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ABSTRACT

Gaseous fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air- 
water interface of Southern Chesapeake Bay were calculated for the period January 
1994 through May 1995 using a modified two-film model. Additionally, the 
distributions of PAHs between the vapor and aerosol phase in the atmosphere, and 
between the freely dissolved and suspended particulate phase in the water column 
were investigated. Net instantaneous gaseous fluxes of PAHs were determined to 
vary in direction and magnitude both spatially and temporally across the air-water 
interface of Southern Chesapeake Bay at four sites ranging from remote to urban and 
highly industrialized. The magnitude of gas exchange fluxes was of the same order as 
wet and dry atmospheric depositional fluxes. Spatial variations in gaseous fluxes 
resulted from differences in the air-water concentration gradients between sites. 
Temporal variations in gas exchange fluxes resulted from seasonal changes in both 
water temperatures and vapor concentrations. Atmospheric PAH vapor concentrations 
increased exponentially with temperature at the non-rural sites suggesting 
volatilization from contaminated surfaces (soils, roads, vegetation) during wanner 
weather; whereas, PAH vapor concentrations at the rural site decreased with time. All 
sites experienced increased loadings of particulate-associated PAHs during winter. 
Mean total atmospheric PAH concentrations ranged from 7.87 ng/m? at a rural 
(Haven Beach) site to 92.8 ng/m3 at an urban (Elizabeth River) site. Plots of the 
logarithm of the particle-vapor partitioning coefficient (Cp/TSP*Cv) versus inverse 
temperature indicate different particle characteristics or atmospheric partitioning 
processes at the urban and rural sites. Three methods (gas sparging, semipermeable 
membrane devices, filtration with sorption of the dissolved contaminant fraction to 
XAD-2 resin) for determining freely dissolved contaminant concentrations in estuarine 
waters were investigated. Mean total PAH concentrations in surface waters ranged 
from 24.2 ng/I at a mainstem bay site to 91.1 ng/1 at the industrialized Elizabeth 
River site. Dissolved-particulate partitioning of PAHs approximated equilibrium 
theory at all sites and sampling periods. The results of this study support the 
hypothesis that gas exchange is a major transport process affecting concentrations and 
exposure levels of PAHs in the southern 
Chesapeake Bay Region.

x



GASEOUS FLUX AND DISTRIBUTION OF POLYCYCLIC 
AROMATIC HYDROCARBONS ACROSS THE AIR-WATER 

INTERFACE OF SOUTHERN CHESAPEAKE BAY



CHAPTER I: INTRODUCTION

Background/Theory:

Semivolatile organic contaminants (SOCs), e.g. polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine 

pesticides may cycle between air and water with periods of net upward flux during 

dry weather followed by periods of intense downward flux during rainfall (Mackay et 

al., 1986; Baker and Eisenreich, 1990). Further, it has been suggested that 

persistent, semivolatile, hydrophobic pollutants are transferred throughout the world 

via successive deposition and reemission- a "grasshopper" scenario (Ottar, 1981).

The physical-chemical properties of many trace organic contaminants indicate 

that SOCs will be long lived in the environment, cycling between the atmosphere and 

water (Mackay et al. , 1986) thus increasing their effective residence times in the total 

environment. The original substances and their transformation products eventually 

will be deposited to the Earth’s surface and may impinge on communities or 

ecosystems hundreds or even thousands of kilometers removed from the original point 

of release (Schroeder and Lane, 1988). Thus, the importance of quantifying air-water 

exchange processes for SOCs is evident.

Air-water transfer processes for chemicals include volatilization and absorption 

of gases, dry deposition with particles, wet deposition by rain or snow, i.e. particle 

and vapor "washout", spray transfer, and bubble scavenging (Andren, 1983)(Figure 

1). Gas exchange (volatilization-absorption) is a dominant process governing air-
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water transfer of chemicals in non-storm conditions via both molecular and turbulent 

diffusive transfer. Diffusive air-water transfer of gaseous chemicals through stagnant 

films at the interface is driven by the gradient between equilibrium concentrations at 

the interface and bulk reservoirs (Figure 2). The rate of diffusive mass transfer is 

dependent upon the molecular diffusivities of the compound in air and water and upon 

surface roughness and film thickness which are determined by windspeed.

In order to compile a legitimate mass balance and determine exposure levels 

for SOCs in an aquatic system, it is necessary to consider all of the major air-water 

exchange processes (Mackay et al., 1986). In the Chesapeake Bay watershed, 

researchers conducting the Chesapeake Bay Atmospheric Deposition (CBAD) study 

have determined the wet and dry depositional fluxes of selected SOCs and trace 

elements to Chesapeake Bay (Baker et al., 1994; Leister and Baker, 1994; Dickhut 

and Gustafson, 1995). This research quantitatively measures the volatile-absorptive 

fluxes of selected SOCs across the air-water interface at four main sites in Southern 

Chesapeake Bay over the course of a year and a half. Spatial and temporal variability 

in SOC concentrations in the atmosphere and surface waters, and the influence of 

interfacial conditions (i.e. temperature and windspeed) on air-water gaseous exchange 

of SOCs in lower Chesapeake Bay have been evaluated. Subsequently, the existence 

and time scale of the "grass hopper" or "global distillation" and "cold condensation" 

theories has been evaluated for both PAH atmospheric concentration and gaseous 

exchange flux data from Southern Chesapeake Bay; the influence of the surface 

microlayer on volatile-absorptive exchange of SOCs across the air-water interface has 

also been considered. The diffusive fluxes determined in this study will provide
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insight into the importance of gaseous exchange at the air-water interface in 

contributing to loadings of toxicants to aquatic ecosystems such as Chesapeake Bay.

Any quantitative assessment of air-water exchange processes must consider the 

chemical speciation in both the atmosphere and water column. The distribution of a 

chemical between vapor and particulate-aerosols, and, water and suspended 

particulates determines the amount of chemical available for air-water transfer through 

a particular vector. In order to use the two-film model to assess gaseous exchange of 

contaminants to/from the Chesapeake Bay, it is necessary to determine the truly 

dissolved and gaseous fractions of the chemical contaminant as only the vapor-phase 

and truly-dissolved species are available for gaseous exchange across the air-water 

interface.

In addition to the measurement of gaseous contaminant fluxes in this study, the 

investigation of the distributions of a contaminant between the vapor and aerosol 

phase in the atmosphere, and, between the freely dissolved and suspended particulate 

phase in the water column will provide insight into transport and distribution 

processes for contaminants in estuarine systems such as the Chesapeake Bay. 

Determination of the major air-water transfer processes for contaminants is necessary 

such that net fluxes of chemicals to and from the bay and exposure levels can be 

accurately modeled. Moreover, implementation of environmental legislation, and risk 

management of both ecosystem and human health in the Chesapeake Bay region 

requires an understanding and quantification of air and water quality.



Quantification of Gaseous Exchange Fluxes

7

Gas Exchange Models. Quantification of the evaporation or absorption rate 

(volatile transport) of chemicals across the air-water interface relies primarily on the 

two layer (film) model presented by Liss and Slater (1974). The basic assumption of 

this model is that the two fluid phases are separated by stagnant layers, a liquid film 

and a gaseous film, through which transport occurs via molecular diffusion driven by 

the concentration (or fugacity) gradient of the chemical between the bulk reservoirs 

(Figure 2). This framework was extended by Mackay and Leinonen (1975), wherein 

they presented calculations for the transport of low solubility compounds including 

selected saturated and aromatic hydrocarbons, pesticides, and PCBs expressed in 

terms of mass transfer coefficients instead of diffusion coefficients and boundary layer 

thicknesses. Transport by molecular diffusion across two boundary layers has also 

been adopted by Doskey and Andren (1981), and Bopp (1983), in separate PCB air- 

water transfer models, and by Eisenreich et al., (1981), Baker and Eisenreich (1991), 

Hombuckle et al., (1993), Achman et al., (1993) and McConnell et al., (1993) in 

modeling organic contaminants in the Great Lakes ecosystem.

According to Fick’s first law of diffusion in the one-dimensional form in a 

homogeneous phase,

F = -D(dc/dy) (1)

where F is the flux of chemical (mass/length2*time), D is the molecular diffusion



8

coefficient of the chemical in the medium, and dc/dy is the concentration gradient in 

the Y direction (Liss and Slater, 1974). Under steady state conditions, the 

concentration gradient (dc/dy) is constant, therefore equation (1) can be simplified to:

where k, the chemical specific mass transfer coefficient, is equal to D/aY ; and aC is 

the difference in concentration across the diffusive exchange distance. The mass 

transfer coefficient has the dimensions of velocity (length/time) and is a measure of 

flux of gas per unit area. The reciprocal of the mass transfer coefficient is a measure 

of the "resistance" (r) to diffusive transfer and has the dimensions of time/length.

Applying equation (2) to the two-film model (Figure 2), and assuming volatile 

flux of a chemical across the air-water interface is a steady state process:

where Cv>a and Cv aJ are the concentrations of the vapor in the atmosphere and at the 

air-water interface, respectively, k, and 1^ are the chemical specific mass transfer 

coefficients in the air and water films, respectively, and CftWi and CfiW are the freely 

dissolved chemical concentrations at the air-water interface and in the surface water, 

respectively. Since the flux equation has been expressed in terms of chemical 

concentrations rather than activities, ideal behavior has already been assumed; 

therefore, it follows that Henry’s law is valid and the chemicals’ concentrations at

F = -D(aC/aY) = -kAC (2)

(3)
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equilibrium can be expressed as:

Cv.ai/C ,wi = KaW = H/RT (4)

Here Kaw is the dimensionless air-water partition coefficient which is equal to the 

Henry’s law constant (H) divided by the gas constant (R) and the absolute temperature 

(T). From equation (3):

Cv.ai F/Ic, +  Cv a , Cf wj — CfiW - F/k* (5)

Substituting equation (4) into (5) and solving for F yields:

F =  (Cf.w - CvaRT/H)/(l/kw +  RT/HkJ (6)

Letting k,,! denote the overall air-water mass transfer coefficient or total resistance to 

transfer (rwt):

1/Koi =  1/kw +  RT/Hk, (7)

then the volatile flux (Fvol) or equation (6) can be simplified to:

Fvc k0,(Cf.w - Cv a/KaW) (8)



Fugacity gradients as formulated by Mackay (1979), are also used for 

modeling air-water transfer processes. In terms of fugacity:

Fvol = (ko/HXf* - Q (9)

where fw and fa are the water and gas phase fugacities (f, = p), respectively. 

Fugacity, defined as the escaping tendency of a chemical from a designated phase 

such as air or water (Mackay, 1979), is linearly related to concentration:

where Zw = 1/H and Za =  1/RT are the fugacity capacities of the water and air, 

respectively.

Mass transfer coefficients control the rate of diffusive transport across 

interfaces and for air-water systems have been related to the Schmidt numbers of a 

chemical in water (S O  and air (ScJ and wind speed at a reference height of 10 

meters (UI0) by Mackay and Yeun (1983):

(10)

ka = 0.001 + 0.0462(U*)(Sca)-°-67 (ID

k* = l.O(lO)-6 + 34.1(10)^(U*)(Scw)-°-5 (12)

k* = i.o (io )-6 + ^ ( l o ^ u y x s o -0-5 (13)



where equation (12) applies for U* > 0.3 m/s, equation (13) applies for U’ <  0.3 

m/s, and U’ = U10(6.1 +  0.63UIO)°5(10)‘2. The air and water mass transfer 

coefficients (It, and kw) are related to molecular diffusion via the Schmidt numbers 

(Bird et al., 1960):

where Dsa and Dsw are the molecular diffusivities of a chemical solute in air and 

water, respectively, and the p ’s and p ’s are the densities and dynamic viscosities of 

the bulk phases, respectively.

For calculation of mass transfer coefficients, knowledge of windspeeeds, 

viscosity and density of the bulk phases as well as molecular diffusivities of the 

compound of interest at the environmental temperatures and salinities must be known. 

The temperature of each phase (air and water) in the stagnant film layers (Figure 2) is 

needed. However, the surface skin temperatures have been determined to be only 

some tenths of a degree Celsius cooler than the underlying water due to energy losses 

from long-wave infrared radiation and evaporation (Paulson and Parker, 1972; 

Hombuckle et al. 1995). Therefore, in this study, surface water temperatures were 

used for calculating parameters (i.e. density, viscosity, diffusivity, Henry law 

constants) necessary to determine gaseous fluxes. Molecular diffusivities for PAHs in 

air (Dsa) and water (Dsw) have been calculated according to the methods of Gustafson

S c w Pw^(Pw f^sw) (14)

(15)
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and Dickhut (1991a, 1994b):

Dsa=  (0.186*10° 00283T)/V0213 (16)

where T is temperature (°C), and V is the molar volume of the PAH, and,

Dsw=4.864*10"3/(/i°‘9O5V132) (17)

where (i is the aqueous viscosity. Bulk phase viscosities and densities have been 

calculated according to the equations of Millero et al. (1976), Riley et al. (1975), 

Home (1969), and Weast (1987) using field measured temperatures and salinities.

Henry’s law constants are necessary for determining air-water partition 

coefficients of the compounds of interest. Henry’s law constants which are compound 

specific have been calculated using sub-cooled liquid aqueous solubilities and vapor 

pressures according to the methods of Sonnefeld er al. (1983) and May et al. (1978, 

1983) (Appendix D) at environmental temperatures and surface water salinities. For 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(l,2,3-cd)pyrene, 

and benzo(g,h,i)perylene both solubility and vapor pressure data as a function of 

temperature are not available; nonetheless, measured Henry law constants at several 

temperatures for freshwater have been reported (Th.E.M. ten Hulscher et a l ,  1992). 

The logarithms of reported Henry law values have been linearly related to inverse 

temperatures and the resulting predictive equations utilized in this study (Appendix 

D). Chrysene sub-cooled liquid vapor pressures have been estimated using PAH
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solubility-vapor pressure correlations (see Appendix B). Aqueous solubilities of 

acenaphthylene were measured using a generator column method and uv absorbance 

detection. Acenaphthylene solubilities in aqueous solution determined as a function of 

temperature, and a predictive equation, are reported in Appendix A.

Correction of PAH solubilities at environmental salinities is based upon 

employing the Setschenow equation:

log(S0/Ss) = KSCS (18)

where S0 is the solubility in fresh water, Ss is the solubility in saline solution, Ks is 

the Setschenow constant for the compound of interest, and Cs is the molar salt 

concentration of the saline solution (sea water). From Sverdrup et al. , (1942) using 

the 10 most abundant constituents and assuming salinity is conservative over the 

range measured in this study 15-27 ppt, molar salt concentrations can be directly 

related to field measured salinities. Reported Setschenow constants for PAHs (Rossi 

and Thomas, 1981; May etaL,  1978; Whitehouse, 1985; Schwarz, 1977; Eganhouse 

and Calder, 1976) have been linearly related to the molecular weight of the compound 

(Appendix C). Selected Setschenow constants from literature values and values 

determined from the predictive equation were used in this study to correct Henry law 

constants determined from aqueous solubilities for field measured salinities.

Affect of the Surface Microlayer on Gas Exchange. The two film model 

considers only the existence of air and water stagnant layers at the surface of a water 

body (Figure 2). However, it is well established that surface films, generally organic
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in nature, form at the air-water interface {Hunter and Liss, 1981; Norkrans, 1980). 

According to Mackay (1982), this surface film or microlayer adds additional 

resistance to mass transfer of gaseous substances between the atmosphere and a water 

body (Figure 3). The volatile flux, in terms of resistances, can be viewed as:

Fvoi = (fw - fa)/(rw + rf +  r,) (19)

where rw, rr, and ra are the water layer, surface film, and air layer resistances to mass

transfer, respectively. These resistances are generally defined by (Mackay, 1982):

r = aY/DZ or r  =  1/kZ (20)

where aY is the thickness of the stagnant layer, D is the molecular diffusivity of the

chemical in the media, and, Z and k are defined above. If there is no surface film, 

equation 19 reduces to equation 9 (or equation 8).

Mackay (1982) postulates that the diffusive resistance of surface films will be 

small for SOCs, as these substances will be quite soluble in the organic layer resulting 

in a large Zf value and, consequently, a low rf. However, it is also possible that the 

organic nature of surface films will also affect D as the viscosity and solvent self

association factor are likely different for surface film and surface water. Diffusivities 

may potentially be significantly lower for surface film than surface water media 

resulting in higher diffusive resistances for surface film media and a concurrent 

lowering of SOC diffusive flux across the air-water interface.
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Hypotheses\Objectives
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The main hypothesis of this research was that the volatile-absorptive diffusive 

exchange of SOCs {i.e. PAHs, PCBs, and organochlorine pesticides) would be of 

the same order of magnitude as atmospheric wet and dry depositional fluxes to 

the Southern Chesapeake Bay. This was supported by CBAD atmospheric 

deposition data and surface water concentration data of selected PAHs for February 

1991 taken during a cruise on the lower Chesapeake Bay during that month (Dickhut 

and Gustafson, 1995). Consequently, volatile-absorptive fluxes were expected to 

significantly influence the net atmospheric loadings of SOCs to lower Chesapeake 

Bay. The working hypotheses of the proposed research were:

(1) atmospheric and surface water concentrations of SOCs would vary spatially 

and seasonally due to variation in air-water interfacial conditions, influencing both the 

magnitude and direction of the volatile-absorptive flux of SOCs,

(2) the presence of a surface microlayer would alter the diffusive exchange of 

SOCs across the air-water interface,

(3) the "grasshopper" or "global distillation" scenario for contaminant transport 

would be important to determining atmospheric loadings of SOCs to Chesapeake Bay 

and would act on time scales as small as the duration of storm events as well as 

seasonal cycles.

The primary objective of the proposed research was to assess the volatile- 

absorptive exchange of semivolatile organic contaminants (SOCs) across the air- 

water interface of southern Chesapeake Bay. The overall objectives were to:



(1) design, fabricate, and validate systems for measuring "freely-dissolved" SOC 

concentrations in surface water and microlayer samples,

(2) directly measure the concentrations of selected SOCs in the atmosphere and 

surface waters of the southern Chesapeake Bay region, and to assess the spatial and 

temporal variability in SOC concentrations in the atmosphere and surface waters of 

the southern Chesapeake Bay,

(3) evaluate the influence of the surface microlayer and air-water interfacial 

conditions (i.e. windspeed and temperature) on the diffusive flux of SOCs,

(4) determine the existence and timescale for the "grasshopper" scenario with 

selected SOCs in southern Chesapeake Bay.

The various working hypotheses and objectives were examined by methods 

outlined in the following chapters. The main hypothesis was evaluated via concurrent 

measurement of wet depositional fluxes of SOCs to lower Chesapeake Bay and 

estimation of dry depositional SOC fluxes through measurement of atmospheric 

particle concentrations of SOCs and application of appropriate modeling equations.
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CHAPTER II: Sampling Site Descriptions\Locations

Sampling Sites. To determine gas exchange fluxes for PAHs across the air-water 

interface of the southern Chesapeake Bay, measurements of both freely dissolved 

water and atmospheric vapor concentrations reflecting those at the air-water interface 

must be known. Concentrations for selected PAHs in air and surface waters were 

measured at four main sites in the southern Chesapeake Bay (Figure 1) over the 

period January 1994 through the end of May 1995.

High-volume air samplers (General Metal Works, model GPYN1123) were 

placed adjacent to the shore (Haven Beach < 100 m, at all other sites < 10 m) at 

four locations in the southern Chesapeake Bay (Figure 1). The Haven Beach 

atmospheric sampling site (37°26.16’ N, 76°15.25’ W) was a rural site, the air 

sampler was located 100m from the shore of Chesapeake Bay in a high marsh area, as 

well as >  50 m from the nearest road which has limited traffic (i.e. dead end) and > 

200 m from the nearest residence. The closest regional sources of contaminants to 

the Haven Beach site include shipping traffic on the mainstem bay, and a refinery and 

coal/oil-fired power plant which are located approximately 30 km to the southwest.

The Haven Beach site also served as a sampling site for the Chesapeake Bay 

Atmospheric Deposition Study which quantified wet and dry atmospheric depositional 

fluxes of SOCs to the southern bay region.

The air sampler at the York River site was located at the Virginia Institute of 

Marine Science (37°14.75’ N, 76°30.0 W). At this site, the sampler was placed on

22



Figure 2.1: Atmospheric and Surface Water Sampling Locations in the Southern 
Chesapeake Bay Region.
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the windward side (during sampling periods) at the end of one of the institute’s 

research piers on the York River (approximately 50 m from shore). The York River 

site was considered a semi-urban site, approximately 5 km northwest of an oil 

refinery and coal/oil-fired power plant and 1 km east of a major vehicular river 

crossing.

The Hampton atmospheric sampling site (37°4.6’ N, 76°16.4 W) was located 

less than 10 m from the shore of the Chesapeake Bay at Grandview Beach\Dandy 

Point. The Hampton site was considered an urban site lying in the eastern most 

section of the city of Hampton (pop. 138,000) and within 5 km of the cities of 

Newport News (pop. 179,000) and Norfolk (pop. 245,000).

The Elizabeth River atmospheric sampling site was located at the Portsmouth 

Coast Guard Station (36°53.2’ N, 76°21.2 W). The air sampler was located on a 

remote section of the base 2 m from the shore of the Elizabeth River. The Elizabeth 

River site is considered representative of contaminated rivers-estuaries. The site is in 

close proximity (<  5 km) to Lambert’s Point coal terminals, Norfolk Naval Station, 

and Portsmouth Naval Shipyard; in addition, the site is located centrally within the 

Hampton Roads Metropolitan area (pop. 1.5 million).

Surface water samples were collected simultaneously with paired atmospheric 

samples at five sites on the southern Chesapeake Bay (Figure 1). The principal study 

site located in the Wolftrap region of the southern Chesapeake Bay (37°16.53 N, 

76°12.0 W) is removed from local sources of contamination (land based) and is close 

to the Haven Beach atmospheric and CBAD sampling site where SOC wet and dry
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atmospheric depositional inputs to the Bay were quantified. Surface water sampling at 

the Wolftrap site occured from aboard the VIMS R/V Bay Eagle. Additionally, a 

second Wolftrap region site (Haven Beach) was located approximately 1500 m from 

shore of Haven Beach (37°25.7’ N, 76°13.1’ W). The Haven Beach site was selected 

for method development due to its accessibility by small boat or canoe from the site 

where atmospheric samples were collected during water sampling for both Wolftrap 

regional sites.

A Hampton roads region study site on Chesapeake Bay was located approximately 

1000 m off of Grandview beach (37°5.0’ N, 76°13.3’ W). It was hypothesized that 

this region would be characterized by larger absorptive-volatile fluxes (as compared to 

the rural site) as the surrounding region is heavily populated, and therefore, will 

contribute largely to atmospheric levels of SOCs.

Additionally, the Elizabeth River was selected as a study site as it is an intensely 

industrialized waterway representative of contaminated rivers-estuaries and likely to 

include surface films in the form of slicks. The Elizabeth River surface water 

sampling site was located at the mouths of the river’s western and southern branches 

(36°52.0’ N, 76°19.6’W).

Finally, the York river was chosen as an additional site as part of a joint 

project (see Liu, 1994) to examine the effect of the sea surface microlayer on gaseous 

diffusive transfer. The York River study site is located in the center of the river 

approximately 1000 m downstream from the Virginia Institute of Marine Science 

(37°14.5’ N, 76°29.0’ W). Sea surface microlayer sampling was conducted at both the
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York River and Elizabeth River sites during atmospheric and surface water sampling 

(Liu 1994).

Field sampling was conducted intensively (i.e. to assess diumal through 

seasonal variability) at the Wolftrap site, and less intensively (e.g. to examine spatial 

variability) at the three remaining sites. Microlayer samples were collected at the 

York and Elizabeth River sites during atmospheric and surface water sampling periods 

with the objective of assessing the effects of the surface microlayer on gaseous 

exchange. The "grasshopper" scenario was examined from instantaneous gas flux, 

wet and dry atmospheric depositional flux, and atmospheric concentration data from 

the southern Chesapeake Bay region.
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Chapter III: Distribution of Polycyclic Aromatic Hydrocarbons in Southern 
Chesapeake Bay Surface Water: Evaluation of Three Methods for Determining 
Freely Dissolved W ater Concentrations

Abstract:

Gas sparging, semipermeable membrane devices (SPMDs), and filtration with 
sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin, were 
evaluated for determining freely dissolved PAH concentrations in estuarine waters of 
the southern Chesapeake Bay at sites ranging from rural to urban and highly 
industrialized. Gas sparging had significant sampling artifacts due to particle 
scavenging by rising bubbles and SPMDs were kinetically limited for 4-ring and 
larger PAHs relative to short-term temporal changes in water concentrations. 
Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was 
found to be the most accurate and feasible method for determining freely dissolved 
PAH concentrations in estuarine water. PAH dissolved and particulate 
concentrations, and distribution coefficients were measured using the filtration\XAD-2 
method. PAH surface water concentrations in the southern Chesapeake Bay are 
higher than those reported for the northern bay; concentrations in the Elizabeth River 
were elevated relative to all other sites. A gradient for particulate PAHs was 
observed from urban to remote sites. No seasonal trends were observed in dissolved 
or particle-bound fractions at any site. PAH dissolved-particulate distributions in 
surface waters of the Chesapeake Bay are near equilibrium at all locations and 
seasons.

Introduction

The fate and transport of semivolatile organic contaminants (SOCs) in the 

environment depends on their physical-chemical phase distribution. In natural waters, 

only the freely dissolved fraction is related to chemical potential and contributes to 

diffusive fluxes. However, it is well known that SOCs sorb to suspended particles as 

well as to dissolved organic matter, and the existance of this bound fraction in natural 

waters decreases the partitioning and mass transfer of SOCs to other phases (Landrum 

et al. 1984). Therefore, it is necessary to accurately measure the phase distribution of

27
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SOCs in natural waters in order to quantify contaminant transport and evaluate 

chemical behavior in aquatic systems.

Several methods have been developed to distinguish between bound and freely 

dissolved fractions of organic compounds. Techniques that have been used to 

determine freely dissolved or bioavailable fractions of organic contaminants in fresh 

waters include gas-phase partitioning (or gas sparging) (Murray et al., 1991; Sproule 

et al., 1991; Yin and Hassett, 1986; Yin and Hassett, 1989), equilibrium dialysis 

(Black et al., 1982; Huckins et al., 1990; Lebo et al., 1992; Prest et al., 1992; 

Sodergren, A ., 1987) and filtration with subsequent sorption of the dissolved fraction 

in the filtrate to resin columns such as AmberliteR XAD-2 resin (Capel and 

Eisenreich, 1985; Achman et al., 1993; Baker and Eisenreich 1990; Dickhut and 

Gustafson, 1995). However, estuarine systems such as Chesapeake Bay generally 

contain higher levels of suspended matter as well as particulate and dissolved organic 

carbon than do freshwater lakes. For example, total suspended particulates (TSP) in 

the Great Lakes ranges from .03 to 4.97 mg/L (Achman 1993, Yin and Hassett 1989, 

Eadie and Robbins 1987, Capel and Eisenreich 1985, Baker and Eisenreich 1989) 

wheres in the Chesapeake Bay, TSP ranges from 3.2 to 25.86 mg/L (Ko and Baker 

1995, this work). Likewise, total organic carbon (TOC), dissolved and particulate 

(DOC +  POC) range from 1.63 to 5.51 mg/L in the Great Lakes (Yin and Hassett 

1989, Baker and Eisenreich 1989); whereas in the Chesapeake Bay, DOC and POC 

range from 3.03 to 7.88 mg/L and .309 to 2.74 mg/L, respectively (this work).

