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ABSTRACT

Molecular markers and techniques were employed to develop a genetic key for the 

forensic identification of 16 species o f Chesapeake Bay sportfishes and to investigate the 

stock structure of one o f those species, the weakfish Cynoscion regalis.

To develop the genetic key, regions within the ATP 6 synthetase (ATPase 6), 

cytochrome b , cytochrome c oxidase I, NADH dehydrogenase 4 (ND4), and 12S/16S 

ribosomal RNA mitochondrial genes were amplified using the polymerase chain reaction 

(PCR) and digested with a bank of restriction endonucleases to find a genetic m arker that 

exhibited complete interspecific differentiation and low intraspecific variation. The final 

key was based on an approxim ately 1495 bp region of the mitochondrial genome 

encompassing part of the 12S and 16S rRNA genes. Complete separation of all 16 

species was accomplished by restriction digestions with the single endonuclease Rsa  I. 

Intraspecific variation in digestion patterns was minimal, with ten species exhibiting a 

single pattern, while the remaining six were dimorphic. This key should prove useful in 

enforcement of species-specific regulations when external morphological characters have 

been removed, and in the identification o f early life history stages that lack distinguishing 

characteristics.

Analyses of four microsatellite loci and two nuclear intron regions were used to 

investigate the genetic basis o f population structure of weakfish along the U.S. East

x i i i
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Coast. Samples of approximately fifty young-of-the-year (YOY) weakfish were collected 

at five locations (Georgia, North Carolina, Virginia, Delaware, and New York) in each of 

two years (1996 and 1997). Mean expected heterozygosities for the microsatellite loci 

ranged from a low of 8.5% for the S 0 C 0 1 4  marker to a high of 92.8% for the CNE612 

locus. Mean expected heterozygosities for the CRESIA1 and RP2 intron regions were 

5.1% and 24.0%, respectively. None of the sample genotype distributions differed 

significantly from Hardy-W einberg expectations, and pairwise Fsr values were 

consistently low (0.000-0.087 for microsatellite loci, 0.000-0.050 for intron regions). 

Analyses of molecular variance (AMOVA) and exact F  permutation tests of sample 

heterogeneity were nonsignificant for all loci; thus it was not possible to reject the null 

hypothesis that weakfish comprise a single, homogeneous stock.

Some individuals in the Georgia 1997 sample exhibited unusually small microsatellite 

allele sizes when compared to the rest of the sample locations. Evaluation of these 

specimens using the previously developed genetic key based on restriction fragment 

length polymorphism (RFLP) analysis of the 12S/16S rRNA region of the mitochondrial 

genome revealed that two other species of Cynoscion, the sand seatrout C. arenarius and 

the silver seatrout C. nothus, had been inadvertently included in the sample of YOY 

weakfish. Based on data from the mitochondrial marker and the SOC050 microsatellite 

locus, a number of the Georgia 1997 fish were identified as hybrid offspring o f weakfish 

and sand seatrout.

x iv
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GENERAL INTRODUCTION

Advances in molecular genetics over the last four decades have provided an increasin 

number of molecular markers available for use in fisheries science research. These 

markers have been applied to problems of taxonomy, species identification, stock 

structure, mixed-stock fishery composition, genetic interactions of hatchery and wild 

populations, hybrid zones, and the conservation of endangered stocks (Ryman and Utter 

1987, Wirgin and Waldman 1994, O ’Connell and W right 1997). Molecular techniques 

offer a different perspective than traditional methodologies based on meristics, 

morphometries, or life history traits because they directly assess the genetic differences, 

and not the phenotypic expression of genetic differences. To select which types of 

molecular markers and techniques are best suited to a particular problem in fisheries 

science, a researcher must consider the taxonomic unit of interest, the unique biological 

characteristics of each class o f molecular marker, and the ability of different analytical 

techniques to reveal genetic variation in a given class of marker.

Classes of Molecular Markers

M ost problems in fisheries science investigated with molecular genetic markers 

require discrimination between genetic units at some level of taxonomic hierarchy,
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whether among individuals, populations, or species. This is true for investigations of 

parentage, inbreeding, genetic diversity in wild and hatchery-reared fish, population 

structure, species designations, and interspecific hybridization. Because m olecular 

markers differ in mutation rates, modes of inheritance, and visibility to selection, they 

often reveal different levels o f genetic variation within samples as well as genetic 

divergence between samples. No molecular markers is useful at all hierarchical levels, 

and it cannot be assumed that one class o f marker is best at any given level, since the 

amount of genetic variation in a given marker can vary widely across taxa. The most 

common classes of molecular markers used in fisheries genetics studies are proteins 

(allozymes), mitochondrial (mt) DNA, and nuclear (n) DNA. Below is a brief description 

of each marker class and the analytical techniques used to assess the variation they 

contain.

Allozymes. Since the 1960s, allozyme starch gel electrophoresis has been the most 

commonly employed molecular method in fishery genetics (Hillis and Moritz 1996), and 

it is still in widespread use. Allozymes are allelic variants of proteins produced by a 

single gene locus. Amino acid differences in the polypeptide chains of the different 

allelic forms reflect changes in the underlying DNA sequence. Depending on the nature 

of the amino acid changes, the resulting protein products may migrate at different rates 

(due to charge and size differences) when run through a starch gel subjected to an 

electrical field. Differences in the presence/absence and relative frequencies of alleles are 

used to quantify genetic variation and distinguish among genetic units at the levels of 

populations, species, and higher taxonomic designations.
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Allozyme electrophoresis is still one of the most cost-effective methods o f genetic 

analysis available to researchers. The four primary methods of protein electrophoresis can 

be classified according to the gel medium: starch, polyacrylamide, cellulose acetate, and 

agarose. Starch gel electrophoresis (outlined above) is the most commonly used protocol 

to detect allelic variants in population genetic studies. Starch gels may be run horizontally 

or vertically. Although more costly in terms of supplies, sample quantities, and sample 

processing efficiency, vertical starch gel electrophoresis avoids electrodecantation, a 

drawback of horizontal gels in which high molecular weight proteins tend to settle toward 

the bottom of the gel as electrophoresis progresses (Murphy et al. 1996).

Proteins may also be separated by polyacrylamide gel electrophoresis (PAGE). The 

ability to accurately assess protein size by manipulating the acrylamide concentration in 

the gel makes this technique popular with laboratories involved in nucleic acid 

sequencing (Chrambach and Rodbard 1971). Cellulose acetate gel electrophoresis 

(CAGE) has also been used for the separation of proteins because it increases the 

repeatability of experiments (Harris and Hopkinson, 1976), but may not detect as much 

variation because the large pore size results in separation based on charge alone (Riley et 

al. 1992).

Agarose gel electrophoresis (AGE), also popular in mitochondrial and nuclear DNA 

studies, has its roots in protein analysis. Because of a relatively high concentration of 

acidic groups, however, AGE may result in electroendnosmosis, a ‘backw ash’ of buffer 

caused by gel charge groups that accelerates the mobility of cationic enzymes while 

retarding or reversing the mobility of anionic enzymes (Murphy et al. 1996). The relative 

advantages and disadvantages of the four protein separation methods outlined above are
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given in Table 1 of M urphy et al (1996). Other, less commonly used methods of protein 

electrophoresis include immunoelectrophoresis (Harris and Hopkins 1976), two- 

dimensional electrophoresis (Hames and Rickwood 1981), isoelectric focusing 

(Whitmore 1990), and paper electrophoresis (Freifelder 1992).

An advantage of allozymes markers is the relative ease with which a large number of 

loci and samples can be screened; at least 75 isozyme systems representing several 

hundred genetic loci are currently available (Murphy et al. 1990). Also, because the 

isozyme systems are coded for by nuclear loci, complications resulting from reduced 

effective population size and gender-biased migration inherent in mtDNA markers are 

avoided. Disadvantages associated with allozymes include the presence of null 

(enzymatically inactive) alleles that can produce heterozygote deficiencies, the effects of 

natural selection on protein-coding regions of DNA (most population structure analyses 

are based on assumptions that markers are selectively neutral), and the amount and 

quality of tissue samples required. In addition, most nucleotide changes do not produce 

electrophoretically distinct alleles, resulting in lower levels of detected variation. Some 

changes in nucleotide sequence do not change the encoded amino acid (synonymous 

substitutions), and some amino acid changes do not alter the mobility of the protein in an 

electrophoretic gel (silent substitutions). Low levels of genetic variation revealed in many 

allozyme studies of marine fish populations (e.g. striped bass, Siddell et al. 1980; Atlantic 

cod, Mork et al. 1985; weakfish, Crawford et al. 1989) have prompted continued search 

for markers with greater genetic resolution.
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Mitochondrial DNA. Since the late 1970s, analyses of DNA have become increasingly 

prevalent in the field of fisheries genetics. The most frequently studied m arker has been 

mitochondrial DNA, a small, circular molecule contained within the m itochondrion. In 

general, animal mtDNA is 15-20 kilobases (kb) in s#ize and consists o f about 37 genes 

coding for 22 transfer (t) RNAs, 13 messenger (m) RNAs, and 2 ribosomal (r) RNAs. 

Almost the entire mtDNA molecule is transcribed except for the approximately 1 kb 

control region (D-loop), where replication and transcription of the molecule is initiated. 

Studies in the early 1980s revealed that despite striking conservation of mtDNA function 

and gene arrangement in animals, the molecule showed high levels o f sequence diversity 

at the species and population levels (Brown 1985). In general, noncoding segm ents like 

the D-loop exhibit elevated levels of variation relative to coding sequences such as the 

cytochrome b gene (Brown et al. 1993), presumably due to reduced functional constraints 

and relaxed selection pressure. Thus, analysis of the mtDNA molecule, through careful 

targeting of specific regions with different amounts of sequence conservation, can be 

used to investigate genetic variation and divergence at a number of taxonomic levels. 

Analyses of the mitochondrial D-loop region have been used to investigate stock 

structure in a variety of marine fishes (Cronin et al. 1993, Purcell et al. 1996). Higher- 

level taxonomic questions are often addressed with analyses of more conserved gene 

regions like cytochrome b (Bemardi and Crane 1999), 12S rRNA (Sarver et al. 1996),

16S rRNA (Birstein et al. 1997), NADH dehydrogenase subunit 3 (M ckay 1996), and 

ATP synthetase 6 (Domanico et al. 1997). The conservative nature o f one gene region 

may differ among taxa, and all of the markers listed above have been used to investigate 

taxonomic questions both above and below the species level.
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Studies of vertebrate species have generally shown that sequence divergences 

accumulate more rapidly in mtDNA than in nuclear DNA (Brown 1985). This has been 

attributed to a faster mutation rate in mtDNA that may result from a lack of repair 

mechanisms during replication (Wilson et al. 1985) and smaller effective population size 

due to the strictly maternal inheritance of the mitochondrial genome (Birky et al. 1989).

MtDNA can be analyzed using a variety of methods. Originally whole molecule 

mtDNA was isolated from individuals using cesium chloride density-gradient 

ultracentrifugation (Lansman et al. 1981) and variation was assessed using restriction 

fragment length polymorphism (RFLP) analysis. Restriction endonucleases are enzymes 

that recognize specific nucleotide sequences and cut DNA wherever these sequences are 

encountered. Each restriction enzyme recognizes a specific 4, 5, or 6 bp sequence, so 

that changes in the DNA due to mutation can result in the gain or loss of a restriction site. 

Because of differences in mtDNA sequences, digestion with restriction enzym es can 

result in mtDNA fragments whose number and size vary among individuals. M tDNA 

fragments for each individual are separated by using agarose gel electrophoresis and 

visualized with ethidium bromide (EtBr) staining or autoradiography (Sambrook et al. 

1989). Alternatively, whole genomic DNA can be isolated (as opposed to purified), 

digested with restriction enzymes, and the fragments separated electrophoretically. The 

resulting mtDNA bands are visualized either immunologically or autoradiographically by 

hybridization with a labeled mtDNA probe on a nylon or nitrocellulose filter (Southern 

blotting; see Sambrook et al. 1989 for protocols). Differences in the banding patterns 

between individuals due to the gain or loss of a restriction site can be used to assess 

levels of genetic variation and relatedness at various hierarchical levels. Problems with
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whole molecule mtDNA analyses include the amount and quality of tissue required for 

mtDNA isolation, the time involved in mtDNA isolation and development of a probe for 

Southern blotting, and the special requirements of working with radioisotopes (Sambrook 

et al. 1989).

The problems associated with traditional whole molecule mtDNA analysis can be 

alleviated using a system based on the polymerase chain reaction (PCR). With PCR, large 

amounts of DNA can be amplified from minute tissue samples preserved in a variety of 

manners and isolated with a standard phenol extraction protocol (Sambrook et al. 1989) 

that is relatively short compared to the cesium chloride procedure mentioned above.

Also, with the large number o f ‘universal’ primers available in the literature, a researcher 

can target regions of mtDNA that are either relatively conserved or rapidly evolving, 

depending on the amount of variation observed and the taxonomic level under 

examination. Finally. PCR products can be digested with restriction enzymes and 

visualized by simple staining with ethidium bromide due to the increased amount of 

DNA produced by the PCR method.

In those cases where RFLP analysis fails to uncover levels of variation suitable to test 

the hypothesis in question, techniques with finer resolution can be employed. Short 

fragments of PCR-amplified DNA can be compared using single-strand conformational 

polymorphism (SSCP) analysis (Orita et al. 1989). SSCP analysis is capable o f detecting 

differences as little as a one base-pair substitution (Aguade et al. 1994, Orti et al. 1997), 

although this resolution can vary greatly for different regions of DNA (M oyret et al.

1994). SSCP analysis takes advantage of the conformational differences in single

stranded DNA (associated with changes in sequence) when run through a denaturing
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polyacrylamide gel. Disadvantages of SSCP analysis include the increased cost and 

technical intricacy compared to traditional agarose gel/ethidium bromide staining 

techniques.

The finest level of genetic resolution can be achieved by sequencing regions of cloned 

or amplified mtDNA. Sequencing a large number of samples (as in population structure 

studies) can require considerable time and money, but more and more studies are using 

this approach. Population-level analyses of marine fishes have been performed based on 

sequences of the control (D-loop) region (Alvarado-Bremer et al. 1996, Stepien and 

Faber 1998, Duvernell and Turner 1998, Refseth et al. 1998), cytochrome b gene (Carr et 

al. 1995, Apostolidis et al. 1997, Grant et al. 1998), and ATP synthesase 6 gene (Quattro 

and Powers 1994). Sequencing as a tool in intraspecific studies will probably continue to 

grow in popularity, as the use o f timesaving devices such as automated sequencers 

becomes more widespread.

An advantage of mtDNA markers over protein electrophoresis is the small amount of 

tissue required for mtDNA isolation, particularly when coupled with PCR protocols 

(discussed above). Two potential disadvantages of mtDNA as a molecular marker result 

from its mode of inheritance. Because all 37 genes contained within the mitochondrial 

genome are inherited as a single unit without recombination, the mtDNA molecule must 

be considered a single locus in genetic investigations (Avise 1994), compared to the 30- 

50 loci typically employed in protein electrophoresis studies. Also, because mtDNA is 

maternally inherited, the phylogenies and population structures derived from mtDNA 

data may not reflect those of the nuclear genome due to gender-biased migration (Birky 

et al. 1983) or introgression (Chow and Kishino 1995). Maternal inheritance of the
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mtDNA molecule can be an asset, however. Studies of sunfish Lepomis sp. (Avise and 

Suanders 1984), chubs Gila sp. (Demarias et al. 1992), and char Salvelinus sp. 

(Bematchez et al. 1995), have used a combination of nuclear and mitochondrial markers 

to reveal instances of introgressive hybridization between species. Similarly, a 

combination of nuclear and mitochondrial markers has been used to investigate gender- 

specific spawning site fidelity in marine turtles (Bowen et al. 1992, Karl et al. 1992) and 

whales (Palumbi and Baker 1994).

Nuclear DNA. In an effort to find molecular markers that combine the advantage of 

the fast rates of mutation and sequence divergence of mtDNA with the number of 

independent loci available for isozyme analysis, researchers have increasingly turned to 

studies of nuclear genes. In general, the eukaryotic genome can be divided into 

nonrepetitive and repetitive DNA. Nonrepetitive DNA may be coding or noncoding, and 

the two types often coexist within a single gene. Genes that code for proteins or RNA 

consist of nonrepetitive DNA, and noncoding segments (introns) often interrupt coding 

regions (exons) within the gene. Repetitive DNA is noncoding, and can account for up to 

50% of the genome in higher animals (Lewin 1997). Repetitive DNA is often arranged 

into tandemly repeated units of short DNA sequences, with the size of the repeated unit 

ranging from as little as 2 base pairs (bp) up to 30 bp or more in length. Both introns and 

repetitive DNA have been shown to be highly variable compared to coding regions of 

DNA, a difference that may be due to relaxed selective constraints on non-coding 

regions, and, in the case o f some repetitive DNA (discussed below), to unique 

characteristics of its mode of replication. Types of nuclear DNA markers that target
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nonrepetitive DNA include randomly amplified polymorphic DNA (RAPDs), anonymous 

single copy nuclear DNA (ascnDNA), and noncoding regions (introns, transcribed, and 

nontranscribed spacers) of functional genes. Nuclear markers that exploit regions of 

repetitive DNA with a variable number of tandem repeats are known as VNTRs.

RAPD markers are developed by using the PCR to randomly amplify anonymous 

segments of nDNA with an identical pair of primers 8-10 bp in length. Because the 

primers are relatively short, the likelihood of amplifying multiple products is great, with 

each product (presumably) representing a different locus. Genetic variation and 

divergence within and between the taxa of interest are assessed by the presence or 

absence of each product, which is dictated by changes in the genetic sequence at each 

locus. Because most of the nuclear genome in vertebrates is noncoding (W irgin and 

Waldman 1994), it is presumed that most of the amplified loci will be selectively neutral.

RAPDs have all the advantages of a PCR-based marker, with the added benefit that 

primers are commercially available and do not require prior knowledge of the target 

DNA sequence or gene organization. Multilocus amplifications can be separated 

electrophoretically on agarose gels and stained with ethidium bromide (Lasker et al.

1996), although higher resolution of bands has been achieved with discontinuous 

polyacrylamide gel electrophoresis (dPAGE) and silver staining (Dinesh et al. 1995), a 

somewhat costlier and more labor-intensive method.

Other advantages of RAPDs are the ease with which a large number o f loci and 

individuals can be screened. RAPDs have been used to investigate genetic linkage maps, 

cryptic species, hybridization, and population structure in marine algae (Van Oppen et al. 

1996), corals (Lasker et al. 1996), mollusks (Crossland et al. 1993), vascular plants
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(Stiller and Denton 1995), mammals (Kappe et al. 1995), and fishes (Dinesh et al. 1995). 

