretation of the model (Morrell et al. 1997). In 

this step, all models were fit using maximum likelihood (ML) and the preliminary 

random-effects structure previously discussed. 'Important' interactions were 

identified as those interactions that reduced the AICc value by more than 1 unit. We 

graphically examined the 'important' interactions to determine if such interactions 
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were due to small sample sizes and simply reflected noise. Only informative 

interactions were added to the global model. The procedure used to evaluate the 

random-effects structure was repeated using the global model. This step was 

necessary because a change in the mean structure (i.e., the fixed effects included in 

the model) affects the random-effects model selection criterion calculated with 

REML (Littell et al. 2006). Thus, we validated that the correct random-effects 

structure was used to develop the global model. We repeated this entire process 

until there was no difference between the random-effects structure selected in step 

1 and the global model selected in this step. 

Our final step was to identify the fixed effects and interactions that best 

described the variation in summer flounder movement behaviors. Here, we used 

ML to fit models using all possible combinations of main effects and the interactions 

identified in step 2 (Littell et al. 2006, Zuur et al. 2007). Once again, the degrees of 

freedom were estimated using the Kenward-Roger approximation, and AICc was 

used to select the most parsimonious model with the best fit to the data. The final 

model parameters reported for the 'best' model were estimated using REML (Zuur 

et al. 2007). 

We used the tidal location method developed by Hunter et al. (2003) to 

determine if fish that emigrated from Chesapeake Bay moved north or south on the 

continental shelf. The tidal location method uses the differences in tidal patterns 

between locations to approximate the geographic position of individual fish. The 

tidal frequency and amplitude at a fish's location is determined using archival-tag 
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depth measurements recorded while the fish is sedentary on the seafloor. If 

differences in tidal cycles between locations are sufficiently large, the tidal 

information from the archival tag can be compared with tidal model predictions 

over a range oflocations to approximate the fish's location. We used the Oregon 

State University East Coast tidal inversion model (Egbert et al. 1994) to predict tides 

at various locations. Because we were primarily interested in determining if fish 

moved north or south, we examined tidal predictions only off the coast of Delaware 

and North Carolina. Least squares were used to compare the times of high and low 

tide at the fish's location to the times of high and low tide predicted by the model at 

locations off Delaware and North Carolina. 

Results 

Large- and regional-scale movements 

Summer flounder were recaptured primarily within the region in which they 

were tagged, and these recaptures generally occurred shortly (less than 90 days) 

after release. A total of 5669 (9.3%) conventionally tagged summer flounder was 

recaptured during 2000-2009. Some of these individuals were recaptured multiple 

times, resulting in a total of 6395 recapture reports. Most fish were recaptured in 

the lower bay (26.6%), the York River (26.2%), or near the mouth of the bay 

(21.1 %). These three locations also comprised 73.1% of the releases of tagged 

summer flounder (Table 1). The mean time at liberty was 59.0 days (range: 0-

1775 days). The majority (87.5%) of recaptures occurred within 90 days of release. 

Throughout the 10 years of this study, only 235 ( 4.2%) fish were at liberty for more 
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than 1 year prior to recapture. Due to the short periods at liberty observed and the 

relatively sedentary nature of summer flounder, only a small percentage of fish 

(9.1%) were recaptured outside of the region in which they were tagged. Summer 

flounder were more likely to move to a different region, primarily outside of 

Virginia waters, between November and April (Figure 3). Most fish (63.11 %) at 

liberty throughout the winter (November-April) were recaptured in their release 

region the following summer (May-October; Figure 4). 

No obvious seasonal pattern existed in fish movements during residency in 

Virginia waters, but the VGFTP data suggest that fish were more likely to move 

between adjacent regions in the lower bay than they were to move between any 

other regions. Based on the timing of the spawning migration, we originally 

postulated that fish movements within Virginia water would exhibit seasonality, 

such that fish would move towards the head of the bay during spring (April-June) 

and towards the mouth of the bay during late summer /early fall (August-October). 

The data from recaptured fish did not support this hypothesis, and instead 

suggested that no discernible seasonal pattern existed for fish within Chesapeake 

Bay. For simplicity, we pooled data from the spring (April-June), summer Duly

September), and fall (October-December) to examine regional movement patterns 

(Table 2). Of the fish that moved, the largest proportion moved from their release 

location into the lower bay and mouth of the bay. With the exception of fish tagged 

in the James River, less than 1% of tagged fish were released and recaptured in a 

different region. A slightly larger proportion (1.2%) of fish tagged in the James 
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River were recaptured in another region, primarily in the adjacent lower bay. The 

lowest proportions of fish that were released and recaptured in a different region 

were tagged in the York River, Virginia Beach, and the Eastern Shore regions. In 

spite of the large number of releases in the York River, we observed only a few 

recaptures of these fish in other regions. Relatively little exchange was evident 

between the Eastern Shore, Virginia Beach, and the Bay. Although a small 

proportion offish tagged on the Eastern Shore (0.2%) and in Virginia Beach (0.3%) 

were recaptured within the Bay, exchanges between the Eastern Shore and Virginia 

Beach were not observed. In addition, a small proportion (0.1 %) of fish tagged 

within Chesapeake Bay were recaptured in these two regions. This implies there 

was limited exchange across the mouth of the Bay or between the Bay and the 

coastal waters of Virginia. 

The conventional tagging data indicated a seasonal trend existed in summer 

flounder movements to locations outside of Virginia. Recaptures were reported as 

far north as Rhode Island and as far south as South Carolina (Musick and Gillingham 

2010). The proportion offish that migrated north and south varied with season 

Cx.Z=47.62, df= 3, p<O.OOl; Figure Sa). Fish tagged and released within Chesapeake 

Bay were more likely to be recaptured in northern locations during spring and 

summer. In contrast, fish tagged and released within Chesapeake Bay were more 

likely to be recaptured south of Chesapeake Bay during winter. 

We used an AN OVA to test if the mean length at tagging differed between fish 

that moved north or south in a given season. This AN OVA revealed there was a 

77 



significant interaction between direction and season (F=3.26, df = 3, p=0.024). 

Tukeys honestly significant difference test indicated that this interaction primarily 

resulted from 5 large fish recaptured north of Virginia during the winter (Figure 

Sb ), and may be the result of small sample bias. 

Fine-scale movements 

Similarly to the conventionally tagged fish, summer flounder with archival 

tags were recaptured primarily within Chesapeake Bay shortly after release. To 

date, 15 archival tags have been recovered (6% recapture rate) from summer 

flounder that were at large from 1 to 810 days (Table 3). With the exception of two 

fish, all recaptures occurred within 90 days of release. One of the tags recovered 

after 90 days at liberty was found on a beach in North Carolina unattached to a fish. 

This tag may have been shed as a result of failure in the attachment method, tagging 

related mortality, or predation. Due to the uncertain fate of this fish, we chose to 

exclude it from analyses. Of the remaining recaptured fish, 7 (50%) were from a 

single release date (25 August 2009). We could not discern an obvious reason (e.g., 

mean fish length, water temperature, release location, or recapture location) for this 

anomaly; therefore, we assumed these fish were independent samples in our 

analyses. 

Most summer flounder remained sedentary for long periods (>2 consecutive 

weeks) while residing in Chesapeake Bay. During this time, observed depth changes 

were associated with tidal fluxes. Sedentary intervals were occasionally 

interspersed with rapid changes in depth when fish moved either within the water 

78 



column or to deeper or shallower habitats. These types of movements can be 

differentiated by: 1) the magnitude and duration of depth changes, and 2) the 

depths occupied before and after movement (Figure 6). Movements within the 

water column were generally of a higher magnitude (2-10m) and lasted about 20-

40 minutes. Movements to new locations were characterized by a 2-5 m shift in the 

fish's mean depth. 

Summer flounder movements modeled with a GLMM provided insights about 

factors that influenced the behavior of these fish. The first-order autoregressive 

moving average was identified as the preliminary variance-covariance structure, 

and the model also included the random effect associated with individual fish. Using 

this random-effects structure, we identified a global model that included several 

interactions to account for the observed variation in depth-change behavior of 

summer flounder. The interactions that reduced the AICc value by at least 1 unit 

from the base model (i.e., model with only main effects) were: length*time of day, 

tidal state*temperature, time of day*temperature, lunar phase*temperature, 

length*time of day*temperature, and length*time of day*lunar phase. After 

graphical examination of these interactions (Appendix II) we excluded from 

consideration the interaction between lunar phase and temperature and the 

interaction between fish length, time of day, and temperature. We excluded the 

lunar phase*temperature interaction because different temperature ranges were 

often observed in different lunar phases. As a result, the interactions appeared to be 

the result of small sample sizes and we felt that the model may be overfit by 
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including this interaction. Similarly, we excluded the size*time of day*temperature 

interaction because we had sufficient sample sizes in each size class (at least 3 

individuals) only within the 20-25 C temperature range. Within this temperature 

range, interactions between size classes were not discernible. Our preliminary 

global model therefore had the following form: 

Yiiklm = ~ + Jh •lgthi + Pz•tidei + J33•todk + J34•lun1 + Ps•tempm + J36•tidei*tempm 

+ J37•lgthi*todk + Pa•todk*tempm + J3g•lgthi*lun1 + Pto•todk*lunl + 

Pu•lgthi*todk*lun1 + Yt + &ijklm 

where Yiiklm is the Box-Cox transformed response for fish (i) during tidal stage (j), 

time of day (k), lunar phase (I) and temperature (m), ~is the overall mean, the Ps 

are the parameter estimates for the fixed effects and the interactions between the 

fixed effects, lgth is the length of fish (i), tide is the tidal stage (j=low, rising, high, 

falling), tod is the time of day (k= day, night), lun is the lunar phase (I = new, wax 

crescent, 1st quarter, wax gibbous, full, wan gibbous, 3rd quarter, wan crescent), 

temp is the mean water temperature during time period (m), y is the random effect 

for fish (i), and & is the random error. Note that the length*lunar phase and time of 

day*lunar phase interactions were included because they are components of the 

three-way interaction between length, time of day, and lunar phase. Using this 

global model, we repeated the random-effects selection procedure and validated 

that the preliminary random effects structure was appropriate for selecting fixed 

effects (Table 4 ). 
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The most parsimonious model with the best fit to these data indicated that 

movements were related to fish length, tidal stage, time of day, and temperature: 

Yiikm= J.l + Jh•lgthi + ~z•tidei + ~3•todk + f3s•tempm + ~6•tidei*tempm + 

~1•lgthi*todk + Yt + &ijkm 

For this model, the individual fish random effect (y=0.19) was small compared with 

the residual error (a; =2.58). The autoregressive and moving average terms of the 

arma(1,1) variance-covariance structure were 0.96 and 0.18, respectively. The large 

autoregressive term implies that fish depth changes during adjacent tidal periods 

were highly correlated. The top five models included tidal stage, time of day, and 

temperature as important factors, as well as the tidal stage* temperature 

interaction. Support was more moderate for including length and the length*time

of-day and time-of-day*temperature interactions in the model (Table 5, Appendix 

II). None of the top models included lunar phase as a factor, despite the fact that the 

model that included the main effects and the length*time-of-day*lunar phase 

interaction had an AIC value 1.7 units lower than the model with just the main 

effects (Appendix II). Based on parameter estimates of the top model (Table 6), 

summer flounder depth changes increased with increasing temperature, but these 

movements occurred mainly during rising and falling tides (Figure 7). Fish smaller 

than 400 mm TL had larger depth changes at night, whereas time of day had less of 

an influence on activity of larger fish (Figure 8). 

In addition to the information on small-scale depth changes, two archival 

tags provided data on the timing of summer flounder dispersal from Chesapeake 
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Bay and the movement of fish prior to dispersal. Examination of the depth histories 

of these fish indicate periods when the mean daily depth of the fish increased 

rapidly, which we assume to indicate the date of dispersal from Chesapeake Bay. 

One fish was recovered approximately 5 miles east of Virginia Beach after the fish 

had been at large for 86 days. Based on the depth history of this fish we believe the 

fish dispersed from Chesapeake Bay in mid-October 2009 when water temperatures 

fell below 20°C (figure 9a). The second fish was recovered in November 2011 after 

being at liberty for 810 days. Unfortunately, tag memory was exceeded after 452 

days so no data were recorded after November 2010. This fish experienced 

temperatures as high as 27 oc in summer and as low as 6 oc during winter. Based 

on the fish's depth history we believe that it dispersed from the bay in late 

November 2009, and returned to the bay the following June, where it resided until 

early November 2010 (figure 9b). In both years, this fish dispersed from the bay 

when temperatures decreased to approximately 14 °C. The mean daily depth 

changes of both fish increased dramatically immediately prior to their dispersal 

from Chesapeake Bay and remained at an elevated level throughout the winter. The 

mean daily depth change either doubled (Tag 199) or quadrupled (Tag 241) 

following dispersal from Chesapeake Bay (Figure 9 c,d). 

Although the fish that was at liberty throughout the winter (Tag 241) 

provided sufficient data to implement the tidal location method, we could not 

successfully approximate the fish's location because tidal patterns were similar 

throughout the Mid-Atlantic Bight Between December 2009 and May 2010, the 
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daily depth changes experienced by this fish were larger than those experienced 

while the fish was resident in Chesapeake Bay (Figure 9d); however, this individual 

frequently remained sedentary on the sea floor (presumably on the continental 

shelf) throughout multiple tidal cycles during winter. Tidal predictions off the coast 

of Delaware and North Carolina showed a similar pattern to the depth data recorded 

by the archival tag, but we found little differences in the time of high and low tides 

in North Carolina and Delaware (Figure 10). In fact, the mean difference between 

either tidal extremes (high and low tides) at these two locations was 10 minutes or 

less (range: 5.1 -10.3 minutes) for the time periods during which the fish was 

sedentary. Due to this small difference between tidal patterns at these two locations 

within the Mid-Atlantic Bight, we were unable to discern the direction of migration 

after the fish departed from Chesapeake Bay. 

Discussion 

This study demonstrated that observing individual fish movements on 

different spatial scales reveals intricacies in their behaviors that may not be 

apparent from observations on a single scale. Conventional mark-recapture data 

provide an important overview of fish distribution and movements between large 

geographic regions (e.g., Mid-Atlantic Bight), but do not provide insight into factors 

that drive behavioral decisions of individual fish. Previous research on small-scale 

(i.e., within a coastal lagoon) summer flounder movements indicated that 

individuals move in response to tidal stage (Szedlymayer and Able 1993) and time 

of day (Capossela 2010, Miller 2010). A recent telemetry study indicated that fish 
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length, tidal stage, and the time of day*lunar phase interaction influenced summer 

flounder movements on the order of a few hundred meters (Chapter 1). Movement 

patterns (i.e., depth changes) observed with archival tags revealed more intricate 

patterns than could be observed with the coarser spatial scales of acoustic telemetry 

studies. Using data from archival tags, we have shown that not only does tidal stage 

affect summer flounder movement, but also that water temperature influences 

levels of activity observed during rising and falling tides. Furthermore, behavioral 

differences between large and small fish are most pronounced at night Such results 

could be incorporated into individual-based models to determine how fine-scale 

behavioral decisions produce the observed distribution of summer flounder within 

Chesapeake Bay. Individual-based models could also be used to understand 

responses of summer flounder behavior and distribution to environmental 

variability and climate change (Humston et al. 2004). 

Based on behaviors observed with archival tags, as well as those previously 

observed with acoustic telemetry, we believe that summer flounder movements 

within Chesapeake Bay are primarily related to foraging. Hunger has previously 

been shown to influence fish activity levels because fish that are not satiated will 

increase their foraging activity to improve their chances of encountering prey 

(reviewed in Gibson 2005). Summer flounder are believed to migrate inshore in the 

spring and summer to feed and increase their energetic reserves for spawning 

during the winter months (Packer et al. 1999). Thus, movements of individual fish 

in Chesapeake Bay are likely to be related to foraging activity. Increased 
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movements of small summer flounder ( <400 mm) at night may be in response to the 

increased abundance of their preferred prey during this time. Mysids, which are the 

primary component of the diet of summer flounder smaller than 3 7 5 mm (Latour et 

al. 2008, Buchheister and Latour 2011), are generally more active at night (Hurlburt 

1957) and may elicit increased movements of smaller summer flounder during this 

time of day. In contrast, larger summer flounder that are primarily piscivorous 

(Latour et al. 2008) may use ambush tactics to feed (Staudinger and Juanes 2010). 

This predation technique requires that the fish remain sedentary, which would 

explain why larger fish are less active than smaller fish during night. However, 

individual differences in behavior were observed. For example, some fish larger 

than 450 mm were more active at night than would be expected based on 

predictions from the GLMM. This implies that these fish employed different 

foraging strategies than other fish of similar size. Summer flounder were previously 

observed using multiple foraging strategies in the lab (Staudinger and Juanes 2010), 

but this is the first study that links in situ behavior with presumed feeding activity. 

Although the observed changes in depth that occurred in response to tidal 

stage and temperature may be related to foraging behavior, summer flounder may 

also be using tidal currents to move into different habitats. Archival tag data 

indicate that summer flounder maintain a relatively constant level of activity during 

high and low tides, but activity levels during rising and falling tides increase 

proportionally with increasing water temperatures. In a laboratory experiment, 

feeding rates of summer flounder were observed to increase with increasing water 
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temperatures (Malloy and Target 1991). The relationship between feeding rates 

and temperature is most likely an adaptation to meet increased metabolic 

requirements at higher temperatures (Malloy and Target 1991, Fonds et al. 1992, 

Claireaux and Lagardere 1999). Thus, summer flounder may increase their activity 

levels during rising and falling tides to feed on prey items that are moving in 

association with tidal fronts, such as mysids and zooplanktivorous fish (Taggart et 

al. 1989, Gomez-Gutierrez 2007). An alternative hypothesis is that summer 

flounder use tidal currents associated with rising and falling tides to move between 

habitats. Tidal stream transport has previously been suggested as an energy-saving 

mechanism used by summer flounder to move between locations (Szedlmayer and 

Able 1993, Sackett et al. 2007, Miller 2010). To our knowledge, studies examining 

diets of summer flounder relative to tidal stage are lacking. Such studies would 

assist in determining if summer flounder use tidal currents: 1) to feed, 2) as a means 

of dispersal to new habitats, or 3) a combination of both. 

Based on previous research, and the results presented here, we were 

moderately surprised that none of the top linear models included the interaction 

between length, time-of-day, and lunar phase. Preliminary results from developing 

the global model indicated that this interaction was significant in a classical sense (p 

= 0.001), using an F-test with type III sums of squares. Graphical examination of this 

interaction indicated that smaller fish were more active during nights closest to the 

quarter moons (Appendix II). A nearly identical relationship was observed in a 

previous acoustic telemetry study (Chapter 1). Observation of the same pattern 
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using two independent tagging technologies provides evidence that this was not an 

artifact of either data set or the model-building procedure. However, the AICc 

model selection criterion did not support the inclusion of this 3-way interaction in 

the final model developed here; we believe this may have been the result of 

insufficient sample size of fish observed through multiple lunar cycles. Together, 

results from the acoustic and archival tagging studies suggest that smaller summer 

flounder in Chesapeake Bay may be more active on nights near the quarter moon, 

probably in response to changes in the behavior of their prey. Mysids have been 

shown to alter their diel vertical migration behavior in response to changes in 

ambient light levels (Boscarino et al. 2009), which are influenced by lunar 

illumination levels. Alternatively, mysids may also be more active near the quarter 

moons in response to changes in tidal currents. Tidal range is at its minimum (i.e., 

neap tides) during the quarter moons, thus decreasing the potential that mysids will 

be swept away from their preferred habitats by tidal currents (Kaartvedt 1989). 

Due to the small sample size of our study, future research is warranted to elucidate 

the relationship between the lunar cycle and summer flounder foraging behavior. 

Fine-scale summer flounder movement patterns changed in response to 

environmental cues, but these fish were generally sedentary while resident within 

Chesapeake Bay. Conventional mark-recapture data collected by the VGITP also 

suggested that summer flounder recaptured within one year of tagging did not move 

much between regions (e.g., lower Bay, mid-Bay, rivers) between May and October, 

which was consistent with previous tagging studies (Desfosse 1995). Furthermore, 
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acoustic telemetry studies estimated that summer flounder remain within 1-km2 

areas for periods of hours to weeks during their residency in coastal estuaries and 

bays (Sackett et al. 2008, Chapter 1). Data from archival tagged fish support this 

conclusion, indicating that while fish were resident in Chesapeake Bay they often 

remained in the same location for days or weeks. During these periods, the only 

observed depth changes were those related to tidal cycles. This may be indicative of 

the feeding periodicity of these fish. 

Fish that dispersed from Virginia waters were recaptured primarily in 

southern waters during winter and in northern waters during spring and summer. 

These results from the VGFTP corroborate the findings of a previous tagging study 

with summer flounder conducted in Virginia (Desfosse 1995). Because most (63%) 

of the recaptured summer flounder returned to the same region following the 

spawning migration, we believe that fish recaptured in coastal habitats to the north 

during spring and summer had permanently emigrated out of Virginia waters. This 

inference is not novel, as numerous tagging studies conducted since the 1960s have 

reached similar conclusions based on observations from conventional tags (Lux and 

Nichy 1981, Desfosse 1995). In contrast, conventionally tagged fish recaptured in 

southern waters during winter were most likely participating in the seasonal 

spawning migration, and would therefore be expected to return to Virginia waters. 

Although these results are suggestive, our analysis may be confounded by 

differences in fishing effort and reporting rates among commercial and recreational 

fishers along the east coast (Hilborn 1990). Based on the success of previous 
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studies that used archival tag data to approximate the locations of plaice and 

yellowtail flounder (Hunter et al. 2003, Cadrin and Westwood 2006), we had hoped 

to use data from our archival tags to more accurately determine the direction 

traveled by summer flounder after dispersing from Chesapeake Bay. Unfortunately, 

we recaptured only a single fish that had been at large throughout the winter 

spawning season, and we were unable to determine the direction traveled by that 

fish using the currently available tidal prediction models. Based on our analysis, the 

tidal location method is not suitable for fish resident within the Mid-Atlantic Bight 

Although our sample size was small, results from fish observed migrating 

from Chesapeake Bay indicated that dispersal timing varied between individuals 

and that individuals may respond to temperature as a cue to initiate dispersal. In 

2009, the two fish we observed dispersing from the Bay left nearly 1.5 months apart 

(mid-October and late November). The fish observed dispersing from Chesapeake 

Bay in two consecutive years, left the Bay when water temperatures declined to 

approximately 14°C in both years, even though this occurred nearly a month earlier 

in 2010 than in 2009. This suggests that this fish responded to changes in water 

temperature rather than other seasonal cues (e.g., photoperiod). The possibility 

that fish were responding to temperature to initiate dispersal was also postulated 

by Capossela (2010), who observed that emigration rates from a coastal lagoon 

were associated with decreasing water temperatures. If summer flounder are 

responding to temperature to initiate dispersal, it appears that individuals within 
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the Chesapeake Bay population have different temperature thresholds; however, a 

larger sample size is necessary to fully explore this hypothesis. 

Archival tags are an excellent technology to further investigate the 

importance of environmental cues on fish movement patterns, but we recommend 

that future studies conducted in nearshore habitats consider surgically implanting 

these tags in fish. A large percentage (26.7%) of recovered archival tags were 

entangled in gillnets or fishing line. We hypothesize that the low recovery rate of 

archival-tagged summer flounder was related to the external attachment procedure, 

which increased the likelihood of gear entanglement and fish mortality. Previous 

studies that have externally attached archival tags to flatfish released the fish in 

offshore locations that, presumably, were characterized by homogeneous bottom 

types without potential snags (Hunter et al. 2003, Cadrin and Moser 2006). In 

contrast, we released summer flounder in structured habitats subject to high 

recreational and commercial fishing pressure and these habitats contained a 

number of potential snags. Surgical implantation of acoustic tags reduces the risk of 

entanglement and has a minimal tag-related mortality rate for summer flounder 

(Fabrizio and Pessutti 2007). We believe that surgically implanting the archival tags 

in our fish would have eliminated the entanglement risks, and could have increased 

our tag recovery rate. 

References 

Akaike H (1973) Information theory and an extension of the maximum likelihood 
principle. pp. 267-281./n Petran BN and Csaaki B (eds.) International Symposium 
on Information Theory, 2nd ed. Akadeemiai Kiadi, Budapest, Hungary. 

90 



Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, 
Teo SLH, Seitz A, Walli A, and FudgeD (2001) Migratory movements, depth 
preferences, and thermal biology of Atlantic bluefin tuna. Science, 293: 1310-
1314. 

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Henry M, Stevens H, and 
White J-SS (2008) Generalized linear mixed models: a practical guide for ecology 
and evolution. Trends in Ecology and Evolution, 24: 127-135. 

Bonzek CF, Gartland J, and Latour RJ (2010) Annual Report: The Chesapeake Bay 
Multispecies Monitoring and Assessment Program. Project Number F-130-R-5. 
Virginia Institute of Marine Science. Gloucester Point, VA. 

Boscarino BT, Rudstam LG, MataS, Gal G, Johannsson OE, and Mills EL (2009) 
Predicting the vertical distribution of the opossum shrimp, Mysis relicta, in Lake 
Ontario: a test of laboratory-based light preferences. Canadian Journal of 
Fisheries and Aquatic Science, 66: 101-113. 

Box GEP and Cox DR (1964) An Analysis of Transformations. Journal of the Royal 
Statistical Society, Series B, 26: 211-252. 

Buchheister A and Latour RJ (2011) Trophic ecology of summer flounder in lower 
Chesapeake Bay inferred from stomach content and stable isotope analyses. 
Transactions of the American Fisheries Society, 140: 1240-1254. 

Burnham KP and Anderson DR (2002) Model selection and inference: a practical 
information-theoretic approach. Springer-Verlag, New York. 

Cadrin SX and Moser J (2006) Partitioning on-bottom and off-bottom behavior: a 
case study with yellowtail flounder off New England. ICES CM 2006/Q:14. 

Cadrin SX and Westwood A (2004) The use of electronic tags to study fish 
movement: a case study with yellowtail flounder off New England. ICES CM 
2004/K:81. 

Capossela KM (2010) Migration dynamics, within-estuary behaviors and 
cardiorespiratory responses of summer flounder to selected estuarine 
conditions. M.Sc. thesis. College of William and Mary, Williamsburg, VA. 106 pp. 

Claireaux G and Lagardere J-P (1999) Influence of temperature, oxygen, and salinity 
on the metabolism of European sea bass. Journal of Sea Research, 42: 157-168. 

Desfosse JC (1995) Movements and ecology of summer flounder, Paralichthys 
dentatus, tagged in the southern Mid-Atlantic Bight. Ph.D. dissertation, College of 
William and Mary, Williamsburg, VA. 187 pp. 

Egbert GO, BennettAF, and Forman MGG (1994) TOPEX/POSEIDON tides estimated 
using a global inverse model. Journal of Geophysical Research, 99(C12): 24821-
24852. 

91 



Fabrizio MC and Pessutti JP (2007) Long-term effects and recovery from surgical 
implantation of dummy transmitters in two marine fishes. Journal of 
Experimental Marine Biology and Ecology, 351:243-254. 

Fonds M, Cronie R, Bethaak AD, van der Puyl P (1992) Metabolism, food 
consumption and growth of plaice (Pieuronectes platessa) and flounder 
(Piatichthys jlesus) in relation to fish size and temperature. Netherlands Journal 
of Sea Research, 29: 127-143. 

Gibson RN (2005) The behavior of flatfishes. In Gibson R ( ed.) Flatfishes: Biology and 
Exploitation~ pp. 213-239. Blackwell Science, Oxford, UK. 

Gomez-Gutierrez J, Martinez-G6mez S, and Robinson CJ (2007) Influence of thermo
haline fronts forced by tides on near-surface zooplankton aggregation and 
community structure in Bahia Magdalena, Mexico. Marine Ecology Progress 
Series, 346: 109-125. 

Hilborn R (1990) Determination of fish movement patterns from tag recoveries 
using maximum likelihood estimators. Canadian Journal of Fisheries and Aquatic 
Sciences, 47: 635-643. 

Humston R, Olson DB, and Ault JS (2004) Behavioral assumptions in models of fish 
movement and their influence on population dynamics. Transactions of the 
American Fisheries Society, 133: 1304-1328. 

Hunter E, Aldridge JN, Metcalfe JD, and Arnold GP (2003) Geolocation of free
ranging fish on the European continental shelf as determined from 
environmental variables. Marine Biology, 142: 601-609. 

Hurlburt E (1957) The distribution of Neomysis Americana in the estuary of the 
Delaware River. Limnology and Oceanography, 2: 1-11. 

Kaartvedt S (1989) Retention of vertically migrating suprabenthic mysids in fjords. 
Marine Ecology Progress Series, 57: 119-128. 

Kennedy M and Gray RD (1993) Can ecological theory predict the distribution of 
foraging animals? A critical analysis of experiments on the Ideal Free 
Distribution. Oikos, 68: 158-166. 

Kraus RT and Musick JA (2001) A brief interpretation of summer flounder, 
Paralichthys dentatus, movements and stock structure with new tagging data on 
juveniles. Marine Fisheries Review, 63: 1-6. 

Latour RJ, Gartland J, Bonzek CF, and Johnson RA (2008) The trophic dynamics of 
summer flounder (Paralichthys dentatus) in Chesapeake Bay. Fisheries Bulletin, 
106:47-57. 

Link JS, Bolles K, and Milliken CG (200 2) The feeding ecology of flatfish in the 
Northwest Atlantic. Journal of Northwest Atlantic Fishery Science, 30: 1-17. 

92 



Littell RC, Milliken G, Stroup WW, Wolfinger R, and Schabenberger 0 (2006) SAS for 
mixed models, 2nd edition. SAS Institute, Cary, North Carolina. 