Thus, each of the methods for measuring freely dissolved concentrations may be



impacted if colloidal and dissolved organic carbon (DOC) bound contaminants are not 

adequately separated from the sample.

The objective of this study was to determine the most accurate and feasible 

method for measuring freely dissolved SOC concentrations in estuarine surface waters 

for the purpose of quantifying air-water gas exchange in Chesapeake Bay. The SOCs 

examined in this study were selected polycyclic aromatic hydrocarbons (PAHs).

PAHs are a class of organic contaminants composed of numerous compounds which 

span a range of physical-chemical properties (e.g. solubility, vapor pressure, octanol- 

water partition coefficient-Kow)- Moreover, the toxicity of many PAHs and their 

metabolites has been well established. In this chapter, three methods for measuring 

freely dissolved SOC concentrations in estuarine systems: gas-phase partitioning, 

equilibrium dialysis, and filtration with adsorption to resin, are described and 

evaluated. Further, PAH freely dissolved and particle-associated concentrations have 

been determined at five sites in lower Chesapeake Bay during the period January 1994 

through May 1995 using the filtration/sorption to AmberliteR XAD-2 resin method. 

Spatial and temporal variations in operationally defined particulate and dissolved 

concentrations are discussed as are measured particle-water distribution coefficients
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Device Descriptions

Three separate systems were developed and tested for determining freely 

dissolved SOC concentrations (Figure 1). A floating sparger designed to emulate the 

devices described by Sproule et al. (1991) was designed which consists of a 

cylindrical chamber of inert material (marine grade stainless steel) 5 cm in diameter 

by 115 cm high, inlet and outlet passages for water and air, and a solid sorbent trap 

on the air outlet to capture SOCs stripped from the water by the air. Water flow 

through the system was maintained using a submersible pump (Aquarium Systems) 

and air flow was supplied via teflon tubing from ultra high purity air cylinders on 

board ship. Subsequently, an inline 47mm stainless steel filter holder with a Gelman 

Type A/E glass fiber filter (GFF) was employed to prevent particles, which may be 

scavenged and ejected by the air bubbles, from entering the analytical trap.

An overview of the theory and equations for mass transfer within the sparger 

chamber are given in detail by Sproule et al. (1991). Briefly, air is introduced into 

the bottom of the chamber with water continuously being pumped in through the top 

flowing counter-current to the air. If the dimensions of the chamber (i.e. bubble path 

length) are sufficient to allow the SOC of interest to reach equilibrium between the 

water and air phases, and the air and water flow rates through the system are adjusted 

such that the water is negligibly depleted of SOCs (i.e. no stripping of SOCs from 

particles occurs), then the fugacity of the compound in water (fw) equals the fugacity 

or partial pressure of the compound in the air exiting the chamber. Further, if the
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(A) (B) <C)

Figure 3.1: Freely Dissolved Contaminant Sampling Devices [A] Gas Sparging 
system- (1) sparging chamber, (2) air diffuser, (3) submersible pump at .5 m depth,
(4) water inlet, (5) water outlet, (6) in-line air filter, (7) adsorbent trap, (8) float; [B] 
Semipermeable membrane device- (1) 1 m SPMDs, (2) float, (3) weight, (4) 
anchor; [C] filtration/resin sorption system- (1) 35 L holding tank, (2) metering 
valve, (3) 142 mm filter holder, (4) 35 cm long x 2.2 cm I.D. XAD-2 resin column,
(5) ultra high purity air tank, (6) stand.
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air-water partition coefficient (KAW) of the SOC of interest is known, then the freely 

dissolved water concentration (Cf w) can be calculated from the measured 

concentration of SOC in the air exiting the chamber (Cae):

However, knowledge of KAW (or Henry’s law constant, H) is not necessary for direct 

determination of surface water fugacities as:

where T is temperature (K) and R is the gas constant.

Similarly, semipermeable membrane devices (SPMDs) operate on the principle 

of thermodynamic partitioning of organic contaminants across a membrane surface 

between water and an organic phase. If sampling time and conditions are sufficient to 

achieve equilibrium partitioning, the freely dissolved water concentration (i.e. that 

fraction which can pass through the membrane) is determined by analyzing the 

concentration of the organic phase (CSPMD). Applying a compound specific partition 

coefficient (K ^) between water and the organic (e.g. triolein) phase:

(1).

Ca,e = CfwKAW = Cf,w*H/RT = fw/RT (2)

Q.w — C spmd/K jw (3);
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however, for sampling durations or conditions insufficient for equilibrium to be 

obtained, a kinetic model based upon laboratory uptake experiments (see next section) 

can be developed.

In this study, low density lay-flat tubing (Cope Plastics, Inc., St. Louis) was 

used as a semipermeable membrane. Low density polyethylene membranes appear to 

have cavities or transient holes in the range of 5 to 10 A (Huckins et al. 1990, Lebo 

1992), and therefore, only freely dissolved organic compounds of low molecular 

weight can diffuse into SPMD-enclosed lipids. Contaminants larger than the 

exclusion limit (600 da) or sorbed to suspended particles, colloids, or organic matter 

are not SPMD available.

The SPMDs were prepared to 1 m lengths as follows. The lay-flat tubing was 

cut and extracted with hexane. The clean tubing was heat sealed at one end and 

loaded with 1 g of Triolein purchased from (Sigma, 95% purity). The triolein was 

squeezed toward the other end of the tubing to form a thin film on the inside of the 

tubing walls and the second end was heat sealed. The constructed SPMDs were kept 

in tightly sealed pre-cleaned jars in the refrigerator until deployment at sampling sites. 

SPMD samplers were constructed from large styrofoam bullet floats with PVC pipe 

frames and stainless steel arm supports, a weight was added to the bottom of the 

frame to maintain the upright position of the sampler in the water in the presence of 

strong winds and waves (Figure 1).

Finally, the most common method for determining dissolved SOC 

concentrations is to filter water samples (e.g. surface or precipitation) through a glass
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fiber filter (GFF) to remove the particulate matter, and subsequently pass the effluent 

through a resin column such as AmberliteR XAD-2 (Rohm and Haas, Co.) to isolate 

the dissolved fraction (Capel and Eisenreich 1985, Achman 1993, Baker and 

Eisenreich 1990, Dickhut and Gustafson 1995, Leister and Baker 1994). The system 

employed in this study consisted of a 35 L stainless steel holding vessel connected to 

a 142 mm stainless steel filter head (Millipore, Inc.) with Gelman type A/E (1 um 

wet pore size) GFF, and a 35 cm long x 2.2 cm I.D. stainless steel column containing 

XAD-2 resin (Rohm and Haas) (Figure 1).

Sampling

Sampling Site Desriptions. Samples were collected and/or experiments were 

conducted at 5 sites in the southern Chesapeake Bay ranging from rural to urban and 

highly industrialized (Figure 2). The two rural sites are the Haven Beach (37°25.7’N, 

76°13.rW) and Wolftrap (37°16.53’N, 76°12.0’W) sites located in the mainstem bay 

off of rural Mathews County, VA. A semiurban site was located on the York River 

(37°14.5’N, 76°29.0’W) near the Virginia Institute of Marine Science (VIMS). Urban 

sites were selected off of the city of Hampton at Grandview Beach in the mainstem 

bay (37°5.0’N, 76°13.3’W), and in the idustrialized Elizabeth River (36°52.0’N, 

76°19.6’W) which is a site representative of contaminated rivers and estuaries.

Gas Sparging. Two sparger systems were deployed October 7, 1993 tethered 

from the anchor line upcurrent of the VIMS R/V Langley at the Wolftrap site in
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1 Wolftrap S ite
2 York River S ite
3  Hampton S ite
4  Elizabeth River Site
5 Haven B ea ch  Site

Figure 3.2: Surface Water Sampling Locations in Southern Chesapeake Bay.
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southern Chesapeake Bay (Figure 2). Ultra high purity air was introduced through 

the bottom of the sparger through a diffuser with 140-175 um pore size glass frit. 

Water was introduced through the top of the sampler counter-current to the air by a 

submersible pump (Maxi-jet 750, Aquarium Systems Inc.) at a flow rate of >350 

ml/min. The outlet air exited through two (5.3 mm i.d. x 10 cm) stainless steel 

sorbent traps each packed with .25 g Tenax (Figure 1). The air flow through the traps 

averaged 200 ±  20 ml/min, and was monitored throughout the sampler deployment 

(3.5 h) to calculate the total air volume expelled through each trap.

Subsequent tests of the sparger system took place at the York River site 

(Figure 2) and in the laboratory. As part of the extended evaluation of the sparger, a 

47 mm GFF was included in the airstream of the system to remove particulates 

ejected from the water during sampling. The sparger was deployed in the York River 

for a sample time of 2.5 h with air flow rates maintained at 400 ±  20 ml/min 

(approximately 200 ml/min per trap) and average total air sample volumes (n=l l )  of 

61,800 ±  3,200 ml. Subsequent to field sampling, the filter was installed in a clean 

sparger in the lab to examine the potential contribution of SOCs desorbed from the 

ejected particles to the measured dissolved concentrations of PAHs. The sparging 

chamber was filled with purified water and the water inlet and outlet orifices sealed. 

Air flow rates were maintained at 400 ml/min through the two trap system for a 

sampling time of 2.5 h. The contribution of PAH desorption from filter retained 

particles to adsorbent concentrations was evaluated by analyzing and comparing 

compound concentrations on sorbent traps from the clean sparger to those measured in 

the river.
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Breakthrough of analyte from the adsorbent traps was assessed by sparging 18 

L of PAH spiked water in a 20 L carboy. Flow rates were similiar to those used in 

the field (200 ml/min) and the sparging time was increased from 2.5 h to 4 h. The 

air exiting the sorbent trap was sparged through a 30 cm column of hexane in a 

graduated cylinder to collect breakthrough analytes. For all PAHs, breakthrough 

levels were not detectable.

SPMDs. SPMD uptake kinetics and triolein-water partition coefficients were 

measured in the lab by spiking a mixed PAH standard (naphthalene, acenaphthylene, 

fluorene, phenanthrene, anthracene, fluoranthene, pyrene) into 4 L amber solvent 

bottles containing 3 L of Milli-Q purified water and a small SPMD (7 cm long coated 

with .08 g triolein) suspended from the cap using stainless steel tubing. The bottles, 

capped and sealed to prevent evaporative losses of the more volatile PAHs, were 

stirred vigorously on a stir-plate for the entire sampling period. Simultaneous water 

and SPMD concentrations were measured at two concentration levels at time intervals 

ranging from 1 to 30 days.

SPMD sampling devices (Figure 1) were deployed via canoe off of Haven 

Beach (Mathews Co., VA) in Chesapeake Bay (Figure 2) in approximately 8 m of 

water during several sampling periods in 1994. SPMDs were withdrawn from clean 

jars using stainless steel foreceps and attached to the sampler support frame. The 

SPMDs were left in the field for sampling intervals between 3 and 12 days. Upon 

retrieval, the membrane surfaces were wiped with pre-cleaned glass wool wetted with 

purified water to remove any particulates or algae sorbed to the membrane surface.
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The SPMDs were submersed in methanol in clean glass jars and held in a refrigerator 

at 4 °C until extraction.

Filtration with Sorption to XAD-2 Resin. Water samples for filtration and 

sorption of the freely dissolved fraction to XAD-2 resin were collected at various 

times including during SPMD and sparger experiments. The 35 L holding tank 

(precleaned by sequential rinsing with soap and water, acetone, hexane, 

dichloromethane, hexane, acetone, and Milli-Q water) was filled by pumping water 

from 1 m depth through tygon tubing using a 12 V submersible pump. Between 1-2 

sample volumes were passed through the pump system prior to sample collection to 

equilibrate the pump and tubing with ambient contaminant levels and minimize 

sorptive losses. The water was filtered by pressurizing the system using ultra high 

purity air and eluting the sample at 200 ml/min through a GFF and 35 cm long x 2.2 

cm I.D. stainless steel column containing XAD-2 resin. After sampling, the filter and 

resin fractions were submersed in methanol in clean jars and held in a refrigerator at 

4 °C until extraction.

Analytical Methods. The various sample media were prepared as follows. 

Glass fiber filters were ashed at 450 °C for 4 h. Amberlite XAD-2 resin was Soxhlet 

extracted for 24 h each with methanol, acetone, hexane, dichloromethane (DCM- 

twice), hexane, acetone, and methanol, respectively. Prior to column packing, the 

resin was rinsed several times with purified water to remove any residual methanol. 

Glasswool was cleaned by Soxhlet extraction with DCM for 48 h and dried in an oven 

at 60 °C in clean glass jars covered with aluminum foil. Lay-flat tubing was pre
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cleaned by submersion in hexane for 24 h prior to SPMD construction. Tenax 

sorbent traps were packed and precleaned by elution with 30 ml each of methanol, 

acetone, and hexane; residual solvent was evaporated from the traps using ultra high 

purity air.

After collection, the XAD-2 and GFF samples were spiked with a surrogate 

standard containing deuterated PAHs (naphthalene, anthracene, benzo[a]anthracene, 

benzo[a]pyrene, benzo[ghi]perylene) and Soxhlet extracted with organic solvents for 

48 h. The SPMDs were Soxhlet extracted for 24 h in hexane. XAD-2 and GFF 

extracts were concentrated to 1 ml by rotoevaporation and subjected to silica cleanup 

to remove interfering compounds as described in detail elswhere (Dickhut and 

Gustafson 1995). The SPMD hexane extract was concentrated to 1 ml using 

rotoevaporation and a stream of purified N2, and subjected to solid-liquid 

chromatography clean-up on silica (Bio-Sil A, 100-200 mesh) to remove compounds 

that interfered with PAH analysis. The silica clean-up method (Dickhut and 

Gustafson, 1995) used for all sample matrices, was modified slightly by overlaying 

the silica column with 1.25 cm of anhydrous Na2S04 instead of sand. The sorbent 

traps from the sparger system (Tenax columns) were extracted by eluting analytes 

from the columns with 40 ml hexane. The extract was concentrated to 1 ml and 

subjected to silica clean-up as described above.

Prior to analysis for PAHs, the extracts were spiked with an internal standard 

mixture consisting of additional deuterated PAHs (acenaphthene, phenanthrene, 

chrysene, perylene), and reduced to a volume of 100 ul under a stream of purified N2.
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The samples were subsequently analyzed for selected PAHs using gas 

chromatography/mass spectrometry (GC/MS) on a Hewlett Packard 5890A Series II 

GC and 5971A MS operated in the selective ion monitoring mode (Dickhut and 

Gustafson, 1995). Average recoveries from the various sample media were between 

52.0 and 75.3% for d-8 naphthalene, and 85.2 and 115.0% for d-10 anthracene, d-12 

benzofa]anthracene, and d-12 benzo[a]pyrene (Table 1).

Further Sample Characterization. Total suspended particulates (TSP) were 

measured by filtering approximately 1 L of water through a pre-ashed and weighed 

47mm GFF, which was subsequently dried at 70 °C for 24 h. TSP was determined as 

the gain in mass on the pre-tared filter per unit volume of water filtered; reported 

values are averages of three replicate samples. TSP concentrations ranged from 3.1 

±  0.2 to 25.9 ±  0.2 mg/1. Particulate and dissolved organic carbon (POC, DOC) 

analyses were preformed on a Carlo Erba model NA 1500 and a Shimadzu model 

TOC-500, respectively, by the institute’s nutrient analysis lab. POC and DOC values 

ranged from 0.31 to 2.74 mg/I and 3.03 to 7.88 mg/1, respectively. Salinities, which 

ranged from 14.0 to 27.0 ppt, were determined with a conductivity meter.

Results

Gas-Sparging. Paired experiments with both gas sparging and filtration with 

sorption of SOCs to resin were conducted to determine freely dissolved PAH 

concentrations in Chesapeake Bay surface water. Freely dissolved concentrations



Table 1:Average sample recoveries for various water sampling media

deuterated standard

d-8 naphthalene 
d-10 anthracene 
d-12 benzo[a]anthracene 
d-12 benzo[a]pyrene

d-8 naphthalene 
d-10 anthracene 
d-12 benzo[a] anthracene 
d-12 benzo[a]pyrene

d-8 naphthalene 
d-10 anthracene 
d-12 benzo [a] anthracene 
d-12 benzo[a]pyrene

d-8 naphthalene 
d-10 anthracene 
d-12 benzo[a]anthracene 
d-12 benzo[a]pyrene

Sample Recovery
media* mean ±  std

(* )
XAD-2 61.8 ±  10.8
(n=59) 86.1 ±  12.8

97.1 ±  8.1
85.6 ±  7.9

SPMDs 75.3 ±  6.7
(n=16) 94.8 ±  5.5

96.1 ±  9.7
93.3 ±  2.8

Tenax 52.0 ±  12.1
(n=13) 85,2 ±  6.0

115.0 ± 7.5
92.2 ±  4.3

Water Filter 68.5 ± 11.7
(GFFs) 99.1 ± 19.1
(n=51) 98.6 i 10.9

87.6 ± 8.0

*n is the number of samples and blanks quantified.



determined from sparging were calculated using equation 1 and H values determined 

from the ratio of the subcooled liquid vapor pressure (Sonnefeld et al. 1983,

Appendix B) and Setschenow corrected solubility (May et al. 1983, Ross and Thomas 

1981, May and Wasik 1978, Whitehouse 1985, Schwartz 1977, Eganhouse and Calder 

1975, Appendices A,C) for the compound of interest at the temperature and salinity 

of the water. PAH concentrations determined by sparging relative to those 

determined from GFF/XAD-2 filtration, increased exponentially as the log KqW of the 

PAH increased (Figure 3). Therefore, a sampling artifact in the sparging system was 

suspected.

The large increase in measured freely dissolved concentrations of PAHs with 

gas-sparging relative to GFF/XAD-2 filtration was hypothesized to be due to particles 

being scavenged from the water by rising bubbles which are swept through the air 

stream into the sorbent trap as proposed by Friesen et al. 1993. To examine this 

hypothesis, an inline 47 mm stainless steel filter holder with GFFs was added to 

remove particles from the airstream before they entered the analytical trap. The 

inline filter removed particles from the airstream, but PAH desorption from the filter 

retained particles was substantial, contributing significantly to measured freely 

dissolved SOC concentrations (Table 2). PAH desorption from filter retained 

particles in the clean sparger ranged from 2% (naphthalene) to a factor of 2 

(fluoranthene and pyrene) greater than the concentrations determined from a sorbent 

trap in the field (Table 2). Although a larger fraction of low molecular weight, 

volatile PAHs were desorbed from particles relative to the high molecular weight
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Table 2: Contribution of PAH desorption from filter retained particles to sorbent 
traps.

PAH

naphthalene
acenaphthylene
acenaphthene
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
benzo[a] anthracene 
chrysene
benzo[b]fluoranthene 
benzo [k] fluoranthene 
benzo[e]pyrene 
benzo [a]pyrene 
i[123cd]p2
dibenzo[a,h]anthracene 
benzo [ghi]pery lene

sorbent sorbent
trap-field trap-lab
(ng) (ng)
583 11.5
17.2 .85
173 6.17
13.4 3.14
6.07 4.35
1.17 .97
.87 1.76
.55 1.06
.80 n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.
n.d. n.d.

desorption GFF after
contribution1 desorption
(%) (ng)
2 6.94
5 7.70
4 3.47
23 .90
72 4.15
83 n.d.
202 2.57
193 2.25
n/a n.d.
n/a n.d.
n/a 1.65
n/a n.d.
n/a .86
n/a n.d.
n/a .51
n/a n.d.
n/a .64

n.d. = not detected 
n/a = not applicable
1 amount desorbed relative to adsorbent trap-field (%)
2 i[123cd]p is ideno[l,2,3-cd]pyrene
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compounds, the overall contribution of particle desorption to the measured freely 

dissolved concentration was low for volatile PAHs due to high truly dissolved 

concentrations of these compounds. High desorption contributions may be due in part 

to the fact that the sparger in the laboratory constantly blew clean air across a 

contaminated filter which created a chemical potential gradient higher than present 

during field sampling. In in the field, air exiting the water column is partially 

saturated with compounds leading to a lower chemical potential difference between 

the compound associated with filter retained particles and the intervening air stream, 

and thus, less desorption. Nonetheless, desorption of semivolatile compounds from 

ejected particles during gas sparging likely creates a significant artifact in measuring 

freely dissolved concentrations of SOCs with this method.

SPMD samplers. Uptake kinetic studies with SPMDs containing triolein 

indicate that at least 72 h sampling time under turbulent conditions is required to 

achieve equilibrium partitioning (Figure 4). Triolein-water partition coefficients were 

calculated by averaging the experimentally determined values (after 72 h) and 

were not corrected for salinity. The KTW’s for selected PAHs and their standard 

deviations, which averaged 16.6%, are quantitatively related (r2 =  .96) to the 

octanol-water partition coefficient of the compounds (Table 3, Figure 5). Thus, a 

linear equation between log and log Kow may be used to predict SPMD 

concentration factors of other PAHs, provided there are no kinetic limitations with 

SPMD sampling of 5-6 ring compounds.
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Table 3: Triolein-water partition coefficients (KTW) for selected PAHs

PAH

naphthalene
acenaphthylene
fluorene
phenanthrene
anthracene
pyrene
fluoranthene

Partition 
Coefficient 
8770 ± 1840 
11000 ± 2290 
54400 ± 10600 
125000 ±  11900 
187000 ±  30200 
541000 ±  85300 
467000 ±  63400

log Published'
KTW log Kow
3.94 3.37
4.04 4.0
4.74 4.18
5.10 4.57
5.27 4.54
5.73 5.18
5.67 5.22

*from Mackay et al. 1992
regression equation: logKTW = 1.052*logKoW + 0.260 ; r2=.96



Two SPMD samplers were deployed at the Haven Beach site on May 10,

1994; one sampler (2 SPMDs) was retrieved 4 days later and the second sampler was 

left in the field for 12 days. The SPMDs exposed in the field for a 12 days showed 

signs of algal growth on the outer membrane surface. Furthermore, the 12 day 

samples were not quantifiable by GC/MS due to the presence of a large interfering 

peak that remained with the PAH fraction after silica clean-up. PAH dissolved 

surface water concentrations determined from the four day exposure of the SPMDs 

were compared to those determined by filtration and sorption of SOCs to XAD-2 for 

a water sample collected on the first day of SPMD deployment. The dissolved 

concentrations determined by the two methods were comparable only to within a 

factor of 4 for the majority of the PAHs analyzed, but deviated more than a factor of 

10 for the larger PAHs (Table 4).

A second SPMD deployment was conducted from June 26 to 29, 1994. 

Dissolved PAH water concentrations were measured using GFF/XAD-2 filtration on 

June 26,28, and 29; a rain event (1.0 cm) occured June 27 during the SPMD 

deployment. Again, freely dissolved PAH concentrations determined by the two 

methods were comparable within a factor of four with deviations exceeding a factor of 

ten for the larger PAHs (Table 5).

From the field trials, the average relative standard deviation associated with 

dissolved PAH concentrations determined by replicate SPMDs was <10%; whereas, 

the variability in the XAD-2 concentrations over three days averaged 30%. Thus, 

each of these methods for measuring dissolved SOC concentrations appear to be



Table 4: Freely dissolved water concentrations determined by SPMDs May 10-14, 1994 and 
GFF/XAD-2 May 10, 1994 at Haven Beach Site

PAH1 XAD-2 SPMD 0 1 SPMD 02 SPMD2 SPMD/XAD-2
(ng/1) (ng/1) (ng/1) % rel std Ratio3

naphthalene 18.S 5.22 5.03 1.9 -3.7
acenaphthylene .102 .233 .177 13.7 2.01
acenaphthene' .206 1.08 .874 10.4 -4.74
fluorene .607 1.01 .947 .3 1.61
phenanthrene .963 1.15 1.03 5.5 1.13
anthracene .064 .082 .056 18.8 1.08
fluoranthene .632 .328 .345 2.5 -1.89
pyrene .264 .104 .102 1.0 -2.56
b[a]a' .016 .0016 .0015 4.9 -10.3
chrysene’ .008 .0062 n.d. n/a n/a
b[b ]f .024 .0017 .0014 8.1 -12.9
b[k]f n.d. .0014 n.d. n/a n/a
b[e]p* .020 .0022 .0015 16.6 -10.8
b[a]p’ .011 .0004 n.d. n/a n/a
i[l,2,3-cd]p‘ n.d. n.d. n.d. n/a n/a
d[a,h]a* .033 n.d. n.d. n/a n/a
b[ghi]p' n.d. n.d. n.d. n/a n/a

avg. =  7.6

1 Abbreviations for PAHs are as follows: b[a]a is benzo[a]anthracene; b[b]f, benzo[b]fluoranthene; 
b[k]f, benzo[k] fluoranthene; b[e]p, benzo[e]pyrene; b[a]p, benzo[a]pyrene; i[l,2 ,3-cd]p , ideno[l,2,3- 
cd]pyrene; d[a,h]a, dibenzo[a,h]anthracene; b[ghi]p, benzo[ghijperylene
' Triolein-water partition coefficients were determined from the regression eq in Table 3.
2 Relative standard deviation (%) for replicate SPMDs
3 Ratio o f SPMD/XAD-2 measured concentrations, if the ratio was <  1, the negative inverse of the 
ratio is reported.
n.d. is not detected 
n/a is not available
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reasonably precise given that the measured concentrations were averaged over several 

days. However, the large negative SPMD/XAD-2 ratios reported in Tables 4 and 5 

for the larger PAHs indicate that the dissolved concentrations of these compounds 

measured using SPMDs are much lower than those measured using XAD-2, and that 

the larger PAHs may not achieve equilibrium between the triolein and the surface 

water during the SPMD deployment (4 d). Incomplete equilibrium may be due to a 

lack of turbulence in the estuary. In the absence of turbulence, high molecular weight 

SOCs may be depleted locally in the vicinity of the SPMDs due to the high affinity of 

these compounds for the SPMD lipid phase. This phenomena would slow the rate of 

mass transfer of the SOCs into the SPMD, and would impact the distribution of high 

molecular weight compounds, with larger partition coeficients and lower diffusivities, 

more than the lighter SOCs. It was expected that turbulence in estuarine surface 

waters subject to tidal and wind driven currents would be sufficient to attain 

equilibrium of SOCs between freely dissolved components and the SPMD after 3 days 

of exposure. This may not be the case.

A kinetic model was developed from laboratory studies to evaluate dissolved 

water concentrations determined from SPMDs for larger PAHs which may not have 

attained steady-state during the exposure period. The natural logarithm of the 

compound specific triolein-water partition coefficient can be plotted as a function of 

exposure time for the uptake portion of the curve. The freely dissolved water 

concentration determined from the SPMD during the uptake period is then a function



of an ’effective’ partition coefficient (exp(b'*t +  b0)); thus:
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C fiw = CSPMD/(exp(b‘*t +  b0)) (4)

where b1 and b° are compound specific regression coefficients obtained from a plot of 

In K tw  v s  t.

