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ABSTRACT

The research presented in this dissertation describes the influence of 
planktonic bacteria on upper ocean organic matter dynamics in the North Pacific 
Subtropical Gyre (NPSG). Analyses of the temporal dynamics in dissolved organic 
matter (DOM) inventories were coupled to studies investigating the influence of 
heterotrophic bacterial production (HBP) on upper ocean organic carbon fluxes in the 
NPSG. Nine cruises to the Hawaii Ocean Time-series field site Station ALOHA 
revealed that HBP accounted for a large flux of organic carbon in the upper ocean of 
the NPSG. HBP was significantly enhanced by sunlight, with photoenhancement of 
HBP accounting for 3.2 mol C m 2 y r'\ equivalent to 21% of the annual 
photoautotrophic production in this ecosystem. These observations suggest that HBP 
in the upper ocean of the oligotrophic NPSG exerts a large influence on organic 
matter dynamics in this ecosystem, and that a large fraction of HBP depends on 
sunlight.

Several experiments were conducted to asses the response of heterotrophic 
protein production to irradiance at Station ALOHA. The results of these experiments 
revealed that HBP responded to irradiance similar to the response of photosynthesis 
to irradiance. Upper ocean HBP increased with light intensity at low light fluxes 
(<0.200 mmol quanta m~2 s'1), but saturated or declined with increasing irradiance. 
Experiments conducted in the upper and lower photic zone revealed significant 
photoinhibition of bacterial production in the lower photic zone. Overall, the 
heterotrophic response was similar to the photosynthetic response, suggesting light- 
driven HBP could result from mixotrophic growth by the photoautotrophic unicellular 
cyanobacteria Prochlorococcus.

Analyses of dissolved organic matter (DOM) inventories froml988 to 1999 
revealed multiyear increases in the inventories of dissolved organic carbon, nitrogen, 
and phosphorous (DOC, DON, and DOP) in the upper ocean of the NPSG. During 
the latter half of the observation period, the rate of DOP accumulation declined, 
coincident with significant accumulations of DOC and DON. Analyses of bacterial 
population dynamics between 1992 and 1999, revealed an apparent shift in the 
abundance of Prochlorococcus during the period of observation. Increasing 
abundance of Prochlorococcus coincident with accumulated inventories of DOM 
suggests that prokaryote population structure directly influences the cycling of 
organic matter in this ecosystem.

xii
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INTRODUCTION

Marine biology and ocean carbon cycling

The oceans play a fundamental role in regulating Earth’s climate. Strong 

couplings between atmospheric and oceanic processes promote the transfer of heat 

and material between the ocean and the atmosphere. The carbon storage capacity of 

the world’s ocean far exceed that of the atmosphere, and the vast oceanic reservoirs 

of dissolved carbon compounds comprise some of the largest inventories of carbon 

(Table 1). As a result, there is considerable interest in the whether the oceans may 

buffer the detrimental impacts of anthropogenic carbon dioxide (CO2) emissions to 

the atmosphere.

Understanding the interaction of marine biota and the cycling of mineral 

elements in the oceans has been the focus of considerable research through the past 

century. Much of this research has focused on ocean carbon cycling. Carbon 

transformation in the marine environment occurs via a series of oxidation-reduction 

reactions that are largely mediated by biological processes. Understanding the factors 

that influence marine biological activity provides valuable insights into the role of 

marine biota in carbon cycling and ultimately on global climate regulation.

Nearly half of the global primary production occurs in the oceans, and 

approximately 80% of this marine production occurs in the open oceans, far removed 

from terrestrial influences (Martin et al. 1987) (Table 2). The subtropical ocean gyres 

cover approximately 40% of Earth’s surface, and largely because of their massive

2
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Table 1. Mass of carbon in various Earth reservoirs

Location Form Quantity
(1015gC)

Atmosphere CO2 gas 720

Oceans total inorganic 40,000

total organic 700-1,000

living 1-3

Terrestrial sedimentary carbonates >10,000,000

total organic 2,000

living 800

non-living 1,200

Adapted from Falkowski and Raven (1997) and Hansell and Carlson (1998).
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Table 2. Primary and new production in various marine environments

Region Area 

(10‘ km2)

Primary 
Production 

(g C m*2 yr'1)*

Total 
Production 
(1015 g yr'1)

New
Production
(10,5gyr*1)b

Open Ocean 326 169 55 3.5

Coastal Zone 37 250 9.0 1.5

Upwelling
Areas

0.36 420 0.15 0.03

Total 363 311* 56 7.4

Ocean Basin

Pacific 149 132 20 1.3

Atlantic 74 199 15 2.2

Indian 45 143 6.5 1.3

Southern 58 141 8.2 1.5

Total 326 154* 49.7 6.3

* Mean rate of primary production
a compiled from Eppley and Peterson (1979), Martin et al. (1987), Longhurst et al. 
1995, and Karl et al. (1996).
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surface area, the subtropical gyres play important roles in ocean -atmosphere material 

exchange (Sarmiento et al. 1993, Bates 2001, Gruber et al. 2002). Considerable 

research has been devoted to understanding the factors that regulate organic matter 

production, remineralization, and carbon export in subtropical ocean ecosystems. 

Despite chronic nutrient limitation of the upper water column in the subtropical 

oceans, organic matter productivity and carbon export in these ecosystems has a 

significant role in global carbon cycling (Eppley and Peterson 1979, Martin et al. 

1987, Carlson et al. 1994, Emerson et al. 1997).

The biological pump is the principal biological regulator of ocean-atmosphere 

carbon cycling. The biological pump describes the removal of carbon from the 

surface ocean to the deep ocean via gravitational settling of particulate organic carbon 

(Longhurst and Harrison 1989). The net removal of photosynthetically fixed carbon 

from the surface ocean is regulated by many factors including nutrient input and 

biological remineralization. Organic matter production in the upper ocean is 

supported by several nutrient sources. New production defines the total amount of 

primary production supported by nutrient input (specifically nitrogen (N)) from 

outside the photic zone (typically NO3 ) (Dugdale and Goering 1967). Regenerated 

production describes the amount of primary production supported by regenerated 

sources of nitrogen (N), mainly in the form of ammonium (N H ^. Under steady state 

conditions, regenerated production maintains organic matter productivity within the 

ecosystem, but new production represents the carbon available for export.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

DOM and the microbial loop in oligotrophic marine ecosystems

One of the most important oceanic pathways of carbon production and export 

is through the large pool of dissolved organic matter (DOM) (Williams 1990, 2000, 

Kirchman et al. 1992). In many seasonally impacted oligotrophic ecosystems, the 

production of microbially resistant DOM compounds represents a significant 

component of the biological pump (Copin-Montegut and Avril 1993, Carlson et al. 

1994). DOM represents as an important intermediate between photoautotrophic and 

heterotrophic production. The distribution of DOM in the oceans depends on different 

input and removal processes, with production a function of biologically mediated 

processes, and removal dependent on both physical and biological processes.

DOM is an operationally defined term to describe organic forms of carbon, 

nitrogen, and phosphorous that pass through GF/F filters (nominal pore size of 0.7 

pm). Dissolved organic carbon (DOC) forms one of the largest bioactive reservoirs 

of carbon on Earth, accounting for ~7 x 1017 g C (Table 2, Hansell and Carlson 1998). 

Despite the potential relevance of DOC to global carbon cycling very little is known 

about the specific composition of oceanic DOC or about the processes which 

transform it. Based on its biological reactivity, DOM is typically classified by the 

time scales of its persistence in the marine environment. Labile DOM pools turnover 

on time scales of hours to days, while semi labile pools appear more persistent, 

turning over on time scales of weeks to months, and refractory pools may resist 

biological degradation for thousands of years (Williams and Druffel 1987, Bauer et 

al. 1992, Kirchman et al. 1993).
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Photoautotrophic production represents the ultimate source of DOM to the 

open ocean, but the exact pathways that transform inorganic carbon and nutrients into 

the large, uncharacterized DOM pool remain unclear. Environmental factors such as 

grazing, cell death/lysis, and exudation all appear to constitute significant sources of 

DOM. Removal of DOM from the upper ocean results from both physical mixing 

and dilution of relatively organic-rich upper ocean waters, and biological utilization 

of DOM. Heterotrophic bacteria, or more precisely chemoorganotrophic bacteria, are 

believed to be the dominant consumers of DOM in the oceans (Azam and Hodson 

1977, Ducklow and Carlson 1992). These organotrophic bacteria transform DOM in 

at least two fundamental ways (Figure 1): 1) construction of biomass from nutrient 

constituents within the DOM pool, and 2) the oxidization of DOM for energy and 

subsequent regeneration of inorganic nutrients (Ducklow et al. 1986).

Determining the magnitude of carbon flux into heterotrophic bacteria is 

necessary for understanding the fate of carbon in marine ecosystems. The microbial 

loop represents the collective processes that result in the transfer of DOM into 

bacterial biomass, effectively reintroducing carbon and nutrients lost to dissolved 

non-living pools back into the marine food web (Pomeroy 1974, Azam et al. 1983). 

However, in many cases, heterotrophic bacterial metabolism serves as a net sink for 

DOM, remineralizing it back to its inorganic constituents (Ducklow et al. 1986).

Heterotrophic utilization of DOM (and hence DOM reactivity) appear to 

depend on several factors, but perhaps most importantly on the molecular 

composition of the DOM substrate. Dissolved free amino acids, nucleotides, and
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Figure 1. A simplified schematic describing the pathways of carbon turnover in the 

upper ocean of the NPSG. Arrows represent carbon fluxes into each compartment of 

the ocean food web. Dashed line represents losses of carbon from the upper ocean. 

The dark arrow into DOC reflects the relative importance of this carbon flux in the 

NPSG surface waters.
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neutral monosaccharides all cycle rapidly in the ocean, suggesting they represent 

some of the most biologically reactive components of the bulk oceanic DOM pools 

(Fuhrman and Ferguson 1986, Keil and Kirchman 1999). In some systems, DOM 

production and microbial utilization can be temporally uncoupled resulting in 

significant accumulations of labile and semi-labile DOM over time scales ranging 

from days to months (Carlson and Ducklow 1996, Carlson et al. 1998). In other 

cases, microbial utilization appears tightly coupled with photoautotrophic production 

and no measurable labile DOM accumulates (Carlson and Ducklow 1996, Cherrier et 

al. 1996).

Heterotrophic bacterial growth efficiency (HBGE) controls the magnitude of 

carbon flux into the microbial loop in marine ecosystems. Conceptually, HBGE 

describes the proportion of carbon biomass produced relative to the total pool of 

carbon assimilated for growth. HBGE is defined as:

HGBE = HBP/ HBP + Respiration

Heterotrophic growth is supported by both catabolic and anabolic pathways; catabolic 

pathways harvest energy from reduced DOM and produce ATP, while anabolic 

pathways yield biomass and use ATP. DOM is assimilated for construction of cell 

constituents (biomass production) and broken down to yield energy. HBGE reflects 

the relative importance of these intracellular pathways (del Giorgio and Cole 2000). 

Many factors influence HBGE including the nature and amount of organic substrate 

available for growth, temperature, and inorganic nutrients (del Giorgio and Cole
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1998). In marine systems, HBGE generally ranges from 5-30%, averaging -20% 

(del Giorgio and Cole 2000).

By studying the factors that regulate heterotrophic production in the 

oligotrophic North Pacific Ocean this study aims to evaluate the role of bacterial 

growth and production on upper ocean organic matter productivity and 

remineralization. Planktonic prokaryotes, or more generally bacterioplankton, bear 

the distinction of potentially being the most important, yet poorly understood 

members of the marine plankton community. The prokaryotes include the Archaea 

and Bacteria, although the latter are considerably more numerous in the upper ocean 

of the NPSG (Kamer et al. 2001). Prokaryotes are the most numerous organisms on 

Earth (Whitman et al. 1998), and they comprise the largest inventories of living 

carbon in the sea.

The NPSG and Station ALOHA

The North Pacific Subtropical Gyre (NPSG) forms the largest oceanic 

circulation pattern on Earth (Sverdrup et al. 1946). The NPSG extends between 15- 

35° N and 135° E to 135° W and covers an area of 2 x 107 km2. The convergent 

circulation pattern of the surface ocean restricts the vertical influx of deep, nutrient 

laden waters to the surface ocean. Moreover, a permanent thermocline establishes a 

strong physical barrier to vertical mixing that further accentuates nutrient depletion in 

the upper ocean. The physical isolation of surface waters results in highly 

oligotrophic conditions characterized by low nutrients, low biomass, and relatively 

low production.
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Early research into biological and chemical properties of the NPSG (nutrients 

and chlorophyll a) revealed weak or non-existent seasonal variability and interannual 

constancy (McGowan and Williams 1973, Hayward et al. 1983), although the 

resolution was not sufficient to resolve seasonal patterns. The physical stability 

observed in the upper ocean was thought to be responsible for the observed spatial 

and temporal homogeneity in biological communities, where the biomass and 

production of planktonic assemblages were relatively constant through both space and 

time. Primary production appeared largely sustained by regenerated nutrients, 

implying that new production and export fluxes were low (Hayward 1983, Hayward 

et al. 1987).

Recent studies on the biogeochemistry of the NPSG have been facilitated by 

the creation of the Hawaii Ocean Time-series (HOT) as part of the US JGOFS 

program. The research site for the HOT program is Station ALOHA (22°45’N, 

1S8°W); a deep water (>4000 m), open ocean time-series station located 

approximately 100 km north of the island of Oahu, Hawaii. On a monthly basis, the 

HOT program visits Station ALOHA and conducts measurements on water column 

nutrient and carbon inventories and fluxes. The high frequency sampling at Station 

ALOHA has revealed considerable temporal dynamics in the NPSG biogeochemistry 

not observed in previous studies. In particular, biogeochemical processes in the 

NPSG appear tightly linked to large scale climate dynamics. These linkages appear 

to have altered organic matter production, biomass, and nutrient cycling in the upper 

ocean (Venrick et al. 1987, Venrick 1993, Karl et al. 1995,1997, Karl 1999, Karl et 

al. 2001a, 2002b).
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Considerable attention has focused on the role of nitrogen-fixing bacteria as 

potential sources of new nitrogen to the NPSG and their influence on biogeochemical 

cycles at Station ALOHA. Nitrogen input to the photic zone by diverse diazotrophic 

bacteria may support up to half of the new production in this ecosystem (Karl et al. 

1997, Zehr et al. 2001, Dore et al. 2003). The introduction of this new nitrogen 

source to the upper ocean without corresponding inputs of other bioessential elements 

is hypothesized to have significantly altered the turnover and stoichiometric 

composition of the dissolved and particulate organic matter pools in the NPSG on 

decadal time scales (Karl et al. 1997, 2001c).

The upper waters at Station ALOHA are characterized as having persistently 

low nutrient concentrations, low plankton biomass, and relatively high fluxes of solar 

radiation. Upper ocean concentrations of N0 3 +N02* typically range from <1 to 100 

nM, while P043' concentrations tend to range between 10 and 100 nM (Figure 2,3). 

Inorganic nutrient concentrations remain low throughout the upper 100 m of the water 

column, increasing with depth near the base of the photic zone (1% surface isopleth) 

(Figure 2,3). The resulting N:P ratio of the inorganic nutrient pools approaches zero 

in the surface waters, and increases to upwards of 10:1 near 150 m depth.

In contrast to the dearth of inorganic nutrients in the upper ocean, organic 

nutrient profiles reveal that the surface waters are relatively enriched in reduced N 

and P containing compounds. Concentrations of DON in the upper 200 m of the 

water column range from -4-6 nM, and DOP ranges from -0.1-0.3 |xM (Figure 2,3). 

Concentrations of both these organic nutrient pools are greatest in the surface ocean,
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Figure 2. Mean vertical profiles of dissolved nitrogen species (NO3 +NO2', DON) 

and chlorophyll a concentrations at Station ALOHA in the NPSG. Profiles are 

average concentrations measured at Station ALOHA between 1989 and 2001. 

Dashed lines represent the percent surface irradiance penetrating to various depths in 

the photic zone.
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Figure 3. Mean vertical profiles of dissolved phosphorus species (P043‘, DOP) and 

chlorophyll a concentrations at Station ALOHA in the NPSG. Profiles are average 

concentrations measured at Station ALOHA between 1989 and 2001. Dashed lines 

represent the percent surface irradiance penetrating to various depths in the photic 

zone.
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and decrease with increasing water depth. Beneath the nutrictine (-100 m), PO43 

concentrations are substantially greater than DOP concentrations, but DON is 

persistently greater than NO3 +NO2' throughout the upper 200 m of the water 

column. The distribution of DON and DOP in the upper ocean results in a bulk DOM 

pool maintaining an N:P ratio of between 25:1 and 32:1, or roughly 30-50% greater 

than the Redfield ratio.

Biogeochemical cycles and organic matter production and remineralization in 

the upper ocean of the NPSG are largely controlled by bacterial metabolism. At 

Station ALOHA, a large portion of organic matter productivity is sustained by 

regenerated nutrients. The upper ocean waters appear highly retentive with respect to 

carbon and nutrient export; carbon fluxes out of the photic zone average only 6% of 

the measured photoautotrophic production (Table 3, Karl et al. 2001d).

Estimates of plankton biomass in the upper water column at Station ALOHA 

range from -113-300 mmol C m 2 depending on the methods used to quantify 

plankton abundance and concentrations (Table 3). Chi a concentrations in the upper 

100 m of the water column are consistently low, ranging from 0.07-0.23 jig chi a L 1. 

Vertical profiles of chi a reveal a consistent subsurface maximum located between 

-100-125 m, roughly coincident with the 1% surface isopleth (Figure 3). The vertical 

position of the deep chlorophyll maximum (DCM) appears largely influenced by 

nutrient diffusion from the top of the nutricline and photoadaptation of the plankton 

populations to the low light fluxes at the base of the photic zone (Letelier et al. 1993, 

Winn et al. 1995).
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Table 3. Carbon inventories and fluxes in the upper ocean (0-175 m) at Station 
ALOHA in the NPSG.

Parameter
Mean 

Concentration* 
(fimol C L*1)

Inventory 
(mmol C m 2)

Method

DIC 2038 356739 Coulometry

DOC

PC

Chi. Biomassb 

Prochloro.c

86

1.8

0.31

0.33

15119

306

54

58

High Temp. 
Combustion 
High Temp. 
Combustion 

HPLC 
chi a 

flow cytometry

Synec.d 0.010 1.8 flow cytometry

H. Bacteria0 0.31 54 flow cytometry

Fluxes Mean Rate 
(mmol C L*1 d*1)

Primary Production 
(mmol C m*2 d*1)

Method

PP 0.24 41.4 14C-in situ production

HBPf 7.8 x 10'2 13.7 3H-Leucine L/D

Particle Export 1.5-3.1 x 10'2 2.7-5.5 Sediment Traps

DOC Accum. 4.6 x 103 0.82 Regression
Analyses

Abbreviations are: DIC -Dissolved inorganic carbon, DOC- dissolved organic 
carbon, PC- particulate carbon, Prochloro.-Prochlorococcus, Synec.-Synechococcus, 
H. Bacteria-non-chl a containing bacteria, P.P-primary production, HBP- 
heterotrophic bacterial production, DOC Accum.- dissolved organic carbon 
accumulation.
"Mean concentrations and rates determined by dividing inventory by 175 m. 
bbased on C : Chi ratio of 30:1 (Karl et al. 1996) c based on 30 fg C cell'1 
(Bertillson et al. in press) d based on 190 fgC cell1 (Landry and Kirchman 2002) 
e based on 10 fgC cell'1 (Christian and Karl 1994) f based on 1.5 kgC mol'1 Leu 
(Simon and Azam 1989)
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The pigmented picoplankton Prochlorococcus and Synechococcus account for 

>75% of the photoautotrophic biomass and primary production at Station ALOHA 

(Liu et al. 1997, Campbell et al. 1994, Karl et al. 2001a, b). Vertical profiles of 

Prochlorococcus reveal relatively homogeneous cell distributions through the upper 

75 m of the water column, averaging roughly 2.0 x 10s cells ml'1, and declining more 

than an order of magnitude toward the base of the photic zone (Figure 4). The 

abundance of the pigmented cyanobacterium Synechococcus is substantially lower 

than Prochlorococcus. Synechococcus abundance averages 2.0 x 103 cells ml'1 in the 

upper 75 m of the water column, and declines approximately an order of magnitude to 

the base of the photic zone (Figure 4). The non-chl a containing cells (which include 

the obligate heterotrophic and photoheterotrophic Bacteria) are greatest in the surface 

ocean, averaging roughly 4.5 x 10s cells ml'1 in the upper 75 m of the water column 

before declining to 2.3 x 10s cells ml*1 at the base of the photic zone (Figure 4).

The abundance of Prochlorococcus is remarkably high at Station ALOHA. 

Throughout the upper 75m of the water column, Prochlorococcus abundance 

averages 47% of heterotrophic bacterial abundance (Figure 4); by comparison, 

Prochlorococcus accounts for 4-10% of heterotrophic bacterial abundance in the 

oligotrophic Sargasso Sea. Prochlorococcus appears more successful in the upper 

ocean of the NPSG than in seasonally oligotrophic ecosystems. Examination of the 

time-series data on bacterial abundance at Station ALOHA reveals that the relative 

abundance of Prochlorococcus has increased -37% within the past decade (Figure 5). 

The biogeochemical and ecological consequences of the accumulated cell biomass are 

still unknown; however, these observations provide additional evidence that the upper
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Figure 4. a.) Mean vertical profiles of upper ocean bacterioplankton 

(Prochlorococcus, Synechococcus, and non-chlorophyll containing bacteria) at 

Station ALOHA. Profiles are average cell abundances measured at Station ALOHA 

between 1991 and 2001. b.) Ratio of chlorophyll containing bacteria 

(Prochlorococcus and Synechococcus) to non-chlorophyll containing bacteria at 

Station ALOHA. Dashed lines represent the percent surface irradiance penetrating to 

various depths in the photic zone.
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Figure 5. Depth integrated stocks of Prochlorococcus relative to non-chlorophyll 

containing bacteria at Station ALOHA. Line represents Model I linear regression of 

entire data set (1990-2001). Equation shown is least squares linear regression, where 

x is years since the beginning of the time series (December 1990).
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ocean of the NPSG is temporally dynamic over decadal time scales.

The influence o f bacterioplankton metabolic diversity on carbon cycling

Our knowledge on the growth and dynamics of bacterioplankton populations 

has stemmed primarily from two types of research: culture-based studies on isolated 

microorganisms, and culture-independent approaches to characterize rates of 

microbial biomass, growth, and diversity. Culture-based approaches use either solid 

or liquid media to isolate and cultivate representative members of prokaryote 

assemblages. The utility of these methods are apparent; by understanding the 

metabolic capacities of the organisms valuable information is obtained about the 

potential role of the organism in the environment. However, cultivation of marine 

microbes has proven a daunting task, and to date, fewer than 10% of oceanic 

bacterioplankton are believed to be in culture.