Lowe CG and Bray RN (2006) Movement and Activity Patterns. In Allen LG, Pond ella 
Dj, and Horn MH ( eds.). The Ecology of Marine Fishes: California and adjacent 
waters. University of California Press. Los Angeles, CA. 

Lux FE and Nichy FE (1981) Movements of tagged summer flounder, Paralichthys 
dentatus, off southern New England. NOAA Tech. Rep. NMFS SSRF-752.16 p. 

Malloy KD and Targett TE (1991) Feeding, growth and survival of juvenile summer 
flounder Paralichthys dentatus: experimental analysis of the effects of 
temperature and salinity. Marine Ecology Progress Series, 72: 213-223. 

Miller MH (2010) Movement of summer flounder (Paralichthys dentatus) in relation 
to hypoxia in an estuarine tributary. M.Sc. thesis. University of Delaware, Lewes, 
DE.103 pp. 

Monaghan JP Jr. (1992) Migration and population dynamics of summer flounder 
(Paralichthys dentatus) in North Carolina. Study 3A. Completion Rep. Proj. F-29. 
North Carolina Dep. Environ., Health, and Nat. Res., Div. Mar. Fish. Morehead 
City, NC. 36 p. 

Morrell CH, Pearson JD, and Brant LJ (1997) Linear transformations of linear mixed
effects models. The American Statistician, 51: 338-343. 

Murawski WS (1970) Results of tagging experiments of summer flounder, 
Paralichthysdentatus, conducted in New Jersey waters from 1960-1967. New 
Jersey Div. Fish, Game and Shellfish. Misc. Rep. No. SM. Lebanon, NJ. 72 p. 

Musick Sand Gillingham L (2010) Annual report: Virginia Game Fish Tagging 
Program. VIMS Marine Resource Report No. 2011-5.61 p. 

National Research Council (NRC). 2000. Improving the collection, management and 
use of marine fisheries data. Washington, DC. National Academy Press. 222 p. 

Overholtz WJ, Link JS, and Suslowicz LE (2000) Consumption of important pelagic 
fish and squid by predatory fish in the northeaster USA shelf ecosystem with 
some fishery comparisons. ICES Journal of Marine Science, 57: 1147-1159. 

Packer DB, Griesbach SJ, Berrien PL, Zetlin CA, Johnson DL, and Morse WW (1999) 
Summer flounder, Paralichthys dentatus, life history and habitat characteristics. 
NOAA Tech. Memo. NMFS-NE-151. Woods Hole, MA. 88 p. 

Pinheiro JC and Bates DM (2000) Mixed-effects models inS and S-Plus. Statistics and 
Computing Series, Springer-Verlag, New York, NY. 

Poole JC (1962) The fluke population of Great South Bay in relation to the sport 
fishery. N.Y. Fish Game Journal, 9: 93-117. 

Quinn G and Keogh M (2002) Experimental design and data analysis for biologists. 
Cambridge University Press. Cambridge, UK. 

93 



Rogers KB and White GC (2007) Analysis of movement and habitat use from 
telemetry data. pps 625-676 In Guy CS and Brown ML (eds.) Analysis and 
Interpretation of Freshwater Fisheries Data, American Fisheries Society, 
Bethesda, Maryland. 

Roshier DA, Doerr VAJ, Doerr ED (2008) Animal movement in dynamic landscapes: 
interaction between behavioural strategies and resource distributions. 
Oecologia, 156:465-477. 

Sackett DK, Able KW, and Grothues TM (2007) Dynamics of summer flounder, 
Paralichthys dentatus, seasonal migrations based on ultrasonic telemetry. 
Estuarine, Coastal and Shelf Science, 74: 119-130. 

Sackett DK, Able KW, and Grothues TM (2008) Habitat dynamics of summer 
flounder Paralichthys dentatus within a shallow USA estuary, based on multiple 
approaches using acoustic telemetry. Marine Ecology Progress Series, 364: 199-
212. 

Staudinger MD and Juanes F (2010) Feeding tactics of a behaviorally plastic 
predator, summer flounder (Paralichthys dentatus). Journal of Sea Research, 64: 
68-75. 

Szedlmayer STand Able KW (1993) Ultrasonic telemetry of age-0 summer flounder 
Paralichthys dentatus, movements in a southern New Jersey estuary. Copeia, 3: 
728-736. 

Taggart CT, Drinkwater KF, Frank KT, McRuer J, and LaRouche P (1989) Larval fish, 
zooplankton community structure, and physical dynamics at a tidal front. Rapp. 
P.-v. Reun. Cons. Int. Explor. Mer., 191: 184-194. 

Terceiro M (2002) The summer flounder chronicles: science, politics, and litigation, 
1975-2000. Reviews in Fish Biology and Fisheries, 11: 125-168. 

Wannamaker CM and Rice JA (2000) Effects of hypoxia on movements and behavior 
of selected estuarine organisms from the southeastern United States. Journal of 
Experimental Marine Biology and Ecology, 249: 145-163. 

Wilson SG, Lutcavage ME, Brill RW, Genovese MP, Cooper AB, and Everly AW (2005) 
Movements of Bluefin tuna (Thunnus thynnus) in the northwestern Atlantic 
Ocean recorded by pop-up satellite archival tags. Marine Biology, 146: 409-423. 

Zar JH (1999) Biostatistical analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, N.J. 

Zuur A, Leno EN, and Smith GM (2007) Analysing Ecological Data. Springer, New 
York. 

94 



Table 1. Number of conventionally tagged summer flounder released in Virginia 
and number of tagged fish subsequently recaptured at any location. 

Tag Region Tagged Subsequently Percent 
recaptured recaptured 

Bay Mouth 18365 1319 7.18 
Lower Bay 13708 1485 10.83 
Mid-Bay 1489 53 3.56 
Upper-Bay 73 1 1.37 
James River 3054 180 5.89 
York River 12447 1486 11.94 
Rappanhannock River 230 9 3.91 
Virginia Beach - ocean side 5583 921 16.50 
Eastern Shore - ocean side 5981 215 3.59 
Total 60930 5669 9.30 
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Table 2. Number of summer flounder released during the period of coastal 
residency (May-October) and recaptured in Virginia. Numbers in parentheses are 
the percentage of fish released from a given region that moved into the recapture 
region. Recaptures of fish within the release region are omitted to highlight fish 
movements, but were included in the estimation of percent recaptured by region. 
Note that in most cases, less than 1% of tagged fish were released and recaptured in 
different regions. 

Reca~ture Region 
Release 

Releases 
Bay Lower Mid- James York Virginia Eastern 

Total Region Mouth Ba~ Ba~ River River Beach Shore 

Bay 17353 
106 5 8 4 4 1 128 

Mouth (0.61) (0.03) (0.05) (0.02) (0.02) (0.01) (0.74) 

Lower 13541 76 2 36 7 2 1 124 
Bay (0.56) (0.01) (0.27) (0.05) (0.01) (0.01) (0.92) 

Mid- Bay 1476 
5 1 3 10 

(0.34) (0.07) (0.20) (0.61) 

James 
3020 

10 25 1 36 
River (0.33) (0.83) (0.03) (1.19) 

York 
12539 

7 3 1 13 
River (0.06) (0.02) (0.01) (0.09) 

Virginia 
5643 

7 5 4 16 
Beach (0.12) (0.09) (0.07) (0.28) 

Eastern 
5050 

7 1 8 
Shore (0.14) (0.02) (0.16) 

Total 58622 
113 140 10 48 15 7 2 338 

(1.55) (1.62) (0.06) (0.38) (0.31) (0.05) (0.01) (3.98) 

96 



Table 3. Release and recapture information for 15 summer flounder tagged in Chesapeake Bay with archival tags. 

Tag 
Tagging 

Release Recapture Days at 
# 

length 
Date 

Tagging Region 
Date 

Recapture Region 
large 

(mm) 

11a 321 12Aug2009 Bay Mouth 23Aug2009 Bay Mouth 11 

11b 440 15Sept2009 Bay Mouth 080ct2009 Bay Mouth 23 

37 398 14Aug2009 Bay Mouth 190ct2009 Bay Mouth 66 

98* 322 20Aug2009 Bay Mouth 230ct2009* Unknown 64 

123 324 20Aug2009 Bay Mouth 13Sept2009 Mid-Bay 24 

154 331 25Aug2009 Bay Mouth 20Sept2009 Bay Mouth 26 

155 473 25Aug2009 Bay Mouth 30Sept2009 Bay Mouth 36 

157 397 25Aug2009 Bay Mouth 060ct2009 Bay Mouth 42 

162 398 25Aug2009 Bay Mouth 09Sept2009 Bay Mouth 15 

191 443 21Aug2009 Bay Mouth 230ct2009 Bay Mouth 63 

199 541 25Aug2009 Bay Mouth 19Nov2009 Off Virginia Beach 86 

207 437 25Aug2009 Bay Mouth 160ct2009 Bay Mouth 52 

209 414 25Aug2009 Bay Mouth 26Aug2009 Bay Mouth 1 

241 454 27Aug2009 James River 15Nov2011 Bay Mouth 810 

299 501 15Sept2009 Bay Mouth 010ct2009 Bay Mouth 16 

*This tag was recovered on a beach in North Carolina; it is unknown if the fish shed the tag or was consumed by a 
predator or scavenger. Recapture date was the last date during which the tag recorded non-tidal changes in depth. 
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Table 4. Random-effects model selection for the general linear mixed model fit to 
depth change data recorded for 14 summer flounder carrying archival tags in the 
lower Chesapeake Bay from August through early-October 2009. Each of these 
random-effects structures was fit to the global model. The model with the lowest 
Akaike's Information Criterion (AICc) was selected. The delta AICc (MICe) is the 
difference in value between each model and the model with the lowest AICc. 
Covariance structures were: variance components (vc), compound symmetry (cs), 
autoregressive with a lag of 1 (ar(1)), and autoregressive moving average with a lag 
of 1 (arma(1,1)). 

Model 
Random tag Covariance AICc MIC 

effect structure 
1 X arma(1,1) 12736.7 0 
2 arma(1,1) 12748.8 12.1 
3 X ar(1) 12851.2 114.5 
4 cs 12907.3 170.6 
5 X vc 12907.3 170.6 
6 X cs 12909.3* 172.6* 
7 ar(1) 12977.8 241.1 
8 vc 13101.9 365.2 

*Note: final hessian not positive definite because the between-subject variance 
and the compound symmetry covariance are not identifiable (Littell et al. 2006) 
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Table 5. Fixed-effects model selection table showing the fixed factors -- length 
(lgth), tide, time of day (tod), and temperature (temp)-- and interactions included in 
the top five models. 

Model AICc MIC lgth tide TOO temp 
lgth* tide* TOO* 
TOO temp temp 

1 12573.2 0 X X X X X X 

2 12576.2 3 X X X X X 

3 12576.4 3.2 X X X X X X X 

4 12578 4.8 X X X X X X 

5 12579.9 6.7 X X X X 

99 



Table 6. Parameter estimates, standard errors, and degrees of freedom ( df) for the 
general linear mixed model selected to describe depth changes of individual fish 
(see table 5). Tidal stage estimates are relative to the rising tide. Time-of-day 
estimates are relative to night This model included an individual fish random effect 
and was fit with a arma(1,1) covariance structure with an autoregressive term of 
0.96 and a moving average term of 0.18 (see table 4). The residual error ( u;) was 

2.58 and random variation due to individual fish ( u~sh) was 0.19. 

Effect Tide Time of Day Estimate 
Standard 

df 
Error 

Intercept 3.14 0.147 12.8 
Length -0.002 0.002 12.6 
Tide Falling -0.046 0.072 2690 
Tide High -0.474 0.071 2504 
Tide Low -0.61 0.072 2501 
Tide Rising 0 
Time of day Day -0.164 0.052 3129 
Time of day Night 0 
Temperature 0.116 0.038 649 
Length*Time of day Day 0.002 0.001 3126 
Length*Time of day Night 0 
Tide*Temperature Falling 0.021 0.042 2684 
Tide*Temperature High -0.105 0.042 2513 
Tide*Temperature Low -0.008 0.04 2555 
Tide*TemEerature Rising 0 

Note: Estimates are based on Box-Cox transformed data and the effects of length and 
temperature are for centered data. 
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ES 

VB 

Figure 1. Region boundaries (dashed lines) used to examine large-scale movements 
of summer flounder from conventional mark-recapture data. Region abbreviations 
are: MD- Maryland, UB- Upper Bay, RR- Rappahannock River, MB- Mid-Bay, YR
York River, LB- Lower Bay, JR- James River, BM- Bay Mouth, ES- Eastern Shore, 
VB - Virginia Beach. Fish were tagged and released in all regions except Maryland. 
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Figure 2. (A) Placement and orientation of the externally attached Star-Oddi DST 
milli-L archival tag on a 436 mm TL summer flounder. (B) plastic discs and earring 
backings used on the non-pigmented side of the fish to secure the archival tag. 
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Figure 3. Proportion of summer flounder captured within one year of release that 
were released and recaptured in different regions. All fish were released within 
Chesapeake Bay from 2000-2009. Error bars are ± 1 standard error. Monthly 
sample sizes (number of recaptures) are shown above each error bar. 
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Figure 4. Proportion of summer flounder recaptured after one year at liberty that 
exhibited site fidelity by returning to the region from which they were released. All 
fish were released within Chesapeake Bay from 2000-2009. Error bars are ± 1 
standard error. Monthly sample sizes (number of recaptures) are shown above 
each error bar. On average, 63% of recaptures after one year at liberty occurred in 
the same region in which the fish was released. 
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Figure 5. (A) Proportion of summer flounder and (B) mean length at tagging for 
summer flounder that migrated to locations north (black) and south (gray) of 
Virginia by season. All fish were released within Chesapeake Bay from 2000-2009. 
Error bars are± 1 standard error. The p-value in (A) was calculated with a chi
square test with the null hypothesis of no difference in the proportion of fish moving 
north and south in each season. The letters above each proportion depict which 
seasons were significantly different from the others based on a multiple comparison 
for proportions test The p-value in (B) is for the interaction between season and 
direction (North or South) calculated with an AN OVA. The letters above each bar 
represents groups that are significantly different based on Tukey's honestly 
significant difference method for multiple comparisons. 
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Figure 6. Example of a 5-day depth history for an individual summer flounder 
released with an archival tag (Tag 37) within Chesapeake Bay in 2009. The regular 
pattern in depth change is a result of tidal cycles when the fish was sedentary on the 
seafloor. Also shown are movements to a shallower habitat (a) and movements 
within the water column (b). 
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Figure 7. (A) Observed and (B) predicted interaction between temperature and 
tidal stage on the cumulative mean depth change (back transformed after Box-Cox 
transformation) for summer flounder tagged with archival tags within Chesapeake 
Bay in the summer of 2009. For this analysis, depth changes were observed during 
1.5-hour time periods around low (black circles), rising (black squares), high (gray 
circles), and falling (gray squares) tides. Error bars are± 1 standard error. 
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Figure 8. (A) Observed and (B) predicted cumulative mean depth change (back 
transformed after Box-Cox transformation) for summer flounder of various lengths 
during day (gray circles) and night (black circles). All fish were tagged and released 
within Chesapeake Bay during the summer of 2009. Error bars are ± 1 standard 
error. 
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Figure 9. (A,B) Temperature (grey lines) and depth profiles (solid black lines), and 
(C,D) mean daily depth changes of two summer flounder with archival tags that 
dispersed from Chesapeake Bay. In each graph, the dotted black line represents the 
presumed dates of dispersal from Chesapeake Bay. Profiles depicted in A, C were 
from a fish that was recaptured in a gillnet off Virginia Beach (tag 199). Profiles 
depicted in B, D were from a fish that was recaptured in Chesapeake Bay in 2011 
(Tag 241). Note that different time, depth, and temperature scales were used for 
each fish. 
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Figure 10. Comparison of archival tag depth recordings (black line) and tidal 
predictions off the coast of Delaware (gray, dashed line) and North Carolina (gray, 
solid line) during a period when the fish was mostly sedentary on the continental 
shelf in late January 2010. 
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CHAPTER3 

Using Mark-Recapture Growth Models to Discern Recreational Angler 

Noncompliance with Minimum Length Regulations 
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Abstract 

We used mark-recapture growth models to investigate recreational angler 
compliance with minimum size regulations in a popular Chesapeake Bay fishery. 
Angler noncompliance can severely degrade the ability of fishery managers to avoid 
overexploitation and achieve objectives of rebuilding plans. To discern 
noncompliance in the summer flounder recreational fishery, we fit a series of 
growth models to 3474 recapture records from a tagging study involving volunteer 
anglers in Virginia from 2000-2011. The growth model included individual 
variability in fish growth, two growth phases, separate measurement error terms 
for fish recaptured by trained anglers and those recaptured by untrained anglers, 
and a process error term that was linearly related to the fish's time at liberty. 
Summer flounder growth patterns changed at 34.7 em, which may represent the 
length when the majority of fish reach maturity. Length measurement errors 
reported by trained anglers were about 1.5 em less than measurement errors 
reported by untrain.ed anglers. Reported length measurements of harvested fish 
that were predicted to be sublegal had a positive bias of 2.2 ± 0.5 em. The predicted 
mean size of harvested fish increased through time in response to increases in 
minimum size regulations, though sublegal fish continued to be harvested. 
Throughout the 12 years of this study, 33-79% of the reported harvest was 
predicted to be sublegal based on the growth model. The percentage of sublegal fish 
that were harvested increased dramatically when large (>5 em) increases in 
minimum size limits were implemented. We conclude that Virginia recreational 
anglers responded to management regulations by adjusting the minimum size of 
harvested fish, but also continued to harvest sublegal fish. 
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Introduction 

Noncompliance with management regulations can severely degrade the 

ability of fishery managers to prevent overexploitation of fish populations (Gigliotti 

and Taylor 1990, Sullivan 2002, Hicks 2002) and achieve objectives of rebuilding 

plans. In recent decades, recreational fishing effort has increased considerably and 

been implicated in the decline of some fish stocks (Post et al. 2002, Coleman et al. 

2004, Cooke and Cowx 2004). The most common method for managing recreational 

fisheries is to implement regulations that limit the impacts of individual anglers on 

the population (e.g., season, bag, and size limits). Unfortunately, angler 

noncompliance with management regulations is common, and can be as high as 90% 

(Glass and Maughan 1984, Paragamian 1984, Schill and Kline 1995, Pierce and 

Tomcko 1998, Sullivan 2002). A simulation study indicated that even moderate 

levels of noncompliance could result in severe declines in the number of legal-sized 

fish harvested (Gigliotti and Taylor 1990). Quantifying the extent of angler 

noncompliance is a challenging task because noncompliance is difficult to measure 

accurately (Schill and Kline 1995, Sullivan 2002). Previous studies of angler 

noncompliance have used primarily creel surveys, citation records, or angler 

interviews. Each of these methods has inherent weaknesses and biases that stem 

from anglers concealing their sublegal catch. For example, Pierce and Tomcko 

(1998) found that estimated levels of angler noncompliance (i.e., percent of harvest 

that was sublegal) based on creel surveys and citation records were biased low and 

concluded that anglers concealed their sublegal catches from creel clerks and 

enforcement officers. Their results indicated that estimates of noncompliance based 
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on voluntary tag returns were more accurate than those based on other methods. In 

this study, we use data collected from a recreational angler-tagging program in the 

Chesapeake Bay region to quantify angler noncompliance with minimum size 

regulations. 

The Virginia Game Fish Tagging Program (VGFTP) is a cooperative project 

between the Virginia Marine Resources Commission and the Virginia Institute of 

Marine Science that trains recreational anglers to tag and release popular game 

fishes throughout the waters of Virginia. Since the program was initiated in 1995, 

up to 200 recreational anglers per year volunteer to tag fish during their normal 

fishing activities. The large numbers of participants in the program release 

thousands of tagged fish annually throughout the marine and estuarine waters of 

Virginia. Benefits of this program include a relatively low cost and a collaborative 

relationship between scientists and the angling community (Lucy and Davy 2000). 

One disadvantage is that the data quality may not meet scientific standards. For 

example, fish tagged and released as black sea bass have been recaptured and 

reported as summer flounder. Despite data quality issues, the large number of 

releases and recaptures remaining after quality assurance checking provides 

sufficient data to model fish growth and to examine compliance with established 

management regulations. We chose to analyze the mark-recapture data collected 

for summer flounder, which are one of the most targeted commercial and 

recreational fish species of the U.S. Atlantic coast (Terceiro 2002). 

Due to the extensive fishing pressure on summer flounder, the effective 

management of this population is critical to ensure the sustainability of the 
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population, which has been under a rebuilding plan since 2000. The Mid-Atlantic 

Fisheries Management Council and the Atlantic States Marine Fisheries Commission 

jointly managed this species through regulations on both the commercial and 

recreational fisheries (Terceiro 2002). Currently, 40% of the quota is allocated to 

the recreational fishery and the remaining 60% is allocated to the commercial 

fishery. The recreational fisheries sector has exceeded its allotted quota in multiple 

years, most likely due to the difficulties inherent in monitoring recreational angler 

activities (Terceiro 2002). To reduce the harvest of the recreational fishery, 

managers throughout the Atlantic states have primarily implemented bag and size 

limits that change annually. To gain insight into the rate of recreational angler 

noncompliance, we fit growth models to the mark-recapture data collected by the 

VGFTP and compared reported sizes of recaptured fish with predicted sizes. 

Individual growth models are a valuable tool in fisheries science because 

understanding how fish grow is critical to many aspects of fish stock dynamics. 

Growth models are most commonly applied to size-at-age data, but these models 

can also be fit to mark-recapture data consisting of sizes and dates when fish were 

released and recaptured (Haddon 2011). Growth models are typically used to 

estimate parameters for stock assessments, but they have also been used to observe 

ontogenetic changes (Ross et al. 1995, Hearn and Polacheck 2002). For example, 

Hearn and Polacheck (2002) found that a two-phase growth model better 

represented the growth of southern bluefin tuna than the standard single-phase von 

Bertalanffy growth model. They concluded that the two growth phases might be 

the result of changes in fish behavior related to ontogeny. We suspect that similar 
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changes in growth may occur with ontogeny in summer flounder, because these fish 

undertake large spawning migrations from coastal bays and estuaries to spawning 

grounds on the continental shelf (Kraus and Musick 2001). 

In this study, we use mark-recapture growth models to observe trends in 

recreational angler noncompliance with summer flounder minimum size limits in 

Virginia. Although previous studies used recapture data to assess angler 

noncompliance (Pierce and Tomcko 1998), the incorporation of a growth model into 

this analysis allowed us to better quantify the extent of noncompliance relative to 

changes in the minimum size regulations. In addition, the growth model provided a 

means to investigate changes in growth related to ontogeny (i.e., length at maturity) 

and differences in measurement error between trained taggers and untrained 

anglers. 

Methods 

Tagging Program 

The VGFI'P trains volunteer anglers to tag and release game fishes as part of 

their routine fishing activities. All volunteer taggers were provided with tagging 

equipment and trained to properly measure, handle, and tag multiple fish species 

(Lucy et al. 2002). Based on this training, we assume throughout this paper that the 

length measurements reported by VGFI'P taggers were accurate within rounding 

error. Taggers were also provided with data sheets to record information pertinent 

to their releases, such as tag number, species, date, total length, release location, and 

release condition (i.e., excellent, good, fair, and poor). These data sheets were 
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submitted to the VGFTP and compiled into a database that was queried when 

recreational and commercial fishers reported recaptures. 

During the period 2000-2011, VGFTP participants released 47513 tagged 

summer flounder throughout the Chesapeake Bay (see Chapter 2 for a more detailed 

description of release regions). Nearly all tagged fish were captured by hook-and-

line because VGFTP taggers were almost entirely recreational anglers. All summer 

flounder were tagged with a Hall print t-bar anchor tag inserted in the dorsal 

musculature near the tail. Each tag was labeled with a unique identifying number, a 

phone number to report recaptures, and a reward notice. Tagged fish had a 

truncated length range (21-60 em; Figure 1) compared to that observed in fishery-

independent surveys (Bonzek et al. 2010) because most fish larger than the 

recreational size limit were harvested by the taggers. During this study the 

minimum size limit varied between 39 and 48 em total length. 

A total of 7061 summer flounder recaptures was reported to the VGFTP, but 

some of these data were excluded from the growth analysis because they were 

outliers, tagged as exceptionally small fish ( < 25 em), or not at liberty for a sufficient 

duration to observe or measure growth. We used only those recapture records that 

included a recapture date and a measurement of fish length. Through personal 

discussion with anglers we learned that some of the reported length 

"measurements" were actually approximations that were visually estimated by the 

angler. Unfortunately, the type of length measurement (measured or estimated) 

was not recorded, so we were unable to quantify the accuracy and bias associated 

with length method estimation. We removed nine obvious outliers from the dataset 
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based on the following criteria: 1) if the fish was recaptured within six months of 

release and the difference between release and recapture lengths was more than 25 

em, or 2) if the fish was recaptured after more than 1 year at liberty and the length 

at tagging exceeded the length at recapture by more than 5 em. We also excluded 

data from fish that were smaller than 25 em, fish at liberty for less than 10 days, and 

fish at large for more than 4 years. Fish smaller than 25 em were excluded because 

we suspected that the tagging process influenced their growth and survival. Fish at 

liberty for less than 10 days were excluded from the growth analysis because these 

fish were not likely to exhibit observable growth; however, because these fish 

should have nearly identical lengths upon release and recapture, we used these data 

to determine the bias of the reported lengths of recaptured fish. To do this, we 

calculated the mean difference between the lengths at release and recapture and 

used a t-test to determine if this mean was significantly different from zero. Finally, 

we excluded 4 observations from fish at liberty for more than 4 years to avoid 

biases in parameter estimates resulting from small sample size. We thus retained 

information from 34 7 4 recaptures and used those data to model summer flounder 

growth (Figure 2). 

Growth Models 

We used four growth models to investigate growth rates, growth phases and 

individual variability in growth patterns in summer flounder. The first-- the Fabens 

(1965) model -- is a modification of the von Bertalanffy growth equation for mark

recapture data. For all recaptured individuals (i), this model has the form: 
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(1) 

where Ali is the growth increment, Loo is the asymptotic maximum length of the 

population, lti is the length at tagging, k is the growth coefficient, tti is the release 

date, tzi is the recapture date, and 8i is the unexplained error which includes model 

error and measurement error. The second model, developed by Hearn and 

Polacheck (2002), expands on the Fabens model by estimating a length at which 

growth patterns change, possibly due to fish reaching maturity. In this model, the 

Fabens equation is solved to estimate growth during two or more phases of life 

depending on when the fish was released and recaptured relative to the length at 

which the growth rates change (L *): 

(L"' -/1, )(1- e -k~<,2, _,1, >) + &; 

E[M;] = (L *-/1,)+ (L"'- L*)(l- e-k2<,2,-t•,>) + &; 

(L"' _ 111 )(l- e -k2(t21 -tl )) + &; 

where kt is the growth coefficient during the first growth phase, kz is the growth 

coefficient during the second growth phase, and t*i is the date when an individual 

reaches L*. Note that t*i is not an estimated parameter but is calculated by: 

Hearn and Polacheck (2002) estimated Leo values for each of two growth phases; 

however, their results showed limited support for that complex a model and 
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biologically it seems more plausible to expect that a population would have a single 

asymptotic maximum length. Thus, we chose to reduce the number of parameters 

by estimating a single Leo. The third model, developed by Wang (1998), modified the 

Fabens model by incorporating an additional factor to allow for individual 

variability in growth associated with the observed length at tagging. This model 

takes the form: 

E[N ] = lr + /}(1 -l) -1 "i - e -Jc<t2' -~ •• > h c. 
I ~ ao I 1 I1 I1 ,}.!_ )' 1 

where [3 is an estimated parameter whose magnitude indicates the amount of 

individual variability in growth. Note that this model is a generalization of the 

Fabens model, as it reduces to the Fabens model when J3 equals zero. The final 

model combined the two-stage model of Hearn and Polacheck (2002) and the 

individual growth variability model developed by Wang (1998): 

(L +{3(1 -l)-1 )(l-e-k1 <12,-t~> +&-
"" I, I, I, I 

E[N,] = (L*-1 )+(L + fl(l -l)-L*)(l-e-k2<12'-,;> +& 
I1 00 I1 I1 I 

ift2, $t; 

·r • d • 1 ti, $1; an t2, <t; 

if !I '?! t; 
i 

Once again, t*i is not an estimated parameter, but is calculated by: 

( ( L *-1 11 
logll- I, J 

Lao + fJ(1I -1I ) -1I 
t *. = t - I I I 

I I, IG. 
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This model will be referred as the Wang-L * model. To fit these models we pooled 

growth data for all years, under the assumption that growth patterns were 

consistent throughout this study (2000 - 2011). 

Model parameters were estimated using maximum likelihood, with various 

error structures designed to account for known biases associated with estimating 

growth parameters from mark-recapture data. It is well documented that growth 

models based on mark-recapture data can suffer from biases when individual 

variability exists in growth parameters, particularly if the Leo parameter varies with 

individual fish (Francis 1988, Hampton 1991, James 1991, Wang 1998, Laslett 

2002). As a result of this individual variability, the variance in the expected growth 

increment increases with increasing time at liberty Oames 1991, Hampton 1991, 

Hearn and Polacheck 2002). To partially compensate for this bias we expressed the 

variance of the expected growth increment (V[.1li]) using five error structures. 