The ’effective’ partition coefficient increased dissolved water concentrations 

for the larger PAHs determined by SPMDs using eq 3. However, the increase in 

concentrations (c.a. 10%) did not significantly increase the SPMD/XAD-2 ratios as 

the exposure time in the field was near the exposure time determined in the lab for 

achievement of steady-state and hence, the effective partition coefficient approached 

the equilibrium partition coefficient. The kinetic model should have corrected for a 

compounds inability to reach steady-state based on an insufficient exposure period 

given constant water concentrations and turbulent conditions over the exposure period. 

Neither of these conditions may be environmentally realistic. Concentrations 

determined by the GFF/XAD-2 method exhibited a 30% variance over a three day 

period. Additionally, turbulence in the water column of Chesapeake Bay is largely 

wind and tide induced; during periods of low wind speed, tidal mixing may not be 

sufficient to overcome diffusion-limited conditions.

Another potential factor contributing to larger freely dissolved concentrations 

measured with GFF/XAD-2 filtration compared to SPMDs may be association of 

DOC-bound SOCs with the XAD-2 resin, thus artificially inflating the Cfw values
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determined by the filtration/sorption method. The sorption capacity of XAD-2 for 

dissolved organic matter was investigated by quantifying dissolved organic carbon 

(DOC) in a water sample before and after the XAD-2 column in the sampling train. 

DOC levels were 3.2 mg/1 after the filter and before the XAD-2 column and 3.63 

mg/1 after the XAD column (Wolftrap Site 1-11-94), indicating a 13% rise, not loss, 

of DOC in the XAD column. Thus DOC does not appear to be retained by the XAD- 

2 column.

Filtration with sorption to resin. Water samples were collected for filtration 

and sorption of the freely dissolved fraction to XAD-2 resin during SPMD and air- 

sparging experiments, as well as monthly from January 1994 through May 1995 at 

Wolftrap, and every other month from July 1994 to May 1995 at the Hampton, 

Elizabeth River, and York River sites. Potential sampling artifacts for filtration with 

subsequent sorption of freely dissolved PAHs to resin were assessed via several 

experiments. Using replicate GFF/XAD-2 systems, the average error for 

measurement of dissolved concentrations was 5.4% for all PAHs detected. The 

sorption of PAHs to the sampling train surface, PAH blank levels, and the efficiency 

of the XAD-2 resin for isolating SOCs were tested by spiking deuterated PAHs into 

35 L of purified water. Recoveries for the deuterated PAHs via this method and the 

entire analytical process were measured as 74% for d10-anthracene, 98% for d12- 

benzo[a]anthracene, and 59% for d ,2-benzo[a]pyrene. The average recovery of 77% 

is similar to that determined by others (Daignault et al. 1988) verifying the use of 

XAD-2 resin and this system for quantification of SOCs in water. Analyses of field
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and lab blank levels of analyte compounds attributable to sampling artifacts were 

typically less than 5% those in the actual samples. Finally, the sorption of DOC and 

associated PAHs by XAD-2 is expected to be negligible as noted above.

PAH Concentrations and Distributions. Total (particulate and dissolved) 

mean concentrations for 17 PAHs ranged from 24.1 to 91.1 ng/L with the largest 

percentage of the total levels occurring in the dissolved phase at all sites (Table 6).

The total PAH concentrations reported here for the southern Chesapeake are higher 

than those reported by Ko and Baker (1995) for surface waters of the northern bay; 

however, a larger number of PAHs were also quantified in this study. Moreover, a 

larger site-to-site compared to seasonal variability in PAH surface water 

concentrations in Chesapeake Bay (Figure 6) was observed in this study.

Mean particle-associated PAH concentrations at the Elizabeth River site were 

significantly different (at the .05 level) from those at all other sites (Figure 6).

Further, mean particulate concentrations of the heavier molecular weight PAHs (e.g. 

pyrene, benzo[e]pyme) at the York River site were significantly different (at the .05 

level) from concentrations measured at the Wolftrap site (Figure 6). For the 

dissolved PAH fraction, analyses of variance at the a  = .05 level yielded slightly 

different results. Mean dissolved PAH concentrations at the Elizabeth River site were 

significantly different from dissolved PAH concentrations measured at all other sites 

with the exception of the lighter molecular weight PAHs (e.g. fluorene, phenanthrene) 

at the Wolftrap site. Dissolved concentrations at the York River site were 

significantly different from concentrations at all other sites except Hampton. The



Tabic 6: Mean Values and Ranges of PAH Concentrations (ng/1) for the Dissolved and Particulate Phases in Surface Waters of Southern 
Chesapeake Bay

Wolftrap Site Eliiaheth River Site

Dissolved Particulate Dissolved Particulate
(n= 17) (n=6)

PAH' min. max. mean min. max. mean min. max. mean min. max. mean
naphthalene 9.71 27.4 16.3 n.q. n.q. n.q. 9.32 24.6 16.4 1.44 2.04 1.70
acenaphthylene <.003 .802 .291 .006 .059 .021 .244 .772 .546 ,024 .0B6 .049
acenaphthene .225 1.12 .669 <.003 .161 .040 2.79 11.3 5.56 .159 .539 .304
fluorene .616 4.01 2.57 .045 .481 .145 1.10 4.25 2.32 .240 .623 .414
phenanthrene I.II 6 00 3.90 .169 .1.28 .401 1.70 7,37 4.11 .883 2.31 1.41
anthracene <.003 .199 .089 .016 .092 .042 .362 1.23 .799 .250 .639 .411
fluoranthene .154 .709 .280 .089 .359 .180 4.71 47.3 22.1 1.59 10.2 4,07
pyrene .110 .381 ,229 .084 .666 .188 2.65 17.4 10.6 1.64 8.57 3.49
b(a)a <.003 .051 .013 .019 .141 .077 .150 1.13 .701 .55 5 2,57 1.27
chrysene <■003 .OBI .044 .041 .197 .112 .464 2.64 1.65 .899 3.95 2.09
b(b)f <■003 ,049 .019 .046 .262 .130 .100 .552 .363 1.16 4.28 2.40
b(k)f <•003 .031 .006 <.003 .225 .110 <■003 .172 .069 .853 3.52 I.R4
b(e)p <.003 .053 .017 .033 .207 .106 .102 .435 .325 .902 2.90 1.83
b|a)p <.003 .047 .008 .026 .183 .093 .023 ,163 .094 .723 2.37 1.28
i(l,2,3-cd)p <.003 .055 ,007 <.003 .258 .111 <.003 .066 .028 .689 2.44 I.3H
d(a.h)a <•003 .016 .004 <.003 .068 .016 <■003 ,012 .006 .123 .5 IB .2RU
b(g,h.i)p 

tout 17 PAHs

<■003 .052 .008

24.5

.020 .262 .114

1.89

<.019 .076 .041

65.7

.693 2.36 1.29

25.4

York River Site

Dissolved
(n=9)

Particulate

Harrmton Site

Dissolved
(n=6)

Particulate

PAH’ min. max. mean min. max. mean min. max. mean min. max. mean
naphthalene 11.72 21.2 15.9 .620 1.55 .950 8.051 27.1 16.1 .613 2.19 1.19
acenaphthylene .141 .571 .361 .011 .050 .023 .077 .476 .259 .008 .045 .021
acenaphthene .580 2.77 1.43 .035 .136 .073 .189 .649 .391 .020 .093 .047
(luorene .655 2.70 1.16 .064 .182 .111 .224 1.40 .759 -.050 .121 .079
phenanthrene 1.08 4.78 2.22 .236 .779 .491 .469 3.15 1.65 .206 .513 .317
anthracene .082 .392 .166 .033 .207 .093 .042 .078 .057 .025 .094 .049
fluoranthene .421 1.45 .858 .203 1.41 .711 .229 .688 .430 .221 .548 .354
pyrene .245 .945 .529 .189 1.68 .641 .127 .340 .222 .159 .483 .295
h(a)a <.003 .084 .033 .113 .586 .250 <•003 .034 .010 .075 .254 .147
chrysene .044 ,276 .123 .163 .780 .450 <■003 .060 .035 .121 .399 .235
b(b)f .017 .122 .048 .245 1.08 .508 <.003 .033 .020 .136 .49] .274
b(k>r <■003 .062 .023 .189 .782 .387 <•003 .024 .010 .102 .416 .225
b(e)p .014 .067 .033 .149 1.03 .387 <.003 .078 .021 .097 .365 .214
b(a)p <.003 .028 .009 .136 .813 .330 <.003 .041 .010 .091 .357 .193
t(l,2,3*cd)p <.003 .011 .004 .113 .946 .361 <.003 .024 .006 .122 .476 .248
d(a.h)a <.003 .005 .003 <.003 .170 .064 <•003 .003 .026 .069 .041
bfg.h.Dp 

total 17 PAHs

<.003 .012 .006

22.9

.140 1.23 .413

6.24

<.003 .003

20.0

.110 .417 .239

4.17

'Abbreviations for PAHs: b(a)a, benio(a)anthtacene; b(b)f. benio(b)nuoranthene; b(k)f, benzn(k)(luoranlhene; b(e)p. berao(e)pyrene; b(a)p, 
benzo(a)pyrene; i(l,2,3-cd)p, imIeno(l.2,3-cd)pyrene;d(a.h)a. dibenzo{a,h)anthracene; bfg,h,i)p. benzo(g,h,i)perylene 
< h below detection limit: limit of deletion given 
n.q. “  not quantifiable
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mean dissolved PAH concentrations at the Hampton and Wolftrap sites were 

significantly different for the lighter molecular weight PAHs.

The Elizabeth River exhibited considerably elevated dissolved and particulate 

PAH concentrations; the waters of the Elizabeth River were especially enriched in 

dissolved fluoranthene and pyrene as well as particle-associated PAHs (Figure 6,

Table 6). In addition, the York River site showed an increased loading of the 

particle-bound PAHs relative to the bay sites (Table 6, Figure 6). The data exhibit an 

obvious gradient in surface water PAH concentrations of the heavy molecular weight 

compounds from source regions in the river basins to mainstem Chesapeake Bay 

(Figure 6).

Organic carbon normalized distribution coefficients (KoC) were determined for 

29 water samples for which PAH concentrations, TSP, and POC were measured. The 

log Kqc values were plotted versus reported log Kow (Mackay et al. 1992) where:

Koc = (Cp*POC)/(TSP*Cf,w)

and Cp is the measured particle-associated PAH concentrations (Figure 7).

Equilibrium partitioning theory suggests that the slope of the log K q C v s  log Kow 

relationship should be ~ 1 for the distribution of a group of SOCs between the 

particle-associated and freely dissolved phases. The average slope obtained from 

plots of log Kqc vs log Kow for all sampling sites/times was .92 ±  .14 with an 

intercept value of 1.41 ± .66 (n=29). These results suggest that PAH dissolved- 

particle distributions in surface waters of southern Chesapeake Bay are near
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equilibrium. Further, the relationship between Koc and Kow implies that filtration 

with sorption of the dissolved fraction to XAD-2 resin is unbiased with respect to 

contribution of a third phase. If colloids or DOC-associated PAHs were contributing 

to the dissolved fraction measured by XAD-2, the Koc-Kow relationship would 

deviate from a slope of 1 as KqW increased, because heavier PAHs with larger KoWs 

would be more influenced by sorption to DOC or colloids to the resin relative to 

compounds with smaller KqWs . Although this behavior has been observed for 

particulate-dissolved distribution coefficients of SOCs in many cases (Baker et al 

1991, Achman et al. 1993), it is clearly not the case for PAHs in the Chesapeake Bay 

water samples collected in this study (Figure 7).

Summary and Conclusions

Freely dissolved PAH concentrations have been measured in Chesapeake Bay 

surface waters via three methods. Dissolved concentrations measured by air sparging 

and SPMDs were significantly different than those measured by filtration with 

subsequent sorption of the freely dissolved fraction to XAD-2 resin. Higher freely 

dissolved concentrations relative to GFF/XAD-2 filtration and evidence for particle- 

mediated transport of PAHs was observed in the gas sparging experiments. In 

contrast, freely dissolved PAH concentrations determined by in situ SPMDs were 

within a factor of four, and typically lower than, concentrations determined by XAD- 

2. Sample cleanup of interfering compounds in SPMDs is also problematic.
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Furthermore, PAHs require at least 72 h to achieve equilibrium partitioning with 

SPMDs under turbulent conditions, thus the ability to determine short-term temporal 

variability is lost. Therefore, filtration with sorption to XAD-2 resin at present is the 

most feasible and accurate method to determine freely dissolved SOC concentrations 

in estuarine waters. The major disadvantage with XAD-2 resin, however, is the 

extensive clean-up required to achieve acceptable blank levels of analytes.

PAH surface water concentrations measured in the southern Chesapeake Bay 

are higher than those reported for the northern bay. Further, PAH concentrations in 

the Elizabeth River were significantly higher than concentrations measured at all other 

sites, supporting the conclusion that this tributary has been greatly impacted by 

human activities and is representative of a contaminated estuary. Additionally, 

particle-bound PAH concentrations were also elevated at the York River site; hence, 

both tributary sites exhibited higher particle-bound PAH loadings than the mainstem 

bay sites. No seasonal trends were observed in either the dissolved or particle-bound 

PAH fraction at any sites. Nonetheless, PAH dissolved-particle distributions in 

surface waters of southern Chesapeake Bay were near equilibrium for all locations 

and seasons.
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Chapter IV: ParticleA^apor Concentrations and Distributions of PAHs in the 
Atmosphere of Southern Chesapeake Bay

Abstract:

Atmospheric PAH concentrations were measured at four sites characterized as 
’rural’ (Haven Beach), ’semiurban’ (York River), ’urban’ (Hampton), and 
’industrialized’ (Elizabeth River) areas as part of a study to quantify gaseous exchange 
fluxes across the air water interface of Southern Chesapeake Bay. Aerosol particle- 
associated PAH concentrations were similar at all sites; however, PAH vapor 
concentrations in the urban areas were as much as a factor of 50 greater than those at 
the rural site. Mean total PAH concentrations ranged from 7.87 ng/m? at the rural 
site to 92.8 ng/m3 at the urban site. Daily total PAH concentrations ranged from 1.60 
to 198 ng/m3. Exponential increases in PAH vapor concentrations with temperature 
were observed at die non-rural sites, suggesting volatilization from contaminated 
surfaces (soils, vegetation, roads) during warmer weather; whereas PAH vapor 
concentrations at the rural Haven Beach site exhibited little seasonal variability. 
Aerosol particle-associated PAH levels were similar at all sites and increased in 
winter due to the temperature dependence of particle-vapor partitioning, increased 
sources from combustion of fossil fuel and wood for home heating, and cold 
condensation of vapors to background aerosols as air masses are dispersed from 
source areas to remote regions. Plots of log Kj vs log Psai,ScL indicate PAH 
partitioning is not at equilibrium in rural areas of Southern Chesapeake Bay. In 
addition, plots of log Kj vs. 1/T for individual PAHs indicate different particle 
characteristics or partitioning processes influence particle-vapor distributions at the 
urban and rural sites.

Introduction:

Atmospheric inputs of contaminants have been noted as a prominent source of 

pollutants to various aquatic ecosystems (McVeety and Hites, 1988; Eisenreich et al. 

1981; Schreitmuller and Ballschmiter, 1995; Bidleman et al. 1989; Atlas, et al., 

1981). The physical characteristics of Chesapeake Bay; a large surface area to mean 

water volume ratio and 75-100 cm of precipitation annually, make the atmosphere
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likely to be a significant source of contaminants to this large estuary (Leister and 

Baker, 1994), which is an important habitat for many fisheries. Development and 

implementation of environmental legislation, and risk management of both ecosystem 

and human health in the Chesapeake Bay region requires an understanding and 

quantification of air and water quality. Moreover, determination of the major air- 

water transfer processes for contaminants is necessary such that net fluxes of 

chemicals to and from the bay and exposure levels can be accurately modeled.

Air-water transfer processes include wet and dry atmospheric deposition, spray 

transfer, bubble stripping and bursting, and gaseous exchange. Municipal and 

industrial point sources of contaminants are scattered along the shores of the 

Chesapeake Bay and its tributaries; however, urban and industrial centers are 

concentrated along the northwest and southern shores. Anthropogenic sources of 

PAHs to the atmosphere include: automobile exhaust and degradation of tires; 

industrial emissions from catalytic cracking, air-blowing of asphalt, and coking coal; 

domestic heating emissions from coal, oil, gas, and wood; refuse incineration and 

biomass burning (Nikolaou et al., 1984). Thus, emissions into the urban atmosphere 

and the subsequent aerial transport and deposition of pollutants as air masses move 

across the Chesapeake Bay may significantly impact contaminant levels in the bay and 

its fisheries.

Wet and dry deposition are expected to be higher near urban sources than in 

rural areas of the bay (Leister and Baker 1994, Cotham and Bidleman 1995). 

Nonetheless, vapor and particle washout will act as sources of pollutants to the water
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throughout the bay. In contrast, volatile-absorptive gas exchange of semivolatile 

organic contaminants (SOCs) across the air-water interface occurs as a result of 

disequilibria between freely dissolved water concentrations and atmospheric vapor 

concentrations, and thus may act as an input or efflux mechanism throughout the bay 

depending on the spatial and temporal variability of the air-water fugacity gradient of 

SOCs. Therefore, in order to determine gaseous fluxes of SOCs, including polycyclic 

aromatic hydrocarbons (PAHs) across the air-water interface of a water body such as 

Chesapeake Bay, it is necessary to have accurate measurements of atmospheric vapor 

concentrations and have a quantitative understanding of environmental factors 

controlling the levels and distributions of semivolatile pollutants in air which is in 

contact with the Bay.

The overall objectives of this investigation were to quantify and assess spatial 

and temporal variation in PAH gaseous exchange fluxes across the air-water interface 

of Southern Chesapeake Bay. In this chapter, trends in the atmospheric 

concentrations of PAHs in the southern Chesapeake Bay region during the period 

January 1994 through June 1995 are described and seasonal and spatial variability in 

atmospheric PAH vapor and particulate concentrations and distributions are assessed.
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Materials and Methods:

Sampling Locations. To determine PAH gaseous exchange fluxes across the 

air-water interface, measurements of atmospheric vapor concentrations reflecting those 

at the air-water interface must be known. High-volume air samplers were placed 

adjacent to the shore (Haven Beach < 100 m, all other sites < 10 m) at four 

locations in Southern Chesapeake Bay (Figure 1). At the rural Haven Beach site 

(37°26.16’ N, 76°15.25’ W), the air sampler was located 100 m from the shore of 

Chesapeake Bay in a high marsh area, as well as >50 m from the nearest road which 

has limited traffic (i.e. dead end) and >200 m from the nearest residence. The 

closest regional sources of contaminants to the Haven Beach site include shipping 

traffic on the mainstem bay, in addition to a refinery and coal/oil-fired power plant 

which are located approximately 30 km to the southwest. The air sampler at the York 

River site was located at the Virginia Institute of Marine Science (37°14.75’ N, 

76°30.0’W). At this site, the sampler was placed on the windward side (during 

sampling periods) at the end of one of the Institute’s research piers on the York River 

(approximately 50 m from shore). The York River site was considered a semi-urban 

site approximately 5 km northwest of an oil refinery and coal/oil-fired power plant, 

and 1 km east of a major vehicular river crossing. The Hampton site (37°4.6’ N, 

76°16.4’ W) was located less than 10 m from the shore of the Chesapeake Bay at 

Grandview Beach, and was considered an urban site lying in the eastern most section 

of the city of Hampton (pop. 138,000) and within 5 km of the cities of Newport News



1 York River Site
2  Hampton Site
3  Elizabeth River Site
4  Haven Beach Site

Figure 4.1: Atmospheric Sampling Locations in the Southern Chesapeake Bay Region.



(pop. 179,000) and Norfolk (pop. 245,000). The Elizabeth River site was located at 

the Portsmouth Coast Guard Station (36°53.2’ N, 76°21.2’W); the air sampler was 

located on a remote section of the base 2 m from the shore of the river. The 

Elizabeth River site is in an industrialized area in close proximity (<  5 km) to 

Lambert’s Point coal terminals, Norfolk Naval Station, and Portsmouth Naval 

Shipyard; in addition, the site is located centrally within the Hampton Roads 

Metropolitan area (pop. 1.5 million).

Sampling Methods. Atmospheric samples, vapor and particulate, were collected 

using a high volume air sampler (General Metal Works model GPYN1123) which 

employs precombusted glass fiber filters to remove atmospheric particulates and two 

polyurethane foam (PUF) plugs in series to collect vapor phase SOCs (Burdick and 

Bidleman, 1981; You and Bidleman, 1984; Keller and Bidleman, 1984; Bidleman et 

al. 1984; Baker, et at. 1994; Dickhut and Gustafson, 1995). The air sampler was 

equipped with a flow controller to maintain a constant flow rate during sampling 

regardless of particle loading. Particulate samples were fractionated using 8 in. x 10 

in. Gelman type A/E glass fiber filters; the subsequent air was passed through two 8 

cm diameter x 7.6 cm long PUF plugs in series which sorbed the SOC vapor fraction. 

Air sample times ranged from 4 h at the industrialized Elizabeth River site to 12 h at 

the rural Haven Beach site. Air volumes sampled ranged from 172 to 665 m3 

collected at flow rates ranging from .51 to .75 m3/min. Sample media were collected 

as soon as possible after termination of air sampling to minimize desorptive losses of 

chemicals due to changes in air temperatures; PUF plugs and GFFs were stored in a 

freezer at -20 °C until extraction.
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Sample media for PAHs were prepared as follows. Glass fiber filters were 

ashed at 450 °C for 4 h and wrapped in aluminum foil. PUF plugs were Soxhlet 

extracted for 24 h each with acetone followed by petroleum ether, dried in an oven at 

60 °C for 2 h, and stored in precleaned glass jars covered with aluminum foil and 

sealed.

Potential sampling artifacts including sorption of vapor to filters during 

sampling may inflate measurements of particle-associated concentrations and reduce 

vapor concentrations. Sorption of vapors to filters was previously assessed (Dickhut 

and Gustafson, 1995) by use of a second (back-up) filter in the sampling system; 

sorption of PAH vapors to the back filters was <15% the measured amount on the 

front (primary) filter for all PAHs less volatile than fluorene. Back-up filter 

concentrations of PAHs more volatile than fluorene were often similar to those on the 

front filter, thus aerosol data for these compounds were not included in the data 

analysis. Volatile PAHs however, are abundant in the vapor phase and the amount of 

these SOCs sorbed to the GFFs were insignificant compared to the measured vapor 

phase concentrations. Aerosol concentrations of the less volatile PAHs were not 

corrected for filter sorption since back-up filter concentrations were typically <5% 

those on the primary filter (Dickhut and Gustafson, 1995).

Breakthrough of gaseous PAHs from the PUF plugs in the air sampler was 

also previously assessed by evaluation of front and back PUF plug concentrations 

(Dickhut and Gustafson, 1995). For PAHs less volatile than fluorene, no more than 

30% of the total measured vapor concentration was found to be associated with the
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back PUF plug, whereas for PAHs more volatile than fluorene, occasionally more 

than 50% of the vapor concentration was associated with the back plug. Nonetheless, 

since sample sizes and flow rates used in this study were lower than those assessed by 

Dickhut and Gustafson (1995) and within the range recommended by You and 

Bidleman (1984), it is expected that little breakthrough of vapors past these two PUF 

plugs in series occurred. Furthermore, the PUF plugs used in this study were longer 

than those used by others (Hoff et al., 1992; Leister and Baker, 1994), whereas 

sample flow rates were similar and volumes lower for collection of air samples for 

SOC analysis. Therefore, measured PAH gas phase concentrations are expected to be 

representative of actual ambient levels.

Analytical Techniques. Atmospheric total suspended particulate (TSP) 

concentrations were determined as the change in mass of the preweighed GFF per unit 

volume of air sampled. GFFs were weighed on a Mettler PM400 top loading 

balance. Samples (PUF plugs and GFFs) were analyzed for 17 PAHs by extracting 

the analytes into appropriate organic solvents (e.g. acetone, petroleum ether, 

dichloromethane) using a Soxhlet apparatus after the addition of five deuterated PAH 

surrogate standards. The extracts were then concentrated using rotoevaporation 

followed by evaporation under purified nitrogen, solvent exchanged into hexane, and 

cleaned using solid-liquid chromatography on silica gel prior to PAH analysis. PAHs 

were analyzed directly by gas chromatography (GC) with electron impact mass 

spectrometry (MS) and quantified relative to the closest eluting PAH surrogate. 

Additional details of the methodology are provided elsewhere (Dickhut and Gustafson,
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1995). Average recoveries for surrogate deuterated PAHs from the PUF plugs and 

GFFs are listed in Table 1.

PAH detection limits for air samples were calculated from instrumental 

detection limits and individual sample volumes. Detection limits ranged from .12 to 

.79 pg/m3 with a mean value of .30 pg/m\ Blank values (field and laboratory) 

averaged 3.8% and 2.9% of mean individual PAH sample values which ranged from 

.35 to 4990 ng, and 1.71 to 38.7 ng, per sample for PUF and GFF matrices, 

respectively.

Results and Discussion:

Concentrations. Thirty-seven air samples were collected in the southern 

Chesapeake Bay region during 1994-1995. Annual mean PAH concentrations (vapor 

and particulate) ranged from 7.87 ng/m3 at the rural Haven Beach site to 92.8 ng/m3 

at the urban Hampton site (Table 2). Daily total PAH concentrations ranged from 

1.60 to 198 ng/m3 at the same sites, respectively. These measured values are 

comparable to those reported elsewhere for similar rural and urban sites (Leister and 

Baker, 1994; Keller and Bidleman, 1984; Hoff and Chan, 1987; Gardner et al., 1995; 

Foreman and Bidleman, 1990). Further, differences in atmospheric levels of PAHs at 

the various sites were due to variations in the gas phase concentrations (Fig. 2).

Total atmospheric PAH concentrations were dominated by several of the more 

volatile compounds including phenanthrene, fluorene, and acenaphthylene (Table 2).



Table 1: Surrogate Deuterated PAH Recoveries for Air Sampling Media

Deuterated PAH

d-8 naphthalene 
d-10 anthracene 
d-12 benzo(a)anthracene 
d-12 benzo(a)pyrene

d-8 naphthalene 
d-10 anthracene 
d-12 benzo(a)anthraene 
d-12 benzo(a)pyrene

Sample Mean Relai
Matrix Recovery Std.

(%) (%)
PUF 49.0 13.1
plugs 89.3 18.5

100.0 20.7
87.2 19.8

GFF 56.1 12.9
92.6 22.1
103.1 9.5
79.3 13.5

N* 70%< N <  130%

64 9
63 56
65 61
65 61

52 7
52 47
52 52
52 45

* Number of Samples.