Development of culture-independent techniques revealed that 

bacterioplankton are numerous and actively growing in the oceans (Jannasch and 

Jones 1959, Hobbie et al. 1977, Karl 1979, Fuhrman and Azam 1980). Recent 

applications of both cultivation-dependent and independent methodologies have 

continued to improve our understanding of the role of bacterioplankton in ocean 

biogeochemistry. In particular, the use of flow cytometry to determine 

bacterioplankton abundance led to the landmark discovery of the most abundant 

photosynthetic organism on the planet, the unicellular bacterium Prochlorococcus 

(Chishlom et al. 1988).
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Application of genomic approaches to the study of microbial diversity has 

revolutionized the way we view taxonomic and physiological diversity in the oceans. 

For example, the discovery that three of the most deeply branching domains of life 

exist in the oceans was possible from sequencing 16S rRNA gene fragments 

(Giovannoni et al.1990, DeLong 1992, Fuhrman et al. 1992, Lopez-Garcia et al. 

2001). Use of molecular methods has provided information about the abundance of 

prokaryotic groups that live in oceans; perhaps most importantly, the deep and 

mesopelagic regions of the open ocean appear dominated by planktonic Archaea 

(Kamer et al. 2001) and the marine SAR 11 cluster of a-proteobacteria may comprise 

the most numerically abundant microorganisms on the planet (Rappe et al. 2002, 

Morris et al. 2003).

Despite these advances in characterizing the types of microorganisms present 

in the open ocean, recent investigations in the NPSG suggest that our knowledge of 

the physiological diversity of marine bacteria remains in its infancy. Previous studies 

that have considered the contributions of bacterioplankton to carbon and energy 

fluxes in the oceans were largely devoted to understanding the contribution of 

“autotrophic” and “heterotrophic” microorganisms. However, the recent rediscovery 

of abundant and diverse groups of aerobic anoxygenic photoheterotrophic (AAnP) 

bacteria in the upper ocean waters of the NPSG provided evidence that marine 

microbes can rely on complex physiological strategies for growth (Kolber et al. 2000, 

2001, Beja et al. 2002).

AAnP bacteria capture energy from sunlight for the production of ATP.

Unlike oxygenic photoautotrophs, AAnP bacteria do not cleave water as a source of
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reductant and therefore do not evolve oxygen as a photosynthetic biproduct. 

Photosynthesis in the AAnP bacteria is driven by a single light reaction with 

bacteriochlorophyll a (Bchl a) serving as the primary light harvesting pigment. AAnP 

bacteria also contain a wide diversity of cartenoids including zeaxanthin, 3-carotene, 

and spirilloxanthin, which appear to play central roles in the light-harvesting 

capabilities of these organisms (Yurkov and Beatty 1998). Photosynthesis by AAnP 

bacteria bears similarity to oxygenic photosynthesis; however, the one light reaction 

center generates energy (ATP) by cyclic electron flow, and does not produce 

reductant in the form of NADH. As a result, AAnP bacteria require exogenous 

sources of reductant, typically as reduced organic matter. Thus,

AAnP bacteria are facultative heterotrophs, utilizing DOC as a carbon substrate, but 

capable of fixing inorganic carbon when DOC is in limiting concentrations (Kolber et 

al. 2001).

In addition to the studies of AAnP bacteria, analyses of large bacterial gene 

fragments extracted from upper ocean bacterioplankton assemblages in the NPSG 

revealed that members of the SAR 86 cluster of y-Proteobacteria contained a 

previously undocumented phototrophic pathway (Beja et al. 2000, 2001). These 

bacteria use rhodopsin-like molecules (called proteorhodopsin) to capture light and 

transform photons into ATP. Upon absorption of light energy, the membrane bound 

proteorhodopsin undergoes a conformational shift, establishing a proton-motive force 

that drives ATP synthesis. Neither the carbon nor reductant sources of these 

proteorhodopsin containing bacteria are known; however, similar light-dependent
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proton pumping has been observed in the halophilic archaeon Halobacterium 

salinarum, which depends on organic matter as a carbon and reductant source.

A growing number of observations have demonstrated that various groups of 

bacteria grow mixotrophically utilizing multiple carbon, energy, and reductant 

sources (Kaden-Lee and Simonis 1982, Paerl 1991, Montesinos et al. 1997, 

Kamjunke and Jahnichen 2000.). Facultative photoautotrophy (or mixotrophy) is not 

uncommon among the photosynthetic plankton, and numerous cultivated 

photoautotrophic organisms have the ability to supplement or replace light and CO2 

with DOM as the primary energy and carbon sources for growth (Falkowski and 

Raven 1997). Similarly, facultative heterotrophs supplement or replace their 

utilization of DOM with sunlight and CO2 as primary energy and carbon resources 

(Kolber et al. 2001). This versatility in bacterial metabolism expands the suite of 

ecological resources available to the bacterioplankton. In fact, the advantages of 

mixotrophic metabolism in oligotrophic oceans leave one to wonder whether there are 

roles for obligate heterotrophs or autotrophs in these ecosystems.

Influence o f light on bacterial growth at Station ALOHA

The recent rediscovery of AAnP bacteria combined with the discovery of 

proteorhodopsin bacteria suggest that marine bacteria demonstrate versatile 

nutritional and metabolic strategies (Karl 2002a). The apparent diversity of bacterial 

metabolism in the NPSG reinforces the need for investigations that examine the 

contribution of diverse microbial physiologies to ocean carbon cycling. The relative 

increases in chlorophyll containing bacteria observed at Station ALOHA (Figure S)
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may result from increasing reliance of Prochlorococcus and Synechococcus on 

mixotrophic growth. The increasingly oligotrophic nature of the upper water column 

at Station ALOHA likely selects for biological communities that can selectively 

utilize the relatively abundant pools of DOM for nutritional supplement, while 

acquiring energy from sunlight. One of the motivating hypotheses of this study is 

that simultaneous utilization of DOM and sunlight provides the upper ocean plankton 

assemblages with sources of energy, reductant, nutrients, and carbon (Table 4).

A central theme throughout this study will be to evaluate the impact of solar 

energy on heterotrophic production in the oceans. The observation that heterotrophic 

production in the NPSG was significantly enhanced by sunlight was noted by Karl 

(1999), who suggested it likely resulted from tightly coupled photoautotrophic and 

heterotrophic processes. The present study sought to determine the importance of 

light-enhanced heterotrophic production on upper ocean carbon cycles. Three 

mechanisms are presented, all of which would result in light-stimulated bacterial 

production (Figure 6). The first mechanism (Figure 6a) is the utilization of sunlight 

for energy and DOM as a source of carbon and nutrients by the photoheterotrophic 

bacterial assemblages in the upper ocean at Station ALOHA. In this case, the 

harvesting of solar energy increases HBGE by decreasing the need for ATP 

production by substrate level and oxidative phosphorylation allowing more efficient 

retention of substrates into cell biomass. The net result is an increase in HBGE, 

effectively decreasing the total carbon flux into heterotrophic bacteria, while 

simultaneously increasing productivity.
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Table 4. Physiological classifications and nutritional, energy and reductant 
resources of the upper ocean plankton at Station ALOHA

Metabolism Carbon Energy e* donor

Obligate Photo- 
-heterotroph DOM sunlight DOM

•autotroph C 02 sunlight h 2o

Obligate Chemo- 
-heterotroph DOM DOM DOM

•autotroph C 02 reduced inorganic 
substrate/DOM

inorganic
substrate

Facultative
Photo/Chemo/Auto/

Heterotroph
(Mixotroph)

DOM/CO2 sunlight/DOM d o m /h 2o
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Figure 6. Schematic depicting possible mechanisms resulting in light-enhanced 

heterotrophic bacterial production at Station ALOHA. Included in schematic are 

possible sources of energy, reductant (e‘), and carbon and nutrients (CNP) for the 

three possible scenarios, a.) Photoheterotrophic production by newly discovered 

proteorhodopsin containing photoheterotrophs (Beja et al. 2001). Energy is derived 

exclusively from sunlight, while CNP and e- stem exclusively from dissolved organic 

matter (DOM), b.) Mixotrophic metabolism by aerobic, anoxygenic photosynthetic 

bacteria (AAnP) Kolber et al. 2000) or Prochlorococcus and Synechococcus. Energy 

is derived from either sunlight or DOM, e' may be either DOM (for the AAnP) or 

H20  (Prochlorococcus), and CNP sources may be either inorganic or organic, c.) 

Tightly coupled photoautotrophic and heterotrophic production. Prochlorococcus 

grows as an obligate photoautotroph, utilizing sunlight and inorganic nutrient pools. 

Exudation of DOM in the light fuels heterotrophic bacterial production.
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The second mechanism that would result in light-stimulated heterotrophic 

production is similar to the previously described mechanism, but the bacterial 

assemblage utilizing light and DOM is different. In this case (Figure 6b) mixotrophic 

bacteria gain energy by both DOM catabolism and sunlight, while tapping into a suite 

of reductant, carbon, and nutrient pools that include both organic and inorganic 

sources. Prochlorococcus represents a potentially important mixotrophic population 

to examine under this scenario.

The final mechanism of light-stimulated heterotrophic production described in 

this study results from a tightly coupled photoautotrophic-heterotrophic ecosystem 

(Figure 6c). By this mechanism, photoautotrophic production of labile DOM is 

directly coupled to heterotrophic utilization of this DOM pool. Under this scenario, 

carbon fluxes into the microbial loop would increase during the day, coincident with 

production of labile DOM and decrease at night. Under this circumstance, the daily 

integrated “light effect” would disappear due to the diel dependence of heterotrophic 

production.

Based on recent investigations demonstrating the presence of diverse 

photoheterotorphic bacterial assemblages, and observations that the upper ocean at 

Station ALOHA has become increasingly oligtrophic in the past decade, mixotrophic 

and photoheterotrophic production may have become an increasingly important 

pathway of carbon production in this system. As such, one of the central hypotheses 

of this work was that in the increasingly oligotrophic NPSG, utilization of multiple 

modes of nutrition and energy acquisition by the bacterioplankton would be favored.
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PROJECT JUSTIFICATION AND DISSERTATION OUTLINE

The motivation for this study stemmed from the desire to understand the 

ecological and biogeochemical role of bacteria in the NPSG. The documented 

changes in upper ocean biogeochemistry during the past decade provide fertile 

ground for examining hypotheses about microbial mediation of organic geochemistry 

in the NPSG. The NPSG is a prokaryote dominated ecosystem so constraining rates 

of prokaryote production and growth, and inventories of bacterioplankton abundance 

provides insight into ecosystem productivity and biomass. By combining time-series 

measurements on heterotrophic bacterial production with HOT program 

measurements of ocean biogeochemical processes, my objectives were three-fold:

1) Determine the influence of heterotrophic, bacterial production to upper

ocean carbon fluxes.

2) Evaluate the influence of irradiance on heterotrophic production.

3) Describe the temporal dynamics of upper ocean DOM inventories.

A large portion of my dissertation focuses on the role of light-regulated heterotrophic 

production in the open ocean.

Section II of this dissertation summarizes measurements of heterotrophic 

bacterial production from nine cruises to Station ALOHA between March 2000 and 

May 2002. Through quantification of heterotrophic production rates, the relative 

importance of heterotrophic bacteria to upper ocean organic carbon fluxes could be
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constrained. Section II describes a iight-enhancement of heteiotrophic bacterial 

protein production in the NPSG, and explores possible mechanisms that could result 

in light-stimulated heterotrophic production. The results of this section reveal that 

light-dependent bacterial production is a significant carbon flux in the upper ocean, 

equivalent to half of the heterotrophic bacterial production in the photic zone of the 

NPSG.

Section m  evaluates the response of heterotrophic bacterial protein production 

to irradiance at Station ALOHA. Based on the results of photosynthetron 

incubations, the dependence of leucine incorporation on irradiance is evaluated from 

several experiments conducted in the upper and lower photic zone. The results from 

Section m  revealed that the relationship between bacterial protein production and 

irradiance differed from response of photosynthesis to the same variable. Overall, 

heterotrophic protein production was more responsive to low light fluxes than 

photosynthesis; leucine incorporation rates increased significantly at low light fluxes, 

typically saturating or declining at light fluxes optimal for photosynthesis. This 

section provides the first quantitative assessment of the response of heterotrophic 

bacterioplankton protein production to irradiance.

Section IV of this dissertation describes the results of analyses of upper ocean 

DOM inventories at Station ALOHA. Several interesting temporal trends emerged 

from these analyses including apparent multi-year accumulations of dissolved organic 

carbon (DOC), nitrogen (DON), and phosphorus (DOP). In particular, upper ocean 

inventories of DOC increased by 303 mmol C m‘2 y r1, while DON accumulated at 14 

mmol N m'2 y r1. Inventories of DOP also demonstrated long-term accumulation
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(0.73 mmol P m‘2 yr'1), but through the latter period of observations, the rate of DOP 

accumulation decreased suggesting net long-term imbalances in the input and 

removal of DOP in the upper ocean. The observations from this section provide the 

first multi-year evaluation DOM dynamics in the oligotrophic North Pacific Ocean.
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ABSTRACT

Time-series observations of heterotrophic bacterial production (HBP) revealed 

consistent photoenhancement throughout the upper ocean of the North Pacific 

Subtropical Gyre (NPSG). Rates of 3H-leucine (Leu) incorporation were significantly 

greater in samples incubated under in situ light (Leui.) relative to samples incubated 

in the dark (Leuo); LeuL rates were 1.4- 1.8-fold greater than Leup throughout the 

upper water column. Photoenhancement of Leu incorporation was apparent 

throughout the upper 100 m of the water column, with relative light-stimulation 

greatest near the 1% surface irradiance isopleth. Light-stimulation of Leu 

incorporation resulted in a -50% increase in integrated protein production rates 

relative to rates measured in the dark, making HBP one of the largest organic carbon 

fluxes in the upper ocean. Linear regression analyses indicated that HBP varied 

positively with stocks of Prochlorococcus, but was not significantly related to either 

primary production or surface PAR fluxes, suggesting Prochlorococcus may utilize 

both organic and inorganic sources of nutrients for growth. Estimates of organic 

carbon fluxes in the upper ocean show that net community respiration ranged from 

12.7 to 13.8 mol C m'2 yr'1, and bacterial growth efficiencies were as high as 29%. 

Overall, light-regulated protein production contributed significantly to organic matter 

fluxes at Station ALOHA.

48
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INTRODUCTION

The growth of planktonic prokaryotes in the oceans plays an important role in 

global biogeochemical cycling. In large areas of the oceans, the combination of 

prokaryote biomass production and respiration accounts for the largest biologically 

mediated flux of carbon in the sea (Falkowski et al. 1994, Azam 1998). The North 

Pacific Subtropical Gyre (NPSG) covers nearly 40% of the Earth’s surface, forming 

both the largest circulation feature and continuous biome on the planet (Sverdrup et 

al. 1946, Karl 1999). The NPSG is a prokaryote dominated ecosystem; biomass of 

the unicellular prochlorophyte Prochlorococcus alone accounts for 40-90% of the 

photosynthetic biomass in the photic zone (Chisholm et al. 1988, Campbell and 

Vaulot 1993). Rates of both primary and secondary production in this ecosystem are 

largely dictated by prokaryotic growth (Karl 1999). Therefore, quantifying the 

factors that influence prokaryote production (both primary and secondary) and 

remineralization are crucial to understanding the region’s role in global carbon 

cycling.

Heterotrophic prokaryotes serve as the primary consumers and remineralizers 

of organic matter in the oceans, and therefore exert fundamental control over ocean 

biogeochemistry. In the photic zone of the NPSG, non-chlorophyll containing 

(presumably heterotrophic) bacteria dominate picoplankton abundance (Karl 1999,
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Kamer et al. 2001). Heterotrophic bacterial growth results in at least two dominant 

carbon fluxes in the open ocean. First, transformation of dissolved organic matter 

(DOM) into living biomass (by HBP) comprises a pathway for carbon to reenter the 

marine plankton food web (Pomeroy 1974, Azam et al. 1983, Cho and Azam 1988, 

Ducklow 1999). Second, heterotrophic respiration is a primary organic carbon sink in 

oceanic systems (Ducklow et al. 1986, Cole et al. 1988, del Giorgio and Cole 1998). 

Together, HBP and heterotrophic respiration (HR) account for the total carbon fluxes 

required to sustain heterotrophic prokaryote growth.

Measurements of HBP provide insight into the rate that heterotrophic bacteria 

utilize organic matter for production of living biomass. The efficiency with which 

organic carbon is converted into bacterial biomass is the heterotrophic bacterial 

growth efficiency (HBGE). HGBE reflects the gross organic carbon fluxes required 

to sustain bacterial growth. HBGE is defined as:

HBGE = HBP/HBP + HR

Estimates of HBGE in oceanic environments range from 0.01-0.6, averaging -0.2 in 

the open ocean (Carlson et al. 1996, del Giorgio and Cole 1998, Carlson et al. 1999).

Despite a persistent dearth of inorganic nutrients (average NO3' and PO43* 

concentrations are persistently below standard analytical detection limits, ranging 

from <1 to 10 nM and 10 to 100 nM in the surface ocean, respectively) observations 

from the Hawaii Ocean Time-series (HOT) between 1989-2001 suggest that the 

average annual rate of photoautotrophic production (PP) is 15 mol C m‘2 yr' 1 (Karl et
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al. 2001), nearly three-fold greater than the global average for open ocean ecosystems 

(Eppley and Peterson 1979, Longhurst et al. 1995). During the same observation 

period particulate carbon export averaged 1-2 mol C m'2 y r1, resulting in export ratios 

(e-ratio = measured export / PP) at Station ALOHA ranging between 0.06-0.13 (Karl 

et al. 2001), suggesting that 87-94% of the organic carbon fixed by photosynthesis 

was remineralized or retained as dissolved organic carbon (DOC) in the upper water 

column (Church et al. 2002). These estimates of PP do not include the potentially 

large contribution of photosynthetically derived carbon partitioned as DOC. For 

example, Karl et al. (1998) suggested that inclusion of DOC production at Station 

ALOHA would increase the total organic carbon production as much as two-fold. 

Assuming a doubling of total organic carbon production (particulate + DOC), 91-97% 

of total organic carbon produced would be remineralized, reinforcing the importance 

of bacterial metabolism as one of the largest organic carbon fluxes in the upper ocean.

Living cells depend on a continuous supply of energy for both growth and 

cellular maintenance (Schegel 1991). Cellular energy derives from metabolism, e.g. 

the orderly biochemical transformation of substances within the cell. In the past, 

studies on bacterioplankton growth in the upper ocean have focused on 

photoautotrophy and chemoheterotrophy as the primary metabolic pathways in the 

upper ocean. Recent studies suggest that these metabolic classifications may be 

insufficient to explain the diversity of bacterially-mediated processes driving upper 

ocean biogeochemical cycles (Fenchel 2001, Karl 2002). In particular, attention has 

focused on photoheterotrophy as a potentially important form of bacterial metabolism 

in the open ocean. Photoheterotrophy is defined as the light-dependent uptake and
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metabolism of dissolved organic matter (DOM) by phototrophic prokaryotes. 

Photoheterotrophs are physiologically distinct from chemoheterotrophs (which use 

DOM as sole energy, carbon, and reductant sources) and photoautotrophs (which use 

sunlight for energy, inorganic carbon, and water for reductant) in that they produce 

ATP from sunlight (via photophosphorylation) and gain reducing equivalents and 

carbon from DOM.

The oceans contain diverse groups of photoheterotophic bacteria, with equally 

diverse photoheterotrophic metabolic pathways. Kolber et al. (2000,2001) and Beja 

et al. (2002) recently described abundant groups of aerobic anoxygenic (AAnP) 

bacteria; AAnP are photoheterotrophic bacteria that contain bacteriochlorophyll a. 

Isolated strains of AAnP appear to be predominately heterotrophic, with the majority 

(>95%) of carbon anabolism being derived from heterotrophic metabolism (Yuricov 

and Beatty 1998, Kolber et al. 2001). However, AAnP use cyclic 

photophosphorylation to generate energy, and may also use carbon dioxide as a 

carbon source for biomass synthesis. Furthermore, they do not dissociate water as a 

source of reductant for synthesis of NADPH, and therefore do not evolve oxygen 

during photosynthesis (Yurkov and Beatty 1998).

In addition to the photoheterotrophic AnAP bacteria, another novel, 

bacterially-mediated, phototrophic pathway was identified by analyses of large gene 

fragments extracted from upper ocean prokaryote assemblages (B£j& et al. 2000, 

2001). Members of the SAR 86 clade of the upper ocean prokaryote assemblage are 

capable of harvesting light-energy via a non-photosynthetic pathway, employing a 

rhodopsin-like light harvesting molecule for ATP photoproduction (Bdja et al. 2000,
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2001). Although the metabolic pathways utilized by these phototrophic bacteria 

remain largely unknown, the relatively large pool of oceanic DOM has been 

suggested as a ready source of both carbon and/or reductant (Kolber et al. 2000, 

Fenchel 2001, Beja et al. 2001, Karl 2002). By harvesting light-energy for 

photophosphorylation, photoheterotrophic metabolism minimizes oxidative 

phosphorylation, thereby decreasing the overall aerobic respiratory demands of the 

cells (Yurkov and Beatty 1998). Understanding the potential contributions of these 

bacteria to upper ocean organic matter production and remineralization will require 

understanding their metabolic pathways.

Solar radiation influences a myriad of both abiotic and biotic processes in the 

upper ocean (see reviews by Moran and Zepp 2001, Mopper and Kieber 2002). Many 

studies have targeted the potentially important influences of UV light (-200-400 nm) 

on photochemical transformation of DOM in the marine environment. UV light 

penetrates relatively deep (-30 m) into the upper ocean in oligotrophic marine 

ecosystems (Smith and Baker 1981), suggesting its influence on microbial processes 

in these ecosystems may be particularly important.

UV photooxidization appears to impact DOM bioavailability, often producing 

low molecular weight, partially oxidized substrates (such as carbonyl compounds) 

that may support a large fracUon of the upper ocean microbial metabolic requirements 

(Kieber et al. 1989, Mopper et al. 1991, Benner and Biddanda 1998). However, 

several studies have also observed photochemical production of recalcitrant DOM, a 

process likely attributable to cross-linking of large molecular DOM compounds 

(Tranvik and Kokalj 1998). In addition, DOM absorption of UV radiation releases
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and consumes inorganic and organic nutrient ions such as N H / and amino acids 

(Bushaw et al. 1996, Bushaw-Newton and Moran 1999). Any of these 

photochemically mediated processes can influence the productivity of marine 

microbes.