These error structures were: 

1) a single constant error (cr): 

2) a single error ( cr) that is linearly related to time at liberty: 

V[M;] = fil(t2, - t1) 

3) the sum of two error terms: measurement error (crm) and process error (crp), 

which is linearly dependent on time at liberty: 

V[M;] = cr! + U:,(t2, -11,) 
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4) conditional error terms: one for fish measured by a tagger trained by the game 

fish tagging program (erm), and an additional error term for fish measured by an 

untrained angler (era): 

V[M,)= { 

and, 

if recaptured by VGFTP tagger 

if recaptured by untrained angler 

5) conditional error terms with process errors: tagger measurement error ( erm), 

(10) 

angler measurement error (era), and process error ( crp) that is linearly dependent on 

the time at large: 

V[M,]= { 
if recaptured by VGFTP tagger 

if recaptured by untrained angler 
(11) 

Although we refer to "measurement" and "process" errors, these two error terms 

are confounded and are not separately estimable because we do not have 

independent estimates of measurement error. Therefore, for error structures 3 and 

5, the error term ( cr!) should be considered a composite of measurement error and 

components of the process error that are not related to time at liberty (Hearn and 

Polacheck 2002). Under the assumption that the growth increment was normally 

distributed (which was empirically supported by the data based on a comparison 

between the fit of the normal and the lognormal distributions to the growth 

increment response using the fitdistr function in R) the parameters for the various 

models and error terms were estimated by minimizing the following negative log-

likelihood: 
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-log(L) =-L log(2n'(V[ M;]) + ; ; 1 n [ (Ill -E[M]i] 
2 1=1 V[LV;] 

(12) 

This was accomplished using the bounded BFGS minimization method (Byrd et al. 

1995) implemented with the 'optim' function in R To improve the efficiency of the 

minimization procedure we constrained the Loo, k, kt, k2, and L * parameters to be 

greater than zero. The model that best described the data was selected using 

Akaike's information criterion (AIC; Akaike 1973). 

None of the models implemented in this study were designed to account for 

individual variability in the growth coefficient (k). It would be reasonable to assume 

that if individuals have variability in the Loo parameter, then there may also be 

variability in the k parameter, because these parameters are highly correlated. Both 

maximum likelihood (Sainsbury 1980, Evenson et al. 2007) and Bayesian (Fabrizio 

et al. 2001, Zhang et al. 2009) methods have been developed to analyze growth data 

from mark-recapture experiments with assumed variability in Lao and k parameters. 

However, these methods are more computationally intensive than those employed 

in this study and simulation studies indicate it is unnecessary to model individual 

variability in the growth coefficient to accurately estimate the von Bertalanffy 

growth parameters (Hampton 1991, Wang et al. 1995, Wang 1998). 

Angler Noncompliance 

We used the residuals from the selected growth model to examine the bias in 

the length measurements reported by recreational anglers. The residual growth 

was calculated as the difference between the observed and predicted growth. We 

first plotted the residuals against the release length and time at liberty to determine 
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if residuals were centered at zero throughout the range of observations. We next 

partitioned the data into two sets: fish that were released after recapture and fish 

that were harvested. Finally, we partitioned the data for harvested fish into two 

groups: 1) fish whose predicted size indicated they were sublegal upon recapture, 

and 2) fish whose predicted size indicated they were legal upon recapture. Note 

that we are using recaptures from recreational anglers only. Commercial fishers did 

not report enough recaptures for us to reliably estimate rates of noncompliance by 

that sector. In analyzing the residuals from recreational angler recaptures, our null 

hypothesis was that there was no length measurement bias and, thus, the mean 

residual was equal to zero. We tested this hypothesis for each group of residuals 

(i.e., released fish, harvested fish, harvested fish expected to be sublegal, harvested 

fish expected to be legal) using t-tests at a significance level of 0.05. 

We used the predicted estimates of fish length to investigate changes in 

lengths of harvested fish through time and compared these changes with changes in 

minimum size limits for summer flounder in Virginia. We calculated the annual 

mean predicted length of all harvested fish (MPL - H), the annual mean predicted 

length of harvested fish that were predicted to be sub legal (MPL - S), and the annual 

percentage of harvested fish that were predicted to be sublegal. The 95% 

confidence intervals for all means and percentages were calculated using methods 

described in Zar (1999). 

Results 

Recaptures were more likely to occur shortly after release and the growth 

increment data were highly variable (Figure 2). Throughout the 12 years of this 
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study, the majority (91.23 %) of summer flounder were recaptured within 6 months 

of release. The length measurements of summer flounder recaptured within six 

months of release ranged from 25 em larger or 25 em smaller than their length at 

time of release. This implies large inaccuracies in the measurements reported by 

either the taggers or the anglers that recaptured and reported the fish. Some of 

these inaccuracies may have been the result of rounding error. Nearly half of the 

reported recapture lengths were reported to the nearest inch, and an additional 

30% were reported to the nearest half-inch (Table 1). A similar pattern was also 

apparent in the lengths reported by the trained taggers. Despite the lack of 

precision, the reported length measurements were not biased. The mean observed 

growth for the fish at large less than 10 days was 0.11 ± 0.14 em and was not 

significantly different from zero (t=1.63, df=1137, p = 0.10). 

The Wang- L * model with three error terms (error structure 5) best 

described the summer flounder growth data from the VGFTP (Table 2, Figure 3). 

Although this model had 8 parameters (more than any other in the study), AIC 

weights indicated a 99.7% probability that this was the best model among the 

candidate models. The estimated Leo from the Wang-L * model was considerably 

smaller than estimates reported in previous studies (Table 3). We suspect this is 

due to the nature of the tagging program. Because the taggers were recreational 

anglers who tend to harvest the legal-sized fish they catch, very few large fish are 

tagged. The estimated length at which growth patterns changed (L *) was 34.69 em. 

The likelihood profile plot for this parameter shows that likelihood values do not 

differ greatly when the L* value ranges between 32 and 35 em (Figure 4), suggesting 
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variability in the length at which an individual's growth pattern changes. The model 

estimated value for the beta parameter, which represents the degree of individual 

variability in the Leo parameter, was quite large compared to beta estimates 

reported by Wang (1998). This implies that summer flounder exhibit large amounts 

of individual variation in growth (specifically Lao), but this may also reflect the 

considerable measurement error observed with these data. 

Regardless of the growth model, the most appropriate error structure 

included terms for tagger measurement error, non-tagger measurement error, and 

process error (error structure 5). The different error structures used to fit the 

models affected the AIC values more so than the differences in model 

parameterization. In particular, inclusion of separate error terms for tagger and 

non-tagger measurement error reduced AIC by more than 250 units regardless of 

growth model considered (Table 2). In these models, the non-tagger error term was 

nearly 1.5 em larger than that for the trained tagger. Considerable support for 

inclusion of an additional process error term that was linearly related to time-at-

liberty was also evident. Inclusion of the process and measurement error terms 

reduced AIC by approximately 40 units when compared with models containing a 

single error term. 

No pattern was evident in the residuals from the Wang-L* model relative to 

fish size or time-at-large, but a pattern did emerge when residuals were examined 

relative to the status of recaptured fish - either harvested or released. Regardless of 

the size of the fish at tagging, model residuals were centered at zero (Figure Sa). As 

the size at tagging increased, the variance appeared to decrease, but this was most 
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likely due to reduced sample sizes for fish tagged at 40 em or larger. A similar 

pattern was observed for growth relative to time at liberty (Figure Sb ). A positive 

bias in residuals was evident for fish that were harvested upon recapture (Figure 6). 

Of the 398 fish harvested by recreational anglers in this study, over half (54.02%) 

were expected to be sublegal according to the Wang-L *growth model. The 

residuals from the growth model were centered at zero for harvested fish that were 

predicted to be oflegal size (Figure 7a) and the mean residual for these fish was 

0.62 ± 0.45 em. This was significantly different from zero (t=2.71, df=183, p=0.007) 

indicating a slight positive bias, which could be the result of rounding error. A 

majority (86.5 1%) of the harvested fish that were predicted to be sublegal had 

positive residuals (Figure 7b) and the mean residual for these fish was 2.87 ± 0.53 

em, which was significantly different from zero (t=10.72, df=214, p<0.001). Based 

on the large percentage of residuals that were positively biased and the magnitude 

of the mean residual, it is unlikely that the observed measurement bias for fish that 

were predicted to be sub legal was due to rounding error. 

Recreational anglers responded to changes in minimum size regulations in 

Virginia, but still continued to harvest sublegal summer flounder. From 2000 to 

2006, the mean predicted length of harvested fish (MPL-H) was nearly equal to, or 

greater than, the minimum size limit (Figure Sa). Between 2007 and 2011, the 

minimum size limit increased (over 47 em), and the MPL-H was consistently less 

than the minimum size limit The mean predicted length of harvested fish expected 

to be sublegal (MPL-S) also varied with the minimum size limit regulations (Figure 

8b ). The difference between the MPL-S and the minimum size limit ranged from 
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1.14 to 4.46 em and tended to increase as the minimum size limit increased (Figure 

9). The proportion of the harvested fish that were expected to be sublegal was also 

related to the minimum size limit. Throughout this study, 33-79 % of harvested fish 

reported to the VGFTP were expected to be sublegal but the confidence intervals for 

expected size at recapture were quite large due to smalJ sample sizes (Figure Be). 

The percent of sublegal harvest increased in 2002 and 2007, years when the 

minimum size limit regulation increased considerably (5 em) from the previous 

year. The percent of sublegal harvest was also relatively high in 2009 and 2010. 

Although minimum size limits were relatively consistent during those years, 

statements made at angler club meetings and on online discussion boards (e.g., 

www.tidalfish.com) implied that anglers perceived those size limits as excessively 

large (M. Henderson, personal observation). 

Discussion 

Growth models fit to recreational angler mark-recapture data can provide 

insight into recreational angler noncompliance with minimum-size-limit 

regulations. These models allowed us to observe biases in the length measurements 

reported for sublegal summer flounder harvested by recreational anglers in 

Virginia. Based on model predictions, recreational anglers appeared to respond to 

changes in size regulations by adjusting the minimum length of fish they harvested; 

however, these anglers continued to harvest summer flounder that were 

approximately 1 - 4 em smaller than the minimum size limit The largest 

differences between the minimum size limit regulation and the mean size of 

harvested sublegal fish were observed during years when the minimum size limits 
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were largest Furthermore, the highest proportions of sublegal fish were harvested 

during years when minimum size limits changed substantially (e.g., in 2002 and 

2007) or were maintained at large lengths for consecutive years (2006- 2010). 

These increases in noncompliance were most likely because the larger size limits 

reduced the catch rate oflegal sized fish (Sullivan 2002). 

Although we believe our results concerning noncompliance are 

representative of the recreational summer flounder fishery in Virginia, there are 

limitations to using data collected by an angler-tagging program. First, the VGFTP 

relies on anglers to voluntarily report recaptures. Small rewards (e.g., t-shirts, pins, 

and tackle boxes) were offered as incentives to report recaptures, but the overall 

reporting rate in this program remains unknown. Anglers that harvest sublegal fish 

may be less likely to report recaptures under the assumption that they could be 

fined. If reporting rates were lower for harvested sublegal fish, then our estimate 

for the percentage of the recreational harvest that was illegal is conservative. A 

second limitation of using angler-tagging data is that summer flounder tagged and 

released by the VGFTP were disproportionally sublegal. As a result, the observed 

proportions of harvested fish that were sublegal most likely cannot be used to make 

inferences regarding the recreational fishery as a whole. Because very few larger 

fish were tagged and released as part of the VGITP, we suspect that the proportion 

of harvested fish that were sub legal was lower in the recreational fishery than that 

indicated in Figure Be. However, even low levels of noncompliance can degrade the 

benefits derived from instituting minimum size regulations (Gigliotti and Taylor 

1990). Despite the limitations of the data, we believe our results provide useful 
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observations on the habits of recreational anglers in response to changes in harvest 

regulations, and confirm the belief among managers that increasing minimum size 

regulations may increase angler noncompliance. 

Results from this study also provided indication of the bias and precision of 

length measurements by recreational anglers. Length measurements from summer 

flounder that were recaptured by recreational anglers within 10 days of release 

were reported to have lengths that differed up to 25 em from the length reported at 

time of tagging, but these recapture measurements were not positively or negatively 

biased. This lack of precision in angler measurements is large compared with that 

observed in other studies (Ferguson et al. 1984, Page et al. 2004 ), which may be the 

result of some recreational anglers in Virginia estimating, instead of measuring, the 

lengths of recaptured fish that were obviously sublegal. Another explanation may 

be recall bias. Some anglers reported recaptures days or weeks after the actual 

recapture event, and provided a length from memory. The lack of precision was also 

due to rounding error. Nearly SOo/o of the reported length measurements were 

rounded to the nearest inch, and an additional 30o/o were rounded to the nearest 

half-inch. This pattern was not surprising for the recapture lengths, as recreational 

angler rounding error has previously been noted in studies of inland fisheries 

(Ferguson et al. 1984, Page et al. 2004 ), but we had expected that trained taggers 

would provide more precise length measurements because they were trained to 

measure and report fish length to the nearest quarter inch. Based on these results it 

appears that many trained anglers reverted to the common habit of rounding to the 

nearest whole inch. Although measurements made by trained anglers may also 
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suffer from rounding error, results from the growth model imply that their 

measurements are more accurate than those reported by an untrained angler. 

Measurement error associated with untrained anglers was an additional 1.5 em 

greater than those reported by trained taggers. 

Despite the biases and lack of precision in the length measurements reported 

by recreational anglers, we were able to fit a relatively complex growth model to 

these data. Summer flounder growth appears to be related to ontogeny, with the 

growth coefficient decreasing at approximately 35 em, which may be the 

approximate length at which summer flounder reach maturity. We hypothesize that 

growth rates decline after maturity because fish begin to expend more energy on 

gonad production and seasonal spawning migrations (Lester et al. 2004, Rijnsdorp 

and Witthames 2007). The likelihood profile plot for the change point in the growth 

model indicated that individuals might reach this change point (maturity) between 

32 and 35 em total length. This relatively large range indicates that changes in 

individual fish growth rates do not occur immediately upon maturation, but may be 

manifested over a long period of time as fish progressively dedicate more energy 

towards reproduction. Previous studies based on macroscopic examination of 

whole gonads have indicated that the length at which 50% of summer flounder are 

mature is approximately 30 em (summarized in Packer 1999). It is possible that as 

the summer flounder population has increased, and the age structure has become 

less truncated (Terceiro 2011), the length at which summer flounder become 

mature has increased. This conclusion is supported by data presented in Terceiro 

(2002) that indicate female summer flounder reached maturity at a larger length in 
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the 1990s (high stock abundance) than they had in the 1980s Oow stock 

abundance). 

In designing this study, we selected only a small subset of growth models but 

other models may be more appropriate to describe summer flounder growth 

patterns. We chose to fit models based on the von Bertalanffy growth function 

primarily because it has been used previously to model summer flounder growth 

(Table 3). The specific models we selected allowed us to test hypotheses regarding 

length-at-maturity and individual variability in the asymptotic maximum length but 

we did not test for differences in seasonal growth (Cloern and Nichols 1978, Pauly et 

al. 1992) or individual variability in the growth coefficient (Sainsbury 1980, Fabrizio 

et al. 2001, Evenson et al. 2007, Zhang et al. 2009). It is possible that these 

additional complexities may improve our understanding of summer flounder 

growth, but such complexities may demand more precision from the angler-tagging 

data than is currently available. The models we selected were sufficient to 

investigate our questions regarding angler noncompliance with summer flounder 

minimum size regulations. 

We caution that the growth parameters reported here are not representative 

of the mid-Atlantic summer flounder population. Summer flounder are known to 

exhibit sexually dimorphic growth (Poole 1961, Fogarty 1981), but we were unable 

to model male and female growth separately because sex cannot be determined 

without sacrificing the animal to examine gonads. Surveys of the summer flounder 

population in Chesapeake Bay indicate that females comprise nearly 80% of the 

adult summer flounder population within the Bay (Bonzek et al. 2008). Therefore, 
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we believe our results are primarily representative of female growth patterns. 

Another reason that the growth parameters estimated in this study may not be 

representative of the mid-Atlantic population is that less than 1% of the tagged fish 

and only 3% of the recaptured fish were larger than 50 em. Summer flounder can 

reach and exceed 65 em total length within Chesapeake Bay (Bonzek et al. 2010), 

and exclusion of the larger fish from the angler-tagging program most likely biased 

our estimates of Loo and k. Due to the well-known correlations between the Loo and k 

parameters, reliable estimates of growth beyond the length range of the data cannot 

be obtained (Hearn and Polacheck 2002). This may partially explain our low 

estimates ofLoo, and high estimates ofk, compared to previously published growth 

models based on length at age data (Table 3). 

The results from this study have management implications for the summer 

flounder fishery in Virginia and for recreational fisheries in general. The upper 

range of the estimated summer flounder length-at-maturity (35 em) is nearly 

identical to the current minimum size limit for summer flounder commercial 

fisheries along the coast (35.6 em). This suggests that more research is warranted 

to determine if the minimum size limit for the commercial fishery should be 

increased to improve that probability that summer flounder will have the 

opportunity to spawn prior to becoming vulnerable to the commercial fishery. Our 

results also suggest that angler behavior should be incorporated into management 

decisions in order to improve the efficacy of regulations, as has been previously 

suggested (Hilborn and Walters 1992, Ludwig et al. 1993, Radomski et al. 2001, 

Beard et al. 2003). In a large body of water, such as Chesapeake Bay, it is infeasible 
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to have a significant enforcement presence to prevent sublegal harvest of regulated 

species. Angler compliance may be maximized by implementing: 1) gradual changes 

in minimum size limits, or 2) minimum size limits that result in sufficiently high 

catch rates of legal sized fish to satisfy anglers. If population levels are depleted 

such that drastic management actions are required to rebuild the biomass of the 

stock, we suggest conducting a survey to determine angler preferences for fishing 

constraints (Dawson and Wilkins 1981, Renyard and Hilborn 1986). 
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Table 1. Precision of length measurements for summer flounder released by 
Virginia Game Fish Tagging Program participants and recaptured fish that were 
subsequently reported. Precision is categorized by the whole inch, half inch, and 
other (i.e., more precise units such as quarter or eighth inches). All fish were 
released within Chesapeake Bay from 2000 to 2011. 

Measurement 
Precision 

inch 
half inch 

other 

Number (0/o) 

Releases 

23645 (49.8) 
14422 (30.4) 
9446 (19.9) 
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Recaptures 

1728 (49.7) 
1047 (30.1) 
699 (20.1) 



Table 2. Parameter estimates, number of parameters (npar), and AIC model selection criteria (AIC, MIC, and AICw) 
for growth models fit to 3474 summer flounder released within Chesapeake Bay from 2000 to 2011 and subsequently 
recaptured and reported to the VGFTP. Structure of growth models and error terms are described in text. Estimated 
parameters are asymptotic maximum length (Loa), length at which growth coefficient changes (L *), growth coefficient 
for models with one growth phase or for fish smaller than L * (k1), growth coefficient for fish larger than L * (kz), 
individual growth variability parameter (J3), constant error or trained tagger measurement error ( crm), untrained angler 
measurement error ( cra), and process error linearly related to time at liberty ( crp). The standard error for each 
estimated parameter is shown in parentheses. 

Model Error Leo L* kt kz J3 O'm O'a O'p npar AIC MIC AICw 

Fabens 1 56.82 0.38 3.31 4 18177 347 0 
(1.58) (0.04) (0.04) 

Fabens 2 
52.41 0.59 11.01 

3 18970 1140 0 (2.24) (0.09) (0.13) 

Fabens 3 
55.45 0.43 3.07 2.62 4 18136 306 0 
(1.69) (0.05) (0.06) (0.27) 

Fabens 4 
56.57 0.38 2.15 1.44 4 17910 80 0 
(1.57) (0.04) (0.05) (0.07) 

Fabens 5 
55.52 0.42 1.92 1.49 2.31 

5 17865 35 0 (1.65) (0.04) (0.06) (0.08) (0.23) 

Hearn and 
1 

69.99 33.99 0.33 0.19 3.29 
5 18151 321 0 Polacheck (7.31) (0.22) (0.06) (0.05) (0.04) 

Hearn and 
2 

59.27 34.52 0.49 0.35 11.00 
5 18971 1141 0 

Polacheck (5.74) (0.76) (0.1) (0.11) (0.13) 

Hearn and 
3 

65.01 33.98 0.39 0.24 3.08 2.46 
6 18116 286 0 

Polacheck (4.44) (0.58) (0.05) (0.05) (0.05) (0.27) 

Hearn and 
4 

69.11 33.5 0.34 0.2 2.14 1.44 
6 17880 50 0 

Polacheck (5.61) (0.44) (0.05) (0.04) (0.05) (0.07) 
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Table 2 cont. 

Model Error Loo L* kt kz Om Oa Op npar AIC MIC AICw 

Hearn and 
5 

70.00 34.55 0.32 0.19 1.94 1.48 2.15 
7 17843 12 0.002 Polacheck (7.11) (0.44) (0.06) (0.05) (0.06) (0.07) (0.23) 

Wang 1 
47.68 0.78 0.52 3.3 

4 18153 323 0 
(1.15) (0.1) (0.06) (0.04) 

Wang 2 44.2 1.27 0.59 10.99 
4 18963 1133 0 

(1.73) (0.29) (0.11) (0.13) 

Wang 3 
45.45 1.04 0.6 3.05 2.63 

5 18108 277 0 
(1.02) (0.15) (0.06) (0.05) (0.26) 

Wang 4 
47.83 0.75 0.51 2.15 1.43 

5 17888 58 0 
(1.18) (0.1) (0.07) (0.05) (0.07) 

Wang 5 
46.4 0.9 0.55 1.93 1.47 2.29 

6 17843 13 0.002 
(1.15) (0.13) (0.07) (0.06) (0.08) (0.23) 

Wang- L* 1 51.59 34.57 0.77 0.47 0.63 3.28 
6 18133 303 0 

(2.31) (0.52) (0.12) (0.09) (0.09) (0.04) 

Wang- L* 2 
45.22 34.34 1.24 1.01 0.64 10.99 

6 18965 1135 0 
(2.47) (1.21) (0.32) (0.34) (0.13) (0.13) 

Wang- L* 3 
48.87 34.13 0.94 0.61 0.66 3.07 2.44 

7 18098 268 0 
(1.66) (0.13) (0.12) (0.11) (0.08) (0.05) (0.26) 

Wang- L* 4 
52.78 34.69 0.69 0.41 0.62 2.14 1.43 

7 17866 36 0 
(2.77) (0.49) (0.12) (0.09) (0.1) (0.05) (0.07) 

Wang-L* 5 
50.17 34.69 0.81 0.52 0.65 1.94 1.47 2.13 

8 17830 0 0.997 
(2.42) (0.56) (0.14) (0.12) (0.1) (0.06) (0.07) (0.23) 
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Table 3. Estimates of von Bertalanffy growth model parameters for summer 
flounder from individual length-at-age data. 

Source Date Calcified Sex 
La, k 

to Structure (em) (Yr) 
Shepherd 1980 1977-1978 otoliths both 96.88 0.16 -0.01 
Shepherd 1980 1977-1978 scales both 116.32 0.13 -0.16 
Fogarty 1981 1976-1979 scales male 72.72 0.18 -0.26 
Fogarty 1981 1976-1979 scales female 90.61 0.16 0.05 
Anonymous 1986 1976-1983 scales male 67.49 0.18 -1.66 
Anonymous 1986 1976-1983 scales female 82.67 0.17 -1.04 
Desfosse 1995 1987-1990 scales male 55.87 0.33 -0.79 
Desfosse 199 5 1987-1990 scales female 75.78 0.29 -0.53 
Desfosse 199 5 1987-1990 scales both 85.90 0.22 -0.69 
Brust2008* 1999-2006 unknown male 65.25 0.23 -1.50 
Brust 2008* 1999-2006 unknown female 78.49 0.22 -1.12 

*parameters were estimated using mean length at age data 
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Figure 1. Length frequency of recaptured summer flounder at the time of tagging 
(black bars) and recapture (gray bars). All fish were tagged in the Chesapeake Bay 
between 2000 and 2011 by participants in the Virginia Game Fish Tagging Program. 
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Figure 2. Observed growth ( cm·yrl) of summer flounder based on reported length 
at tagging and recapture. Fish were tagged and released in Chesapeake Bay 
between 2000 and 2011. Data excluded from the growth model are plotted as (x); 
these data were excluded because fish were at liberty: 1) less than 10 days, 2) less 
than 6 months and the release and recapture lengths differed by more than 25 em, 
3) more than 1 year and the release length exceeded the recapture length by more 
than 5 em, or 4) more than 4 winters. 
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Figure 3. Observed summer flounder growth (cm·yr1) based on reported lengths at 
time of tagging and recapture (black circles) and the Wang-L* growth model 
predictions (gray open squares). All fish were tagged and released in Chesapeake 
Bay from 2000 to 2011. 
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Figure 4. Likelihood profile plot for the length at which von Bertalanffy growth 
coefficients changed (L *) based on the Wang- L * model for summer flounder tagged 
by participants in the Virginia Game Fish Tagging Program (2000·2011). The 
negative log· likelihood values are those calculated when the L * parameter is held 
constant and all other parameters are estimated. 
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Figure 5. Residuals from the Wang- L * model for summer flounder growth 
increments estimated from lengths at release and recapture. Residuals are plotted 
against (a) length at time of tagging (em), and (b) years at liberty. The zero line, 
around which all residuals should be centered, is shown as a dashed gray line in 
both plots. All fish were released in Chesapeake Bay from 2000 to 2011 by 
participants in the Virginia Game Fish Tagging Program. 
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Figure 6. Mean residuals from the Wang-L *growth model for summer flounder 
tagged in Chesapeake Bay by participants in the Virginia Game Fish Tagging 
Program (2000-2011). Residuals are shown for individuals that were harvested (n 
= 449) and released (n= 3025). Error bars are 95% confidence intervals on the 
mean. 
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Figure 7. Residuals from the Wang- L *growth model for summer flounder 
harvested between 2000 and 2011 that were: (a) predicted to be oflegal size at time 
of recapture ( n = 183), and (b) predicted to be of sub legal size at time of recapture 
(n = 215). The zero line, around which all residuals should be centered, is displayed 
as a dashed gray line in both plots. 
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Figure 8. The minimum size limit for summer flounder in the Virginia recreational 
fishery between 2000 and 2011(gray line) and (a) mean predicted length of 
harvested fish reported to the Virginia Game Fish Tagging Program (VGFTP; black 
line), (b) mean predicted length of harvested fish reported to the VGFTP that were 
predicted to be of sublegal size at time of recapture (black line), and (c) percent of 
harvested fish reported to the VGFTP that were expected to be of sublegal size at 
time of recapture (black line). Error bars are 95% confidence intervals on the mean. 
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Figure 9. Effect of changes in the minimum size limit for summer flounder in 
Virginia waters on the noncompliance index (calculated as the difference between 
the minimum size limit in Virginia and the mean predicted length of sublegal fish 
harvested by recreational anglers in a given year; see figure 8b ). Data are from 
summer flounder released and recaptured between 2000 and 2011. The 
noncompliance index represents the mean increment below the minimum size limit 
that anglers were willing to harvest summer flounder. 
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CHAPTER4 

Estimation of Summer Rlounder (Paralichthys dentatus) Mortality Rates Using 

Mark-Recapture Data from a Recreational Angler Tagging Program 
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Abstract 

Tagging programs that rely on volunteer anglers to tag fish have the potential to 
become a valuable tool for researchers interested in estimating mortality rates. 
Standard tagging models (e.g., Cormack-Jolly-Seber) cannot be used to estimate 
mortality rates from mark-recapture data collected by angler tagging programs 
because the design of these programs violates the assumption that fish are released 
and recaptured instantaneously. It is possible to address this assumption violation 
by: 1) using tagging models that allow encounters of individuals to occur 
continuously after release, and 2) adjusting parameter estimates (e.g., survival 
rates) for variations in an individual's release date. We apply this approach to 
summer flounder mark-recapture data collected by an angler tagging program in 
Virginia. Since summer 2000, recreational anglers tagged and released 47513 
summer flounder in Virginia waters of Chesapeake Bay, and 3240 of these fish were 
subsequently encountered. To account for heterogeneity in survival rates arising 
from size-based variation in fishing pressure, we categorized individuals into size 
states and used a growth model to predict recruitment of fish into each size state. 
Due to concerns regarding tag loss, a double-tagging study was conducted from 
2009-2011 and revealed that summer flounder tag retention rates were low (0.5 ± 
0.08 per year). After correcting for tag loss, the estimated mortality rates for the 30-
day period following release were approximately 60% for sublegal fish ( < 36 em) 
and 65% for larger fish. After compensating for short-term (30-day post-release) 
mortality, we found that sublegal summer flounder experience greater annual 
mortality rates than larger fish. This may reflect actual differences in mortality or 
may reflect an increased likelihood of permanent emigration of smaller fish to 
locations with reduced encounter probabilities. We conclude that angler-tagging 
projects are a cost- effective way to gain insight on fish mortality rates, but that 
assumption violations of standard mark-recapture models must be addressed and 
an adequate number of recaptures must be available to permit reasonable precision 
of the mortality estimate obtained from such data. 
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Introduction 

Summer flounder are one of the most targeted recreational and commercial 

fish species on the U.S. east coast, making effective management essential for the 

sustainability of this species (Terceiro 2002). For an exploited population, 

estimates of the fishing mortality rate as well as estimates of the natural mortality 

rate are necessary for determining the status of the stock and are critical to 

development of effective fisheries management plans. The instantaneous natural 

mortality rate (M) is the rate at which individuals are removed from the stock due to 

reasons other than exploitation (e.g., death, predation, permanent emigration, etc.). 

The estimate of M is directly related to several key outputs of the stock assessment 

including: stock productivity, optimal exploitation rate, and the target spawning 

stock biomass. Estimation of M is notoriously difficult because in situ natural 

mortality processes cannot be observed directly, and currently M is one of the 

greatest uncertainties in the summer flounder stock assessment (Maunder and 

Wong 2011). To date, stock assessment scientists have used a value forM estimated 

from longevity data or life history characteristics (i.e., growth parameters, 

reproductive effort, maximum size); however, none of these life-history-based 

methods were specifically designed to estimate M for summer flounder (Maunder 

and Wong 2011). In this study, we attempt to estimate natural and fishing mortality 

rates for summer flounder using mark-recapture data collected by a recreational 

angler tagging program. 