Table 2: Mean Values and Ranges o r PAH Concentrations (pg/ir?) in the Atmosphere o r Southern Chesapeake Bay

Haven Beach Site Elizabeth River Site

Vapor Particulate Vapor Particulate

PAH min. max. mean min. max. mean min. max. mean min. max. mean
naphthalene 69,3 15700 1940 N.Q. 769 n.q. 434.05 8950 3910 N.Q. 232 n.q.
acenaphthylene <.19 2250 ' 283 <•19 8.28 n.q. 118.05 6250 1670 4.17 38.8 n.q.
acenaphthene 3S.8 1550 342 <.17 5.48 n.q. 1738.77 13700 5830 <.45 78.3 n.q,
fluorene 224 3050 1170 2.28 15.9 n.q. 2788.34 11200 6620 7.02 20.7 n.q.
phenanlhren 516 6900 2510 10.5 205 70.5 6013.35 25200 14700 43.1 302 139
anthracene <.15 293 31.7 <•15 11.3 3.65 124.01 1040 614 3.34 36.7 12.7
fiuoranthcne 98.0 651 380 2.34 228 78.0 677.71 4580 2510 20.5 534 202
pyrene 62.9 968 410 1.5! 200 64.6 500.74 2520 1580 16.9 632 190
b(a)a <•15 13.2 2.29 <.15 108 26.5 <.41 284 62.2 6.26 200 62.4
chrysene <.25 110 28.1 2.21 414 91.2 15.07 1810 362 21.7 865 255
b(b)r <.17 17.2 4.35 1.96 322 99.1 1.77 19.4 9.21 17.1 434 154
b(k)r <.15 7.91 1.26 <.15 266 76.1 <.79 17.8 5,73 8.89 333 114
b{e)p <.18 40.6 4.86 1.27 255 75.1 <.41 15.7 5.67 13.2 387 125
b(a)p <.15 6.36 .68 .83 174 43.1 <■41 67.0 14.2 6.54 271 83.6
i(t,2,3<cd)p <.15 <.75 <.23 <.19 229 57.8 <■41 6.84 3.27 10.7 365 116
d(a,h)a <.15 .60 .25 <.19 31.7 9.28 <.41 9.77 2.08 <.79 43.6 17.6
b(g.M p

total

<•15 32.3 4.31

7110

<.19 223 64.6

760

<.41 10.8 6.37

37900

18.2 514 160

1630

York Rivet Site

Vapor Particulate

PAH min. max. mean min. max.
naphthalene 427 6870 2440 N.Q. 211
acenaphthylene 122 2630 693 1.44 23.6
acenaphthene 2290 12800 5520 N.Q. 20.6
fluorene 3890 16400 8920 N.Q. 33.8
phenanthrene 5780 65200 24400 19.9 232
anthracene 152 3230 1130 1.06 19.2
fiuomnthene 1440 8060 4160 24.6 203
pyrene 507 3070 1700 15.6 158
b(a)a <.28 183 42.5 <.12 75.4
chrysene 47.4 365 132 14.1 166
btbjr 3.63 67.5 22.6 13.5 386
b(k)f <.18 71.4 10.2 9.68 332
b(e)p 1.41 48.0 14.3 9.17 359
b{a)p <.12 14.6 5.15 6.10 139
if 1,2.3-c J)p <.12 4.94 1.47 7.17 584
d(a,h)a <.12 2.81 .72 <.12 36.7
b(g,h,i)p <.12 12.1 4.02 8.64 746

total 49200

Hampton Site

Vapor Particulate

mean min. max. mean min. max. mean
n.q. 536 6780 3200 N.Q. 94.7 n.q.
n.q. 17.5 715 379 1.26 11.4 n.q.
n.q. 328 40100 17600 N.Q. 18.2 n.q.
n.q. 1740 40600 17100 N.Q. 21.8 n.q.

90.8 2460 125000 44800 16.7 167 loo
7.20 <.27 6940 1830 .83 15.3 7.51

97.0 801 12900 4940 12.1 215 111
81.9 568 5560 1990 10.4 146 80.0
31.6 <.27 25.0 10.1 <■29 78.0 28,5
89.0 41.5 198 99.1 11.1 192 79.7

140 2.33 16.6 11.2 10.9 260 98.3
III <.23 7.77 1.76 7.87 208 72.9
120 1.45 24.1 10.0 7.83 171 65.7
58.6 <.23 4.69 1.22 4.95 131 45.8

142 <,23 8.55 1.68 7.39 193 61.9
12.2 <.44 <.29 <.23 29.5 8.77

183

1160

<.23 9.16 2.79

92000

10.5 184 65.3

825

Abbreviations for PAHs: b(a)a, benzo(a)anlhracene; b(b)r. benzo(b)f1uotanlhene;b(lc)r. benzo(k)lluanntliene;b(e)p, benza(e)pyrene; b(a)p, 
benzo(a}pyrene;i(l,2,3-cd)p. indenoO^^.cdJpyrenetdta.hia.dibenzofo.hJanthracenejbfg.h.iip, benzn(g,h,i)petylene,
N.Q. = not quantifiable, less than 3a blank
n.q. =■ not quantified due to sampting artifacts (see teat)
< = not detected, limit or detection given
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As a result, the highest levels of PAHs in the air exist predominantly in the vapor 

phase (Figure 2), and the seasonal patterns in total vapor phase and particle-associated 

PAHs reflects that of the more volatile compounds (Figs. 2-3). In contrast, 

distributions of the more nonvolatile PAHs favor aerosol particles, even though 

seasonal patterns of these chemicals in the atmosphere at specific sites are similar to 

those for the volatile PAHs (Figs. 3-4).

Vapor concentrations were highest at the Hampton site and lowest at the rural 

Haven Beach site, varying up to 50-fold between sites during summer (Fig. 2-4).

PAH vapor concentrations at the non-rural sites (all sites except Haven Beach) exhibit 

a minimum in winter with an exponential increase in gas phase levels with warmer 

weather (Fig. 2-5). This rise in PAH concentrations between winter and summer was 

most pronounced at the Hampton site. No seasonal variability in vapor concentrations 

was observed at Haven Beach; however, PAH atmospheric vapor concentrations at 

Haven Beach appear to be decreasing with time (Fig. 2-4). The mean vapor 

concentration of the PAHs (E fluorene through b(ghi)p = 4550 pg/m3) at the Haven 

Beach site measured in this study was lower than the mean concentration reported for 

this same site in 1991 (6203 pg/m3) (Baker et al. 1994).

Since vapor pressure is exponentially related with temperature by both the well 

known Antoine and Clausius-Clapeyron equations, the increase of both vapor and total 

PAH concentrations from winter to summer at the non-rural sites is consistent with 

volatilization from contaminated surfaces (soils, roads, vegetation) near the sources 

due to an increase in partial pressures of PAHs. Since PAHs are emitted to the
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atmosphere as the result of a variety of high temperature combustion processes 

(Nikolaou et al., 1984), a large fraction of these SOCs are likely initially in the vapor 

phase and subsequently condense to aerosol and terrestrial surfaces at ambient 

temperature. This sorbed pool of PAHs will be reemitted to the atmosphere when 

temperatures increase. The increase in atmospheric concentrations with temperature 

has been noted previously for PCBs (Panshin and Hites, 1994; Hombuckle et al., 

1994; Hoff et al., 1992). However, due to interannual trends within the data set, the 

relationship of vapor concentration with temperature is more weakly correlated than 

that of concentration with time.

PAH particle-associated concentrations were similar at the various sites and 

exhibited seasonal variability with increased levels occurring during winter months 

(Figures 2-4). The increase in particulate loadings during colder weather is likely due 

to regional sources and the temperature dependence of particle-vapor partitioning. 

Particulate concentrations of PAHs are similar in urban and remote areas of Southern 

Chesapeake Bay (Figures 2-4). Note that particle-associated concentrations of PAHs 

are only slightly higher at the industrialized Elizabeth River site compared to the rural 

Haven Beach and other urban sites. This may indicate that source particles containing 

PAHs are rapidly dispersed in the atmosphere on a regional basis. However, since 

background aerosols are expected to compose a larger fraction of the total aerosol 

particle concentration with increased distance from urban areas (Wameck, 1988), 

similar aerosol-associated PAH concentrations at all sites is likely due to increased 

condensation of PAHs to "clean" background aerosols.
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Distributions. The distribution of SOCs between gas and aerosol phases 

depends upon the subcooled liquid vapor pressure, total suspended particulates (TSP), 

and temperature. Particle-vapor distributions of SOCs are described by:

log Kd =  -a*logPiat,sa  +  c (1)

where Kd = Cp/TSP*Cv, Cp and Cv are the individual PAH concentrations (pg/m3) in 

the particulate and vapor phases, respectively, TSP is the total suspended particulate 

level (ug/m3) in the atmosphere, Psat,scL is subcooled liquid vapor pressure of the 

PAH, and a and c are empirical constants (Pankow and Bidleman, 1992), Eq. 1 

demonstrates that as PsatlScL decreases, the particle-vapor distribution of the compound 

increases, which is consistent with the PAH distribution patterns noted above.

The log Kd values were correlated to log P„[iSCl  of PAHs (Sonnefeld et al. 1983) at 

the average event temperature (Table 3). Under equilibrium conditions and in the 

absence of sampling artifacts, the slope a should be 1 (Pankow and Bidleman, 1992) 

as observed for the non-rural sites. However, regressions of eq 1 indicate that PAH 

particle-vapor partitioning at the rural Haven Beach site is not at equilibrium (Table 

3).

The intercept value of eq 1 is a function of both the specific surface area of 

the TSP and enthalpies of desorption for the PAHs which are expected to vary little 

for a particular compound class (Pankow and Bidleman, 1992). Nonetheless, similar 

c values for PAHs at the urban sites (Table 3) do not imply that aerosol particle



Table 3: Regression Coefficients* for Plots of log Kd vs log Psa[ SCL (eq 1) for Selected
PAHsf in Atmospheric Samples from Southern Chesapeake Bay

Site n Slope (a) Intercept (c) r2
mean ±  std. mean ± std. mean ±  std.

Elizabeth River 5 -1.04 ±  .17 -10.3 ±  1.3 .90 ±  .06
York River 7 -.966 ±  .137 -10.5 ± 1.1 .85 ±  .13
Hampton 5 -1.03 ±  .19 -10.9 ±  1.2 .87 ±  .12
Haven Beach 10 -.649 ±  .209 -7.67 ± 1 .19 .83 ±  .17

* Values are the mean and standard deviation
f Regressions included only phenanthrene, anthracene, fluoranthene, pyrene, and 

benzo(a)anthracene.
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characteristics remain constant throughout the regioinal atmosphere. Similar intercept 

values for eq 1 among the urban sites may result from the covariance of both specific 

surface area and the enthalpy of desorption. That is, it is possible that the enthalpy of 

desorption for PAHs increases from urban to remote sites due to changing particle 

characteristics and loss of the readily exchangeable pool of PAHs. Simultaneously, 

due to changing particle size distributions as air masses are transported from source to 

remote regions, the specific surface areas of aerosols may also decrease. Indeed, the 

covariance of these parameters is shown below.

Particle-gas disequilibria in the atmosphere may be attributable to a variety of 

factors. In particular, artificially shallow slopes and high intercepts for plots of eq 1, 

as observed for PAHs at Haven Beach (Table 3), may be due to non-exchangeable 

PAHs on source particles, slow gas-to-particle sorption of SOCs to "clean" aerosols, 

or large temperature decreases during sampling (Pankow and Bidleman, 1992).

Studies have noted that non-exchangeable PAHs on particles may significantly affect 

measured Kds (Cotham and Bidleman, 1995; Pankow and Bidleman, 1992). 

Furthermore, low gas phase PAH concentrations at Haven Beach would contribute to 

slow sorption kinetics of PAHs to background aerosols in the local atmosphere. 

Decreasing temperatures during sampling at the Haven Beach site may have also 

contributed to particle-vapor disequilibria as samples were collected over 12 h, 

whereas sampling ranged from 4-8 h at the other sites. It is unclear which of these 

factors contributed to PAH particle-vapor disequilibria at Haven Beach.
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Nonequilibrium PAH distributions at Haven Beach were observed to be 

correlated to mean atmospheric temperature (Figure 6). The increased disequilibria of 

PAHs between the particulate and vapor phases with warmer temperatures is likely 

due to either nonexchangeable PAHs or slow sorption kinetics. At higher 

temperatures volatile compounds favor the vapor phase, and therefore, 

nonexchangeable PAHs would have a larger influence on Kj than at lower 

temperatures (see Pankow and Bidleman, 1992). Similarly, a high temperatures 

sorption or condensation of PAHs to background aerosols would be slowed. In 

contrast, temperature changes for sampling would be highest in the fall and spring 

whereas disequilibria is highest when mean temperatures are highest (e.g. summer). 

Thus, the observed particle-vapor disequilibria at the rural Haven Beach site is due to 

slow exchange of PAHs between atmospheric pools and not a sampling artifact.

Particle-vapor distributions are also inversely related with temperature as first 

demonstrated by Yamaskai et al. (1982):

log Kd = mlT + b (2)

where m and b are empirical constants that are a function of desorption energetics and 

particle characteristics, and T is temperature (K), The temperature dependence of 

particle-vapor distributions for PAHs varies greatly between sites, but very little for 

individual PAHs at any site (Table 4). In contrast, previously published slope and 

intercept values for selected PAHs at urban sites were consistent from city to city
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Table 4: Regression Coefficients for log Kd versus 1/T plots (eq 2) for selected PAHs* in
the Atmosphere of Southern Chesapeake Bay

Haven Beach Site** York River Site
(n = 10) (n = 7)

PAH1 m b r2 m b r2
phenanthrene 10090 -38.37 .85 5136 -22.11 .95
anthracene 16080 -58.12 .94 4642 -20.07 .94
fluoranthene 10120 -37.71 .87 4906 -20.49 .95
pyrene 11690 -43.23 .88 4548 -18.96 .90
b(a)a 5335 -20.42 .91
chrysene 9479 -34.47 .85 4366 -17.22 .90
b(b)f 8958 -31.74 .76 6529 -23.65 .92
b(e)p 9021 -31.92 .71 5957 -21.49 .88

avg. 10780 -39.37 5177 -20.55
std. 2328 8.52 696 1.83
cv 22% 22% 13% 9%

Elizabeth River Site Hamoton Site
(n = 5) (n = 5)

PAH1 m b r2 m b r2
phenanthrene 2282 -11.66 .69 8131 -32.80 1.0
fluoranthene 4721 -19.24 .86 7379 -29.38 .97
pyrene 4349 -17.90 .82 6487 -26.06 1.0
chrysene 5887 -21.84 .94 4828 -19.09 .88
b(b)f 5216 -18.63 .88 8277 -30.01 .97
b(k)f 5498 -19.59 .80

avg. 4659 -18.14 7020 -27.47
std. 1174 3.14 1267 4.71
cv 25% 17% 18% 18%

* Although regressions are included for compounds in addition to those for which 
equilibrium distribution was evaluated (Table 3), inclusion of these compounds does not 
influence the trends in average slope and intercept values.

Evaluation of Kj at this site indicated nonequilibrium distribution of PAHs between 
aerosol particles and vapor phase (Table 3).
f Abbreviations for PAHs are as follows: b(a)a, benzo(a)anthracene; b(b)f, 
benzo(b)fluoranthene; b(e)p, benzo(e)pyrene; b(k)f, benzo(k)fluoranthene.
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(Yamasaki et al., 1982; Keller and Bidleman, 1984; Hoff and Chan, 1987; Ligocki 

and Pankow, 1989), but are comparable to values determined for the Elizabeth River 

site. The data presented here suggests that there are different particle-vapor 

distribution processes operating at the rural and urban sites in Southern Chesapeake 

Bay.

The regression slope of eq 2 is dependent upon the enthalpy of desorption of 

the PAH (Pankow 1991):

where Hdeson, is the enthalpy of desorption from the surface (kJ/mol), R is the gas 

constant (8.314*10'3 kJ/K*mol), and T ^  the center of the ambient temperature range 

(K) over the study period. The intercept of eq 2 depends upon the properties of the 

individual compound and the specific surface area of the particulate matter (Pankow 

1991):

^  2.303+J? 4 .606
(3)

£=log( — -------
275* 4.606

(4)

where SA is the specific surface area of the TSP (cm2//*g), t is the molecular 

vibration time (s), and MW the molecular weight of the compound of interest. The 

relatively small variance (cv <  25%) in m and b for all PAHs at a particular site
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(Table 4) indicates that the properties of the aerosol particulate matter control the 

spatial variability in the particle-vapor distributions. For example, the different 

regression values for eq 2 at the various sites may be due to loss of the exchangeable 

PAHs on the aerosols or to changing particle characteristics as air masses are 

transported from PAH source regions to remote areas.

Different slopes for PAH particle-vapor distribution as a function of 

temperature (eq 2) between sites (Table 4) are likely due to the redistribution of PAHs 

in the aerosol pool resulting in different enthalpies of desorption for the various 

particle types (e.g. pollen versus soot dominated) in the remote and urban 

atmospheres. Similarly, different intercept values from the various sites .are probably 

due to changes in the specific surface area of the atmospheric particulates. From eqs 

3 and 4 enthalpies of desorption for the PAHs and relative surface areas of the aerosol 

particulates can be calculated. Due to the small spatial variability in air temperatures 

between sites (Figure 5), the difference in aerosol specific surface areas is a function 

of the intercept (SA oc 10b); therefore the specific surface area of the atmospheric 

particles at the Elizabeth River > York River >  Hampton > Haven Beach. 

Conversely, enthalpies of desorption calculated from eq 3 (using T ^  = 289.9 K) 

vary in the opposite manner: Haven Beach (208 kJ/mol) >  Hampton (136 kJ/mol) > 

York River (100 kJ/mol) >  Elizabeth River (90.4 kJ/mol). The spatial trends in 

particle characteristics reflect the gradient from PAH source to remote regions. 

Although the Hampton and York River sites are reversed as one might expect based 

on population, the Hampton site was located on the shore of the mainstem bay,
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whereas the York River site was located near a petroleum refinery, coal/oil-fired 

power plant, and major vehicular river crossing and thus may be more influenced by 

local sources of PAHs.

The greater aerosol SA near the urban sources may be due to the larger 

volume fraction (and hence number) of fine particles (<  1 ^m) in the atmosphere, 

which provide more SA than coarse particles (see Wameck pp 284-287). The lower 

Hdesorp in urban source areas means that PAHs are more readily removed from these 

particles compared to PAH desorption from rural atmospheric aerosol particles. If 

near urban sources PAHs are sorbed to particulates in a "liquid-like" manner (Pankow 

and Bidleman, 1992), and in rural air PAHs are reversibly sorbed to the aerosol 

particle matrix, then the energy required to release PAHs from urban particulate 

matter would be lower than that for removal of PAHs from rural aerosol particles. 

Alternatively, the higher Hdcs0[p for PAHs from rural air particles may be due to loss 

of the readily exchangeable PAHs on the particle surface as these aerosols are 

transported from source to remote regions. PAHs incorporated within particulate 

matter would be extremely difficult to vaporize and would likely contribute higher 

enthalpies of desorption compared with those of surface desorption in source regions.

Atmospheric Redistribution of PAHs. It should be noted that the above 

interpretation of particle-vapor partitioning processes assumes that the exchange of a 

pollutant occurs only between the atmospheric vapor and particulate phases.

However, the fraction of SOCs in the vapor phase may be influenced by distribution 

to terrestrial surfaces. As noted above, the increase in vapor phase PAHs as
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temperatures rise is consistent with the expectation of volatilization from contaminated 

surfaces. Nevertheless, if horizontal mixing of air masses (and hence aerosol- 

associated PAHs) occurs faster than deposition of particulates to the Earth’s surface 

(see Lerman p 57.), but slower than exchange of PAHs between the vapor phase and 

terrestrial surfaces, then the rate of terrestrial surface-vapor exchange will not 

influence the rate limiting process of aerosol particle-vapor transfer. Indeed, the 

atmospheric residence time of aerosol particles are on the order of 2-10 days 

(Lerman, Chap. 7), but hourly variability in atmospheric gases such as carbon dioxide 

are observed due to local exchange between vegetative surfaces (Wameck, Chap 1).

In Southern Chesapeake Bay it is clear that aerosol particles generally mix 

laterally faster than the rate of photodegradation of particle-associated PAHs. The 

ratios of atmospheric particle-associated PAH concentrations for compounds with 

similar subcooled liquid vapor pressures, but very different photochemical reactivities 

remain similar between various urban and rural sites (Figure 7). Although there is 

some evidence of depletion of the most photochemically reactive PAH 

(benzo(a)pyrene) at the rural Haven Beach site during spring and summer, this simply 

supports our expectation that the aerosol particles containing PAHs originate near 

urban areas and may redistribute to the background vapor and aerosol pools during 

transport, particularly as temperatures increase. Kormacher et al. (1980) found that 

PAHs sorbed to fly-ash particulates were highly resistant to photodegradation. Thus, 

depletion of photochemically reactive PAHs on aerosol particulate matter likely occurs 

as a result of redistribution of these compounds to the vapor phase as temperatures 

increase, and is promoted by rapid photodegradation in the gas phase.
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Finally, large aerosol particles are expected to deposit near urban sources and 

PAH vapors produced by combustion at elevated temperatures (auto exhaust, 

industrial activities) would also be expected to condense to surfaces near sources due 

to a much lower ambient temperature upon emission. Thereforer, it is suggested that 

analogous to the "global distillation" and "cold condensation" theories, atmospheric 

PAH vapor loadings in Southern Chesapeake Bay are mediated by secondary 

volatilization from non-atmospheric surfaces especially near source regions during 

warmer temperatures. This secondary source of PAHs indirectly influences particle- 

vapor exchange in the atmosphere since the latter process is rate limiting. This is 

apparent in the observed departure from equilibrium for PAH particle-vapor 

distributions which increase in summer due to a relatively rapid release of PAHs 

condensed to terrestrial surfaces compared with the expected slower sorption of these 

SOCs by the ambient aerosols. PAH aerosol-associated concentrations are mediated 

by condensation of PAH vapors to background aerosols as air masses are dispersed 

from source to remote regions.

Conclusions:

Atmospheric vapor concentrations of PAHs varied significantly between sites 

and increased logarithmically with temperature at the non-rural sites indicating the 

major source of these compounds to the atmosphere of Southern Chesapeake Bay is 

volatilization from contaminated surfaces (soil, roads, vegetation). Aerosol-particle
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concentrations of PAHs were similar at the various sites and higher during winter 

months indicating that particulate concentrations are controlled by increase combustion 

sources, the temperature dependence of particle-vapor partitioning, and the 

redistribution of PAH vapors to background aerosols as air masses are dispersed from 

source to remote regions. Log Kd versus 1/T regression equations indicate that while 

particle-vapor distributions are temperature dependent, the process is site specific due 

to variation in the aerosol particle pool. A gradient from urban to remote sites was 

observed in both specific surface area of atmospheric particulates and enthalpies of 

desorption for PAHs. Furthermore, plots of log vs log Psa[ SCL imply that PAH 

gaseous and atmospheric aerosol partitioning is not at equilibrium in rural areas. 

Therefore, atmospheric particulate and non-atmospheric surface characteristics are 

important factors controlling the distributions of PAHs between the vapor and surface- 

associated phases. However, more work needs to be done characterizing particle and 

non-atmospheric surface types and sorption properties in the remote and urban 

atmospheres to fully understand the properties that control the distribution of SOCs 

between vapor and associated phases, total atmospheric loadings, and hence exposure 

levels of semivolatile organic contaminants.
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Chapter V: PAH Gase Exchange Fluxes Across the Air-Water Interface of 
Southern Chesapeake Bay

Abstract

The gas exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) across 
the air-water interface of southern Chesapeake Bay were calculated using a modified 
two-film exchange model. Sampling covered the period January 1994 to June 1995 
for five sites on the southern Chesapeake Bay ranging from rural to urban and highly 
industrialized. Simultaneous air and water samples were collected and the 
atmospheric gas phase and surface water dissolved phase analyzed via GC\MS for 17 
PAHs. The instantaneous gas flux was calculated for each compound using Henry’s 
law constants, diffusivities, hydrological and meteorological parameters. The 
direction and magnitude of gas transfer were found to be controlled by water 
temperature and vapor concentrations. Fluxes were determined to vary in direction 
and magnitude both spatially and temporally across the air-water interface of Southern 
Chesapeake Bay. The range of gas exchange is of the same order as atmospheric wet 
and dry depositional fluxes to Southern Chesapeake Bay. The results of this study 
support the hypothesis that gas exchange is a major transport process affecting 
concentrations and exposure levels of PAHs in southern Chesapeake Bay.

Introduction

Semivolatile organic contaminants (SOCs), e.g. polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine 

pesticides may cycle between air and water with periods of net upward flux during 

dry weather followed by periods of intense downward flux during rainfall (Mackay et 

al., 1986; Baker and Eisenreich, 1990). Further, it has been suggested that 

persistent, semivolatile, hydrophobic pollutants are transferred throughout the world 

via successive deposition and reemission- a "grasshopper" scenario (Ottar, 1981).

The physical-chemical properties of many trace organic contaminants indicate 

that SOCs will be long-lived in the environment, cycling between the atmosphere and

98
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water (Mackay et al., 1986) thus increasing their effective residence times in the total 

environment. The original substances and their transformation products eventually 

will be deposited to the Earth’s surface and may impinge on communities or 

ecosystems hundreds or even thousands of kilometers removed from the original point 

of release (Schroeder and Lane, 1988). Thus, the importance of quantifying air-water 

exchange processes for SOCs is evident.

Air-water transfer processes for chemicals include volatilization and absorption 

of gases, dry deposition with particles, wet deposition by rain or snow, i.e. particle 

and vapor "washout", spray transfer, and bubble scavenging (Andren, 1983). Gas 

exchange (volatilization-absorption) is a dominant process governing air-water transfer 

of chemicals in non-storm conditions via both molecular and turbulent diffusive 

transfer. Diffusive air-water transfer of gaseous chemicals through stagnant films at 

the interface is driven by the gradient between equilibrium concentrations at the 

interface and bulk reservoirs. The rate of diffusive mass transfer is dependent upon 

windspeed, as it affects surface roughness and film thickness, and the molecular 

diffusion coefficients of the compound in air and water.

In order to compile a legitimate mass balance and determine exposure levels 

for SOCs in an aquatic system, it is necessary to consider all of the major air-water 

exchange processes (Mackay et al. , 1986). In the Chesapeake Bay watershed wet and 

dry depositional fluxes of selected SOCs and trace elements to Chesapeake Bay have 

been determined (Leister and Baker, 1994; Scudlark et al., 1994; Dickhut and 

Gustafson, 1995). This research quantitatively measures the volatile-absorptive fluxes
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of selected SOCs across the air-water interface at four main sites in lower Chesapeake 

Bay over the course of a year and a half. Spatial and temporal variability in SOC 

fiigacities in the atmosphere and surface waters, and the influence of interfacial 

conditions (i.e. temperature and windspeed) on air-water gas exchange of SOCs in 

lower Chesapeake Bay have been evaluated. The diffusive fluxes determined in this 

study will provide insight into the importance of gaseous exchange at the air-water 

interface in contributing to loadings of toxicants to aquatic ecosystems such as 

Chesapeake Bay.