In addition to abiotic transformation of organic and inorganic nutrients by 

solar radiation, solar radiation may also directly influence planktonic growth and 

productivity in the upper ocean. UV light generally appears detrimental to the growth 

of planktonic microbes; absorption of UV-B radiation (300-315 nm) results in cross 

linking of DNA bases and interferes with DNA replication (Jeffrey et al. 1996a). 

UV-light appears to inhibit bacterial production by 10-70% in the upper 20 m of the 

water column (Hemdl et al. 1993, Aas et al. 1996); however, a significant fraction of 

the UV-induced photodamage to bacterioplankton cells appears repairable by light- 

sensitive DNA repair enzymes, reducing the net effect of daytime photochemical 

damage (Jeffrey et al. 1996b, Booth et al. 2001).

The principal objectives of this study were: 1.) conduct time-series 

observations on HBP in the NPSG; 2.) examine the potential importance of PAR on 

bacterial production to upper ocean organic carbon fluxes; and 3.) construct an annual 

carbon flux budget for the upper ocean at Station ALOHA inclusive of the 

contribution of HBP and photoenhanced HBP (PHBP). The results of this study 

indicate that light-stimulated HBP significantly enhanced the flux of carbon to the 

base of the plankton food web, and influenced the cycling of carbon in the upper 

ocean.
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MATERIALS AND METHODS

Study site and sampling

Sampling for this study was conducted on nine HOT cruises (HOT 114,115, 

116,118,119,124,135,136,137) to Station ALOHA (22° 45’ N, 158° 00’ W) 

between February 2000 and May 2002 aboard the R/V Kaimikai-O-Kanaloa (Table 

1). Water samples were collected at eight discrete depths (5,25,45,75,100,125,

150,175 m) in the upper ocean at Station ALOHA using a conductivity-temperature- 

depth (CTD) rosette sampler with 24-PVC bottles. The sampling depths were chosen 

to match simultaneous determination of rates of 14C-PP.

Rates of heterotrophic bacterial production (HBP) were estimated based on 

the incorporation of the 3H-amino acid leucine into bulk plankton community proteins 

(Kirchman et al. 1983). Whole seawater was collected into acid-cleaned, 40 ml 

polycarbonate centrifuge tubes and inoculated with 20 nmol L' 1 of leucine (19 nmol 

L 1 nonradioactive leucine +1 nmol L '13H-leucine). Three replicates and one blank 

were prepared for each treatment (light and dark incubation) from each depth. 

Polycarbonate (PC) has been shown to effectively screen UV-A and UV-B radiation, 

but is largely transparent to PAR (Holm-Hansen et al. 1989); the specific spectral 

absorption of the PC incubation tubes used in this study is shown in Figure 1.
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Table 1. Sampling and physical water column properties at Station ALOHA
Cruise Month/Year Temperature

<°C)
MLD1

(m)
PAR2 

(mol quanta m'2 d '1)
k3

(m*1)
EZ4
(m)

114 April 2000 23.9 52±10 50.2 0.048 96

115 May 2000 24.9 31±8 46.3 0.039 118

116 June 2000 25.6 29±9 58.7 0.057 84

118 August 2000 25.9 62±7 49.4 0.043 108

119 October 2000 25.9 70±10 30.6 0.043 107

124 March 2001 24.1 59±16 43.1 0.039 119

135 February 2002 23.0 89±14 37.1 0.042 104

136 March 2002 23.3 93±51 44.7 0.040 114

137 May 2002 25.0 21±10 51.9 0.040 116

1 Mixed Layer Depths (MLD) determined by 0.125 unit potential density criterion of Monterey and Levitus (1997).
2 PAR fluxes at surface ocean as measured by LICOR detector.
3 Attenuation coefficient of PAR (0-100 m) based on vertical profiles of PAR fluxes.
4 Photic zone depths equal to depth of 1% surface isopleth.



57

Figure 1. Absorption spectra of Oak Ridge polycarbonate centrifuge tubes used for 

this study. Spectra were obtained using a Varian Cary 20 UV-Visible 

Spectrophotometer. Note strong absorption of UV wavelengths (200-400 nm), and 

low relative absorption in the PAR region (400-700 nm) of the spectrum.
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Specific activities of ̂ -leucine stocks were 150-180 Ci mmol' 1 (New England 

Nuclear, NEN460A). The concentration of Leu added was empirically determined to 

nearly saturate heterotrophic uptake, thereby minimizing intracellular isotope dilution 

(Figure 2).

To determine the effect of PAR on HBP, samples were incubated under both 

in situ light and in the dark. HBP assays were incubated alongside 14C-PP assays on a 

free-floating in situ array. Blank Leu treatments were immediately filtered onto a 25 

mm, 0.2 pm cellulose acetate filters (Millipore) and stored frozen in 15 ml centrifuge 

tubes until processed at the laboratory. Triplicate 40 ml subsamples were placed in 

transparent plexiglass cylinders and hung from a free-floating, surface tethered, in 

situ array; triplicate dark treatments were placed in opaque cloth bags and also hung 

from the array. Samples were hung at eight depths throughout the photic zone (5, 25,

45,75,100,125,150,175 m) and incubated throughout the daylight period (the 

average incubation time was 12.5 hours). Time-course experiments were conducted 

to assure that 3H-protein production was linear throughout the period of incubation 

(Figure 3). To terminate incubations, samples were filtered onto 0.2 pm HA filters 

and frozen in centrifuge tubes. In the laboratory samples and blanks were processed 

identically.

Determination o f3H-leucine incorporation rates

After transport to the laboratory, determination of the Leu incorporation rate 

into proteins and nucleic acids was based on a modification of the Schmidt- 

Thannhauser procedure (Karl 1982). Proteins were extracted via alkaline hydrolysis
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Figure 2. Rale of Leu incorporation into protein as a function of Leu concentration. 

Samples were collected at 5 m depth in May 2001. Open circles are light incubated 

samples, closed circles are dark incubated samples. Samples were incubated on the 

deck of the ship in incubators designed to mimic temperature and light conditions of 

the surface ocean. Lines are least squares regression: dashed line (light): y = 74 x / 

(3.1 + x), 1̂ = 0.87, P=0.021; solid line (dark): y = 64x / (4.1 + x), ^=0.87, p= 0.021.
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Figure 3. Time course of 3H-leucine incorporation (DPM) into plankton proteins 

from 5 m depth in April 2000. Temperature of incubation was 24°C; incubator was 

shaded to mimic light intensity at 5 m depth. Open symbols are samples incubated in 

the light, filled circles are samples incubated in the dark. Lines are least-square linear 

regression (Model I) of DPM versus time. Solid line (dark): y = 4318x + 10651, r2 = 

0.93, P=0.001; dashed line (light): y = 9559x + 553, r2 = 0.94, P<0.005.
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of acid-insoluble macromolecules, and nucleic acids were separated by hot 

acidification. Briefly, 0.5 ml of a 2 mg ml*1 mixture of RNA, DNA, and protein (as 

bovine serum albumin) were added to each sample. Five milliliters of an ice-cold 

acetone slurry containing diatomaceous earth (0.5 g diatomaceous earth + 5 ml 100% 

acetone) was then added to each sample. The RNA, DNA, protein mixture was added 

to aid macromolecular precipitation (Karl 1982). Filters were solubilized in the 

acetone slurry for one hour, after which the centrifuge tubes were placed in a 

refrigerated (2°C), bench-top centrifuge and spun at 4000 rpm for 10 minutes. Upon 

completion of centrifugation, the supernatant was aspirated from each sample, and 5 

ml of ice-cold 5% trichloroacetic acid (TCA) was added to each sample test tube. 

Samples were vortexed briefly, and placed back into the centrifuge and spun for an 

additional 10 minutes. This process was repeated twice with 5% TCA, then twice 

with ice-cold 80% ethanol (EtOH). After the second ethanol rinse, centrifuge tubes 

were placed in a heating block (80°C) and excess EtOH was evaporated.

When samples were completely dry, 4 ml of 5% TCA were added to each 

sample and tubes were placed in a heating block set at 100°C, and samples were 

boiled for 30 minutes. Two-ml subsamples were removed for determination of the 

relative amount of 3H dissimilated into nucleic acids. Subsamples were placed in 20 

ml glass scintillation vials with 10 ml of Aquasol II liquid scintillation cocktail. The 

remaining 5% TCA supernatant was aspirated from each tube, and 5% TCA rinses 

were repeated two more times, followed by one additional 80% EtOH rinse. Excess 

EtOH was evaporated, and 4 ml of 1 M NaOH was added to each sample. Samples
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were placed in a water bath at 43°C for 18 hours. Two-ml of base hydrolyzed 

proteins were removed from each tube and placed in a 20 ml glass scintillation vial 

with 1 M HC1 and 10 ml Aquasol II. Samples were counted on TRI-CARB 4640 

liquid scintillation counter (Packard Instruments, Co.) using external quench 

standards and luminescence correction.

Measured rates of Leu incorporation into proteins (pM Leu hr*1) were 

converted to carbon production rates, ignoring isotope dilution. A carbon conversion 

factor of 1.5 kg C mol*1 Leu (Simon and Azam 1989) was used to calculate carbon 

based HBP. Integrated water column production rates were calculated through the 

upper 200 m using trapezoidal integration.

Primary production and cell abundance

Estimates of PP were based on depth profiles of photosynthetic rates 

measured using the 14C-bicarbonate uptake assays described in Letelier et al. (1996). 

Data used in the present study were obtained from the HOT web site 

(http://hahana.soest.hawaii.edu/hot). Briefly, seawater from predawn hydrocasts was 

subsampled into acid cleaned 500 ml polycarbonate bottles and spiked with ,4C- 

bicarbonate. A 250 pi subsample was removed from each bottle at the beginning of 

the incubation for determination of l4C specific activity. Triplicate samples were 

incubated on an in situ array. Similar to HBP, samples were incubated for variable 

lengths of time depending on the daylight period, averaging 12.5 hours. Experiments 

were terminated by filtering seawater onto 25 mm glass fiber filters (Whatman GF/F, 

nominal pore size 0.7 pm). Filters were placed in glass scintillation vials and stored
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frozen until processed. In the laboratory filters were acidified with 1 ml of 2M HC1 

and vented for 24 hours, followed by addition of 10 ml Aquasol II scintillation 

cocktail. Samples were counted on a TRICARB 4640 liquid scintillation counter. 

Calculations of photosynthetic production relied on measured total inorganic carbon 

concentrations for determination of isotopic dilution. Integrated PP was derived by 

trapezoidal integration of vertical profiles of photosynthetic rates over the top 200 m 

of the water column.

Prokaryote abundance was enumerated by flow cytometry using the methods 

described in Monger and Landry (1993) and Campbell and Vaulot (1993). Samples 

were collected from the same hydrocasts as productivity assays; seawater was 

collected in IS ml polypropylene tubes, and then 1 ml was subsampled into Cyrovials 

(Coming) containing 0.02 ml of 10% paraformaldehyde. Cyrovials were then quick 

frozen in liquid nitrogen and stored at -80°C until analyzed. Prior to analyses, 

samples were thawed and stained for 2 hours with the fluorochrome Hoescht 33342 

(Monger and Landry 1983). Samples were analyzed for abundance of 

Prochlorococcus, Synechococcus, and non-chlorophyll containing prokaryotes 

(presumably heterotrophic Bacteria and Archaea) on a Coulter EPICS dual laser (1 W 

488 nm and 225 mW UV) flow cytometer. Particle signals were collected as forward 

light scatter, side scatter, red fluorescence, orange fluorescence, and blue 

fluorescence, and converted to cell abundance using the software CYTOPC (Vaulot 

1989).
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Light measurements

Surface ocean water PAR fluxes were determined from a shipboard LICOR 

LI-200 detector on the days that primary production and bacterial production was 

measured. Light fluxes were binned into 10 minute intervals and integrated over the 

daily photoperiod to determine daily PAR fluxes. To determine the variation in light 

flux with depth, extinction coefficients were calculated from verticai profiles of 

downwelling irradiance using a Biospherical Instruments Profiling Reflectance 

Refractometer. Photic zone depths were calculated as the depth of the 1% surface 

irradiance isolume. The mean mixed layer depth averaged PAR fluxes (Iz*) were 

calculated as:

Iz* = (l/kz)I0 ( l-e kz) 

where k is the calculated attenuation coefficient, z was the depth of the mixed layer, 

and Io was the measured incident PAR flux at the surface (Townsend and Spinrad, 

1986).

Statistical Analyses

Statistical analyses of the data were performed using Minitab (v. 12.1). Least 

square linear regressions (Model II) were used for linear correlation analyses among 

various integrated stocks and fluxes. Data were checked for homogeneity of variance 

and normality. Differences among mean rates and stocks were analyzed using one­

way ANOVA. Significance of all statistical tests were evaluated at the P<0.05 level.
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RESULTS

Physical environment: temperature, mixing, and light

Samples were collected on nine cruises over a three year period (2000-2002) 

with at least one sampling in each season. Five of the cruises took place in the spring, 

two cruises in the summer, and one each during the fall and winter (Table 1). Surface 

water temperatures at Station ALOHA between January 2000 and June 2002 are 

shown in Figure 3. Surface water temperatures for the entire 13-year time-series at 

Station ALOHA were binned by month and the mean monthly climatological cycle is 

shown in Figure 3b. During this study, surface water temperatures (23.0-26.3°C) 

were typical of mean monthly climatology (Table 1, Figure 4).

Temporal variability in surface water temperatures strongly influenced the 

mixed layer depths at Station ALOHA (Figure 4). Mixed layer depths on the nine 

cruises of this study varied between 21-93 m, with the deepest mixing in February 

and March (Figure 5, Table 1), typical of the climatological range reported at Station 

ALOHA (Karl and Lukas 1996). Despite clear seasonality in mixing, mixed layer 

depths rarely exceeded photic zone depths (1% surface isopleth) (Figure 5).

Surface ocean PAR fluxes (Io) ranged between 25.6-58.7 mol quanta m'2 d '1, 

with peak fluxes in the summer, and lowest fluxes in the winter (Figure 6). The depth
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Figure 4. Temporal variability in surface water temperature (°C) at Station ALOHA, 

(a) Surface ocean temperatures from January 2000-June 2002; closed symbols are 

cruises sampled during this study, (b) Mean monthly surface water temperatures at 

Station ALOHA for the entire HOT observation period (1989-2002). Error bars are 

standard deviation of mean monthly temperature.
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Figure 5. (a) Mixed layer depths (MLD; squares) and photic zone depths (1% 

isopleth) at Station ALOHA between January 2000 and June 2002. Photic zone 

depths depicted with triangles. Symbols containing closed circles are cruises sampled 

during this study, (b) Mean MLD binned by month for entire HOT observation 

period (1989-2002). Error bars are standard error of mean monthly MLD. MLD 

calculated using the 0.125 unit potential density criterion (Monterey and 

Levitusl997).
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of the 1% isopleth ranged between 82-121 m averaging 106 m (Figure S, Table 1). 

lz* fluxes ranged 5.9-30 mol quanta m'2 d '\  with mixed-layer PAR fluxes maximal in 

the summer and lowest in the winter. Relatively large fluxes of PAR penetrated the 

mixed layer and provided an energy source to the plankton assemblages growing in 

the top of the stratified pycnocline. PAR fluxes at the base of the photic zone ranged 

from 0.16-0.59 mol quanta m'2 d '1 and averaged 0.42 mol quanta m‘2 d'1 (Figure 6, 

Table 1). The mean daily photoperiod for the nine cruises sampled in this study was 

12.5 hours. Attenuation coefficients (k) during this study were positively correlated 

with integrated Chi a (Model II linear regression, r2 = 0.55, p<0.05), suggesting that 

pigmented plankton biomass influenced light penetration into the upper ocean. A 

large phytoplankton bloom in the upper 45 m of the photic zone (chlorophyll a >30 

mg Chi. a m'2) on HOT 116 (June 2000) increased light attenuation in the upper 

ocean, and shoaled the base of the photic zone from 120 m to 82 m (Figure 5,6,

Table 1).

Upper ocean picoplankton distributions

The mean time-averaged vertical distributions of picoplankton (<2.0 pm in 

diameter) at Station ALOHA during the period of this study are shown in Figure 7. 

Non-chlorophyll containing bacteria were the most abundant bacterial group in the 

upper ocean; cell concentrations averaged 4.8 x 10s cells m l1 in the surface water, 

and declined approximately 60% through the upper 175 m. The abundance of non­

chlorophyll containing bacteria were relatively homogeneous through the upper 45 m,
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Figure 6. (a) Fluxes of photosynthetically available radiation (PAR) at Station 

ALOHA between January 2000 and June 2002. Triangles are surface fluxes, squares 

are average mixed layer fluxes, and circles are fluxes at the base of the photic zone. 

Closed symbols are cruises sampled for this study, (b) Attenuation coefficients (k) 

during the same observation period.
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Figure 7. Mean time-averaged vertical profiles of a.) non-chlorophyll containing 

bacteria (closed squares), b.) Prochlorococcus (open circles), and c.) Synechococcus 

(open triangles) in the upper ocean at Station ALOHA during this study. Values are 

mean abundances for the nine cruises of this study; error bars represent standard 

deviation of the mean.
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but declined -30% between 45-75 m, and continued to decrease roughly linearly with 

increasing depth.

The abundance of the pigmented photoautotroph Prochlorococcus was 

consistently lower than the abundance of non-chlorophyll containing bacteria.

Surface water abundance of Prochlorococcus was roughly 70% lower than the 

abundance of non-chlorophyll containing bacteria, averaging 1.7 x 10s cells ml'1 

(Figure 7). Prochlorococcus abundance was greatest in the mid-photic zone (45-75 

m), where PAR fluxes were reduced to 0.63-1.8 mol quanta m'2 d '1 (4.2-14% surface 

isopleth). Peak Prochlorococcus abundance averaged 2.9 x 105 cells m l1 and was 

only 15% lower than the abundance of non-pigmented bacteria. The unicellular 

cyanobacterium Synechococcus was more than two orders of magnitude less abundant 

than Prochlorococcus. Surface water Synechococcus abundance averaged 1.3 x 103 

cells ml'1, increasing slightly between the surface water and 45 m, and then declining 

-95% to 175 m (Figure 7).

Partitioning o f Leu into nucleic acids

The relative proportion of 3H extracted in bulk plankton nucleic acids was 

typically <10% of 3H found in the protein extracts (Table 2), suggesting only a small 

fraction of Leu incorporated into heterotrophic bacteria was dissimilated or 

nonspecifically assimilated into intracellular nucleic acid pools. The relative 

proportion of Leu in the nucleic acids subtractions tended to increase with depth, but 

even below the photic zone 3H in nucleic acids was still typically <10% of the counts 

observed in proteins (Table 2).
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Table 2. ^-activity of nucleic acids extracts and ^-activity in nucleic acids 
relative to protein extracts at Station ALOHA._________________________

HOT Cruise 
Date

115 
May 2000

Depth
(m)

5

NA 
Light* 

(DPM m l1)

200.83

NA 
Dark 

(DPM ml*1)

164.28

%
NA/Pro
Light”

0.65

%
NA/Pro

Dark
(%)

3.21

25 308.93 151.81 0.86 3.35

45 252.24 85.21 4.10 3.19

75 189.01 117.37 3.39 3.20

100 174.57 94.15 3.76 4.14

125 135.09 75.94 4.90 4.46

150 52.75 44.69 8.11 6.81

175 28.78 40.08 5.21 5.91

118 
June 2000

5 73.82 24.58 1.36 0.56

25 100.71 103.31 1.12 1.87

45 107.13 57.95 1.52 1.25

75 55.39 22.12 0.98 2.93

100 24.49 42.18 0.59 2.46

125 19.48 30.55 2.19 2.68

150 23.23 17.06 3.25 3.00

175 19.25 17.22 3.48 3.73

a dpm per ml (3H) of planktonic nucleic acid subfractions. Samples incubated in situ 
in the light and dark.
b Percentage 3H in nucleic acids from samples incubated in the light and in the dark 
relative to H in protein subfractions [ i.e. (3H nucleic acids/3!! PRO) *100].
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Figure 8. Vertical profiles of a.) leucine incorporation in the light (LeuO, b.) leucine 

incorporation in the dark (Leup), and c.) photoautotrophic production (PP) in the 

upper ocean (0-175 m) for all cruises sampled during this study. Symbols used for 

each cruise are shown in figure legend.
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Vertical profiles of Leu incorporation and heterotrophic production

Figure 8 shows vertical profiles of Leu^ Leuo and PP for the nine cruises 

sampled during this study. Overall, rates of LeuL and Leuo decreased significantly 

with depth and along the light gradient in the upper ocean (Two-way ANOVA, 

P<0.05). Leu incorporation rates displayed little temporal variability; on average, 

rates of Leui, were not significantly different throughout the upper 75 m of the water 

column among the cruises sampled (One-way ANOVA, P>0.05). Similarly, Leuo 

incorporation rates were statistically indistinguishable throughout the upper 75 m of 

the water column for all of the cruises sampled in this study (One-way ANOVA, 

PX3.05).

LeuL rates demonstrated significant photoenhancement throughout the upper 

photic zone (45-100 m) among the cruises sampled for this study (T-test, P<0.05); 

mean Leui. rates were 1.5-1.9 fold greater than corresponding Leuo rates (Figure 9). 

Below 125 m Leui. and LeuD rates were not significantly different (T-test, P<0.005). 

Light fluxes at 125 m were <0.5% of the daily surface insolation, and PAR fluxes fell 

below 0.22 mol quanta m'2 d 1. Photoenhancement of bacterial protein production 

was apparent on all nine cruises sampled, although occasionally, at discrete depths, 

rates of Leuo exceeded Leui.. For example, a large phytoplankton bloom in June 

2000, concentrated in the upper 45 m, increased Leuo rates at 25 m by more than two­

fold relative to the mean Leuo rate at 25 m. During this event, rates of Leui. did not 

increase proportionately as much as Leuo, resulting in one of the sampling 

opportunities where Leuo rates exceeded LeuL.
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The difference between Leui. and Leup (ALeu) provided a quantitative 

estimate of the rate of photoenhanced Leu incorporation:

ALeu = LeuL-Leup

Average ALeu rates in the upper 75 m ranged from 13-20 pmol L'1 h r1 (Figure 9), 

with peak rates found at 45 m. Rates of ALeu demonstrated little temporal variance 

in the upper 75 m, despite over an order of magnitude decrease in PAR fluxes (1.8-37 

mol quanta m'2 d '1) (Figure 9).