Shortcomings of this type of marker include the difficulty of demonstrating M endelian 

inheritance of the loci and the inability to distinguish between homozygotes and 

heterozygotes. In addition, the presence of paralogous PCR products (different DNA 

regions which have the same lengths and thus appear to be a single locus), limit the use of 

this marker to closely related taxa. These difficulties have so far conspired to limit the 

application of this marker within fisheries science (Wirgin and Waldman 1994).

Another method of exploiting the genetic variation found in nDNA involves the 

development of anonymous single-copy nuclear DNA (ascnDNA) markers. In this case 

nDNA from the target species is isolated, digested with restriction enzymes, and a 

selected size range of fragments is inserted into plasmid or viral vectors, creating a DNA 

library. Random fragments are cloned into a bacterial host, multiplied, and sequenced. 

PCR primers are then designed from the sequenced fragments and used to amplify 

putatively single-copy loci. As with all PCR-based markers, analysis of anonymous 

scnDNA requires small amounts of sample tissue and a simplified DNA isolation 

protocol. Development of the necessary primers can be time consuming (discussed 

above), but once the primers have been designed, screening of large numbers o f samples 

is accomplished through RFLP analysis. Again, because of the relatively large amounts 

of DNA amplified by the PCR method, digestions are run out on an agarose gel and 

visualized by ethidium bromide staining. As with mtDNA markers, finer resolution of 

alleles can be obtained by SSCP analysis or sequencing (see above). AscnDNA markers 

suffer from some of the same limitations seen in many PCR-based systems such as the 

presence of null alleles (i.e. mutation in the primer binding site that results in a lack of
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PCR product), paralogous PCR products, and non-Mendelian inheritance (see Hu and 

Foltz 1996, Foltz and Hu 1996, for discussion of these pitfalls in the American oyster, 

Crassostrea virginica). Although startup time in terms of creating a DNA library, 

sequencing, designing primers, and Finding polymorphic loci can be daunting, once 

polymorphic loci have been developed, screening of individuals is relatively rapid 

(Wirgin and Waldman 1994). Wirgin and Maceda (1991) found that RFLP analysis of 

ascnDNA revealed approximately an order of magnitude more genetic variation than 

RFLP analysis of mtDNA in the striped bass Morone saxatilis, although Leclerc et al. 

(1996) found uniformly low variation at 13 randomly amplified loci in the same species.

A comparison of markers used to elucidate population structure in the blue marlin 

Makaira nigricans found comparable levels of variation at allozyme and ascnDNA loci, 

in contrast to much higher levels for mtDNA (Buonaccorsi et al. 1999).

Another type of single-copy nuclear marker takes advantage of the unique sequence 

properties of some functionally described genes. These genes contain highly conserved, 

coding (exon) regions that flank highly variable, noncoding (intron) regions. The 

conservative flanking regions have been used to design primers that will amplify introns 

across a wide range of taxa (Slade et al. 1993). These exon-primed, intron-crossing 

(EPIC) amplifications reveal considerable polymorphism at the population and species 

levels. By using universal primers from the literature to amplify, sequence, and design 

species-specific primers, researchers can dispense with genomic library construction and 

move relatively quickly to the screening of samples (Slade et al. 1993).

ScnDNA markers developed from genes with known functions share many o f the 

same advantages and disadvantages of anonymous scnDNA. Assuming that primers
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bracketing a sequence of interest are already available from another organism, the initial 

screening and sequencing of clones to design primers is eliminated, although the DNA 

produced by PCR amplification with ‘universal’ primers should be cloned and sequenced 

to validate that the correct gene has been amplified. In the case of multiple products, the 

primers have to be redesigned to produce a single product. Also, care should be taken to 

anchor primers in conserved regions to minimize the problem of null alleles. As with 

anonymous scnDNA markers, allele discrimination is accomplished through RFLP 

analysis (in conjunction with agarose or SSCP gels) or sequencing.

Slade et al. (1993) investigated the usefulness of introns within the histone H2AF, 

myoglobin, major histocompatibility complex (MHC) DQA, and aldolase (ALD) genes in 

assessing population-level variation across a diverse set of taxa. This type of nuclear 

marker has been used in only a few population-level studies of marine organisms, 

including cetaceans (Palumbi and Baker 1994), bivalves (Corte-Real et al. 1994), Pacific 

salmon (Moran et al. 1997), and four species of the bass genus Morone (W irgin et al. 

1992).

The last decade has seen the emergence of a new type of nuclear marker, satellite 

DNA, in investigations of genetic variation and divergence. Also known as VNTRs, these 

loci consist of short, tandemly repeated DNA sequences randomly scattered throughout 

the genome of most higher vertebrates (Brooker et al. 1994). Satellite DNA can be split 

into two types (minisatellites and microsatellites) based on the length o f the repeat unit.

Minisatellite loci consist o f repeat units that are generally 15-30 bp in length (Wirgin 

and Waldman 1994), although they may reach lengths up to 200 bp, with alleles as large 

as 50 kilobases (Bruford and W ayne 1993). Variation in minisatellite loci can be
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extremely high, with heterozygosities greater than 90% and mutation rates exceeding 10'2 

per generation (Bruford and Wayne 1993). Minisatellite loci have been identified in fish 

through hybridization of labeled human minisatellite DNA with fish nDNA. When the 

fish nDNA is digested with restriction enzymes and then hybridized to the labeled human 

minisatellite probe, the resulting multilocus band pattern can be highly variable at the 

individual and population levels. Variation is usually due to alleles at a given locus 

differing in their number o f repeat units. Minisatellites were originally developed (as 

DNA fingerprinting) for forensic applications and paternity tests in humans (Jeffreys et 

al. 1985), although the methods were soon applied to problems in fisheries science (see 

O ’Reilly and Wright 1995 for review). Unfortunately, the inability to assign alleles to 

specific loci, and problems with reproducibility between gels (Bentzen et al. 1991) limit 

the applicability of multilocus fingerprinting to problems in fisheries science that do not 

require testing of Hardy-W einberg expectations (O’Connell and W right 1997). Also 

prohibitive is the amount of high-quality purified target DNA needed for hybridization 

(see techniques below), although these problems have been offset with the development 

o f single-locus minisatellite primers that can be used to amplify target DNA via PCR 

(Galvin et al. 1995a, b). This method allows for the amplification of alleles from a single 

locus using minute amounts of template DNA, and eliminates the ambiguity between loci 

and alleles inherent in Southern blot analysis.

The second class of VNTR markers is microsatellite loci, or simple sequence repeats 

(SSRs). In contrast to minisatellites, microsatellite loci consist of short di-, tri-, or 

tetranucleotide repeat units. W right (1993) estimated that minisatellite loci occur 

approximately once every 1500 kb in fishes, while microsatellites may occur as often as
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once every 10 kb. It has been reported that microsatellite loci show a high incidence of 

polymorphism relative to other classes of molecular markers such as mitochondrial genes 

(Patton et al. 1997, Brunner et al. 1998), although this has not proven to be universal (see 

O ’Connell and W right 1997, Table 2). The elevated levels of microsatellite 

polymorphism are believed to result from a high mutation rate and relaxed selective 

pressure at these noncoding loci. Mutation is currently believed to occur through 

polymerase slippage during DNA replication (Levinson and Gutman 1987), which 

increases or decreases the number of repeats, by one or more units. Direct studies of 

human families have shown that new microsatellite mutations usually differed from the 

parental allele by only one or two repeats (Weber and Wong 1993).

Identification and utilization of microsatellite loci can be a lengthy process, although 

methods for accelerating initial marker development have been published (Kijas et al. 

1994, W aldbeiser 1995). Very briefly, purified nDNA from the target species is digested 

with a restriction enzyme, and fragments of DNA ranging from 300-1500 base pairs (bp) 

in size are ligated into plasmid vectors. Ligated fragments are amplified by asymmetrical 

PCR, resulting in a predominantly single-stranded DNA product. Fragments containing 

microsatellite regions are extracted from the single-stranded PCR product by filtering the 

product past streptavidin-coated magnetic beads complexed with an oligonucleotide 

probe made up of a small VNTR such as (ATA)n (Kijas et al. 1994). The microsatellite- 

enriched asymmetrical PCR product is again amplified using standard PCR protocols to 

yield double-stranded product. The microsatellite-enriched, double-stranded PCR product 

is ligated into a plasmid vector, cloned, and sequenced. PCR primers are then designed 

from the more conserved regions flanking the microsatellite, and these primers are used
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to amplify the microsatellite locus in all samples. As in minisatellites, the number of 

repeat units at a given microsatellite locus can vary between individuals of a species, 

giving rise to length polymorphisms (different alleles) that can be used in studies of 

genome mapping, parentage, kinships, and stock structure (see O ’Connell and W right 

1997 for review). In the last five years, microsatellite markers have been used extensively 

in population structure analyses o f a wide variety of marine fishes, including sandbar 

sharks Carcharhinus plum beus (Heist and Gold 1999), Pacific herring Clupea pallasi 

(O'Connell et al. 1998), Atlantic cod Gadus morhua (Bentzen et al. 1996), and many 

salmonids (Scribner et al. 1996, Small et al. 1998, Ostberg and Thorgaard 1999).

Satellite DNA can be analyzed using a variety of techniques. M inisatellites in fishes 

were originally analyzed by digesting DNA with a restriction enzyme, separating the 

fragments by agarose gel electrophoresis, and visualizing the DNA by Southern blotting 

with a minisatellite probe made from human DNA. More recently, PCR primers have 

been developed for at least one minisatellite locus in fishes (Galvin et al. 1995a, b), so 

that amplified alleles from a single locus can be separated and visualized by simple 

agarose gel electrophoresis and staining with ethidium bromide.

Due to polymerase slippage during replication, small size differences between alleles 

of a given microsatellite locus (as little as 2 bp in a locus comprised of dinucleotide 

repeats) are possible. Because of this, PCR-amplified microsatellite DNA was 

traditionally labeled radioactively, separated on a sequencing gel, and then exposed on X- 

ray film overnight (Sambrook et al. 1989). Significant increases in the num ber of samples 

which can be typed in a day have been achieved by using automated fluorescent 

sequencers coupled with computer imaging systems (O’Reilly and W right 1995).
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Study Goals

Much of the work done by fisheries scientists is dependent on properly identifying the 

management unit of interest at both the inter- and intraspecific levels. Many m anagem ent 

regulations are species-specific, and require proper species identification for enforcem ent 

purposes. In addition, the accuracy of stock management models based on egg production 

or larvae surveys hinges on proper species identification of early life history stages. At 

the intraspecific level, population subdivisions must be accurately assessed to determine 

whether a species is best managed as a single unit or as multiple independent stocks. The 

aim of this dissertation was to investigate two interrelated problems in fisheries science, 

focused at different taxonomic levels (species and populations), using a comparative 

approach to find the best combination of molecular markers and techniques to address 

each question.

In Chapter 1 of this study, molecular markers were used to construct a genetic key for 

identification of 16 species o f marine fishes commonly harvested in the Chesapeake Bay 

and throughout the mid-Atlantic Bight. This key should aid state and federal officials in 

the enforcement of species-specific regulations in cases when identification o f fishes by 

external characteristics is no longer possible. The key should also prove useful for 

identifying early life history stages in some of the closely related species that lack 

distinguishing morphological characteristics.

Chapter 2 of this study focused on the population structure of one of these species, the 

weakfish Cynoscion regalis, along the U.S. East Coast. Traditional studies using
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morphology, life history, and growth characteristics have produced conflicting evidence 

of population structure. Investigations using allozyme and whole molecule mtDNA 

markers revealed no population structure, but were limited by low levels of genetic 

variation. The results suggested that a more sensitive marker might be needed to better 

test the null hypothesis that this species comprises a single, genetically homogeneous 

stock. In the present study a number of new molecular markers was used to search for 

genetic variation within the species, and to test for the presence of genetically distinct 

stocks. Through the course of this investigation it was necessary to use the genetic 

marker key developed in Chapter 1 to provide species identification of anomalous 

individuals within some samples. At least three species other than weakfish Cynoscion  

regalis were inadvertently included in the samples, including the sand seatrout C. 

cirenarius and the silver seatrout C. nothus. Finally, a combination of markers from both 

chapters was used to demonstrate hybridization among these three Cynoscion species.
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CHAPTER 1

Forensic Identification of Sixteen Species of Chesapeake Bay Sportfishes Using 

Restriction Fragment Length Polymorphism (RFLP) Analysis of Mitochondrial DNA
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Introduction

Fisheries scientists and managers are faced with the challenge of properly regulating 

finfish species under often intense harvesting pressure from both commercial and 

recreational fishers. In order to maintain healthy stocks and insure long-term sustainable 

yields, management strategies for a given fishery may include gear restrictions as well as 

seasonal, size, and bag limits. In most instances these regulations are species-specific, 

and identifications are based on morphological characters. These distinguishing traits are 

often lost if the catch is filleted or otherwise processd before inspection by enforcem ent 

personnel, requiring some other method of identification if regulations are to be 

effectively implemeted.

The goal of this study was to develop a molecular genetic key for a number of 

important sportfishes found in Virginia marine waters and common throughout much of 

the mid-Atlantic Bight. The intent was to develop a key using a molecular m arker that 

was easily surveyed from typical field samples using standard laboratory equipment. To 

accomplish this, it was decided that identifications would be based on restriction 

fragment length polymorphism (RFLP) analysis of a small section of mitochondrial DNA 

(mtDNA) amplified using the polymerase chain reaction (PCR) for the following reasons: 

(1) The maternal mode of inheritance of the mitochondrial genome simplified analysis by 

eliminating within-individual variation due to multiple alleles (heterozygosity); (2) the
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amount of tissue required for PCR amplification is minimal (a single egg or fin clip, 

frozen or preserved in a variety o f buffers, is sufficient), and the limitations on tissue 

condition are not as stringent as those for other methods of genetic analysis; (3) universal 

PCR primers that amplify specific regions of the mitochondrial genome from a wide 

taxonomic range of species are readily available in the literature; and (4) RFLP analysis 

was chosen over nucleotide sequencing because it is faster, less expensive, requires 

equipment common to most molecular laboratories, and has proven its utility in 

interspecific identification of marine fishes including billfishes (Chow 1994; Innes et al. 

1998), snappers (Chow et al. 1993), and various sciaenids (Daniel and Graves 1994).

The resulting key should prove useful not only as an enforcement tool, but also in the 

identification of eggs and larvae in ichthyoplankton studies, in cases of suspected 

hybridization between species, and in other studies that rely on the correct identification 

of sampled species.
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Materials and Methods

Sample Collection and Storage. Approximately 20 individuals from each of the species 

listed in Table 1 were collected in 1995 and in 1996. The majority of fishes used in this 

study were collected in the Chesapeake Bay by the Virginia Institute of Marine Science 

(VIMS) trawl survey. Species not commonly taken in the trawl survey were obtained 

through a variety of sources. Samples of Menticirrhus americanus and M enticirrhus 

saxatilis from 1995-96 were supplemented with fish from Trey Knott of the NMFS 

Southeast Fisheries Center in Charleston, South Carolina. Menticirrhus am ericanus from 

1996 were supplemented by fish from the VIMS seine survey. Samples of Tautoga onitis 

were supplied by VIMS graduate student Geoff White in 1995 and George’s Seafood of 

Norfolk, Virginia in 1996. Scomberomorus maculatus samples were obtained through 

VIMS graduate students Sarah Gaichas (1995) and Vincent Buonaccorsi (1996).

Samples of Rachycentron Canadian for both years were donated by local fishermen with 

the cooperation of W allace’s Marina in Fox Hill, Virginia. VIMS graduate student Jan 

McDowell supplied Pomatomus saltatrix samples from 1996. Because no local 

Sciaenops ocellata samples could be secured in 1995, we used archived Chesapeake Bay 

samples from 1986 provided by Dr. John Gold and Linda Richardson at Texas A&M 

University. In 1996 samples of Sciaenops ocellata were collected off the coast of 

Louisiana by VIMS graduate student Brett Falterman.
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Fish were maintained on ice until transported to the laboratory, where tissue samples 

(mostly muscle) were dissected and stored at -80° C. Some tissue samples were 

preserved in 95% ethanol or DMSO storage buffer (25 mM EDTA, 20% DMSO, 

saturated NaCl), while blood samples of Menticirrhus americanus and M enticirrhus 

saxatilis from South Carolina were preserved in SDS/urea (1% urea, 8 M SDS, 180 mM 

NaPCXj. 4 mM EDTA). All samples stored in preservation buffers were maintained at 

room temperature.

Whole Genomic DNA Isolation. A high molecular weight DNA extraction protocol 

modified from Sambrook et al. (1989) was used to isolate DNA from frozen samples and 

those stored in 95% ethanol or DMSO buffer. A cube of tissue, no more than two 

millimeters on a side, was diced with a razor blade and placed in a 1.5 ml microfuge tube 

on ice. To each tube 500 pi isolation buffer (50 mM EDTA, 50 mM Tris, 150 mM NaCl, 

pH 8.0), 60 |il 107o SDS, 10 }il RNAse (10 mg m l'1), and 10 pi proteinase K (25 mg m l'1) 

were added, and the tubes were left to incubate overnight in a water bath at 37° C.

Samples were then extracted once with equilibrated phenol, once with phenol: 

chloroforrmisoamyl alcohol (25:24:1), and once with chloroforrmisoamyl alcohol (24:1). 

Precipitated DNA was collected by the addition of ethanol at -80° C for 1 hour. DNA 

was pelleted by centrifugation, washed with 70% ethanol, dried in a Savant SC 100 Speed 

Vac, and resuspended in 50 pi sterile 0.1X TE (10 mM Tris, 1 mM EDTA, pH 8.0).

DNA was isolated from blood samples stored in SDS/urea using a modified version of 

the protocol in White and Densmore (1992). 400 pi samples were incubated at 65° C 

overnight, extracted twice with an equal volume of phenol:chloroform:isoamyl alcohol
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(25:24:1), and then extracted twice more with an equal volume of chloroform:isoamyl 

alcohol (24:1). DNA was precipitated, pelleted, dried, and resuspended as described 

above. All DNA samples were stored at -20° C.

DNA Amplification. Primers for five mitochondrial gene regions obtained from the 

literature were used to amplify DNA from the 16 species (Table 2). Of the five primer 

sets, only the mitochondrial NADH dehydrogenase 4 (ND4) and 12S/16S ribosomal 

RNA (rRNA) regions amplified consistently across all 16 species. Both of these 

mitochondrial regions proved useful in distinguishing among the 16 species tested here, 

although levels of within species polymorphism was markedly higher in the amplified 

ND4 enzyme digestions (Cordes et al. submitted). As a result, the 12S/16S rRNA region 

was chosen as the primary marker for the genetic key.

A 1495 bp region of the mitochondrial genome encompassing part of the 12S and 16s 

ribosomal RNA (rRNA) genes was amplified using the primers of Palumbi et al. (1991). 