If designed and analyzed properly, tagging studies are one of the most 

reliable methods of estimating M (Maunder and Wong 2011). The natural mortality 
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rate of a population open to births, deaths, and migration is estimated with the 

Cormack-Jolly-Seber (CJS) mark-recapture model (Pollock et al. 1990, Lebreton et al. 

1992). The CJS model uses recapture histories of marked cohorts of fish to estimate 

capture and survival probabilities. Over the past few decades the basic form of the 

CJS model has been generalized to allow encounters of fish from sources other than 

scientific research surveys (Burnham 1993, Barker 1997, Barker et al. 2004). For 

example, Burnham (1993) developed a model that allowed live recaptures of 

individuals during tagging operations and dead recoveries of animals that were 

killed (i.e., harvested) in between tagging occasions. The Burnham (1993) model 

was further extended to allow live resightings (e.g., catch and release) of animals 

between tagging occasions (Barker 1997, Barker et al. 2004). Although the Barker 

model (Barker 1997, Barker et al. 2004) is extremely versatile, it has been 

implemented only rarely (Hallet al. 2001, Slattery and Alisauskas 2001, Casale et al. 

2007). One benefit of permitting the use of data from multiple sources (live/dead 

encounters) is that the estimates of the model parameters (such as survival rates) 

will generally be more precise (Lebreton et al. 1995, Barker 1997, Barker et al. 

2004). An additional benefit is that it is no longer a requirement for the researcher 

to conduct the tagging operations and to recapture tagged individuals, thereby 

providing an opportunity to utilize data collected by non-researchers, including 

commercial and recreational (e.g., angler tagging programs) fishers. 

Recreational angler tagging programs have multiple advantages, as well as 

some disadvantages, relative to mark-recapture studies that rely on scientists to tag, 

release, and recapture individuals. Compared with the costs of scientific personnel 
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and vessel time, angler tagging programs are relatively inexpensive. The major 

costs in operating these studies consists of maintaining the tagging database, 

conducting training workshops, and purchasing tags, tagging equipment, and 

rewards (Lucy and Davy 2000, Gillanders et al. 2001). In addition, the large number 

of volunteers that participate in these programs may be able to release a greater 

number of fish than would be logistically possible with scientific personnel alone 

(Lucy and Davy 2000). Furthermore, angler participants generally capture and 

release individuals in multiple locations, providing the opportunity to investigate 

movement and survival of fish released in different areas (Lucy and Davy 2000, 

Gillanders et al. 2001). Finally, involving anglers in research projects enhances the 

relationship between the angling community and the research or management 

organization (Lucy and Davy 2000). In our experience, this familiarity with the 

program increases the likelihood that anglers will report encounters of tagged fish, 

providing increased numbers of recapture reports that are useful for movement and 

survival analyses. One of the disadvantages of angler tagging programs is that the 

quality of the data reported by recreational fishers may not meet scientific 

standards. For example, volunteer anglers that participate in these programs may 

not measure the size of the tagged fish with the precision preferred by researchers 

(Gillanders et al. 2001; Chapter 3). Despite these potential data quality issues, we 

believe that most data collected by angler tagging programs are useful for survival 

analyses as long as the assumptions of the selected statistical model are not violated. 

In this paper, we used a Barker model (Barker 1997, Barker et al. 2004) to 

estimate mortality rates for summer flounder using tagging data from a recreational 
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angler tagging program. The data were collected between 2000 and 2011 by the 

Virginia Game Fish Tagging Program (VGFTP), which utilizes trained volunteer 

anglers (approximately 200 per year) to tag and release game fishes within Virginia 

waters (Lucy et al. 2002). One of our goals was to provide guidance on ways to 

address tagging-model assumption violations when using mark-recapture data from 

angler tagging programs. With that goal in mind, we estimated mortality rates for 

different size classes of summer flounder tagged within Chesapeake Bay and 

explored potential management implications of these estimates. 

Methods 

Angler Tagging Program 

The Virginia Game Fish Tagging Program (VGFTP) trains volunteer anglers to 

measure, handle, and tag 10 species of popular game fishes during their normal 

fishing activities (Lucy et al. 2002). All volunteer taggers are provided with tagging 

equipment and data sheets to record information pertinent to their releases, such as 

tag number, species, date, total length, release location, and release condition. 

These data are submitted to the VGFTP and compiled in a searchable database. 

Because taggers are primarily recreational anglers, all the tagged fish were captured 

by hook-and-line. All summer flounder were tagged with at-bar anchor tag 

(Hall print) inserted in the dorsal musculature near the tail. Each tag was labeled 

with a unique identifying number, a phone number to report recaptures, and a 

reward notice. Rewards consisted oft-shirts, tackle boxes, and pewter pins and 

served to encourage commercial and recreational fishers to report their recaptures. 
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Data collected by the VGFTP from 2000-2011 were examined for reliability 

prior to analysis. For example, release data were deleted if the reported tag number 

had not been distributed or if the tagger was uncertain about critical information 

related to the release (e.g., species, tag number, release date). If the tagger 

neglected to record the length of the fish upon release - which occurred only in 

O.lo/o of the records used in this analysis- an individual's release length was 

estimated as the average length of at least five other summer flounder released 

within one week from the same region. We also omitted erroneous recapture data, 

such as encounters with fish that had been previously harvested by another angler. 

We restricted our analysis to fish larger than 25 em that were tagged within 

Chesapeake Bay between May and October, which is the time that summer flounder 

are primarily resident in inshore habitats (Chapter 2). Fish smaller than 25 em were 

excluded because they were recaptured in lower proportions than larger fish and 

we suspected that the smaller fish might be more susceptible to tagging- or 

handling-related mortality. 

In the period 2000-2011 volunteer taggers working with the VGFTP released 

47513 summer flounder within Chesapeake Bay, of which 3240 were subsequently 

encountered. At the time of tagging, the majority of fish were smaller than the 

recreational size limit (Figure 1; Table 1). Nearly half ( 4 7. 7%) of the encounters 

occurred within 30-days of release and another 39.2% of encounters occurred 

within the remaining months of the release year (up to 12 months post-release). 

Only 1.9% of encounters occurred after the fish was at liberty through two or more 

winters (Table 1). 
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Tagging Model 

Data from the VGFTP were analyzed using a Barker model (Barker 1997, 

Barker et al. 2004) because tagged fish were captured and released (hereafter 

referred to as a resighting) or harvested throughout the tagging year. A Barker 

model was used because the CJS model allows encounters of tagged individuals that 

occur only "instantaneously'' during tagging operations (Seber 1982; Pollock et al. 

1990; Lebreton et al. 1992). The Barker model includes parameters to estimate the 

probability of survival, harvest, resighting, and resighting before death (Figure 2). 

The resighting- before- death parameter is necessary to account for fish that die 

after being resighted but prior to the start of the next tagging season. Although the 

full Barker model includes additional parameters related to whether or not an 

individual is vulnerable to capture during tagging operations, those parameters are 

not pertinent to this study and are therefore not described here. The data input for 

this model are the encounter histories of marked individuals, which record the fate 

of each fish during each interval in the study. For this study, we used twelve 

intervals (i.e., years) ranging from May 1st of a given year through April 30th of the 

following year. 

Parameter estimation using this implementation of the Barker model 

assumes: 1) all marked animals have the same probability of being resighted or 

harvested, 2) survival is equal for every marked animal, 3) survival rates are not 

influenced by tagging, 4) marks are not lost or overlooked, 5) the fate of each tagged 

fish is independent of the fate of other tagged fish, 6) resightings are independent 

events that have no influence on subsequent survival (Seber 1982, Pollock et al. 
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1990, Lebreton et al. 1992, Barker et al. 2004). We consider how data collected by 

angler tagging programs may violate each of these assumptions throughout this 

paper. 

Within the first year after tagging, we hypothesized that all model 

parameters were influenced by a fish's release date. For example, a fish released in 

October 2001 would be less likely to be resighted prior to the start of the next 

interval (May 2002) compared with a fish released in June 2001. To incorporate 

such a relationship, we included the release date of each fish as a covariate in the 

model and estimated the parameter of interest (e.g., survival rate) using a 

generalized linear model with a legit link: 

(1) 

where Si is the survival of the ith individual, Po and Pt are the intercept and slope of 

the regression, and ti is the release date of the ith individual. A similar approach was 

used to estimate survival and encounter rates for sea turtles tagged and released 

throughout multiple months (Casale et al. 2007). A legit link is a common function 

used to model the effect of individual co variates on parameters estimated with 

mark-recapture models. Such parameters represent probabilities and the legit link 

conveniently constrains estimates of the apparent survival rate to values between 0 

and 1 (Lebreton et al. 1992). Survival probabilities estimated from the generalized 

linear model were forced to increase during a given interval by restricting the 

regression slope (Pt) to positive values. This was done because fish released in the 

later portion of the tagging interval are more likely to survive to the start of the 
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subsequent interval than fish released in the early portion of the tagging interval. 

We did not restrict the regression slope of the encounter parameters. Variances of 

the parameters estimated with the generalized linear model were calculated using 

the delta method. This method is based on a first-order Taylor series expansion and 

approximates the variance of a parameter that is the function of other random 

variables, each with their own estimate of variance (Seber 1982, Powell 2007). The 

delta method is an appropriate method to approximate variances assuming that the 

transformation is linear over the expected range of the parameter (Powell 2007), 

which we assume is true for our data. The parameter and variance estimates 

reported in this study are those corresponding to the first day of the tagging interval 

(i.e., May 1st). By arbitrarily setting this date equal to zero, the slope parameter of 

the logit link function could be eliminated from the delta method variance 

calculation. 

Data collected by the VGFTP violated the Barker model assumption that all 

individuals have the same probability of survival and harvest, because the smallest 

fish in the study were not subject to (legal) harvesting and hence, were not 

susceptible to fishing mortality. In addition, minimum- size-limit regulations 

differed for commercial and recreational fishers in Virginia. Throughout this study 

(2000-2011) the minimum size for the commercial fishery remained at 36 em 

whereas the minimum size for the recreational fishery ranged from 39 to 48 em 

(Table 2). Due to differences in minimum size limits among these sectors, fish of 

different lengths had different probabilities of harvest and were also expected to 

have different survival probabilities. To accommodate these differences in survival 
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and harvest rates, we partitioned the data into three groups based on size: 1) 

smaller than the commercial size limit, 2) larger than the commercial size limit but 

smaller than the recreational size limit, and 3) larger than the recreational size limit 

We used the Wang- L *growth model (Chapter 3) to determine the interval in which 

each fish became vulnerable to the commercial and recreational fisheries. In a few 

instances, the reported recapture length indicated the fish was in a size class 

different than that predicted by the growth model. When this occurred, we used the 

size class reported for the recapture, rather than the model-based designation. 

Multi-state models have previously been used to investigate the influence of animal 

size on survival probabilities (Nichols et al. 1992, Kendall and Nichols 2002), but a 

multi-state Barker model has not yet been described. Furthermore, due to the 

increased number of parameters required for a multi-state model, and the low 

number of encounters of fish at liberty for more than 2 years, data collected by the 

VGFfP may not be sufficient to fit a multi-state model. The deterministic growth 

model that we employed may artificially reduce the variance of our estimated 

parameters over those estimated with a multi-state model. We do not suspect this 

was a large concern because we used the growth model only to predict the interval 

(i.e., year) in which a fish became vulnerable to each fishing sector, thus, our 

predictions of growth did not need to be highly precise. 

One important benefit of partitioning the tagging data into size classes was 

that it provided a means to estimate summer flounder natural and fishing mortality 

rates because each size class experienced different levels of fishing pressure. The 

smallest size class was not subject to fishing mortality, so the estimated total 
161 



apparent survival probability for this size class could be used to estimate an 

instantaneous natural mortality rate (M) for summer flounder. Finite survival 

probabilities (S) estimated with the Barker model for all size classes were converted 

to instantaneous total mortality rates (Z) by the well-known relationship: 

Z =-In (S) (2) 

We hypothesized that the instantaneous fishing mortality rate could be estimated as 

the difference between the estimate of M and the estimates of Z obtained from the 

larger size classes. This approach assumes that the instantaneous natural and 

fishing mortality rates are additive and that natural mortality rates were constant 

for all size classes, which are common assumptions in the fisheries literature. We 

assumed that sublegal fish ( < 36 em) that were reported as dead upon recapture 

were not intentionally killed and harvested. We believe this was a reasonable 

assumption because recreational anglers generally exaggerated the length of 

sub legal fish that were harvested and reported to the VGFTP (Chapter 3); thus, fish 

that were killed and reported as sub legal were most likely incidental mortalities. 

This assumption also allowed us to reduce the number of parameters in the model 

because the harvest probability for sublegal fish could be constrained to be zero. 

Fish were also considered incidental mortalities based on remarks provided by 

anglers in their recapture report (e.g., gut-hooked fish). Incidental mortalities, as 

well as fish whose tags were removed prior to release, were treated as though they 

were resighted but the probability of future encounters for these fish was set equal 

to zero (Barker et al. 2004). 
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In addition to the known violations of the Barker tagging model described 

above, we also investigated the combined effect of handling and tagging on summer 

flounder survival rates. One common method of estimating tagging-related 

mortality is to estimate an additional parameter for the survival rate within the 

release year and compare that estimate with estimates of survival for fish released 

in previous years (i.e., comparing survival rates during a given year for two or more 

cohorts of tagged fish; Burnham et aJ. 1987). We could not use this approach with 

the VGFTP data because a negligible number of encounters occurred after fish were 

at large for more than 2 years (Table 1). Thus, we did not have confidence in our 

mortality estimates during years following the release year. Due to this limitation, 

we divided the release year into two intervals, each with its own estimate of survival 

and encounter probabilities. This approach allowed us to estimate mortality 

associated with the handling and tagging process during a short period following 

the initial release. The first interval, referred to as the tagging interval, was 

designated as the 30-day period following release; we assumed that all tagging-

related mortality would occur within this interval. The second interval comprised 

the remainder of the year (days 31 to 365) and will hereafter be referred to as the 

release year. We formulated the model to allow us to test the hypothesis that 

survival during the tagging interval was different from the average monthly survival 

observed in the release year. If this hypothesis is not rejected, then handling 

mortality is insignificant or could not be detected with the data in hand. If handling 

mortality was insignificant, then the overall model could be simplified by removing 

this parameter. If survival in the tagging interval differed significantly from monthly 
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survival during the remainder of the release year, then we used the survival 

estimate for the remainder of the release year to calculate the annual survival 

probability. We adjusted the release year survival probability to an annual survival 

probability using: 

12 

S'=Sll 
I I (3) 

where Si' is the annual survival for interval (I), and Si is the survival for release year 

interval (l) estimated by the Barker model. The fraction in the exponent was 

necessary because we are using a survival probability estimate from the release 

year interval, which is 11 months in duration, to calculate a survival probability for a 

full year (12 months). • 

Due to the potential biases associated with tag loss (Arnason and Mills 1981), 

a double- tagging experiment was conducted from 2009-2011 to estimate tag loss 

rates for the t-bar anchor tags applied by VGFTP taggers. This experiment was 

implemented by seven VGFTP taggers who volunteered to tag summer flounder 

with a Petersen disc tag in addition to the standard t-bar anchor tag used by the 

VGFTP. Due to the small number of encounters of tagged fish from the double-

tagging experiment, data were pooled among the seven taggers. Retention rates for 

the t-bar tags were calculated as the proportion of double-tagged flounder 

encounters that retained at-bar tag. These proportions were estimated separately 

for sublegal fish ( <36 em) and legal-sized fish (>36 em); we had insufficient data to 

estimate tag retention rates for all three size classes. To determine when tag loss 

occurred, we calculated the proportion of fish that retained tags within the first 10 
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days at liberty, within the remainder of the first 30 days at liberty, and then in each 

subsequent 30-day period. To ensure that the estimates of tag retention were not 

biased by small sample size, if at least 10 fish in a given size class were not 

recaptured in a given 30-day period, we pooled results with the subsequent month. 

Using this approach we identified five periods during which we could estimate tag 

retention: 1) less than 10 days, 2) 10-29 days, 3) 30-59 days,4) 60-149 days), and 

5) 150 or more days. For each period, we compared the proportion of fish that lost 

tags in the two size classes using a z-test Survival rates estimated with the Barker 

model were corrected for tag loss with: 

S"=s 
e (4) 

where S" is the tag-loss-adjusted survival rate, S is the survival rate estimate, and e 

is the tag retention rate or 1 minus the tag loss rate (Pollock et al. 1990). As before, 

the delta method was used to calculate the variance of the adjusted survival 

estimates, S". This assumes that survival and tag loss rates are independent, which 

is a reasonable assumption because we used different data to estimate the two 

parameters (Pollock et al. 2007). 

Parameter estimation and model selection 

All parameters were estimated using maximum likelihood implemented with 

Automatic Differentiation Model Builder (ADMB; Fournier et al. 2011). The Barker 

model available in Program MARK assumes that fish remain in the same state (i.e., 

size class) throughout the experiment (Barker et al. 2004). Thus, we used ADMB to 

integrate the growth model, which allowed fish to grow into the next size class, into 
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our analysis (Appendix IV). The growth model was used to determine the size class 

for each fish during each tagging interval (year), and the associated survival and 

encounter probabilities for that size class were used to build the likelihood. For 

tagging models, maximum likelihood estimation consists of constructing the 

multinomial likelihood that expresses the probability of observing a given 

encounter history as a function of the unknown parameters (Table 3, Table 4 ). 

Parameter estimates that maximize this likelihood function are determined 

iteratively. Because maximum likelihood is an asymptotic method, standard 

deviations of the parameters are estimated as the square root of the variances, 

which are estimated as the inverse of the Hessian matrix (i.e., the matrix of second 

derivatives; Lebreton et al. 1992). Simulated data were used to compare the results 

of the model coded in ADMB (excluding the growth model component) with results 

from Program MARK. In all cases, parameter estimates and standard deviations 

obtained from the ADMB code were identical to those produced by Program MARK. 

We also used simulated data that included growth to validate that the model coded 

in ADMB returned the correct parameter estimates. 

Multiple models were fit to the summer flounder tagging data and Akaike's 

information criterion (AIC; Akaike 1973) was used to select the most appropriate 

model. The model permits each parameter (e.g., survival rate in the tagging 

interval) to vary by size class and time (year). In terms of size classes, we allowed 

each model parameter to either: 1) remain constant among size classes, 2) differ 

between sublegal fish ( <36 em) and legal fish (>36 em), or 3) differ among the three 

size classes. Furthermore, each parameter included in the model was allowed to 
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remain constant throughout the study (2000-2011) or to vary by year. With four 

rate parameters (i.e., survival, harvest, resighting, and resighting before death), each 

of which could vary by year and by size class during the tagging, release year, and 

post-release year intervals, we calculated that 1.96*1012 different parameter 

combinations was possible. The most complex of these models contained 649 

parameters. Due to the large number of candidate models, we developed an 

approach to select the most appropriate model based on a set of reasonable 

hypotheses regarding summer flounder survival and encounter probabilities. We 

first fit a starting model that assumed all parameters were invariant with size class 

and time, with the exception of harvest probability, which was assumed to vary 

among the three size classes. We varied harvest probabilities by size class because 

sub legal fish were constrained to have a harvest probability of zero, whereas fish 

that were vulnerable to both commercial and recreational fishers had an increased 

harvest probability relative to fish that were subject to harvest in the commercial 

fishery only. In the starting model, we also estimated the probabilities of harvest 

and resighting in the release year as a function of release date using a logit link This 

was done because fish released later in the year were at liberty for a shorter 

duration and therefore had a lower probability of harvest or resighting prior to the 

beginning of the following year. For the starting model, we did not assume that 

survival in the release year depended on release date because it is likely that 

mortalities primarily occurred during the winter and, thus, would not be influenced 

by the release date (recall that fish were released between May and October). 

167 



After fitting the starting model, we developed a series of potential models to 

address six questions: 1) does survival in the release year vary with release date, 2) 

how many size classes are needed to model survival and encounter probabilities in 

the release year, 3) how many size classes are needed to model survival and 

encounter probabilities in the tagging interval, 4) how many size classes are needed 

to model survival and encounter probabilities after the release year, 5) do survival 

and encounter probabilities in the release year vary inter-annually, and 6) do 

survival and encounter probabilities in the tagging interval vary inter-annually? 

Due to the paucity of releases (n=1169) and encounters (n=118) of fish in the 

largest size class, we could only fit models that allowed differences in the 

probabilities of survival and resighting between fish in the sublegal ( <36 em) and 

legal (>36 em) size classes. Likewise, due to the lack of encounters offish at liberty 

for more than two years, we did not construct models with time-varying survival 

and encounter probabilities in the post-release year intervals. For each of the above 

questions, the model with the lowest AIC value was selected and used as the base 

model for the subsequent question. Although this may not be the ideal procedure 

for identifying the most parsimonious model, the large number of possible models 

effectively precluded other approaches. 

Results 

Participants in the double- tagging study released a total of 2682 fish, of 

which 314 were subsequently encountered. A higher proportion of sublegal fish 

( <36 em) retained their tags between 10 and 59 days compared with fish in the 

larger size classes (Figure 3). Between 10- and 29-days after release, 93% and 78% 
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of the sublegal and legal sized fish, respectively, had retained their t-bar tags 

(z=2.04, p=0.04). However, after fish were at liberty for more than 60 days, tag 

retention rates were comparable among size classes (Table 5). Based on this 

observation, we pooled the data for the different size classes after 60 days at liberty 

and, using the proportion of encountered fish (n=40) recaptured with at-bar tag 

(n=20), calculated a tag retention rate of 0.5 ± 0.08. Tag retention rates were 

comparable for fish at liberty between 60-149 days and those at liberty for longer 

than 150 days, indicating that no chronic tag loss occurred after fish were at liberty 

for 60 days. However, it is difficult to make definitive conclusions regarding long-

term chronic tag loss because of small sample sizes (e.g., only three double-tagged 

fish were recaptured after 365 days at liberty). 

The most appropriate survival model contained multiple survival and 

encounter rates that varied among size classes but variations through time could 

not be detected for most model parameters (Table 6; Appendix IV). Within the 

tagging interval, the single parameter that was not influenced by fish size was the 

probability of being resighted before death. In addition, the probabilities of survival 

and resighting in the tagging interval varied throughout the 12 years of this study. 

Within the remainder of the release year, the probability of being resighted was the 

only parameter that was not different between the size classes. During the release 

year interval, the probability of a fish being resighted before death was the only 

parameter that varied by year. Perhaps not coincidentally, within the release year, 

the probability of being resighted before death was also the only parameter that did 

not depend on the release date of the fish. In many cases, models that used the 
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generalized linear model to adjust survival rate estimates by date of release often 

produced non-positive definite Hessian matrices when the adjusted parameters 

were allowed to vary through time (Appendix IV), indicating a lack of sufficient data 

to estimate the parameters of the logit link model for each year of the study. Not 

surprisingly, the few recaptures after fish were at liberty for more than two years 

did not provide sufficient information to detect size-based differences in survival or 

encounter probabilities after the release year. 

Apparent survival rates of summer flounder during the tagging interval were 

low and may have resulted from stress in response to the e handling and tagging 

process. Our results indicate that approximately 60% of sublegal fish, and 65% of 

larger fish, do not survive beyond the first 30 days after release. After correcting 

for tag loss in the first 30 days after release, the probability of a sublegal fish ( < 36 

em) surviving the tagging interval ranged from 0.21 ± 0.08 to 0.66 ± 0.23 depending 

on year (mean= 0.40; Figure 4). Similarly, the tag-loss corrected estimate of the 

apparent survival probability for legal-sized fish(> 36 em) ranged from 0.18 ± 0.09 

to 0.50 ± 0.24 (mean= 0.35; Figure 4). In many years the estimates of survival in 

the tagging interval were comparable between the two size classes, but in some 

years the probability of survival was greater for the sub legal fish. This was a 

counterintuitive result because we expected that the smaller fish would be more 

susceptible to the stresses associated with the capture, handling, and tagging 

processes and thus would exhibit lower survival rates during the 30 days post

release. 
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Of the fish that survived the beyond the tagging interval, annual total 

mortality rates were greater for sublegal fish than for fish subject to fishing 

mortality. Using the estimate of survival probability in the release year, the tag-loss 

corrected instantaneous mortality rate for sublegal summer flounder was 1.37 yrl, 

whereas the tag-loss corrected instantaneous mortality rate for legal-sized summer 

flounder was 0.49 yr-1 (Figure 5). This is another counterintuitive result, but 

appears to be an accurate representation of the data. Throughout this study, a 

greater proportion oflegal fish were encountered after the release year than 

sublegal fish (Figure 6). One explanation for this apparent difference in survival 

rates is that a larger proportion of sublegal fish permanently emigrated from 

Chesapeake Bay to locations with lower encounter rates. To investigate this post-

hoc hypothesis, we calculated the proportion of sublegal and legal individuals that 

were recaptured outside of Virginia during the months that summer flounder 

generally occupy inshore habitats (May through October). Nearly 15% of the 

sublegal summer flounder, but only 8% of the legal-sized fish, were encountered 

outside of Virginia after the release year (Figure 7); these two proportions were 

significantly different (z=1.98, p=0.047). Although we received recapture reports 

from fishers throughout the east coast, it is probable that the reporting rate, and 

thus, encounter probabilities, were lower for locations outside of Virginia. 

Unfortunately, our model could not account for these heterogeneous encounter 

probabilities, which could result in reduced estimates of apparent survival rates 

because most of the fish that permanently emigrated would be considered losses 

and therefore, these individuals contributed to the estimate of apparent mortality. 
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Discussion 

Our study demonstrated that data from volunteer angler tagging programs 

have great potential to aid in estimating fishing mortality rates, but that the 

weaknesses of the data must be considered and addressed in these analyses. Due to 

the design of the VGFfP, a number of the common assumptions of mark-recapture 

models were violated, making it difficult to accurately estimate the parameters of 

interest (i.e., survival). One of the assumptions violated was that marked 

individuals were released continuously throughout the tagging interval. A potential 

way of addressing this violation would have been to restrict the analysis to fish 

released during a brieftime period (e.g., two weeks) at the beginning of each tagging 

year in the study. This would consequently result in ignoring the majority of the 

tagging data, and thus, reduce the precision of the estimates of survival and 

encounter probabilities. Our method of using a generalized linear model to adjust 

survival and encounter probabilities based on the release date makes use of all the 

data; however, we suspect that a consequence of using the release-date adjustment 

was that we were unable to estimate inter-annual variability of adjusted 

parameters. We also caution that the quality of the data from volunteer taggers 

does not always meet scientific standards. Though rare, on some occasions, 

volunteer anglers did not report all of the requested information (i.e., release 

location, release date, tagging length). Also, a small number of the reported 

encounters exhibited peculiarities. For example, a few fish were allegedly 

encountered nearly a month prior to the release date reported by the tagger. This 

may have been the result of a misread tag, poor record keeping by the tagger, or 
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anglers misrepresenting the encounter to receive a reward. Although we are certain 

that some data have been compromised, we believe that most of the tagging and 

encounter data used in our analysis were accurate. 

Summer flounder released by participants in the VGFI'P exhibited low 

survival rates within 30 days of release. Average estimates of survival within the 

first 30 days of release were approximately 40% for sublegal fish and 35% for legal-

sized fish. These rates are comparable to the rate reported in an unpublished report 

by the New York Department of Environmental Conservation. In that tagging study, 

the total survival probability for sublegal fish was reported to be 4 7% (Weber 1984, 

cited in Terceiro 2011 ). We suspect that the low survival rates observed in our 

study is primarily due to the stress associated with the capture· and handling 

process rather than the tagging process, which is generally completed within one 

minute of the fish being landed. All fish included in this analysis were released 

between May and October, which are the months when the warmest water 

temperatures are recorded in the Chesapeake Bay. Increased water temperatures 

have often been associated with decreased catch-and-release survival rates of 

multiple species, with some studies reporting summer mortality rates greater than 

80% (Muoneke and Childress 1994, Nelson 1998, Wilde et al. 2000, Bettinger et al. 

2005, Gale et al. 2011). The recreational discard mortality rate for summer flounder 

used in the current stock assessment is 10% (Terceiro 2011), a rate that is based on 

experiments that estimated mortality within 72 hours of release (Malchoff et al. 

2002). The 10% estimate of post-release mortality was supported by a study that 

observed the frequency of hooking-related injuries for summer flounder (Powell et 
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al. 2011). Our results indicate that the recreational discard mortality may be higher 

than that used by stock assessment scientists, possibly because post-release 

mortality may not be manifested within 72 hours of release (e.g., Fabrizio et al 

2008). In addition, post-release mortality may result from physiological stresses 

other than those associated with hooking injuries. We believe that further study is 

warranted to provide a more accurate estimate of post-release mortality from the 

recreational fishery. Given the potential for high post-release mortality rates, we 

also suggest that management policies to reduce discard mortality in summer 

flounder be considered. Results from a simulation study indicated that alternative 

management strategies such as slot limits or cumulative size limits could 

considerably reduce recreational discard mortality rates (Powell et al. 2010), but 

such approaches have not been implemented. 

During the remainder of the release year, sublegal fish had considerably 

greater mortality rates than legal-sized fish. We had originally hypothesized that 

the total mortality rate estimated for the sub legal fish could serve as an estimate of 

the natural mortality rate for adult summer flounder, but our estimate of the 

instantaneous total mortality rate for sublegal fish (Zsublegai=1.37) is unrealistically 

high and is considerably larger than the instantaneous total mortality rate of fish 

subject to fishing mortality (Ziegai=0.49). This suggests that sub legal and legal-sized 

fish experience different mortality rates, movement processes, or both. A post-hoc 

analysis of emigration indicated that sub legal fish exhibit a lower degree of site 

fidelity to Chesapeake Bay than larger fish. Thus, we postulate that the apparent 

mortality rates of sublegal fish may be higher because fish that have emigrated are 
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encountered at lower rates than fish that return to Chesapeake Bay. We believe that 

reporting rates, and therefore encounter rates, are lower outside of Chesapeake Bay 

because the VGITP is not advertised widely outside of Virginia. 