Conversion of Leu incorporation rates to carbon equivalents emphasized the 

importance of light-stimulated HBP to the upper ocean at Station ALOHA. HBPl 

averaged 4.8-7.1 nmol C L '1 h r1 in the upper 75 m, 33-67% greater than 

corresponding HBPp. The difference between HBPl and HBPp, defined as 

photoenhanced heterotrophic bacterial production (PHBP), accounted for 1.7-2.5 

nmol C L 1 hr'1 the upper 75 m of the water column. Significant rates of PHBP were 

observed at depths <125 m, where the mean irradiance was >0.5% of the daily surface 

PAR flux (Figure 10). Proportionately, sunlight had the greatest influence on HBP 

rates in the lower portion of the photic zone (45-125 m), where PHBP accounted for 

7.4-33% of contemporaneous photoautotrophic production, 35-40% of HBPl, and 68- 

91% of HBPd (Figure 10).

Similar to LeuL and Leuo. mean rates of PP were not significantly different 

throughout the upper 75 m of the water column among the cruises sampled in this 

study (One way ANOVA, P>0.05). Rates of PP in the top 25 m of the photic zone 

averaged 57 nmol C L'1 h r1, decreasing to 24-37 nmol C L '1 hr'1 between 45-75 m
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Figure 9. Mean time-averaged vertical profiles of a.) LeuL(open circles) and Leuo 

(closed diamonds), b.) LeuL:LeuD ratio, and c.) photoenhanced Leu (ALeu) during 

this study. Symbols are mean values of the nine time-series cruises in this study, 

error bars are standard errors of the means (n=9).
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Figure 10. (a) Mean time-averaged vertical profiles of HBPl (open circles), HBPd 

(closed diamonds), and PHBP (bars) for the nine cruises sampled in this study. Error 

bars are standard error of the mean rates, (b) Mean vertical profile of PP (open 

squares) and PAR fluxes (open triangles) in the upper ocean at Station ALOHA.

Error bars of PP are standard error of mean rate; error bars of PAR fluxes are standard 

deviation of mean flux, (c) Profiles of relative importance of PHBP; closed 

diamonds are PHBP:HBPd; open circles are PHBP:HPPl; grey squares are PHBP:PP.
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(Figure 10). In June 2000, rates of photoautotrophic production in the top 25 m were 

more than three times greater than the average upper ocean productivity for the entire 

sampling period (Figure 8). No significant PP was observed below the 0.22 mol 

quanta m'2 d 1 isolume, or the approximate depth of the 0.5% isopleth (>125 m).

Depth integrated production and abundance

Mean depth-integrated (0-175 m) light-enhanced HBP was 50% greater than 

corresponding HBPd. Average integrated HBPl was 0.69 mmol C m'2 hr'1 while 

mean HBPd was 0.46 mmol C m 2 hr'1. HBPl and HBPd ranged 0.44-1.0 and 0.34- 

0.62 mmol C m'2 hr*1, respectively, and by difference PHBP ranged 0.09-0.41 mmol 

C m*2 hr*1 (Table 3, Figure 11). Integrated rates of HBPl, HBPd, and PHBP were not 

significantly different between the cruises despite significant differences in PP and 

PAR fluxes. Both HBPl and HBPd were lowest in February 2002 (HOT 135) when 

Prochlorococcus stocks were at their minimum (Table 3), and PHBP was lowest in 

October 2000 (HOT 119) (Table 3).

The average rate of depth-integrated PP during the observation period was 4.0 

mmol C m'2 hr'1, with rates ranging from 1.8-7.5 mmol C m^hr'1 (Figure 11). Peak 

rates of PP were observed in June 2000 (HOT 116), coincident with the large increase 

in upper ocean chlorophyll (Table 3), and lowest rates were measured in October 

2000 (HOT 119) and March 2001 (HOT 124) (Table 3). PHBP and HBPL were 

equivalent to 5% and 16% of PP, respectively. Daily total heterotrophic production 

(HBP-r) was calculated as

HBPt = [(HBPl *12 hours) + (HBPD*12 hours)]
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Figure 11. Time-series (February 2000-June 2002) of depth-integrated HBP in the 

upper ocean (<175 m) at Station ALOHA. Integrated HBPl rates are closed bars; 

PHBP rates are open bars; error bars are standard deviation of integrated rates. Also 

shown are depth-integrated PP (grey squares) and surface PAR fluxes (open circles).
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Table 3. Depth-integrated rates and bacterial stocks in the upper ocean (0-175 m) at Station ALOHA.
Date

Cruise
Chi a*

(mg Chi m'*)
PP

(mmol C 
m 1 h r 1)

HBPl
(mmol C 
m J hr'1)

HBPd
(mmol C 
m 2 h r 1)

PHBP
(mmol C 
m J h r ')

Prochloro 
(1011 cells 

m J)

Non-pig 
(10" cells 

m*>

Svn 
(10" cells 

m'1)
April 2000 20.7 4.9 0.84 0.64 0.20 187 708 3.05
HOT 114 (0.06) (0.05) (0.076)
May 2000 22.9 3.3 1.0 0.60 0.40 274 787 1.35
HOT 115 (0.10) (0.070) (0.12)
June 2000 34.1 7.5 0.82 0.62 0.20 328 765 1.12
HOT 116 (0.036) (0.039) (0.052)

August 2000 21.8 4.6 0.74 0.38 0.36 161 637 1.23
HOT 118 (0.026) (0.020) (0.033)

October 2000 18.4 2.6 0.50 0.42 0.08 131 305 0.745
HOT 119 (0.047) (0.028) (0.054)

March 2001 21.3 2.6 0.77 0.43 0.34 211 252 2.79
HOT 124 (0.016) (0.019) (0.025)

February 2002 16.5 3.7 0.44 0.34 0.10 106 321 1.46
HOT 135 (0.023) (0.018) (0.029)

March 2002 19.6 4.9 0.57 0.36 0.21 na na na
HOT 136 (0.035) (0.021) (0.041)
May 2002 21.9 5.5 0.55 0.34 0.21 145 253 1.27
HOT 137 (0.035) (0.031) (0.047)

Top numbers are depth-integrated rates and stocks, numbers in parentheses are standard deviation of the mean integrated property.
* Abbreviations are: Chlorophyll a (Chi. a), photoautotrophic production (PP), heterotrophic bacterial production in the light (HBPl) 
and dark (HBPd), photoenhanced heterotrophic bacterial production (PHBP), Prochlorococcus (Prochloro), non-pigmented bacteria 
(Non-pig), Synechococcus (Syn), na -data not available.
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assuming nighttime HBP was equivalent to HBPd. HBPt averaged 16.2 mmol C m'2 

d'1 with PHBP contributing 3.0 mmol C m‘2 d'1 or -19% of HBPt.

Regression analyses

Table 4 shows the results of Model II least-squares linear regression analyses 

of upper ocean (<175 m) productivity and stocks measured during this study. No 

significant linear relationships were observed between stocks of Prochlorococcus and 

either non-pigmented bacteria or Synechococcus. Both HBPl and HBPd were 

correlated with the integrated abundance of Prochlorococcus and non-pigmented 

bacteria; integrated stocks of Prochlorococcus accounted for roughly 60% of the 

variability in both integrated HBPl (r2̂  0.79, P=0.04) and HBPd (r2=0.77, P=0.05) 

(Table 4). These results suggest that HBP in this ecosystem was significantly 

influenced by the abundance of Prochlorococcus.
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Table 4. Model II least squares linear regression analyses of depth-integrated properties of the upper ocean at 
Station ALOHA. Top numbers are coefficients of determination of regressions (R ) and bottom numbers 
are significance (P) of regression.

Variable I." PP HBPL HBPd PHBP Non-pig
Bact

Prochloro Syn Chi a

I* *** 0.67 nsb ns ns 0.79 0.76 ns 0.81
(0.01) (0.03) (0.05) (0.02)

PP ns ns ns ns ns ns 0.74
(0.02)

HBPl *** 0.81 0.75 0.79 0.80 ns ns
(0.008) (0.02) (0.02) (0.02)

HBPd *♦* ns 0.81 0.78 ns ns
(0.02) (0.02)

PHBP ns ns ns ns

Non-pig. Bact. *** ns ns ns

Prochloro. ns 0.88
(0.004)

Syn. *** ns

Chi. a ***

* Abbreviations are: Incident PAR flux (Io), photoautotrophic production (PP), heterotrophic bacterial production (HBP), 
photoenhanced heterotrophic bacterial production (PHBP), non-pigmented bacteria (Non-pig Bact.), Prochlorococcus (Prochloro.), 
Synechococcus (Syn.). bns= not significant (P>0.05).
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DISCUSSION

Motivation and significance

This study was motivated by two fundamental questions: 1) what are the 

contributions of heterotrophic bacteria to upper ocean organic carbon fluxes in the 

NPSG, and 2) how does PAR impact heterotrophic bacterial growth? Recent 

investigations on the structure and functioning of the NPSG microbial food web 

provided compelling observations that the upper ocean microbial assemblage exerts 

fundamental control on upper ocean biogeochemistry. In particular, long-term 

changes in plankton community structure appear to have altered nutrient dynamics 

and organic matter cycling in the NPSG (Karl et al. 1995, Karl 1999,2002b, Church 

et al. 2002). In addition, several groups of upper ocean bacterial assemblages utilize 

photoheterotrophic production, potentially influencing organic matter cycling in this 

ecosystem (Fenchel 2001, Kolber et al. 2001, Bdja et al. 2001, Karl 2002). These 

uncharacterized modes of bacterial phototrophy may comprise an important pathway 

for biomass production in the ocean (Beja et al. 2000,2001, Kolber et al. 2000, 

2001).

By characterizing how the HBP responded to light, this study evaluated how 

PAR fluxes influenced the magnitude of organic carbon flux through the base of the 

plankton food-web at Station ALOHA. The influence of sunlight on rates of
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secondary production were pronounced: PHBP rates averaged 3.0 mol C m'2 d '\  

nearly equivalent in magnitude to carbon export from the upper ocean (Emerson et al. 

1997, Karl et al. 2001), the dominant sink for organic carbon in the this ecosystem. 

There are a myriad of photophysiological and photochemical processes that could 

result in photostimulation of HBP; this study was not designed to specifically isolate 

which of these processes resulted in photoenhancement of heterotrophic production. 

However, the results of this study demonstrate that sunlight may exert an important 

and previously uncharacterized influence on upper ocean cycling of carbon by 

heterotrophic bacteria.

Mechanisms o f photoenhanced heterotrophic production

A number of processes potentially contribute to photoenhancement of 

heterotrophic protein production at Station ALOHA. These processes may generally 

be grouped into abiotic and biotic categories that result in both direct and indirect 

photoenhancement of heterotrophic bacterial production. Photoenhancement of 

bacterial protein production rates at Station ALOHA likely stems from a combination 

of several of these processes.

HBP may be directly enhanced by sunlight if the bacterial assemblages 

harnessed light-energy for ATP production, resulting in elevated growth rates and 

enhanced rates of protein synthesis. Such direct processes include photoheterotrophy 

and mixotrophy. Photoheterotrophic production is the process whereby bacterial 

assemblages simultaneously harvest light energy for photophosphorylation and 

acquire DOM as a source of both carbon and reductant. Mixotrophy describes the
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physiological ability of photoautotrophic plankton to utilize selected organic 

compounds.

Alternatively, light-stimulated protein production may have been the result of 

several indirect abiotic and biotic processes including close temporal couplings 

between photoautotrophic production of labile organic exudates and subsequent 

utilization by heterotrophic bacteria (Gasol et al. 1998). Alternatively, photochemical 

production of labile DOM could result in light-stimulated heterotrophic productivity 

(Lindell et al. 199S, Wetzel et al. 1995, Benner and Biddanda 1998). If protein 

production rates demonstrated photoenhancement as a result of heterotrophic uptake 

of labile DOM production, Leu incorporation rates might be expected to demonstrate 

temporal covariance with PP (the ultimate source of labile DOC). Regression 

analyses did not reveal a significant relationship between PP and PHBP or HBPl, 

suggesting that at the time of this study, heterotrophic and photoautotrophic 

production were only weakly coupled in the upper ocean at Station ALOHA.

However, because UV light was excluded from incubations conducted in this study, 

UV induced photoproduction of labile organic and inorganic nutrients can not be 

excluded as a potentially important source of heterotrophic nutrient resources.

Prochlorococcus mixotrophy

Regression analyses revealed several potentially important clues about the 

light-driven processes that resulted in enhanced Leu incorporation rates. HBPl and 

HBPd both displayed a weak but positive relationship to stocks of non-pigmented 

bacteria and Prochlorococcus, suggesting that these two “groups” of bacterioplankton
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influenced HBP. Assuming the majority of non-chlorophyll containing bacteria were 

heterotrophic (including the diverse assemblages of photoheterotrophic bacteria such 

as AAnP and rhodopsin-containing bacteria), the observed relationship between these 

bacteria and HBP was partly expected. However, the relationship between HBP and 

the abundance of Prochlorococcus was somewhat surprising. These results suggest 

one of two possibilities: either Prochlorococcus directly incorporated Leu as a 

facultative heterotroph, or measured heterotrophic bacterial production rates were 

directly related to the abundance of Prochlorococcus. No significant correlation was 

observed between stocks of non-pigmented bacteria and Prochlorococcus, suggesting 

that the abundance of non-pigmented bacteria was not specifically coupled to 

Prochlorococcus abundance.

Direct uptake of Leu by both cultivated and natural populations of pigmented 

picoplankton (including Prochlorococcus) has been shown (Lindell and Post 1995, 

Montesinos et al. 1997, Kamjunke and Jahnichen 2000, Zubkov et al. 2003). The 

phylogenetic and physiological diversity of Procholorococcus isolates indicate that as 

a whole the genus is highly adaptive. Studies identifying the genetic diversity of 

upper ocean picoplankton communities suggest that multiple “ecotypes” of 

Prochlorococcus inhabit the upper layers of the subtropical and tropical oceanic 

waters (Moore et al. 1998, Moore et al. 2002). These physiologically distinct 

Procholorococcus ecotypes are distributed differently throughout the upper ocean, 

demonstrating adaptive physiologies to maximize nutrient and light availability. 

Generally, two primary Prochlorococcus types have been characterized by their 

chlorophyll b (chi b) /chi a ratios: the high chi b/chl a cells adapted to low light
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intensities and thus inhabited the lower photic zone, and the low chi bt chi a ecotypes 

adapted to high light fluxes and thus appeared largely restricted to the upper photic 

zone where light fluxes were much greater (Moore et al. 1998). Consistent with these 

adaptations, the high chi b! chi a ecotypes appeared capable of growth on NO2', while 

the low chi h/chl a strains appeared incapable of growth on NO3' or NO2', growing 

instead on reduced source of N such as NH*4 and urea (Moore et al. 2002). 

Knowledge that Prochlorococcus assimilates components of the bulk DOM pool 

(such as amino acids) requires re-evaluation of the role that Procholorococcus plays 

in oceanic carbon cycling.

Based on the differences between light and dark heterotrophic production 

measured in this study, facultative heterotrophy (mixotrophy) by Prochlorococcus 

may have been a substantial component of the photostimulated Leu incorporation 

rates. Depth-integrated abundance of Prochlorococcus averaged 37% of non- 

pigmented bacterial abundance. Assuming Prochlorococcus and non-pigmented 

bacteria both incorporated leucine at equal rates in the dark, Prochlorococcus would 

have accounted for 27% of the total Leu incorporation in the dark. If 

Prochlorococcus growth rates increased 75-100% under in situ light, and non- 

pigmented bacterial growth rates were unchanged by light, then Prochlorococcus 

incorporation of Leu could have increased total Leu incorporation by 39-43% in the 

light. The average difference between mean Leui. and Leuo measured during this 

study was 34%; these rough calculations suggest mixotrophic growth by 

Prochlorococcus could have accounted for a large portion of Leu photoenhancement.
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During this study, depth-integrated HBPl, HBPd, and PHBP were not 

significantly correlated to either PP or daily PAR fluxes. Karl et al. (1998) 

demonstrated that net DOuC production at Station ALOHA was maximal in the 

surface ocean, displaying a vertical structure similar to PP. If photostimulated HBP 

resulted from indirect coupling of heterotrophic production to photoautotrophic 

production of labile organic exudates, the photoenhancement effect should scale 

positively with PP. Vertical profiles of the LeuL:LeuD ratio revealed that light- 

stimulated Leu incorporation was proportionately highest at the base of the photic 

zone where PP was -75% lower than rates in the surface waters. These observations 

provide additional support to the hypothesis that the observed light-stimulated Leu 

incorporation was governed by direct light-driven processes such as mixotrophic 

production by Prochlorococcus.

The influence o f light on bacterial growth in the sea

Previous studies that have examined how light affects heterotrophic bacterial 

growth in the ocean have generally focused on the impact of UV-radiation on 

bacterial growth (Bailey et al. 1983, Hemdl et al. 1993, Aas et al. 1996, Jeffery et al. 

1996). In a study conducted in coastal California waters and in the Gulf of Mexico, 

Aas et al. (1996) found that bacterial incorporation of Leu was enhanced -10% upon 

exposure to PAR. In contrast, these authors noted that PAR appeared inhibitory to 

^-thymidine (TdR) incorporation rates. Studies in high mountain lakes suggested 

that exposure of bacterial assemblages to PAR had an adverse effect on incorporation 

of Leu and TdR, reducing rates by 70% (Sommaruga et al. 1997). In contrast,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Helbling et al. (1995) found that exposure of Antarctic bacterial isolates to PAR had 

little effect on the survival of bacterial populations.

Both UV-A (315-400 nm) and and UV-B (280-315 nm) are rapidly attenuated 

in seawater due to absorption by dissolved constituents in seawater (mainly DOM); as 

a result of this rapid attenuation, the biogeochemical influences of UV-radiation are 

largely restricted to the upper 20-30 m in clear, oligotrophic waters (Smith and Baker 

1981, Hemdl et al. 1993, Zepp et al. 1995). UV-B radiation is absorbed by numerous 

several intracellular macromolecules including nucleic acids, proteins, and lipids; 

absorption of UV-B by these cellular constituents appears largely inhibitory to 

heterotrophic production (Jeffery et al. 1996). Several studies have also found 

significant modification of oceanic DOM pools by absorption of UV-light. Most 

importantly, photochemical oxidation of DOM may convert non-biologically reactive 

components of the bulk DOM into more labile, readily available substrates (Moran 

and Zepp 1997, Benner and Biddanda 1998). As such, UV-radiation appears to 

simultaneously inhibit and stimulate heterotrophic production in the sea.

The methods employed by the present study excluded the influences of UV 

radiation on bacterial growth and photochemical alteration of the DOM pool, making 

assessment of the impacts of UV light on the measured rates in this study impossible. 

However, assuming that UV radiation penetrated to 25 m at Station ALOHA and that 

UV radiation directly inhibits HBP throughout the upper 25 m of the water column, 

the potential detrimental impact of UV radiation on HBP can be estimated. Assuming 

HBP was reduced by 40% throughout the top 25 m of the water column as a result of 

UV photoinhibition (Hemdl et al. 1993) depth-integrated HBP would be reduced by
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11-15% in this study. This estimate is likely to overestimate the inhibitory effects of 

UV-radiation on HBP because it assumes an equal inhibitory influence throughout the 

waters column; in fact, UV-inhibition of HBP would be expected to decrease as an 

exponential function of depth, similar to the decrease of UV intensity as a function of 

depth. While potentially significant, the relative inhibitory influences of UV 

radiation on HBP in the NPSG appear less than the beneficial influences of PAR 

found in this study.

Recently, Morin et al. (2001) performed a series of in situ Leu incorporation 

assays in the Mediterranean Sea and at a coastal North Atlantic station to examine 

how PAR influenced Leu incorporation rates. These investigators observed two 

distinct effects of light on Leu incorporation: rates were greater in samples incubated 

in the dark than samples incubated at in situ irradiance, and Leu incorporation 

generally increased with increasing light intensity. Elevated dark Leu assimilation 

was hypothesized to be the result of increased labile DOC exudation by the 

photoautotrophic community upon dark confinement. The results of the present study 

were fundamentally different from the results of Morin et al. (2001); in the NPSG, in 

situ light-energy consistently stimulated rates of Leu incorporation, resulting in 50% 

more carbon entering the microbial food web compared to incubations conducted in 

the dark. In the NPSG, PAR appears to directly influence rates of secondary 

production; the high light fluxes, combined with the relative paucity of inorganic 

nutrients likely necessitate adaptive metabolic strategies by members of the upper 

ocean plankton assemblage.
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HBP and organic carbon fluxes in the NPSG

Photoheterotrophic and mixotrophic growth by planktonic microorganisms 

has been observed in a variety of aquatic environments (Rippka 1972, McKinley 

1977, Shiba et al. 1979, Paerl 1991, Kolber et al. 2001). In the open ocean various 

groups of bacteria appear capable of photoheterotrophic metabolism, including 

members of the cyanobacteria and representatives in the a - , P~, and y -  

Proteobacteiia (Rippka 1972, Kolber et al. 2001, Beja et al. 2002, Zubkov et al. 

2003). Cultivated photoheterotrophic bacteria appear capable of growth as strict 

photoautotrophs; however, given sufficient organic matter most photoheterotrophic 

bacteria become predominately heterotrophic, relying on inorganic carbon as a 

subsidy when DOM availability is low (Yurkov and Beatty 1998, Kolber et al. 2001). 

At Station ALOHA rates of Leuu were consistently elevated relative to Leuo with one 

prominent exception, in May 2000 during a large phytoplankton bloom concentrated 

in the upper 43 m of the water column, the Leuo rate at 25 m increased more than 

two-fold above the mean rate (Figure 7). Kolber et al. (2001) found that AAnP 

bacteria were able to tune their metabolism to maximize growth depending on the 

nutrient environment, becoming mostly heterotrophic when organic matter was 

available, and switching to facultative phototrophy when necessary.

In the mixed layer of the NPSG, inventories of organic N and P are more than 

an order of magnitude greater than corresponding inorganic N and P inventories; thus, 

a metabolic adaptation that allows an organism to utilize the relatively abundant N
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and P sources found in the DOM pools while simultaneously obtaining energy from 

solar radiation (as a photoheterotroph or mixotroph), would provide a competitive 

advantage over a strict photolithotroph.

Using measured rates of Leu incorporation to estimate HBP, the 

contributions of HBPl and HBPd to overall organic carbon fluxes were assessed for 

the upper 175 m at Station ALOHA (Table 5). Total daily HBP (HBPt) was 

estimated by assuming HBPl represented the daytime rate of HBP, HBPd represented 

the nighttime HBP rate, and that the average daytime period was 12 hours. Daily 

rates of HBPt were 15.2 mmol C m'2 d*1, with 2.9 mol C m*2 d*1 derived exclusively 

from light-stimulated production. On an annual basis, HBPt averaged 5.5 mol C m'2 

yr'1 or 37% of annual PP at Station ALOHA (Table 5). PHBP fluxes averaged 1.1 

mol C m'2 yr'1, or approximately 20% of HBPt and 7% of PP. Moreover, fluxes of 

carbon derived from PHBP were quantitatively similar to particulate carbon export 

from the surface waters of the NPSG (Table 5).