DNA was amplified using the PCR Reagent System (Gibco BRL, Gaithersburg, MD, 

USA) in either a Perkin Elmer Cetus DNA Thermal Cycler or an iMJ Research PTC-200 

Peltier Thermal Cycler. The 25 pi amplification reactions consisted of 12.675 pi sterile 

distilled water, 2.5 pi 10X PCR buffer with 15 mM MgCli, 0.5 pi 10 mM dNTP mixture, 

0.25 pi primers (100 pm' p i '1), 0.125 pi Taq I polymerase (5 U- p i '1), and 0.25 pi sample 

DNA (approximately 50 ng). Samples were first denatured for 5 min at 95° C, followed 

by 35 cycles of PCR amplification performed under the following conditions: 1 min at 

95° C, 1 min at 45° C, and 3 min at 65° C. Reactions were given a final 10 min extension 

at 65° C and the resultant products were stored at 4° C. The length of the amplified
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product was confirmed by running 4 îl on a 1% agarose (Gibco BRL) gel in IX TBE 

buffer (45 mM Tris, 45 mM Boric acid, 1 mM EDTA, pH8.3) against 1KB DNA Mass 

Ladder (Gibco BRL).

Digestion o f Amplified DNA with Restriction Enzymes. 12S/16S rRNA PCR products 

from a subset of each species were digested with four enzymes (Alu  I, Rsa I, H in f I, and 

Msp I) to screen for variation. Based on the abilities of the different enzymes to 

distinguish between species while minimizing intraspecific variation, the enzyme Rsa I 

(Gibco BRL) was chosen for use in the genetic key. Restriction digests were carried out 

according to manufacturer’s instructions in 15 (il reactions containing 5-8 (il PCR 

product DNA, 1.5 fil of the appropriate reaction buffer, 0.3 ul of enzyme, and enough 

sterile distilled water to bring the volume to 15 jil. Digests were terminated with 3 jj.1 

stop solution (40% glycerol, 60% IX TBE, 0.5% weight/volume SDS, 0.02% w/v 

bromophenol blue), and the resulting fragments separated on 2.5% agarose gels using 1% 

NuSieve (FMC BioProducts, Rockland. ME) and 1.5% agarose (Gibco BRL) in IX TBE 

buffer. The 1KB DNA Mass Ladder was included in one or more lanes on each gel.

Gels were stained in IX TBE buffer containing 30 (al (5 mg/ml) ethidium bromide (EtBr), 

visualized on a Spectroline Model TR-302 Transilluminator, and photographed using a 

Polaroid CU-5 Land Camera.

Data Analysis. Restriction digestion patterns were analyzed using the software 

program RFLPScan Plus 3.0 (Scanalytics, Billerica, MA, USA) on an IBM -compatible 

computer equipped with a scanner. Gel photographs were scanned into the program, and 

sample fragment sizes were estimated using a calibration curve generated by plotting
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migration distances of the size-standard fragments against their known lengths.
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Results

DNA Amplification. Initial amplifications with primers for the five mitochondrial 

regions listed in Table 2 yielded a range of success rates across the 16 species tested. 

Cytochrome b amplifications were non-existent, weak, or exhibited multiple bands in 

seven of the 16 species. The same was true for eight of the 16 species tested with the 

cytochrome c oxidase I primers. ATPase amplifications were unsuccessful in three 

species and unacceptably weak in a fourth, although further refinement of the PCR 

protocol for this region probably could have improved the results. Both the ND4 and 

12S/16S rRNA regions amplified well in all 16 species.

Digestion Patterns. Restriction enzyme digestion patterns of the amplified 12S/16S 

rRNA region digested with Rsa I were determined from 20 individuals o f each species for 

each of two years (total of 40 individuals per species), with the exception of M enticirrhus 

saxatilis. This species was added to the study only after it was found to have been 

inadvertently included in some of the Menticirrhus americanus collections. Fragm ent 

sizes for each species are listed in Table 3, and patterns are illustrated in Fig. 1. The 

number of bands in a given pattern ranged from three in Pomatomus saltatrix  to five in 

Micropogonias undulatus (mean = 4.4). In most cases band sizes below 100 bp were
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inferred through comparison of patterns, since bands in this size range are poorly 

resolved by agarose gel electrophoresis.

The size of the amplified 12S/16S rRNA region for each species was estimated by 

summing the fragment sizes o f each Rsa I digestion pattern. Sizes ranged from 939 bp 

(Leiostomus xanthurus) to 1514 bp (Sciaenops ocellata). Since all sixteen species showed 

no discemable size difference in the undigested 12S/16S rRNA amplifications, it was 

assumed this discrepancy was due to the presence of smaller bands not resolved on the 

gel, inaccuracies in the size estimations of individual bands (see Discussion below), or 

the presence of unresolved doublets. This is illustrated in the case of Leiostomus 

xanthurus, whose estimated size based on two other enzymes (H inf I and Msp  I) is 

approximately 1550 bp (Figure 2), a figure more in keeping with the published sizes 

given for amplifications in other species with these primers (Palumbi et al. 1991).

No 12S/16S rRNA RFLP patterns were shared among any of the 16 species digested 

with Rsa I. Ten of the species were monomorphic over the 40 individuals screened; each 

of the remaining six species were dimorphic (Table 3, Fig. 1). The addition or deletion of 

a single restriction site could be inferred to explain differences between the two patterns 

in all six of the dimorphic species.

Comparison of intraspecific variation between the 12S/16S rRNA and ND4 regions 

led to the selection of 12S/16S as the preferred marker for the genetic key. Although no 

ND4 RFLP patterns were shared by any species digested with the endonuclease BstO  I. 

nine of the 16 species surveyed were polymorphic (Table 4, from Cordes et al. 

submitted). The number of patterns in a given species ranged from one in the seven 

monomorphic species to five in Sciaenops ocellata. A second enzyme was em ployed in
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the ND4 analysis because the relatively high degree of polymorphism within a num ber of 

species suggested that unknown variants might be found in the future. Because the two 

enzymes recognize different combinations of nucleotides in the genetic code, a 

mutational change effecting the digestion pattern produced by one o f the enzym es would 

not effect the digestion pattern of the second. Digestions with the endonuclease Ava  II 

produced eight polymorphic species, with the number of digestion patterns in a given 

species ranging from one in the 8 monomorphic species to five in Leiostomus xanthurus  

(Table 4). Four species were polymorphic for both ND4 enzymes. Although the ND4 

marker was able to unambiguously distinguish between the 16 species tested, the 

increased intraspecific variation and concomitant increase in complexity o f analysis made 

it a less efficient choice for identification than the 12S/16S rRNA marker.
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Discussion

The utility of a molecular marker for species identification is based on its ability to 

reveal consistent interspecific differences while minimizing intraspecific variation. The 

combination of complete interspecific separation and low intraspecific variation shown 

by the 12S/16S rRNA marker makes it ideal for species-level discrimination. No overlap 

o f RFLP digestion patterns was seen among 40 individuals of 16 species when screened 

with a single enzyme, and the low incidence of intraspecific variation suggests that 

unrecognized variants in future studies should not be a major concern.

Other factors affecting the utility of a molecular marker for species identification are 

its temporal and geographic stability, variables that are sometimes ignored when 

developing species identification systems. Although the low intraspecific variability 

characteristic of a good species identification marker should minimize both temporal and 

spatial variation within each species, this is not always tested. Restriction patterns for the 

12S/16S rRNA marker did not differ for 15 of the 16 species over two consecutive years 

(1995 and 1996); restriction patterns also proved stable in the last species Sciaenops 

ocellata between samples from 1986 and 1996. In addition, geographically distant 

samples of Menticirrhus americanus, Menticirrhus saxatilis, and Sciaenops ocellata 

shared the same restriction patterns within each species.

One concern involving the 12S/16S rRNA marker is the apparent discrepancy between

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



32

the size of the undigested PCR products and the size estimated by summing digestion 

pattern bands. There were no apparent differences between species in the size of the 

undigested PCR products when viewed on a \%  agarose gel. When the bands of 

individual digest patterns were summed, however, the totals varied between species by as 

much as 575 bp (Leiostomus xanthurus and Sciaenops ocellata. Table 3). Some of this 

variation may be explained by the inability of low percentage agarose gels to clearly 

show bands less than approxim ately 100 bp in length. In addition, unresolved doublets 

can lead to underestimation o f total fragment size (see Results above). Another source of 

variation concerns the accuracy o f the measurements produced by the RFLPScan 

program. Because larger bands tend to be compressed towards the top of an agarose gel, 

the accuracy of the standard in predicting the size of a given band decreases as band size 

increases, with the size o f larger bands tending to be over-estimated. Taking all of this 

into account, it is probably wise to emphasize relative rather than absolute band size 

when making comparisons between patterns.

The ability of different molecular systems to discriminate among species varies 

widely. Although allozyme electrophoresis has been routinely used to discriminate 

between fish species in the U.S. food industry (AOAC 1984), it may fail to distinguish 

between closely related species (Bartlett and Davidson, 1991). In contrast, other systems 

may find so much variation within species that they may be of more use in intraspecific 

population studies (W ithler et al. 1997; Innes et al. 1998). Other criteria for determining 

useful species identification systems include ease of use, cost effectiveness, and the 

quality and quantity of sample tissue required. Both allozyme electrophoresis and RFLP 

analysis of whole molecule mtDNA have been performed on samples as small as a single
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fish egg (Mork et al. 1983; Graves et al. 1990; Daniel and Graves 1994). Although 

traditional allozyme techniques are fast and relatively inexpensive, they usually require 

fresh or freshly frozen tissue. In contrast, PCR-based genetic markers can be used on 

small samples that are fresh or frozen, or preserved in alcohol, formalin, or a variety of 

storage buffers. In this study samples which were fresh, frozen, or stored in alcohol, 

SDS/urea, or DMSO storage buffer all worked equally well. The PCR/RFLP technique 

used here is less time-consuming than traditional whole-molecule methods such as 

southern blotting, and unlike DNA sequencing, the equipment is readily available in most 

molecular laboratories. In addition, PCR/RFLP analysis is still faster (despite automated 

sequencers and direct sequencing methods) and less expensive than sequencing when 

processing large numbers of samples. Rocha-Olivares (1998) developed a haplotype- 

specific PCR system that eliminates the need for RFLP analysis; species identification is 

based on the presence or absence o f amplified cytochrome b PCR products. Successful 

amplification is controlled by point mutations in the genetic code at the place of primer 

attachment. Under high stringency conditions any change in the code will cause a failure 

of the primers to anneal and no amplification will occur. Although this does eliminate the 

need for restriction enzymes, it requires known cytochrome b sequences for each species 

in question so appropriate primers can be designed. In addition, lack of amplification can 

also result from a number of other causes including variations in sample quality or 

laboratory conditions, resulting in misidentifications. In contrast, the 12S/16S rRNA 

primers used in the present study are based on well-conserved regions (Palumbi et al. 

1991) and require no previous knowledge of specific DNA sequences, which may make 

them more practical when screening a large number of species.
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In this study a genetic marker was developed as an efficient and cost-effective means 

of discrimination between 16 species of Chesapeake Bay sportfishes. The 12S/16S 

rRNA marker proved its utility by unambiguously distinguishing all 16 species by RFLP 

analysis with a minimal number o f enzymes. Although the original intent of this study 

was to provide an efficient means of sportfish species identification to a state agency 

(Virginia Marine Resources Commission), it is hoped that it may have more general 

application. The I2S/16S rRNA marker has already proved useful in distinguishing 

between eggs of closely related sciaenid species (Luczkovich et al. 1999) and 

reevaluating misidentified samples in a study of Cynoscion regalis population structure 

(Chapter 2). In addition, it has been used in conjunction with microsatellite markers to 

identify suspected hybrids off the coast of Georgia between Cynoscion regalis and sand 

seatrout, Cynoscion arenarius, a species thought to be limited in distribution to the G ulf 

o f Mexico (Chapter 2). Such supplementation with a nuclear DNA marker can be used to 

overcome one of the drawbacks of mtDNA-based markers, i.e. their inability to recognize 

hybrids. A number o f nuclear DNA markers have recently been developed in salm onid 

species identification studies (Pendas et al. 1995, Withler et al. 1997). As more become 

available, the joint use of mitochondrial and nuclear DNA-based markers in species 

identification studies, particularly where hybridization may play a role, should become 

routine.
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Table 1. Chesapeake Bay marine and anadromous sportfishes for which a genetic key 

based on mitochondrial DNA was developed.

A tla n tic  c r o a k e r  (M icropogonias undulatus) 

b la c k  d ru m  ( Pogonias cromis) 

b la c k  s e a  b a s s  (Centropristis striata)

b lu e f is h  (Pomatomus saltatrix) 

c o b ia  (Rachycentron canadum) 

n o r th e rn  k in g f is h  (Menticirrhus saxatilis) 

re d  d ru m  (Sciaenops ocellata) 

s i lv e r  p e rc h  (Bairdiella chrysoura)

s o u th e rn  k in g f is h  ( Menticirrhus americanus) 

S p a n is h  m a c k e re l  (Scomberomorus m aculatus) 

s p o t  (Leiostomus xanthurus) 

s p o t te d  s e a t ro u t  (Cynoscion nebulosus) 

s t r ip e d  b a s s  (Morone saxatilis) 

s u m m e r  f lo u n d e r  (Paralichthys dentatus) 

ta u to g  (Tautoga onitis) 

w e a k f is h  (Cynoscion regalis)
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Table 2. Primer pairs used to amplify 5 mitochondrial gene regions (ATPase 6, cytochrome 

b, cytochrome oxidase I, ND4, and 12S/16S rRNA).

P r im e r  S e q u e n c e s  ( 5 ’ - 3 ’ )
A p p ro x im a te  S iz e  

(b p ) S o u r c e

A T P a s e  6 J o s e p h

A T P a s e  L 8 3 3 1: T A A G C R N Y A G C C T T T T A A G 7 5 0 Q u a t t r o 3

A T P a s e  H 8 9 6 9 :  G G G G N C G R A T R A A N A G R C T

C v to c h ro m e  b J o s e p h

C T Y B -F : T G G G S N C A R A T G T C N T W Y T G 3 4 0 Q u a t t r o 3

C Y T O B -R : G C R A A N A G R A A R T A C C A Y T C  

C v to c h ro m e  C  O x id a s e  I F o l m e r 1 9 9 4

L C O 1 4 9 0 : G G T C A A C A A A T C A T A A A G A T A T T G G 7 1 0

H C 0 2 1 9 8 : T  A A A C T T C A G G G T G  A C C  A  A A A A  A T C  A  

1 2 S /1 6 S  rR N A P a lu m b i  e t  a l.

1 2 S A -L : A A A C T G G G A T T A G A T A C C C C A C T A T 1495 1991

1 6 S A -H : A T G T T T T T G A T A A A C A G G C G

N D 4 B ie la w s k i  a n d

N D 4  A R G -B L : C A A G A C C C T T G A T T T C G G C T C A 1 7 00 G o ld  1 9 9 6

N D 4  L E U : C C A G A G T T T C A G G C T C C T A A G A C C A

1 P e rs o n a l  c o m m u n ic a t io n .  F I S H T E C  G e n e t ic s  L a b o ra to ry ,  D e p a r tm e n t  o f  B io lo g ic a l  S c ie n c e s ,  U n iv e r s i ty  

o f  S o u th  C a ro l in a ,  C o lu m b ia ,  S C  2 9 2 0 8 ,  U S A
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Table 3. Restriction digest patterns of the 12S/16S mitochondrial region for 16 species of 

Chesapeake Bay sportfishes digested with the enzyme Rsa I. n = number o f individuals 

exhibiting the adjacent pattern.

S p e c ie s E n z y m e n P a tte rn

B a n d

S ize

(b p )

T o ta l

s iz e

( b p )

A t la n t ic  C r o a k e r Rsa I 18 a 46 1 3 4 4 2 8 8 2 0 5 169 1 4 6 7

2 2 b 4 6 1 2 8 8 2 5 2 2 0 5 169 9 2

B la c k  D ru m 4 0 a 4 5 1 2 8 8 2 5 7 2 4 6 197 1 4 3 9

B la c k  S e a  B a ss 3 9 a 4 6 4 4 3 7 2 9 5 2 0 6 1 4 0 2

1 b 4 6 4 4 3 7 2 7 3 2 0 6 22

B lu e  fish 4 0 a 7 4 0 3 9 2 2 4 3 1 3 7 5

C o b ia 39 a 5 2 3 2 6 6 241 185 4 0 1 2 5 5

1 b 5 6 3 2 6 6 241 185

N o r th e rn  K in g f is h 31 a 5 1 2 3 1 2 271 197 1 2 9 3

1 b 5 1 2 3 1 2 197 182 89

R e d  D ru m 4 0 a 4 5 5 341 2 9 2 2 5 2 174 1 5 1 4

S i lv e r  P e rc h 4 0 a 5 1 0 4 4 8 2 9 6 2 4 5 1 4 9 9

S o u th e rn  K in g f is h 4 0 a 5 1 7 2 9 9 192 162 1 1 7 0
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Table 3. Continued.

S p e c ie s E n z y m e  n P a t te rn

B a n d

S iz e

(b p )

T o ta l  

s i z e  (b p )

S p a n is h  M a c k e re l 3 9 a 4 6 5 3 0 5 2 4 5 2 2 0 1 2 6 6

I b 3 0 5 2 4 5 24 5 2 2 0 2 2 0

S p o t 4 0 a 3 0 3 2 6 2 201 173 9 3 9

S p o tte d  S e a tr o u t 3 9 a 4 5 7 4 4 8 30 5 2 0 2 1 4 1 2

1 b 4 5 7 3 0 5 2 6 9 2 0 2 168

S tr ip e d  B a s s 4 0 a 4 7 0 3 0 8 2 4 0 186 1 2 0 4

S u m m e r  f lo u n d e r 4 0 a 5 1 3 2 9 4 2 3 8 172 1 2 1 7

T a u to g 4 0 a 3 5 0 2 9 6 271 2 5 3 1 1 7 0

W e a k f is h 4 0 a 4 6 1 3 0 0 2 0 0 167 1 1 2 8
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Table 4. Restriction digestion patterns of the ND4 mitochondrial region for 16 species o f 

Chesapeake Bay sportfishes digested with the enzymes BstO  I and Ava II. n = num ber of 

individuals exhibiting the adjacent pattern. From Cordes et al. (submitted).

S p e c ie s E n z y m e n P a tte rn

B a n d

S iz e

(bp)

T o ta l

s iz e

(bp)

A tla n tic  C r o a k e r BstO  I 17 a 6 6 9 4 2 6 4 1 0 3 9 5 1 9 0 0

23 b 6 6 9 4 2 6 4 1 0 2 4 5 150

B la c k  D ru m 37 a 691 691 5 3 6 1 9 1 8

3 b 1382 5 3 6

B la c k  S e a  B a s s 4 0 a 7 0 7 3 9 2 3 8 6 2 2 6 184 1901

B lu e f is h 6 a 1506 2 3 0 148 1 8 8 4

9 b 1 0 56 2 7 3 2 3 0 177 148

25 c 1 0 56 4 5 0 2 3 0 148

C o b ia 3 6 a 8 0 5 6 6 0 4 9 2 1 9 5 7

4 b 1 4 65 4 9 2

N o r th e rn  K in g f is h 31 a 4 5 7 4 5 7 391 2 8 4 2 0 9 1 8 7 2

I b 74 1 4 5 7 391 2 0 9
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Table 4. Continued.