Other potential explanation for the apparent high mortality rate of sublegal 

summer flounder is that these fish do not survive the stresses associated with the 

spawning migration in the fall/winter or experience high discard mortality rates 

after capture by the commercial trawl fishery. Summer flounder mature at about 

1.5 years, when they reach a size of approximately 28-35 em, and immature fish 

(juveniles) generally remain inshore during the winter months (Smith and Daiber 

1977, Morse 1981, O'Brien et al. 1993, Chapter 3). This implies that many of the 

sub legal fish that were tagged and released by the VGFTP had yet to participate in 

an offshore spawning migration. If these fish attempted the spawning migration 

without sufficient energy reserves, they may experience greater mortality than 

larger conspecifics in better condition. Another potential explanation for the 

greater mortality rate observed for sublegal fish is the high discard mortality rate of 

these individuals from the commercial fishery that primary operates offshore 

during the winter. In the current stock assessment, the discard mortality rate of 

sublegal summer flounder captured by the commercial offshore trawl fishery is 

assumed to be 80% (Terceiro 2011), an estimate that is supported by a recent 

acoustic telemetry study (Yergey et al. 2012). Because of their lower swimming 

endurance capabilities, smaller flatfish may be more susceptible to capture in 

bottom trawl nets (Winger et al. 1999). Lower endurances and high discard 

mortality rates may contribute .to the higher mortality rates of smaller summer 
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flounder observed in this study. However, we suspect that these high observed 

mortality rates for sublegal summer flounder are not due to a single cause, but are 

more likely due to a combination of the hypotheses discussed above - permanent 

emigration, insufficient energy reserves, and high discard mortality rates. 

Smaller summer flounder tagged in Chesapeake Bay are less likely than 

larger fish to return in subsequent years, implying that some juveniles use 

Chesapeake Bay only as a nursery area. Other researchers have suggested this 

based on the observation that small summer flounder tend to be recaptured in areas 

north of the area in which they were tagged (Poole 1962, Lux and Nichy 1981, 

Desfosse 1995, Kraus and Musick 2001, Chapter 2). Furthermore, Fogarty (1981) 

found that smaller fish ( <30.5 em) were generally absent from northern portions of 

their range, which is consistent with the hypothesis that eggs and larvae are 

passively carried primarily into bays and estuaries in the southern portion of the 

mid-Atlantic Bight (Rogers and van den Avyle 1983, cited in Kraus and Musick 

2001). This suggests that southern bays and estuaries, such as Chesapeake Bay, act 

as sources of young fish (recruits) and that northern areas are sinks whose 

populations are partially maintained by nursery habitats to the south (Dias 1996). 

As such, southern bays and estuaries are essential fish habitat for juvenile summer 

flounder. 

The emigration of both small and large summer flounder from the 

Chesapeake Bay suggests that a multi-state model may be required to estimate 

summer flounder mortality rates from tagging data. One assumption of the 

modified Barker model we applied is that survival and encounter rates are equal 
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among individuals. As previously described, fish that permanently emigrate from 

the Chesapeake Bay may have lower encounter rates. These fish could have lower 

survival rates due to different minimum size limits in other coastal states; thus, 

individuals that are considered sublegal in Virginia may be legally harvested in 

other states, and vice-versa. These different minimum size limits result in 

heterogeneous harvest probabilities as well as heterogeneous survival rates for fish 

emigrating from Virginia. Our model does not address this heterogeneity, but a 

multi-state Barker model could be developed to estimate these probabilities for fish 

that remain within Virginia and for fish that emigrate from Virginia waters. Not 

only would a multi-state model provide more accurate estimates of survival and 

encounter probabilities, but such a model would also provide an estimate of the 

probability of emigration for different size classes of fish (Arnason 1973, Schwarz et 

al.1993, Nichols and Kendall1995, Lebreton and Pradel2002, Conn et al. 2004). Of 

course, such a complex model would require an exceptional amount of data (most 

notably significantly more recapture records from Atlantic coastal states); it is not 

likely possible to fit such a model with the current data from the VGFTP. 

Using estimates of the total mortality rate for legal-sized fish, it appears that 

the fishing mortality rate on summer flounder has been maintained at a reasonable 

level since 2000. Assuming that the instantaneous natural and fishing mortality 

rates are additive, and that the instantaneous natural mortality rate for legal sized 

fish is 0.25 (the mean rate currently used in the stock assessment; Terceiro 2011), 

we estimate that the instantaneous fishing mortality rate for legal-size fish (>36 em) 

was approximately 0.24. This estimate is within the range of annual instantaneous 
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fishing mortality rates estimated by the stock assessment from 2001 through 2010 

(0.22- 0.5; Terceiro 2011). Our estimated fishing mortality rate is slightly below the 

target fishing mortality of 0.254 recommended by the stock assessment review 

committee (NEFSC 2008), suggesting that management practices have been 

effective in maintaining exploitation at levels necessary to rebuild the stock. 

One of the major sources of uncertainty in our analysis is the low tag 

retention rate (0.5 ± 0.08), which vastly reduces the precision of the estimates of 

summer flounder survival. High rates of tag shedding pose a difficult problem for 

researchers because the number of encounters after increasing periods at large is 

inversely proportional to the tag shedding rate - the higher the tag shedding rate, 

the lower the number of encounters with tagged fish. The precision of our 

estimated tag retention rate was somewhat low due to the small sample sizes in the 

double-tagging experiment from which these estimates were derived. This 

uncertainty is propagated into the survival estimates that are corrected for tag loss. 

Unfortunately, the high tag loss and imprecision of this estimate from this study 

resulted in survival estimates with large confidence intervals. One method that has 

been used to reduce the uncertainty due to the "propagation of error" is to 

incorporate tag-loss parameters into the likelihood model (Fabrizio et al. 1999, 

Conn et al. 2004, Cowen and Schwarz 2006). Unfortunately, as with the multi-state 

model, survival models that incorporate tag loss would require considerably more 

encounter data, from both single and double-tagged individuals, than are available 

from the VGFTP. Based on the estimates of tag loss that were observed in this study 

and the potential for angler-based tagging programs to exhibit high and variable tag 
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loss rates, we recommend that researchers conduct independent tag-loss 

experiments, with multiple tag types (one of which should be a permanent tag or 

mark with 100% retention), prior to initiating an angler-tagging project. Such an 

approach will provide necessary guidance in the selection of the most appropriate 

tag type and tag placement, thereby providing better quality data for future analyses 

(Arnason and Mills 1981). 

Another aspect of this research that requires further attention is the question 

of overdispersion of the data. Mark-recapture data may exhibit overdispersion due 

to a number of reasons, but researchers generally focus on the lack of independence 

between individuals as the source of overdispersion (Anderson et al. 1994). For 

example, fish from the same school are not independent and data collected from fish 

in the same school would be overdispersed. Although overdispersion will not bias 

the estimates of the parameters, the precision of the estimates will be overestimated 

(McCullagh and Neider 1989); furthermore, model selection via AIC will tend to 

favor overfitted models (Anderson et al. 1994). One approach to correcting for 

overdispersion is to estimate the variance inflation factor (c-hat); however, 

estimation of c-hat is not straightforward in cases with multiple recapture events. 

One method that appears to offer the most promise in estimating the overdispersion 

in capture-recapture models is the median c-hat method (Cooch and White 1993). 

This method simulates data at increasing levels of overdispersion and compares a 

deviance metric from the simulated data to that estimated from the observed data. 

The value for c-hat is obtained from a logistic regression, where the binomial 

response is whether the simulated deviance metric is larger or smaller than the 
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observed deviance metric and the predictor is the value of c-hat Unfortunately, the 

median c-hat method cannot be applied to models that consider individual 

covariates, such as release date in our model. We suspect our data exhibit 

considerable overdisperion because: 1) the high rates of tag shedding reduced the 

number of fish encountered after two years at liberty and hence, the number of 

possible encounter histories considered by the model, and 2) individual tagger 

effects may be present, such as tagging-related mortality or differential tag loss, 

which could result in heterogeneous survival rates. We plan to use Program MARK 

to estimate the variance inflation factor for the VGFTP data and will subsequently 

use this estimate to adjust the estimated survival rate variances and to verify that 

we did not select an overfitted model. 

We believe that additional research is required to estimate a natural 

mortality rate for summer flounder. We agree with the statement of Maunder and 

Wong (2011) that "a well designed and implemented tagging program may be the 

best approach to produce reliable estimates ofM for summer flounder". Because 

CJS models cannot separately estimate natural and fishing mortality rates, we 

suggest using a Brownie-type model based on fish harvests throughout the US 

Atlantic coast (Brownie et al. 1985). For example, Jiang et al. (2007) developed a 

generalized Brownie model that, similar to the Barker model, allows fish to be 

encountered through harvesting or resighting. The natural and fishing mortality 

rate estimates derived from these models are highly dependent on the reporting 

probabilities, which can be estimated using a high reward tagging study (Pollock et 

al. 2001, 2002) or by planting a known number of tagged fish in the catch and 
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observing the number of returns (Hearn et al. 2003). Due to the importance of the 

natural mortality rate in providing an accurate assessment of the summer flounder 

stock abundance, we believe it is imperative that such a tagging study is initiated in 

the near future. 
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Table 1. Number of summer flounder released, resighted, and harvested for fish tagged as A) sublegal fish ( < 36 em), B) fish 
vulnerable to the commercial fishery (>36 em) but smaller than the recreational size limit (see Table 2), and C) fish vulnerable 
to both the recreational and commercial fishery. The numbers in the encounter year columns are the number of resighted fish 
I harvested fish. 

A 
Encounter Year 

Releases 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 total 
2000 1283 57/2 9/5 0/2 0/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 78 
2001 3198 231/9 9/2 2/0 0/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 254 
2002 945 64/0 6/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 71 
2003 1819 144/0 3/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 148 
2004 2291 101/0 4/6 1/2 0/0 1/1 0/0 0/0 0/0 116 

Release 2005 2371 126/1 14/5 3/2 0/1 1/0 0/0 0/0 153 
Year 2006 2035 123/3 13/2 2/1 1/0 0/0 0/0 145 

2007 3678 212/2 17/1 3/1 0/0 0/0 236 
2008 2027 73/1 11/0 1/1 0/0 87 
2009 4130 313/1 18/1 1/0 334 
2010 1778 87/0 3/4 94 
2011 711 21/0 21 
total 26266 59 254 77 155 105 139 148 234 98 331 108 29 1737 
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Table 1 cont. 

B 
Encounter Year 

Releases 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 total 

2000 510 10/6 1/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 20 
2001 1407 61/26 12/6 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 105 
2002 1553 58/12 8/7 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 86 
2003 804 27/7 5/4 0/0 0/0 1/0 0/0 0/0 0/0 0/0 44 

2004 1750 71/15 8/16 0/1 2/1 0/0 0/0 0/0 0/0 114 
Release 2005 1494 75/15 13/15 2/3 0/1 0/0 0/0 0/0 124 

Year 2006 1640 91/17 21/6 1/2 0/1 0/0 0/0 139 
2007 2249 99/16 16/14 1/2 1/0 0/0 149 
2008 3206 145/12 14/22 0/1 0/0 194 
2009 2268 121/15 7/5 0/2 150 
2010 2291 89/13 2/6 110 
2011 906 33/6 39 
total 20078 16 91 88 49 95 115 137 151 191 176 116 49 1274 
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Table 1 cont. 

c Encounter Year 
Releases 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 total 

2000 107 3/6 0/0 1/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 10 
2001 163 5/9 2/1 1/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 18 
2002 53 3/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 6 
2003 46 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3 
2004 145 5/9 1/3 0/1 0/0 0/0 0/0 0/0 0/0 19 

Release 2005 210 5/14 0/3 0/1 0/0 0/0 0/0 0/0 23 
Year 2006 239 9/13 0/5 0/0 0/0 0/0 0/0 27 

2007 53 0/4 0/2 0/0 0/0 0/0 6 
2008 35 0/2 0/0 0/0 0/0 2 
2009 28 0/0 0/0 0/0 0 
2010 29 0/0 0/0 0 
2011 61 1/3 4 

total 1169 9 14 10 4 14 23 26 10 4 0 0 4 118 
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Table 2. Minimum size limits (total length) for the summer flounder recreational 
fishery in Virginia from 2000 through 2011. 

Year Minimum recreational 
size limit (em) 

2000 39.4 
2001 39.4 
2002 44.5 
2003 44.5 
2004 43.2 
2005 41.9 
2006 41.9 
2007 47.0 
2008 48.3 
2009 48.3 
2010 47.0 
2011 44.5 
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Table 3. Parameters of the Barker model used to analyze summer flounder mark
recapture data collected by an angler tagging program in Virginia from 2000-2011. 
The full Barker model (Barker 1997, Barker et al. 2004) includes three additional 
parameters to estimate the vulnerability of animals to recapture during scientific 
research surveys. Note that the R' parameter is necessary because encounters can 
occur continuously throughout an interval, and thus, resighted animals do not 
necessarily survive to the start of the subsequent interval. 

Parameter Description 

The probability that an animal alive at time i is 
alive at time i+ 1 

The probability that an animal is resighted alive 
during the interval ( i, i+ 1) 

The probability that an animal is harvested 
during the interval (i, i+1) 

The probability that an animal is resighted alive 
prior to death during the interval (i, i+1) 
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Table 4. Possible encounter histories and corresponding encounter probabilities 
for animals released in the first sampling interval of a 3-interval study. Encounter 
history codes are: resightings = 1, harvests = -1, and no encounter = 0. The 
associated probabilities are based on a Barker model (Figure 1). x represents the 
probability that an animal is never encountered again. See Table 1 for description of 
the remaining parameters. 

Encounter history 

1 1 

1 1 

1 0 

1 0 

0 1 

0 1 

0 0 

0 0 

1 1 

1 -1 

0 1 

0 -1 

1 0 

-1 0 

0 0 

Where: 

i = sampling interval 

j = final interval 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

0 

0 

0 

0 

0 

0 

0 

Probability 

StRtSzRz((1-S3) (1-h3) R' 3 + S3R3X4) 

StRtSzRz(1-S3)r3 

StRtSz(1-Rz) ((1-S3)(1-h3)R'3 + S3R3X4) 

StRtSz(1-Rz)(l-S3)h3 

St(1-Rt)SzRz((1-S3)(1-h3)R'3 + S3R3X4) 

St(1-Rt)SzRz(l-S3)h3 

St(1-Rt)Sz(1-Rz)((1-S3) (1-h3)R'3 + S3R3X4) 

St(1-Rt)Sz(1-Rz)(l-S3)h3 

StRt((1-Sz)(1-hz)R'z +SzRzX3) 

StRt(1-Sz)hz 

St(1-Rt)((1-Sz) (1-hz)R'z +SzRzX3) 

St(1-Rt)(1-Sz)hz 

(1-St)(l-ht)R't +StRtX2 

(1-St)ht 

Xt 

ifi~j 

ifi = j+l 
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Table 5. Numbers (n) and proportion (prop) of sublegal and legal-sized double
tagged summer flounder that retained the t-bar anchor tag for various time intervals 
after tagging; z is the test statistic used to test equality of proportions between 
sublegal and legal fish and P is the probability of observing a larger z value, given 
the null hypothesis of no difference. 

Days at sub legal legal 
z p 

liberty n retained prop n retained prop 

<10 113 107 0.05 17 16 0.06 0.10 0.92 
10-29 84 78 0.07 23 18 0.22 2.04 0.04 
30-59 23 22 0.04 14 11 0.21 1.62 0.10 

60-149 11 6 0.45 12 5 0.58 0.62 0.54 
>150 8 4 0.50 9 5 0.44 0.23 0.82 
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Table 6. Model structure of the top three models used to estimate survival (S), harvest (h), resighting (R), and resighting 
before death (R') probabilities for summer flounder during for the first 30-days at liberty (tagging interval), remainder of 
release year (release year), and subsequent intervals (post release year). All fish were released within Chesapeake Bay 
between 2000 and 2011 by participants in the Virginia Game Fish Tagging Program. The most parsimonious model was 
selected using Akaike's information criterion (AI C). Also shown are the number of parameters (npar), the negative log
likelihood (NegLL), and the difference between a given model's AIC value and the minimum AIC value for all models 
considered (MIC). Notations within parentheses indicate if the parameter: 1) was constant for all size classes and throughout 
the study(.), 2) varied between sublegal and legal sized fish (2sz), 3) varied among fish that were sublegal, vulnerable only to 
the commercial fishery, or vulnerable to both the commercial and recreational fishery (3sz), 4) varied throughout the 12 years 
of the study (t), or 5) varied between sublegal and legal fish as well as through time (2sz*t). Parameters that are estimated 
with a generalized linear model, using release date as a covariate, are subscripted with Logit Parameter estimates for the best 
model are provided in Appendix 5. 

Model Tagging Interval Release Year Post Release Year npar Ne~ll AIC ~AIC 

1 S(2sz*t)h(3sz)R(2sz*t)R'(.) SLogit(2sz)hLogit(3sz)RLogit(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 90 15546.1 31272.1 0 

2 S(2sz*t)h{3sz)R(2sz*t)R'{t) SLogit(2sz)hLogit(3sz)Rtogit(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 101 15539.6 31281.2 9.1 

3 S(2sz*t)h(3sz)R(2sz)R'(t) SLosit(2sz)hLosit(3sz)RLosit(.)R'(2sz*t) S( .)h(3sz)R(. )R'( .) 79 15568.5 31294.9 22.8 
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Figure 1. Number of tagged summer flounder released between 2000 and 2011 in 
Virginia waters. Three size classes offish are represented: sublegal (solid line), 
vulnerable only to the commercial fishery (dashed line), and vulnerable to both the 
commercial and recreational fishery (dotted line). 
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Figure 2. Tree diagram of possible fates of tagged animals during a single sampling interval (i, i+ 1 ), and the resulting 
encounter history codes, for the Barker model used to estimate survival probabilities of summer flounder tagged and 
released within Chesapeake Bay by an angler tagging program (modified from Barker et al. 2004). 
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Figure 3. Proportion of sub legal ( <36 em; gray circles) and legal (>36 em; black 
circles) sized double- tagged summer flounder that shed t-bar anchor tags. Fish 
were double tagged with a t-bar anchor tag and a Peterson disc tag between 2009 
and 2011 and released in Virginia waters. Error bars are 1 standard error. 
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Figure 4. Tag loss corrected probability of survival of sublegal ( <36 em; gray line) 
and legal (>36cm; black line) sized summer flounder during the first 30-days at 
liberty. Standard errors, corrected for the uncertainty in tag loss using the delta 
method, are shown near each point. 
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Figure 5. Barker model (black bars) and tag- loss corrected (gray bars) estimates of 
total annual instantaneous mortality rates for sublegal and legal-sized summer 
flounder. Error bars for the Barker model estimates represent one standard error. 
Standard errors for tag-loss-corrected estimates are shown above the gray bars and 
were estimated using the delta method. These large errors are the result of the 
large variance in the estimate tag loss rate. 
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Figure 6. The proportion of summer flounder encountered after the release year 
that were sublegal (gray) or legal (black) at the time of tagging. Error bars are one 
standard error. 
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Figure 7. Proportion of summer flounder that emigrated from Chesapeake Bay 
between 2000 and 2011. A fish was considered to have emigrated if it was 
encountered after the release year and was resighted or harvested outside of 
Virginia between May and October. Sublegal ( <36 em) and legal (36 em) size class 
categories are based on the size of the fish at tagging. Error bars are 9 5% 
confidence intervals. 
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CONCLUSIONS 

In this dissertation I used multiple tagging technologies to examine the 

movements, growth, and mortality rates of summer flounder tagged and released in 

Chesapeake Bay. Each tag type used in this research -- acoustic, archival, and 

conventional -- provided different information on summer flounder behavior that 

yielded a more complete understanding when observations from these individual 

studies were combined. The results presented in this dissertation provide 

information that could be used by management agencies to further understand the 

behavior of these fish, and how to most effectively manage this population. 

In the first two chapters, archival and acoustic telemetry were used to 

investigate factors that influenced summer flounder movements on relatively small 

spatial scales. The smallest scale ( <1 meter) movements were observed with 

archival tags that continuously recorded depth and water temperature. These data 

indicated that summer flounder exhibited complex movements within Chesapeake 

Bay from August through early October. These movements were primarily 

influenced by: 1) tidal stage and temperature, and 2) fish length and time of day. 

Increases in water temperature corresponded with increases in fish activity, but this 

generally occurred during rising and the falling tides. Smaller summer flounder 

tended to be more active than larger individuals, and this difference in activity level 

was most apparent during night These fine-scale movements were similar to 

behaviors observed on a slightly larger scale (100s of meters) using acoustic 

telemetry. From June through early October 2006, summer flounder movements 

within an array of passive acoustic receivers in the lower Chesapeake Bay were 

201 



influenced mainly by fish size, tidal stage, and time of day. Similar to what I 

observed from archival-tagged fish, smaller summer flounder tended to be more 

active than larger individuals. In addition, the probability of movement was higher 

during the rising tide compared with other tidal phases. Finally, summer flounder 

tended to be more active at night, and this increased activity was more pronounced 

near the quarter moons. Observations from the archival telemetry study also 

suggested that summer flounder movements were influenced by fish size, time of 

day, and lunar phase; unfortunately, very few archival- tagged fish were observed 

through multiple lunar phases, which precluded any definitive conclusions 

regarding the effect oflunar phase on fish movements based on these data. The 

results from the archival and acoustic telemetry projects revealed similar patterns 

in summer flounder behavior, although the finer-scale observations of the archival 

tag indicated a temperature effect that was not detected with acoustic telemetry. 

The periods of increased movements observed with both archival and acoustic 

telemetry correspond to the times when mysids are most active. Mysids are one of 

the main prey items of smaller summer flounder (Latour et al 2008), suggesting that 

summer flounder behavior is related to foraging activity while resident in inshore 

habitats (e.g., Chesapeake Bay). 

Results from the archival, acoustic, and conventional tagging data also 

revealed patterns in the timing of summer flounder dispersal from Chesapeake Bay, 

extent of site fidelity, and trends in the direction that fish moved after emigration. 

Two archival-tagged fish emigrated from Chesapeake Bay and provided information 

on timing of dispersal. One fish dispersed from the Bay in mid-October 2009 and 
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was subsequently captured and harvested east of Virginia Beach prior to returning 

to Chesapeake Bay. The second fish dispersed from the Bay in early November 

2009, returned to Chesapeake Bay in June 2010, and dispersed again in late 

November 2010. Interestingly, in both years this fish left the Bay when water 

temperatures reached 14 C, even though this occurred nearly a month earlier in 

2009. Based on the acoustic telemetry study conducted in 2006, summer flounder 

moved towards the mouth of the bay between October and December. 

Approximately 90% of the fish that were resident at an artificial reef in the lower 

Bay had dispersed from the reef site by the end of October. Eleven fish that were 

released elsewhere in Chesapeake Bay with acoustic transmitters were detected at 

the artificial reef for brief periods between October and December. The brief 

duration that these individual fish remained at the reef during the fall months may 

indicate that these fish were exhibiting directed movement towards the mouth of 

the Chesapeake Bay as part of their annual offshore migration. The protracted time 

period over which these 'migrating' fish were detected suggests that individuals 

move independently and do not respond to a single common exogenous cue (e.g., 

temperature or photoperiod) to initiate dispersal from the bay. Conventionally 

tagged summer flounder that dispersed from Chesapeake Bay were primarily 

recaptured south of the Bay during winter and north of the Bay during spring and 

summer. This implies that Chesapeake Bay summer flounder primariJy spawn on 

the southern shelf, off the coast of North Carolina, but fish that permanently 

emigrate from Chesapeake Bay tend to move north. Recaptures of conventionally 

tagged summer flounder also indicate that fish smaller than 36 em were more likely 
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than larger fish to be recaptured outside of Virginia during the spring and summer, 

indicating that these smaller fish had permanently emigrated from Chesapeake Bay. 

The period of dispersal, as well as emigration patterns, observed in this dissertation 

are consistent with results from previous tagging studies (Desfosse 1995, Kraus and 

Musick 2001), indicating that these behaviors have been consistent through time. 

A growth model fit to summer flounder conventional tagging data revealed 

that recreational anglers harvested fish that were 2-4 em below the minimum size 

limit in Virginia, and that the extent of noncompliance tended to increase as 

minimum size limits increased. This growth model was fit to mark-recapture data 

collected by an angler tagging program operating in Virginia from 2000 to 2011. 

Comparing the growth model predictions with the reported lengths of summer 

flounder recaptured by recreational anglers indicated that a measurement bias 

existed only for fish predicted to be below the minimum size. Of the harvested fish 

that were predicted to be sublegal, 85% were reported to be 2. 78 ± 0.54 em larger 

than expected upon recapture. Furthermore, the extent of noncompliance appeared 

to be related to changes in management regulations. The proportion of harvested 

sublegal fish increased dramatically in years following large (5 em) increases in the 

minimum size limit or during years when the minimum size limit was perceived by 

recreational anglers to be excessively large. These increases in noncompliance with 

minimum size regulations were most likely the result of the reduced catch rate of 

legal sized fish due to the more strict regulations (Sullivan 2002). 

Due to low encounter rates of sub legal summer flounder ( <36 em), it was not 

possible to estimate the natural instantaneous mortality rate of these fish based on 
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conventional mark-recapture data, but results from this study did reveal high rates 

of handling mortality for all fish and high mortality rates of sub legal fish compared 

with legal sized fish (> 36 em). For summer flounder released in Chesapeake Bay 

from 2000 to 2011 by participants in a recreational angler tagging program, the 

average estimates of mortality within the first 30 days of release were 

approximately 60% for sublegal fish and 65% for legal-sized fish. These estimates 

of short-term mortality following tagging are similar to the 53% total mortality rate 

observed in a tagging study conducted of sublegal summer flounder captured by 

hook-and-line (Weber 1984, cited in Terceiro 2011). Due to the relatively low 

impact of the tagging process, it is likely that the mortality observed in my study 

(30-days post-release) is primarily the result of stress induced by handling of fish. 

Surprisingly, of the summer flounder that survived the first 30 days after tagging, 

sublegal fish had higher rates of total apparent mortality than fish susceptible to 

exploitation by the fishery. This high mortality rate for sublegal fish may be the 

result of: 1) sublegal fish emigrating outside of Virginia waters, where they might be 

encountered at a lower rate than larger fish that tend to return to Virginia waters, 2) 

sublegal fish suffering high rates of mortality during their first spawning migration, 

or 3) sublegal fish suffering high rates of discard mortality from the commercial 

trawl fishery that primarily operates on the continental shelf during winter. Based 

on these results, more research is necessary to investigate the recreational fishery 

discard mortality and to estimate the summer flounder natural mortality rate. 

Results from this dissertation can be used to guide the development of 

management regulations for summer flounder in Virginia and the mid-Atlantic 
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region. Based on the observed noncompliance of Virginia's recreational anglers 

with the summer flounder minimum size regulations, it would be prudent for 

management agencies to consider angler behavior when developing regulations. 

When the minimum size limit was below 45 em, anglers harvested fish 

approximately 2 em below the size limit; however, in years when the minimum size 

limit exceeded 45 em, anglers harvested fish 3-4.5 em below the size limit. Thus, 

Virginia anglers harvested fish of approximately the same size even though 

minimum size limits increased. This noncompliance behavior could negate the 

expected benefit of increasing minimum size limit for the fishery. Based on the 

results of this dissertation, angler compliance with harvest size regulations may be 

maximized by: 1) small incremental changes in minimum size limits, or 2) minimum 

size limits that result in sufficiently high catch rates of legal sized fish to satisfy 

anglers. Managers could also consider modifying recreational fishery regulations to 

reduce discard mortality from the recreational fishery. Based on the high handling 

morta1ity observed in this dissertation, alternative management strategies, such as 

slot limits or cumulative size limits (Powell et al. 2010), should be considered to 

reduce recreational discard mortality. 

References 

Desfosse JC (1995) Movements and ecology of summer flounder, Paralichthys 
dentatus, tagged in the southern Mid-Atlantic Bight. Ph.D. dissertation, College of 
William and Mary, Williamsburg, VA. 187 pp. 

Kraus RT and Musick JA (2001) A brief interpretation of summer flounder, 
Paralichthys dentatus, movements and stock structure with new tagging data on 
juveniles. Marine Fisheries Review, 63: 1-6. 

Latour RJ, Gartland J, Bonzek CF, and Johnson RA (2008) The trophic dynamics of 
summer flounder (Paralichthys dentatus) in Chesapeake Bay. Fisheries Bulletin, 
106:47-57. 

206 



Powell, EN, Bochenek, EA, and DePersenaire J (2010) Evaluation of bag- and size
limit options in the management of summer flounder Paralichthys dentatus. 
Fisheries Research 105: 215-227. 

Sullivan MG (2002) Illegal angling harvest of walleyes protected by length limits in 
Alberta. North American Journal of Fisheries Management, 22: 1053-1063. 

Terceiro M (2011) Stock assessment of summer flounder for 2011. US Dept 
Cammer, Northeast Fish Sci Cent Ref Doc. 11-20; 141 p. 
[http:/ fwww.nefsc.noaa.gov fnefscfpublications/] 

Weber AM (1984) Summer flounder in Great South Bay: survival of sub-legals 
caught by hook-and-line and released. New York State Department of 
Environmental Conservation, Division of Marine Resources. Stony Brook, NY. 27 
pp. 