In an effort to constrain the total flux of carbon required to support bacterial 

growth (BCD) in this system, a simple one dimensional carbon flux budget was used 

to balance photic zone organic carbon fluxes and derive community respiration. The 

model assumes vertical transport is the only significant removal of organic carbon 

from the surface waters. By balancing organic carbon sources (PP) with organic 

carbon sinks (export and DOC accumulation) and assuming the remaining organic 

carbon was remineralized in the upper ocean, community respiration (R) was derived 

as:

R = PP -  (Export + DOC accumulation)
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Table 5. One dimensional carbon flux budget for the upper ocean at Station ALOHA
Process Flux 

(mol Cm '2 y r 1)
Flux Range 

(mol C m 2 yr'1)
Reference

PP 15 5.1-33 Karl et al. 2001

Export
(sinking POC flux) 0.9 0.3-1.7 Karl et al. 2001

(mass balance) 2.0 1.7-2.7 Emerson et al. 1998

Accumulating DOC 0.3 - Church et al. 2002

HBPl 3.2 1.9-4.4 This study

HBPd 2.1 1.4-3.2 This study

PHBP 1.1 0.4-2.1 This study

HBPt" 5.3' 3.2-8.3 This study

Abbreviations used: PP, photoautotrophic production; POC, particulate organic carbon; DOC, dissolved organic carbon; 
HBPl, heterotrophic bacterial production (light); HBPd, heterotrophic bacterial production (dark);
PHBP, photoenhanced heterotrophic bacterial production; HBPt, total heterotrophic bacterial production.
* Annual total heterotrophic bacterial production calculated assuming HBPd represented night time production rate.
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R ranged from 12.7-13.8 mol C m 2 yr \  approximately 84-92% of PP, and nearly 

three-fold greater than HBPt. Assuming bacteria were responsible for the majority of 

organic carbon remineralization in the upper ocean at Station ALOHA,

BCD approximates 18-19 mol C m'2 y r1 and HBGE was constrained to 28-30%. 

Inclusion of PHBP into the upper ocean carbon flux budget at Station ALOHA 

significantly increases the carbon flux into heterotrophic bacteria and results in 

relatively high bacterial growth efficiencies, another indication of the potential 

importance of photoheterotrophic growth in this ecosystem.
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CONCLUSIONS

Time-series estimates of Leu incorporation provided estimates of the 

importance of the photoheterotrophic production at Station ALOHA. 

Photoheterotrophic production may account for as much as 19% of HBPt, 6% of PP, 

and may be quantitatively similar to carbon export at Station ALOHA. Integrated 

HBPl was 49% greater than HBPd, suggesting that bacterial metabolism was adapted 

to utilize the high light fluxes and proportionately large concentrations of DOM 

(relative to inorganic nutrients) in the upper ocean. Regression analyses revealed that 

HBP depended on the abundance of Prochlorococcus, suggesting Prochlorococcus 

may utilize DOM as a nutrient source in this ecosystem. Understanding the 

importance of mixotrophic and photoheterotorphic microorganisms to upper ocean 

biogeochemical fluxes will require investigations targeting these newly discovered 

metabolic pathways. Regardless of the mechanism of photoenhancement of Leu 

incorporation, the observation that light-mediated Leu incorporation was roughly 

two-fold greater than Leu assimilation in the dark indicates that sunlight provides an 

important source of energy for secondary production in the sea.
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ABSTRACT

The response of bacterial protein production to irradiance was examined in the 

North Pacific Subtropical Gyre (NPSG) using photosynthetron experiments. 

Photoenhancements of 3H-leucine (Leu) incorporation were observed in all 

experiments. Experiments were conducted in both the upper (5-25 m) and lower 

photic zone (75-100 m) to determine whether the response of bacterial production to 

irradiance differed along the depth-dependent light-gradient. Rates of Leu 

incorporation in the upper photic zone were stimulated 88-153% by light. Leu 

incorporation typically saturated at light intensities between 160-175 pmol quanta m'2 

s'1 and displayed no significant photoinhibition. Optimal irradiances of Leu 

incorporation in the upper photic zone were between 183-296 pmol quanta m'2 s'1, 

suggesting the phototrophic bacterial assemblages were adapted to relatively high 

light fluxes. Rates of Leu incorporation in the lower photic zone were consistently 

stimulated at low light intensities, but in contrast to the upper photic zone Leu 

production rates in the lower photic zone were often photoinhibited at light intensities 

<200 pmol quanta m'2 s '1. Heterotrophic protein production responded to irradiance 

in a manner similar to photosynthesis, facilitating the use of photosynthesis-irradiance 

models. These results provide the first quantitative analyses of the relationships 

between heterotrophic protein production and irradiance in the ocean.
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INTRODUCTION

A determination of the factors that constrain bacterial growth and production 

in the oceans is crucial to understanding the contribution of marine biota to global 

carbon cycling. In the open oceans that dominate the Earth’s surface area, bacterial 

biomass is one of the largest pools of biogenic carbon in the upper ocean and 

bacterial growth comprises the primary pathway of both carbon production and 

remineralization (Williams 1984, Ducklow et al. 1986, Ducklow and Carlson 1992, 

Karl 1999).

The important role of oxygen-evolving photosynthetic marine bacteria in the 

tropical and subtropical open oceans is widely acknowledged. The unicellular 

bacterium Prochlorococcus is estimated to be both the smallest and most abundant 

photosynthetic organism in the world’s oceans (Chisholm et al. 1988, Partensky et al. 

1999). In the North Pacific Subtropical Gyre (NPSG) Prochlorococcus accounts for 

60-90% of the primary production and >50% of the total Chi a (Campbell and Vaulot 

1993, Karl 1999). In oligotrophic open oceans, Prochlorococcus has been shown to 

demonstrate photoheterotorphic production (Zubkov et al. 2003). In addition, other 

types of photoheterotrophic bacteria may also influence productivity and 

biogeochemical cycling in the ocean. Members of the relatively abundant SAR 86 

clade of marine y-Proteobacteria possess a light-harvesting protein complex similar in
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structure to rhodopsin (B£ja et al. 2000,2001). When the membrane-bound 

rhodopsin protein complex absorbs light-energy, it undergoes a conformational 

change resulting in the establishment of a proton motive force that is coupled to 

photophosphorylation and ATP production (B6ja et al. 2000). The light-harvesting 

complexes in these organisms appear non-photosynthetic, that is to say that light- 

energy does not directly support carbon fixation (Bdja et al. 2001). The metabolic 

capacity of these organisms is still largely unknown; however, Archaea that possess 

similar rhodopsin-like protein complexes thrive in organic-rich environments as 

photoheterotrophs.

Another group of recently rediscovered photoheterotrophic bacteria possess 

both photosynthetic and heterotrophic physiological capabilities (Shiba et al. 1979, 

1991, Kolber et al. 2000,2001, Beja et al. 2002). The aerobic, anoxygenic 

photosynthetic (AAnP) bacteria contain a light harvesting complex similar in 

structure to photosynthetic bacteria; however, unlike cyanobacteria, AAnP bacteria 

utilize the distinctive bacteriochlorophylls as components of their light harvesting 

systems (Yurkov and Beatty 1998). Isolated members of AAnP bacteria appear to 

grow as facultative heterotrophs, utilizing light energy to supplement heterotrophic 

metabolism (Yurkov and Beatty 1998). When reduced carbon substrates are not 

available, cultivated AAnP bacteria appear to grow (albeit at relatively low rates) as 

photoautotrophs (Kolber et al. 2001). The ability to switch physiologies to 

supplement cell metabolism likely provides a competitive advantage for AAnP 

bacteria in oligotrophic regions of the open ocean.
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Considerable research effort has focused on the mechanisms by which light- 

energy influences photosynthesis. A number of models have been developed to 

describe the relationship between photosynthetic production and irradiance. 

Generally, the relationship appears as a saturation response; photosynthesis increases 

asymptotically as a function of light intensity to a maximum value (defined as Pmu). 

beyond which photosynthetic rates saturate and sometimes decline. Under some 

circumstances, photosynthesis may be inhibited at high light intensities 

(photoinhibition), an apparent consequence of photochemical damage to the light- 

harvesting proteins of the cellular photoreaction centers (Falkowski and Raven 1997). 

Efforts to model the response of photosynthesis as a function of irradiance (P vs E) 

have revealed that there are several possible mathematical formulations that 

accurately describe the relationships (Jassby and Platt 1976, Platt et al. 1980, 

Sakshaug et al. 1997). Generally, these mathematical models are of two forms: the 

Monod growth model (similar to Michaelis-Menten enzyme kinetics) (Strickland and 

Parsons 1984), or models which describe the photosynthetic response to irradiance as 

an exponential-rise to some maximum value (Jassby and Platt 1976) (Figure 1). The 

Monod model is:

P® = (P®mx E) /  (E|c + E) (1)

where pB is the carbon fixation rate normalized to chlorophyll concentrations, P8^  is 

the maximum rate of chlorophyll-normalized photosynthesis, E is the independent
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Figure 1. Comparison of three models describing the relationships between 

photosynthesis and irradiance (P8 vs E). Equation 1 (dotted line) demonstrates the 

modified Monod model (Strickland and Parsons 1984) (see text for details); 

parameters are P8^  = 10, Ek = 143. Equation 2 (lo n g  dashes) represents the Jassby 

and Platt (1976) relationship, parameter values are PBs -  10, and a  = 0.05 (see text 

for description of parameters). Equation 3 is the Platt et al. (1980) model (solid line); 

parameters are PBs = 10, a  = 0.05, and 0 = 0.005. Also shown are Ek, P8S, and P8̂ -  

Light saturating irradiance (Ek), optimal irradiance (Im), and maximum photosynthetic 

rates (PBmu) calculated based on Platt et al. (1980).
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variable (irradiance), and Ek is the light intensity at one-half Pm, (Figure 1). The 

exponential model proposed by Jassby and Platt (1976) has the form:

PB = PBs [1-exp (-oE /  PBS)1 (2)

where P8 and E are the same as in equation 1, PBs is the maximum rate of chlorophyll 

normalized photosynthesis in the absence of photoinhibition, a  is the initial slope of 

the photosynthetic response at low light intensities; it is a direct measure of light 

absorption and the maximum quantum efficiency of photosynthesis (Harris 1980, 

Sakshaug et al. 1997). Both models 1 and 2 appear suitable for describing P vs E data 

at relatively low light intensities; however, at higher irradiance, an additional 

parameter may be necessary to constrain the rate that photosynthesis declines due to 

photoinhibition (P) (Figure 1). Photoinhibition directly influences both P8^ .  and a  

Platt et al. (1980) formulated a model inclusive of the photoinhibitory effect of high 

light intensities:

P8 = l^s [1-exp (-oE / P8S)] exp (-0E / P8S) (3)

where all terms are identical to equation 2 and P is the rate of photoinhibition.

To date, there has been little work on the influence of irradiance on 

heterotrophic bacterial growth and production in the oceans. Those studies which 

have included light as a potential determinant of rates of heterotrophic bacterial 

production (HBP) have generally focused on the harmful impact of UV-radiation on
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bacterial growth (Hemdl et al.1993, Aas et al. 1996, Jeffery et al.1996, Booth et al. 

2001). A recent study conducted in the North Atlantic and Mediterranean Sea 

described the response of Leu incorporation to photosynthetically available radiation 

(PAR) (Moran et al. 2001). Leu incorporation rates tended to be greater in samples 

incubated in the dark than those samples incubated in the light; however, the authors 

also observed that Leu incorporation rates increased with increasing irradiance 

between intensities of -15-1500 pmol quanta m'2 s 1 (Moran et al. 2001).

Previous observations at Station ALOHA in the NPSG provided evidence that 

bacterial protein production rates were 30-50% greater in samples incubated in situ 

under natural irradiance relative to in situ incubations in the dark. To further 

investigate the nature of the light-driven protein production, the current study was 

designed to quantify the response of Leu incorporation to light intensity. Several 

experiments were conducted at various locations in the NPSG and at different depths 

throughout the photic zone (1% surface irradiance). In all of these experiments 

protein production demonstrated a response to irradiance similar to the response of 

photosynthesis to irradiance.
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MATERIALS AND METHODS

Study site and Sampling

This study was conducted during three cruises to the Hawaii Ocean Time- 

series (HOT) Station ALOHA (22° 45’ N, 158° 00’ W) during the late winter-early 

spring of 2002 (February-HOT 135, March-HOT 136, and May-HOT 137). 

Experimental work for all cruises was performed aboard the R/V Kaimikai-O- 

Kanaloa. Water was collected in 12 liter polyvinylchloride-bottles mounted to a 24- 

bottle conductivity-temperature-depth (CTD) rosette from predawn hydrocasts. Upon 

completion of the hydrocast, water was sampled from the CTD rosette into darkened 

2 liter polycarbonate bottles. Bottles were transferred to a radioisotope lab-van where 

the incubation experiments were conducted.

PAR fluxes were measured at approximately noon on the same day 

experiments were conducted. PAR fluxes were measured using a Biospherical 

Instruments Profiling Reflectance Refractometer (PRR 600). Downwelling PAR 

fluxes (400-700 nm) were measured throughout the upper water column (0-200 m) at 

2-3 Hz sampling frequency. The instrument was deployed by off the aft-quarter of 

the ship using a small crane to extend the instrument away from the ship shadow; the 

instrument was lowered and raised by hand. Tilt and roll sensors were attached to the 

PRR instrument, and measurements were excluded from the analyses when the tilt
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and roll values exceeded +5° or -5°. Twelve-point running means of the discrete PRR 

profile were calculated for each profile.

Response o f Leu incorporation to irradiance

To examine the response of bacterial protein production to irradiance, 

photosynthetron incubators similar to those described by Lewis and Smith (1983) 

were utilized. Samples were exposed to a range of light intensities inside the 

photosynthetron incubator. Incubations were conducted in 40 ml polycarbonate 

centrifuge tubes. Samples were placed in wells that had been bored into a metal 

cooling block atop the incubator. The cooling block had 24 different sample 

positions; sample tubes were placed into each well and the entire block was placed 

atop the light source, allowing illumination of samples from below. The 

photosynthetron used a single 1500 W halogen bulb, which was transmitted through a 

blue plexiglass shield prior to entering the photosynthetron chamber in an effort to 

mimic the spectral light quality of the open ocean photic zone (Laws et al. 1990). 

Neutral density screens were placed in each well of the photosynthetron, producing 

an array of 24 different light intensities. To keep the samples at or near in situ 

temperatures, the sampling block was plumbed to a large capacity refrigerated water 

bath and cooled throughout the incubation. Incubations typically lasted 2 hours.

Light intensities were estimated by placing a Biospherical QSL-100 PAR-sensor 

inside a polycarbonate incubation tube and the PAR flux inside each well was 

measured. Intensities were measured before and after the incubation and the average
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intensities were used to determine the light flux. PAR fluxes varied between -0-1500 

pmol quanta m 2 s'1.

The response of bacterial ^-leucine incorporation to irradiance (Leu-E) was 

determined based on the incorporation of Leu into protein using a modified form of 

the Kirchman et al. (1983) method. Whole seawater was subsampled into acid- 

cleaned, 40 ml polycarbonate centrifuge tubes and inoculated with 20 nmol L'1 of 

leucine (19 nmol L 1 nonradioactive leucine + 1 nmol L*1 3H-leucine). Specific 

activities of ̂ -leucine stocks were 150-180 Ci mmol1 (New England Nuclear, 

NEN460A). Samples were capped and placed inside the photosynthetrons. Two 

time-zero treatments were prepared for each experiment and immediately Altered 

onto a 25 mm, 0.2 pm mixed-ester HA Alters and stored frozen in 15 ml centrifuge 

tubes until processed at the laboratory. Two replicate dark control samples were 

placed in an opaque cloth bag and placed into the same water bath used to cool the 

photosynthetron. To terminate incubations, samples were Altered onto 25 mm 0.2 pm 

HA Alters and frozen in centrifuge tubes. In the laboratory, samples and blanks were 

processed identically. Details of the laboratory sample processing are given in 

Section I and described in Karl (1980).

Photosynthesis versus irradiance

Photosynthetic uptake of 14C-labelled bicarbonate was measured during the 

May 2002 cruise to Station ALOHA using the same photosynthetron incubator used 

for the Leu-E experiments. Experiments were conducted on water collected at 5 and 

75 m depth at 0900 and 1200, respectively. The photosynthesis experiments were
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conducted one day after the Leu-E experiments. Water was subsampled into 40 ml 

polycarbonate incubation tubes and spiked with approximately 400 pCi of 14C sodium 

bicarbonate. A 250 pi subsample was removed from two different samples and 

placed into a scintillation vial containing 1 ml of P-phenylethylamine. These samples 

were used for determination of the specific activity of the uC-in the 40 ml samples. 

One time-zero treatment was processed immediately after spiking, and one sample 

was incubated in the dark to evaluate dark l4C-uptake. Dark controls were subtracted 

from the resulting photosynthetic rates to correct for dark-mediated inorganic carbon 

uptake.

At the end of the incubation, the entire 40 ml sample was filtered onto 25 mm, 

0.2 pm HA filters. Filters were placed into glass scintillation vials and stored frozen 

until processed. In the laboratory, filters were acidified with 1 ml of 2M HC1 and 

vented for 24 hours, followed by addition of 10 ml Aquasol II scintillation cocktail. 

Samples were counted on a TRICARB 4640 liquid scintillation counter.

Determination of photosynthetic production rates used surface water total inorganic 

carbon concentrations measured at Station ALOHA (http://hahana.soest.hot.edu) to 

calculate the isotopic dilution ratio. For P-E experiments, photosynthetic rates were 

normalized to Chi a concentrations. Chi a concentrations were measured by filtering 

125 ml seawater samples onto Whatman 25 mm GF/F filters and extracting samples 

in 90% acetone for one week. Chi a concentrations were determined fluorometrically 

using a Turner TD-700 fluorometer.
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Data Analyses

It was not possible to normalize Leu rates to cell abundance or biomass 

because the specific populations responsible for the light-enhanced Leu incorporation 

rates are still unknown; however, differences in the response of Leu incorporation to 

light intensity appeared relatively small between depths and among cruises sampled 

(Figure 3); thus facilitating comparison of the model parameters among the different 

experiments conducted. The measured Leu incorporation rates were fitted to a 

modified version of the Platt et al. (1980) model based on Priscu (1989), including a 

term describing dark Leu incorporation (Leuo) and a term for photoinhibition.

Leu = Leus [1-exp (-ccE/Leus)] exp (-0E/Leus) + Leuo (4)

where Leu was the modeled rate of Leu incorporation (pmol LeuL'1 hr'1), Leus was 

the maximum Leu incorporation in the absence of photoinhibition (i.e. P=0) with the 

same units as Leu, a  was the initial slope of Leu incorporation rates at low light 

intensities (pmol Leu L 1 h r1 (pmol quanta m'2)s ‘), E was the irradiance (pmol 

quanta m‘2 s'1), 3 describes the slope of the curve in the photoinhibited region of the 

curve with the same units as a , and Leuo was the incorporation rate in the dark (same 

units as Leu). Data were fitted by nonlinear least squares regression using an iterative 

algorithm (Sigma Plot v. 8.0).

In addition to determining the parameters for equation 4, values for the 

following were also computed following Platt et al. (1980):
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Leunax = Leus ( a / a  + PXfl/ a  + 0 ) p/a + LeuD (5)

Leumax was the maximum Leu incorporation rate (inclusive of photoinhibition). Note 

that when P=0 the function is undefined. Also derived was a term describing the 

optimal light intensity at which maximum incorporation occurs (!„,).

Finally, parameters from equation 4 were used to calculate the parameter, Ek, which 

describes the saturating irradiance of Leu incorporation rates.

Ek has been applied as an index of photoadaptation when describing photosynthesis 

(Platt et al. 1980). Error estimates for Leumax, Im, Ek were calculated by propagation 

of standard errors determined by the regression analyses.

Based on the observed Leu responses to irradiance, experiments conducted in 

the upper ocean were also fitted to a modified version of the Monod growth model. 

The specific parameters were:

Im = (U Us/a)ln((a+P)/P) (6)

E t — L cuim i/ cc (7)

Leu = (Leumax*E) / (Ek + E) + Leuo (8)
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where Leu was the rate of Leu incorporation (pmol L 1 hr'1), Leumx was the maximal 

rate of Leu incorporation (pmol L'1 hr'1), E was the measured irradiance (|imol quanta 

m'2 s'1), and Ek (junol quanta m'2 s'1) was the light intensity of one-half Leumax similar 

to the half saturation constant in the Michaelis-Menten equation, and Leuo was the 

rate of Leu incorporation in the dark. The most appropriate model was selected from 

significant results of least squares regression analyses based on the coefficient of 

determination (r2) of the regression.
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RESULTS

Upper ocean physical characteristics and productivity

Photic zone depths (1% surface isopleth) for the three cruises were 112,108, 

112 m for February, March, and May, respectively. Light fluxes (E*z) were measured 

at approximately noon on each day of these experiments (Figure 2). Letelier et al. (in 

press) used a climatological model to estimate the daily insolation at Station ALOHA; 

this model predicts the surface light fluxes at Station ALOHA for March 12 and May 

20 (days that experiments were conducted) were 38 and 51 mol quanta m'2 d \  

suggesting that cloud cover may have resulted in the lower surface light fluxes 

measured in May (Figure 2).

Experiments were conducted in both the upper (5-25 m) and lower photic 

zone (75-100 m). Experiments conducted in the upper photic zone were within the 

surface mixed layer, while those in the lower photic zone were below the upper 

mixed layer. Light fluxes at the depths that the experiments were conducted are 

shown in Table 1. Daily PAR fluxes in the upper photic zone ranged from 12-42 mol 

quanta m"2 d '1 while fluxes in the lower photic zone were 0.54-2.6 mol quanta m*2 d'1 

(Table 1).