Quantification of Gaseous Exchange Fluxes

Gas Exchange Models. Quantification of the evaporation or absorption rate 

(volatile transport) of chemicals across the air-water interface relies primarily on the 

two layer (film) model presented by Liss and Slater (1974). The basic assumption of 

this model is that the two fluid phases are separated by stagnant layers, a liquid film 

and a gaseous film, through which transport occurs via molecular diffusion driven by 

the concentration (or fugacity) gradient of the chemical between the bulk reservoirs. 

This framework was extended by Mackay and Leinonen (1975), wherein they 

presented calculations for the transport of low solubility compounds including selected 

saturated and aromatic hydrocarbons, pesticides, and PCBs expressed in terms of 

mass transfer coefficients instead of diffusion coefficients and boundary layer 

thicknesses. Transport by molecular diffusion across two boundary layers has also
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been adopted by Doskey and Andren (1981), and Bopp (1983), in separate PCB air- 

water transfer models, and by Eisenreich et al., (1981), Baker and Eisenreich (1991), 

Hombuckle et al., (1992), and McConnell et al., (1993) in modeling organic 

contaminants in the Great Lakes ecosystem.

The volatile flux (Fvol) expression is:

Fvoi — k0l(Cf,w - Cy j/Kjuv) (1)

where

1/ko, = RT/Hka + 1/kv (2)

and

KaW = H/RT (3).

The overall mass-transfer coefficient or total resistance to mass transfer is ko]; k* is 

the mass transfer coefficient across the stagnant water layer and k, is the rate 

coefficient for transfer across the stagnant air layer. Cf w is the freely dissolved water 

concentration and Cv a is the vapor phase concentration in the atmosphere. Kaw is the 

air-water partition coefficient which defines the equilibrium distribution of the 

chemical in air and water, H is Henry’s law constant, R is the ideal gas constant and 

T is temperature (K) at the air-water interface.
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Correct assessments of Henry’s law constants as a function of salinity and 

temperature are needed to determine the magnitude and direction of flux. Henry’s 

law constants were calculated from sub-cooled liquid vapor pressures (Sonnefeld et al. 

1983, Appendix B, D) and sub-cooled liquid solubilities (May et al 1978, 1983; 

Appendix A, D) which were corrected for salinity by the Setschenow equation (Rossi 

and Thomas, 1981; May et al., 1978; Whitehouse, 1985; Schwarz, 1977; Eganhouse 

and Calder, 1976; Appendix C). For benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(a)pyrene, indeno(l,2,3-cd)pyrene, and benzo(g,h,i)perylene solubility and 

vapor pressure data are not available; therefore, flux calculations relied on 

temperature correlations (Appendix D) for Henry law constants measured at several 

temperatures in freshwater (Th.E.M. ten Hulscher et al., 1992).

Mass transfer coefficients control the rate of passive transport across interfaces 

and for air-water systems have been related to the Schmidt numbers for a chemical in 

water (Scw) and air (Sc*), and wind speed at a reference height of 10 meters (Ut0) by 

Mackay and Yeun (1983):

K  =  0.001 +  0.0462(U*)(Sca)-°-67 (4)

k , = 1.0(10)-* +  34.1(10)-4(U‘)(Scw)-05 (5)

k* = 1.0(10)-* + 144(10)'4(U*)2,2(Scw)'0,5 (6)



where equation (5) applies for U* >  0.3, equation (6) applies for U* < 0.3, and U* 

= U]0(6.1 + 0.63U10)°,5(10)'2. The air and water mass transfer coefficients (1c, and 

kw) are related to the compound specific molecular diffusion coefficients via the 

Schmidt numbers (Bird et al,, 1960):

where Dsa and Dsw are the molecular diffusivities of a chemical solute in air and 

water, respectively, and the p ’s and p ’s are the densities and dynamic viscosities of 

the bulk phases, respectively.

For calculation of mass transfer coefficients, knowledge of windspeeeds, 

viscosity and density of the bulk phases, as well as molecular diffusivities of the 

compound of interest at the environmental temperatures and salinities must be known. 

Consequently, the temperature of each phase (air and water) in the stagnant film 

layers is required. Surface skin temperatures have been determined to be only some 

tenths of a degree celsius cooler than the underlying water due to energy losses from 

long-wave radiation and evaporation (Paulson and Parker, 1972; Hombuckle et al. 

1995). Therefore, in this study, surface water temperatures were used for calculating 

parameters (i.e. density, viscosity, diffusivity, Henry law constants) necessary to 

determine gaseous fluxes. Molecular diffusivities for PAHs in air and water were

Scw (Pw Hsw) (7)

Sca =  pa/(paDsa) (8)
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calculated according to the methods of Gustafson and Dickhut (1994a, 1994b); bulk 

phase viscosities and densities were calculated according to the equations of Millero et 

al. (1976), Riley et al. (1975), Home (1969), and Weast (1987) using field measured 

temperatures and salinities.

Sampling Sites. Concentrations were measured for selected PAHs in air and 

surface waters and gas exchange fluxes determined at four sites in the southern 

Chesapeake Bay (Figure 1, Table 1) during the period January 1994 through May 

1995. The main study site located in the Wolftrap region of the lower Chesapeake 

Bay is removed from local sources of contamination (land based) and is close to the 

Haven Beach (Mathews County, VA) Chesapeake Bay Atmospheric Deposition 

(CBAD) study site (37 26.15’N, 76 15.25’W) where SOC depositional inputs to the 

Bay were measured (Dickhut and Gustafson, 1995). A second Wolftrap region 

(Haven Beach) site approximately 1500 m from shore was added for sampling method 

development due to its accessibility from the Haven Beach CBAD study site where 

the air sampler was located during water sampling at both Wolftrap sites. The Haven 

Beach CBAD study site is located approximately 100 m from the shore of the 

Chesapeake Bay in a high marsh area, as well as >50 m from the nearest road which 

has limited traffic (gravel, dead-end) and >200 m from the nearest residence. The 

closest regional sources of contaminants to the site include shipping traffic on the 

main stem Bay, and a coal/oil fired power plant and refinery located approximately 30 

km to the southwest.



0  Water Sam pling Sites  
■ Air Sam pling Sites
1 Wolftrap Site
2  York River Site
3  Hampton Site
4  Elizabeth River Site
5  Haven B each Site

Figure 5.1: Atmospheric and Surface Water Sampling Locations for Determination of 
PAH Gaseous Exchange Across the Air-Water Interface of Southern 
Chesapeake Bay.



Table 1: Gas Exchange Sampling Locations for Simultaneously Paired Air and Water 
Samples

Site

Elizabeth River 
Hampton 
York River 
Wolftrap 
Haven

Atmospheric Samples

36°53.2 N, 76°21,2 W 
37°4.6 N, 76°16.4 W 
37°14.75 N, 76°30.0 W 
37°26.16 N, 76°15.25 W 
37°26.16 N, 76°15.25 W

Surface Water Samples

36°52.0 N, 76°19.6 W 
37°5.0 N, 76°13.3 W 
37°14.5 N, 76°29.0 W 
37°16.53 N, 76°12.0 W 
37°25.7 N, 76°13.1 W
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A Hampton roads region study site on Chesapeake Bay was located near 

Grandview beach. The air sampler was located no more than 10 m from shore of the 

bay at Grandview fishing pier or Bel Isle Marina. The Hampton site was considered 

an urban site, lying in the eastern most section of the city of Hampton (pop. 138,000) 

and within 5 km of the cities of Newport News (pop. 179,000) and Norfolk (pop. 

245,000). It was anticipated that this region will be characterized by larger 

absorptive-volatile fluxes as the surrounding region is heavily populated, and 

therefore, will contribute largely to atmospheric levels of SOCs.

The Elizabeth River was selected as a study site as it is an intensely industrialized 

waterway representative of contaminated rivers-estuaries and likely to include surface 

films in the form of slicks. The Elizabeth River site was located at the mouths of the 

river’s western and southern branches. The air sampler was located on the shore, 

within an idle area, of the Portsmouth Coast Guard station adjacent to the Elizabeth 

River. The Elizabeth River sampling site was in close proximity (<  5 km) to 

Lambert’s Point coal terminals, Norfolk Naval Station, and Portsmouth Naval 

Shipyard; in addition, the site is centrally located within the Hampton Roads 

Metropolitan area (pop. 1.5 million).

Finally, the York River was chosen as an additional site as part of a joint project 

(see Liu, 1994) to examine the effect of the sea surface microlayer on gaseous 

diffusive transfer. The York River study site was located in the center of the river 

approximately 1 km downstream from the Virginia Institute of Marine Science. The 

air sampler was located on the windward side (during sampling) at the end of one of
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the Institute’s research piers, approximately 50 m from shore. The York River site 

was considered semi-urban but was also located within 5 km of an oil refinery and 

coal\oil-fired power plant and within 1 km of a major vehicular river crossing.

Sampling Strategy.

Simultaneous paired air and water samples were collected at 4 main sites in 

Southern Chesapeake Bay during the period January 1994 to June 1995. Sampling 

was conducted monthly at the Wolftrap site and every other month at the Hampton, 

York River, and Elizabeth River sites. Air samples were collected using high volume 

air samplers placed on the shore as close to the water sampling sites as possible 

(Figure 1). Air sampling times and volumes ranged from 4 to 12 h and 172 to 665 

m3, respectively, at flow rates ranging from 0.51 to 0.75 m3/min. (Chapter IV).

Water samples were collected at each site from a i m  depth using a submersible 

pump. Approximately 1 to 2 sample volumes were passed through the pump system 

prior to sample collection to equilibrate pump and tubing surfaces with ambient 

contaminant levels and minimize sorptive losses. Particulate and dissolved fractions 

were separated in the field by filtration through 142 mm GFFs and sorption of the 

dissolved fraction to XAD-2 resin in a 30 cm column (Chapter III). Meteorologic and 

hydrologic data (wind speed, air and water temperatures, and salinities) were obtained 

both shipboard and from shore stations at the Haven Beach and York River sites, and 

in close proximity to the Elizabeth River site.
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Analytical Procedures.

Analytical procedures used for water and air samples are described in detail 

elsewhere (Dickhut and Gustafson 1995, Chapters III and IV) and are summarized 

here (Table 2). Freely dissolved water concentrations were determined by filtration 

through a pre-ashed 142mm glass fiber filter (GFF 1 [un nominal pore size) with 

subsequent sorption of the freely dissolved phase to XAD-2 resin. After sample 

collection, XAD-2 resin samples were sequentially extracted with acetone and hexane 

(24 h each) in a Soxhlet apparatus. Vapor phase samples were collected using a high 

volume air sampler; gas concentrations were determined by filtering air through 8x10 

in. GFFs and isolating the vapor phase on polyurethane foam plugs. After sampling, 

polyurethane foam plugs were sequentially extracted for 24 h each in acetone and 

petroleum ether. All samples were spiked with surrogate deuterated PAHs (d-8 

naphthalene, d-10 anthracene, d-12 benzo(a)anthracene, and d-12 benzo(a)pyrene) 

prior to extraction. The extracts were concentrated, exchanged into hexane with a 

rotory evaporator, further condensed under nitrogen, and cleaned on a silica column 

prior to analysis. Samples were analyzed using a Hewlett Packard 5890 gas 

chromatograph equipped with a 5971A mass selective detector. The samples were 

corrected for recovery by quantifying the PAHs relative to the closest eluting 

surrogate standard.

Quality control procedures have also been detailed elsewhere (Chapter III and 

IV). Both field and laboratory blanks were generally less than 5% of levels found in



Table 2: Analytical Procedures\Quality Control Results

sample collection

matrix preparation

extraction

cleanup
chromatography

recoveries

replicate samples 
% rel. difference 

blank values 
% sample values 

limit of detection

Water Samples 
(Dissolved Fraction)
(n — 59; including blanks)

submersible pump 
glass fiber filter (GFF) 
XAD-2 resin 
GFF ashed 4h at 450°C 
XAD-2 Soxhlet extracted 
w/organic solvents 8 d* 
Soxhlet 24 h each 
w/acetone, hexane 
silica gel
HP 5890/5971A GC/MS 
selective ion mode 
30 m DB-5 column 
d-8 naphthalene: 62 ±  11% 
d-10 anthracene: 86 ±  12% 
d-12 b[a]a’: 97 ±  8% 
d-12 b[a]p2: 86 ±  8% 
side by side samples 
avg. 17 PAHs = 5,4%
2 field, 10 lab blanks 
avg. 17 PAHs = 1.5%
3 pg/1

Atmospheric Samples 
(Vapor Fraction)
(n = 65; including blanks)

high volume air sampler 
GFF/polyurethane foam

GFF ashed at 450°C 
PUF Soxhlet extracted 
w/organic solvents 48 h* 
Soxhlet 24 h each 
w/acetone, petroleum ether 
silica gel
HP 5890/5971A GC/MS 
selective ion mode 
30 m DB-5 column 
d-8 naphthalene: 49 ±  13% 
d-10 anthracene: 89 ±  19% 
d-12 b[a]a!: 100 ±  21% 
d-12 b[a]p2: 87 ±  20% 
side by side samples 
avg. 17 PAHs = 8.6%
6 field, 13 lab blanks 
avg. 17 PAHs =  3.8%
.30 pg/m3

* see Dickhut and Gustafson, 1995.
1 benzo [a]anthracene
2 benzo[a]pyrene
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samples. Recoveries ranged from 49% ± 13 for naphthalene from PUF samples to 

100% ±  21 for benzo(a)anthracene also from PUF samples (Table 2). Sampling 

artifacts for both XAD-2 and PUF were investigated thoroughly (Chapters III and IV) 

and were determined not to affect reported fluxes.

Results and Discussion

Instantaneous fluxes were calculated for 46 paired air and water samples 

(surface water concentrations measured within the duration of, or a few hours of, the 

collection of an atmospheric sample at the same site) collected in the southern 

Chesapeake Bay during the period January 1994 to June 1995. Atmospheric vapor 

and surface water PAH concentrations and distributions have been described in detail 

elswhere (Chapters III and IV). Briefly, PAH vapor concentrations increased 

exponentially with temperature at the non-rural sites. No seasonal trend in PAH 

vapor concentrations was observed at the rural WolftrapXHaven Beach site; however 

vapor concentrations decreased with time. As with vapor concentrations, dissolved 

water concentrations also decreased with time at the rural Wolftrap site. Nonetheless, 

there was little temporal variability (ca 30%) in PAH dissolved concentrations and no 

seasonal trends at all sites.

From analysis of variance, the Elizabeth River site exhibited elevated dissolved 

water concentrations relative to all other sites, with exception of the lighter molecular 

weight PAHs (e.g. fluorene, phenanthrene) at the Wolftrap site (Chapter III).
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Dissolved PAH concentrations at the York River site were significantly different from 

concentrations at all other sites except Hampton. The mean dissolved PAH 

concentrations at the Hampton and Wolftrap sites were significantly different only for 

the lighter molecular weight PAHs. Additionally, vapor concentrations of PAHs were 

highest at the Hampton site and lowest at the rural Haven Beach site, varying up to

50-fold between sites during summer (Chapter IV). Hence, a gradient in both 

atmospheric vapor and surface water dissolved PAH concentrations was observed with 

contaminant concentrations decreasing from urban to remote areas, except for the 

lighter PAHs which were elevated in the surface waters of both the Elizabeth River 

and the mainstem bay Wolftrap site.

Water and air temperatures were measured at each site during sample 

collection (Figure 2). Large seasonal trends were observed in both air and water 

temperatures; however, there was little spatial variability in temperature between 

sites. Short-term temporal variation in measured windspeeds for each site was large; 

nevertheless, again little spatial variation was observed between sites. Therefore, 

because spatial variability in hyrologic and meteorologic parametrs was low, spatial 

variation in gas-exchange fluxes should not be due to differences in meteorolgic or 

hydrologic conditions, but rather, due to the differences in air-water concentration 

gradients of PAH between sites.

Gas exchange behavior of PAHs. Gas exchange behaviors of selected PAHs 

across the air-water interface of southern Chesapeake Bay during two seasonal 

extremes (Figure 3) indicate that fluxes of the volatile two-ring PAH naphthalene are



3 0
2 5
20
1 5
10

5
0

3 5
3 0
2 5
20
1 5
10

5
0

12

10

8

6

4

2

0
-1

Fi<
Cl
v

-  W ater  T em p era tu re

Air T em p era tu re

W ind S p e e d

0 0 1 0 0  2 0 0  3 0 0  4 0 0
S a m p le  D a te  (D ay  1 =  1 /1 /9 4 )

5 0 0

ire 5 .2 :  H yd rologic an d  M eteo ro lo g ic  D ata  for th e  S o u th ern  
isa p e a k e  B a y  (1 0 -7 -9 3  to  5 -2 4 -9 5 )  •  W olftrap

H am p ton  ■ York R iver A  E lizab eth  R iver



T

S u m m e r  (W T 2 5 .5 - 2 8  °C )

>.
ra"O*CM

I )c

3
O
x
3
U.
i_o
c
X
3

it,
CD
O

-4  -

- B

W inter (WT 2 .6 - 7 .2  ° C )

CDca
a.c
JZa.coc

CDc
£o
3

0)c
CD

ctoc
CD

fl>c
CDla>1a

CDc
CDCO
ET
£

jfi
S '

F igu re 5 .3 : G a s  E x c h a n g e  B eh a v io rs  of S e le c t e d  P A H s A c r o ss  
th e  A ir-W ater in terfa ce  D uring T w o  S e a s o n a l  E xtrem e S am p lin g  
P e r io d s  in th e  S o u th ern  C h e s a p e a k e  Bay * =  not q uan tifiab le  

W olftrap S ite  H am pton  S ite  [Z /V l York R iver S ite  
E lizab eth  River S ite; b (b )f =  b en zo [b ]flu o ra n th en e



115

always out of surface waters to the atmosphere of the bay regardless of site location 

or sampling date. Volatile de-gassing of naphthalene from surface waters of the bay 

is due to the large Henry’s law constant for this compound (i.e. naphthalene’s affinity 

for the vapor phase relative to being dissolved). In contrast, fluxes of the heavier 

more non-volatile 5 ring PAH benzo[b]fluoranthene (b[b]f) are always from the 

atmosphere into surface waters of the bay at all locations and sampling periods due to 

the compound’s very low Henry’s law constant or affinity for being dissolved relative 

to being in the vapor phase. Additionally, the magnitude of flux of b[bjf from the 

atmosphere into surface waters was substantially greater during summer relative to 

winter due to a large increase in vapor concentraions (Chapter IV), and hence, air- 

water concentration gradient with temperature. Also note that the magnitude of 

gaseous flux decreases as molecular size of the PAH increases. The decrease in flux 

with molecular size is largely a result of lower molecular diffusion coefficients, and 

hence, overall mass transfer as the number of PAH aromatic rings increases. Finally, 

gas exchange behaviors of the 3-4 ring PAHs (such as fluorene, phenanthrene, 

pyrene) vary widely with large spatial and seasonal variability both in direction and 

magnitude of flux (Figure 3). The spatial and temporal differences in the gas 

exchange fluxes of these semivolatile PAHs is due to both the affect of temperature 

on the air-water partition coefficient, as well as seasonal differences in atmospheric 

vapor concentrations, and thus, air-water concentration gradients.

Controlling Factors Governing Gaseous Flux. In describing the gas 

exchange behavior of the 3-4 ring PAHs in southern Chesapeake Bay, the sites can be
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typified (based on equilibrium concentration or fugacity ratios) as those sites at which 

vapor and dissolved concentrations are close to equilibrium (fugacity ratios near 1) 

and those sites at which vapor and dissolved concentrations are far from equilibrium 

(fugacity ratios far from 1). Fugacity or equilibrium concentration ratios are the 

vapor concentrations expressed as a partial pressure (or fugacity) relative to the 

dissolved concentration corrected by the chemical specific air-water partition 

coefficient. The sites at which vapor and dissolved concentrations are close to 

equilibrium are the rural Wolftrap site, with relatively pristine levels of PAH in the 

vapor and dissolved phases, and the contaminated Elizabeth River site with elevated 

vapor and dissolved PAH concentrations. In contrast, the York River and Hampton 

sites are classified as being far from equilibrium, each having relatively low levels of 

dissolved PAH in water but seasonally elevated atmospheric PAH vapor 

concentrations.

Gas exchange fluxes at Wolftrap and the Elizabeth River sites, where vapor 

and dissolved concentrations are close to equilibrium, are governed by temperature 

most likely as it affects Henry’s law constants, and thus, equilibrium fugacity 

gradients. For example, gas fluxes of phenanthrene at the Wolftrap site strongly 

mirrored the seasonal trend for water temperatures observed at this site (Figure 4). 

Furthermore, phenanthrene gas fluxes were lower in magnitude at the equilibrium 

compared to the nonequilibrium sites (Figures 4, 5) because vapor and dissolved PAH 

concentrations were close to equilibrium at these sites; thus gaseous flux is due simply 

to relatively small perturbations in the fugacity gradient with temperature. Similarly,
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Figure 5.4: Controlling factors (—■«—  water temperature and 
vapor concentrations) governing gaseous fluxes ( H H )  of phenanthrene 
at equilibrium vs nonequilibrium sites. Equilibrium sites have air and 
water concentrations close to equilibria and fugacity ratios (2 § § 2 ) close 
to 1, nonequilibrium sites have concentrations far from equilibria and 
fugacity ratios far from 1 (values <1 indicate the inverse ratio).
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gas fluxes of pyrene were lower at the equilibrium sites, and at the Elizabeth River 

site were variable in both direction and magnitude (Figure 6). As the Elizabeth River 

site was also close to equilibrium with respect to vapor and dissolved concentrations, 

small perturbations in concentration levels of either phase likely caused a shift in the 

equilibrium gradient, and thus, controlled the direction of flux across the air-water 

interface.

Although the Elizabeth River was generally characterized as an equilibrium 

site, there were exceptions where PAH vapor and dissolved concentrations were far 

from equilibrium. Gas exchange fluxes of chrysene and fluoranthene in the Elizabeth 

River were controlled by dissolved water concentrations which dominated the 

equilibrium gradient term. Furthermore, the dissolved concentrations of chrysene 

increased throughout the study, a trend which is reflected in the gas exchange fluxes 

(Figure 7).

Fluxes at the York River and Hampton sites where concentrations are far from 

equilibrium are controlled by the vapor concentration which dominates the 

concentration gradient term. Gas exchange fluxes of the 3-4 ring PAHs at these sites 

were controlled by the vapor phase which showed a strong seasonal trend in 

concentrations (Chapter IV) and thus, drove the equilibrium gradient and flux, 

especially during summer. Note that the direction of exchange for PAHs was from 

the air into the water at these sites (Figures 4-6) reflecting the dominance of vapor 

concentrations in determining the gradient and flux.
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Sensitivity Analysis. A sensitivity analysis was preformed to examine the 

effects of changes in windspeed and temperature during the daily sampling period on 

the reported daily integrated (instantaneous) fluxes. From eqs. 5 and 6, mass transfer 

coefficients are not linearly related to wind speed; therefore, averaging windspeeds 

underestimates the gaseous flux. The magnitude of flux increased from 13 % for 

pyrene to 37 % for naphthalene when fluxes were integrated using wind speed data 

measured every 15 minutes relative to fluxes determined using daily averaged wind 

speeds (Table 3). Additionally, water temperatures may change a few degrees on a 

diumal or tidal scale as indicated from York River monitoring data (VIMS, 1996).

The effect on gas exchange flux of an increase or decrease in water temperature from 

the daily average temperature during sampling, was also assessed. The change in the 

magnitude of flux ranged from ± 4 % for naphthalene and ±  30 % for pyrene for a 

2 °C change in interface temperature (Table 3). Moreover, the magnitude of flux is 

such that if vapor concentrations are not replenished on timescales less than a day, 

then atmospheric gas concentrations will change due to air-water exchange. The 

magnitude of fluxes reported herein have been calculated using daily averaged wind 

speeds, vapor concentrations determined over 4 to 15 h, and water temperatures 

averaged over the sampling period (2 to 12 h); thus, the determined gas exchange 

fluxes are a best estimate with a variability of up to ±  37 % imposed by the various 

environmental variables (Table 3).

Integrated Net Annual Fluxes. Net annual gas exchange fluxes of PAHs 

across the air-water interface of the southern Chesapeake Bay were calculated from



Table 3: Sensitivity Analysis1- Windspeed and Temperature Effects on Integrated 
Daily Fluxes for Selected PAHs at the Wolftrap site in Southern Chesapeake Bay.

PAH Wind Speed2 -2 °C AT1 +2 °C ATf

naphthalene +37 ±  17 -4 ±  1 +4 ±  1
acenaphthylene +27 ±  13 -5 ±  2 +9 ±  5
fluorene +27 ±  10 -12 ±  6 +  11 ±  5
phenanthrene +20 ±  4 -28 ±  10 +22 ±  5
pyrene + 13 ±  3 +29 ±  26 -31 ±  26

1 reported values are % change ±  standard deviation (n=3) of integrated daily fluxes 
relative to those calculated from average water temperatures during sampling and 
daily averaged windspeeds (reported herein).
2 % change in daily fluxes integrated using windspeeds for 15 minute intervals 
relative to fluxes determined using daily averaged wind speeds.
f % change in fluxes due to a change in interface (water) temperature over the 
integrative period (1 day) relative to fluxes determined using the average temperature 

during sampling.
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the instantaneous fluxes. Starting with the first sample period, the average daily flux 

for two consecutive sampling periods was multiplied by the number of days between 

sampling periods. The integrated fluxes calculated in this manner were summed, 

divided by the number of days between the first and last sampling period, and 

multiplied by 365 days to yield a net annual flux (jig*m'2*y) for each site (Table 4).

At all sites, the annual gas exchange flux of naphthalene was out (i.e. volatilization) 

of the surface water. In contrast, the annual fluxes of 5-6 ring PAHs was into (i.e. 

absorption) the lower Chesapeake Bay region. The 3-4 ring PAHs exhibited both net 

absorption and volatilization at the various sites, with the exception of phenanthrene, 

which was uniformly exchanged into the surface waters of the lower bay. Slow 

photodegradation of phenanthrene likely contributes to these large absorptive fluxes by 

keeping the air-water fugacity gradient relatively large.

Overall, gas exchange of most PAHs was lowest at the Wolftrap site reflective 

of the generally lower atmospheric concentrations of these contaminants at this site 

(Chapter IV), and higher at the urban/industrialized sites (Table 4). Moreover, gas 

fluxes tended to be in both directions at sites where the vapor and dissolved 

concentrations were near equilibrium (i.e. Wolftrap and Elizabeth River), whereas 

absorption of PAHs dominated at the nonequilibrium sites (i.e. Hampton and York 

River) where atmospheric fugacities greatly exceeded surface water fugacities (Figure 

4). For areas in which vapor and dissolved concentrations are close to equilibrium, 

fluxes occur in both directions across the air-water interface throughout the year as a 

function of temperature.