Red Drum 6 a 1065 796 1861

24 b 1065 590 206

8 c 1065 349 241 206

1 d 741 590 324 206

1 e 590 590 475 206

Silver Perch 40 a 480 480 435 223 217 1835

Southern Kingfish 40 a 531 400 400 293 214 1838

Spanish Mackerel 37 a 749 401 396 274 78 1898

2 b 1150 396 274 78

1 c 827 401 396 274

Spot 37 a 538 445 374 334 86 1777

1 b 905 538 334

1 c 538 445 420 374

1 d 538 374 334 246 199 86

Spotted Seatrout 40 a 1756 243 1999

Striped Bass 40 a 1331 343 213 1887

Summer Flounder 38 a 961 492 462 1915

2 b 743 492 462 218

Tautog 40 a 1534 490 2024

Weakfish 40 a 599 330 304 247 217 193 1890

Atlantic Croaker Ava II 40 a 1157 608 196 1961
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Table 4. Continued.

Black Drum 40 a 1592 379 1971

Black Sea Bass 40 a 855 277 223 107 154 124 1800

Bluefish 40 a 1736 308 2044

Cobia 40 a 980 961 1941

Northern Kingfish 29 a 842 746 322 1910

3 b 746 501 341 322

Red Drum 39 a 1064 860 1924

1 b 1064 450 410

Silver Perch 37 a 1239 306 248 210 2003

3 b 1123 306 248 210 116

Southern Kingfish 40 a 1457 581 2038

Spanish Mackerel 39 a 750 683 330 125 92 1980

1 b 750 683 422 125

Spot 16 a 748 493 407 394 2042

15 b 1142 900

3 c 1142 493 326 81

5 d 1142 493 407

1 e 900 748 407

Spotted Seatrout 37 a 1021 5S6 388 1995

2 b 819 586 388 202

1 c 927 586 388 94
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Table 4. Continued.

Striped Bass 39 a 1601 204 200 2005

1 b 1601 404

Summer Flounder 39 a 510 510 332 239 184 78 1853

1 b 510 510 332 317 184

Tautog 38 a 486 415 349 332 204 182 1968

1 b 536 486 415 349 182

1 c 531 486 415 332 204

Weakfish 40 a 550 523 495 367 1935
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Figure 1. Restriction endonuclease digestion patterns of the 12S/16S rRNA gene region in 

16 species of Chesapeake Bay sportfishes using Rsa I. All profiles observed for 

each species are shown. Fragments were separated on a 1.5% agarose/1 % NuSieve 

gel and stained with ethidium bromide. Lanes 1,15, and 25 = size standards, 2 and 

3 = Micropogon undulatus (patterns a and b, respectively), 4 and 5 = 

Rachycentron canadum  (patterns a and b, respectively), 6 = Pogonias cromis, 7 

and 8 = Centropristis striata (patterns a and b, respectively), 9 = Pom atom us 

saltatrix, 10 = M enticirrhus americanus, 11 = Paralichthys dentatus, 12 = 

Bairdiella chrysoura, 13 and 14 = Scomberomorus maculatus (patterns a and b, 

respectively), 16 and 17 = Cynoscion nebulosus (patterns a and b, respectively), 

18 = Leiostomus xanthurus, 19 = Morone saxatilis, 20 = Cynoscion regalis, 21= 

Tautoga onitis, 22 = Sciaenops ocellata, and 23 and 24 = M enticirrhus saxatilis 

(patterns a and b, respectively).
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Figure 2. Restriction endonuclease digestion patterns of the 12S/16S gene region in spot 

Leiostomus xanthurus using (a) H inf I: Lane 1= size standard, lane 2 = empty, 3 

and 4 = spot; and (b) Msp I: Lane 1 = size standard, lanes 2 and 3 = spot.
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S p o t Hinf l  781 3 3 6 2 8 8 144 1549

S p o t Msp  I 1018 5 1 0 1528

5 1 7 /5 0 6
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CHAPTER 2

Stock Structure Analysis of Weakfish Cynoscion regalis Using Nuclear M icrosatellite

and Intron Markers
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Introduction

The weakfish Cynoscion regalis is distributed along the U.S. East Coast from 

Massachusetts to eastern Florida, with greatest abundance occurring from New York to 

North Carolina (Bigelow and Schroeder 1953). The species undergoes substantial 

seasonal migrations. In the spring, fish move north and inshore into estuaries to spawn. In 

the fall, juveniles move south to overwinter off the coast of North Carolina, while older 

fish are thought to migrate south and offshore (Fig. 3; Wilk 1976).

Weakfish support substantial commercial and recreational fisheries along the eastern 

seaboard. Precipitous drops in total annual catches between 1980 and 1994 (from 80 

million lb to 8 million lb) led to a temporary ban on commercial fishing in federal waters 

in 1995 (Anonymous 1995), and there is growing concern that bycatch of juvenile 

weakfish by shrimp trawlers at the southern end of the species range is adversely 

impacting abundance (Vaughan et al. 1991).

There is no clear consensus on the stock structure of weakfish. Traditional studies 

based on tag and recapture data (Nesbit 1954), scale morphology (Perlmutter et al. 1956), 

morphological data (Scoles 1990), and various life history characters (Shepherd and 

Grimes 1983, 1984) suggest two or more independent stocks. Unfortunately, differences 

based on these kinds of data could be due to environmental effects (Shepherd and Grimes
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1983, Vaughan et al. 1991), and may not reflect genetically distinct (reproductively 

isolated) stocks.

Most modem management strategies are based on stocks defined as “a group o f 

organisms whose demographic/genetic trajectory is largely independent from other such 

groups” (Waples 1998). Recent molecular population studies employing allozyme 

analysis (Crawford et al. 1989) and restriction fragment length polymorphism (RFLP) 

analysis of whole molecule mtDNA (Graves et al. 1992) were unable to falsify the null 

hypothesis that weakfish comprise a single, genetically homogeneous stock.

Unfortunately, the low overall genetic variation revealed by both techniques reduced the 

power of the analyses. Much larger sample sizes or a more sensitive marker are required 

to detect differences between weakfish populations if they do indeed exist.

In recent years a number o f new molecular markers and analytical techniques have 

been used to study stock structure in a variety of marine fishes (see General Introduction). 

The purpose of this study was to utilize some of these molecular markers and techniques 

to investigate the stock structure of weakfish along the U.S. East C oast and to compare 

results generated by each marker. More specifically, the objectives of this study were to:

1) find or develop primers to amplify microsatellite and other nuclear regions using the 

polymerase chain reaction (PCR), 2) assess the genetic variation contained in these 

markers in young-of-the-year (YOY) weakfish from different nursery areas along the 

eastern seaboard, 3) repeat the above assessment for a second year o f samples from the 

same locations to test for the temporal stability of allele frequencies, and 4) compare the 

results of the different markers to infer population structuring in the weakfish.
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Microsatellite loci and gene intron regions were chosen for this study because both 

have shown elevated levels of genetic variation compared to other marker classes (i.e. 

allozymes and mtDNA) in marine fishes. Microsatellites have proved useful to reveal 

variation in species with low genetic diversity (based on allozyme and mtDNA analyses) 

such as northern pike Esox lucius (M iller and Kapuscinski 1996) and Arctic char 

Salvelinus alpinus (Brunner et al. 1998). Although higher genetic variation does not 

necessarily translate into higher resolution stock delineations (Seeb et al. 1998), 

microsatellite loci have been able to distinguish between populations in such species as 

broad whitefish Coregonus nasus (Patton et al. 1997) and Atlantic cod Gadus morhua  

(Bentzen et al. 1996, Ruzzanti et al. 1996) when more traditional markers have failed.

Although relatively few gene introns have been used in stock structure analyses 

(Palumbi and Baker 1994, Moran et al. 1997), they may quickly become a standard 

molecular marker in these investigations. One advantage of these exon-primed, intron- 

crossing (EPIC) markers is the conserved nature of their primer sequences. Designed in 

the coding (exon) regions of the gene, they often amplify across a wide variety o f taxa 

(Palumbi and Baker, 1994, Moran et al. 1997). A number of analytical techniques are 

available for assessing variation in single-copy nuclear (sen) DNA such as gene introns 

(see General Introduction). RFLP analysis was chosen for assessment of genetic variation 

in the scnDNA markers employed in this study because of its cost effectiveness, ease of 

use, and ability to quickly process a large number of samples (Leclerc et al. 1996).

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



49

Materials and Methods

Sample Collections. If genetically discrete weakfish populations do indeed exist, 

adults would have to return to and spawn in their natal waters in order to maintain genetic 

distinctiveness. To avoid the confounding effects of mixing between stocks by non

mating individuals, sample collection can either be restricted to spawning adults (Graves 

et al. 1992) or to recently spawned larvae and juveniles that are believed to remain in 

their natal estuaries during the first months of growth (Wilk 1976, Rowe and Epifanio 

1994). For this reason only YOY weakfish were used in the present study.

Fish were collected in the summers of 1996 and 1997 from five sites along the U.S. 

East Coast (Fig. 4) as part of a larger project combining microchemical analysis of 

otoliths and genetic markers to investigate the stock structure of weakfish. Sam ples were 

provided by Patrick Geer (Virginia Institute of Marine Science), Simon Thorrold (Old 

Dominion University), Louis Barbieri (University of Georgia), Susan Lowerre-Barbieri 

(University of Georgia), C. Grahn (New York Deptment of Environmental Conservation), 

and M. Greene (NOAA/NMFS Beaufort Lab). Trey Knott (NOAA/NMFS Southeast 

Fisheries Center) supplied samples of banded drum Larimus fasciatus, Gulf kingfish 

Menticirrhus littoralis, and star drum Stellifer lanceolatus from the south Atlantic Bight. 

Samples of silver seatrout Cynoscion nothus and sand seatrout C. arenarius from the Gulf 

of Mexico were provided by Bill Karel (Texas Parks and Wildlife Department). Fish were
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maintained on ice until transported to the laboratory, where samples were stored at -80°

C. In the laboratory, muscle tissue was excised from each weakfish sample and either 

stored at -80° C or placed in DMSO buffer (25 mM EDTA, 20% DMSO, saturated NaCl) 

prior to otolith removal.

Whole Genomic DNA Isolation. Whole genomic DNA was isolated using the protocol 

modified from Sambrook et al. (1989) outlined in Chapter 1. All isolated DNA samples 

were stored at -20° C.

Development o f  Novel Microsatellite Loci. A microsatellite-enriched weakfish 

genomic library was produced following the protocol of Kijas et al. (1994). W hole 

genomic DNA was isolated from a single weakfish specimen and digested using the 

restriction endonuclease Mbo I (Gibco BRL). Fragments of DNA ranging from 300-1500 

base pairs (bp) in size were collected from a 1.5% agarose gel electrophoresed in IX  TAE 

buffer (40 mM tris, 40 mM sodium acetate, 1 mM EDTA, pH 8.2) following Karl and 

Avise (1993). DNA fragments were ligated into BlueScript SIC  plasmid vectors using 

T4 DNA ligase (Stratagene, La Jolla, CA, USA) following manufacturer’s protocols. 

Ligated weakfish DNA fragments were amplified by asymmetrical PCR using the T7 

Promoter (Gibco BRL) and M13 Reverse Primer (New England Biolabs, Beverly, MA, 

USA) that recognize the plasmid vector sequences flanking the weakfish DNA inserts. By 

using an excess of one primer, asymmetrical PCR results in a predominantly single

stranded DNA product. Two amplifications, each with an excess of one primer, were 

preformed following manufacturer’s instructions (PCR Reagent System, Gibco BRL).

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



51

Each 50 pi reaction consisted of 37.75 pi sterile dFUO, 5.0 pi 10X PCR buffer with 15 

mM MgCln, 1.0 pi 10 mM dNTP mixture, 5.0 pi excess primer (100 pm p i '1), 0.5 jj.1 

second primer (100 pm p i '1), 0.25 pi Taq I polymerase (5 U p i '1), and 0.5 pi DNA 

(approximately 50 ng). Samples were first denatured for 4 min at 95° C, followed by 32 

cycles of PCR amplification performed under the following conditions: 1 min at 94° C, 1 

min at 37° C, and 1 min at 72° C. Reactions were given a final 4 min extension at 72° C 

and amplified products were stored at 4° C.

DNA fragments containing variable number of tandem repeats (VNTRs or 

microsatellites) were extracted from the single-stranded PCR product by filtering the 

product past streptavidin-coated magnetic beads (Promega) complexed with an (ATA)6 

oligonucleotide probe. A total of 1.0 pg biotinylated probe was attached to 50 pi 

magnetic beads in 100 pi 5X SSC (IX  SSC= 150 mM NaCl, 15 mM sodium citrate) for 

15 min at room temperature. Unbound probe was removed with three washes o f 100 pi 

5X SSC and the beads were resuspended in 35 pi I OX SSC. Next 10 pi o f the 

asymmetrical PCR product was diluted with 55 pi sterile dH^O, denatured for 10 min at 

98° C, and hybridized to the probe/bead complex for 20 min at 30° C (total volume 100 

pi). The beads were repeatedly sedimented in a magnetic field and washed, first with four 

5 min washes in 100 pi low-stringency solution (2X SSC, 0.5 ng p i '1 each universal 

primer), and then with four 5 min washes in 100 pi high-stringency solution (IX  SSC, 0.5 

ng p l‘l each universal primer). To remove unbound DNA, beads were resuspended in 20 

pi of 0.15 M NaOH and incubated for 20 min at room temperature. The beads were then 

sedimented and the supernatant neutralized with 2.2 pi 10X TE (100 mM Tris, 10 mM
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using Microcon ®-30 spin columns (Amicon, Beverly, MA, USA) following 

manufacturer’s instructions.

The microsatellite-enriched asymmetrical PCR product was again amplified using 

standard PCR to yield double-stranded product. Each 50 pi reaction consisted o f 37.75 pi 

sterile dH20 , 5.0 pi 10X PCR buffer with 15 mM MgCl2, 1.0 jil 10 mM dNTP mixture, 

0.5 |il T7 promoter and M13 reverse primer (100 pm' p i '1), 0.25 pi Taq I polym erase (5 U' 

p i '1), and 5.0 pi microsatellite-enriched asymmetrical PCR product. Samples were 

amplified using the same PCR program outlined above for the asymmetrical PCR step.

In order to obtain clones for DNA sequencing, the microsatellite-enriched, double

stranded PCR product was ligated into BlueScript KS+ plasmid vectors and transformed 

into competent E. coli cells using INVctF’ One Shot™ Competent Cells (Invitrogen, 

Carlsbad, CA, USA) following manufacturer’s instructions. Transformed cells were 

incubated overnight at 37° C on LB/ ampicillin/ X-GAL plates using standard protocols 

(Sambrook et al. 1989). W hite transformed colonies were restreaked on a fresh plate, 

incubated overnight as before, and screened for weakfish DNA inserts. Transform ed 

colonies were scraped from the plate, resuspended in 35 pi STE (100 mM NaCl, 20 mM 

Tris-HCL, 10 mM EDTA, pH 7.5) and extracted once with an equal volume of 

phenol/chloroform (24:1). The resulting supernatant was treated with 1 pi RNAase 

(1 mg/ml) and electrophoresed against a standard of non-transformed plasmid DNA on a 

1.5% agarose gel in IX TBE buffer. Plasmid DNA from clones potentially containing 

inserts was then extracted using the PERFECT®prep kit (5 prime—> 3 Prime, Inc.,
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Boulder, CO, USA), digested with the enzyme BssH  II (Stratagene) and electrophoresed 

on a 1.5% agarose gel in IX TBE to confirm the presence of an insert.

Clones with weakfish DNA inserts were sequenced using the T7 promoter and M13 

reverse primer according to the Sanger et al. (1977) dideoxy chain-termination method 

using the Sequenase® Sequencing Kit (United States Biochemical, Cleveland, OH, USA) 

and visualized by autoradiography using S32 labeling (Sambrook et al. 1989).

PCR primers were designed for those clones containing microsatellite sequences using 

the program PC/Gene (Intelligenetics Inc., Geneva, Switzerland).

Adaptation o f Existing Microsatellite Loci Primers. Two sets of microsatellite primers 

developed for red drum Sciaenops ocellata (Turner et al. 1998), and two sets o f primers 

developed for red drum and spotted seatrout Cynoscion nebulosus (Robert Chapman, 

Marine Resources Research Institute, Department of Natural Resources, Charleston,

South Carolina, unpublished data) were used to amplify weakfish DNA in 25 pi reactions 

containing 21.125 pi sterile dH20 , 2.5 pi 10X PCR buffer with 15 mM M gCl2, 0.5 jil 10 

mM dNTP mixture, 0.25 jil forward and reverse primers (100 pm' j i f 1), 0.125 jil o f Tag I 

polymerase (5 U' j i l '1), and 0.25 pi weakfish DNA. Samples were denatured for 4 min at 

95° C, followed by 25 cycles of PCR amplification performed under the following 

conditions: 1 min at 94° C, 1 min at 50° C, and 3 min at 65° C. Reactions were given a 

final 10 min extension at 65° C. Single products in the correct size range for each prim er 

set were then cloned using the Original TA Cloning® Kit (Invitrogen) following 

manufacturer’s instructions. Clones were screened for inserts as described previously, and 

insens were sequenced according to manufacturer’s protocols on a Model 4000
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Automated DNA Infrared Sequencer from Li-Cor (Lincoln, NE, USA). Sequences were 

run on 4% Long Ranger™ (FMC Bioproducts) polyacrylamide gels using The 

Thermoseqenase Kit (Amersham, Cleveland, OH, USA) to confirm the presence o f 

microsatellites.

Development o f Actin and Ribosomal Protein 2 Introns. Universal actin gene prim ers 

developed by G. W arr and M. Wilson (cited in Reece et al. 1997) were used to am plify 

actin gene regions in weakfish DNA. The PCR reaction mix and program were the same 

as for the red drum microsatellite loci given in the Adaptation o f Existing Micro satellite 

Loci Primers section above, with the exception that the annealing temperature was 

lowered to 45° C. Three fragments of different sizes (800, 1200, and 1300 bp) were 

amplified, presumably representing three different loci in the actin gene family.

Fragments were cloned and sequenced using the procedure outlined in the previous 

section. Sequences of the 800 bp fragment were aligned using GeneJockey II software 

from Biosoft (Cambridge, UK) with actin gene sequences from bluefin tuna (Kimberly 

Reece, Virginia Institute of Marine Science, School of Marine Science, College o f 

W illiam and Mary, unpublished data) to confirm their identity and then used to design 

weakfish primers for an actin intron (CRESLA1) using PC/Gene (Intelligenetics Inc., 

Geneva, Switzerland).