Photic zone Chi a inventories ranged from 16.5-21.9 mg Chi a m‘\  increasing 

between February and May. Chi a concentrations at the discrete depths where
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Figure 2. Depth profiles of photosynthetically available radiation (PAR) on HOT 

cruises 135,136, and 137 (February, March, and May 2002). Note X-axis is plotted 

on log scale. PAR was measured at approximately noon using a Biospherical 

Instruments Profiling Reflectance Refiactometer (PRR). Plotted are twelve-point 

running means of discrete vertical PAR fluxes.
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Table 1. Upper ocean properties at Station ALOHA for cruises where experiments were conducted.
Cruise E ,' E*,6 Chin Non-pig. Prochloro Syn. LeuL LeuD PP

(mol (pmol quanta 0*g Chi (cells (cells (cells (pmol L '1 (pmol L '1 (nmol C
quanta
m ’ d 1)

-2 *1\ m s ) L-') m l1) ml'1) ml’1) hr'1) h r 1) L'1
h r'1)

Feb. 20, 
2002
25 m 12 302 0.08 2.5 x 105 1.0 x 10s 1.7 x 103 39

(0.02)
26

(4.2)
48

100 m 0.54 25 0.24 2.0 x 104 4.8 x 104 1.5 x 10' 17
(0.87)

15
(1.7)

23

March 12 
2002
25 m 16 480 0.06 nac na na 31

(0.48)
19

(0.63)
53

100 m 0.80 31 0.17 na na na 30
(l.O)

14
(2.8)

27

May 20 
2002
5 m 42 887 0.05 2.2 x 10s 7.8 x 104 8.5 x 10z 48

(2.1)
34

(2.6)
46

75 m 2.6 81 0.11 2.3 x 10s 1.3 x 105 1.4 x 103 37
(5.5)

22
(3.1)

29

Abbreviations are: Non-pig Bact.-Non pigmented bacteria, Prochloro-Prochlorococcus, Syn.- Synechococcus, LetiL and LeiiD 
are in situ daily rates of Leu incorporation from incubations in the light and dark, respectively, PP- photosynthetic production. 
a Daily PAR fluxes calculated using measured PAR incident on the surface ocean and measured attenuation coefficients. 
b Maximum PAR flux, based on noon PRR cast. c na, data not available.
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experiments were conducted ranged from 0.07-0.24 pg Chi a L'1 (Table 1). Chi a was 

elevated in the lower photic zone due to the permanent deep chlorophyll maxima 

observed at Station ALOHA (Letelier et al. 1996). Upper ocean (0-175 m) rates of 

photosynthetic production (PP) ranged from 44-66 mmol C m 2 d"1. Photosynthetic 

rates at those depths where experiments were conducted ranged from 26.7-52.5 pmol 

C L*1 h r1 (Table 1).

Daily water column profiles of Leu incorporation and photosynthetic rates for 

the three cruises sampled for these experiments are shown in Figure 3. Rates of Leu 

incorporation in the light (LeujJ were significantly greater than dark incubated 

samples (Leuo) throughout the upper 125 m of the water column during both the 

March and May cruises (One-way ANOVA, p<0.05). Rates of photosynthesis in the 

upper 75 m of the photic zone ranged from 550-671 nmol C L'1 d'1 (Figure 3). 

Photosynthetic rates were typically greatest in the upper 25 m of the water column, 

declining approximately linearly to the base of the photic zone.

Leu incorporation versus irradiance in the upper photic zone

In total, six experiments were conducted to determine the response of Leu 

incorporation to irradiance (Leu-E). Three of the experiments were conducted using 

water collected in the upper 25 m of the water (Figure 4), and three experiments were 

conducted from samples collected in the lower photic zone (75-100 m) (Figure 5).

Leu incorporation increased with irradiance in a non-linear fashion; the measured Leu 

rates were fined to the modified Plan et al. (1980) model (equation 4) and the results 

are presented in Table 2. In both March and May of 2002, the estimated optimal
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Figure 3. Depth profiles showing daily (daylight period only) Leu incorporation 

rates measured in the light (LeuL- open triangles) and dark (Leuo- closed circles). 

Also shown are photosynthetic production (PP) (open squares) for HOT cruises 135 

(panels a, b), 136 (panels c, d), and 137 (panels e, 0- Symbols are mean of three 

replicates, and error bars represent standard deviations of the means.
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Figure 4. Relationship between Leu incorporation (Leu) and irradiance (E) in the 

upper photic zone (<25 m) at Station ALOHA (symbols). Fitted lines are results of 

least squares regression using modified Platt et al. (1980) model (equation 4). 

Parameters for line tits given in Table 2. Dashed vertical lines represent maximal 

(noon-time) PAR flux measured at each depth for the three cruises shown.
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Figure 5. Relationship between Leu incorporation (Leu) and irradiance (E) in the 

lower photic zone (75-100 m) at Station ALOHA (symbols). Fitted lines are results 

of least squares regression using modified Platt et al. (1980) model (equation 4). 

Parameters for line fits given in Table 2. Dashed vertical lines represent maximal 

(noon-time) PAR flux measured at each depth for the three cruises shown.
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Table 2. Summary of coefficient of determination (r2) and significance of 
non-linear regressions describing Leu incorporation as a function of irradiance.

Cruise 
Depth (m)

Monod Model* Exponential Model1*

February 2002 0.62c 0.62
25 m (P<0.0001) (P<0.0001)

February 2002 0.02 0.41
100 m (ns) (P=0.0015)

March 2002 0.26 0.50
25 m (P=0.015) (P=0.0019)

March 2002 0.17 0.43
100 m (ns) (P=0.0079)

May 2002 0.57 0.68
5 m (P«0.0001) (P<0.0001)

May 2002 0.25 0.54
75 m (P=0.017) (P<0.0001)

* Monod model describing saturation response of Leu and irradiance, see text for details. 
b Exponential Model modification of Platt et al. (1980), see text for description. 
c Top number is coefficient of determination of non-linear least squares regression, 
bottom number is significance of regression; ns indicates P>0.05.
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Table 3. Summary of parameters defined by least squares nonlinear regression of Leu incorporation as a 
function of irradiance at Station ALOHA. Top numbers are derived parameters; numbers in parentheses 
are standard errors of parameters.____________________________________________________________

Cruise LeuDb LeusD LeumMb I c*m Ekc
Depth (m)

February 0.75 Ad 0.00* A 23 A 20 A - • •
2002 (0.33) (0.00) (2.8) (3.3)
25 m

February 1.2* A 0.062 B 12 B 12 B 22 A 30 A 18 A
2002 (13) (0.014) (19) (3.3) (3.5) (14) (28)
100 m
March 0.25 A 0.017* A 27 A 17 A 40 B 184 A 160 A
2002 (0.07) (0.17) (2.3) (5.6) (5.7) (6.8) (51)
25m

March 0.20 A 0.062* A 17 B 19* A 26 B 133 A 130 A
2002 (0.10) (0.098) (17) (15) (15) (18) (102)
100 m
May 0.36 A 0.025* A 32 C 39 A 62 B 304 A 175 A
2002 (0.13) (0.024) (3.8) (9.6) (9.6) (18) (70)
5 m
May 0.64 A 0.19 B 28 C 64 A 60 B 148 A 94 A
2002 (0.31) (0.032) (5.8) (12) (12) (33) (52)
75 m

* pmol L hr'1 (pmol quanta m 2)'1 s b pmol L 1 h r1 c pmol quanta m 2 s ' d Letter designations
determined by testing differences between cruises and among depths. Parameters with the same letter designation are 
statistically indistinguishable at P=0.05. undefined function *, not significant (P>0.05).
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irradiances (In) of Leu incorporation in the upper photic zone were lower than the 

measured maximal (noon time) PAR fluxes.

Generally, Leu incorporation in the upper ocean demonstrated a saturation­

like response to irradiance, increasing asymptotically with increased irradiance, and 

remaining roughly constant through the range of irradiances beyond the saturating 

light fluxes (Figure 4). In both March and May the relationship was best described 

using equation 4 (Table 3), and in February the Leu-irradiance relationship was 

described equally well by equation 4 and equation 8 (Table 2). Leu incorporation 

rates in the upper ocean typically saturated at light fluxes less than 200 pmol quanta 

m'2 s '1 (Figure 4, Table 2). The majority (50-68%) of the variance in the response of 

Leu incorporation to irradiance was accounted for using an exponential model of Leu 

incorporation at low light intensities, with a weak photoinhibition term at greater light 

fluxes (Table 3).

During the February cruise, Leu rates increased rapidly at low light intensities, 

roughly doubling (relative to Leuo) by 50 pmol quanta m 2 s 1 (Figure 4). The 

difference between the maximum measured Leu rate (Leumax) and Leuo was -20 

pmol L'1 h r1, and the initial slope (a) was 0.75 pmol Leu L'1 h r1 (pmol quanta m'2s~ 

’). No significant photoinhibition was observed for the entire range of irradiances 

during the February cruise (Figure 4, Table 2). In March, a  was three-fold lower than 

in February and the difference between Leuo and Leumax was -23 pmol L ’h r1.

During the May cruise, rates of Leu incorporation increased with irradiance 

more than in either of the two previous experiments. Leu incorporation rates 

increased roughly two-fold between 0-200 pmol quanta m'2 s'1, and light-stimulated
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Leuma, was roughly 30 pmol L '1 h r1 greater than Leuo (Table 3). Estimated Leuo 

incorporation was significantly greater in May than in either February or March (T- 

test, P<0.05), but there were no significant differences in derived estimates of L e w , 

or in the saturating light intensities (T-test, P>0.05).

There were no significant differences in a  between the cruises sampled in this 

study despite more than a four-fold decrease between February and March (Table 2). 

Similarly, upper photic zone rates of Leum,« were statistically indistinguishable at the 

93% confidence level between all three cruises averaging 51 pmol L '1 h r 1.

Leu incorporation versus irradiance in the lower photic zone

The responses to of Leu incorporation to irradiance in the deep photic zone 

were largely similar as those in the upper photic zone, with one notable exception: in 

two of the three experiments conducted in the lower photic zone, Leu incorporation 

exhibited photoinhibition at relatively low light intensities (Figure 5). Forty-one to 

fifty-four percent of the variance in Leu incorporation rates could be described as a 

function of irradiance when the data were fitted to the exponential model (equation 4) 

(Table 2). In both February and May, Leu rates in the lower photic zone 

demonstrated significant photoinhibition, while no significant photoinhibition was 

observed in the upper photic zone (Figure S, Table 2). On average, 3 was 60% 

greater in the lower photic zone than in the upper water column. Despite significant 

differences in 3, there were no significant differences in the optimal (Im) and 

saturating irradiances (Et) derived from the upper and lower photic zone (T-test, 

P>0.05).
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Noontime PAR fluxes at the depths where these experiments were conducted 

were less than or nearly equivalent to the calculated Ig, values suggesting that in situ 

light intensities may have been near or slightly less than the optimal irradiance (in the 

absence of photoinhibition) for heterotrophic protein production. During the 

February cruise, Ek was 18 pmol quanta m 2 s'1 (Table 2) and the maximal PAR flux 

at 75 m was 25 pmol quanta m'2 s'1 (Table 1,2), revealing that the in situ Leu 

incorporation rates may have been weakly photoinhibited. In contrast, Ek values in 

March and May were greater than measured PAR fluxes, suggesting the in situ Leu 

incorporation rates in the lower photic zone were not photoinhibited (Table 1,2).

During the February cruise, Leu rates demonstrated no significant 

enhancement with rates becoming photoinhibited at light fluxes as low as 30 pmol 

quanta m'2 s ', and saturating at 18 pmol quanta m'2 s'1 (Figure 5, Table 3). At noon, 

the irradiance at 100 m was approximately 25 pmol quanta m 2 s'1, similar to the 

saturating irradiance estimated in this experiment (Table 3). The photoinhibitory 

response of Leu rates in the lower photic zone contrasted the response in the upper 

photic zone where Leu rates remained roughly constant above -100 pmol quanta m'2 

s'1 (Figure 6).

During the March cruise, Leu incorporation rates were enhanced by low light 

fluxes, and Leu rates saturated at irradiances greater than 130 pmol quanta m‘2 s'1 

(Figure 5, Table 3). The response of Leu incorporation to low light intensities was 

very similar to the response in the upper photic zone; Leu rates increased gradually at 

low light fluxes (a= 0.20 pmol L '1 hr'1 (pmol quanta m'2 s'1)'1, and never 

demonstrated significant photoinhibition (Table 2).
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Figure 6. Summary of derived parameters from Table 3 for the Leu vs. E 

experiments in the upper and lower photic zone. Initial slope (a) of Leu versus 

irradiance (a), rate of photoinhibition (3) (b), optimal irradiance (Im) (c), and 

saturating irradiance (Ek) of Leu (d). Error bars are standard error of derived 

parameters.
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During the May cruise, Leu incorporation demonstrated a steep initial increase 

at low light fluxes (a?  0.64 pmol Leu L'1 h r1 (pmol quanta m'2)'1 s'1) before 

saturating at 94 pmol quanta m'2 s '1 and declining to rates approximately equivalent 

to the Leuo rate (Figure 5, Table 3). There were no significant differences in a , LeuD, 

LeUnux, or Ek between the upper and lower photic zone during the May cruise (T-test, 

P>0.05). The large stimulation of Leu incorporation rates by light observed in the 

lower photic zone resulted in the largest photoenhancement of Leu incorporation rates 

(ALeiinux) of all the experiments (in either the upper or lower photic zone).

Photosynthesis as a function o f irradiance

To determine how photosynthesis varied as a function of irradiance, two 

experiments were conducted in the upper and lower photic zone during the May HOT 

cruise (Figure 7). The results from both experiments were successfully fined to 

equation 3 (Figure 7), yielding estimates of a , 0, and P®s; using these parameters, Ek, 

Im, and P®max were calculated (Table 4). The normalized photosynthetic rates tended 

to increase asymptotically at low light fluxes to 0.53 pmol C mg Chf1 h r1. 

Photosynthetic rates saturated 151 pmol quanta m'2 s '1 and Im was 616 pmol C mg 

Chf1 h r1 (Table 4). Based on these results, in situ photosynthetic rates in the upper 

photic zone may have been photoinhibited (noontime PAR flux was -800 pmol 

quanta m'2 s '1).

In the lower photic zone the response of photosynthesis to irradiance was 

similar to the upper photic zone; however, similar to the response of Leu to 

irradiance, photosynthetic rates in the lower photic zone also demonstrated significant
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photoinhibition (Table 3). There were no significant differences in P8,^*, or 

a  between the upper and lower photic zone; however, both Im and Ek were 

significantly lower in the lower photic zone than estimates derived for the upper 

photic zone (T-test, P<0.05) (Figure 7, Table 4). Based on the noontime PAR flux at 

75 m (81 pmol quanta m'2 s '), irradiance in the lower photic zone was likely 

sufficient to saturate photosynthetic production.

On the one cruise where both the P-E and Leu-E responses were examined 

(May 2002), both estimates of production responded similarly to irradiance. Direct 

comparison between the P-E and Leu-E responses is hampered due to the inability to 

normalize the Leu-E responses to cell abundance or biomass; however, there were 

notable similarities among the P-E and Leu-E responses. In particular, neither the P- 

E response nor the Leu-E response demonstrated significant photoinhibition in the 

upper photic zone, and both the P-E and Leu-E responses were photoinhibited at 

higher light fluxes in the deep photic zone. Calculated saturating light fluxes for 

upper photic zone P-E and Leu-E responses were 151 and 175 pmol quanta m 'V , 

while estimated Ek values in the lower photic zone were 25 and 94 pmol quanta m'2 

s'1, respectively.
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Figure 7. Relationship of P8 (photosynthesis normalized to chlorophyll) and 

irradiance in the upper (top) and lower (bottom) photic zone. Experiments conducted 

in May 2002. Fitted lines are least squares non-linear regression using equation 4 

(see text), parameters of line fits given in Table 4. Dashed vertical lines represent 

maximal (noon-time) PAR flux measured at 5 m and 75 m during May 2002 cruise.
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Table 4. Parameters describing photosynthesis as a function of irradiance at Station ALOHA. Top 
numbers are regression derived parameters, numbers in parentheses are standard errors of derived parameters. 
Parameters with similar letter designations are statistically indistinguishable at a P value of >0.05.____________

Cruise 
Depth (m )

P P Y pH b■ m I c■m Ekc R*

May 2002 
5 m 0.0035 A 

(0.0009)
0.0001* A 
(0.0002)

0.61 A 
(0.19)

0.53
(0.24)

A 616 A 
(158)

151
(79)

A 0.64

75 m 0.0048 A 
(0.0011)

0.0005 B 
(0.0001)

0.17 B 
(0.0013)

0.12
(0.030)

A 86 B 
(19)

25
(8.5)

A 0.77

* mmol C mg Chi'1 hr'1 (pmol quanta m 2) 1 s'1 b mmol C mg Chf'  hr'1 c pmol quanta m'2 s'*
* not significant (P>0.05).
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DISCUSSION

This is the first study to evaluate the response of heterotrophic bacterial 

protein production to PAR using short term photosynthetron experiments. 

Experiments were conducted in both the upper and lower photic zone, providing 

information on the relationship between protein production and PAR along the depth- 

dependent light gradient observed in the upper ocean. Experiments conducted in the 

upper photic zone were within the seasonal mixed layer, while those in the lower 

photic zone were in the more stratified thermocline.

The results of this study revealed two important features on the nature of 

light-enhanced HBP in the NPSG. First, the response of Leu incorporation to 

irradiance was notably similar to the more well-studied relationships between 

photosynthesis and irradiance, facilitating the use of photosynthetic models to 

describe the nature of the Leu-irradiance relationship. Second, the response of Leu 

incorporation to irradiance was similar in the upper and lower photic zone with one 

exception: unlike the lower photic zone, upper photic zone Leu incorporation did not 

appear susceptible to photoinhibition.

Six experiments were conducted on three different HOT cruises to assess how 

Leu incorporation rates varied as a function of irradiance. In addition, two 

experiments were conducted on one of the cruises in the upper and lower photic zone
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to assess the photosynthetic response to irradiance. In all of the experiments Leu 

incorporation demonstrated significant photoenhancement. The nature of the response 

varied with depth and between cruises; in total, 41-68% of the variance in Leu was 

described by a model of Leu incorporation as an exponential function of light at low 

irradiance, with rates becoming photoinhibited at high light intensities. Generally, the 

Platt et al. (1980) model accounted for more of the variability in the Leu-E 

relationship in the upper photic zone (R2 ranged 50-68%), than in the lower photic 

zone (R2 ranged 41-54%). The inability to account for more than 68% of the variance 

in the Leu-E response led to relatively large error estimates associated with a , LeuD. 

and Leus. As a result, no significant differences in these parameters were found 

between experiments conducted in the upper and lower photic zone.

The response o f Leu incorporation to light

The rate at which Leu was incorporated into bacterial proteins under varying 

irradiance was successfully modeled using equation 4. This modification of the Platt 

et al. (1980) model has also been used to describe the response of NO3' and NRt+ 

uptake by phytoplankton to irradiance (Priscu 1989), and the relationship between 

fixation of atmospheric nitrogen by cyanobacteria to irradiance (Lewis and Levine 

1984). The model was more successful in describing the variability in the Leu-E 

response in the upper photic zone than in the lower photic zone (Table 2).

Based on the experiments conducted in this study, heterotrophic protein 

production rates in the upper and lower photic zone at Station ALOHA responded in a 

similar manner to irradiance. These results are somewhat surprising given that the
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upper photic zone experiments were conducted in the upper mixed layer of the water 

column, while the lower photic zone rates were in the physically stable top of the 

thermocline. Moreover, differences in in situ light fluxes between the mixed layer 

and lower photic zone were more than an order of magnitude lower in the deeper 

photic zone. Given these conditions, it is somewhat surprising that there were no 

observable differences in Leus, Ek, Im, or a  among the experiments conducted in the 

upper and lower photic zone. The one parameter which did vary between the upper 

and lower photic zone was 0. In two of the three experiments, Leu incorporation in 

the lower photic zone displayed significant photoinhibition at light fluxes between 

18-94 pmol quanta m'2 s'1, while Leu rates in the upper photic zone never 

demonstrated significant photoinhibition. These results suggest that heterotrophic 

protein production rates in the upper photic zone were less susceptible to higher light 

fluxes and the bacterial groups demonstrating photoenhanced Leu incorporation were 

photoadaptcd to the ambient light fluxes.

Also somewhat surprising was the lack of difference in a , Im, and Ek between 

the cruises sampled during this study. Noon-time PAR fluxes varied between 300- 

887 pmol quanta m'2 s '1 in the upper photic zone (Table 1), but despite these large 

changes in PAR intensity, no significant differences were found between a , Im, and 

Ek among the various experiments conducted in this study. Im in the upper ocean 

varied less than two-fold between cruises (~180-300 pmol quanta m'2 s'1), and Ek was 

relatively constant. These results suggest that at least during the three months of this 

study, the photic zone phototrophic bacterial assemblage response to irradiance varied 

very little.
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Photophysiological acclimation in the NPSG

A number of marine photoirophic picoplankton demonstrate 

photophysiological adaptations to response to depth-varying light fluxes in the upper 

ocean. For example, although Prochlorococcus and Synechococcus are genetically 

similar (96% identical 16S rDNA sequences), these cyanobacteria utilize dissimilar 

light-harvesting strategies and have different physiological responses to light and 

nutrients (Moore et al. 1995, Urbach et al. 1998, Rocap et al. 2002). At Station 

ALOHA, Prochlorococcus abundance in the upper 100 m of the water column is 

roughly two orders of magnitude greater than Synechococcus. High-light adapted 

Prochlorococcus isolates (surface water) have been grown in light fluxes high enough 

to completely inhibit growth of the deeper photic zone populations (Moore et al. 

1998). Synechococcus populations appear capable of adjusting their utilization of 

spectral light energy to match the available light spectra of the environment (Paienik 

2002).

Short-term photoacclimation likely provides a competitive advantage for 

populations in the upper mixed layer where the available light energy varies 

depending on the depth of mixing. Similarly, rhodopsin-containing 

photoheterotrophic bacteria appear to tune their light harvesting protein-pigments to 

maximize the spectral energy available along the depth-dependent gradient in the 

upper photic zone (Bdja et al. 2000). The results of the Leu-E experiments 

demonstrate that the response of bacterial protein production to light was similar in 

the upper and lower photic zone at Station ALOHA; however, deep photic zone
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production appeared more responsive to higher light fluxes than production in the 

upper photic zone.