Table 4: Net Annual Gas Exchange (Volatilization)1 Fluxes (/ig*m'2*y‘) of Selected 
PAHs Across the Air-water Interface of Southern Chesapeake Bay (1994-1995)

PAH Wolftrap

Site

York
River

Elizabeth
River

Hampton

naphthalene 1170 820 1110 1330
acenaphthylene 1.50 -4.99 -13.5 3.45
acenaphthene 21.9 -44.6 182 -292
fluorene 80.6 -144 -63.5 -292
phenanthrene -29.2 -735 -480 -1720
anthracene n.q. -25.2 4.83 -76.3
fluoranthene -22.0 -173 297 -245
pyrene -25.3 -72.9 29.0 -116
b(a)a n.q. -1.07 5.37 n.q.
chrysene -.272 -1.45 31.4 -2.28
b(b)f -.246 -1.53 -.755 -1.33
b(a)p N.D. N.D. -1.18 N.D.
b(ghi)p N.D. N.D. -.881 N.D.

N.D. Not determined
t Positive flux indicates volatilization; negative flux depicts absorption.
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The integrated annual gas exchange fluxes for selected PAHs at the rural 

Haven Beach\Wolftrap site have been compared to wet and dry atmospheric 

depositional fluxes measured at the same site (Figure 8). For volatile PAHs such as 

fluorene, gas exchange dominates as an air-water transfer process. Gas exchange 

fluxes into the bay are of the same order as total wet and dry atmospheric depositional 

fluxes for the semivolatile PAHs such as phenanthrene, fluoranthene, and pyrene. 

However, particle-associated (i.e. dry deposition and particle washout) processes 

dominate net fluxes for the least volatile PAHs such as chrysene and 

benzo[b]fluoranthene. Nonetheless, it is important to note that although net annual 

gas exchange fluxes may be low, exposure levels of organisms residing near the 

interface will be influenced by the larger seasonal instantaneous fluxes (e.g. Figures 

4-6).

Conclusions

Spatial variations in PAH gas exchange fluxes across the air-water interface 

are significant, and are due to differences in fugacity gradients between sites.

Temporal variations in gas exchange fluxes are due to both the seasonal change in 

water temperature for sites at which vapor and dissolved concentrations are close to 

equilibrium, and seasonal changes in vapor concentrations for the sites at which 

concentrations are far from equilibrium. Large net fluxes occur as a result of large 

fugacity gradients, not necessarily high concentrations of SOCs in air or water. Net
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annual gas exchange fluxes across the air-water interface of Southern Chesapeake Bay 

are of the same order of magnitude as total wet and dry atmospheric depositional 

fluxes to the bay. The results support the hypothesis that gas exchange is an 

important process controlling the transfer and transport of PAHs across the air-water 

interface of southern Chesapeake Bay. In order to better assess the short term 

variability in gaseous exchange fluxes for trace organic contaminants due to changing 

environmental parameters such as wind speed and water temperature, more work 

needs to be done improving air sampling analytical detection limits to allow short

term resolution (<  2 h) of vapor concentrations, and hence fluxes.
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Chapter VI: Summary

Atmospheric input of contaminants have been noted as a prominent source of 

pollutants to various ecosystems (McVeety and Hites, 1988; Eisenreich et al., 1981; 

Schreitmuller and Ballschmiter, 1995; Bidleman et al., 1989, Atlas et al., 1981). The 

physical characteristics of the Chesapeake Bay, a large surface area to mean water 

volume ratio and 75 to 100 cm of precipitation annually, make the atmosphere likely 

to be a significant source of contaminants to this large estuary (Leister and Baker, 

1994) which is an important habitat for many fisheries. Municipal and industrial 

point sources of contaminants are scattered along the shores of the Chesapeake Bay 

and its tributaries; however, urban and industrial centers are concentrated along the 

northwest and southern shores. Emissions into the urban atmosphere and the 

subsequent transport and deposition of contaminants as air masses move across the 

Chesapeake Bay may significantly impact pollutant levels in the bay and its fisheries. 

Assessment of water and air quality, implementation of environmental legislation, and 

risk management require an understanding and quantification of all the major air- 

water transfer processes for contaminants such that net fluxes of pollutants to and 

from aquatic systems and exposure levels can be accurately modeled.

Air-water transfer processes for semivolatile organic contaminants (SOCs) 

include volatilization and absorption of gases, dry deposition with particles, wet 

deposition by rain or snow, (i.e. particle and vapor "washout"), spray transfer and 

bubble scavenging (Andren, 1983). Thus, quantitative assessments of air-water 

exchange processes must consider chemical speciation in both the atmosphere and
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water column. The distribution of a contaminant between vapor and aerosol particles, 

and, water and suspended particulates, determines the amount of chemical available 

for air-water transfer through a particular vector.

In the Chesapeake Bay watershed, researchers have determined the wet and 

dry depositional fluxes of selected SOCs and trace elements to Chesapeake Bay (see 

refs. Chap. V). In this study, the gaseous fluxes of polycyclic aromatic hydrocarbons 

(PAHs) across the air-water interface of Southern Chesapeake Bay have been 

determined for the period 1994-1995. In addition to the measurement of gaseous 

contaminant fluxes in this study, the investigation of the distributions of PAHs 

between the vapor and aerosol phases in the atmosphere, and, between the freely 

dissolved and suspended particulate phases in the water column provides insight into 

transport and distribution processes for contaminants in estuarine systems such as 

Chesapeake Bay.

In natural waters, only the freely dissolved fraction of a contaminant is related 

to chemical potential and contributes to diffusive fluxes. Freely dissolved PAH 

concentrations have been measured in Chesapeake Bay surface waters via three 

methods: air sparging, semipermeable membrane devices (SPMDs), and filtration 

through glass fiber filters with subsequent sorption of the freely dissolved contaminant 

fraction to AmberliteR XAD-2 resin. Dissolved concentrations measured by air 

sparging and SPMDs were significantly different from those measured by 

filtration/XAD-2. Evidence of particle-mediated transport of PAHs was observed in 

gas sparging experiments. Uptake of contaminants into SPMDs appears to be
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kinetically limited under environmental conditions. Sampling artifacts for 

filtration/XAD-2 were determined not to affect measured dissolved concentrations for 

PAHs. Therefore, dissolved concentrations in this study were determined using 

filtration/XAD-2.

Measured PAH concentrations in Southern Chesapeake Bay surface waters 

were higher than those reported by Ko and Baker (1995) for the northern bay. 

Concentrations of larger molecular weight PAHs in the southern bay were 

significantly higher in the Elizabeth and York Rivers than in the mainstem bay sites. 

Distributions of PAHs between the particulate and dissolved phases (log distribution 

coefficient) were linearly related to their log KqWs with an average slope (m = .92 ± 

.14); thereby obeying equilibrium partitioning theory. Furthermore, PAHs in the 

dissolved and particulate phases were observed to be at equilibrium for all sites and 

sampling periods.

Atmospheric concentrations of PAHs in the southern Chesapeake Bay region 

were measured during the period 1994-1995 and were comparable to values reported 

elsewhere for similar urban and rural sites (Leister and Baker, 1994; Keller and 

Bidleman, 1984; Hoff and Chan, 1987; Gardner et al., 1995; Foreman and Bidleman, 

1990). Vapor concentrations of PAHs in air varied significantly between sites and 

increased logarithmically with temperature at the non-rural sites indicating the major 

source of these compounds to the atmosphere of Southern Chesapeake Bay is 

secondary volatilization from contaminated surfaces (soils, roads, vegetation). 

Aerosol-particle concentrations of PAHs were similar at the various sites and were
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higher during winter months indicating that particulate concentrations are controlled 

by increased combustion sources, the temperature dependence of vapor-particle 

partitioning, and "cold condensation" of PAH vapors to background aerosols as air 

plumes are dispersed from source to remote regions.

The temperature dependence of particle-vapor distributions for individual 

PAHs varies between urban and rural areas in the Chesapeake Bay region. A 

gradient from urban to remote sites was observed for both specific surface area of 

particulates and enthalpies of desorption of PAHs. More work needs to be done in 

the area of characterizing particle-vapor distributions to fully understand the factors 

which result in differences in the particle-vapor distributions, and hence exposure 

levels of SOCs in rural and urban air. Additionally, the proposed tight coupling of 

atmospheric concentrations via secondary volatilization from contaminated terrestrial 

surfaces in urban and industrial areas, and the cold condensation of PAH vapors to 

background aerosols supports the global distillation and cold condensation theories of 

global atmospheric transport of SOCs. Moreover, due to cold condensation and 

secondary volatilization of PAHs in the southern Chesapeake Bay region, it is likely 

that during warmer weather (i.e. summer) that atmospheric PAH loadings and 

exposure levels may be an order of magnitude higher than emission levels during this 

period. Therefore, it is evident that investigation of the sorption properties of both 

aerosol and terrestrial surfaces merits further research such that ecosystem and human 

health risk can be accurately assessed.
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Instantaneous gas exchange fluxes for PAHs across the air-water interface of 

Southern Chesapeake Bay were calculated from simultaneously collected air and water 

samples during the period January 1994 through the end of May 1995. Gas exchange 

behaviors of PAHs can be grouped into three categories: net exchange fluxes of high 

Henry’s law constant compounds (i.e. naphthalene) are always out of the bay at all 

locations and seasons, net gas fluxes of very low Henry’s law constant compounds 

(i.e. benzo(b)fluoranthene) are always into the bay at all locations and seasons, and 

net gas fluxes of mid-range Henry’s law compounds (i.e. three and four ring PAHs) 

are variable in both magnitude and direction and are dependent upon several 

controlling factors.

In describing the gas exchange behavior of three and four ring PAHs in 

southern Chesapeake Bay, the sites can be classified (based on equilibrium 

concentration or fugacity ratios) as those sites at which vapor and dissolved 

concentrations are far from equilibrium, and those sites at which vapor and dissolved 

concentrations are close to equilibrium. Fluxes at the sites where vapor and dissolved 

concentrations are close to equilibrium are governed by water temperature, most 

likely as it affects Henry's law constants, to determine air-water partition coefficients 

and hence concentration gradients. For example, fluxes for PAHs in the rural 

mainstem bay strongly mirror the seasonal trend for water temperatures observed for 

this region.

For sites at which vapor and dissolved concentrations are far from equilibrium, 

fluxes are controlled by the phase which dominates the concentration gradient; most
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likely due to the influence of local sources. In the Southern Chesapeake Bay, the 

secondary volatilization of PAHs from contaminated surfaces during summer with 

increased temperatures, and the dissolution of PAHs from petroleum contamination 

in the Elizabeth River serve as local sources that influence concentration gradients and 

gas exchange of PAHs.

Spatial variations in gas exchange fluxes in Southern Chesapeake Bay were 

significant and resulted from differences in air-water fugacity gradients between sites. 

However, temporal variation in gas exchange fluxes are due to seasonal changes in 

water temperatures, vapor concentrations, and variations in windspeeds.

The sampling interval and integration resolution also impacts net gaseous 

exchange fluxes determined using the two-film model. Mass transfer coefficients 

which govern the rate of transfer across the air-water interface increase nonlinearly 

with windspeed. Therefore, averaging windspeeds results in an under-estimation of 

gaseous exchange. Henry’s law constants which determine the air-water fugacity 

gradient increase logarithmically with temperature; hence, averaging water 

temperatures of the interface over a diurnal or tidal cycle may also significantly alter 

gaseous exchange.

From a sensitivity analysis, integrating fluxes using daily averaged windspeeds 

resulted in 37, 20, and 13% reductions of the gaseous fluxes calculated for 

naphthalene, phenanthrene, and pyrene, respectively, relative to fluxes integrated for 

windspeeds collected every 15 minutes. In addition, a 2 °C change in water 

temperature at the interface on a diurnal or tidal cycle could change gaseous exchange
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for naphthalene, phenanthrene, and pyrene on the order of 4, 25, and 30%, 

respectively. Vapor concentrations for determining fluxes were collected over periods 

ranging from 4 to 15 h; furthermore, the magnitude of flux is very large compared to 

atmospheric vapor loadings. Hence, integrating fluxes over periods shorter than the 

duration of atmospheric sampling may not be appropriate. Nevertheless, from both 

error propagation and sensitivity analysis, the variability imposed on the gaseous 

fluxes determined in this study should be less than 40% for all compounds quantified.

Integrated annual gas exchange fluxes for selected PAHs at the rural Haven 

Beach/Wolftrap site have been compared to wet and dry depositional fluxes measured 

at the same site. For volatile PAHs such as fluorene, gas exchange dominates as an 

air-water transfer process. Gas exchange fluxes are of the same order of magnitude 

as total wet and dry atmospheric depositional fluxes for the semivolatile PAHs such as 

phenanthrene, fluoranthene, and pyrene. Particle associated processes (dry deposition 

and particle washout) dominate net annual air-water fluxes for the least volatile PAHs 

such as chrysene and benzo[b]fluoranthene.

For sites in Southern Chesapeake Bay at which vapor and dissolved 

concentrations are close to equilibrium and fluxes occur in both directions (i.e. 

absorption and volatilization) dependent upon temperature. Nonetheless, it is 

important to note that although net annual fluxes may be low, exposure levels of 

organisms on both sides of the air-water interface will be influenced by the larger 

instantaneous fluxes. Furthermore, gas exchange fluxes determined at Haven Beach 

support the global distillation or grasshopper theory of contaminant transport
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operating on a seasonal time scale due to change in a compound’s physical properties 

with temperature. This scenario is also evident on shorter time scales if one considers 

other air-water transport processes. Atmospheric vapor and particle washout provide 

an episodic input of contaminants to the southern Chesapeake Bay during storm 

events; whereas, any net volatile flux provides an efflux mechanism for a contaminant 

from the bay. Therefore, at locations or periods where/when the fugacity gradient of 

a contaminant at the interface supports volatile flux, the grasshopper or global 

distillation scenario will be important on the duration between storm events.

Finally, the effect of the surface microlayer on gaseous flux has been 

considered. Measured physical-chemical properties are similar to properties of 

subsurface water; whereas, the microlayer exhibited an enrichment in dissolved PAHs 

(Liu, personal communication). Therefore, because of these confounding factors, 

assessment of the effect of the surface microlayer on gaseous exchange may be 

questionable at best. It is likely that the microlayer is not an inert layer of added 

resistance as suggested by Mackay (1982). Rather, due to the deposition of 

atmospheric particles which are enriched in PAHs relative to estuarine particles, 

dissolved PAH concentrations in the microlayer may not be in equilibrium with the 

particle pools. Regardless, hydrologic and meteorologic conditions necessary for the 

formation of a significant microlayer do not exist for the majority of time in Southern 

Chesapeake Bay. Therefore, it is anticipated that the microlayer will have little effect 

on net annual gas exchange fluxes.
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The concentrations, distributions, and fluxes of PAHs in the southern 

Chesapeake Bay region which have been determined in this study illustrate the 

importance of considering all the major fate and transport processes of a contaminant 

in the environment before assessing air and water quality, human health and 

ecosystem risk, and, implementing environmental legislation. Moreover, the 

processes of cold condensation and secondary volatilization suggest that the actual 

atmospheric loadings and exposure levels of atmospheric PAHs may be an order of 

magnitude higher than actual emission levels during periods of warmer temperatures 

(i.e., summer). Hence, the characterization of sorption and desorption properties for 

PAHs in both the rural and urban environments to/from aerosol and terrestrial 

surfaces, merits further research such that risks can be accurately assessed.
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Appendix A: Measurement of Acenaphthylene Aqueous Solubility

Acenaphthylene aqueous solubilities were determined at 10, 15, 25, and 40 °C 
in Milli-Q purified water using a generator column method (Dickhut et al., 1986). At 
each temperature 5 replicate measurements were made by collecting ~ 10 ml of 
water at 1 ml/min into a 22 ml vial containing =  10 ml of methanol. All 
measurements were made on a mass basis. The vials were capped and stored in the 
refrigerator at 4°C until the study was completed (<12 hrs.) upon which time 
acenaphthylene concentrations were determined by UV absorbance at 320 nm using a 
standard curve with acenaphthylene standards also made in 50:50 methanol:water.

Acenaphthylene solubility in water:

Measured acenaphthylene concentrations were converted to mole fraction 
solubilities and a relationship determined as a function of the natural log of mole 
fraction solubility versus temperature:

where X is the mole fraction solubility and T is temperature °C.
r

Reference:

Dickhut, R.M., A.W. Andren, and D.E. Armstrong. 1986. Aqueous Solubilities of 
Six Polychorinated Biphenyl Congeners at Four Temperatures. Environ. Sci. 
Technol. 20:807-810.

40°C
25°C
15°C
10°C

27.966 ±  0.237 mg/1 
16.355 ±  0.103 mg/1 
11.401 ±  0.055 mg/1 
9.476 ±  0.020 mg/1

X = (7.826*e03609T)*10-7 r2 =  1.00
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Appendix B: Estimation of Subcooled-Liquid Vapor Pressures of Chrysene as a 
Function of Temperature

To estimate the vapor pressure of chrysene, subcooled-liquid vapor pressures 
of other PAHs were correlated to their subcooled-liquid solubilities and the resulting 
correlation was applied using the subcooled liquid solubility of chrysene.

Log Pjci (vapor pressure-subcooled liquid) was plotted versus the log Xsd (mole 
fraction solubility-subcooled liquid, in water) for naphthalene, acenaphthylene, 
acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 
benzo(a)anthracene. Linear relationships were established as a function of 
temperature (n -6 ) with r2 ranging from .89 to .99. Log Xscl values for chrysene 
were used to predict chrysene’s subcooled liquid vapor pressure at these temperatures 
(5 °C to 30 °C).

The natural log of chrysene’s vapor pressure was plotted versus inverse 
temperature (1/T, °K) resulting in the following predictive equation for chrysene P*. 
as a function of temperature:

p  _  e((-7086.28/T) + 8.7188) . =  g g

where P5d is in atm and T (K).
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Appendix C: Setschenow Constants and Correlations for PAHs

PAH Study Cited

naphthalene
acenaphthene
fluorene
phenanthrene
anthracene
fluoranthene
pyrene
chrysene
benzo (a)anthracene
benzo(a)pyrene
benzo(e)pyrene

0.2132*
0.2381*

0.2672*
0.2752 0.2783*
0.2382 0.2743*
0.3392*

0.3191* 0.2862
0.3362*
0.3542* n/a3

0.16783

0.744

0.244 0.3871s 
0.444

0.624 0.3031s

0.984

Predictive Correlation

Kj =  1.419*10'3*MW + .0286 (r2 =  .95); where MW is the molecular weight of the 
PAH

1 Rossi, S.J. and W.H. Thomas, 1981. Solubility Behavior of Three Aromatic
Hydrocarbons in Distilled Water and Natural Seawater. Environ. Sci. Technol. 
15:715-716.

2 May, W.E., S.P. Wasik, and D.H. Freeman. 1978. Determination of the solubility
behavior of some polycyclic aromaic hydrocarbons in water. Anal. Chem. 
50:997-1000.

3 Whitehouse, B.G. 1985. Observation of abnormal solubility behavior of aromatic
hydrocarbons in seawater. Mar. Chem. 17:277-284.

4 Schwartz, F.P. 1977. Determination of temperature dependence of solubilities of
polycyclic aromatic hydrocarbons in aqueous solutions by a fluorescence 
method. J. Chem. Eng. Data. 22:273-276.

5 Eganhouse, R.P. and J.A. Calder. 1976. The solubility of medium molecular weight
aromatic hydrocarbons and the effects of hydrocarbon co-solutes and salinity. 
Geochim. Cosmochim. Acta. 40:555-561.

* selected values used in correlation
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Appendix D: Solubility, Vapor Pressure, and Henry Law Constant Correlations7 
as a Function of Temperature for Selected PAHs

compound property predictive equation

naphthalene sol. (1.8 *  e0 038*7)  *  10*6
vap. (9.869 *  10'6) *  e(2,303*((’3960/(T+273-15»+14'3))
vap. (1.316 *  10'3) * e(2-303*aai*(2908/<236S+T)))

acenaphthene sol. (1.33 *  e0 048*7)  *  10'7
vap. (9.869 * 10'6) *  e (2 303*((-»535/(T+273.15)) + 14.7))

acenaphthylene sol. (7.826 *  e003609*1) *  10'7
vap. (9.869 * 10'6) *  g(2.303*((-3822/(T+273.15)) + 12.8))

fluorene sol. (5.3 *  e0051*7) *  10'8
vap. (9.869 *  10'6) * e (Z-303*(('4l5I6/(T + 2?3-i5)) + 14.4))

vap. (1.316 * 10*3) *  g(2.303*(11.6 - (4269/(262.7 + T)»)

phenanthrene sol. (2.86 *  e0054*7) *  10’8
vap. (9.869 * 10'6) *  e(2-303*((’4963/(T + 273-ls» + 14-9»

anthracene sol. (9.14 *  e0067*7) *  10'10
vap. (9.869 *  10'6) *  e*2-303̂ -47927*7 + 273-,5» + I3 °w

fluoranthene sol. (71.7 - 1.7*T +  0.248*T2) *  10'10
vap. (9.869 *  10"6) * e<2,303*<('44ie/(T + 273-ls® + n -9»

H 1 0 «.2980.65m + 9.9509) j  is K, H Pa*m3/mol

pyrene sol. (296 - 23.9*T +  0.586*1^) *  10'10
vap. (9.869 *  10'6) *  e*2,303’̂ 761'^  + 273-15» + nj))

chrysene sol. (53.9 - 1.01 *T +  0.183+T2) *  10‘12
vap. no data available
PsCL.est exp ((-7086.28/T)+ 8.7188)

benzo(a)anthracene sol. (44.5 - 3.05*T + 0.164*T2) * 10 “
vap. (9.869 * 10'6) * e(2-303*(('4247/(T + 273 13) + 9-68))
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benzo(b)fluoranthene sol. no data available
vap. no data available
H l 0 ((-2366.83m + 6.7613) T js K, H Pa*m3/mol

benzo(k)fluoranthene sol. no data available
vap. no data available
H 1 0 «-254i.38/n + 7.2974) T js K, H Pa*m3/mol

benzo(e)pyrene sol. (184 + 2.68*T + 0.244*T2) * 1012
vap. no data available

benzo(a)pyrene sol. (60.9 - 3.84*T +  0.24*T2) * 1012
vap. no data available
H 1 0 ((.2050.99/T) +5.5444) x  is K, H Pa*m3/mol

indeno(l ,2,3-cd)pyrene sol. no data available
vap. no data available
H 1 0 «-I580.47m + 3.8497) T  is K, H Pa*m3/mol

benzo(g ,h, i)perylene sol. no data available
vap. no data available
H 1 0 ((.t383.98m + 3.1672) T js K> H Pa*m3/moI

dibenzo(a,h)anthracene sol. no data available
vap. no data available

Units of measurement are: Temperature, °C; Solubility, mole fraction; and Vapor 
Pressure, atm, unless otherwise specified.

fReferences:

This study (see Appendices A and B).

May, W.E., S.P. Wasik and D.H. Freeman. 1978. Determination of the Solubility 
Behavior of Some Polycyclic Aromatic Hydrocarbons in Water. Anal. Chem. 
50:997-1000.

May, W.E. S.P. Wasik, M.M. Miller, Y.B. Tewari, J.M. Brown-Thomas, R.N. 
Goldberg. 1983. Solution thermodynamics of some slightly soluble 
hydrocarbons in water. J. Chem. Eng. Data. 28:197-200.
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Sonnefeld, W.J., W.H. Zoller, and W,E. May. 1983. Dynamic coupled-column 
liquid chromatographic determination of ambient vapor pressures of 
polynuclear aromatic hydrocarbons. Anal. Chem. 55:275:280.

Ten Hulscher, Th.E.M., L.E. Van Der Velde, and W.A. Bruggeman. 1992.
Temperature dependence of henry’s law constants for selected chlorobenzenes, 
polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Environ. 
Tox. Chem. 11:1595-1603.



Appendice E: Auxiliary Atmospheric Data

TABLE E-l: PAH Atmospheric Vapor Concentrations measured at Haven Beach, Mathews Co., VA. for paired Wolftrap water 
samples

Haven Beach Site

PAH Atmospheric Vapor Concentrations (pg/m1)

PAH 10-07-93 01-11-94 01-31-94 03-24-94 04-29-94 06-30-94 07-28-94 08-25-94 09-26-94

naphthalene 350.31 2886.31 15723.03 1542.75 105.58 136.79 428.82 154.69 676.71
acenaphthylene n.d. 1578.70 2245.85 28.57 n.d. 10.48 77.41 10.26 44.25
acenaphthene 221.07 657.18 1554.36 170.77 71.40 116.11 335.78 142.20 141.30
fluorene 2398.91 2446.07 3052.15 663.91 482.43 255.82 729.39 224.33 782.74
phenanthrene 5617.75 3759.03 6900.56 1729.54 3395.83 2748.83 4784.67 1291.99 1076.28
anthracene n.d. n.d. 292.84 n.d. n.d. 69.31 83.91 21.54 n.q.
fluoranthene 651.16 588.62 599.50 354.95 535.75 430.20 577.14 167.59 97.98
pyrene 942.49 i449.17 396.30 339.36 967.82 650.56 902.11 308.32 160.98
benzo(a)anthracene n.d. 10.64 n.d. n.d. n.d. n.d. n.d. n.d. n.q.
chrysene 74.04 n.d. 22.90 22.77 32.85 27.90 33.76 13.27 7,87
benzo(b)fluoranthene 17.18 4.24 1.20 2.20 2.13 n.d. 13.64 3.23 2.49
benzo(k)f1uoranthene n.d. n.d. 1.0 1.16 n.d. n.d. n.d. n.d. n.d.
benzo(e)pyrene 40.57 2.46 n.d. 1.34 1.53 n.d. 9.97 7.37 1.41
benzo(a)pyrene n,d. n.d. n.d. .61 n.d. n.d. 6.36 1.38 n.q.
indeno(I,2,3-cd)pyrene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. n.d. n.d. n.d. .60 n.d.
benzo(g,h,i)perylene 10.20 n.d. n.d. n.d. n.d. n.d. 32.31 19.80 n,d.