PCR amplification using S7 ribosomal protein intron 2 primers originally developed 

from swordfish Xiphius gladius (RP2; Chow and Hazama 1998) yielded a single product 

in weakfish. PCR was performed with the same reaction mix as used for the red drum  loci 

given in the Adaptation o f Existing Microsatellite Loci Primers section above. Samples
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were denatured for 4 min at 95° C, followed by 34 cycles of PCR amplification performed 

under the following conditions: 1 min at 94° C, 1 min at 60° C, and 3 min at 72° C. 

Reactions were given a final 10 min extension at 72° C. The product was cloned and 

sequenced as described in the Adaptation o f  Existing Microsatellite Loci Primers section, 

and the sequence was matched to published sequences in Genbank to confirm its identity 

as a ribosomal protein gene intron. The original primers were then used without 

modification in subsequent population analysis.

Weakfish Stock Structure Analysis. Microsatellite, actin, and RP2 loci were amplified 

from YOY weakfish DNA collected at the five locations in Fig. 4. Primer sequences are 

given in Table 4. Amplifications of all microsatellite loci were carried out in 10 pi 

reactions containing 8.30 pi sterile dHiO, 1.0 pi 10X PCR buffer with 15 mM MgCL,

0.20 jil 10 mM dNTP mixture, 0.05 (ill forward primer (100 pm' p i '1) labeled with a 

fluorescent dye (Licor), 0.20 |il reverse primer (100 pm p i '1), 0.05 pi Taq I polymerase (5 

U 'p l'1), and 0.20 pi weakfish DNA. Samples were first denatured for 4 min at 95° C, 

followed by 32 cycles of PCR amplification performed under the following conditions: 1 

min at 94° C, 1 min at 50° C, and 1 min at 72° C. Reactions were given a final 7 min 

extension at 72° C. PCR product alleles were separated electrophoretically on a 6% Long 

Ranger™ polyacrylamide gel using the Li-Cor automated sequencer. A fluorescent- 

labeled sequence of nuclear DNA derived from a major histocompatibility complex 

(MHC) locus in blue marlin Makaira nigricans was used as a size standard (Vincent 

Buonaccorsi, National Marine Fisheries Service, La Jolla, CA; unpublished data).

CRESIA1 and RP2 PCR amplifications used in the stock structure analysis were
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performed under the same conditions as those outlined for the actin and ribosomal protein 

2 introns. Amplified CRESLA1 products were digested with a panel of restriction 

endonucleases (Alu  I, Bgl I, Hae II, H in fl, Msp I, Rsa I, Ava I, Ava  II. Ban II, Bel I, Dra  I, 

Dele I, EcoR I, EcoR  II, Hha II, Hpa II, Mbo I, Mse I) and separated on 2.5% agarose gels 

using 1% NuSieve and 1.5% agarose in IX TBE buffer. Gels were stained and 

photographed as described in Chapter I Materials and Methods and a subset of each 

population was screened for enzymes that revealed polymorphism. Amplified RP2 

products were also digested with a series of restriction endonucleases (Alu I, Bgl I, Hae II, 

H in fl , Msp I, Rsa I) and screened for polymorphisms in the same manner. Only the 

enzyme Dra I revealed polymorphism in the CRESIA1 marker. Both Alu I and H in fl  

revealed polymorphism in the RP2 marker, but the large number of small bands (< 150 

bp) produced by digestion with Alu I made these gels difficult to score. Due to these 

results, the enzymes Dra I (CRESIA1) and H in fl (RP2) were chosen for use in the RFLP 

analyses.

Data Analysis. Microsatellite gel images were stored on an IBM-compatible com puter 

directly from the Li-Cor automated sequencer and analyzed using the software program 

RFLPScan Plus 3.0 (Scanalytics, Billerica, MA, USA), where allele sizes (in bp) were 

estimated as outlined in Chapter 1 Materials and Methods. A single loading on a gel 

typically comprised 5 1 lanes, three of which contained size ladders and the other 48 

containing the PCR-amplified microsatellite of individual fish (Fig 5). Each sample lane 

represented the genotype of the individual as either one (homozygote) or two 

(heterozygote) bands.
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Restriction enzyme digestion patterns for CRESIA1 and RP2 were also analyzed using 

RFLPScan on an IBM-compatible computer equipped with a scanner as outlined in 

Chapter 1 Materials and Methods.

Statistical analyses for all loci were performed in the Arlequin 1.1 software program of 

Schneider et al. (1997). Nonparametric, exact-significance tests (exact 0 significance 

tests and exact probability tests) were used to evaluate sample genotype distributions for 

departures from Hardy-Weinberg expectations. Unbiased estimators of exact significance 

probabilities for the Hardy-Weinberg equilibrium tests were calculated using the Markov 

chain algorithm of Guo and Thompson (1992) with a Markov chain length of 100.000 

steps. Patterns of genetic diversity and divergence within and between populations were 

evaluated using the analysis of molecular variance (AMOVA) of Excoffier et al. (1992), 

which generates ^-statistics analogous to the 0 values of Wier and Cockerham (1984). 

Significance of / ’'-statistics was evaluated using exact F  permutation procedures 

(Excoffier et al. 1992). Type I error was controlled for all multiple testing using the 

sequential Bonferroni method of Rice (1989).
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Results

Sample Collections. Length-frequency distributions of YOY weakfish sampled in the 

summers of 1996 and 1997 are presented in Figures 6 and 7, respectively. Only fish 

< 140mm in length were used in the study, since individuals in this size ranged are 

presumed to have hatched in the current spawning season (Wilk 1976). Because fish in 

this size class are not believed to move out of their natal spawning areas (W ilk 1976, 

Rowe and Epifanio 1994), exchange of YOY fish between sampled locations was 

assumed to be negligible.

Novel Microsatellite Loci. Approximately 200 transformed colonies were screened for 

the presence of a weakfish DNA insert. Sixteen inserts in a size range of 200-500 bp were 

chosen randomly and sequenced to determine if they contained a microsatellite locus 

(multiple tandem repeats). Five of the 16 did not contain microsatellite motifs. Three of 

the remaining 11 inserts had a mix of tetra- and dinucleotide repeats and were rejected for 

use, since alleles of the same length could not be assumed to have identical sequences 

(i.e. a loss of one tetranucleotide repeat would result in the same allele length as the loss 

of two dinucleotide units). Three of the remaining eight inserts had regions flanking the 

microsatellite repeats that were suitable for designing primers. Primers that successfully 

amplified the microsatellite regions in two of these inserts (CRE66 and CRE80, Table 5)
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were designed and used to screen a subset of 24 fish from each 1996 weakfish population 

for length polymorphisms. Both loci revealed a single allele across all populations and 

were not considered further.

Red Drum and Spotted Seatrout Microsatellite Loci. Microsatellite motifs for the three 

red drum (SOC050, SOC044, and SOC014) and a single spotted seatrout (CNE 612) loci 

are given in Table 5. All four loci were polymorphic in all weakfish samples from both 

years. Allele frequency distributions for each locus are shown in Figure 8. Sam ple allele 

frequencies for each locus are given in Table 6, while sample sizes, number o f alleles, 

expected heterozygosities (gene diversities), and significance test results for Hardy- 

Weinberg equilibrium are given in Table 7.

The smallest number of alleles (2) was seen in the SOC014 locus. Allele frequencies 

for the most common form (114 bp) in all sample locations ranged from 90.7-97.7%

(mean = 95.1%) in 1996 and 92.3-98.2% (mean = 96.1%) in 1997 (Table 6). Expected 

heterozygosities for this locus ranged from 0.038 in the Delaware Bay 1996 sam ple to 

0.170 in the Georgia 1997 sample (Table 7). None of the SOC014 sample genotype 

distributions differed significantly from Hardy-Weinberg expectations after correcting for 

multiple tests (Rice 1989).

The SOC044 locus exhibited three alleles, although the rarest form (200 bp) appeared 

only once in a single population, North Carolina 1996 (Table 6). Frequencies o f the 202 

bp allele, the most common form in all sample locations, ranged from 69.6-85.5%  (mean 

= 75.6%) in 1996 and 70.5-8S.5% (mean = 78.1%) in 1997. Expected heterozygosities 

ranged from 0.203 in the Delaware Bay 1997 sample to 0.434 in the North C arolina 1996
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sample (Table 7). Again, none of the sample genotype distributions differed significantly 

from Hardy-Weinberg expectations after correcting for multiple tests.

The seven alleles exhibited by the SOC050 locus were arranged in a roughly unimodal 

distribution (Fig. 8) that was discontinuous due to the absence of any samples with the 

199 bp allele. Overall the 193 bp allele was the most common, with frequencies ranging 

from 33.7-44.9% (mean = 41.1%) in 1996 and 27.3-38.5% (mean = 35.9%) in 1997 

(Table 6). The 191 bp allele was also common, with frequency means of 27.1% in 1996 

and 32.1% in 1997, and displaced the 193 bp allele as the dominant form in the Georgia 

1997 sample (34.8% vs. 27.3%). Expected heterozygosities for this locus ranged from a 

low of 0.694 in the Chesapeake Bay 1996 sample to a high of 0.758 in the Georgia 1997 

sample. None of the SOC050 sample genotype distributions differed significantly from 

Hardy-Weinberg expectations after correcting for multiple tests.

Frequencies of the 34 alleles exhibited by the CNE612 locus were arranged in a 

continuous, roughly unimodal distribution (Fig. 8). The most common allele overall (123 

bp) ranged in frequency from 11.6-20.6% (mean = 16.3%) in 1996 to 10.6-16.6% (mean 

= 13.5%) in 1997 (Table 6). Two other common alleles exhibited higher frequencies in 

three of the sample locations (Table 6). The 133 bp allele was more frequent in the North 

Carolina 1997 sample (13% vs. 12%), while the 119 bp allele was more common in the 

Delaware Bay 1996 sample (19% vs. 14%), the North Carolina 1997 sample (13.9% vs. 

12%), and the Chesapeake Bay 1997 sample (14.4% vs. 10.6%). Expected 

heterozygosities for this locus ranged from 0.912 in the Delaware Bay 1996 sample to 

0.943 in the North Carolina 1996 sample. None of the sample genotype distributions for
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this iocus differed significantly from Hardy-Weinberg expectations after correcting for 

multiple tests (Rice 1989).

To test for population structuring microsatellite loci were analyzed individually and as 

a combined data set. AMOVA test results (Table 8) did not reveal significant differences 

between sample locations or years for any of the four loci or for the combined data (but 

see results for the Georgia 1997 SOC050 locus in the Inclusion o f Non-target Species in 

Weakfish Samples section below). At least 98% of the variation was contained in the 

within population component of the AMOVA analyses for all loci.

Single-locus population pairwise F s t  values were relatively low, with values o f F s t <  

0.000 for many of the comparisons across all four loci (Table 9). Mean F s t for SOC014 

was 0.005, with the highest value ( F s t  = 0.040) occurring in the comparison between 

New York 1996 and Delaware Bay 1997. Mean F st for SOC044 was 0.018, with a high 

of F s t = 0.0S9 between North Carolina 1996 and Delaware Bay 1997. The highest F s t  

value for SOC050 (mean = 0.002) was F St  = 0.018 between Georgia 1997 and both North 

Carolina 1996 and New York 1996.). Mean FSTforCN E612 was 0.002, with the highest 

value ( F s t  = 0.007) occurring between Chesapeake Bay 1996 and Delaware Bay 1996. 

Exact F  permutation tests were not significant for any of the four loci or the com bined 

data set after correction for multiple testing (Table 9).

Actin and Ribosomal Protein 2 Introns. Digestion of actin intron amplifications with 

the restriction endonuclease Rsa  I revealed a single polymorphic restriction site that 

produced two alleles (Fig. 9, Table 10). The most common allele (A) contained the 

restriction site and consisted of two bands 419 bp and 135 bp in length. The second allele
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(B) did not have the restriction site and was left undigested, resulting in a single band 554 

bp in length. Sample allele frequencies are given in Table 11, while sample sizes, number 

of alleles, expected heterozygosities, and significance test results for Hardy-W einberg 

equilibrium are given in Table 12. Expected heterozygosities ranged from 0.000 for the 

monomorphic Georgia 1997 sample to 0.096 for the Chesapeake Bay 1996 sample. None 

of the sample genotype distributions differed significantly from Hardy-Weinberg 

expectations after correcting for multiple tests (Rice 1989).

AMOVA test results for the actin locus detected no significant differences between 

sample locations or years (Table 13). Effectively all of the variation was contained in the 

within population component of the AMOVA analysis. Single-locus population pairwise 

F st values were consistently low (mean = 0.005), ranging from F st< 0.000 for most of 

the comparisons to an F st of 0.035 between Georgia 1996 and Georgia 1997 and between 

Chesapeake Bay 1996 and Georgia 1997 (Table 14). A single exact F  permutation test, 

between Delaware 1996 and Georgia 1997, was significant after correction for multiple 

testing (P <0.001; Table 14).

Digestion of the 731 bp RP2 amplifications with the restriction endonuclease H in fl  

resulted in two alleles (Fig. 9, Table 10). The most common allele (A) displayed three 

restriction sites, yielding four bands 224 bp, 224 bp, 158 bp, and 125 bp in length. The 

second allele (B) lacked one o f these restriction sites, resulting in three bands 382 bp, 224 

bp, fragment and 125 bp in length. Sample allele frequencies are given in Table 11, while 

sample sizes, number of alleles, expected heterozygosities, and significance test results 

for Hardy-Weinberg equilibrium are given in Table 12. Expected heterozygosities ranged 

from 0.194 in the Delaware Bay 1997 sample to 0.370 in the Georgia 1997 sample. None
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of the sample genotype distributions differed significantly from Hardy-Weinberg 

expectations after correcting for multiple tests (Rice 1989).

AMOVA test results for the RP2 locus revealed no significant differences between 

sample locations or years (Table 13). As with the CRESIA1 locus, effectively all of the 

variation was contained in the within population component of the AMOVA analysis. 

Single-locus population pairwise F s t  values were low (mean = 0.006), ranging from F s t <  

0.000 for most of the comparisons to a high of 0.050 between Georgia 1997 and 

Delaware Bay 1997 (Table 14). Exact F  permutation tests were not significant after 

correction for multiple testing (Table 14).

Inclusion o f  Non-target Species in Weakfish Sample's. During initial analysis o f the

1996 and 1997 SOC050 microsatellite data a significant departure of genotypic 

frequencies from expectations of Hardy-Weinberg equilibrium was seen in the Georgia

1997 sample (P= 0.005), even after correction for multiple tests (Rice 1989). Initial 

SOC050 AMOVA results indicated a significant within-population variance (Table 15), 

and exact F  permutation tests of population pairwise F s t values resulted in a num ber of 

near-significant P values after correction for multiple tests, all involving the Georgia 

1997 sample (Table 16). Close inspection of the Georgia 1997 SOC050 allele 

frequencies revealed a bimodal distribution of weakfish allele sizes that was not evident 

in the other samples in either year (Fig. 10). It was suspected that fish with one or both of 

their alleles in the smaller mode (< 187 bp) might represent misidentified species. Fi 

hybrids, or carriers of introgressed alleles.
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To further investigate this discrepancy, these samples were analyzed using the 

12S/16S rRNA mitochondrial marker developed in Chapter I. RFLP analysis of the 

12S/16S region of these fish yielded three distinct digestion patterns (Fig. 11, Table 17), 

including the weakfish pattern and two others (unknowns A and B) that did not match any 

of the 16 species tested previously. To determine the identity of the unknown patterns, 

voucher samples of five additional sciaenid species occurring in the western Atlantic 

and/or the Gulf of Mexico (sand seatrout Cynoscion arenarius, silver seatrout Cynoscion 

nothus, banded drum Larimus fasciatus, G ulf kingfish Menticirrhus littoralis, and star 

drum Stellifer lanceolatus) were obtained and analyzed using the 12S/16S mitochondrial 

marker. Unknown digestion pattern A matched the pattern exhibited by silver seatrout 

Cynoscion nothus, while unknown digestion pattern B matched the pattern exhibited by 

sand seatrout Cynoscion arenarius (Fig. 11, Table 17).

The voucher silver seatrout Cynoscion nothus and sand seatrout Cynoscion arenarius 

samples were amplified with the SOC050 primers to characterize the range of alleles in 

these species, at least as far as the small sample sizes allowed (Table 18). Cynoscion 

nothus samples exhibited alleles ranging in size from 175-181 bp, while Cynoscion  

arenarius samples exhibited alleles ranging in size from 175-193 bp.

By combining the nuclear and mitochondrial data, anomalous individuals from the 

Georgia 1997 sample were divided into three general classes: individuals with weakfish 

Cynoscion regalis mtDNA and a single aberrant nuclear allele (n= 3), individuals with 

sand seatrout Cynoscion arenarius mtDNA and a single aberrant nuclear allele (n= 2), 

and individuals with either sand seatrout Cynoscion arenarius or silver seatrout 

Cynoscion nothus mtDNA and two aberrant nuclear alleles (n= 3 and 7, respectively;
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Table 19). Presumably pure silver seatrout Cynoscion nothus (n = 7) from the G eorgia 

1997 sample exhibited silver seatrout mtDNA and two alleles ranging in size from 175- 

179 bp. Presumably pure sand seatrout Cynoscion arenarius (n = 3) from the Georgia 

1997 sample exhibited sand seatrout mtDNA and two alleles ranging in size from 171- 

177 bp. Reevaluation of the remaining 1996-97 SOC050 data revealed occasional 

occurrences of anomalous alleles in all but the New York samples (Table 19), although 

frequencies were apparently low enough (Table 20) not to disturb Hardy-Weinberg 

equilibrium tests or produce significant AMOVA or exact F  permutation test values. A 

single silver perch Bairdiella chrysoura was found in the Chesapeake Bay 1997 sample 

(silver perch mtDNA and two alleles 171 bp in size). All other questionable individuals 

were putative hybrids with weakfish Cynoscion regalis mtDNA and a single aberrant 

allelecharacteristic of silver and sand seatrout. Analysis of subsamples of 20 weakfish 

taken from each of the four locations outside of Georgia with the 12S/16S marker 

revealed only weakfish mtDNA.

As a result of these findings all individuals in the 1996-97 data exhibiting a least one 

anomalous allele (< 183 bp) were eliminated from the analyses reported above.
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Discussion

Previous Studies. W eakfish population studies based on allozymes (Crawford et al. 

1989) and restriction fragment-Iength polymorphism (RFLP) analysis of whole molecule 

mtDNA (Graves et al. 1992) were unable to reject the null hypothesis of a single genetic 

stock. The low overall genetic variation revealed by both techniques reduced the power of 

the analyses, and suggested that larger sample sizes or a more sensitive marker would be 

needed to detect small genetic differences between populations if they did indeed exist. 

The purpose of the present study was to develop a set of nuclear DNA markers that would 

exhibit enough variation (as indicated by higher levels of heterozygosities) to adequately 

investigate stock structure in the weakfish.