Photosynthetic production and irradiance

Previous investigations into the relationship between photosynthesis and 

irradiance in the NPSG found that upper ocean P8^  values were two to ten-fold 

greater than estimates from the lower photic zone (Ondrusek et al. 2001); the P-E 

experiment conducted during the present study revealed no significant differences in 

P8^ ,  in the upper and lower photic zone (Table 3). The results of the P-E experiment 

conducted in May (Figure 7) resemble laboratory studies on the photosynthetic 

responses of Prochlorococcus and Synechococcus to irradiance. P-E relationships of 

high- and low-light adapted isolates of Prochlorococcus typically demonstrate rapid 

increases in photosynthesis at low light fluxes, becoming saturated at -200 pmol 

quanta m'2 s'1 (Moore et al. 1995,1998). In contrast, photosynthetic rates in low light 

adapted Prochlorococcus strains saturate at much lower light fluxes (30-50 pmol 

quanta m'2 s '1) and become completely inhibited at light fluxes greater than ~140 

pmol quanta m 2 s'1 (Moore et al. 1995,1998). Synechococcus isolates appear to 

require higher light fluxes for optimal growth (-140 pmol quanta m'2 s'1) often 

exhibiting photoinhibition at relatively high light fluxes (>480 pmol quanta m'2 s'1) 

(Kana and Gilbert 1987, Moore et al. 1995).

Primary production at Station ALOHA is dominated by the photosynthetic 

production of Prochlorococcus (Campbell and Valout 1993, Karl 1999). The P-E 

responses observed in the upper water column are consistent with those expected for
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high-light adapted Prochlorococcus and Synechococcus, but in the lower photic zone, 

the P-E relationship appears more consistent with low-light adapted Prochlorococcus 

populations.

There were a few unique differences in the nature of the P-E relationship 

relative to the Leu-irradiance responses. Although the P-E relationship was only 

determined on one of the three cruises sampled during this study, both the optimal 

and saturating light fluxes of Leu incorporation in the lower photic zone were greater 

than those determined for photosynthesis. In addition, Leu incorporation increased 

sharply at low light intensities, suggesting heterotrophic protein production may have 

been more responsive at low light fluxes than photosynthesis. Leu incorporation rates 

tended to increase rapidly under dim light, and saturate at light fluxes photoinhibitory 

to photosynthesis.

To compare how in situ Leu and photosynthesis rates differed in their 

response to light, the in situ LeuL rates and photosynthesis rates were plotted against 

the measured daily light fluxes (Figure 8). Photic zone in situ profiles of Leui. and 

LeuD rates were measured on nine different cruises to Station ALOHA between 

February 2000 and May 2002. The results were fitted with equation 4 and with 

equation 8. Generally, both the modified Monod and the Platt et al. (1980) models 

accounted for equal amounts of the variance in the measured Leu and photosynthesis 

rates (Figure 8).

In situ Leu incorporation generally appeared more responsive to low light 

fluxes than photosynthesis. Maximal Leu rates were -640 pmol L'1 d \  saturating at
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Figure 8. Relationships between in situ daily Leu incorporation rates and daily PAR 

fluxes (E) on nine different HOT cruises from March 2000-May 2002. Leu 

incorporation measured in the light (LeuO, photoenhanced Leu incorporation rates 

(ALeu=LeuL-Leuo), and photosynthetic production (PP). Lines are the result of fitting 

relationships to equation 4 (solid lines) and equation 8 (dashed lines) for Leu rates, 

and equation 2 (dashed line), and 3 (solid line) for PP. The equations for the various 

relationships are:

a.) Leu = 570*(l-e"I02E) + 68, r*=0.64, P<0.0001 (solid line);

Leu = [638*E / (0.58 + E)] + 33, r*= 0.64, P<0.0001 (dashed line).

b.) Leu = 216*(l-e'145E) + 24, ^=0.37, P<0.0001 (solid line);

Leu = [243*E / (0.37 + E)] + 6.3, r2 = 0.35, P<0.0001 (dashed line).

c.) PP = 646*(l-e'023E), ^=0.37, P<0.0001 (solid line)

PP = [739*E /  (3.5 + E)J, ^=0.38, P<0.0001 (dashed line).
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light fluxes of -1 mol quanta m'2 d '1. ALeu (LeuL-LeuD) rates also increased rapidly 

at low light fluxes, and saturated at similar light fluxes as Leui.. In contrast, 

photosynthesis demonstrated a more gradual increase at low light fluxes typically 

saturating ~10 mol quanta m 2 d 1. Increases in photosynthesis were proportionally 

greater than the photoenhanced bacterial production, implying that the relationship 

between heterotrophic production and irradiance was fundamentally different than the 

photosynthetic response to light.

Possible mechanisms o f photoenhanced Leu incorporation

Vertical profiles of Leu incorporation often revealed photostimulation 

throughout the upper 125 m of the water column (Figure 3). Although the 

mechanisms resulting in the photoenhancement remain unclear, there are several 

processes that should be considered. Leu incorporation rates would be expected to 

increase in response to sunlight if phototrophic bacterial growth increased in direct 

response to light-energy. Bacterial populations that may demonstrate direct light- 

stimulated protein production include the AAnP, SAR86-rohodpsin containing 

bacteria, and Prochlorococcus.

Alternatively, several abiotic photochemical processes could exert also 

indirect influence on heterotrophic production. Photoproduction of labile DOM by 

UV light has been observed in a number of studies (Kieber et al. 1989, Miller and 

Moran 1997); in addition, studies have described UV photoproduction of ammonium 

and amino acids from dissolved humic material (Bushaw et al. 1996, Bushaw-Newton 

and Moran 1999). While these abiotic photochemical changes to nutrients and DOM
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are likely to influence heterotrophic production in the upper ocean at Station 

ALOHA, their influence on the response of Leu to irradiance in the experiments 

described here should be minimal. All of the experiments conducted in these 

experiments were conducted in polycarbonate, thereby eliminating the influence of 

UV light on bacterial growth in these experiments. Moreover, the nature of the Leu-E 

response observed in these experiments appears inconsistent with abiotic 

photochemical modification of organic and inorganic nutrients. If photochemical 

transformation of DOM was responsible for the observed effects, photoproduction of 

labile nutrient sources would presumably resemble the non-linear response observed 

in the Leu-E experiments. The nature of the response of Leu-E observed in these 

experiments more likely stemmed from direct light stimulation of heterotrophic 

protein production, or resulted from an indirect coupling between photoautotrophic 

and heterotrophic production.

The similarities between the P-E and Leu-E responses suggest that 

heterotrophic and photosynthetic productivity in the upper ocean are coupled. Such 

coupling may result from a tight temporal dependence of heterotrophic production on 

photosynthetic production, or could result from direct incorporation of DOM (such as 

Leu) by facultative photoautotrophic bacteria like Prochlorococcus. Photosynthetic 

production and phototrophic bacterial cell division in tropical and subtropical 

ecosystems demonstrate clear diel dependence (Gasol et al. 1998, Binder and Durand 

2002). Moran et al. (2001) conducted experiments on the response of Leu 

incorporation to a range of irradiances (0-1500 {xmol quanta m'2 s'1) in the 

Mediterranean Sea and in the North Atlantic, finding that Leu incorporation tended to
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increase with increasing irradiance; however, Leu rates were maximal in samples 

incubated in the dark. In contrast to Mordn et al. (2001), Leu incorporation in the 

NPSG consistently demonstrated a 1.2-1.9-fold photostimulation relative to dark 

controls.

If the response of Leu incorporation to irradiance reflected a coupling between 

photosynthetic DOM production and heterotrophic consumption, then the relationship 

between gross DOM production (the subsidy of heterotrophic production) and 

irradiance would be expected to resemble the response of Leu incorporation to 

irradiance. In a study of dissolved organic carbon (DOC) production at Station 

ALOHA, Karl et al. (1998) measured peak rates of net DOuC production in the upper 

photic zone, decreasing with depth similar to PP. Rates of DOuC production were 

approximately equivalent to PP below -75 m (Karl et al. 1998). Mor£n and Estrada 

(2001) conducted a series of P-E experiments in the oligotrophic western 

Mediterranean Sea and found that DOl4C production and PP differed in their 

responses to irradiance; in their study, DOuC production was relatively constant over 

a range of irradiances spanning 0-1500 pmol quanta m'2 s'1, while PP was described 

by the Platt et al. (1980) model. The response of DOuC to irradiance is unknown in 

the NPSG; however, if the response was similar to responses observed in the 

Mediterranean, it appears unlikely that the Leu-E results were driven solely by 

heterotrophic utilization of photosynthetic exudates.

The observed response of Leu incorporation to irradiance rates may be better 

described by a combination of direct light-stimulated protein production and tight 

microbial recycling of DOM. Both Prochlorococcus and Synechococcus have been
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shown to utilize nanomolar concentrations of amino acids (Rippka 1973, Cuhel and 

Waterbury 1984, Paerl 1991, Berman and Chava 1999, Kamjunke and Jahnichen 

2000, Zubkov et al. 2003). The incorporation of Leu by these photosynthetic bacteria 

may have substantial ecological and biogeochemical consequences. Prochlorococcus 

is estimated to be the most abundant photosynthetic organism in the ocean (Partensky 

et al. 1999), and Prochlorococcus dominates photoautotrophic production and 

biomass in the NPSG (Campbell et al. 1993, Karl 1999). Utilization of DOM as a 

nutritional subsidy by photic zone populations of Prochlorococcus would suggest that 

photoautotrophic production in this ecosystem could be partly regulated by 

heterotrophic utilization of DOM. Photoheterotrophic production by 

Prochlorococcus may significantly impact upper ocean carbon cycling.

The results of Leu-E experiments suggest that if the light-stimulated Leu rates 

are the result of mixotrophic growth by cyanobacterial populations in the upper 

ocean, Prochlorococcus (rather than Synechococcus) likely exerted a greater 

influence on Leu incorporation rates. LeuL.:LeuD ratios were largest near the base of 

the photic zone (75-125 m) where Prochlorococcus abundance is relatively high. The 

abundance of Prochlorococcus at Station ALOHA occasionally exceeds that of non- 

chlorophyll containing, heterotrophic bacteria, and Prochlorococcus abundance is 

typically two-orders of magnitude greater than the abundance of Synechococcus. 

Irrespective of whether the photoenhancement of protein production rates resulted 

from photoheterotrophic, mixotrophic, or coupled autotrophy and heterotrophy, its 

potential impact on ecosystem productivity appears to be substantial and has gone 

entirely overlooked in past studies of bacterial production in the open ocean.
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By assessing the response of bacterial Leu incorporation to irradiance, this 

study has shown that light-energy directly controls the rate of bacterial protein 

production in the NPSG. Moreover, the dependence of heterotrophic Leu 

incorporation on irradiance appears to differ slightly in the upper and lower photic 

zone. Low light adapted phototrophic bacteria appear somewhat more susceptible to 

photoinhibition than cell in the upper mixed layer of the water column. Irrespective of 

the phototrophic groups responsible for the observed response to irradiance, this study 

has shown that Leu incorporation exhibits a response to irradiance similar in form to 

photosynthesis and therefore may be described using models developed for P-E 

relationships. Use of these models provided the first quantitative look at the impact 

of sunlight on heterotrophic productivity.
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ABSTRACT

The inventories and dynamics of dissolved organic matter (DOM) in the 

surface water at Station ALOHA were analyzed from the Hawaii Ocean Time-series 

(HOT) data set for the period 1989-1999. Euphotic-zone, depth-integrated (0-175 m) 

concentrations of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus 

(DOP) were temporally variable. In particular, during the period 1993-1999, 

concentrations of DOC and DON increased while inventories of DOP remained 

unchanged. DOC inventories increased by 303 mmol C m'2 yr'1, a value equivalent to 

approximately 2% of measured primary production (I4C method) at this site. DON 

increased at 11 mmol N m'2 yr \  resulting in a mean molar DOC.DON ratio of 27.5 

for the accumulated DOM. Accumulation of DOC and DON without corresponding 

accumulation of DOP resulted in changes to the bulk organic C:N:P stoichiometry; 

bulk DOC:DOP ratios increased 16% and DON:DOP ratios increased by 17%. These 

results indicate that a small fraction of the annually produced organic matter escaped 

biological utilization on time scales of months to years. More importantly, the 

accumulated DOM inventories grew progressively enriched in C and N relative to P. 

Fundamental changes in the North Pacific Subtropical Gyre (NPSG) habitat appear to 

have altered microbial processes that regulate organic matter fluxes. Considered 

together, the long-term increases in DOC and DON inventories are consistent with
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previous observations indicating that a recent reorganization of plankton community 

dynamics may have altered organic matter cycling in this ecosystem.
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INTRODUCTION

Dissolved organic matter (DOM) in seawater constitutes one of the largest 

exchangeable pools of reduced carbon on Earth so accurate quantification of DOM 

inventories and fluxes is essential for understanding oceanic carbon cycling (Carlson 

et al. 1994, Ducklow et al. 1995, Williams 1995). Efforts to quantify carbon fluxes in 

oligotrophic marine ecosystems indicate that significant fractions of organic carbon 

may cycle through DOM pools (Carlson et al. 1994, Emerson et al. 1997, Carlson et 

al. 1998). At Station ALOHA in the North Pacific Subtropical Gyre (NPSG), the 

dissolved carbon (C), nitrogen (N) and phosphorus (P) inventories in the photic zone 

represent 98,95 and 94% of the total organic matter inventories, respectively.

Three primary classes of bulk DOM have been defined based on their 

temporal lability in the marine environment: (1) labile DOM with turnover times of 

hours to days, (2) semi-labile DOM that turns over on seasonal to annual time scales, 

and (3) non-labile DOM inventories that cycle on time scales of hundreds to 

thousands of years (Kirchman et al. 1993). The ultimate source of DOM in the open 

ocean is marine primary production so across finite time and space scales DOM 

production should covary with primary production. However, the exact pathways of 

DOM production and utilization are still poorly constrained (Ducklow and Carlson 

1992). DOM is an operationally defined term used here to describe measured pools
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of organic carbon, nitrogen, and phosphorus that pass through a microfine glass fiber 

filter (nominal pore size of 0.7 pm).

Investigations in the oligotrophic NPSG indicate that recent changes in the 

autotrophic community structure may have significantly altered the cycling of organic 

matter in this ecosystem. In particular, the phytoplankton community, once 

dominated by eukaryotes, appears to have shifted to a phototrophic community 

dominated by smaller, prokaryotic cells such as Prochlorococcus and Synechococcus. 

Karl (1999) describes this reorganization of the phototrophic community from 

eukaryotes to prokaryotes as a "domain shift". One result of this shift is an apparent 

doubling of both chlorophyll a (Chi a) inventories and rates of 14C-primary 

production (Venrick et al. 1987, Karl 1999, Karl et al. 2001a). In addition, rates of 

nitrogen fixation and abundance of nitrogen fixing microorganisms are hypothesized 

to have increased in the past decade, potentially altering the elemental stoichiometry 

of dissolved and particulate matter inventories in the NPSG (Karl et al. 1995,1997). 

Determining the impacts of such an ecological reorganization on organic matter 

inventories is crucial to assessing how community structure and nutrient cycling 

define the magnitude of carbon export and sequestration in oceanic ecosystems.

This paper examines the variability of DOM in the surface ocean of the NPSG 

between 1989-1999. We focus our temporal analyses on the latter period of 

observations (1993-1999), where profound changes in DOM pool dynamics may 

reflect the reorganization of the NPSG food web. During this period, the bulk DOM 

pool underwent significant alteration of varying amplitude and periodicity. Such
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alterations appear consistent with previously hypothesized changes in microbial 

community dynamics.
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MATERIALS AND METHODS

Station Location and Sample Collections

All data were collected at Station ALOHA (22° 45’ N 158° 00’ W) 

approximately 100 km north of Oahu as part of the HOT program. The complete data 

sets are available through the HOT World Wide Web site (http://hahana.soest.hawaii 

edu/hot/hot Jgofs.html). Water samples for DON and DOP determinations were 

collected at approximately monthly intervals from October 1988 to December 1999, 

while samples for DOC were collected between January 1993 and December 1999. 

Comparative analyses of DOM inventories therefore focus on HOT cruises 44-110 

(1993-1999), because these cruises provided complementary measurements of C, N 

and P pool dynamics.

Water samples were collected from discrete depths using a 24-bottle CTD 

rosette sampler (Karl et al. 2001b), with intensive sampling in the upper 200 m 

corresponding to the depths of primary production measurements. For this 

investigation, spatial analyses focus on the upper 175 m of the water column. We 

define this region as the euphotic zone (EZ), as it roughly corresponds to the depth of 

-0.05% surface irradiance (175 m) and below which there is, on average, no net 

autotrophic production (Letelier et al. 1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://hahana.soest.hawaii


185

Measurements

Descriptions of the methods used in this study can be found in Karl et al. 

(2001b) and Hebei and Karl (2001) and are also described in the electronic version of 

the “HOT Laboratory and Field Protocols” manual

(http://hahana.soest.hawaii.edu/hotlprotocols/protocol.htnd). Analyses of nitrogen 

and phosphorus included total dissolved (TDN, TDP), inorganic (nitrate+nitrite 

(N+N), soluble reactive phosphorus (SRP)) and particulate nitrogen and phosphorus 

(PN, PP) inventories. DON and DOP were calculated by difference (i.e. DON = TN 

-  [N+N + PN] and DOP = TP-[SRP + PP]). DOC was calculated as the difference 

between TOC and particulate carbon (PC). Ambient EZ inventories of N+N and SRP 

reported in Table 1 were derived by the chemiluminescent method of Garside (1982) 

and by the MAGIC method described by Karl and Tien (1992), respectively.

Seawater for TOC analyses was subsampled directly into clean, sterile 15 ml 

polypropylene tubes (Coming #430052). Samples were immediately frozen (-20°C) 

until analyzed in the laboratory. Upon return to the laboratory, TOC samples were 

thawed to room temperature, shaken, and acidified with H3PO4 (final pH 2.0-2.5). 

Samples were purged for -10 minutes using high-purity oxygen to remove inorganic 

carbon. One hundred microliters of sample were injected into the instrument port. 

Between 1993-1996, TOC concentrations were measured using a commercially 

available Ionics Model 555 TOC analyzer modified with a LICOR Model 6252 

infrared detector after removal of total inorganic carbon. Organic matter oxidation to 

CO2 was facilitated by platinum catalysis. Instrument precision (based on the 

standard deviation of 3000 m TOC measurements for the 1993-1996 period) was ± 4
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pM C. Beginning in January of 1997, TOC concentrations were measured using a 

commercially available MQ Model 1001 TOC analyzer equipped with the same 

infrared detector. Similarly, analytical precision of the MQ instrument was ± 4 pM 

C. Analysis of deep-sea (3000 m) TOC concentrations during the period of transition 

(1996-1997) between the Ionics instrument and the MQ system revealed no 

significant baseline offset between the two instruments (Figure 1). Additional details 

of the operation of the Ionics and MQ instruments can be found in Tupas et al. (1994) 

and Qian and Mopper (1996), respectively.

Beginning in 1997, certified reference materials obtained from J. Sharp 

(University of Delaware) were analyzed and used for tracking instrument 

performance and assessing measurement accuracy. From 1993-1996, baseline blanks 

were determined by injection of UV-oxidized distilled water into the instrument; 

beginning in 1997, low-carbon water distributed from J. Sharp's laboratory served as 

the instrument blank. Blank values were subtracted from the measured seawater TOC 

values. Standards were prepared from either sucrose or phthalate stocks then 

analyzed with each sample run.

Complementary samples for PC, PN, and PP were collected during the same 

period (1989-1999) and the details of the sample collection and analyses can be found 

in Hebei and Karl (2001). Briefly, seawater was collected from the CTD rosette and 

subsampled into acid-cleaned polyethylene bottles. Samples were transferred through 

Tygon tubing containing a 202 pm screen mesh to exclude large particles. For PC 

and PN analyses, water was pressure filtered onto precombusted 25 mm glass fiber 

filters (Whatman GF/F). Variable volumes of seawater were filtered depending on
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Figure 1. Concentration o f TOC at Station ALOHA from 3000 m between 1996- 

1998. Closed circles are measurements of TOC using the Ionics Model 555 TOC 

analyzer; open triangles are measurements of TOC made using the MQ Model 1001 

TOC analyzer. Solid line represents mean 3000 m TOC concentration, while dotted 

lines are 1 standard deviation of the mean. No significant difference (ANOVA, 

p>0.05) in the mean 3000 m TOC concentration was observed, indicating comparable 

analytical baselines between the two instruments.
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the depth sampled (typically 4 liters in the upper ISO m and 10 liters from water >150 

m). After filtration, filters were placed onto 2.5 cm2 sections of combusted aluminum 

foil and stored at -20°C until analyzed in the laboratory by high temperature 

combustion using commercially available instruments (Hebei and Karl 2001). Unlike 

PC and PN analyses, GF/F filters used for PP analyses were combusted and HCI- 

rinsed to reduce the P blank. Following nitration, PP samples were placed in acid- 

rinsed 12 x 70 mm2 glass test-tubes, covered with foil and stored frozen. Upon return 

to the laboratory, PP filters were combusted, acid-hydrolyzed, centrifuged and the 

supernatant subsampled for SRP analyses as described below.

DON was estimated by subtraction of PN plus N+N from TDN. Samples for 

DON were collected into 100 ml polyethylene bottles from the CTD sampling rosette 

and frozen until analysis. N+N samples were analyzed directly on a four-channel 

Technicon Autoanalyzer U (Armstrong et al. 1966). TDN samples were exposed to 

high intensity (1200 W) UV radiation for 24 hours at 84 ± 6 °C and analyzed for N+N 

and N H / using the Technicon autoanalyzer. At the concentrations reported in this 

paper, the precision of the TDN measurement is ±7%.

DOP was estimated by subtraction of SRP and PP from TDP. Samples DOP 

were collected in polyethylene bottles and stored frozen. Prior to analyses, samples 

were thawed and divided into subsamples for independent measurements of SRP and 

TDP. SRP was measured using the standard molybdenum blue assay (Murphy and 

Riley 1962) modified for the Technicon autoanalyzer II system. TDP concentrations 

were determined using UV-photooxidation of seawater for 2 hours followed by SRP 

autoanalysis of hydrolysis products using standard procedures (Armstrong et al.
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1966). Calculating DOP by difference between TDP and SRP assumes a negligible 

dissolved inorganic polyphosphate pool. At the concentrations measured in this 

study, the precision of the TDP measurement is ±14%.

Bacterial ceil abundance was enumerated by flow cytometry using Hoechst 

33342 as the fluorochrome (Monger and Landry, 1993). Briefly, samples were 

collected in 13 ml polypropylene centrifuge tubes, and then 1 ml was subsampled into 

Cryovials (Coming) containing 0.02 ml of 10% paraformaldehyde (final 

concentration 0.2%). The cryovials were quick frozen in liquid nitrogen and stored at 

-80°C until analyzed. Prior to analysis, samples were thawed, cells were stained with 

Hoechst 33342 for ~2 hours, and then counted using a Coulter EPICS dual laser (225 

mW UV and 1 W 488 nm) flow cytometer. Non-pigmented, presumably 

heterotrophic, Bacteria and Archaea were enumerated by stained DNA fluorescence 

and forward angle light scattering (FALS), a proxy for cell size, using the software 

CYTOPC (Vaulot 1989).