PAH 10-28-94 12-01-94 01-13-95 01-27-95 02-23-95 04-06-95 05-01-95 05-22-95

naphthalene 347.86 438.03 244.91 5026.16 2371.32 2194.65 229.85 69.33
acenaphthylene 50.41 8.05 25.15 465.09 186.96 64.57 n.d. 6.20
acenaphthene 105.31 38.83 187.92 546.03 733.90 553.03 138.32 102.34
fluorene 942.47 961.19 1277.53 1919.33 1813.15 1038.75 487.27 390.60
phenanthrene 1936.58 523.98 2329.37 2199.90 1843.46 901.10 516.14 1083.27
anthracene n.d. n.d. n.d. n.d. n.d. n.d. n.d. 36.96
fluoranthene 433.65 114.18 359.29 323.17 507.26 190.40 116.97 412.89
pyrene 519.49 62.88 417.78 169.11 198.26 100.65 82.25 307.88
benzo(a)anthracene 13.20 6.56 3.30 n.d. n.d. n.d. n.d, n.d.
chrysene 110.02 28.86 34.48 7.15 16.89 16.44 8.91 19.96
benzo(b)fluo ranthene 9.05 9.47 3.36 n.d. .93 1.70 1.45 1.40
benzoflc)fluoranthene 4.62 7.91 2.81 n.d. n.d. .62 .80 n.d.
benzo(e)pyrene 5.37 6.18 2.58 n.d. .58 1.02 .93 .75
benzo(a)pyrene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
indeno(l ,2,3-cd)pyrene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
benzo(g,h,i)petylene 5.62 n.d. 1.84 n.d. n.d. .80 n.d. n.d.
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TABLE E-2: PAH Atmospheric Vapor Concentrations measured at the York River Site, VIMS oyster pier, Gloucester Pt., VA. 
for paired York River water samples

York River Site

PAH Atmospheric Vapor Concentrations (pg/m3)

PAH 08-12-94 10-06-94 12-06-94 12-07-94 12-09-94 02-10-95 04-12-95 05-24-95

naphthalene 692.69 6871.14 1446.23 1235.37 1680.76 3734.84 427.39 3405.77
acenaphthylene 268.26 2634.84 410.45 428.04 1041.88 299.01 121.69 335.84
acenaphthene 4565.78 5628.54 3021.87 4696.49 2289.27 6426.86 4720.40 12804.33
fluorene 4764.90 9638.81 15377.24 9000.11 3885.72 5714.64 6557.20 16420.99
phenanthrene 65243.00 21219.87 28183.18 21384.75 5782.73 5925.09 16133.94 31113.35
anthracene 3234.85 1153.42 2424.90 932.55 317.48 151.80 267.26 595.91
fluoranthene 8056.13 3992.61 5338.88 5795.52 1438.16 1488.32 2189.64 5019.09
pyrene 3067.21 1826.02 2631.84 2350.18 978.73 506.78 785.96 1467.32
benzo(a)anthracene 48.36 30.14 182.93 38.96 12.89 n.d. 8.00 18.34
chrysene 157.35 75.03 364.72 177.40 71.57 47.42 64.50 97.85
benzo(b)fluoranthene 67.52 15.15 63.36 12.07 4.42 3,63 7.76 6.97
benzo(k)fluoranthene n.d. n.d. 71.35 n.d. n.d. n.d. 4.86 3.29
benzo(e)pyrene 25.21 19.83 47.96 7.89 2.74 1.41 5.06 4.34
benzo(a)pyrene 8.68 11.30 14.57 3.04 n.d. n.d. 2.88 n.d.
indeno(l ,2,3-cd)pyrene 4.94 n.d. n.d. n.d. n.d. n.d. 4.85 n.d.
dibenzo(a,h)anthracene n.d. n.d. 2.81 n.d. n.d. n.d. .95 n.d.
benzo(g,h,i)perylene 5.00 n.d. 6.44 12.11 1.39 1.10 5.27 n.d.

TABLE E-3: PAH Atmospheric Vapor concentrations measured at Haven Beach, Mathews Co., VA. for paired water samples 
taken in Chesapeake Bay at Haven Beach Site

Haven Beach Site

PAH Atmospheric Vapor Concentrations (pg/m1)

PAH 05-10-94 05-22-94 06-26-94 06-28-94 06-29-94 11-05-94 11-08-94

naphthalene 577.79 828.90 147.17 589.01 235.25 697.54 888.19
acenaphthylene 132.93 22.27 66.88 125.17 102.08 70.94 191.85
acenaphthene 124.12 253.84 192.50 244.60 233.00 394.57 358.79
fluorene 731.33 671.62 439.96 725.87 376.65 799.66 1007.10
phenanthrene 1914.11 1718.83 3711.71 4227.41 3688.97 2300.57 2518.09
anthracene n.d. n.d. n.d. n.d. 54.50 123.35 n.d.
fluoranthene 353.22 305.98 416.55 630.83 492.20 432.38 363.83
pyrene 451.54 277.54 512.98 984.84 556.21 419.17 411.92
betuo(a)anthracene n.d. n.d. n.d. n.d. n.d. 9.69 9.07
chrysene 25.69 12.80 42.71 41.60 39.90 56.78 74.57
benzo(b)fluoramhene 4.36 1.34 3.32 n.d. 5.30 11.95 13.01
benzo(k)fluoranthene n.d. .62 n.d. n.d. 1.47 n.d. n.d.
benzo(e}pyrene 1.89 1.01 6.76 n.d. 4.56 106.62 13.53
benzo(a)pyrene n.d- n.d. 1.16 n.d. 1.53 4.66 3.64
indenof 1,2,3 -cd)py rene n.d. n.d. n.d. n.d. n.d. n.d. n.d.
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. 3.40 n.d. n.d.
benzo(g,h,i)perylene n.d. n.d. 3.02 tud. 8.58 15.00 14.17
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TABLE E-4: PAH Atmospheric Vapor Concentrations measured at the Elizabeth River, Portsmouth Coast Guard Station, 
Portsmouth, VA. for paired Elizabeth River water samples

Elizabeth River Site

PAH Atmospheric Vapor Concentrations (pg/m3)

pah 07-15-94 09-08-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 434.05 1462.30 3631.25 8945.10 3389.92 5587.28
acenaphthylene n.q. 118.05 419.00 6254.54 411.18 1168.81
acenaphthene n.q. 3542.53 5867.98 4318.33 1738.77 13663.95
fluorene n.q. 5056.24 8333.31 5741.74 2788.34 11204.46
phenanthrene n.q. 17823.32 12894.94 11515.13 6013.35 25225.86
anthracene n.q. 869.63 281.96 750.63 124.01 1042.99
fluoranthene n,q. 4576.92 1794.26 1607.14 677.71 3901.73
pyrene n.q. 2524.15 1209.90 1629.53 500.74 2018.29
benzo(a)anthracene 284.27 29.25 10.96 12.94 n.d. 35.48
chrysene 1812.49 141.08 68.78 42.42 15.07 91.78
benzo(b)fluoranthene 10.79 19.43 5.90 6.92 1.77 10.47
benzo(k)fluoranthene n.d. 17.81 2.90 4.53 1.74 6.60
benzo(e)pyrene n.d. 15.73 5.63 5.76 n.d. 5.67
benzo(a)pyrene 66.95 9.05 n.d. 3.71 n.d. 4.17
indeno(l,2,3-cd)pyrene 6.84 n.d. n.d. 4.72 n.d. 6.62
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. n.d. 9.77
benzo(g,h,i)perylene 10.77 n.d. 7.57 8.93 n.d. 10.07

TABLE E-5: PAH Atmospheric Vapor concentrations measured at the Hampton site, Grandview Pier and Dandy Point. 
Hampton, VA. for paired water samples taken in Chesapeake Bay at the Hampton Site

Hampton Site

PAH Atmospheric Vapor Concentrations (pg/m3)

PAH 07-15-94 09-09-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 1994.84 2239.18 536.38 1153.47 6779.01 6501.86
acenaphthylene 207.20 504.60 17.53 715.02 550.80 281.47
acenaphthene 15615,14 35837.59 328.27 1571.08 12314.70 40088.44
fluorene 29218.03 24670.86 1738.09 2417.97 4256.63 40581.78
phenaanthrene 124573.46 80242.93 2456.33 3598.42 10770.95 47281.54
anthracene 6939.02 2526.69 n.d. 197.56 n.d. 1289.49
fluoranthene 12854.70 4080.84 800.69 834.53 2301.69 8750.36
pyrene 5559.62 1678.95 1131.33 567.93 952.30 2078.87
benzo(a}anthracene 24.99 10.37 n.d. 7.48 n.d. 17.37
chrysene 144.95 49.05 49.90 41.53 198.41 110.93
benzo(b}fluoranthene 16.31 16.60 2.50 2.33 14.39 14.90
benzo(k)fluoranthene n.d. n.d. 1.58 n.d. n.d. 7.77
benzo(e)pyrene 15.56 6.76 1.65 1.45 24,06 10.49
benzo(a)pyrene 1.55 n.d. n.d. n.d. n.d. 4.69
indeno(l ,2,3-cd)pyrene n.d. n.d. n.d. n.d. n.d. 8.55
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. n.d. n.d.
benzo(g.h,i)pery[ene n.d. n.d. 1.23 .72 4.96 9.16
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TABLE E-6: PAH Atmospheric particulate concentrations measured at Haven Beach, Mathews Co., VA. for paired Wolftrap 
water samples

Haven Beach Site

PAH Atmospheric Particulate Concentrations (pg/m1)

PAH 10-07-93 01-11-94 01-31-94 03-24-94 04-29-94 06-30-94 07-28-94 08-25-94 09-26-94

naphthalene 768.696 N.Q. 81.959 N.Q. N.Q. N.Q. N.Q. 50.040 N.Q.
acenaphthylene 3,543 3.601 5.721 3.661 2.173 ,940 .812 .873 1.099
acenaphthene 5.261 5.479 7.132 n.d. 2.689 3.665 1.390 1.823 1.859
fluorene 7.279 8.361 8.990 6.807 3.358 2.520 2.436 2.281 9.816
phenanthrene 32.437 108.962 154.465 50.010 28.969 16.787 17.870 17.097 48.746
anthracene 3.089 6.593 11.264 4.416 3.121 1.101 .990 .897 n.d.
fluoranthene 13.244 136.943 227.957 37.798 26.550 16.545 12.081 14.457 20.149
pyrene 17.210 108.713 199.634 37.086 24.577 12.086 14.003 16.662 25.512
benzo(a)anthracene 12.815 39.680 108.298 21.455 7.818 3.055 n.d. 2.653 n.d.
chrysene 12.946 138.436 258.172 86.925 19.842 8.801 7.491 11.349 33.383
benzo(b)fluotanthene 15.293 118.607 282.670 72.587 19.305 6.748 7.901 10.434 63.298
benzo(k)fluoranthene 10.571 122.957 252.678 45.599 13.927 4.109 4.636 4.598 n.d.
benzo(e)pyrene 10.413 106.646 229.789 69.987 16.523 7.023 8.826 8.345 35.634
benzo(a)pyrene 6.477 48.973 170.597 21.270 10.353 3.117 1.822 2.883 4.693
indenof 1,2,3 -cd)py rene n.d. 85.299 205.855 25.445 11.243 4.319 3.398 5.657 7.004
dibenzo(a,h)anthracene 8.099 21.744 31.646 6.850 1.942 .973 .726 1.739 2.057
benzo{g,h,i)petylene 12.488 97.422 223.031 65.399 14.442 5.510 6.661 5.848 11.527

PAH 10-28-94 12-01-94 01-13-95 01-27-95 02-23-95 04-06-95 i05-01-95 05-22-95

naphthalene 73.824 N.Q. N.Q. 47.736 46.492 N.Q. N.Q. N.Q.
acenaphthylene 3.999 n.d. .541 6.909 8.283 2.278 n.d. 2.639
acenaphthene 3.952 n.d. .891 n.d. n.d. N.Q. N.Q. N.Q.
fluorene 15.901 3.750 N.Q. 9.890 12.044 4.768 N.Q. 3.558
phenanthrene 205.168 59.855 10.499 124.374 173.210 48.086 N.Q. 31.549
anthracene 7.473 4.305 n.d. 7.309 8.167 n.d. n.d. 2.604
fluoranthene 152.213 90.511 7.555 202.873 218.824 96.263 2.335 49.257
pyrene 149.591 67.363 7.530 166.673 153.065 60.623 1.512 36.161
benzo(a)anthracene 56.979 31.850 n.d. 84.251 53.118 13.286 1.627 12.328
chrysene 413.691 72.050 11.572 201.870 156.003 77.419 2,211 37.856
benzo(b)fluotanthene 322.224 116.755 8.993 306.389 190.353 102.188 1.962 38.805
benzo(k)fluoranthene 222.406 87.332 6.237 265.667 151.233 72.411 1.390 27.149
benzofelpyrene 254.591 81.282 6.313 213.795 128.535 71.228 1.266 26.320
benzo(a)pyrene 81.514 55.222 3.113 174.100 100.862 26.738 .833 20.766
indeno(l,2,3-cd)pyrene 116.552 83.171 5.766 229.410 127.890 48.807 n.d. 21.473
dibenzo(a,h)anthracene 16.395 11.719 .838 28.642 16.986 3.975 n.d. 3.197
benzo{g,h,i)peiylene 135.948 79.027 6.818 220.831 131.981 56.387 n.d. 24.121
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TABLE E-7: PAH Atmospheric particulate Concentrations measured at the York River, VIMS, Gloucester Pt., VA. 
for paired York River water samples

York River Site

PAH Atmospheric Paniculate Concentrations (pg/m1)

PAH 08-12-94 10-06-94 12-06-94 12-07-94 12-09-94 02-10-95 04-12-95 05-24-95

naphthalene 30.539 168.798 77.159 N.Q. 66.486 N.Q. N.Q. 210.693
acenaphthylene 2.707 12.960 23.545 5.287 6.202 4.109 1.442 20.369
acenaphthene 2.344 20.599 16.506 5.821 17.899 2.528 N.Q. N.Q.
fluorene 4.001 33.787 13.905 4.910 7.030 4.495 N.Q. 15.278
phenanthrene 29.484 282.348 108.587 51.958 86.516 65.786 19.892 82.177
anthracene 3.115 19.191 13.905 3.334 6.543 4.162 1.063 • 6.277
fluoranthene 32.765 203.452 98.235 55.919 135.613 119.632 24.635 105.852
pyrene 20.058 157.649 94.720 43.647 126.910 86.654 15.626 109.704
benzo(a)anthracene 6.518 75.405 62.300 20.143 56,771 26.381 5.199 n.d.
chrysene 18.034 166.363 136.365 53.127 156.929 87.392 14.094 79.359
benzo(b)fluoranthene 17.752 292.194 386.033 80.040 165.008 116.123 13.453 51.104
bcmo(k) fluoranthene 12.714 221.273 332.469 66.081 131.444 85.991 9.678 29.249
benzo(e)pyrene 17.795 234.671 358,517 64.860 133.200 77.324 9.171 60.762
benzo(a)pyrene 7.353 125.562 138.628 37.374 89.722 41.656 6.098 22.264
indeno(l ,2,3-cd)py rene 20.425 196.521 584.253 75.998 139.859 88.177 7.172 24.444
dibenzo{a,h)anthracene 3.407 25.043 36.655 6.635 14.765 9.574 1.682 n.d.
benzo(g,h,i)perylene 29.530 261.975 746.305 90.836 186.523 88.744 8.638 48.817

TABLE E-8: PAH Atmospheric particulate concentrations measured at Haven Beach, Mathews Co., VA. for paired Haven Beach 
Water Samples.

Haven Beach Site

PAH Atmospheric Particulate Concentrations (pg/m5)

PAH 05-10-94 05-22-94 06-26-94 06-28-94 06-29-94 11-05-94 11-08-94

naphthalene 36.525 N.Q. . 44.829 N.Q. N.Q. N.Q. 45.667
acenaphthylene 2.337 1.676 .871 1.297 1.019 1.161 5.401
acenaphthene n.d. 1.581 2.443 2.624 1.341 1.386 2.183
fluorene 4.757 3.302 2.340 3.339 1.548 3.446 4.684
phenaanthrene 42.833 32.010 14.953 28.781 13.196 24.101 42.327
anthracene 4.703 2.802 1.237 2.821 1.173 1.559 2.432
fluoranthene 47.474 43.728 11.406 25.359 13.055 16.101 51.709
pyrene 40.760 35.818 9.524 22.778 9.644 13.809 76.827
benzo(a)anthracene 17.539 13.286 3.207 7.948 3.939 6.672 52.259
chrysene 46.751 36.720 8.227 16.748 9.475 19.495 122.188
benzo(b)fluoranthene 83.156 35.105 7.937 14.150 9.124 30.932 64.173
benzo(k)fluoranthene 69.140 24.431 5.506 10.290 6.324 23.166 36.751
benzo(e)pyrene 77.831 28.713 7.703 13.321 8.852 22.596 61.696
benzo(a)pyrene 39.360 15.296 3.595 8.134 4.451 8.216 23.995
indeno(l,2,3-cd)pyrene 74.710 22.485 5.415 9.151 7.155 18.009 43.548
dibenzo(a,h)anthracene 10.876 3.980 1.228 1.881 1.416 3.060 5.406
benzo(g,h,i)perylene 81.975 28.505 6.813 11.433 8.606 17.821 55.657
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TABLE E-9: PAH Atmospheric particulate concentrations measured at the Elizabeth River, Portsmouth Coast Guard Station, 
.Portsmouth, VA. for paired Elizabeth River water samples

Elizabeth River Site

PAH Atmospheric Particulate Concentrations (pg/m5)

PAH 07-15-94 09-08-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 154.054 81.917 N.Q. 232.285 N.Q. N.Q.
acenaphthylene 4.168 6.703 5.481 38.747 5.173 7.532
acenaphthene 6.499 n.d. 5.170 78.300 7.440 9.110
fluorene 7.020 11.013 10.203 20.671 8.870 14.098
phenanthrene 43.053 96.969 91.788 302.056 169.838 130.250
anthracene 3.340 14.045 5.202 36.721 8.170 8.561
fluoranthene 20.530 96.673 125.574 533.524 205.687 229.606
pyrene 16.898 66.061 96.971 631.710 142.532 184.695
benzo(a)anthracene 6.263 25.930 29.994 200.210 52.584 59.183
chrysene 21.719 74.070 82.156 864.645 136.250 350.255
benzo(b)fluoranthene 17.122 76.709 87.384 433.885 155.686 150.210
benzo(k)fluoranthene 8.885 59.517 71.376 332.971 117.906 91.493
benzo(e)pyrene 13.190 55.687 65.189 387.036 107.813 122.232
benzo(a)pyrene 6.539 33.368 48.235 271.294 81.861 60.028
indeno(l ,2,3-cd)pyrene 10.645 48.811 68.601 365.048 116.611 88.778
dibenzo(a,h)amhracene n.d. 7.321 10.669 43.623 13.676 29.596
benzo(g,h,i)pe rylene 18.206 54.589 89.452 513.626 140.102 143.076

TABLE E-10: PAH Atmospheric paniculate concentrations measured at the Hampton site, Grandview and Dandy Point, 
Hampton, VA for paired Hampton water samples.

Hampton Site

PAH Atmospheric Particulate Concentrations (pg/m1)

PAH 07-15-94 09-09-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 93.970 59.897 N.Q. 94.681 53.01 N.Q.
acenaphthylene 3.491 3.737 6.144 11.432 6.319 1.262
acenaphthene 6.249 11.877 5.102 18.235 5.061 N.Q.
fluorene 11.708 21.773 11.029 15.120 7.845 N.Q.
phenaanthrene 70.994 155.231 81.170 167.214 111.240 16.709
anthracene 5.270 15.271 3.569 11.042 9.082 .826
fluoranthene 57.130 89.400 138.903 214.940 156.416 12.088
pyrene 34.809 47.818 135.126 146.144 105.690 10.363
benzo(a)anthracene 10.268 13.121 21.559 78.023 47.569 n.d.
chrysene 31.083 43.043 79.058 192.490 121.683 11.097
be nzo(b)fluoran there 23.428 53.833 72.988 259.754 169.004 10.918
benzo(k)flnoranthene 16.209 41.084 44.208 208.361 119.757 7.865
benzo(e)pyrene 16.592 38.778 52.897 171.040 106.809 7.827
benzo(a)pyrene 9.910 19,241 32.684 131.059 77.120 4.953
indeno(i,2,3-cd)pyrene 10.125 20.923 38.230 193.042 101.563 7.393
dibenzo(a,h)anthracene n.d. n.d. 6.285 29.495 14.160 1.985
beuzo(grh,i)peryIcne 16.677 20.750 46.531 183.864 113.417 10.486
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TABLE F-l: PAH Dissolved Water Concentrations measured at the Woiftrap site, Chesapeake Bay 

WOLFTRAP SITE

PAH Dissolved Water Concentrations (ng/i)

PAH 10-07-93 01-11-94 01-31-94 03-24-94 04-29-94 06-30-94 07-28-94 08-25-94 09-26-94

naphthalene 13.7768 21.6447 27.3563
acenaphthylene n.d. .3039 .3416
acenaphthene .7452 .5816 .7294
fluorene 2.2459 2.3994 2.9055
phenanthrene 4.3059 3.9165 4.1167
anthracene n.d. n.d. n.d.
fluoranthene .2254 .3785 .3289
pyrene .1734 .1937 .1544
benzo(a)anthracene .0085 n.d. n.d.
chrysene .0636 .0636 .0502
benzo(b)fluoranthene n.d. n.d. .0058
benzo(k)fluotanthene n.d. n.d. n.d.
benzo(e)pyrene .0209 n.d. .0064
benzo(a)pyrene .0054 n.d. n.d.
indeno(l,2,3-cd)pyrene n.d. n.d. n.d.
dibenzo(a,h)anthracene n.d. n.d. n.d.
benzo(g,h,i)perylene .0121 .0092 n.d.

PAH 10-28-94 12-01-94 01-13-95

naphthalene 13.4932 21.2167 24.2637
acenaphthylene .2769 .4904 .4262
acenaphthene .5110 .5549 1.1126
fluorene 1.7353 2.0522 2.4618
phenaanthrene 3.0177 2.9893 4.3376
anthracene .1088 .1131 .0969
fluoranthene .1830 .2694 .7087
pyrene .2055 .2436 .3058
benzo(a)anthracene n.d. n.d. n.d.
chtysene .0283 .0372 .0809
benzo(b) fluoranthene .0099 n.d. n.d.
benzo(k)fluoranthene .0077 n.d. n.d.
benzo(e)pyrene .0099 .0119 n.d.
benzo(a)pyrene n.d. n.d. n.d.
indenofl ,2,3-cd)pyrene n.d. n.d. n.d.
dibenzo(a,h)amhracene n.d. n.d. n.d.
benzo(g,h,i)petyIene n.d. n.d. n.d.

24.0362 15.1764 10.1626 9.7054 10.4806 10.8403
.8017 .1829 .1771 .2207 .1933 .1541

1.1220 .6779 .7030 .7767 .7209 .5444
3.8991 3.2721 3.8688 4,0107 3.2615 2.0521
5.4140 4,0458 5.3993 6.0043 4.6786 3.0868
.1437 .1431 .1806 .1994 .1536 n.d.
.3312 .1548 .3044 .3098 .2074 .2611
.2284 .1932 ,3345 .3813 .2740 .2787
.0419 .0302 .0502 .0509 n.d. ad.
.0424 .0306 .0437 .0443 .0564 .0776
.0442 .0302 .0265 .0183 .0280 .0464

n.d. ad. .0086 .0093 n.d. .0305
.0219 .0147 .0192 .0171 .0173 .0342
.0091 n.d. .0123 .0116 n.d. .0085

n.d. n.d. n,d. n.d. n.d. .0117
n.d. n.d. n.d. n.d. n.d. .0157
n.d. n.d. n.d. n.d. n.d. .0188

01-27-95 02-23-95 04-06-95 05-01-95 05-22-95

17.6734 17.3987 14.4477 13.4637 12.2808
.2073 .1844 .2381 .0826 .3812
.6031 .4456 .5814 .2246 .7424

2.4901 1.1709 1.9789 .6159 3.2159
3.8948 2.0108 3,4184 1.1071 4.5333
.0988 .0460 .0635 .0313 .1194
.2450 .2464 .2145 .2175 .1663
.2130 .1166 .3322 .1104 .1597

n.d. n.d. n.d. n.d. ad.
.0232 .0387 .0346 n.d. .0215
.0119 .0143 .0488 .0193 .0052

n.d. n.d. n.d. n.d. ad.
.0193 .0114 .0526 .0128 .0052
.0160 .0048 .0470 n.d. n.d.

n.d. .0052 .0553 n.d. ad.
n.d. n.d. n.d. ad. n.d.
.0515 .0074 n.d. n.d. n.d.
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TABLE F-2: PAH Dissolved Water Concentrations measured at the York River site 

YORK RIVER SITE

PAH Dissolved Water Concentrations (ng/l)
tank2

PAH 08-12-94 10-06-94 12-06-94 12-06-94 12-07-94 12-09-94 02-10-95 04-12-95 05-24-95

naphthalene 21.1693 11.7196 18.0836 16.0714 18.0563 14.7415 12.4618 13.4723 17.0743
acenaphthylene .4371 .1774 .5705 .5379 .3003 .5334 .1697 .1410 .3791
acenaphthene 2.7656 1.1935 1.8425 1.1579 1.0097 1.3562 .5797 .9067 2,0292
fluorene .9512 1.2157 1.1554 ,8271 .6547 .9757 1.0460 .9335 2.7004
phenanthrene 2.4795 2.1432 2.2191 1.6447 1.0830 1.6665 1.8763 2.0620 4.7787
anthracene .2916 .1910 .1377 .0986 .0818 .1169 .0856 .1003 .3917
fluoranthene .9485 .9582 1.3788 .5787 .4212 .9595 .4441 . .5770 1.4515
pyrene .5542 .6456 .7906 .3644 .2910 ,6288 .2453 .2932 .9446
benzo(a)anthracene .0530 .0520 .0564 n,d. n.d. .0374 n.d. n.d. .0838
chrysene .1161 .1122 .2757 .1328 .0838 .1602 .0443 .0502 .1309
benzo(b) fluoranthene .0794 .0365 .1222 .0450 .0400 .0316 .0168 .0258 .0334
benzo(k)fluoranthene .0314 .0273 .0624 .0256 .0280 .0120 n.d. .0153 n.d.
benzo(e)pyrene .0543 .0323 .0671 .0339 .0261 .0253 .0143 .0171 .0260
benzo(a)pyrene .0275 .0094 .0182 n.d. n.d. n.d. n.d. .0068 .0101
indeno(1,2,3-cd)pyrene n.d. n.d. n.d. n.d. n.d. n.d. n.d. .0107 .0067
dibenzo(a, h)anthracene n.d. n.d. n.d. n.d. n.d. n.d. n.d. .0047 n.d.
benzo(g,h,i)petyIene n.d. n.d. n.d. n.d. .0115 n.d. n.d. .0103 .0104

TABLE F-3: PAH Dissolved Water Concentrations measured at the Haven Beach site, Chesapeake Bay. 

HAVEN BEACH SITE

PAH Dissolved Water Concentrations (ng/t)
tank2

PAH 05-10-94 05-22-94 06-26-94 06-28-94 06-29-94 114)5-94 11-05-94 11-08-94

naphthalene 18,8050 8.7590 9.2519 17.2615 6.0613 15.4654 15.2525 11.9261
acenaphthylene .1016 .0406 .0502 .0606 .0452 .2084 .3532 .3193
acenaphthene .2057 .3382 .1453 .1900 .1443 .3441 .3627 .3226
fluorene .6068 .4937 .3054 .4145 .3684 ,8949 .7559 .7714
phenaanthrene .9627 .8840 .6471 1.0210 .7451 1,5459 1.5105 1.3784
anthracene .0636 .0740 .0894 .0855 .0356 .0673 .0729 .0801
fluoranthene .6324 .2064 .8582 .3352 .3647 .6741 .5391 .4975
pyrene .2639 .0965 .4313 .1871 .2182 .2658 .2012 .2564
benzo(a)anthracene .0160 .0181 n.d. .0381 n.d. .0115 n.d. .0202
chrysene .0081 .0298 .0968 .0478 .1201 .0531 .0420 .0431
benzo(b)fluoranthene .0237 .0148 .0568 .0749 .0545 n.d. .0121 .0108
benzo(k)fluoranthene n.d. .0101 .0354 .1488 .0340 n.d. .0132 .0130
benzo(e)pyrene .0204 .0116 .0384 .0273 .0395 n.d. .0108 .0113
benzo(a)pyrene .0111 .0121 .0282 .0221 .0421 n.d. n.d. n.d.
indeno{l ,2.3-cdJpyrene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
dibenzo(a,h)anthracene .0325 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
benzofg ,h ,i)pery lene n.d. .0426 n.d. n.d. n.d. n.d. n.d. n.d.