Microsatellite Data. The number of alleles per locus and levels of expected 

heterozygosity (Hexp) seen in the four microsatellite loci presented here followed the 

general expectations that greater variation is found in microsatellite loci comprised of 

smaller repeat units (Schlotterer and Tautz 1992) and larger numbers of repeat units per 

loci (Weber 1990). Both loci based on tetranucleotide repeats developed directly from 

weakfish DNA proved monomorphic, and the dinucleotide loci with the smallest number 

of repeats (SOC014) also had the smallest number of alleles (2) and the lowest range of 

Hexp. Expected heterozygosities for the four microsatellite loci ranged from a low of 3.8-
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17% for S 0 C 0 1 4  to a high of 91.2-94.37o for CNE612 (Table 7). These values are 

consistent with heterozygosity ranges reported in other multi-locus microsatellite studies 

on species including Atlantic cod (Bentzen et al. 1996), northern pike (M iller and 

Kapuscinski 1996), pink and sockeye salmon (Seeb et al. 1998), and arctic charr (Brunner 

at al. 1998). In contrast, Crawford et al. (1989) found very low levels of genetic variation 

in weakfish allozymes, and Graves et al. (1992) reported nucleon diversities (a measure 

used in mtDNA analyses analogous to heterozygosity) ranging from 7.9-23%. This range 

is similar to the range of Hexp found in SOC014, but is substantially lower than ranges for 

the other three loci, suggesting that the more variable microsatellites loci employed in this 

study may be more sensitive markers and better able to detect population differences.

Nuclear Intron Data. Levels of genetic variation within the two intron regions 

developed here fell within the limits reported for allozyme (Crawford et al. 1989) and 

whole molecule mtDNA (Graves et al. 1992) markers used in weakfish stock structure 

analyses, and were low compared to the heterozygosities found in the microsatellite loci 

discussed above. Each locus exhibited two alleles, and expected heterozygosities ranged 

from 0-9.6% for CRESLA1 and 19.4-37.0% for RP2. Another study utilizing nuclear 

intron RFLP analysis showed similar levels of heterozygosity in Pacific salmon (M oran et 

al. 1997), as did RFLP studies of anonymous single copy nuclear (ascn) DNA loci in 

Atlantic cod Gadus tnorhua (Pogson et al. 1995) and blue marlin Makaira nigricans 

(Buonaccorsi et al. 1999). In contrast, higher heterozygosities (44-58%) were reported in 

an ascnDNA/RFLP analysis of striped bass Morone saxatilis by Leclerc et al. (1996). 

Better detection of variation using RFLP analysis of nuclear intron markers may be

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



68

achieved by utilizing larger introns, which are more likely to contain polymorphic 

restriction endonuclease recognition sites. Alternatively, the increased time and cost 

involved in finer-resolution analyses such as sequencing may be justified by the increase 

in detected polymorphisms when dealing with species traditionally exhibiting low levels 

of variation.

Management Implications. The results o f the stock structure analyses based on the 

four microsatellite loci and two nuclear intron regions reported above were unable to 

reject the null hypothesis that weakfish Cynoscion regalis comprise a single, genetically 

homogeneous stock in the U.S. western Atlantic. Temporal stability of allele frequencies 

is often assumed in stock structure analyses, and researchers will sometimes com pare or 

combine samples from different years without first testing the validity of this practice. No 

significant differences in allele frequencies occurred among any of the sampled locations 

or between sample years, indicating both geographic and temporal stability o f allele 

frequencies in weakfish. at least over the two years of this study.

Characterization of weakfish as a single, homogeneous stock has important 

implications for fisheries managers. Considering the drastic fluctuations in weakfish 

catches exhibited over the past century (see Lowerre-Barbieri 1994 for review), a 

management plan aimed at wisely harvesting the standing stock is clearly needed. If 

weakfish do indeed comprise a single stock, then development of such a plan would have 

to include fisherman, managers, and scientists from New York to Florida. A single stock 

model would also lend credence to the idea that bycatch of YOY weakfish in the southern 

shrimp fishery is impacting adult weakfish catches in more northern waters (M ercer 1983,
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Vaughan et al. 1991). Unfortunately, the amount of genetic exchange between locations 

necessary to eliminate evidence of stock subdivision based on genetic markers may be as 

little as a few individuals per generation (Allendorf and Phelps 1981), a rate of mixing 

negligible in terms of fisheries management. In order to better assess the exchange of 

weakfish between locations, traditional methods such as tagging studies could be 

employed, although the scale of the project needed to insure sufficient returns would be 

prohibitive in terms of time and expense.

A better means of estimating the contribution of various regions to the weakfish stock 

may be the use of otolith microchemistry. Thorrold et al. (1998), using the same samples 

as the present study, were able to correctly assign YOY weakfish to their natal waters 

using unique elemental concentrations in their otoliths. This same technique could be 

used to identify the natal origin of adult weakfish by sampling their otolith cores. By 

comparing the place of birth with the place of capture, an estimate of the amount of 

mixing between locations could be possible (Thorrold et al. 1998). This assumes that 

either the chemical signature of specific locations is stable between years, or that baseline 

data derived from YOY weakfish is available for each adult cohort studied. It is hoped 

that the combined use of genetic and non-genetic techniques such as this will becom e 

more commonplace, and that such studies will help present clearer pictures o f the genetic 

structure and mixing dynamics underlying fishery stocks.

Polyspecific Samples and Putative Hybrids. The bimodal distribution of SOC050 

alleles and a significant departure of allele distributions from Hardy-Weinberg 

expectations in the Georgia 1997 collection suggested that non-target species might have
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been included in this sample. MtDNA digestion patterns of these questionable individuals 

were generated using the 12S/16S marker developed in Chapter 1 and compared to the 16 

species characterized in that study, as well as five other species of sciaenids com m on to 

the U.S. Atlantic and G ulf o f M exico. Application of this marker in conjunction with the 

results of the SOC050 microsatellite locus clearly showed that two different species other 

than weakfish were inadvertently included in the Georgia 1997 sample. In addition, these 

markers revealed a misidentified individual in the Chesapeake Bay 1997 collection, and 

suggested that introgression of non-weakfish DNA had occurred in all of the sample 

locations except New York.

A single individual from the Chesapeake Bay 1997 sample exhibited two SOC050 

alleles (171 bp) smaller than the typical size range found in weakfish. Analysis o f this 

individual with the 12S/16S marker identified it as a silver perch Bairdiella chrysoura. 

Inclusion of this specimen in the weakfish collection was probably due to a simple 

oversight while sorting YOY fish of closely related species.

More intriguing is the situation found in the Georgia 1997 sample. Analysis o f 

individuals with the smaller SOC050 alleles using the 12S/16S marker revealed two 

distinct mtDNA digestion patterns other than weakfish. Comparison with known sam ples 

clearly identified seven of these individuals as silver seatrout Cynoscion nothus. The 

inclusion of these individuals in the collection may not be surprising, since both weakfish 

and silver seatrout are common in the southern Atlantic Bight (Bigelow and Schroeder 

1953, Hildebrand 1955) and are difficult to distinguish during their early life history 

stages. Although the later species is known to inhabit deeper waters as adults (G insburg
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1931), both species are inshore summer spawners (Devries and Chittenden 1982,

Shepherd and Grimes 1984).

Data also suggest the presence of a third species of Cynoscion in the Georgia 1997 

collection. Three fish with SOC050 alleles clearly smaller than the range seen in weakfish 

had a mtDNA haplotype that matched the haplotype found in sand seatrout Cynoscion 

arenarius (Figure 11). There is some question as to the taxonomic relationship between 

weakfish and sand seatrout. Some suggest they may be separate populations of a single 

species (Moshin 1973, Weinstein and Yerger 1976, Cowan 1985, Ditty 1989), while 

others treat them as separate species (Schlossman and Chittenden 1981) with distributions 

confined to the western Atlantic (weakfish) and the Gulf of M exico (sand seatrout). 

Paschall (1986) was unable to distinguish between the two species using allozyme 

electrophoresis. In contrast, results presented here are consistent with the existence o f two 

distinct species and that sand seatrout co-occur off the east coast of the United States at 

least as far north as Doboy Sound, Georgia.

Current distributions of weakfish and sand seatrout may be explained in the context of 

biogeographic patterns exhibited by other species common to the Atlantic and G ulf 

regions. Avise (1992) reviewed the phylogeographic patterns of 19 freshwater, coastal, 

and marine species distributed along the U.S. East Coast and the Gulf of M exico that 

exhibited geographically concordant forks in their intra- and interspecific mtDNA 

phylogenies. Patterns in a number of the marine species seemed to repesent a continuum 

of scenarios based on historical separations and subsequent contact around the Florida 

peninsula. A number o f species including hardhead catfish artiusfelis  (Avise et al. 1987) 

and American eel Anguilla rostrata (Avise et al. 1996) showed no mitochondrial
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divergence between Atlantic and Gulf populations. In the case of toadfishes Opsanus tau 

and O. beta (Avise et al. 1987), sister species were separated by the Florida peninsula into 

Gulf and Atlantic distributions. Menhaden, traditionally divided into Atlantic (Brevoortia  

tyrannus) and Gulf (B. patronus) species, appeared to represent once isolated populations 

of a single species that reestablished contact through movement of the Gulf population 

into the Atlantic (Bowen and Avise 1990). In the present situation, apparently distinct 

Gulf (sand seatrout) and Atlantic (weakfish) species have reestablished contact in a 

hybrid zone (see below) through movement of the Gulf species into the Atlantic, 

providing yet another variation in the phylogeographic continuum mentioned above.

To further complicate matters, five individuals from the Georgia 1997 collection 

showed evidence of being hybrid offspring. Three of the individuals had weakfish 

mtDNA and one SOC050 allele that fell into the size range found in both silver seatrout 

(175-181 bp) and sand seatrout (175-193 bp, Table 19). Similarly, two individuals 

exhibited the sand seatrout mtDNA haplotype, one SOC050 allele that matched the range 

for sand seatrout or silver seatrout, and a larger allele consistent with the size range for 

weakfish. These data suggest that hybridization occurs between weakfish and sand 

seatrout, and that the genetic exchange is not gender biased. Because of the overlap in 

microsatellite allele sizes seen between silver seatrout and sand seatrout (Table 18), 

hybridization between weakfish and silver seatrout could not be excluded. The lack of 

suspected hybrids with silver seatrout mtDNA, however, suggests that hybridization did 

not involve this species. Interestingly, low frequencies of aberrant SOC050 alleles (range 

0.008-0.034, mean = 0.013; Table 20) were found in putative hybrids from all the more 

northern samples except New York, although non-weakfish mtDNA was not. This may
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indicate that introgressive hybridization is responsible for the migration of the smaller 

alleles into more northern weakfish populations, although the northward movement of 

hybrid fish out of the contact zone cannot be ruled out.

The possibility exists that the putative hybrids are in fact weakfish with rare mtDNA 

haplotypes common to the three Cynoscion species studied here. This seems unlikely, 

however, since only one weakfish pattern was noted in the species identification study 

reported in Chapter I. Furthermore, analysis of subsamples of 20 weakfish taken from 

each of the four locations outside of Georgia with the 12S/16S marker revealed no new 

mtDNA patterns. Also, the mtDNA haplotypes seen in sand seatrout and silver seatrout 

seem to be polymorphic in size and can not be clearly related to the weakfish haplotype 

by the addition or deletion of presumed restriction sites (Table 16, Fig. 10), conditions 

more in keeping with mtDNA of different species.

An argument could also be made that the smaller SOC050 alleles found in the more 

northern weakfish samples could be forms rare in weakfish but shared with other 

members of the genus (ancestral alleles). This could not be corroborated by the other 

three microsatellite loci used in this study because they were unable to distinguish 

between the three species based on allele sizes. A shift in sand seatrout and silver seatrout 

allele frequencies (relative to the weakfish data) towards the smaller alleles in CNE612 

and the more rare allele in SOC044 was evident, however, at least based on the small 

number of sand seatrout and silver seatrout samples (Table 18). Because neither sand 

seatrout or silver seatrout were successfully amplified via PCR using the CRESIA1 and 

RP2 primers, corroborative evidence of introgressive hybridization will require further 

research.
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Tabic 5. Primer sequences for amplifying microsalcllile, actin gene intron, and ribosomal protein 2 gene intron loci in weakfish 

Cynoscion regalis.

L o c u s P r im e r  S e q u e n c e  ( 5 ’- 3 ‘) L e n g th

(b p )

R e p c .it  S e q u e n c e  in W e a k f is h A n n e a lin g  

T e m p .  ( C )

O r ig in a l  R e fe re n c e

M ic r o s a t c l l i t c s

C R E 6 6 C R E 6 6 F :  T G G T C T G T T A G T C C A C A G T G T T G  

C R E 6 6 R : C G I T G C C T T C A T T A C A G G A G A C

251 |G A T A |2, 4 0 T h is  s tu d y

C R E 8 0 C R E 8 0 E : A C A G C A T G T G A G G G T T A A G G A T  

C R E 8 0 R : T A C A G C T C r C T G A C T G A T G T A G  I T G A

136 (G A T A 1 , 4 0 T h is  s tu d y

S O C 0 5 0 S O C 0 5 0 F :  C C C G T G A T T T T A G G C T C A T C A G A T A  

S O C G 5 0 R : C C T I T A G A G T G C A G T A A G T G A T T T

193 |G T l. ,n ., [G T ] l0n 7lG T ] , 5 0 T u r n e r  e t a l. 1 9 98

S O C 0 4 4 S O C 0 4 4 F :  G A G G G T G A C G C T A A C A G T T G A  

S O C Q 4 4 R : C A C A G C T C C A C T C T G A T A T G

2 0 2 I C A lJn.MlG T ] ,n s[G T )2n 2[ G T lJ 5 0 T u r n e r  c t a l .  1 9 98

S O C O I4 S O C O I4 F : G T A T G T A 1 T A A G G G C A C A A G G T G  

S O C 0 1 4 R : G A 'I T G C T G C T G G A C A G A C T G

114 [ C A ] 5 5 0 R o b e r t  C h a p m a n ’ , 

u n p u b l is h e d  d a ta
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Tabic 5. Continued.

C N E 6 I 2  C N E 6 1 2 I ?: C A A G T G C A C G G T A T G T G A T G  l 7 i  mlC. I | , ,  5 0

C N E 6 I 2 R :  A G G A A C C T G A C C A A T C C A A A

N uclear gene introns

C R E S I A I  C R E S 1 A 1 F : A T G C C T C T G G T C G T A C C A C T G G  5 4 5  5 2

C R E S I A 1R : C A G G T C C T T A C G G A T G T C G  ........

R P 2  R P 2 F : A G C G C C A A A A T A G T G A A G C C  7 3 1  6 0

R P 2 R : G C C I T C A G G T C A G A G T T C A T  ........

1 M a r in e  R e s o u r c e s  R e s e a rc h  In s t itu te .  D e p a r tm e n t  o f  N a tu ra l  R e s o u rc e s ,  C h a r le s to n ,  S o u th  C a r o l in a ,  u n p u b l is h e d  d a ta

C h a p m a n  c l  a l. 1*799

T h is  s tu d y

C h o w  a n d  M a/.am a 19 9 8
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Table 6. Allele frequencies o f four microsatcllilc loci used to screen five populations of weakfish Cynoscion re gal is for two

consecutive years. GA= Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.

A lle le s  (b p ) G  A 1996 N C I  9 9 6 C B  1 9 9 6 D B 1996 N Y  1996 G  A 1997 N C  1997 C B  1997 D B  1997 N Y  19 97

187 0 .1 6 7 0 .1 3 3 0 .2 1 0 0 .1 5 2

S O C 0 5 0

0 .2 0 6 0 .2 1 2 0 .2 2 1 0 .1 8 2 0 .1 2 8 0 .1 9 4

189 0 .0 7 8 0 .0 9 2 0 .0 5 5 0 .1 6 3 0 .0 8 7 0 .0 9 1 0 .0 6 7 0 .0 8 1 0 .0 7 7 0 .0 4 6

191 0 .2 5 5 0 .2 7 5 0 .2 8 1 0 .3 3 7 0 .2 0 6 0 .3 4 8 0 .2 9 8 0 .2 9 1 0 .3 4 6 0 .3 2 4

193 0 .4 0 2 0 .4 4 9 0 .4 3 0 0 .3 3 7 0 .4 3 5 0 .2 7 3 0 .3 8 5 0 .3 7 3 0 .3 8 5 0 .3 8 0

195 0 .0 3 0 0 .0 3 1 0 .0 1 6 0 .0 0 0 0 .0  t l 0 .0 0 0 0 .0 1 9 0 .0 5 5 0 .0 1 3 0 .0 1 9

197 0 .0 4 0 0 .0 2 0 0 .0 0 8 O .O U 0 .0 4 4 0 .0 6 1 0 .0 0 0 0 .0 1 8 0 .0 5 1 0 .0 3 7

201 0 .0 1 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 1 1 0 .0 1 5 0 .0 1 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

2 0 0 0 .0 0 0 0 .0 1 1 0 .0 0 0 0 .0 0 0

S O C 0 4 4

0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

2 0 2 0 .7 6 6 0 .6 9 6 0 .7 5 4 0 .8 5 5 0 .7 0 9 0 .7 2 2 0 .8 1 7 0 .7 7 7 0 .8 8 5 0 .7 0 5

20 4 0 .2 3 4 0 .2 9 3 0 .2 4 6 0 .1 4 5 0 .2 9 1 0 .2 7 8 0 .1 8 3 0 .2 2 3 0 .1 1 5 0 .2 9 5
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Table 7. Sample sizes (N), number o f alleles (n), expected heterozygosities (Hc*p), and P values for tests of Hardy-Weinberg 

equilibrium for four microsatellile loci. GA= Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New

York.

GA 19% NC 1996 CB 1996 DB 1996 NY 1996 GA 1997 NC 1997 CB 1997 DB 1997 NY 1997

N 51 49 64 46

SOC050

46 33 52 55 42 54

11 7 6 6 5 7 6 6 6 8 7

H,.p 0.741 0.702 0.694 0.731 0.724 0.758 0.712 0.740 0.737 0.722

P* 0.067 0.542 0.507 0.130 0.959 0.566 0.577 0.721 0.349 0.174

N 47 46 63 55

SOC044

55 36 60 56 52 56

n 2 3 2 2 2 2 2 2 2 2

H „p 0.362 0.434 0.374 0.251 0.416 0.407 0.302 0.350 0.203 0.419

p» 1.000 0.019 0.496 0.303 0.512 0.010 0.669 0.116 0.0.512 0.198
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Tabic 7. Continued.