207 

http://www.nefsc.noaa.gov/nefsc/publications/


APPENDIX 1-

Acoustic Telemetry Model Selection Tables and Figures 

Table 1. Global model selection table for the generalized linear mixed model fit to the 
binomial response (moved vs. not moved) for 42 summer flounder implanted with 
acoustic transmitters in the lower Chesapeake Bay during summer 2006. The global 
model included all the main effects- fish length (Length), tidal stage (Tide), time of day 
(TOO), lunar phase (Lunar), temperature (Temp), and hours at liberty (HAL)- as well as 
the interactions listed. All three-way interactions also included the component two way 
interactions. Any interaction that decreased Akaike's information criterion corrected for 
small sample size (AICc) by more than 1 unit from the main effects only model (Modell) 
was examined graphically (see Chapter 1 and this Appendix). 

Model Interactions AICc AAIC 

1 2860.14 0 
2 Length*Tide 2859.96 -0.18 
3 Length*TOD 2861.79 1.65 
4 Length* Lunar 2869.27 9.13 
5 Length*Temp 2865.67 5.53 
6 Tide*TOD 2860.65 0.51 
7 Tide* lunar 2877.07 16.93 
8 Tide*Temp 2872.31 12.17 
9 TOD*Lunar 2852.76 -7.38 
10 TOD*Temp 2862.18 2.04 
11 Lunar*Temp 2894.89 34.75 
12 Length *Tide*TOD 2862.12 1.98 
13 Length*Tide*Lunar 2897.35 37.21 
14 Length*Tide*Temp 2884.49 24.35 
15 Length*TOD*Lunar 2866.83 6.69 
16 Length*TOD*Temp 2877.06 16.92 
17 Length*Lunar*Temp 2928.7 68.56 
18 Length*HAL 2854.84 -5.3 
19 Tide*HAL 2863.25 3.11 
20 TOD*HAL 2859.46 -0.68 
21 Lunar*HAL 2867.85 7.71 
22 Temp* HAL 2860.92 0.78 
23 Length*HAL *Tide 2855.65 -4.49* 
24 Length*HAL *TOO 2857.71 -2.43* 
25 Length*HAL *Lunar 2858.66 -1.48* 
26 Length* HAL *Temp 2863.01 2.87 

*NOTE- these interactions were not considered in the final model because the AIC 

values indicate the model with just the length*HAL interaction is more parsimonious. 
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Table 2. Random-effects model selection for the generalized linear mixed model fit to the 

binomial response (moved vs. not moved) for 42 summer flounder implanted with 

acoustic transmitters in the lower Chesapeake Bay during summer 2006. The model with 

the lowest Akaike's Information Criterion (AICc} was selected. The delta AICc (dAICc} is the 

difference in value between each model and the model with the lowest AICc. Covariance 

structures were: variance components (vc}, compound symmetry (cs), autoregressive with a lag 

of 1 (ar(1}), and autoregressive moving average with a lag of 1 (arma(1,1}}. 

Model Random tag Covariance A ICc M.IC 
effect structure 

1 X VC 2852.76 0 

2 VC 2919.1 66.34 

3 AR(l} 2921.11 68.35 

4 cs 2921.11 68.35 

5 ARMA(l,l} 2923.12 70.36 

6 X AR(1) NA* NA* 

7 X ARMA(1,1) NA* NA* 

8 X cs NA* NA* 

*Note: fitting these models resulted in g-matrices that were not positive definite, implying that 

the random tag effect should not be included for those covariance structures. 
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Table 3. Fixed-effects model selection table showing the factors - Fish Length (Length), hours at 

liberty (HAL), Tidal stage (Tide), time of day (TOO), Lunar phase (Lunar), and water temperature 

(Temp)- and interactions for the generalized linear mixed models fit to the binomial 

response (moved vs. not moved) for 42 summer flounder implanted with acoustic 

transmitters in the lower Chesapeake Bay during summer 2006. Also shown are the values 

of Akaike's Information Criterion corrected for small sample size (AICc) and the difference in 

AICc values between a given model and the model with the lowest AICc. 

Model Length HAL Tide TOO Lunar Temp Interactions AICc MIC 

1 X X X X TOD*Lunar 2838.6 0 
2 X X X TOO* Lunar 2841.64 3.04 
3 X X X X X TOO* Lunar 2843.72 5.12 
4 X X X 2846.02 7.42 
5 X X X X X TOO* Lunar 2847.22 8.62 
6 X X 2848.82 10.22 
7 X X X X TOO* Lunar 2849.66 11.06 
8 X X X X TOD*Lunar 2850.31 11.71 
9 X X X X 2850.73 12.13 
10 X X X X 2853.92 15.32 
11 X X X 2856.51 17.91 
12 X X X 2856.72 18.12 
13 X X X X X TOO* Lunar 2858.72 20.12 
14 X X X X X 2859.02 20.42 
15 X X X X 2864.87 26.27 
16 X X X TOO* Lunar 2866.22 27.62 
17 X X TOO* Lunar 2869.26 30.66 
18 X X X X TOO* Lunar 2871.13 32.53 
19 X X X X TOO* Lunar 2875.15 36.55 
20 X X X TOD*Lunar 2876.92 38.32 
21 X X X TOD*Lunar 2878.18 39.58 
22 X X 2878.18 39.58 
23 X X X X X TOO* Lunar 2880.32 41.72 
24 X 2880.55 41.95 
25 X X 2882.83 44.23 
26 X X X 2882.86 44.26 
27 X X X 2883.07 44.47 
28 X X X 2883.89 45.29 
29 X X X X 2884.02 45.42 
30 X 2885.52 46.92 
31 X X 2885.76 47.16 
32 X X X X TOO* Lunar 2886.15 47.55 
33 X X 2886.44 47.84 
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Table 3 cont. 

Model Length HAL Tide TOO Lunar Temp Interactions AICc MIC 
34 X X X 2886.51 47.91 
35 X X X 2886.57 47.97 
36 X X 2888.53 49.93 
37 X X 2889.27 50.67 
38 X X X 2890.81 52.21 
39 X X X X 2891.41 52.81 
40 X X X X 2892.43 53.83 
41 X X 2893.79 55.19 
42 X X X 2893.97 55.37 
43 X X X X 2895.51 56.91 
44 X X X X X 2895.89 57.29 
45 X X X 2897.16 58.56 
46 X X X 2901.11 62.51 
47 X X X X 2901.47 62.87 
48 X 2910.68 72.08 
49 X X 2911.35 72.75 
50 X X 2911.69 73.09 
51 X X X 2912.25 73.65 
52 2913.31 74.71 
53 X 2913.97 75.37 
54 X 2914.17 75.57 
55 X X 2914.74 76.14 
56 X X 2918.24 79.64 
57 X X X 2919 80.4 
58 X X X 2919.45 80.85 
59 X 2920.89 82.29 
60 X X 2921.65 83.05 
61 X X 2921.98 83.38 
62 X X X 2922.62 84.02 
63 X X X X 2923.82 85.22 
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Table 4. Global model selection table for the general linear mixed model fit to the 
positive values of minimum distance traveled for 35 summer flounder implanted with 
acoustic transmitters in the lower Chesapeake Bay during summer 2006. The global 
model included all the main effects -fish length (Length), tidal stage (Tide), time of day 
(TOO), lunar phase (Lunar), temperature (Temp), and hours at liberty (HAL}- as well as 
the interactions listed. All three-way interactions also included the component two way 
interactions. None of the interactions decreased Aka ike's information criterion 
corrected for small sample size (AICc} by more than 1 unit, and thus, none were 
considered in the final model. 

Model Interactions A ICc AAIC 
1 652.4 0 
2 length *Tide 655.3 2.9 
3 length*TOO 654 1.6 
4 Length*Lunar 665.5 13.1 
5 Length*HAL 654.4 2 
6 Length*Temp 654.1 1.7 
7 HAL*Tide 656.5 4.1 
8 HAL*TOO 654.1 1.7 
9 HAL*Lunar 658.8 6.4 
10 HAL*Temp 654.4 2 
11 Tide*TOO 655.1 2.7 
12 Tide* lunar 667.3 14.9 
13 Tide*Temp 658.2 5.8 
14 TOO* lunar 661.1 8.7 
15 TOO*Temp 654.6 2.2 
16 Lunar*Temp 657 4.6 
17 Length* HAL *Tide 667.4 15 
18 length* HAL *TOO 659.1 6.7 
19 Length*HAL *Lunar 683.2 30.8 
20 lengh*HAL *Temp 659.6 7.2 
21 legnth*Tide*TOO 664.4 12 
22 Length*Tide*lunar 727.1 74.7 
23 Length*Tide*Temp 668.8 16.4 
24 length*TOO*Lunar 675.7 23.3 
25 Length*TOO*Temp 660.1 7.7 
26 length*Lunar*Temp 679.2 26.8 
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Table 5. Random-effects model selection for the generalized linear mixed model fit to the 

positive values of minimum distance traveled for 35 summer flounder implanted with 

acoustic transmitters in the lower Chesapeake Bay during summer 2006. The model with 

the lowest Akaike's Information Criterion (AICc) was selected. The delta AICc (AAICc) is the 

difference in value between each model and the model with the lowest AICc. Covariance 

structures were: variance components (vc), compound symmetry (cs), autoregressive with a lag 

of 1 (ar(l)), and autoregressive moving average with a lag of 1 (arma(l,l)). 

Model Random tag Covariance AICc 6AIC 
effect structure 

1 AR(1) 694.4 0 

2 X AR(1) 695.4 1 

3 ARMA(1,1) 696.2 1.8 

4 X ARMA(1,1) 697.3 2.9 

5 cs 706.2 11.8 

6 X vc 706.2 11.8 

7 vc 706.7 12.3 

8 X cs 708.2 13.8 
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Table 6. Fixed-effects model selection table showing the fixed factors - Fish Length (length), 

hours at liberty (HAL), Tidal stage (Tide), time of day (TOO), Lunar phase (Lunar), and water 

temperature (Temp)- and interactions for the generalized linear mixed models fit to the 

positive values of minimum distance traveled for 35 summer flounder implanted with 

acoustic transmitters in the lower Chesapeake Bay during summer 2006. Also shown are 

the values of Akaike's Information Criterion corrected for small sample size {AICc) and the 

difference in AICc values between a given model and the model with the lowest AICc. 

Model length HAL Tide TOO lunar Temp Interactions A ICc MIC 

1 X X X 646 0 
2 X X X X 646.4 0.4 
3 X X X 646.2 0.2 
4 X X 646.3 0.3 
5 X X X 646.5 0.5 
6 X X X X 646.7 0.7 
7 X X X X 647.2 1.2 
8 X X X X X 647.8 1.8 
9 X X 648.4 2.4 
10 X X 648.4 2.4 
11 X 648.4 2.4 
12 X X 648.5 2.5 
13 X X X 648.7 2.7 
14 X X 648.9 2.9 

15 X X 649.1 3.1 
16 X X X 649.2 3.2 
17 X X X 649.2 3.2 

18 X X X 649.6 3.6 
19 X 649.6 3.6 
20 X X X 649.8 3.8 

21 X X 650.2 4.2 

22 X X X 650.3 4.3 

23 X X X X 650.3 4.3 
24 X X X X X 650.4 4.4 

25 X X X X 650.5 4.5 

26 X X X X 650.7 4.7 

27 X 651.3 5.3 

28 X X X X 651.7 5.7 

29 651.8 5.8 

30 X 651.9 5.9 

31 X X 651.9 5.9 

32 X X X 652 6 

33 X X X X X 652.2 6.2 
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Table 6 cont. 

Model Length HAL Tide TOO Lunar Temp Interactions AICc MIC 

34 X 652.3 6.3 
35 X X X 652.4 6.4 
36 X X 652.5 6.5 
37 X X X X X 652.6 6.6 
38 X X X X 652.7 6.7 
39 X X 652.7 6.7 
40 X X X X 652.9 6.9 
41 X X X 653.3 7.3 
42 X X X X 653.4 7.4 
43 X X X 653.5 7.5 
44 X X X 654 8 
45 X X X X 654.3 8.3 
46 X X 654.3 8.3 
47 X X X X X 654.9 8.9 

48 X X 655.3 9.3 
49 X X X X 655.4 9.4 
so X X X X 655.4 9.4 
51 X X X X X 655.5 9.5 

52 X X X 655.6 9.6 

53 X X X 655.6 9.6 

54 X X 655.6 9.6 
55 X X X 655.9 9.9 

56 X X X 656.1 10.1 
57 X X X X 656.4 10.4 

58 X X X 657.6 11.6 

59 X 657.8 11.8 

60 X X 658 12 
61 X X X X 658.2 12.2 

62 X X 658.9 12.9 

63 X X X 659.3 13.3 
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Figure 1. Observed interaction between fish length and time at liberty on the 

movement probability of summer flounder within an acoustic array. Movements were 

observed for 42 summer flounder implanted with acoustic transmitters and released 

near an artificial reef in the lower Chesapeake Bay during the summer of 2006. Due to 

the complexity of the interaction, time at liberty is displayed as weeks at liberty and fish 

were grouped into SO mm length bins. Although including this interaction decreased 

the AICc values (see Table 1), it was excluded from the generalized linear mixed model 

fit to the binomial response (moved vs. not moved} because the interaction appeared to 

be random through time and did not have an ecological interpretation. 
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Figure 2. Minimum distance traveled and total length of 35 summer flounder observed 

moving between acoustic receivers while resident at Back River reef from June through 

September 2006. Also shown are the model predicted relationship (black line) and 95% 

confidence interval (dotted line) between fish length and minimum distance traveled. 

217 



620 

600 

-E 580 -CD 
g 560 

~ 
~540 
E 
:::J 520 
.§ 
c 
·- 500 
~ 

480 

460 
Day Night 

Figure 3. Mean minimum distance traveled during the day and night for 35 summer 

flounder observed moving between acoustic receivers while resident at Back River reef 

from June through September 2006. Error bars are± 1 standard error. 
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APPENDIX II -

Archival Telemetry Model Selection Tables and Figures 

Table 1. Global model selection table for the general linear mixed model fit to the 

depth change data from 14 summer flounder carrying archival tags in the lower 

Chesapeake Bay during summer 2009. The global model included all the main effects

fish length (length), tidal stage (Tide), time of day (TOO), lunar phase (lunar), and 

temperature (Temp)- as well as the interactions listed. All three-way interactions also 

included the component two way interactions. Any interaction that decreased Akaike's 

information criterion corrected for small sample size (AICc) by more than 1 unit from the 

main effects only model (Modell) was examined graphically. A figure for the 

interactions included in the final model (length*TOD and Tide*Temp) were provided in 

Chapter 2- figures 7 & 8. Figures for the other interactions considered (TOD*Temp, 

Lunar*Temp, Length*TOD*lunar, and Length*TOD*Temp) are provided in this 

appendix. 

Model Interactions A ICc AIC 

1 12593 0 
2 length*Tide 12597.1 4.1 
3 length*TOD 12588.6 -4.4 
4 length* lunar 12600.1 7.1 
5 length*Temp 12593 0 
6 Tide*TOD 12598.3 5.3 
7 Tide* lunar 12618.1 25.1 
8 Tide*Temp 12588.9 -4.1 

9 TOO* lunar 12598.1 5.1 
10 TOD*Temp 12589.4 -3.6 
11 lunar*Temp 12583.5 -9.5 
12 length*Tide*TOD 12599.6 6.6 

13 length*Tide*Lunar 12646.7 53.7 
14 length*Tide*Temp 12594.8 1.8 
15 Length*TOD*Lunar 12591.3 -1.7 

16 length*TOO*Temp 12589.3 -3.7 
17 length*Lunar*Temp 12600.8 7.8 
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Table 2. Fixed-effects model selection table showing the fixed factors - Fish Length (Length), 

Tidal stage (Tide), time of day (TOO), Lunar phase (Lunar), and water temperature (Temp)- and 

interactions for the general linear mixed models fit to depth change data for 14 summer 

flounder carrying archival tags in the lower Chesapeake Bay during summer 2009. Also 

shown are the values of Akaike's Information Criterion corrected for small sample size (AICc) 

and the difference in AICc values between a given model and the model with the lowest AICc. 

Model Length Tide TOO Lunar Temp Interactions A ICc ~IC 

1 X X X X Length*TOO, Tide*Temp 12573.2 0 

2 X X X Tide*Temp, TOD*Temp 12576.2 3 

3 X X X X 
Length*TOO, Tide*Temp, 

12576.4 3.2 
TOD*Temp 

4 X X X X Tide*Temp, TOD*Temp 12578 4.8 

5 X X X Tide*Temp 12579.9 6.7 

6 X X X TOO*Temp 12580.4 7.2 

7 X X X X Length*TOO, TOD*Temp 12580.7 7.5 

8 X X X X Length*TOD 12581.4 8.2 

9 X X X X Tide*Temp 12581.7 8.5 

10 X X X X TOO*Temp 12582.3 9.1 

11 X X X X 
length*Lunar, Tide*Temp, 

12583.4 10.2 
TOO*Temp 

12 X X X X X 
Length*TOO, Length*Lunar, 

12583.7 10.5 
Tide*Temp, TOD*Temp 

13 X X X 12584.1 10.9 

14 X X X X X 
Length*TOO, Length*Lunar, 

12584.5 11.3 
Tide*Temp 
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Table 2 cont. 

Model Length Tide TOO Lunar Temp Interactions A ICc AA.IC 

15 X X X X X 
Length*Lunar, Tide*Temp, 

12585.2 12 
TOD*Lunar, TOD*Temp 

16 X X X X 12585.9 12.7 

Length*TOD, Length*Lunar, 

17 X X X X X 
Tide*Temp, TOD*Lunar, 

12586 12.8 
TOD*Temp, 

Length*TOD*Lunar 

18 X X X X Length*Lunar, Tide*Temp 12587.1 13.9 

19 X X X X Length*Lunar, TOD*Temp 12587.5 14.3 

20 X X X X X 
Length*TOD, Length*Lunar, 

12587.8 14.6 
TOD*Temp 

21 X X Tide*Temp 12587.9 14.7 

Length*TOD, length*Lunar, 
22 X X X X X Tide*Temp, TOD*Lunar, 12588 14.8 

Length*TOD*Lunar 

23 X X X X X Length*TOD, Length*Lunar 12588.6 15.4 

24 X X X X X 
Length*Lunar, Tide*Temp, 

12588.9 15.7 
TOO* lunar 

Length*TOD, Length*Lunar, 
25 X X X X X TOD*Lunar, TOD*Temp, 12589.3 16.1 

Length*TOD*Lunar 

26 X X X X X 
Length*Lunar, TOD*Lunar, 

12589.4 16.2 
TOD*Temp 

27 X X X Tide*Temp 12589.7 16.5 

28 X X X Length*TOD 12590.6 17.4 

29 X X X X Length*Lunar 12591.1 17.9 
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Table 2 cont. 

Model Length Tide TOO Lunar Temp Interactions A ICc AAIC 

Length*TOD, Length*Lunar, 
30 X X X X X TOO* Lunar, 12591.3 18.1 

Length*TOD*Lunar 

31 X X 12592 18.8 

32 X X X X X Length*Lunar 12593 19.8 

33 X X X 12593.9 20.7 

34 X X 12594.1 20.9 

35 X X X Length*Lunar, Tide*Temp 12595 21.8 

36 X X X 12595.2 22 

37 X X X X Length*Lunar, Tide*Temp 12596.9 23.7 

38 X X X X 
Length*TOD, Length*Lunar, 

12597.2 24 
TOO* Lunar 

39 X X X Length*Lunar 12599.1 25.9 

Length*TOD, Length*Lunar, 
40 X X X X TOO* Lunar, 12599.1 25.9 

Length*TOD*Lunar 

41 X X X 
Length*Lunar, TOO*Lunar, 

12600.7 27.5 
TOD*Temp 

42 X X X X Length* lunar 12600.9 27.7 

43 X 12601.8 28.6 

44 X X X X Length* Lunar 12601.9 28.7 

45 X X 12602.9 29.7 
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Table 2 cont. 

Model length Tide TOO lunar Temp Interactions A ICc flAIC 

46 X X length*lunar, TOD*Iunar 12608.4 35.2 

47 X X X length*lunar, TOD*Iunar 12609.6 36.4 

48 X X TOD*Temp 12682 108.8 

49 X X X length*TOD, TOD*Temp 12682.3 109.1 

so X X X length*TOD 12682.7 109.5 

51 X X X TOD*Temp 12683.8 110.6 

52 X X 12685 111.8 

53 X X X 12686.8 113.6 

54 X X length*TOD 12689.9 116.7 

55 X X X length*lunar, TOD*lunar, TOD*Temp 12690.5 117.3 

56 X X X X 
length*TOD, length*lunar, TOD*lunar, 

12690.9 117.7 
TOD*Temp 

57 X 12691.1 117.9 

58 X X X X length*TOD, length*lunar 12691.3 118.1 

59 X X X X length*lunar, TOD*lunar, TOD*Temp 12692.3 119.1 

60 X X 12692.9 119.7 

61 X 12693.1 119.9 
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Table 2 cont. 

Model Length Tide TOO Lunar Temp Interactions A ICc ~IC 

63 X X X Length*Lunar, TOD*Lunar 12693.5 120.3 

64 X X 12694.2 121 

Length*TOD, Length*Lunar, 
65 X X X X TOD*Lunar, 12694.6 121.4 

Length*TOD*Lunar 

66 X X X X Length*Lunar 12695.3 122.1 

67 X X X 
Length*TOD, Length*Lunar, 

12698.2 125 
TOO* Lunar 

68 12699 125.8 

69 X X Length*Lunar, TOD*Lunar 12699.6 126.4 

70 X 12700.1 126.9 

Length*TOD, Length*Lunar, 
71 X X X TOO* lunar, 12700.8 127.6 

Length*TOD*Lunar 

72 X X Length*Lunar, TOD*Lunar 12701.2 128 

73 X X X Length*lunar, TOD*lunar 12701.4 128.2 

74 X X X Length*Lunar 12702.4 129.2 

75 X Length*Lunar, TOD*Lunar 12707.1 133.9 

76 X X length*Lunar, TOD*Lunar 12708.3 135.1 
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Figure 1. Interaction between water temperature and time of day on the movements of 

summer flounder based on depth changes observed with archival tags. Movements 

were observed for 14 summer flounder in the lower Chesapeake Bay during the summer 

of 2009. This interaction decreased the AICc values from the model with no interactions 

(see Table 1) and was selected in the second best model based on the fixed effects 

model selection (see Table 2). 
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Figure 2. Interaction between water temperature and lunar phase on the movements of 

summer flounder based on depth changes observed with archival tags. Movements 

were observed for 14 summer flounder in the lower Chesapeake Bay during the summer 

of 2009. Although including this interaction decreased the AICc value (see Table 1), it 

was excluded from the mixed because the interaction appeared to be random and did 

not have an ecological interpretation. 
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Figure 3.1nteraction between lunar phase and fish size-- categorized as small (<400 

mm) and large (>= 400 mm) -on the movements of summer flounder based on depth 

changes observed with archival tags. Movements were observed for 14 summer 

flounder in the lower Chesapeake Bay during the summer of 2009. Although including 

this interaction decreased the AICc value (see Table 1), it was not selected as an 

interaction in the final model, potentially due to small sample size. 
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Figure 4. Interaction between water temperature, time of day, and fish size-

categorized as small (<400 mm) and large(>= 400 mm) -- on the movements of summer 

flounder based on depth changes observed with archival tags. Movements were 

observed for 14 summer flounder in the lower Chesapeake Bay during the summer of 

2009. This interaction was excluded from the fixed-effects model selection because the 

interaction was primarily apparent only at temperatures less than 19 C and greater than 

25 C. At these temperatures the sample sizes were less than 5 fish. 
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APPENDIX 111-

ADMB Tagging Model Code 

Automatic differentiation model builder (ADMB) code used to fit a Barker model to 

summer flounder mark-recapture data collected by the Virginia Game Fish Tagging 

Program from 2000 to 2011. This program uses individual encounter histories to 

estimate the following parameters: 1) survival probability, 2) probability of resighting 

(i.e. catch-and-release), 3) probability of recovery (i.e. harvest), and 4) probability of 

being resighted-before-death within a year. Parameters can vary annually or be 

considered constant throughout the study. Parameters can also vary based on fish size 

and can either be: 1) constant regardless of fish size, 2) differ between sublegal (< 14") 

and legal sized fish, or 3) differ between sublegal fish, fish subject to harvest by the 

commercial fishery only, or fish subject to both the commercial and recreational fishery. 

DATA_SECTION 

//read in data from file 

init_int nEH; I /number of encounter histories in dataset 

init_int intervals; I I number of encounter intervals 

init_number tagdur; I /duration of tagging related mortality interval in months 

inlt_int Stag_link; I /use a logit link to model tagging related survival as a function of the release 

date (0 = no, 1 = yes) 

init_int rtag_link; I fuse a logit link to model recovery in the tagging interval as a function of the 

release date (O = no, 1 =yes) 

init_int Rtag_link; I /use a log it link to model resighting in the tagging interval as a function of 

the release date (O = no, 1 =yes) 

init_int Rdtag_link; I /use a log it link to model resighting- before- death in the tagging interval 

as a function of the release date (0 = no, 1 = yes) 

init_int Sstar_link; I /use a logit link to model survival in the first season as a function of the 

release date (0 = no, 1 =yes) 

init_int rstar_link; //use a logit link to model recoveries in the first season as a function of the 

release date (0 = no, 1 = yes) 

init_int Rstar_link; I /use a logit link to model resightings in the first season as a function of the 

release date (0 = no, 1 = yes) 

init_int Rdstar_link; //use a logit link to resightings-before-death in the first season as a 

function of the release date (0 = no, 1 =yes) 

init_int Stag_ size; I I does tagging related survival vary with size - 3 groups (<comm, 

>comm/<rec, >rec), 2 groups (<comm, >comm), 1 group, or there is no additional tagging 

related mortality (O) 

init_int Stag_ time; I I does tagging related survival vary with time (Yes= #intervals, No= 1) or 

there is no additional tagging related mortality (0) 
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init_int rtag_size; I I does recovery in the tagging interval vary with size- 3 groups (<comm, 

>comml<rec, >rec), 2 groups (<comm, >comm), or 1 group, or is equal to monthly recovery 

in the release year (0) 

init_int rtag_time; II does recovery in the tagging interval vary with time (Yes= #intervals, No= 

1) or there is no additional tagging related mortality (0) 

init_int Rtag_size; I I does resighting in the tagging interval vary with size- 3 groups (<comm, 

>comml<rec, >rec), 2 groups (<comm, >comm), or 1 group, or is equal to monthly recovery 

in the release year (O) 

init_int Rtag_time; I I does resighting in the tagging interval vary with time (Yes =#intervals, No 

= 1) or there is no additional tagging related mortality (O) 

init_int Rdtag_size; II does resighting- before- death in the tagging interval vary with size- 3 

groups (<comm, >comml<rec, >rec), 2 groups (<comm, >comm), or 1 group, or is equal to 

monthly recovery in the release year (0) 

init_int Rdtag_time; I I does resighting- before- death in the tagging interval vary with time 

(Yes = #intervals, No = 1) or there is no additional tagging related mortality (0) 

init_int Sstar_size; I I does survival in the first season vary with size- 3 groups (<comm, 

>comml<rec, >rec), 2 groups (<comm, >comm), or 1 group 

inlt_int Sstar_time; II does survival in the first season vary with time (Yes= #intervals, No= 1, 

survivial is not different in the first season = 0) 

init_int rstar_size; I I does recovery probability in the first season vary with size- 3 groups 

(<comm, >comml<rec, >rec), 2 groups (<comm, >comm), or 1 group 

init_int rstar_time; II does recovery probability in the first season vary with time (Yes= 

#intervals, No= 1, recovery is not different in the first season = 0) 

init_int Rstar _size; I I does resighting probability in the first season vary with size- 3 groups 

(<comm, >comml<rec, >rec), 2 groups (<comm, >comm), or 1 group 

init_int Rstar_time; II does resighting probability in the first season vary with time (Yes= 

#intervals, No = 1, Resighting is not different in the first season= 0) 

init_int Rdstar_size; II does probability of resighting-before-death in the first season vary with 

size- 3 groups (<comm, >comml<rec, >rec), 2 groups (<comm, >comm), or 1 group 

init_int Rdstar_time; II does probability of resighting-before-death in the first season vary with 

time (Yes= #intervals, No= 1, Resighting-before-death is not different in the first season= 0) 

init_int S_size; I I does survival in VA vary with size- 3 groups (<comm, >comml<rec, >rec), 2 

groups (<comm, >comm), 1 group, or equal to a fraction of Sstar (0) 

init_int S_time; I I does survival in VA vary with time (Yes= #intervals, No= 1) or is equal to a 

fraction of Sstar (O) 

init_int r_size; II does recovery probability in VA vary with size- 3 groups {<comm, 

>comml<rec, >rec), 2 groups {<comm, >comm), 1 group, or is a fraction of rstar {0) 

init_int r_time; II does recovery probability in VA vary with time (Yes= #intervals, No= 1) or is 

a fraction of rstar (O) 

init_int R_size; II does resighting probability in VA vary with size- 3 groups (<comm, 

>comml<rec, >rec), 2 groups (<comm, >comm), or 1 group 
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init_int R_time; I I does resighting probability in VA vary with time (Yes= #intervals, No= 1) or 

is a fraction of rstar (O) 

init_int Rd_size; I I does probability of resighting-before-death in VA vary with size- 3 groups 

(<comm, >comm/<rec, >rec), 2 groups (<comm, >comm), or 1 group 

inlt_int Rd_time; II does probability of resighting-before-death in VA vary with time (Yes= 

#intervals, No = 1) or is a fraction of rstar (0) 

I /correct the size and and time for each parameter that is set to zero. This is book-keeping so 

that the matrices in the parameter section are established correctly 

!!if(Sstar_time==O II Sstar_size==O) {Sstar_size=S_size; Sstar_time=O;} 

!!if(rstar_time==O II rstar_size==O) {rstar_size=r_size; rstar_time=O;} 

!!if(Rstar_time==O II Rstar_size==O) {Rstar_size=R_size; Rstar_time=O;} 

!!if(Rdstar_time==O II Rdstar_size==O) {Rdstar_size=Rd_size; Rdstar_time=O;} 

!!if(Stag_time==O II Stag_size==O) {Stag_size=Sstar_size; Stag_time=O;} 

!!if(rtag_time==O II rtag_size==O) {rtag_size=1; rtag_time=O;} 

!!if(Rtag_time==O II Rtag_size==O) {Rtag_size=1; Rtag_time=O;} 

!!if(Rdtag_time==O II Rdtag_size==O) {Rdtag_size=1; Rdtag_time=O;} 

! !if(S_size==O II S_time==O) {S_size=Sstar _size; S_time=O;} 

!!if(r_size==O II r_time==O) {r_size=rstar_size; r_time=O;} 

! !if(R_size==O II R_time==O) {R_size=Rstar _size; R_time=O;} 

!!if(Rd_size==O II Rd_time==O) {Rd_size=Sstar_size; Rd_time=O;} 

init_matrix data(1,nEH,1,intervals+7); I /read in matrix of encounter histories and tagging 

related information 

vector tagiD(1,nEH); I /tag 10 for each fish 

vector tagint(1,nEH); I /tagging interval for each fish 

vector tagsize(1,nEH); I /size state when tagged 

vector comint(1,nEH); I /interval when fish recruits to the commercial fishery 

vector recint(1,nEH); I /interval when fish recruits to the recreational fishery 

matrix EH(1,nEH,l,intervals); I /the capture history matrix 

vector nind(l,nEH); I /number of fish with a capture history- includes negatives for fish 

harvested, released with/tags, or killed incidentally 

vector tagday(l,nEH); I /day within the tagging interval that each fish was tagged 

//extract data on tag number, tagging interval, tagging size state, number of individuals, and 

tag day from the data matrix 

! !tagiD=column(data,l); 

! !tagint=column(data,2); 

! !tagsize=column(data,3); 

! !comint=column(data,4); 

231 



! ! recint=column( data,S ); 

! !nind=column(data,intervals+6); 

! !tagday=column(data,intervals+ 7); 

PARAMETER_ SECTION 

I /in this section we have to initialize different sets of matrices. let xx represent the name of a 
parameter (e.g. Stag, Sstar, Rstar, etc.) 