TABLE F-4: PAH Dissolved Water Concentrations measured at the Elizabeth River site

Elizabeth River Site

PAH Dissolved Water Concentrations (ng/l)

PAH 07-15-94 09-08-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 15.2748 9.3152 24.5904 11.3705 19.6665 17.9992
acenaphthylene .5646 .2441 .7560 .5523 .7724 .3839
acenaphthene 6.9132 2.7879 4.0044 5.2279 11.3237 3.0731
fluorene 3.2487 1.4263 1.7059 2.2041 4.2523 1.1028
phenanthrene 7.3652 2.3534 3.0347 3.8661 6.3667 1.6987
anthracene 1.2262 .3619 .8581 .8348 .9241 .5892
fluoranthene 9.9057 4.7106 14.5608 14.4650 47.2585 41.7189
pyrene 4.9714 2.6448 12.7753 9.2363 16.7215 17.3794
benzo(a)anthracene .5102 .1498 .4177 .9260 1.0717 1.1283
chrysene 1.4841 .4638 1.2621 2.0747 1.9670 2.6435
benzo(b)fluoranthene .3502 .1003 .2605 .4677 .5519 .4498
benzo(k)fluoranihene .1716 .0705 .1646 n.d. n.d. n.d.
benzo(e)pyrene .3111 .1019 .2557 .4353 .4196 .4269
benzo(a)pyrene .0556 .0233 .0675 .1313 .1633 .1206
indcno(l,2,3-cd)pyrene .0244 .0192 n.d. .0195 .0659 .0349
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. .0112 .0116
benzo(g,h,i)peiylene .0313 .0194 .0401 .0324 .0755 .0500

TABLE F-5: PAH Dissolved Water concentrations measured at the Hampton site, Chesapeake Bay 

HAMPTON SITE

PAH Dissolved Water Concentrations (ng/l)

PAH 07-15-94 09-09-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 8.0509 10.2235 22.3706 12.0103 27.0897 16.6602
acenaphthylene .0771 .1167 .4764 .4396 .2836 .1617
acenaphthene .1893 .2827 .3769 .6140 .6493 .2329
fluorene .4384 .4406 .6642 1.3874 1.4007 .2238
phenaanthrene .9685 .9166 1.2196 3.1543 3.1479 .4691
anthracene .0617 .0459 .0558 .0779 .0597 .0421
fluoranthene .4927 .2499 .4771 .6879 .4416 .2288
pyrene .3400 .1620 .2757 .2705 .1544 .1266
benzo(a)anthracene .0336 n.d. n.d. n.d. .0168 n.d.
chrysene .0585 .0562 n.d. .0603 .0304 n.d.
benzo(b)fluoranthene .0329 .0247 n.d. .0264 .0186 .0134
benzo(k)fluoranthene .0238 .0228 n.d. n.d. n.d. n.d.
benzo(e)pyrene .0783 .0203 n.d. .0110 n.d. .0080
benzo(a)pyrene .0406 .0080 n.d. n.d. n.d. n.d.
tndeno(l ,2,3-cd)pyrene .0240 n.d. n.d. n.d. n.d. n.d.
dibenzo(a,h)anthracene n.d. n.d. n.d. n.d. n.d. n.d.
benzo(g,h,i)peiyiene n.d. n.d. n.d. n.d. n.d. n.d.
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TABLE F-6: PAH particle-associated Water Concentrations measured at the Wolftrap site, Chesapeake Bay 

WOLFTRAP SITE

PAH Particulate Water Concentrations (ng/l)

PAH 10-07-93 01-11-94 01-31-94 03-24-94 04-29-94 06-30-94 07-28-94 08-25-94 09-26-94

naphthalene N.Q, N.Q. N.Q.
acenaphthylene .0255 .0301 .0321
acenaphthene .0478 n.d. .0429
fluorene .1074 .1254 .4809
phenanthrene .4513 .4473 .5010
anthracene .0823 .0543 .0559
fluoranthene .1451 .2693 .2557
pyrene .1336 .2517 .2165
benzo(a)anthracene .0769 .1064 .1066
chrysene . .1074 .1798 .1808
benzo(b)fluoranthene .1399 .0621 .1680
benzo(k)fluo ranthene .1216 n.d. .1546
benzo(e)pyrene .1005 .1546 .1577
benzo(a)pyrene .0985 .1492 .1546
indeno(l,2,3-cd)pyrene .1615 .1752 ,1778
dibenzo(a ,h)anthracene n.d. n.d. .0311
benzo(g,h,i)peiylene .1151 .1488 .1646

PAH 10-28-94 12-01-94 01--13-95

naphthalene N.Q. .6500 .4690
acenaphthylene .0083 .0154 . .0058
acenaphthene .0421 .0383 .0227
fluorene .0451 .0856 .0560
phenaanthrene .1996 .3470 .2054
anthracene .0218 .0358 .0157
fluoranthene .1036 .1902 .0922
pyrene .1060 .1619 .0673
benzo(a)anthracene .0276 ,0757 .0417
chrysene .0733 .1191 .0414
benzo(b)fluoranthene .0941 .1595 .0456
benzo(k)fluoranthene .0837 .1516 .0339
benzo(e)pyrene .0746 .1247 .0325
benzo(a)pyrene .0534 .1191 .0321
indeno(l ,2,3-cd)pyrene .0519 .1085 .0508
dibenzo(a,h)anthraccne n.d. n.d. n.d.
benzo(g,h,i)petylene .0623 .1117 .0452

I.Q. N.Q. 5.1817 2.0180 N.Q. .5421
.0311 .0247 .0594 .0083 .0256 .0078
.0387 .0283 .1607 ,0434 n.d. n.d.
.1153 .0881 .4791 .0846 .0746 .0518
.3133 .2427 1.2770 .3703 .2233 .2154
.0284 .0206 .0922 .0341 .0203 .0245
.1959 .1018 .2954 .1445 .0887 .1316
.1517 .1150 .6657 .1345 .0841 .2070
.0801 .0636 .1240 .0596 .0186 .0451
.1156 .0572 .1817 .0810 .0489 .0744
.1352 .0642 .2505 .1112 .0583 .0989
.1167 .0495 .2252 .1012 .0679 .0955
.1165 .0512 .2066 .0913 .0501 .0882
.0976 .0392 .1669 .0714 .0340 .0699
.0156 .0591 .1635 .0724 n.d. .0834
t.d. .0675 .0347 n.d. n.d. n.d.
.0203 .0617 .1773 .0862 .0433 .1054

-27-95 02-23-95 04-06-95 05-01-95 05-22-95

.7463 N.Q. .8432 N.Q. N.Q.

.0141 .0136 .0216 N.Q. .0151

.0392 N.Q. .0538 N.Q. N.Q.

.1311 .1029 .1935 N.Q. .0977

.5793 .3013 .6662 .1694 .3099

.0759 .0280 .0736 .0244 .0258

.3590 .1551 .3149 .1151 .1080

.3014 .1171 .2877 .1001 .0993

.1410 .0756 .1414 .0671 .0511

.1846 .1048 .1968 ,0911 .0658

.2239 .1274 .2619 .1252 .0881

.1799 .1091 .2101 .0986 .0710

.1687 .0813 .1632 .0729 .0621

.1829 .0256 .1669 .0652 .0593

.2575 .1064 .2342 .0958 .0777

.0337 .0156 .0382 ,0177 .0107

.2223 .1081 .2615 .0956 .1062
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TABLE F-7: PAH Particulate Water Concentrations measured at the York River Site 

YORK RIVER SITE

PAH Particulate Water Concentrations (ng/l)
tank2

PAH 08-12-94 10-06-94 12-06-94 12-06-94 12-07-94 12-09-94 02-10-95 04-12-95 05-24-95

naphthalene 1.2296 .9574 .7981 .6203 1.5517 .7415 .9807 n.q. .7218
acenaphthylene .0250 .0495 .0191 .0105 .0204 .0119 .0345 .0120 .0278
acenaphthene .1364 .0699 .0709 ,0522 .1336 .0349 .0422 n .q. .0429
fluorene .1214 .1815 .1093 .0742 .1673 .0785 .0780 .0637 .1214
phenanthrene .5528 .7786 .4755 .5184 .7062 .3600 .3133 .2364 .4790
anthracene .0794 .1994 .0579 .0620 .0784 .0689 .0512 .0331 .2067
fluoranthene .7691 1.4098 .5039 1.1162 .8644 .5264 .3070 .2029 .6965
pyrene .5690 1.6790 .4305 .8490 .6682 .4841 .2558 .1891 .6483
benzo(a)anthracene .2042 .5864 .1623 .2097 .2485 .2024 .1660 .1128 .3555
chrysene .4975 .7801 .2753 .5420 .7121 .3799 .2296 .1629 .4706
benzo(b)fluoranthene .4520 1.0790 .2960 .5301 .5593 .3733 .3193 .2452 .7161
benzo(k)fluoranthene .3265 .7818 .2440 .4023 .3718 .3139 .2396 .1893 .6095
benzo(e)pyrene .3760 1.0287 .2228 .3558 .3625 .2886 .1995 .1487 .5038
benzo(a)pyrene .2440 .8134 .1967 .2679 .3223 .2828 .1949 .1362 .5130
indenofl ,2,3-cd)py rene ,2859 .9459 .2198 .2818 .3544 .3022 .1129 .1737 .5683
diberuco(a,h)anthracene .0690 .1702 n.d. •033B .0621 .0485 .0458 .0471 .0976
benzo(g,h,i)petylene .3421 1.2304 .27833 .3119 .3871 .2953 .1403 .1951 .5377

TABLE F-8: PAH Particulate Water Concentrations measured at the Haven Beach Site, Chesapeake Bay 

HAVEN BEACH SITE

PAH Particulate Water Concentrations (ng/l)
tank2

PAH 05-10-94 05-22-94 06-26-94 06-28-94 06-29-94 11-05-94 11-05-94 11-08-94

naphthalene N.Q. n.q. 1.3763 2.4781 1.6212 N.Q. N.Q. .5826
acenaphthylene n.d. n.d. .0402 .0750 .0402 .0148 .0133 .0176
acenaphthene n.d. - n.d. .0939 .1153 .1397 .0187 .0169 .0608
fluorene .0885 1.1431 .1010 .1427 .9937 .0523 .0500 .0647
phenaanthrene .2511 1.1559 .5205 .7158 1.9598 .1798 .1812 .2851
anthracene .0258 .7221 .0758 .1223 .1005 .0220 .0234 .0456
fluoranthene .2463 .3361 1.1262 .9517 .6573 .2448 .2865 .4188
pyrene .2670 .2851 .9646 .8999 .7191 .2464 .2894 .3851
benzo(a)anthracene .1100 .6174 .3134 ,3342 .4257 .0930 .0922 .1569
chrysene .1618 .1767 .6435 .6342 .3292 .1622 .1611 .2745
benzo(b)fluoranthene .1703 .1921 .7911 .9685 .3227 .1617 .1578 .3271
benzo(k)fluoranthene .1943 .1782 .7697 .9359 .2640 .1369. .1398 .3337
benzo(e)pyrene .1833 .2242 .6115 .7406 .3173 .1539 .1547 .2727
benzo(a)pyrene .1572 .1947 .5105 .5639 .2445 .1329 .1448 .2130
indeno(l ,2,3-cd)pyrene n.d. .1847 .4475 .5230 .2732 .1380 .1343 .2185
dibenio(a,h)anthracene n.d. .0477 .1097 n.d. .0743 .0279 .0991 n.d.
benzo(g,h,i)perylene .2106 .1932 .4715 .5613 .2939 .1357 .1310 .2092



TABLE F-9: PAH particle-associated Water Concentrations measured at the Elizabeth River site

Elizabeth River Site

PAH particle-associated Water Concentrations (ng/l)

PAH 07-15-94 09-08-94 1!-12-94 01-09-95 03-11-95 05-04-95

naphthalene 1.6764 1.8933 1.4611 n.a. 2.0389 1.4409
acenaphthylene .0367 .0459 .0238 n.a. .0860 .0504
acenaphthene .2670 .2728 .1594 n.a. .5390 .2826
fluorene .3856 .3904 .2403 n.a. .6227 .4309
phenanthrene 1.2856 1.2803 .8825 n.a. 2.3046 1.3092
anthracene .3596 .3557 .2503 n.a. .6389 .4486
fluoranthene 3.1682 2.3629 1.5932 n.a. 10.1574 3.0817
pyrene 2.2745 1.9935 1.6403 n.a. 8.5667 2.9722
benzo(a)anthracene 1.1584 .8145 .5553 n.a. 2.5708 1.2300
chrysene 2.3925 1.3209 .8987 n.a. 3.9513 1.9010
benzo(b)fluoranthenc 2.3177 1.5761 1.1603 n.a. 4.2762 2.6772
benzo(k)fluoranthene 1.6115 1.1650 .8530 n.a. 3.5148 2.0348
benzo(e)pyrene 2.0135 1.4847 .9022 n.a. 2.9003 1.8571
benzo(a)pyrene .9299 .9708 .7228 n.a. 2.3693 1.4081
indeno(l ,2,3-cd)pyrene .9900 .9871 .6885 n.a. 2.4355 1.4006
dibenzo(a,h)anthracene .2349 .2307 .1231 n.a. .5178 .2943
benzo(g,h,i)peryIene 1.0235 1.0167 .6926 n.a. 2.3556 1.3673

TABLE F-10: PAH particle-associated Water concentradons measured at the Hampton site, Chesapeake Bay 

HAMPTON SITE

PAH Particle-associated Water Concentradons (ng/l)

PAH 07-15-94 09-09-94 11■12-94 01-09-95 03-11-95 05-04-95

naphthalene 1.3149 .6527 2.1873 .6125 N.Q. N.Q.
acenaphthylene .0164 .0259 .0454 .0079 .0156 .0136
acenaphthene .0418 .0306 .0934 .0204 N.Q. N.Q.
fluorene .0672 .0822 .1208 .0503 .0759 N.Q.
phenaanthrene .2540 .3638 .5132 .2432 .3228 .2063
anthracene .0347 .0783 .0942 .0324 .0286 .0251
fluoranthene .3083 .5379 .5483 .2292 .2803 .2211
pyrene .2586 .4830 .4814 .1594 .1835 .2068
benzo(a)anthracene .1070 .2265 .2536 .0754 .0953 .1241
chrysene .1854 .3986 .3756 .1210 .1476 .1830
benzo(b)fluoranthcne .2028 .3965 .4907 .1362 .1696 .2488
benzo(k)fluoranthene .1578 .3135 .4158 .1016 .1470 .2134
benzo(e)pyrene .1848 .3648 .3533 .0965 .1208 .1629
benzo(a)pyrene .1432 .2833 .3570 .0906 .1202 .1662
indeno(l ,2,3-cd)py rene .1770 .3248 .4763 .1220 .1700 .2194
dibenzo(a,h)anthnicene .0438 .0490 .0689 .0261 .0257 .0342
benzo(g,h,i)perylene .1825 .3632 .4170 .1098 .1494 .2113



Appendice G: Instantaneous Gaseous Flux Data for PAHs Across the Air-water 
Interface of Southern Chesapeake Bay

TABLE G-l: PAH Gas Exchange Fluxes across the Air-Water Interface, Wolftrap Site, Chesapeake Bay 

WOLFTRAP SITE

PAH Gas Exchange Flux (ng/m1*day)

PAH 10-07-93 Ol-U-94 01-31-94 03-24-94 04-29-94 06-30-94 07-28-94 08-25-94 09-26-94

naphthalene 1526.099 1885.140 8120.446 4281.805 2719.581 2000.702 1865.129 1380.870 1630.307
acenaphthylene n.q. -76.205 -444.881 104.406 n.q. 29.710 36.518 22.348 18.676
acenaphthene 69.770 4.003 -165.499 142.420 97.498 117.990 128.513 83.527 68.819
fluorene 135.429 -34.771 -269.353 393.349 400.358 602.576 616.907 354.855 221.926
phenanthrene -50.999 -322.258 -2195.630 64.821 -77.221 435.786 525.180 249.430 207.188
anthracene n.q. n.q. n.q. n.q. n.q. 17.228 19.852 9.863 n-q.
fluoranthene -52.416 -75.440 -232.044 -61.420 -82.803 -33.194 -29.422 -31.007 4.904
pyrene -76.108 -75.650 -181.514 -89.221 -181.593 -49.145 -40.648 -41.074 2.357
benzo(a)anthracene n.q. n.q. n.q. n.q. n.q. n.q. n.q- n.q. n.q.
chrysene -.696 n.q. -5.677 -1.458 -1.737 2.407 2.649 2.802 6.050
benzo(b)fluoranthene n.q. n.q- -.543 -.625 -.560 n.q. n-q. n.q. -.554
benzo(k)fluoranthene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n-q- n.q.
benzo(e)pyrene N.Q. n.q. n.q. N.Q. N.Q. n.q. n.q. n.q. N.Q,
benzo(a)pyrene n.q. n.q. n.q. -.174 n.q. n.q. n.q. n.q. n.q.
indeno( 1,2,3-cd)py rene n.q. n.q. n.q. n.q. n-q. n.q. n.q. n.q. n-q.
dibenzofa ,h)anthraeene n.q. n.q. n.q. n-q- n.q. n-q. n.q. n.q. n-q.
benzo(g,h,i)petyIene -1.833 n.q. n.q. n.q. n.q n-q. n.q. n.q. n.q.

PAH 10-28-94 12-01-94 01-13-95 01-27-95 02-23-95 04-06-95 05-01-95 05-22-95

naphthalene 1335.226 4802.371 2993.234 3055.539 4596.334 2475.835 3783.023 1850.821
acenaphthylene 21.625 83.817 37.814 -24.356 2.555 24.901 n-q. 48.770
acenaphthene 41.529 96.090 95.860 28.307 -23.277 43.413 40.229 94.432
fluorene 101.281 219.184 98.145 39.759 -153.314 144.146 71.834 369.345
phenaanthrene 21.135 190.579 -130.020 -218.445 -366.367 105.867 45.994 310.194
anthracene n.q. n.q. n.q. n.q. n.q. n.q. n.q. 8.336
fluoranthene -37.961 -8.199 -40.644 -69.578 -152,601 -27.132 -8.905 -43.834
pyrene -55.235 -10.948 -90.533 -49.230 -74.571 -20.191 -15.615 -28.909
benzo(a)anthracene n.q. n.q. n-q. n.q. n,q. n-q. n.q. n-q.
chrysene -7.114 -1.897 -1.694 -.311 -2.407 -.321 n.q. -.049
benzo(b)fluotanthene -1.508 n.q. n.q. n.q. -.352 -.468 -.486 -.321
benzo(k)fluoranthene -.770 n.q. n.q. n.q. n.q. n.q. n.q. n.q.
benzo(e)pyrene N.Q. N.Q. n.q. n.q. N.Q. N.Q. N.Q. N.Q.
benzo(a)pyrcne n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.
indeno( 1,2,3-cd)pyrene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.
dibenzo(a,h)anthracene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.
benzo(g,h,i)perylene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.

161



162

TABLE G-2: PAH Gas Exchange Fluxes across the Air-Water Interface, York River Site

YORK RIVER SITE

PAH Gas Exchange Fluxes <ng/mJ*day)
tank2

PAH 08-12-94 10-06-94 12-06-94 12-06-94 124)7-94 124)9-94 02-10-95 04-12-95 05-24-95

naphthalene 3177.765 2814.578 1422.239 1613.456 2225.086 1320.369 1634.255 2363.022 3508.868
acenaphthylene 50.810 -118.241 24.449 28.190 10.194 -.907 -14.346 11.753 49.726
acenaphthene 276.113 -16.730 •4.814 54.112 -81.229 28.565 -541.142 -127.324 -138.524
fluorene -28.047 -411.507 -601.076 -547.009 -437.823 -110.692 -596.673 -373.153 ■471.934
phenanthrene ■4057.480 -2485.950 -2191.510 -2086.640 -2219.870 -419.092 -1059.550-2102.430 -2886.110
anthracene -177.353 -111.590 -164.141 -156.963 -80.778 -17.409 -19.863 -23.437 -12.257
fluoranthene -820.160 -653.825 -526.817 -490.196 -785.804 -125.096 -325.146 -361.386 -696.829
pyrene -262.993 -264.099 -329.924 -309.810 -399.664 -124.273 -134.798 -164.561 -141.597
benzo(a)anthracene -3.954 -2.965 n.q. -19.100 n.q. -.715 n.q. n.q. 1.428
chrysene -.270 3.832 -24.296 -16.829 -14.128 .459 -8.075 -5.155 2.990
benzo{b)fluoranthene -14.808 -4.581 -9.435 -9.433 -2.557 -.682 -.969 -2.070 -1.905
benzo(k) fluoranthene n.q. n.q. -10.627 -10.626 n.q. n.q. n.q. -1.297 n.q.
benzo(e)pyrene N.Q. N.Q. N.Q. N.Q. N.Q- N.Q. N.Q. N.Q. N.Q.
benzo(a)pyrene -1.907 -3.427 n-q- -2.173 n.q. n.q- n-q. -.770 n.q.
indeno(l,2,3-cd)pyrene n.q. n.q. n.q- n.q. n.q. n.q. n.q. -1.288 n.q.
dibenio(a,h)anthracene n.q. n.q. n-q. n.q. n.q. n.q. n-q- N.Q. n.q.
benzo(g,h,i)peryIene n.q. n.q. n.q. n.q. -2.561 n.q. n.q. -1.403 n.q.

TABLE G-3: PAH Gas Exchange Fluxes across the Air-Water Interface, Haven Beach Site, Chesapeake Bay. 

HAVEN BEACH SITE
tank2

PAH 05-10-94 05-22-94 06-26-94 06-28-94 06-29-94 11-05-94 11-05-94 11-08-94

naphthalene 2931.688 2270.923 2507.929 3556.732 1595.922 1746.431 1722.277 1200.256
acenaphthylene 6.490 6.605 8.467 5.547 5.237 16.837 30.509 19.808
acenaphthene 22.153 55.352 26.988 26.070 23.966 20.373 22.186 16.977
fluorene 30.059 32.497 42.025 33.946 55.512 41.172 28.928 16.640
phenaanthrene -135.221 -172.673 -2B3.080 -276.244 -281,456 -118.567 -120.725 -141.400
anthracene n.q. n.q. n.q. n.q. -.016 -5.445 -5.065 n.q.
fluoranthene -18.671 -49.407 21.871 •65.358 -45.777 -24.965 -30.651 -22.400
pyrene -63.161 -57.856 -29.604 -114.264 -61.065 -53.668 -55.547 -50.569
benzo(a)anthracene n.q. n.q. n.q. n.q. n.q. -.979 n.q. -.579
chrysene -2.297 1.221 9.265 1.273 12.174 -2.299 -2.933 -4.303
benzo(b)fluoranthene -1.047 -.425 -.979 n.q. •1.566 n.q. -2.313 -2.268
benzo(k)fluoranthene n.q. -.196 n.q. n.q. -.432 n-q. n.q. n.q.
benzo(c)pyrene N.Q. N.Q. N.Q. n.q. N.Q. n.q. N.Q. N.Q.
bcnzo(a)pyrene n.q. n.q. -.343 n.q. -.451 n.q. n.q. n.q.
indeno(l ,2,3-cd)py rene n.q. n.q. n.q* n.q. n.q. n.q. n.q. n.q.
dibenzo(a,h)anthiacene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.
benzo(g,h,i)pcrylene n.q. n.q. n.q. n.q. n.q. n.q. n.q. n.q.



TABLE G-4: PAH Gas Exchange Fluxes across the A ir-W ater Interface, Elizabeth River.

ELIZABETH RIVER SITE

PAH Gas Exchange Fluxes (ng/muday)

PAH 07-15-94 09-08-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 6112.437 1139.967 5456.315 1018.884 3346.629 2425.091
acenaphthylene n.q. 23.563 104.940 -323.316 59.320 -7.564
acenaphthene n.q. 237.001 388.252 212.496 1362.698 -136.568
fluorene n.q. -4.406 -399.627 -238.072 172.125 -460.484
phenamhrene n.q. -947.505 -1644.490 -1238.450 -719.998 -2454.790
anthracene n.q. -21.841 65.074 -33.859 54.020 -45.665
fluotanthene n.q. -195.018 699.382 166.431 1788.243 1631.924
pyrene n.q. -61.019 393.042 -248.431 12.396 398.929
benzo(a)anthracene -22.227 2.721 20.851 14.155 27.507 38.838
chrysene 4S.685 25.663 113.632 73.905 107.885 175.578
benzo(b) fluotanthene -3.740 -3.774 -1.747 -1.331 -.481 -2.317
benzo(k)fluoranthene n.q. -3.462 -.857 n.q. n.q. aq.
benzo(e)pyrene n.q. N.Q. N.Q. N.Q. n.q. N.Q.
benzo(a)pyrene -23.715 -1.764 n.q. -.719 n.q. -.930
indeno{l ,2,3-cd)pyrene -2.402 n.q. n.q. -.913 n.q. -1.475
dibenzo(a,h)anthracene n.q. n.q. n.q. n.q. n.q. N.Q.
betizo(g ,h ,i)perylene -3.792 n.q- -2.259 -1.730 n.q. -2.249

TABLE G-5: PAH Gas Exchange Fluxes Across the Air-Water Interface, Hampton Site, Chesapeake Bay 

HAMPTON SITE

Fluxes (ng/m’^day)

PAH 07-15-94 09-09-94 11-12-94 01-09-95 03-11-95 05-04-95

naphthalene 2568.467 3281.952 4378.806 1788.783 6290.068 2223.984
acenaphthylene 9.947 -2.313 73.639 -15,799 -19.490 6.089
acenaphthene -592.830 -1816.260 43.309 -54.116 -1214.350 -1448.900
fluorene -1610.480 -1714.370 -33.075 -116.447 -386.896 -2079.360
phenaanthrene -14534.700-11387.600 -227.821 -464.012 -2234.420 -4820.240
anthracene -797.577 -335.388 n.q. -24.359 n.q. -113.537
fluotanthene -2340.750 -822.794 -115.380 -151.393 -599.218 -1206.490
pyrene -924.426 -301.386 -232.231 -147.176 -315.284 -325.239
benzo(a)anthracene -2.831 n.q. n.q> n.q. n.q. n.q.
chrysene -7.911 1.575 n.q. -4.659 -43.492 n.q.
benzo(b)fluor<uithene -5.263 -5.572 n.q. -.621 -4.917 -3.338
benzo(k)fiuoranthene n.q. n.q. n.q. n.q. n.q* n.q.
benzo(e)pyrene N.Q. N.Q. n.q, N.Q. n.q. N.Q.
benzo(a)pyrene n.q- n.q. n.q. n.q. n.q. n.q.
indeno(l,2,3-cd)pyrene n.q. n.q. n.q. n.q. n.q. n.q.
dibenzo(a,h)anthracene n.q. n.q. n.q. n.q. n.q. n.q.
benzo(g,h,i)perylene n.q. n.q. n.q. n.q. n.q. n.q.
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