G A  1996 N C  1 9 96 C B  1996 D B  1 9 96 N Y  1 9 96 G A  1997 N C  1997 C B  1997 D B  1997 N Y  1997

N 4 3 4 8 6 4 5 2

S O C 0 1 4

5 4 39 5 6 55 5 2 5 7

n 2 2 2 2 2 2 2 2 2 2

Hexp 0 .0 9 0 0 .0 8 1 0 .0 4 6 0 .0 7 5 0 .1 7 0 0 .1 4 4 0 .0 5 3 0 .0 8 8 0 .0 3 8 0 .0 6 8

I” 1 .0 0 0 1.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 .0 2 7 1 .0 0 0 1 .0 0 0 1 .0 0 0

N 39 4 3 6 2 5 0

C N E 6 I 2

4 6 33 5 4 5 2 5 0 5 6

n 17 23 2 0 2 0 2 2 19 25 23 2 2 2 3

H „ r 0 .9 1 6 0 .9 4 3 0 .9 2 8 0 .9 1 2 0 .9 1 6 0 .9 3 5 0 .9 3 4 0 .9 3 4 0 .9 2 3 0 .9 3 6

pA 0 .0 5 0 0 .1 1 3 0 .8 9 8 0 .5 3 0 0 .2 3 8 0 .7 5 2 0 .5 2 2 0 .4 1 9 0 .0 6 0 0 .2 9 0

* N o n e  o f  th e  s a m p le s  d if f e re d  s ig n if ic a n t ly  f ro m  H a r d y - W e in b e rg  e x p e c ta t io n s  a f te r  s e q u e n tia l  B o n fc r ro n i  c o r re c tio n s  ( tx = 0 .0 0 5 ) .
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Table 8. Analysis of molecular variance (AMOVA) results for four microsatcllite loci used to test population heterogeneity in

wcakfish Cynoscion regalis.

S o u rc e  o f  V a r ia t io n D e g r e e s  o f S u m  o f V a r ia n c e P e rc e n ta g e  o f S ig n i f ic a n c e  T ests

F re e d o m S q u a re s C o m p o n e n ts V a r ia t io n ( / T

S O C 0 5 0

A m o n g  Y e a rs 1 0 .5 3 0 0 .0 0 0 4 6 0 .1 3 0 .1 1 0

A m o n g  P o p u la t io n s /  W ith in  Y e a rs 8 2 .4 6 0 -0 .0 0 0 5 6 -0 .1 5 0 .6 3 3

W ith in  P o p u la t io n s 9 7 4 3 5 2 .8 3 9 0 .3 6 2 2 6 1 0 0 .0 3 0 .5 5 1

T o ta l 9 8 3 3 5 5 .8 2 9 0 .3 6 2 1 5

S O C 0 4 4

- -

A m o n g  Y e a rs 1 0 .1 8 1 -0 .0 0 0 5 6 -0 .3 2 0 .5 5 3

A m o n g  P o p u la t io n s /  W ith in  Y e a r s 8 3 .7 5 5 0 .0 0 2 8 1 1 .5 9 0 .0 2 2

W ith in  P o p u la t io n s 1042 1 8 2 .0 8 2 0 .1 7 6 7 4 9 8 .7 3 0 .0 1 6

T o ta l 1051 1 8 6 .0 1 8 0 .1 7 6 9 9 - -
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Table 8. Continued.

S o u rc e  o f  V a r ia t io n D e g re e s  o f  

F re e d o m

S u m  o f  

S q u a re s

V a r ia n c e

C o m p o n e n ts

P e rc e n ta g e  o f  

V a r ia t io n

S ig n i f ic a n c e  T e s ts  

</’) '

A m o n g  Y e a rs 1 0 .0 2 2

S O C 0 1 4

-0 .0 0 0 0 0 7 -0 .1 8 0 .5 8 1

A m o n g  P o p u la t io n s /  W ith in  Y e a r s 8 0 .4 8 1 0 .0 0 0 1 8 0 .4 4 0 .1 6 7

W ith in  P o p u la t io n s 10 3 0 4 2 .5 4 9 0 .0 4 1 3 1 9 9 .7 4 0 .2 1 6

T o ta l 1 0 39 4 3 .0 5 3 0 .0 4 1 4 2 - -

A m o n g  Y e a rs 1 0 .3 2

C N E 6 I 2

-0 .0 0 0 4 1 -0 .0 9 0 .8 5 8

A m o n g  P o p u la t io n s /  W ith in  Y e a r s 8 3 .981 0 .0 0 0 3 5 0 .0 8 0 .2 8 5

W ith in  P o p u la tio n s 9 6 0 4 4 5 .2 8 1 0 .4 6 3 8 3 100.01 0 .3 7 0

T o ta l 9 6 9 4 4 9 .5 6 4 0 .4 6 3 7 8 - -
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Table 8. Continued.

S o u rc e  o f  V a r ia t io n D e g re e s  o f S u m  o f  S q u a re s V a r ia n c e P e rc e n ta g e  o f S ig n i f ic a n c e

F re e d o m C o m p o n e n ts V a r ia t io n T e s ts  (/>)*

A ll L o c i

A m o n g  Y e a rs 1 0 .8 8 5 -0 .0 0 1 - 0 .0 8 0 0 .6 1 1

A m o n g  P o p u la t io n s /  W ith in  Y e a rs 8 9 .8 5 1 0 .0 0 2 0 .2 0 0 0 .1 4 4

W ith in  P o p u la t io n s 851 8 9 7 .5 4 9 1 .0 5 6 9 9 .8 8 0 0 .1 6 6

T o ta l 8 5 9 9 0 8 .0 8 5 1 .057 - -

* N o n e  o f  th e  s a m p le  v a r ia n c e s  d i f f e re d  s ig n if ic a n t ly  f ro m  e x p e c ta t io n s  a f te r  s e q u e n tia l  B o n fc r ro n i  c o r r e c t io n s  ( a =  0 .0 1 ) .
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Table 9. Population pairwise F$ r values (above diagonal) and exact F  permutation test P a values (below diagonal) for four 

microsatcllitc loci. GA= Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.

GA 1996 NC 1996 CB 1996 DB 1996 NY 1996 GA 1997 NC 1997 CB 1997 DB 1997 NY 1997

GA 19% -0.004 -0.006 0.004

SOC050

-0.007 0.004 -0.007 -0.007 -0.002 -0.006

NC 1996 0.851 - -0.003 0.005 -0.002 0.018 -0.001 -0.003 -0.004 -0.001

CB 1996 0.970 0.723 - 0.010 -0.004 0.012 -0.007 -0.004 0.001 -0.005

DB 1996 0.535 0.455 0.426 - 0.014 -0.002 0.002 -0.001 -0.001 0.003

NY 1996 0.911 0.782 0.891 0.257 - 0.018 -0.001 -0.001 0.006 0.002

GA 1997 0.505 0.327 0.406 0.762 0.257 - 0.001 0.001 0.002 -0.001

NC 1997 0.911 0.713 0.950 0.614 0.634 0.663 - -0.007 -0.001 -0.007

CB 1997 0.970 0.823 0.832 0.742 0.673 0.653 0.940 - -0.004 -0.007

DB 1997 0.733 0.842 0.594 0.723 0.386 0.673 0.624 0.861 - -0.005

NY 1997 0.960 0.683 0.960 0.574 0.584 0.733 0.990 0.930 0.901 -
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Table 9. Continued.

G A  1996 N C  1996 C B  1996 D B  1 9 96 N Y  1 9 96 G A  1997 N C  1997 C B  1997 D B  1997 N Y  1997

G A  1996 -0 .0 0 4 -0 .0 0 6 -0 .0 0 2

A ll

-0 .0 0 3

L o c i

-0 .0 0 3 -0 .0 0 3 -0 .0 0 6 0 .0 0 0 - 0 .0 0 3

N C  1996 0 .8 3 2 - -0 .0 0 5 0 .0 1 0 -0 .0 0 3 -0 .0 0 4 0 .0 0 3 -0 .0 0 1 0 .0 1 2 -0 .0 0 8

C B  1996 0 .9 6 0 0 .9 8 0 - 0 .0 0 8 0 .0 0 1 0 .0 0 1 -0 .0 0 1 -0 .0 0 1 0 .0 0 6 -0 .0 0 4

D B  1996 0 .8 0 2 0 .1 6 8 0 .2 0 8 - 0 .0 1 7 0 .0 1 0 -0 .0 0 1 -0 .0 0 3 -0 .0 0 4 0 .0 0 9

N Y  1 9 96 0 .8 3 2 0 .7 7 2 0 .5 5 4 0 .0 3 0 - 0 .0 0 0 0 .0 1 2 0 .0 0 6 0 .0 2 1 0 .0 0 0

G A  1997 0 .6 6 3 0 .8 3 2 0 .5 0 5 0 .1 8 8 0 .5 4 4 - 0 .0 0 8 0 .0 0 3 0 .0 1 7 -0 .0 0 3

N C  1997 0 .8 3 2 0 .4 8 5 0 .8 1 2 0 .8 3 2 0 .0 9 9 0 .1 6 8 - -0 .0 0 4 -0 .0 0 2 0 .0 0 2

C B  1997 0 .9 2 1 0 .7 7 2 0 .7 6 2 0 .8 7 1 0 .3 0 7 0 .4 1 6 0 .9 8 0 - -0 .0 0 1 0 .0 0 0

D B  1997 0 .5 9 4 0 .0 5 9 0 .3 4 6 0 .9 0 1 0 .0 1 0 0 .0 4 0 0 .8 0 2 0 .6 7 3 - 0 .0 1 1

N Y  1997 0 .8 5 1 0 .9 9 0 0 .9 9 0 0 .1 5 8 0 .6 6 3 0 .7 9 2 0 .4 2 6 0 .6 1 4 0 .1 3 9 -

* N o n e  o f  th e  e x a c t  F p e rm u ta tio n  te s t  P  v a lu e s  w e re  s ig n if ic a n t  a f te r  s e q u e n tia l  B o n fc r ro n i  c o r r e c t io n s  ( a = 0 .0 0 5 ) .
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Table 10. Restriction digestion patterns of the aclin inlron (CRESIA1) and ribosomal protein 2 inlron (RP2) gene regions in 

wcakfish Cynoscion regalis.

L o c u s E n z y m e P a tte rn B a n d  S iz e  ( lip ) T o ta l  S iz e  (b p )

C R E S I A I Rsa I A 4 1 4 131 5 4 5

B 5 4 5

R P 2 / / i n / 1 A 2 2 4 2 2 4 158 125 731

B 3 8 2 2 2 4 125
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Table 11. Allele frequencies of the aclin inlron (C R liSIA l) and ribosomal protein 2 inlron (RP2) gene regions in live geographic 

samples of weakfisli Cynoscion rcgalis for 1996 and 1997. GA= Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware 

Bay, NY= New York.

A lle le s  ( lip ) G A 1 9 9 6 N C I 9 9 6 C B  1 9 9 6 D B  1996 N Y  1 9 9 6 G  A 1997 N C  1 9 97 C B  1997 D B  1997 N Y  1997

A 0 .9 5 0 0 .9 7 5 0 .9 5 0 0 .9 8 8

C R E S I A I

0 .9 8 8 1 .0 0 0 0 .9 9 0 0 .9 5 4 0 .9 6 7 0 .9 7 3

B 0 .0 5 0 0 .0 2 5 0 .0 5 0 0 .0 1 2 0 .0 1 2 0 .0 0 0 0 .0 1 0 0 .0 4 6 0 .0 3 3 0 .0 2 7

A 0 .8 6 4 0 .8 8 9 0 .8 7 8 0 .8 6 9

R l*2

0 .8 5 4 0 .7 5 9 0 .8 6 5 0 .8 8 8 0 .8 9 3 0 .8 5 4

B 0 .1 3 6 0 .1  I I 0 .1 2 2 0 .1 3 1 0 .1 4 6 0 .2 4 1 0 .1 3 5 0 .1 1 2 0 .1 0 7 0 .1 4 6
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Table 12. Sample sizes (N), number of alleles (n), expected heterozygosities (IIcxp), and P values for tests of Ilardy-W einherg 

equilibrium for the act in inlron (CRESIAI) and ribosomal protein 2 inlron (RP2) gene regions in weak fish Cynoscion regalis. GA= 

Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York. NT= monomorphic sample not tested.

G A  1 9 96 N C  1 9 9 6 C B  1 9 96 D B  1996 N Y  1996 G A  1997 N C  1 9 97 C B  1997 D B  1997 N Y  1 9 97

N 4 0 4 2 4 0 4 2

C R E S I A I

4 0 3 6 51 54 4 5 55

n 2 2 2 2 2 1 2 2 2 2

H „ P 0 .0 9 6 0 .0 8 9 0 .0 3 1 0 .0 5 5 0 .0 9 6 0 .0 0 0 0 .0 2 5 0 .0 5 3 0 .0 4 7 0 .0 2 0

r 0 .0 7 6 0 .0 9 1 1 .0 0 0 0 .0 3 6 0 .0 7 8 N T 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

N 4 8 4 5 4 5 4 2

R P 2

41 2 9 4 8 4 9 4 2 41

n 2 2 2 2 2 2 2 2 2 2

H o p 0 .2 3 7 0 .2 0 0 0 .2 1 7 0 .2 3 0 0 .2 5 3 0 .3 7 3 0 .2 3 7 0 .2 0 1 0 .1 9 4 0 .2 5 3

P' 0 .1 8 4 0 .4 3 2 0 .1 0 4 0 .1 2 0 0 .1 8 0 0 .2 9 8 0 .1 8 9 0 .4 6 5 0 .0 5 2 0 .1 7 9

* N o n e  o f  th e  s a m p le s  d if f e re d  s ig n if ic a n t ly  f ro m  H a rd y -W c in h c rg  e x p e c ta t io n s  a f te r  s e q u e n tia l  B o n fe r ro n i  c o r re c tio n s  (a = 0 .(K )5 ).
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Table 13. Analysis of molecular variance (AMOVA) results for the actin intron (CRESIAI) and ribosomal protein 2 intron (RP2) 

gene regions in weak fish Cynoscion regal is.

S o u rc e  o f  V a r ia l io n D e g r e e s  o f  

F re e d o m

S u m  o f  

S q u a re s

V a r ia n c e

C o m p o n e n ts

P e rc e n ta g e  o f  

V a r ia t io n

S ig n i f ic a n c e  T e s ts  

(/’)'

A m o n g  Y e a rs 1 0 .0 0 8

C R E S I A I

-0 .0 0 1 -0 .1 8 0 0 .5 6 9

A m o n g  P o p u la t io n s /  W ith in  Y e a rs 8 0 .2 2 9 < 0 .0 0 1 0 .0 8 0 0 .6 2 8

W ith in  P o p u la t io n s 8 6 0 2 3 .1 0 1 0 .2 6 9 1 0 0 .1 0 0 0 .6 7 2

T o ta l 8 6 9 0 .2 6 8 - -

A m o n g  Y e a rs 1 0 .0 3 2

R P 2

< 0 .0 0 1 -0 .1 4 0 .6 3 5

A m o n g  P o p u la t io n s /  W ith in  Y e a rs 8 0 .8 2 9 < 0 .0 0 1 -0 .1 3 0 .6 8 2

W ith in  P o p u la t io n s 8 5 0 9 9 .4 9 3 0 .1 1 7 1 0 0 .2 7 0 .7 4 7

T o ta l 8 5 9 1 0 0 .3 5 3 0 .1 1 7 - -
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Table 14. Population pairwise F.sr values (above diagonal) and exact F  permutation test P  values (below diagonal) for the actin 

inlron (CRIISIAI) and ribosomal protein 2 intron (RP2) gene regions in wcakfisli Cynoscion rcyalis. GA= Georgia, NC= North 

Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.

GA 1996 NC 1996 CB 1996 DB 1996 NY 1996 GA 1997 NC 1997 CB 1997 DB 1997 NY 1997

GA 1996 -0.002 -0.013 0.003

CRESIAI

0.010 0.035 0.019 -0.011 -0.008 -0.004

NC 1996 0.248 - -0.002 -0.012 -0.009 0.009 -0.005 -0.003 -0.010 -0.010

CB 1996 0.990 0.267 - 0.003 0.010 0.035 0.019 -0.011 -0.008 -0.004

DB 1996 0.496 0.663 0.426 - -0.014 0.002 -0.011 0.001 -0.007 -0.009

NY 1996 0.455 0.990 0.535 0.990 - -0.001 -0.011 0.008 -0.002 -0.006

C.A 1997 0.426 0.990 0.485 <0.001* 0.990 - -0.004 0.028 0.018 0.011

NC 1997 0.416 0.782 0.327 0.990 0.990 0.465 - 0.014 0.003 -0.(8) 1

CB 1997 0.990 0.584 0.990 0.495 0.366 0.307 0.307 - -0.008 -0.004

DB 1997 0.871 0.990 0.782 0.772 0.723 0.475 0.218 0.861 - -0.010

NY 1997 0.544 0.990 0.564 0.990 0.752 0.505 0.515 0.337 0.990 -
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Tabic 14. Continued.

G A  1 9 9 6 N C  1 9 9 6 C B  1 9 9 6 D B  1 9 9 6 N Y  1 9 9 6 G A  1997 N C  1 9 97 C B  1997 D B  1997 N Y  1997

G A  1996 _ -0 .0 0 8 -0 .0 1 0 -0 .0 1 1

R I*2

-0 .0 1 1 0 .0 2 4 -0 .0 1 0 -0 .0 0 8 -0 /0 0 8 -0 .0 1 1

N C  1 9 96 0 .7 3 3 - -0 .0 1 1 -0 .0 1 0 -0 .0 0 6 0 .0 4 7 -0 .0 0 8 -0 .0 1 1 -0 .0 1 2 -0 .0 0 6

C B  1 9 96 0 .8 4 2 0 .9 9 0 - - 0 .0 1 1 -0 .0 0 9 0 .0 3 6 -0 .0 1 0 -0 .0 1 0 -0 .0 1 0 -0 .0 0 9

D B  19 96 0 .9 9 0 0 .8 2 2 0 .9 9 0 - -0 .0 1 1 0 .0 2 7 -0 .0 1 1 -0 .0 1 0 -0 .0 0 9 -0 .0 1 1

N Y  1996 0 .8 9 1 0 .4 9 5 0 .7 0 3 0 .8 9 1 - 0 .0 1 5 -0 .0 1 1 -0 .0 0 6 -0 .0 0 5 -0 .0 1 2

G A  1997 0 .2 8 7 0 .2 1 8 0 .1 9 8 0 .2 6 7 0 .3 7 6 - 0 .0 2 5 0 .0 4 7 0 .0 5 0 0 .0 1 5

N C  19 97 0 .9 9 0 0 .6 7 3 0 .8 9 1 0 .9 9 0 0 .8 7 1 0 .2 6 7 - -0 .0 0 8 -0 .0 0 8 -0 .0 1 1

C B  1997 0 .7 3 3 0 .9 9 0 0 .9 9 0 0 .7 5 2 0 .7 1 3 0 .1 1 9 0 .7 5 2 - -0 .0 1 1 -0 .0 0 6

D B  1997 0 .6 8 3 0 .9 9 0 0 .8 9 1 0 .6 4 4 0 .6 0 4 0 .1 9 8 0 .7 7 2 0 .9 9 0 - -0 .0 0 5

N Y  1997 0 .8 6 1 0 .4 8 5 0 .7 1 3 0 .8 6 1 0 .7 3 3 0 .3 4 6 0 .8 7 1 0 .6 1 4 0 .6 0 4 -

'  S ig n if ic a n t  e x a c t  F  p e r m u ta tio n  te s t  P  v a lu e s  a f te r  s e q u e n tia l  B o n fc r ro n i  c o r r e c t io n s  (u -U .0 0 5 ) .
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Tabic 15. Analysis of molecular variance (AMOVA) results for the microsalcliitc locus SOC050 in 1996 and 1997 samples 

suspected of containing species other than weakfish Cynoscion n ’galis. GA= Georgia, NC= North Carolina, CB= Chesapeake Bay, 

DB= Delaware Bay, NY= New York.