//The "xx_solve" matrices hold the values ofthe estimated parameters. The "xx" matrices fill 

in values from the "xx_solve" matrices for every interval in the study. The values in the "xx" 

matrices are the ones that are actually used in the likelihood. 

I /initialize different matrices of estimated parameters depending on if the model uses a logit 
link to estimate tagging related survival parameters 

! !if (Stag_link==1) 

!! { 
init_bounded_matrix Stag_alpha_solve(l,Stag_time,1,Stag_size,-100,100); 

init_bounded_matrix Stag_beta_solve(1,Stag_time,l,Stag_size,0,100); 

matrix Stag_alpha(1,intervals,1,Stag_size); 

matrix Stag_ beta( 1,intervals,1,Stag_size ); 

!! } 

!!else 
init_bounded_matrix Stag_solve(1,Stag_time,l,Stag_size,0,1); 

!lints; 

! !if (rtag_size==1) s=l; else s=2; 

! !if (rtag_link==l) 

!! { 
init_matrlx rtag_alpha_solve(l,rtag_time,s,rtag_size); 

init_matrix rtag_beta_solve(1,rtag_time,s,rtag_size); 

matrix rtag_alpha(l,intervals,1,rtag_size); 

matrix rtag_beta(l,intervals,1,rtag_size); 

!! } 
!!else 

init_bounded_matrix rtag_solve(1,rtag_time,s,rtag_size,0,1); 

! !if (Rtag_link==l) 

!! { 
init_matrix Rtag_alpha_solve(l,Rtag_time,1,Rtag_size); 

init_matrix Rtag_beta_solve(1,Rtag_time,l,Rtag_size); 
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matrix Rtag_ alpha( 1,intervals, 1,Rtag_size ); 

matrix Rtag_beta(1,intervals,1,Rtag_size); 

!! } 

!!else 

init_bounded_matrix Rtag_solve( 1,Rtag_ time, 1, Rtag_size,O, 1 ); 

! !if (Rdtag_link==1) 

!! { 

init_matrix Rdtag_alpha_solve(1,Rdtag_time,l,Rdtag_size,2); 

init_matrix Rdtag_beta_solve(1,Rdtag_time,1,Rdtag_size,2); 

matrix Rdtag_alpha(l,intervals,l,Rdtag_size); 

matrix Rdtag_beta( 1,intervals,1,Rdtag_size ); 

!! } 

!!else 

init_bounded_matrix Rdtag_solve(l,Rdtag_time,1,Rdtag_size,0,1,2); 

//initialize different matrices of estimated parameters depending on ifthe model uses a logit 

link to estimate survival in the first season 

! !if (Sstar _link==1) 

!! { 

init_bounded_matrix Sstar _a lpha_solve( 1,Sstar _ time,1,Sstar _size, -100, 100}; 

init_bounded_matrix Sstar _ beta_solve( l,Sstar _ time,l,Sstar _size,O, 100); 

matrix Ssta r _alpha( 1, interva Is, 1,Ssta r _size); 

matrix Sstar_beta(l,intervals,1,Sstar_size); 

!! } 

!!else 

init_bounded_matrix Sstar _solve(l,Sstar _time,l,Sstar _size,0,1); 

I /initialize different matricies of estimated parameters depending on if the model uses a logit 

link to estimate encounter probabilities in the 

first season 

!!if (rstar_size==1) s=1; else s=2; 

! ! if (rstar _link==1) 

!! { 

init_matrix rstar_alpha_solve(1,rstar_time,s,rstar_size); 

init_matrix rstar_beta_solve(1,rstar_time,s,rstar_size); 

matrix rstar_alpha(1,intervals,l,rstar_size); 
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matrix rstar _beta(l,intervals,l,rstar _size); 

! ! } 

!!else 
init_bounded_matrix rstar_solve(l,rstar_time,s,rstar_size,O,l); 

! !if (Rstar_link==l) 
! ! { 

init_matrix Rstar_alpha_solve(l,Rstar_time,l,Rstar_size); 

init_matrix Rstar_beta_solve(l,Rstar_time,l,Rstar_size); 

matrix Rstar_alpha(l,intervals,l,Rstar_size); 
matrix Rstar _beta(l,intervals,l,Rstar _size); 

!! } 

!!else 

init_bounded_matrix Rstar_solve(l,Rstar_time,l,Rstar_size,O,l); 

! !if (Rdstar_link==l) 
! ! { 

init_matrix Rdstar_alpha_solve(l,Rdstar_time,l,Rdstar_size,2); 
in it_ matrix Rdstar _beta_solve(l,Rdstar _time,l,Rdstar _size,2); 

matrix Rdstar _alpha(l,intervals,l,Rdstar _size); 

matrix Rdstar_beta(l,intervals,l,Rdstar_size); 

! ! } 
!!else 

init_bounded_matrix Rdstar _solve( 1, Rdstar _time, l,Rdstar _size,0,1,2 ); 

I /initialize matrices for the parameters that will be used in the likelihood. When logit link 

functions are used, the values within these matrices are set equal to the logit link of the 

estimated alpha and beta parameters 

matrix Stag(l,intervals,l,Stag_size); 

matrix rtag(l,intervals,l,rtag_size); 

matrix Rtag(l,intervals,l,Rtag_size); 

matrix Rdtag(l,intervals,l,Rdtag_size); 

matrix Sstar(l,intervals,l,Sstar_size); 

matrix rstar(l,intervals,l,rstar_size); 

matrix Rstar(l,intervals,l,Rstar_size); 

matrix Rdstar(l,intervals,l,Rdstar _size); 

I /initialize matrices for the estimated and likelihood parameters representing survival and 

encounters probabilites for fish in Virginia 
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! !lnt t; 
! !if (S_time==intervals && Sstar_time!=O) t=2; else t=l; 

init_bounded_matrix S_solve(t,S_time,l,S_size,O,l); 

!!if (r_time==intervals && rstar_time!=O) t=2; else t=l; 

! !if (r _size==l) s=l; else s=2; 

init_bounded_matrix r _solve(t,r _ time,s,r _size,O,l); 

! !if (R_time==intervals && Rstar_time!=O) t=2; else t=l; 

init_bounded_matrlx R_solve(t,R_time,l,R_size,O,l); 

! !if (Rd_time==intervals && Rdstar_time!=O) t=2; else t=l; 

init_bounded_matrix Rd_solve(t,Rd_time,l,Rd_size,O,l,2); 

matrix S(2,intervals,l,S_size); 

matrix r{2,intervals,l,r_size); 

matrix R(2,intervals,l,R_size); 

matrix Rd(2,intervals,l,Rd_size); 

number chitag; //probability of never seeing a fish after tagging 

number chistar; //probability of never seeing a fish after the first year 

vector chi(l,intervals+l); //probability of never seeing a fish again 

vector probs(l,nEH); //probability of observing a particular likelihood 

number npar; I /number of parameters estimated in the model 

number AIC; //Akaikes information criterion 

objective_function_value negll; //the likelihood to minimize 

PRELIMINARY _CALCS_SECTION 

int i,j; 

I /initialize capture history matrix 

EH=O; 

I /build capture history matrix 

for (i=l;i<=nEH;i++) for (j=l;j<=intervals;j++) EH(i,j) = data(i,j+S); 

//calculate the number of parameters estimated for the model depending on size and time 

dependence of each parameter 

npar = Stag_size*Stag_time + rtag_size•rtag_time + Rtag_size*Rtag_time + 

Rdtag_size• Rdtag_ time; 

if(rtag_size!=l) npar -= rtag_time; 

npar += Sstar_size*Sstar_time + rstar_size•rstar_time + Rstar_size*Rstar_time + 

Rdstar_size*Rdstar_time; 
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if(rstar _size!=1) npar -= rstar_time; 

npar += S_size•s_time + r_size•r_time + R_size*R_time + Rd_size*Rd_time; 

if(S_time==intervals) npar -= S_size; I /correct for the last tagging interval, which only has an 

Stag and Sstar 

if(r_time==intervals) 

{ 

if(r_size==1) 

npar-= 1; 

else 

npar -= r_size-1; I /correct for the last tagging interval, which only has an rtag and rstar 

} 

if(R_time==intervals) npar -= R_size; I /correct for the last tagging interval, which only has an 

Rtag and Rstar 

if(Rd_time==intervals) npar -= Rd_size; I /correct for the last tagging interval, which only has an 

Rdtag and Rdstar 

if(r_size!=1) npar-= r_time; 

if(Stag_link==1) 

npar += Stag_size•stag_time; 

if(rtag_link==1) 

{ 

npar += rtag_size*rtag_time; 

if(rtag_size!=1) npar -= rtag_time; 

} 

if(Rtag_link==1) 

npar += Rtag_size*Rtag_time; 

if(Rdtag_link==1) 

npar += Rdtag_size*Rdtag_time; 

if(Sstar _link==1) 

npar += Sstar_size*Sstar_time; 

if(rstar_link==1) 

{ 

npar += rstar_size•rstar_time; 

if(rstar_size!=1) npar -= rstar_time; 

} 

if(Rstar _link==1) 
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npar += Rstar_size*Rstar_time; 

if(Rdstar _link==l) 

npar += Rdstar_size*Rdstar_time; 

PROCEDURE_SECTION 

int i,j,t,day; 

//determine what parameter estimates to use for the likelihood depending on if a link is used, 

the number of size classes and time periods for each parameter in the first season 

for(i=l;i<=intervals;i++) 

forU=l;j<=Sstar _size;j++) 

if (Sstar_link==l) 

{ 

if(Sstar_time==intervals) 

{ 

Sstar _a lpha(i,j)=Ssta r _alpha_solve(i,j); 

Sstar _beta(i,j)=Sstar _beta_solve(i,j); 

} 

else 

{ 

Sstar _a lpha(i,j)=Sstar _alpha_solve(l,j); 

Sstar _beta(i,j)=Sstar _beta_solve( l,j); 

} 

} 

else 

{ 

if(Sstar _ time==intervals) 

Sstar(i,j)=Sstar _solve(i,j); 

else if (Sstar_time != 0) 

Sstar(i,j)=Sstar _solve(l,j); 

else 

} 

{ 

if(S_time==intervals) 

Sstar(i,j)=S_solve(i,j); 

else 

Sstar(i,j)=S_solve(l,j); 

} 

for(i=l;i<=intervals;i++) 

forU=l;j<=rstar _size;j++) 
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{ 

if(rstar _size>l && j==l) j=2; 

if (rstar_link==l) 

{ 

if(rstar _ time==intervals) 

{ 

rstar _alpha(i,j)=rstar _alpha_solve(i,j); 

rstar _beta(i,j)=rstar _beta_solve(i,j); 

} 

else 

} 

{ 

rstar _ alpha(i,j)=rstar _ alpha_solve( l,j); 

rstar _beta(i,j)=rstar _beta_solve( l,j); 

} 

else 

} 

{ 

if(rstar_time==intervals) 

rstar(i,j)=rstar _solve(i,j); 

else if (rstar_time != 0) 

rstar(i,j)=rstar _solve( l,j); 

else 

} 

{ 

if (r _time==intervals) 

rstar(i,j)=r _solve(i,j); 

else 

rstar(i,j)=r _solve(l,j); 

} 

for(i=l;i<=intervals;i++) 

forU=l;j<=Rstar_size;j++) 

if (Rstar_link==l) 

{ 

if(Rstar_time==intervals) 

{ 

Rstar _alpha(i,j)=Rstar _alpha_solve(i,j); 

Rstar _beta(i,j)=Rstar _beta_solve(i,j); 

} 

else 
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} 

{ 

Rstar _alpha(i,j)=Rstar _alpha_solve(l,j); 

Rstar _beta(i,j)=Rstar _beta_solve(l,j); 

} 

else 

{ 

if(Rstar_time==intervals) 

Rstar(i,j)=Rstar _solve(i,j); 

else if (Rstar_time != O) 

Rstar(i,j)=Rstar _solve( l,j); 

else 

} 

if (R_time==intervals) 

Rstar(i,j)=R_solve(i,j); 

else 

Rstar(i,j)=R_solve(l,j); 

} 

for(i=l;i<=intervals;i++) 

for(j=l;j<=Rdstar _size;j++) 

if (Rdstar _link==l) 

{ 

if(Rdstar _time==intervals) 

{ 

Rdstar_alpha(i,j)=Rdstar_alpha_solve(i,j); 

Rdstar _beta(i,j)=Rdsta r _beta_solve(i,j}; 

} 

else 

{ 

Rdstar _alpha(i,j}=Rdstar _alpha_solve( l,j); 

Rdstar _beta(i,j)=Rdstar _beta_solve( l,j}; 

} 

} 

else 

{ 

if(Rdstar _time==intervals) 

Rdstar(i,j}=Rdstar _solve(i,j); 

else if (Rdstar_time != O) 

Rdstar(i,j)=Rdsta r _solve( l,j); 

else 
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} 

{ 

if (Rd_time==intervals) 

Rdstar(i,j)=Rd_solve(i,j); 

else 

Rdstar(i,j)= Rd _solve( l,j); 

} 

I /establish matrices when tagging related mortality is estimated 

for(i=l;i<=intervals;i++) 

forU=l;j<=Stag_size;j++) 

if (Stag_link==l) 

{ 

if{Stag_time==intervals) 

{ 

Stag_alpha(i,j)=Stag_alpha_solve(i,j); 

Stag_beta(i,j}=Stag_beta_solve(i,j); 

} 

else 

} 

{ 

Stag_alpha(i,j)=Stag_alpha_solve(l,j}; 

Stag_ beta(i,j)=Stag_ beta _solve( l,j); 

} 

else 

{ 

if(Stag_time==intervals) 

Stag(i,j}=Stag_solve(i,j); 

else if (Stag_ time != O) 

Stag(i,j)=Stag_solve(l,j); 

else 

{ 

I /use the Sstar parameters to estimate survival probabilites as a function of the tagging 

season duration (VGFTP is either 30 or 90 days) 

if(Sstar _link==O) 

Stag(i,j)=pow(Sstar(i,j),tagdurl(365-tagdur)); 

else 

} 

} 

Stag(i,j)=pow(mfexp(Sstar _alpha(i,j) + Sstar _beta(i,j})/(1 +mfexp(Sstar _alpha(i,j) + 

Sstar_beta(i,j))),tagdurl(365-tagdur)); 
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for(i=l;i<=intervals;i++) 

forU=l;j<=rtag_size;j++} 

{ 

if(rtag_size>l && j==l) j=2; 

if (rtag_link==l} 

{ 

if(rtag_time==intervals) 

{ 

} 

rtag_alpha(i,j}=rtag_alpha_solve(i,j); 

rtag_beta(i,j}=rtag_beta_solve(i,j); 

else 

} 

{ 

rtag_alpha(i,j}=rtag_alpha_solve(l,j}; 

rtag_beta(i,j}=rtag_beta_solve(l,j}; 

} 

else 

} 

{ 

if{ rtag_ time==intervals) 

rtag(i,j}=rtag_solve(i,j); 

else if (rtag_time != O) 

rtag(i,j)=rtag_solve(l,j); 

else 

rtag(i,l)=O; 

} 

for(i=l;i<=intervals;i++) 

forO= l;j<= Rtag_ size ;j++) 

if (Rtag_link==l) 

{ 

if(Rtag_ time==intervals) 

{ 

Rtag_alpha(i,j)=Rtag_alpha_solve(i,j); 

Rtag_beta(i,j)=Rtag_beta_solve(i,j); 

} 

else 

{ 

Rtag_alpha(i,j)=Rtag_alpha_solve(l,j}; 
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} 

Rtag_beta(i,j)=Rtag_beta_solve(l,j); 

} 

else 

{ 

if(Rtag_time==intervals) 

Rtag(i,j)=Rtag_solve(i,j); 

else if (Rtag_time != 0) 

Rtag(i,j)=Rtag_solve(l,j); 

else 

Rtag(i,l)=O; 

} 

for(i=l;i<=intervals;i++) 

for(j=l;j<=Rdtag_size;j++) 

if (Rdtag_link==l) 

{ 

if(Rdtag_time==intervals) 

{ 

Rdtag_alpha(i,j)=Rdtag_alpha_solve(i,j); 

Rdtag_beta(i,j)=Rdtag_beta_solve(i,j); 

} 

else 

{ 

Rdtag_alpha(i,j)=Rdtag_alpha_solve(l,j); 

Rdtag_ beta (i,j)= Rdtag_ beta_ solve( l,j); 

} 

} 

else 

{ 

if( Rdtag_ time==interva Is) 

Rdtag(i,j)=Rdtag_solve(i,j); 

else if (Rdtag_time != O) 

Rdtag(i,j)=Rdtag_solve(l,j); 

else 

Rdtag(i,l)=O; 

} 

I /determine what parameter estimates to use for the likelihood depending on the number of 

size classes and time periods for each parameter 

in Virginia after the first season 

for(i=2;i<=intervals;i++) 
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forO=l;j<=S _size;j++) 

if(S _ time==intervals) 

S(i,j)=S_solve(i,j); 

else if (S_time!=O) 

S(i,j)=S_solve(l,j); 

else 

{ 

I /use the Sstar parameters to estimate survival probabilites as a function of the tagging 

season duration (30 or 90 days for VGFTP) 

if(Sstar _link==O) 

S(i,j)=pow(Sstar{i,j),365/(365-tagdur)); 

else 

S(i,j)=pow(mfexp(Sstar _alpha(i,j) + Sstar_beta(i,j))/(1 +mfexp(Sstar _alpha(i,j) + 

Sstar_beta(i,j))),365/(365-tagdur)); 

} 

for(i=2;i<=intervals; i++) 

forO=l;j<=r _size;j++) 

{ 

if(r _size>l && j==l) j=2; 

if(r_time==intervals) 

r(i,j)=r _solve(i,j); 

else if (r_time!=O) 

r(i,j)=r_solve(l,j); 

else 

{ 

if(rstar _link==O) 

r(i,j)=pow(rstar(i,j),365/(365-tagdur)); 

else 

r(i,j)=pow(mfexp(rstar_alpha(i,j) + rstar_beta(i,j))/(l+mfexp(rstar_alpha(i,j) + 
rstar _beta(i,j) )),365/(365-tagdur) ); 

} 

} 

for(i=2;i<=intervals;i++) 

forO=l;j<=R_size;j++) 

if(R_time==intervals) 

R(i,j)=R_solve(i,j); 

else if (R_timel=O) 

R(i,j)=R_solve{l,j); 

else 
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{ 

if(Rstar_link==O) 

R(i,j)=pow(Rstar(i,j),365l(365-tagdur)); 

else 

R(i,j)=pow(mfexp(Rstar _alpha(i,j) + Rstar _beta(i,j))l(l +mfexp(Rstar _alpha(i,j) + 

Rstar _beta(i,j)) ),365/(365-tagdur) ); 

} 

for(i=2;i<=intervals;i++) 

for(j=l;j<=Rd_size;j++) 

if(Rd_time==intervals) 

Rd(i,j)=Rd_solve(i,j); 

else if (Rd_time!=O) 

Rd(i,j)=Rd_solve(l,j); 

else 

{ 

if(Rdstar _link==O) 

Rd(i,j)=pow(Rdstar(i,j),365/(365-tagdur)); 

else 

Rd(i,j)=pow(mfexp(Rdstar_alpha(i,j) + Rdstar_beta(i,j))/(l+mfexp(Rdstar_alpha(i,j) + 

Rdstar _beta(i,j)) ),365/(365-tagd ur) ); 

} 

Calculatelikelihood(); 

I /initialize and calculate the AIC value 

AIC=O; 

AIC=(2*negLL)+(2*npar); 

I I-------------- Functions --------------------------------------------I I 

I /calculate the likelihood based probability of capture for each capture history 

FUNCTION Calculatelikelihood 

//declare and initialize the parameters that are only needed in this function 

int i, j, k, e, first, com, rec, last, ind, tagsz, sz, Stagsz, rtagsz, Rtagsz, Rdtagsz, Sstarsz, rstarsz, 

Rstarsz, Rdstarsz; 

first = com = rec = last = ind = tagsz = sz = Stagsz = rtagsz = Rtagsz = Rdtagsz = 5starsz = rstarsz = 

Rstarsz = Rdstarsz = 0; 

double day; 

ivector Ssz(l,intervals); 
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ivector rsz(1,intervals); 

ivector Rsz(l,intervals); 

ivector Rdsz{1,intervals); 

I /initialize the negative log-likelihood, which is the value to be minimized in this function 

negll=O; 

I /this is the start of the main loop and is repeated for every fish in the encounter history. From 

here on out individual fish are identified by (i) 

for (i = 1; i <= nEH; i++) 

{ 

I /get values for each fish that are either input in the data file or are calculated with the 

LastObs function 

ind = nind(i); 

first= tagint(i); 

tagsz = tagsize(i); 

com = comint(i); 

rec = recint(i); 

last = LastObs(i); 

if (last==O) last=first; 

I /determine the size of each fish throughout every interval in the study. Then determine 

which size class to use for each variable depending on the number of size classes modeled 

for that variable 

//Note: I determined the intervals when a fish recruited to the commercial fishery (com) and 

the recreational fishery (rec) using a growth model that I fit to the tagging data. This was 

done in another program. 

if (Stag_size==1) Stagsz = 1; 

else if (Stag_size==2) 

{ 

if (tagsz==2 II tagsz==3) Stagsz = 2; 

else Stagsz = 1; 

} 

else Stagsz = tagsz; 

if (rtag_size==1) rtagsz = 1; 

else if (rtag_size==2) 

{ 

if (tagsz==2 II tagsz==3) rtagsz = 2; 

else rtagsz = 1; 

} 
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else rtagsz = tagsz; 

if (Rtag_size==1) Rtagsz = 1; 

else if (Rtag_size==2) 

{ 

if (tagsz==2 II tagsz==3) Rtagsz = 2; 

else Rtagsz = 1; 

} 

else Rtagsz = tagsz; 

if (Rdtag_size==1) Rdtagsz = 1; 

else if (Rdtag_size==2) 

{ 

if (tagsz==2 II tagsz==3} Rdtagsz = 2; 

else Rdtagsz = 1; 

} 

else Rdtagsz = tagsz; 

if (first<com) sz=1; 

else if (first>=com && first<rec) sz=2; 

else sz=3; 

if (Sstar_size==1) Sstarsz = 1; 

else if (Sstar_size==2) 

{ 

if (sz==2 II sz==3) Sstarsz=2; 

else Sstarsz=1; 

} 

else Sstarsz=sz; 

if (rstar_size==1) rstarsz = 1; 

else if (rstar_size==2) 

{ 

if (sz==2 II sz==3) rstarsz=2; 

else rstarsz=1; 

} 

else rstarsz=sz; 

if (Rstar_size==1) Rstarsz = 1; 

else if (Rstar_size==2) 

{ 

if (sz==2 II sz==3) Rstarsz=2; 
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else Rstarsz=1; 

} 

else Rstarsz=sz; 

if (Rdstar_size==1) Rdstarsz = 1; 

else if (Rdstar _size==2} 

{ 

if (sz==2 II sz==3) Rdstarsz=2; 

else Rdstarsz=1; 
} 

else Rdstarsz=sz; 

for (j=1; j<=intervals; j++) 

{ 

if (j <first) sz=tagsz; 

else if (j>=first && j<com) sz=1; 

else if (j>=com && j<rec) sz=2; 

else sz=3; 

if (S_size==1) Ssz(j) = 1; 

else if (S_size==2) 

{ 

if (sz==2 II sz==3) Ssz(j)=2; 

else Ssz(j)=1; 

} 

else Ssz(j)=sz; 

if (r_size==1) rsz(j) = 1; 

else if (r_size==2) 

{ 

if (sz==2 II sz==3) rsz(j)=2; 

else rsz(j)=1; 

} 

else rsz(j)=sz; 

if (R_size==1) Rsz(j) = 1; 

else if (R_size==2) 

{ 

if (sz==2 II sz==3) Rsz(j)=2; 

else Rsz(j)=1; 

} 

else Rsz(j)=sz; 
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if (Rd_size==1) RdszO) = 1; 

else if (Rd_size==2) 

{ 

if (sz==2 II sz==3) Rdsz0)=2; 

else Rdsz0)=1; 

} 

else RdszO)=sz; 

} 

II I I I I /Ill I I I I I I I I I I I I I I I I I I I I I I I I I I Link functions II I I I II /Ill II II Ill/ I I II I II I Ill II II Ill I I Ill I II I 

I /link function to estimate tagging related survival as a function of when a fish was tagged 

during the tagging interval 

if (Stag_link==1) 

{ 

day=tagday(i); 

Stag(first,Stagsz)=mfexp(Stag_alpha(first,Stagsz) + 

} 

Stag_beta(first,Stagsz)*day)/(1 +mfexp(Stag_alpha(first,Stagsz) + 

Stag_beta(first,Stagsz)*day)); 

//link function to estimate recovery in the tagging related mortality interval as a function of 

when a fish was tagged within an interval 

if (rtag_link==l) 

{ 

day=tagday(i); 

I /set recovery probability equal to zero if the fish is smaller than the commercial size limit 

if(rtag_size!=O && rtagsz==l) rtag(first,rtagsz)=O; 

rtag(first,rtagsz)=mfexp(rtag_alpha(first,rtagsz) + 

} 

rtag_ beta(first, rtagsz) *day)/( 1 +mfexp( rtag_ a I ph a (fi rst,rtagsz) + 

rtag_beta(first,rtagsz)*day)); 

I /link function to estimate resighting in the tagging related mortality interval as a function of 

when a fish was tagged within an interval 

if (Rtag_link==l) 

{ 

day=tagday(i); 

Rtag(first,Rtagsz)=mfexp(Rtag_alpha(first,Rtagsz) + 

Rtag_beta(first,Rtagsz)*day)/{l+mfexp(Rtag_alpha{first,Rtagsz) + 

Rtag_beta(first,Rtagsz)*day)); 
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} 

I /link function to estimate resighting before death in the tagging related mortality interval as 

a function of when a fish was tagged within an 

interval 

if (Rdtag_link==1) 

{ 

day=tagday(i); 

Rdtag(first,Rdtagsz)=mfexp(Rdtag_alpha(first,Rdtagsz) + 

} 

Rdtag_beta(first,Rdtagsz)*day)/(1+mfexp(Rdtag_alpha(first,Rdtagsz) + 

Rdtag_beta(first,Rdtagsz)*day)); 

I /link function to estimate survival in the first year as a function of when a fish was tagged 

during the tagging interval 

if (Sstar _link==1) 

{ 

day=tagday(i); 

Sstar(first,Sstarsz)=mfexp(Sstar_alpha(first,Sstarsz) + 

Sstar _beta(first,Sstarsz)*day)/(1 +mfexp(Sstar _alpha(first,Sstarsz) + 

Sstar _beta(first,Sstarsz)*day)); 

} 

I /link function to estimate recovery in the first year as a function of when a fish was tagged 

within an interval 

if (rstar_link==1) 

{ 

day=tagday(i); 

I /set recovery probability equal to zero if the fish is smaller than the commercial size limit 

if(rstar_size!=O && rstarsz==1) rstar(first,rstarsz)=O; 

rstar(first,rstarsz)=mfexp(rstar _a lpha(first,rstarsz) + 

} 

rstar _beta(first,rstarsz)*day)/( 1 +mfexp(rstar _alpha(first,rstarsz) + 

rstar _beta(first,rstarsz)*day)); 

//link function to estimate resighting in the first year as a function of when a fish was tagged 

within an interval 

if (Rstar _link==1) 