S o u rc e  o f  V a r ia t io n D e g re e s  o f  

F re e d o m

S u m  o f  

S q u a re s

V a r ia n c e

C o m p o n e n ts

P e rc e n ta g e  o f  

V a r ia t io n

S ig n i f ic a n c e  T e s ts

(P)

SOC050

A m o n g  Y e a rs 1 0.808 <0.001 0.15 0.097

A m o n g  P o p u la t io n s /W i th in  Y e a rs 8 4.105 0 .0 0 1 0.37 0.078

W ith in  P o p u la tio n s 1022 378.705 0.370 99.48 0.031

T o ta l 1031 383.618 0.372 - -
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Tabic 16. Population pairwise values (above diagonal) and exact F  permutation test F a values (below diagonal) for the 

microsaicllilc locus SOC050 in 1996 and 1997 samples suspected of containing species other than wcakfish Cynoscion regalis. GA= 

Georgia, NC= North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.

G A  1 9 96 N C  1 9 96 C B  1 9 96 D B  1 9 96 N Y  1 9 96 G A  1997 N C  1997 C B  1997 D B  1997 N Y  1 9 97

G A  1 9 96 - -0 .0 0 4 -0 .0 0 4 - 0 .0 0 5

S O C 0 5 0

-0 .0 0 6 0 .0 2 0 -0 .0 0 5 -0 .0 0 6 -0 .0 0 2 -0 .0 0 5

N C  1 9 96 0 .8 6 1 - -0 .0 0 3 0 .0 0 5 -0 .0 0 2 0 .0 4 0 0 .0 0 0 -0 .0 0 1 -0 .0 0 3 -0 .0 0 1

C B  1 9 96 0 .8 7 1 0 .7 9 2 - 0 .0 0 8 -0 .0 0 3 0 .0 3 8 -0 .0 0 7 -0 .0 0 1 0 .0 0 1 -0 .0 0 6

D B  1 9 9 6 0 .6 4 4 0 .5 7 4 0 .4 1 6 - 0 .0 1 4 0 .0 2 6 0 .0 0 2 0 .0 0 0 -0 .0 0 2 0 .0 0 3

N Y  1996 0 .8 9 1 0 .8 2 2 0 .7 9 2 0 .3 2 7 - 0 .0 3 9 0 .0 0 0 0 .0 0 1 0 .0 0 7 0 .0 0 2

G A  1997 0 .1 2 9 0 .0 1 0 ’ 0 .0 2 0 ’ 0 .1 2 9 0 .0 5 9 - 0 .0 2 7 0 .0 1 9 0 .0 2 3 0 .0 2 7

N C  1997 0 .9 1 1 0 .6 4 4 0 .9 6 0 0 .5 9 4 0 .6 1 4 0 .0 4 0 * - -0 .0 0 5 -0 .0 0 1 -0 .0 0 8

C B  1997 0 .9 6 0 0 .7 2 3 0 .6 8 3 0 .7 1 3 0 .6 3 4 0 .1 4 8 0 .9 0 1 - -0 .0 0 3 -0 .0 0 5

D B  1997 0 .7 9 2 0 .7 7 2 0 .5 7 4 0 .7 8 2 0 .5 1 5 0 .0 8 9 0 .8 1 2 0 .8 6 1 - -0 .0 0 5

N Y  1997 0 .9 0 1 0 .7 3 3 0 .8 9 1 0 .5 7 4 0 .5 4 5 0 .0 8 9 0 .9 7 0 0 .9 3 1 0 .8 6 1 -

1 N e a r ly  s ig n if ic a n t  e x a c t  /•' p e r m u ta tio n  le s t  /* v a lu e s  a f te r  s e q u e n tia l  B o n le r ro n i  c o r r e c t io n s  ( ix = 0 .0 ()5 ) in v o lv in g  th e  G e o rg ia  1 9 97  sa m p le .
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Table 17. Restriction digestion patterns of the I2S/I6S mitochondrial region for putative wcakfish Cynoscion re gal is individuals in 

the Georgia 1997 sample, sand seatrout C. arenarius, and silver scatrout C. nothus digested with the enzyme Rsa I. n = number of 

individuals exhibiting the adjacent pattern.

S p e c ie s P a tte rn n B a n d  S iz c s (b p ) T o ta l  S iz e  (b p )

G e o r g i a  1 9 9 7  S a m p le

W c a k f is h 3 461 3 0 0 2 0 0 167 1 1 28

U n k n o w n  A 7 4 1 3 3 0 0 2 0 0 167 1 0 80

U n k n o w n  B 5 4 6 1 3 0 0 2 5 6 167 1184

K n o w n  S t a n d a r d s

C y n o s c io n  a r e n a r iu s A 15 461 3 0 0 2 5 6 167 1184

C y n o s c io n  n o th u s A 13 4 1 3 3 0 0 2 0 0 167 1 0 8 0
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Table 18. Sand scat rout Cynoscion arenarius and silver scatrout C. nothus allele sizes for four microsatellitc loci. Neither of the 

species successfully amplified for the SOCOI4 locus.

S a m p le A lle le S iz e s  (b p ) S a m p le A lle le S iz e s  (b p )

SOC050 SOC044 SOC014 CNE612 SOC050 SOC044 SOC014 CNE612

Cynoscion arenarius Cynoscion nothus

1 177. 185 2 0 2 , 2 0 4 - 121 , 125 1 - 2 0 4 , 2 0 4 - 10 7 , 109

2 1 7 5 ,1 7 7 2 0 2 , 2 0 2 - 11 3 . 127 2 1 7 7 , 177 2 0 4 , 2 0 4 - 11 3 , 123

3 17 7 , 183 - - I I I ,  115 3 1 7 7 ,1 7 9 2 0 4 ,  2 0 4 - 11 1 , 123

4 181, 193 2 0 2 ,2 0 4 - 12 1 , 123 4 1 7 5 , 177 2 0 4 ,  2 0 4 - 1 1 3 , 113

5 1 7 7 , 179 2 0 2 .2 0 2 - 11 1 , 119 5 177, 181 2 0 4 , 2 0 4 - I I I ,  123

6 177, 179 2 0 2 , 2 0 2 - 12 9 , 131 6 177, 177 2 0 2 , 2 0 4 - 125 , 131

7 17 9 , 181 2 0 2 , 2 0 4 - 12 1 , 121 7 - 2 0 4 ,  2 0 4 - 10 5 , 107

8 177, 177 2 0 2 , 2 0 4 - - 8 175, 175 2 0 4 , 2 0 4 - I I I ,  123

9 1 7 7 ,1 7 9 2 0 4 , 2 0 4 - - 9 - 2 0 4 , 2 0 4 - 11 1 , 113

10 179, 187 2 0 2 , 2 0 4 - - 10 - - - -

11 179, 179 2 0 2 , 2 0 4 - - 11 1 7 5 ,1 7 7 2 0 4 , 2 0 4 - 11 5 , 115
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Table 19. Mitochondrial DNA haplotype and SOC050 alleles for anomalous weakfish 

Cynoscion regalis specimens taken from four sampling locations in 1996 and 1997. * = 

Suspected hybrids.

In d iv id u a l M tD N A  T y p e A l le le s  (b p ) In d iv id u a l M tD N A  T y p e A l le le s  (b p )

Georgia 1997 Chesapeake Bay 1997

1-2 C y n o s c io n  n o th u s 1 7 7 ,1 7 7 1 -6 * C y n o s c io n  re g a l is 1 7 9 , 187

1-4 C y n o s c io n  a r e n a r iu s 1 7 5 ,1 7 7 2 -3 B a ird ie l la  c h r y s o u r a 1 7 1 ,1 7 1

1-5 C y n o s c io n  n o th u s 175, 177 2 -2 0 * C y n o s c io n  re g a l is 1 7 7 , 189

1 -9 * C y n o s c io n  a r e n a r iu s 1 7 5 ,1 9 3 Delaware Bay 1997

1 -1 8 * C y n o s c io n  re g a l is 17 3 , 191 1 -7 * C y n o s c io n  re g a l is 1 8 1 , 193

1 -1 9 * C y n o s c io n  re g a l is 1 7 5 ,1 9 3 1 -3 0 * C y n o s c io n  re g a l is 1 7 7 , 187

1-22 C y n o s c io n  a r e n a r iu s 17 1 , 175 3 -2 * C y n o s c io n  re g a l is 1 8 1 ,1 9 3

1 -2 4 * C y n o s c io n  re g a l is 1 7 5 ,1 8 7 3 -9 * C y n o s c io n  re g a l is 1 8 1 .1 9 3

1 -2 7 * C y n o s c io n  a r e n a r iu s 1 7 5 ,1 9 3 3 - 1 1 * C y n o s c io n  re g a l is 1 7 7 , 193

1-47 C y n o s c io n  n o th u s 1 7 7 ,1 7 7 Georgia 1996

1-48 C y n o s c io n  n o th u s 1 7 5 ,1 7 5 1 -2 4 * C y n o s c io n  re g a l is 1 7 7 ,1 9 3

1-49 C y n o s c io n  n o th u s 1 7 7 ,1 7 7 2 - 2 5 * C y n o s c io n  re g a l is 1 7 5 ,1 9 1

1-5 0 C y n o s c io n  a r e n a r iu s 171 , 175 2 - 3 7 * C y n o s c io n  r e g a l is 1 7 5 , 193

1-55 C y n o s c io n  n o th u s 1 7 5 ,1 7 5 3 - 1 7 * C y n o s c io n  r e g a l is 1 7 9 , 187

1-56 C y n o s c io n  n o th u s 1 7 5 ,1 7 9 North C arolina 1996

North C arolina 1997 1 -4 * C y n o s c io n  re g a l is 1 7 7 , 195

2 - 1 4 C y n o s c io n  r e g a l i s * 1 7 7 , 191

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .
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Table 19. Continued.

In d iv id u a l M tD N A  T y p e A l le le s  (b p ) In d iv id u a l M tD N A  T y p e A l le le s  (b p )

C h e s a p e a k e

i *

B a y  1 9 9 6

C y n o s c io n  re g a l is 17 7 , 187

D e la w a r e

3 -1 7 *

3 -1 8 *

B a y  1 9 96

C y n o s c io n  re g a l is

C y n o s c io n  re g a l is

1 8 1 .1 8 7  

1 7 9 ,1 9 3

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .
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Table 20. Frequencies of unusual alleles in four geographical samples of wcakfish Cynoscion regalis taken in 1996 and 1997.

Sample Allele (bp) Frequency Sample Allele (bp) Frequency

Georgia 1996 175 0.018 175 0.125

177 0.009 177 0.094

179 0.009 179 0.010

North Carolina 1996 177 0.010 North Carolina 1997 177 0.009

Chesapeake Bay 1996 177 0.008 Chesapeake Bay 1997 171 0.009

Delaware Bay 1996 179 0.011 177 0.009

181 0.011 179 0.009

Georgia 1997 171 0.021 Delaware Bay 1997 177 0.023

173 0.010 181 0.034
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Figure 3. Migration patterns o f weakfish Cynoscion regalis in (a) spring and 

summer, and (b) fall and winter (from Wilk 1976).
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Figure 4. Sampling locations for young-of-the-year (YOY) weakfish Cynoscion regalis 

in the summers o f 1996 and 1997. Sites are Peconic Bay, New York (NY), 

Delaware Bay, Delaware (DB), Chesapeake Bay, Virginia (CB), Pamlico 

Sound, North Carolina (NC), and Doboy Sound, Georgia (GA).
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Figure 5. Gel image of microsatellite locus SOC050 alleles for 48 YOY weakfish 

Cynoscion regalis from the Delaware Bay 1996 sample. Lane 1-3, 5, 28- 

56, 58 = size ladder. A= individual homozygous for the 191 bp allele. B 

individual heterozygous for the 189 bp and 193 bp alleles.

31, 54-
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Figure 6. Length-frequency distributions for young-of-the-year (YOY) weakfish Cynoscion 

regalis collected from five locations in the summer of 1996. GA= Georgia, NC= 

North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.
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Figure 7. Length-frequency distributions for young-of-the-year (YOY) weakfish Cvnoscion 

regalis collected from five locations in the summer of 1997. GA= Georgia, NC= 

North Carolina, CB= Chesapeake Bay, DB= Delaware Bay, NY= New York.
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Figure 8. Microsatellite allele frequency distributions in weakfish Cynoscion 

regalis.
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Figure 9. Restriction endonuclease digestion patterns of (a) CRESIAl and (b) RP2 

nuclear intron regions in weakfish Cynoscion regalis. (a) Lane 1 = size 

standard, 2 = homozygote pattern A, 3 = heterozygote pattern AB, and 4 = 

homozygote pattern B. (b) Lane 1 = size standard, 2 = heterozygote pattern AB, 

3 = homozygote pattern A, and 4 = homozygote pattern B.
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Figure 10. Microsatellite locus SOC050 allele frequency distribution for the G eorgia 

1997 sample of YOY weakfish Cynoscion regalis.
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Figure 11. Rsa I restriction endonuclease digestion patterns of the 12S/16S

mitochondrial region for weakfish Cynoscion regalis, two unknown mtDNA 

types, sand seatrout C. arenarius, and silver seatrout C. nothus. Lane 1 = size 

standard, lane 2 = Cynoscion regalis, lane 3 = unknown A, lane 4 = unknown 

B, lane 5 = Cynoscion nothus, lane 6 = Cynoscion arenarius.
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GENERAL SUMMARY

The recent proliferation of molecular genetics in fisheries science research can make it 

difficult to decide which combination of markers and techniques is best suited for a given 

problem. Although some generalities have been drawn regarding the appropriateness of 

particular markers and techniques for inter- and intraspecific investigations, these 

guidelines are by no means absolute. In the present species identification study the 

preferred marker was one that amplified across a wide range of species, distinguished 

between all species concerned, and demonstrated a minimal amount of intraspecific 

variation. These criteria were met by the 12S/16S mtDNA marker. Other regions o f the 

mtDNA genome met some of the criteria, but not all. Some regions such as the ATPase, 

cytochrome oxidase I, and cytochrome b genes showed promise but did not amplify 

across all species. In contrast, the ND4 gene region amplified well but showed higher 

levels of intraspecific variation compared to the 12S/16S marker, resulting in up to five 

different digestion patterns in a single species (Cordes et al. submitted). Thus, different 

regions within a molecule (mtDNA) considered to be rapidly evolving relative to nuclear 

loci may still be applicable to a wide variety of studies (depending on the chosen m ethod 

o f analysis) both above and below the species level, as is evidenced by its use in 

questions of higher taxonomy as well as population structure.

The use of a mtDNA marker for the genetic key was chosen to eliminate the added
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complication of heterozygotes when scoring gels for species identification.

Unfortunately, this means the resulting key is of little or no use in the identification of 

hybridization between species. A number of nuclear regions including the growth 

hormone gene were tested for use in the study, but amplification was inconsistent with 

the primers available in the literature (J. Cordes, unpublished data). With more and more 

‘universal’ primers being published (see recent issues of Molecular Ecology), this 

limitation will not persist for long, and a genetic identification key based on a 

combination of mtDNA and nuclear markers that can identify hybrids should not be far 

off. Such a key has already been developed for the istiophorid billfishes (Graves and 

McDowell 1997). The low variability seen in the CRESIA and RP2 intron markers would 

seem to recommend these regions as candidates for such a multiple-marker key, but the 

primers would have to be redesigned to amplify a wider variety of species.

In general microsatellite loci show a high incidence o f polymorphism relative to other 

classes of molecular markers such as mitochondrial genes (Scribner et al. 1994, Patton et 

al 1997), although this has not proven to be universal (O’Connell and W right 1997). 

Microsatellite loci used in this study exhibited a wide range of variation from two 

monomorphic tetranucleotide loci to the highly variable CNE612 locus, with 34 alleles 

and expected heterozygosities in the range of 90-95%. Interestingly, this highly 

polymorphic locus was no better at discriminating between sand seatrout Cynoscion 

arenarius and silver seatrout C. nothus specimens in the weakfish samples than was 

either of the two less variable loci, SOC014 and SOC044. This provides cautionary 

evidence that the most variable loci are not automatically the best markers for either 

inter- or intraspecific investigations. Unfortunately a comparison of the microsatellite
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and nuclear intron markers as tools in species identification was not possible due to the 

lack of intron amplification in the sand seatrout and silver seatrout samples.

One of the advantages of the large number of genetic markers and techniques now 

available to researchers is the increasing practicality of multiple-marker studies. By using 

a variety of loci from two or more classes of molecular markers such as allozymes, 

mtDNA, and nuclear DNA, it is possible to better substantiate conclusions through 

congruence of results between marker types. Some doubt as to the existence of a single 

genetic stock of weakfish in the U.S. western Atlantic remained after earlier works on 

allozymes (Crawford et al. 1989) and whole molecule mtDNA (Graves et al. 1992). 

However, their data, taken in conjunction with the microsatellite and nuclear intron data 

presented here, make a strong case in support of the single genetic stock hypothesis. 

Recent examples o f stock structure analyses based on two or more classes of molecular 

markers are common (Nielsen et al. 1994, Sanchez et al. 1996, Patton et al. 1997, Estoup 

et al. 1998, Seeb et al. 1998, Buonaccorsi et al. 1999), and should continue to increase in 

popularity.

The presence of non-target species in the weakfish stock structure analysis presented 

an unexpected opportunity to incorporate the use of molecular genetic techniques at both 

the inter- and intraspecific levels in a single study, and illustrates the advantages in using 

multiple marker systems. If only a single microsatellite locus had been used, or if the 

study had been restricted to nuclear intron markers alone, it is very likely that the sand 

seatrout and silver seatrout specimens would have gone unnoticed. This could easily have 

resulted in a type II error (rejecting the null hypothesis of a single stock when in fact it is 

true). Instead, it was possible not only to recognize the individuals as anomalous, but also
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to identify them to species and provide evidence of hybridization between at least two of 

the congeners. It is hoped that further refinement of the inter- and intraspecific molecular 

markers developed here and in other studies will eventually be helpful in further 

clarifying the taxonomic status, population dynamics, and possible hybridization within 

the genus Cynoscion.
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