{ 

day=tagday(i); 
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Rstar(first,Rstarsz)=mfexp(Rstar_alpha(first,Rstarsz) + 

Rstar _beta(first,Rstarsz)*day)/(1 +mfexp(Rstar _alpha(first,Rstarsz) + 

Rstar_beta(first,Rstarsz)*day)); 

} 

//link function to estimate resighting before death in the first year as a function of when a 

fish was tagged within an interval 

if (Rdstar _link==1) 

{ 

day=tagday(i); 

Rdstar(first,Rdstarsz)=mfexp(Rdstar_alpha(first,Rdstarsz) + 

Rdstar _beta(first,Rdsta rsz)*day)/(1 +mfexp(Rdstar _a I pha(first,Rdstarsz) + 

Rdstar_beta(first,Rdstarsz)*day)); 

} 

///////////l//////ll/11 Calculate chis I I I I I I I II II I II I I I ///Ill/// I I II II II I I I Ill 

//calculate probabilities that a fish is never seen again when the fish was last known to be 

within Virginia 

for U=intervals+1;j>=2;j--) 

{ 

if U == intervals+1) 

chiU) = 1; I /after the final sampling season the probability of encounter is zero (or the log 

of 1) 

else 

{ 

if (r_size>1) r{j,1)=0; 

chi(j) = (1-S{j,Ssz{j)))*(l-r{j,rsz{j)))*(1-Rd{j,Rdsz{j))) + S{j,Ssz{j))*(1-R{j,Rsz{j)))*chi{j+1); 

} 

} 

I /calculate probabilities that a fish is never seen again after the first year 

if (rstar_size>1) rstar(first,1)=0; 

chistar = (1-Sstar(first,Sstarsz))*(1-rstar(first,rstarsz))*(1-Rdstar(first,Rdstarsz)) + 

Sstar(first,Ssta rsz) • ( 1-Rsta r( first,Rstarsz) )* chi(first+ 1); 

I /calculate probabilities that a fish is never seen again after being tagged 

if (rtag_size>1) rtag(first,1)=0; 

chitag = (1-Stag(first,Stagsz))*(1-rtag(first,rtagsz))*(1-Rdtag(first,Rdtagsz)) + 

Stag(first,Stagsz)*(1-Rtag(first,Rtagsz))*chistar; 

II////////////////////// Calculate probabilities ///////l/////l////l///////// 
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probs(i) = 0; 

//This is the loop to estimate probabilities for each fish's encounter history. Encounter 

histories can have values of: 

I I 0.1- fish that are encountered within the first year 

I I 1- fish that are encountered in Virginia after the first year 

I I 2 -fish that are encountered outside Virginia -we assume that fish do not emigrate in the 

tagging interval so this can only happen after the first year 

I I 999- the recapture location of this fish is unknown. These recaptures are ignored if the 

occur between the last resighting in VA and the first resighting outside of VA, but they 

are included in the likelihood if they are the last known encounter of this fish and the 

fish was not previously encountered outside of VA 

I I Negative values within the encounter history indicate that this fish was killed incidentally 

by the recapture fisher, or that the tag was removed by the recapture angler. 

for U =first; j <=last; j++) 

{ 

I /if there is no emigration set every encounter to have occurred within Virginia 

if (EH(i,j) == 2 II EH(i,j) == 999) 

EH(i,j) = 1; 

else if (EH(i,j) == -2 II EH(i,j) == -999) 

EH(i,j) = -1; 

I I probabilities between tagging and last known encounter 

if U <last) 

{ 

I /estimate tagging related survival, first season survival, and first season resighting based 

on encounter history 

if U == first) 

{ 

if (EH(i,j) == 1.1) 

probs(i) += log(StagU,Stagsz)*RtagU,Rtagsz)*SstarU,Sstarsz)*RstarU,Rstarsz)); 

else if (EH(i,j) == 1) 

probs(i) += log(StagU,Stagsz)*(1-RtagU,Rtagsz))*SstarU,Sstarsz)*RstarU,Rstarsz)); 

else if (EH(i,j) == 0.1) 

probs(i) += log(StagU,Stagsz)*RtagU,Rtagsz)*SstarU,Sstarsz)*(1-RstarU,Rstarsz))); 

else 

probs(i) += log(StagU,Stagsz)*(1-RtagU,Rtagsz))*SstarU,Sstarsz)*(1-RstarU,Rstarsz))); 

} 

I /estimate probabilities while a fish is known to still be within Virginia waters 

else 
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{ 

if (EH(i,j) != 0} 

probs(i) += log(S(j,Ssz(j))*R(j,Rsz(j))); 

else 

probs(i) += log(S(j,Ssz(j))*(1-R(j,Rsz(j)))); 

} 

} 

I /probabilities a fish is recovered, indicated by a negative number of individuals 

else if (EH(i,j)>O && ind == -1} 

{ 

if (EH(i,j) == 0.1) 

probs(i) += log((1-Stag(j,Stagsz))*rtag(j,rtagsz)); 

else if (EH(i,j) == 1.1) 

probs(i) += log(Stag(j,Stagsz)*Rtag(j,Rtagsz)*(1-Sstar(j,Sstarsz))*rstar(j,rstarsz)); 

else if (EH(i,j) == 1 && j ==first) 

probs(i) += log(Stag(j,Stagsz)*(1-Rtag(j,Rtagsz))*(1-Sstar(j,Sstarsz))*rstar(j,rstarsz)); 

else if (EH(i,j) == 1) 

probs(i) += log((1-S(j,Ssz(j)))*r(j,rsz(j))); 

} 

I /probabilities a fish is killed incidentally or released without tag 

else if (EH(i,j}<O) 

{ 

if (EH(i,j) == -0.1} 

probs(i) += log( ( 1-Stag(j,Stagsz))* ( 1-rtag(j,rtagsz))* Rdtag(j, Rdtagsz) + 

Stag(j,Stagsz) * Rtag(j, Rtagsz)); 

else if (EH(i,j) == -1.1} 

probs(i) += log(Stag(j,Stagsz)*Rtag(j,Rtagsz)*((1-Sstar(j,Sstarsz))*(1-

rstar(j,rstarsz))*Rdstar(j,Rdstarsz) + Sstar(j,Sstarsz)*Rstar(j,Rstarsz))); 

else if (EH(i,j) == -1 && j ==first) 

probs(i) += log(Stag(j,Stagsz)*(1-Rtag(j,Rtagsz))*((1-Sstar(j,Sstarsz))*(1-

rstar(j,rstarsz))*Rdstar(j,Rdstarsz) + Star(j,Sstarsz)*Rstar(j,Rstarsz))); 

else if (EH(i,j) == -1) 

probs(i) += log((1-S(j,Ssz(j)))*(1-r(j,rsz(j)))*Rd(j,Rdsz(j)) + S(j,Ssz(j))*R(j,Rsz(j))); 

} 

I /probabilities a fish is last resighted and released alive with tag 

else if (EH(i,j)>O) 

{ 

if (EH(i,j) == 0.1} 

probs(i) += log((1-Stag(j,Stagsz))*(1-rtag(j,rtagsz))*Rdtag(j,Rdtagsz) + 

Stag(j,Stagsz)*Rtag(j,Rtagsz)*chistar); 

else if (EH(i,j) == 1.1) 
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probs(i} += log(Stagij,Stagsz}*Rtagij,Rtagsz}*((l-SstarO,Sstarsz))*(l

rstarO,rstarsz))*RdstarO,Rdstarsz) + Sstarij,Sstarsz)*Rstarij,Rstarsz)*chi0+1))); 

else if (EH(i,j) == 1 && j == first) 

probs(i) += log(Stagij,Stagsz)*(l-Rtagij,Rtagsz))*((l-SstarO,Sstarsz))*(l

rstarO,rstarsz))*RdstarO,Rdstarsz) + Sstarij,Sstarsz)*RstarO,Rstarsz)*chiO+l))); 

else if (EH(i,j) == 1) 

probs(i) += log((l-Sij,SszO)))*(l-rO,rszO)))*Rd0,RdszO)) + su,sszO))*RU,RszU))*chiU+l)); 

} 

I /probabilities if a fish is never encountered after release 

else if (EH(i,j) == 0) 

probs(i} += log(chitag); 

} 

//sum up the probabilities for all fish in the encounter history. This is the value that is 

minimized. 

negll += -(fabs(ind)*probs(i)); 

} 

I /determine the last time a fish was encountered 

FUNCTION int LastObs(int x) 

int i, Last=O; 

for (i=l; i<=intervals; i++) 

if (EH(x,i) !=0) 

Last= i; 

return Last; 
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APPENDIX IV 

Tagging Model Selection Table and Final Tagging Model Parameter Estimates 

Table 1. Model selection table for the various Barker models fit to summer flounder mark-recapture data collected by the Virginia 

Game Fish Tagging Program from 2000-2011. These models were used to estimate survival (S), harvest (h), resighting (R), and 

resighting before death (R') probabilities for summer flounder during the first 30-days at liberty (tagging interval), remainder of 

release year (release year), and subsequent intervals (post release year). To select the most parsimonious model we first fit a simple 

starting model and then developed a series of potential models to address six questions: 1) does survival in the release year vary with 

release date, 2) how many size classes are needed to model survival and encounter probabilities in the release year, 3) how many size classes are 

needed to model survival and encounter probabilities in the tagging interval, 4) how many size classes are needed to model survival and 

encounter probabilities after the release year, 5} do survival and encounter probabilities in the release year vary inter-annually, and 6} do 

survival and encounter probabilities in the tagging interval vary inter-annually? For each of the above questions, the model with the lowest 

Akaike's information criterion {AIC) value was selected (shown in bold) and used as the base model for the subsequent question. Also 

shown are the number of parameters (npar) and the difference between a given model's AIC value and the minimum AIC value for 

all models considered (L\AIC). Notations within parentheses indicate if the parameter: 1) was constant for all size classes and 

throughout the study(.), 2) varied between sublegal and legal sized fish (2sz), 3} varied among fish that were sublegal, vulnerable 

only to the commercial fishery, or vulnerable to both the commercial and recreational fishery (3sz), 4) varied throughout the 12 

years of the study (t), or 5) varied between sublegal and legal fish as well as through time (2sz*t). Parameters that are estimated 

with a generalized linear model, using release date as a covariate, are subscripted with logit. 

Model Tagging Interval Release Year Post Release Year npar AIC l\ AIC 

Start S(. )h(3sz)R(.)R'{.) S(.)hLogit(3sz)RLogit(.)R'(.) S(. )h(3sz)R(.)R'(.) 18 31505.6 233.5 

1.1 S(.)h(3sz)R(.)R'(.) SLo11t(. )hLoalt( 3sz )RLoalt(. )R' (.) S(.)h(3sz)R(.)R'(.) 19 31480.5 208.4 

*Note- Hessian not positive definite 
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Table 1 cont 

Model Tagging Interval Release Year Post Release Year npar AIC l1AIC 

2.1 S(. )h(3sz)R(.)R 1
(.) SLogit(. )htogit(3sz)Rtogit(2sz)R1(2sz) S(.)h(3sz)R(.)R1

(.) 22 33241.2 1969.1* 

2.2 S(.)h(3sz)R(. )R1
(.) Stoglt(2sz)htoglt(3sz)Rtoglt(2sz)R1(2sz) S(.)h(3sz)R(.)R1

(.) 24 31477.9 205.8 

2.3 S( .)h(3sz)R(.)R1
(.) SLogit(. )hLogit(3sz )Rtogit(2sz)R '(.) S(.)h(3sz)R(.)R'(.) 21 31482.6 210.5 

2.4 S(. )h(3sz)R(.)R'(.) Stogit(2sz)hLoglt(3sz)RLogit(2sz)R'(.) S(.)h(3sz)R(.)R'(.) 23 31478.8 206.7 

2.5 S(.)h(3sz)R(.)R'(.) SLogit(. )hLogit(3sz)RLogit(.) R 1 (2sz) S(.)h(3sz)R(.)R1
(.) 20 33054.6 1782.5* 

2.6 S(.)h(3sz)R(.)R'(.) Stoatt(2sz)hLo1tt(3sz)RLoaJt(.)R'(2sz) S(.)h(3sz)R(.)R'(.) 22 31475.9 203.8 

2.7 S(.)h(3sz)R(. )R'(.) Stogit(2sz )hLogit(3sz)Rtogit(.) R 1(.) S(.)h(3sz)R(.)R 1
(.) 21 33003.1 1731 

3.1 S(O)h(3sz)R(2sz)R1(2sz) Stogtt(2sz)htogtt(3sz)Rtogit{.)R1{2sz) S(.)h{3sz)R(.)R1
{.) 23 38046.9 6774.8* 

3.2 S(.)h(3sz)R(2sz)R1(2sz) Stogtt(2sz)hLogit(3sz)RLogit(.)R1(2sz) S(.)h(3sz)R(.)R1
(.) 24 31443.3 171.2 

3.3 S(2sz)h(3sz)R(2sz)R'(2sz) Stogtt(2sz)htogtt(3sz)Rtogit(.)R1(2sz) S(. )h(3sz)R(.)R1
(.) 25 31399.8 127.7 

3.4 S(O)h(3sz)R(2sz)R'(.) SLogit(2sz)hLogit(3sz)RLogit(. )R' (2sz) S(.)h(3sz)R(.)R'(.) 22 54262.8 22990.7* 

3.5 S(.)h(3sz)R(2sz)R1
(.) Stogit(2sz)hLogtt(3sz)Rtogtt(.)R1(2sz) S(. )h(3sz)R(.)R1

(.) 23 31422.6 150.5 

3.6 S(2sz)h(3sz)R(2sz)R'(.) SLoatt(2sz)hLoatt(3sz)Rtoatt(.)R'(2sz) S(.)h(3sz)R(.)R'(.) 24 31401.6 129.5 

3.7 S(O)h(3sz)R(.)R1(2sz) Stogit(2sz)htogit(3sz)Rtogit(.) R' (2sz) S(. )h(3sz)R(.)R'(.) 22 40392.7 9120.6* 

3.8 S(. )h(3sz)R(. )R 1 (2sz) SLogtt(2sz )hLogtt(3sz )Rtogtt(.) R 1 (2sz) S(. )h(3sz)R(.)R1
(.) 23 31427 154.9 

3.9 S(2sz)h(3sz)R(.)R'(2sz) Stogit(2sz)htogit(3sz)Rtoglt(.)R1(2sz) S(.)h(3sz)R(.)R1
(.) 24 31413.7 141.6 

3.10 S(O)h(3sz)R(.)R'(.) Stogit(2sz)htogit(3sz)RLogit(.)R1(2sz) S(.)h(3sz)R(.)R1
(.) 21 31558 285.9 

3.11 S(2sz)h(3sz)R(.)R 1
(.) Stogtt(2sz)htogtt(3sz)Rtogit(.)R1(2sz) S(.)h(3sz)R(.)R1

(.) 23 31413.9 141.8 

*Note- Hessian not positive definite 
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Table 1 cont. 

Model Tagging Interval Release Year Post Release Year npar AIC l\AIC 

4.1 S(2sz)h(3sz)R(2sz)R1
(.) Stogit(2sz)htogit(3sz)Rtogit(.)R1(2sz) S(.)h(3sz)R(2sz)R 1(2sz) 26 31405.4 133.3 

4.2 S(2sz)h(3sz)R(2sz)R1
(.) Stoglt(2sz)htoglt(3sz)Rtogit(.)R1(2sz) S(2sz)h(3sz)R(2sz)R1(2sz) 27 31407.4 135.3 

4.3 S(2sz)h(3sz)R(2sz)R1
(.) Stogit(2sz)hLogit(3sz)Rtogit(.)R1(2sz) S(. )h(3sz)R(2sz)R1

(.) 25 31403.6 131.5 

4.4 S{2sz)h(3sz)R{2sz)R 1
{.) Stogit{2sz)hLoglt{3sz)Rtogit{.)R1{2sz) S{2sz)h(3sz)R{2sz)R1

(.) 26 31405.6 133.5 

4.5 S(2sz)h{3sz)R(2sz)R1
(.) SLoglt( 2sz) h Logit( 3sz) RLogit(.) R 1 

( 2sz) S(.)h(3sz)R(.)R1(2sz) 25 31414.7 142.6 

4.6 S(2sz)h(3sz)R(2sz)R 1
(.) Stogit(2sz)htoglt(3sz)Rtogit(.)R1(2sz) S(2sz)h(3sz)R(. )R 1 (2sz) 26 31405.4 133.3 

4.7 S( 2sz) h ( 3sz) R ( 2sz) R 1 
(.) Stoglt(2sz)htoglt(3sz)Rtoglt(. )R 1 (2sz) S(2sz)h(3sz)R(.)R1

(.) 25 31403.6 131.5 

5.1 S(2sz)h(3sz)R(2sz)R1
(.) Stoglt(2sz*t)htogit(3sz*t)Rtogit(t)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 156 31420.2 148.1* 

5.2 S(2sz)h(3sz)R(2sz)R1
(.) SLogit(2sz*t)hLoglt(3sz*t)RLoglt(t)R1(2sz) S(.)h(3sz)R(.)R1

(.) 134 31801.2 529.1* 

5.3 S(2sz)h(3sz)R(2sz)R 1
(.) SLogit(2sz *t)htogit(3sz *t)RLoglt(. )R 1( 2sz *t) S(.)h{3sz)R(.)R1

(.) 134 32511.4 1239.3* 

5.4 S(2sz)h(3sz)R(2sz)R1
(.) SLoglt(2sz *t)hLogit(3sz *t)RLogit(. )R 1(.) S(.)h(3sz)R(.)R1

(.) 112 31391.7 119.6 

5.5 S(2sz)h(3sz)R(2sz)R 1
(.) SLogit(2sz*t)hLogit(3sz)Rtogit(t)R1(2sz*t) S(.)h(3sz)R(.)R'(.) 112 33190.6 1918.5 

5.6 S(2sz)h(3sz)R(2sz)R'(.) Stogit(2sz*t)hLogit(3sz)Rtoglt{t)R'(2sz) S{. )h{3sz)R(.)R'{.) 90 32336.5 1064.4* 

5.7 S(2sz)h(3sz)R(2sz)R 1
(.) Stogit{2sz *t)hLogit{3sz)Rtogit(. )R' {2sz *t) S{.)h{3sz)R(.)R1

(.) 90 31418.7 146.6* 

5.8 S{2sz)h(3sz)R(2sz)R'{.) Stogit( 2sz *t)htogit( 3sz)Rtogit(. )R' (2sz) S(.)h(3sz)R(.)R'(.) 68 31793.2 521.1 * 

5.9 S(2sz)h(3sz)R(2sz)R'{.) Stogit(2sz)htogit(3sz*t)Rtogit(t)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 112 31411.8 139.7 

5.10 S{2sz)h(3sz)R(2sz)R'{.) Stogit(2sz)htogit{3sz*t)Rtogit{t)R'{2sz) S{.)h(3sz)R(.)R'(.) 90 31390.4 118.3 

5.11 S(2sz)h(3sz)R(2sz)R'(.) SLo11it(2sz)hto11it(3sz*t)RLosit(.)R'(2sz*t) S(.)h(3sz)R(.)R1
(.) 90 31399.3 127.2* 

*Note - Hessian not positive definite 
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Table 1 cont. 

Model Tagging Interval Release Year Post Release Year npar AIC t:.AIC 

5.12 S{2sz)h{3sz)R(2sz)R1
(.) SLogit(2sz)hLogit(3sz*t)RLog;t(.)R1(2sz) S(.)h(3sz)R(.)R1

(.) 68 32218.9 946.8* 

5.13 S(2sz)h(3sz)R(2sz)R1
(.) SLogit( 2sz)hLoglt(3sz) RLogit(t)R 1 (2sz *t) S(. )h(3sz)R(.)R'(.) 68 31365.8 93.7 

5.14 S(2sz)h(3sz)R(2sz)R'(.) SLogit(2sz)hLogit(3sz)RLogit(t)R'(2sz) S(.)h(3sz)R(.)R'(.) 46 31360.7 88.6 

5.15 S{2sz)h(3sz)R(2sz)R'(.) SLoalt(2sz)hLo11t(3sz)RLoalt(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 46 31352.6 80.5 

6.1 S(2sz*t)h(3sz*t)R(2sz*t)R1(t) SLoglt( 2sz)hLoglt( 3sz)RLogit(. )R 1 (2sz *t) S(.)h(3sz)R(.)R1
( .) 123 31296.5 24.4 

6.2 S(2sz*t)h(3sz*t)R{2sz*t)R'(.) SLoglt{2sz)hLoglt( 3sz)RLogit(. )R 1 (2sz *t) S(. )h(3sz)R(.)R1
(.) 112 31304.2 32.1 

6.3 S(2sz*t)h(3sz*t)R(2sz)R1(t) SLoglt(2sz)hLoglt( 3sz)RLogit(. )R '{2sz *t) S(. )h(3sz)R(.)R'(.) 101 31310.1 38 

6.4 S{2sz*t)h(3sz*t)R(2sz)R'(.) SLogit(2sz)hLoglt(3sz)RLoglt(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 90 31325.1 53 

6.5 S(2sz*t)h(3sz)R(2sz*t)R'(t) SLoglt( 2sz)hLogit( 3sz) RLogit(. )R' (2sz*t) S(.)h(3sz)R(.)R'(.) 101 31281.2 9.1 

6.6 S(2sz*t)h(3sz)R(2sz*t)R'(.) SLo11t(2sz)hLo11t(3sz)RLo11t(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 90 31272.1 0 

6.7 S(2sz*t)h(3sz)R(2sz)R '(t) SLogit(2sz)hLogit(3sz)RLogit(.)R'(2sz*t) S(.)h(3sz)R(.)R'(.) 79 31294.9 22.8 

6.8 S(2sz*t)h(3sz)R(2sz)R1
(.) SLoglt(2sz)hLogit(3sz)RLogit(. )R 1 (2sz *t) S(.)h(3sz)R(.)R1

(.) 68 31310.8 38.7 

6.9 S(2sz)h(3sz*t)R(2sz*t)R'(t) SLogit(2sz)hLogit(3sz )RLoglt(. )R 1 (2sz *t) S(.)h(3sz)R(.)R1
(.) 101 31332.2 60.1 

6.10 S{2sz)h(3sz*t)R(2sz*t)R1
{.) SLoglt{2sz)hLogit{3sz)RLoglt(. )R 1 {2sz*t) S{.)h{3sz)R(.)R1

(.) 90 31332.5 60.4 

6.11 S(2sz)h(3sz*t)R{2sz)R1(t) SLoglt(2sz)hLogit(3sz)RLogit(. )R 1 (2sz*t) S(.)h(3sz)R(.)R1
(.) 79 31343.2 71.1 

6.12 S(2sz)h(3sz*t)R(2sz)R'(.) SLogit(2sz)hLogit(3sz)RLogit(.)R1(2sz*t) S(. )h(3sz)R(.)R1
(.) 68 31366.5 94.4 

6.13 S(2sz)h(3sz)R(2sz*t)R'(t) SLogit(2sz)hLogit(3sz)RLogit(.)R'(2sz*t) S(. )h(3sz)R(.)R 1
(.) 79 31318.3 46.2 

6.14 S(2sz)h(3sz)R(2sz*t)R'(.) SLoglt(2sz)hLoglt(3sz)RLoglt(.)R'(2sz*t) S(.)h(3sz)R(.)R1
(.) 68 31318.6 46.5 

6.15 S(2sz)h(3sz)R{2sz)R 1(t) SLoslt(2sz)hLosit(3sz)RLoslt(.)R'(2sz*t) S(.)h{3sz)R(.)R1
(.) 57 31329.2 57.1 

*Note- Hessian not positive definite 
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Table 2. Estimates of encounter probabilities during the first 30-days after release for 

summer flounder released in Chesapeake Bay by participants in the Virginia Game Fish 

Tagging Program from 2000-2011. Parameter estimates and standard deviations (SO) 

are based on the most parsimonious Barker model (model 6.6 in table 1). The various 

size classes were: 1) commercial only- fish that were greater than 14" but less than the 

recreational size limit, 2) commercial and recreational - fish that were larger than the 

recreational size limit, 3) sublegal- fish that were less than 14", 4) legal- fish that were 

greater than 14", and 5) all - parameter is constant regardless of fish size. Parameters 

that varied inter-annually are distinguished by year, otherwise the model assumed the 

parameter was contant throughout the study. 

Parameter Size class Year Estimate so 
Harvest probability Commercial only All 0.0036 0.0006 

Harvest probability 
Commercial and 

All 0.0334 0.0068 
Recreational 

Resighting probability Sublegal 2000 0.0701 0.0183 
Resighting probability Sublegal 2001 0.0823 0.0144 
Resighting probability Sublegal 2002 0.0951 0.0278 
Resighting probability Sublegal 2003 0.1796 0.0373 
Resighting probability Sublegal 2004 0.0713 0.0167 
Resighting probability Sublegal 2005 0.0404 0.0081 
Resighting probability Sublegal 2006 0.0481 0.0096 
Resighting probability Sublegal 2007 0.0827 0.0148 
Resighting probability Sublegal 2008 0.0596 0.0172 
Resighting probability Sublegal 2009 0.1414 0.0224 
Resighting probability Sublegal 2010 0.1235 0.0321 
Resighting probability Sublegal 2011 0.2969 0.1758 
Resighting probability Legal 2000 0.0274 0.0304 
Resighting probability Legal 2001 0.0958 0.0223 
Resighting probability Legal 2002 0.0429 0.0177 
Resighting probability Legal 2003 0.0648 0.0292 
Resighting probability Legal 2004 0.0724 0.0154 
Resighting probability Legal 2005 0.0620 0.0131 
Resighting probability Legal 2006 0.0517 0.0106 
Resighting probability Legal 2007 0.0463 0.0101 
Resighting probability Legal 2008 0.0334 0.0077 
Resighting probability Legal 2009 0.0780 0.0173 
Resighting probability Legal 2010 0.1047 0.0281 
Resighting probability Legal 2011 0.1235 0.0564 
Resighting-before-death probability All All 0.0084 0.0053 
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Table 3. Estimates of encounter probabilities during the release year for summer 

flounder released in Chesapeake Bay by participants in the Virginia Game Fish Tagging 

Program from 2000-2011. ·Parameter estimates and standard deviations (SD) are based 

on the most parsimonious Barker model (model 6.6 in table 1). Parameters that were 

estimated using a legit-link have an intercept (13o) and a slope (p1). The various size 

classes were: 1) commercial only - fish that were greater than 14" but less than the 

recreational size limit, 2) commercial and recreational - fish that were larger than the 

recreational size limit, 3) sublegal- fish that were less than 14", 4) legal- fish that were 

greater than 14", and 5) all- parameter is constant regardless of fish size. Parameters 

that varied inter-annually are distinguished by year, otherwise the model assumed the 

parameter was contant throughout the study. 

Parameter Size class Year Estimate so 
Harvest probability - 13o Commercial only All -4.8340 0.4003 
Harvest probability - l31 Commercial only All 2.0478 0.8214 

Harvest probability - 13o Commercial and All -0.8834 0.3980 
Recreational 

Harvest probability - l31 Commercial and 
All 0.5656 0.7883 

Recreational 
Resighting probability- 13o All All -1.8201 0.2802 
Resighting probability- l31 All All -3.4505 0.4759 
Resighting -before-death probability Sublegal 2000 0.0457 0.0388 
Resighting -before-death probability Sublegal 2001 0.0975 0.0354 
Resighting -before-death probability Sublegal 2002 0.3370 0.1378 
Resighting -before-death probability Sub legal 2003 0.2289 0.0826 
Resighting -before-death probability Sublegal 2004 0.0557 0.0300 
Resighting -before-death probability Sublegal 2005 0.0421 0.0234 
Resighting -before-death probability Sublegal 2006 0.0274 0.0206 
Resighting -before-death probability Sublegal 2007 0.0526 0.0247 
Resighting -before-death probability Sublegal 2008 0.0687 0.0396 
Resighting -before-death probability Sublegal 2009 0.1563 0.0428 
Resighting -before-death probability Sublegal 2010 0.1325 0.0690 
Resighting -before-death probability Sublegal 2011 0.0000 0.0001 
Resighting -before-death probability Legal 2000 0.1575 0.0965 
Resighting -before-death probability Legal 2001 0.2853 0.0950 
Resighting -before-death probability Legal 2002 0.3293 0.1257 
Resighting -before-death probability Legal 2003 0.2718 0.1126 
Resighting -before-death probability Legal 2004 0.0794 0.0483 
Resighting -before-death probability Legal 2005 0.0673 0.0439 
Resighting -before-death probability Legal 2006 0.0760 0.0452 
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Table 3 cont. 

Parameter Size class Year Estimate so 
Resighting -before-death probability legal 2007 0.0948 0.0464 
Resighting -before-death probability legal 2008 0.0999 0.0539 
Resighting -before-death probability legal 2009 0.2102 0.0754 
Resighting -before-death probability legal 2010 0.2540 0.1058 
Resighting -before-death probability legal 2011 0.2799 0.1912 
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Table 4. Estimates of survival and encounter probabilities after the release year for 

summer flounder released in Chesapeake Bay by participants in the Virginia Game Fish 

Tagging Program from 2000-2011. Parameter estimates and standard deviations (SO) 

are based on the most parsimonious Barker model (model 6.6 in table 1). The various 

size classes were: 1} commercial only- fish that were greater than 14" but less than the 

recreational size limit, 2) commercial and recreational -fish that were larger than the 

recreational size limit, and 3) all- parameter is constant regardless of fish size. Each of 

these parameters were assumed to be contant throughout the study. 

Parameter Size class Year Estimate so 
Survival probability All All 0.1458 0.0154 
Harvest probability Commercial only All 0.0039 0.0011 

Harvest probability 
Commercial and 

All 0.0491 0.0102 
Recreational 

Resighting probability All All 0.0200 0.0197 
Resighting -before-death probability All All 0.0223 0.0062 
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