Data Analysis

Areal standing inventories were calculated for the 0-173 m depth range using 

trapezoidal integration with linear interpolation between the discrete samples. 

Statistical testing was performed using Minitab 4.0. Statistical comparisons were 

based on one-way analysis of variance (ANOVA) and, for temporal trends, Model 1 

linear regression analyses. The latter tests were performed on the depth integrated 

DOM inventories versus time. All ANOVA statistical tests were based on integrated
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values from the monthly observations rather than on seasonally or annually averaged 

data. Significance was evaluated at the p<0.05 level.
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RESULTS

Station ALOHA and the NPSG

The prominent physical, chemical and biological water column dynamics at 

Station ALOHA have been well characterized (see Karl 1999); selected data are 

summarized in Table 1. Surface water temperatures are perennially warm (>20°C) 

but seasonally variable. Inorganic major nutrients (NO3' and HPO42') are consistently 

low in the surface water (<0.1 pM), increasing at the top of the permanent nutricline 

(typically near the 150 m depth horizon) (Karl et al. 2001b). Phytoplankton 

abundance at Station ALOHA is dominated (>95% by cell number) by the 

prokaryotes Prochlorococcus and Synechococcus (Campbell and Vaulot 1993).

The annua] integrated rates of primary production were not significantly 

different (p>0.05, one-way ANOVA) between 1989-1999 with a mean value of 40 

mmol C m'2 d*1 (Table 1). Interannual variability in primary production rates ranged 

between -30-45 mmol C m 2 d'1, similar in magnitude to seasonal variability. Chi. a 

concentrations always showed a subsurface peak between 100-120 m, with integrated 

EZ inventories ranging between -17 and 26 mg Chi m'2 (Table 1). Heterotrophic 

bacterial abundance displayed no significant interannual or seasonal differences 

(p>0.05, one-way ANOVA) (Table 2).

Concentrations of DOM in the upper 175 m of the water column were highest 

in the upper 50 m (DOC = 85-105 pM, DON = 4.5-6.2 pM, DOP = 0.15-0.27 pM),
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Table 1. Mean Integrated Properties of the Euphotic Zone (0-175 m) at Station ALOHA (1989-1999)

Year Temperature
(°C)'

N 03+N02 
(mmol m*2)b

SRP 
(mmol P m'2)

Chlorophyll a 
(mg Chi a m’2)

Primary Production 
(mmol C m*2 d'1)

1989 16.8-26.5 18.20 26.68 38.18
(n=4)* 7.25 5.44 19.16
1990 17.6-25.9 20.95 19.47 22.14 29.95
<n=8) 28.58 3.13 7.10 6.89

1991 18.5-27.0 27.88 18.76 21.76 44.00
(n=9) 12.18 6.86 1.55 9.84

1992 17.2-27.0 31.88 16.66 20.12 44.72
(n=9) 10.53 4.93 2.55 8.56

1993 16.3-26.6 21.71 17.13 20.13 37.46
(n=6) 13.05 7.58 4.85 13.80

1994 18.3-26.6 39.43 11.34 22.37 36.10
(n=8) 18.69 4.08 3.61 8.49

1995 17.1-27.0 43.22 18.18 18.36 43.65
(n=9) 34.22 6.40 2.46 14.27

1996 17.3-27.7 27.86 13.86 17.19 39.47
(n=10) 9.34 4.94 3.63 9.83
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1997
(n=9)

1998
(n=12)

1999
(n=10)

16.0-27.1

17.3-26.0

17.4-26.0

31.78 12.04 19.87 36.32
19.11 6.50 2.47 9.63

36.44 12.50 22.44 42.24
16.32 3.48 2.59 12.55

41.70 15.74 23.30 44.91
29.29 4.46 3.66 9.33

* Range of water column temperatures (0-175 m).

b Top numbers are mean integrated stocks; bottom numbers are standard deviations of the means.

c n indicates number of annual observations from which mean integrated stocks were calculated. Typically 8-10 depths were 

sampled between the surface and 175 m for each observation.
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Table 2. Interannual Variation in Integrated (0-175 m) Organic Matter Stocks, Stoichiometric Ratios and Bacterial 
Abundance at Station ALOHA (1989-1999) *_______________________________________________________________

Year DOC 
(mmol C m'2)

DON 
(mmol C m‘2)

DOP 
(mmol C m*2)

Bacteria 
(1011 cells m'2)

DOC: DON DOC: DOP DON: DOP

1989
Mean

SD
(n=9)c
1990 
Mean
SD

(n=8)
1991 
Mean
SD

(n=10)
1992 
Mean
SD

(n=ll)
1993 
Mean

SD
(n=6)

13636.2
859.2

873.6
56.9

739.6
103.5

888.9
69.7

976.5
27.7

924.6
69.6

30.0
3.3

26.8
2.4

33.2
5.4

37.6
4.2

33.7
4.3

623.8
87.8

564.9
125.5

659.4
248.8

14.8
1.0

408.6
49.3

29.8
4.3

27.8
4.2

27.1
3.2

26.3
3.1

27.6
2.4
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1994
Mean
SD

(n=9)
1995 
Mean
SD

(n=9)
1996 
Mean
SD

(n=10)
1997 
Mean
SD

(n=10)
1998 
Mean
SD

(n=12)
1999 
Mean
SD

(n=10)

14358.18
1302.0

14750.0
1153.1

15054.8
1446.0

15702.1
942.5

15414.2
1012.3

15621.3
567.5

913.4
48.1

923.4
100.3

948.8
43.4

968.7
82.3

999.5
41.2

954.5
54.2

37.3
5.9

39.0
5.6

34.5
2.7

37.8
6.7

32.5
4.9

35.2
9.3

Signtf. p<0.001 1X0.001 1X0.001

662.9 15.8 400.0 25.1
125.7 1.7 112.8 4.8

651.8 16.1 390.4 24.0
74.5 2.1 97.6 3.3

855.6 15.9 439.4 27.7
161.7 1.8 55.7 2.5

697.6 16.3 427.7 26.2
134.9 1.8 80.4 3.7

556.7 15.4 483.4 31.4
122.4 0.9 78.4 4.9

645.3 16.4 478.8 29.2
120.1 1.2 154.3 9.8

ns ns ns p<0.05
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Regression c DOC =
0.83x + 12200 

^=0.25
p<0.0001

DON =
0.03x + 840 

^=0.10 
1x 0.01

ns ns ns DOC : DOP =
0.04x + 382 

r2=0.09
____________ p<0.05

ns

a Values presented are mean annual integrated (0-173 m) inventories of DOC, DON and DOP. Numbers in parentheses are standard 

deviation of the mean integrated inventory. 

b —  indicates no data available

c n indicates number of annual observations from which mean integrated stocks were calculated. Typically 8-10 depths were sampled 

between the surface and 175 m for each observation.

d One-way ANOVA testing interannual differences in specified inventories and ratios. Statistical tests based on integrated inventories 

from each cruise grouped by year. Significance determined at p<0.0S, ns indicates p>0.05.

‘ Model 1 linear regression where x is days since 01 January 1993. ns denotes regression not significant at p<0.05.
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Figure 2. Concentration (junol I'1) versus depth (m) contour plots of: (top) dissolved 

organic carbon (1993-1999), (center) dissolved organic nitrogen (1989-1999), and 

(bottom) dissolved organic phosphorus (1989-1999), in the upper EZ at Station 

ALOHA. The dark solid circles indicate depths and dates of sample collections.
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decreasing through the lower portion of the EZ (DOC = 63-93 pM, DON 3.7-6.1 pM, 

DOP = 0.10-0.25 pM) (Figure 2). The mean concentration (i.e., standing inventories 

divided by 175 m) of DOC in the EZ varied between -71-98 pM, while DON and 

DOP ranged between 3.6-6.5 pM and 0.11-0.30 pM, respectively (Figure 3, Table 2).

Seasonal and Interannual Variability

Integrated inventories of DOM displayed significant variability and several 

consistent long-term trends (Figures 3,4, Table 2). DOC, DON and DOP inventories 

fluctuated by as much as 30% on an annual basis (Figure 2,3,4); however, no 

significant seasonal differences were observed (one-way ANOVA, p>0.05, Figure 3). 

From 1993-1999, integrated DOC concentrations in the upper 175 m of the water 

systematically increased at a rate of 303 mmol C y r'\ resulting in a -14% net increase 

in EZ DOC inventories, and increasing the mean DOC concentration from -78 to 89 

pM (Figures 3,4, Table 2). Although DOC inventories accumulated throughout the 

entire EZ, the relative increases were most dramatic towards the base of the EZ 

(Figure 2). For example, the mean concentration of DOC at the base of the EZ 

increased nearly 30% between 1993-1999, compared to -10% increase in the surface 

waters (Figure 2).

DON inventories increased significantly (p<0.001) throughout the decade 

long period of observations (1989-1999) (Figure 2 ,3c, 4). Consistent with DOC 

inventories, no significant seasonal differences in DON inventories were observed 

(one-way ANOVA, p>0.05). Interannual increases in DON inventories led to a 15 

mmol N m‘2 y r1 pooling of DON for the full 11-year data set and 11 mmol N m'2 y r1
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Figure 3. Mean interannual changes in euphotic zone DOM concentrations (left 

panels) and seasonal climatology (right panels) based on full data sets. Boxes 

represent annual and seasonal (quarterly) divisions of DOM stocks. The line inside 

the box indicates the annual or seasonal mean, while the upper and lower boundaries 

of each box are the 75 and 25 * percentiles, respectively. The capped bars show the 

10 and 90th percentiles of the data. All Seasons is the total mean stock for the entire 

data set (DOC 1993-1998, DON and DOP 1989-1999) without seasonal divisions; 

seasonal classifications were defined as: Spring- March, April, May; Summer-June, 

July, August; Fall-September, October, November, and Winter-December, January, 

February. Mean EZ concentrations calculated as integral inventories divided by the 

175 m depth interval.
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Figure 4. EZ (0-17S m) depth integrated DOM inventories at Station ALOHA. 

Triangles are integrated inventories from each cruise; solid trend lines represent 3- 

point running mean of DOM inventories, a) Dissolved organic carbon, solid line is 

least squares Model 1 linear regression of cruise data (1993-1999). Equation 

describing least-squares linear regression (1993-1999) is shown on bottom of panel; x 

is days since 01 January 1993. b) Dissolved organic nitrogen, solid line is Model 1 

linear regression of data (1993-1999) dashed line is Model 1 linear regression of data 

(1989-1999). Equation on the top of panel describes the regression line for the 1989- 

1999 period, while equation shown on the bottom of the panel describes the 1993- 

1999-time period. In both equations x is days since the beginning of the time series: 

01 January 1989 (top equation) or 01 January 1993 (bottom equation), c) Dissolved 

organic phosphorus, regression lines and equations are same as above.
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accumulation for the 1993-1999 period. This consistent accumulation resulted in an 

overall increase in the bulk DON inventory of roughly 9% and 3%, respectively 

(Table 2). The 11-year mean integral DON inventory was 918 mmol N m'2. A sharp 

decline in DON inventories was observed in 1990 when integrated DON inventories 

dipped to -740 mmol N m’2, the lowest value during the decade of observations 

(Figure 4, Table 2). A substantial increase in DON inventories was observed between 

1990-1993, increasing inventories from -740 mmol N m'2 to 924 mmol N m‘2 (Figure 

4, Table 2).

Similar to DOC and DON, DOP inventories displayed no significant seasonal 

trend (one-way ANOVA, p>0.05). DOP displayed a small increase between 1989- 

1999 at a rate of 0.73 mmol P m'2 y r1 (Figure 3,4). Similar to DON, the largest 

increase in DOP inventories occurred between 1990 and 1992 (Figure 3,4).

However, unlike DOC and DON inventories, DOP inventories remained relatively 

constant between 1993-1999, displaying a slight but insignificant decrease through 

this period (Figure 3,4).

Variability in DOM stoichiometry

These systematic temporal changes in DOM inventories were reflected in 

changes in the stoichiometric ratios of the DOM inventories. The most consistent 

trend was a significant increase in the DOC.DOP ratio through time (Figure 4, Table 

2). Increases in DOC enriched the bulk DOM pool in C, relative to P, by -17%
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Figure 5. Interannual changes in the EZ DOM stoichiometry a.) DOC:DON, b.) 

DOC:DOP and c.)DON:DOP molar ratios of DOM inventories. Solid circles 

represents mean ratio and error bars are standard deviation of the mean for each year 

presented. No DOC data exist for the initial period of observation (1989-1992).
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between 1993-1999 (Table 2). The bulk DOCrDOP molar ratios increased from 408 

to 478:1 (Figure 5, Table 2). DON:DOP molar ratios also showed slight but 

insignificant increases from 28:1 in 1990 to 31:1 in 1998, while the bulk DOC:DON 

molar ratios remained relatively constant, ranging between -15:1 to 16:1 (Table 2). 

Interannual accumulation of DOC and DON also resulted in changes to the C:N:P 

stoichiometry of the accumulated pools of DOM. The DOC:DON ratio of the 

accumulated DOM was -66:1, while the DON:DOP ratio of the accumulated DOM 

was 15:1, and the resulting DOC:DOP ratio was 992:1.
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DISCUSSION

DOM Cycling in the NPSG

Examining temporal variability in bulk DOM inventories has broad 

importance for our understanding of ocean biogeochemistry and microbial ecology. 

Temporal changes in the elemental composition of bulk DOM reflect alterations in 

the rates of production or utilization of organic matter in the marine environment. 

Our observations support previous studies suggesting that the NPSG has undergone 

fundamental changes in the past decade (Karl 1999, Karl et al. 2001a). In particular, 

we maintain that multi-year variability in DOM inventories implies that between 

1989-1999, the NPSG was undergoing ecologically and biogeochemically important 

transitions. We argue these transitions may reflect the response of the planktonic 

community to enhanced nitrogen fixation and shifting phototrophic community 

composition.

Between 1993 and 1999 we observed a significant accumulation of DOC and 

DON with no corresponding increase in DOP. The resulting DOC.DOP and 

DON:DOP molar ratios of the bulk DOM were 478:1 and 29:1, respectively. Total 

net accumulation of DOC for the 7 year period between 1993-1999 was -  2100 mmol 

C m'2, resulting in more than an 12 pM increase in DOC concentrations over the 

entire EZ (Figure 2, 3,4, Table 2). The concentration of DON increased at IS mmol 

N m‘2 yr'1, for a mean net increase of more than -165 mmol m‘2 over the eleven year 

period (Figure 4). The net accumulation of a C and N enriched DOM pool implies
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non steady-state dynamics in production and utilization of organic matter in the 

surface ocean.

Studies examining DOC-production in the NPSG indicate that exudation of 

photosynthetically produced carbon may account for as much as 50% of the gross 

primary productivity of the NPSG (Karl et al. 1998). The high DOC production rates 

estimated from the NPSG may result from several factors acting individually or in 

concert. First, the predominance of small prokaryotes in the surface water 

phototrophic communities may result in high DOM production rates (Bj0msen 1988, 

Hagstrom et al. 1988, Jumars et al. 1989). Secondly, DOM production due to 

nitrogen fixing microorganisms may account for a portion of the accumulated DOM, 

as both C- and N- rich DOM accumulated (Capone et al. 1994, Gilbert and Bronk 

1994). Finally, diminishing inventories of bioavailable P could enhance DOM 

production while simultaneously decreasing DOC and DON utilization. Based on our 

analysis of DOM cycling in the NPSG, the processes governing accumulation of 

DOC and DON appear to operate over multi-year time-scales. A tight seasonal 

coupling between DOM production and consumption appears superimposed over 

small (<1% of gross primary production) but significant secular accumulations of 

DOC and DON. Apparently, the microbial processes responsible for DOM cycling 

over annual time scales are retentive with respect to DOP and relatively non­

conservative with respect to DOC and DON. The net result of these processes is the 

build-up of C and N-rich DOM over annual-to-decadal time-scales.

Karl et al. (1997) observed significant changes in the dissolved and particulate 

N and P inventories at Station ALOHA between 1989-1994, a finding they attribute
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to enhanced nitrogen fixation. These authors described multi-year increases in DON 

inventories accompanied by decreases in SRP inventories. Coincident with these 

trends, Karl et al. (1997) noted increases in DOP inventories, hypothesizing that these 

increases were due to an enhanced production of bioreffactory DOP. Our analyses 

support Karl et al. (1997), with one exception: towards the latter half of our 

observation period (1993-1999), integrated DOP inventories remained unchanged.

The observed decrease in the rate of DOP accumulation may reflect increased 

biological demand for P over time and enhanced retention of P by the biota. In 

support of these observations, P-limited plankton growth is hypothesized to 

temporally uncouple DOC production and its utilization (Thingstad et al. 1997), 

consistent with our observed accumulations of DOC and DON.

DOM Variability in Oligotrophic Oceans

The processes responsible for DOM cycling in oligotrophic oceans have 

received considerable attention over the past decade. In particular, studies evaluating 

the temporal dynamics of DOC in the oligotrophic Sargasso Sea and the 

Northwestern Mediterranean (Copin-Montegut and Avril 1993, Carlson et al. 1994, 

Han sell and Carlson 2001) have revealed an important seasonal dynamic in DOC 

inventories. The cyclic interaction between stratification of sea-surface waters and 

increased vernal primary production appears to drive seasonal DOC dynamics in the 

surface waters of these seasonally variable regimes. Such studies indicated that DOC 

production and export represent a potentially important permutation of the biological 

pump in oligotrophic environments (Ducklow et al. 1995).
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No consistent pattern of seasonal production and removal of DOC was 

observed during the 11 years of our study at Station ALOHA. Instead, a multi-year 

net accumulation of DOC and DON throughout the upper ocean was observed. The 

seasonally driven process of DOC accumulation observed in the surface waters of the 

Sargasso and Mediterranean Seas apparently manifests itself over interannual and 

sub-decadal time scales in the NPSG. The lack of seasonal mixing in surface waters 

at Station ALOHA results in diffusion-dominated export of DOM rather than the 

seasonal pumping witnessed in other oligotrophic oceans (Copin-Montegut and Avril 

1993, Carlson et al. 1994). The resulting long-term accumulation of DOM reflects 

multi-year excesses in the balance between production, utilization, and diffusive loss, 

rather than the seasonal-scale imbalances observed in other oligotrophic oceans.

In their study of temporal DOC dynamics in the oligotrophic Sargasso Sea, 

Carlson et al. (1994) observed net seasonal mixed-layer accumulations of DOC of 

-1.2 mol C m 2. Of this DOC input, approximately 10% turned over on seasonal time 

scales, and the remaining -90% was exported to depth with winter convective mixing 

(Carlson et al. 1994). Similarly, Copin-Montegut and Avril (1993) estimated -1.5 

mol C m'2 of the annually produced DOC in the Mediterranean Sea was seasonally 

exported from the surface ocean. Our analyses indicate net annual accumulation of 

DOC in the surface NPSG equals -0.3 mol C m’2, approximately 20% of the amount 

of DOC annually exported in the Sargasso and the Mediterranean Seas. Moreover, 

the long-term accumulation of DOC in the EZ was nearly 30% as large as estimated 

total carbon export from this system (Emerson et al. 1997).
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The mean rate of net 14C incorporation into particulate matter in the EZ at 

Station ALOHA for the 1993-1999 period was 40 mmol C m'2 d*1 or -15 mol C m"2 

annually. Balancing this estimate of net primary production with our estimate of net 

DOC accumulation of -0.3 mol C m*2 y r1 and calculated total export rates of 

approximately 1 mol C m'2 yr*1 (Emerson et al. 1997), indicates that 91% of the net 

primary production was remineralized in the EZ. The remaining 9% of this net 

production was exported (7%) below the 175 m depth horizon or cycled on time 

scales greater than 1 year and accumulated in the EZ (2%). If DOC production rates 

in the NPSG approximate particle production rates (Karl et al. 1998) gross production 

in the NPSG could be as high as 30 mol C m*2 yr*1. Given this scenario >95% of the 

gross primary production would remineralized in the EZ, leaving -1% of this 

production to accumulate as DOC.

The apparent net rise in DON inventories between 1988-1999 was one of the 

most intriguing observations in this study. Assuming the 15 mol C m*2 measured as 

the mean annual 14C-production rate had a C:N molar ratio approximating Redfield 

stoichiometry of 6.6:1, our estimate of annual nitrogen based primary production was 

-2.0 mol N m*2 with N export below the EZ exceeding 0.15 mol N m*2 yr*1.

Balancing this production and export with our calculated rise in DON inventories 

(0.01 mol N m*2 y r1) indicates that 92% of the annually produced organic N was 

remineralized in the EZ. The remaining 8% of this DON was exported (7.5%) or 

cycled on time scales greater than 1 year and accumulated in the EZ (0.5%). Based 

on examination of the dynamics of the DOM inventories at Station ALOHA, it 

appears that a large fraction (>90%) of the annually produced DOM turns over on
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short time scales (< 1 year), while a small fraction (-1%) of unutilized DOM grows 

progressively richer in C and N relative to P, and may escape degradation altogether.

Climate Change and Biogeochemical Implications

Changes in the DOM inventories at Station ALOHA may be a reflection of 

changes in the plankton community structure driven by basin-scale climate 

variability. Investigations on surface water chemistry, physics and biology of the 

North Pacific have emphasized the coherence of upper ocean processes with 

interannual and decadal scale climate variability (Karl et al 1997, McGowan et al.

1998, Karl 1999, Karl et al. 2001a,b). Modification of surface water circulation and 

enhanced stratification may have reduced the frequency of deep mixing events in the 

NPSG. Such changes have been attributed to the occurrence and duration of El-Nino 

Southern Oscillation (ENSO) events (Karl 1999). The lack of surface water mixing 

events that penetrate into the permanent nutricline restricts the delivery of new 

nutrients into the surface ocean and maintains the oligotrophic character of the gyre.

The non steady-state changes in bulk DOM inventories significantly altered 

the underlying elemental stoichiometry of the bulk DOM inventories. Between 1993-

1999, the average C:N:P signature of bulk DOM inventories at Station ALOHA 

increased from -408:28:1 to 478:29:1 (Figure S). The DOC:DON ratio of the bulk 

DOM pool was more than two times greater than the Redfield ratio of 106:16, and the 

resulting DOC:DOP ratio was more than four times richer in C relative to the 

Redfield ratio. Between 1993-1999 the bulk DON:DOP ratio grew -7% while the 

bulk DOC:DOP ratio increased by 16% (Figure 6). More importantly, the resulting
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C:N:P ratio of the accumulated DOM was 992:15:1, approximately ten times richer in 

C relative to the Redfield ratio. We are unaware of any other study documenting a 

systematic change in the bulk oceanic DOM C:N:P ratios over multi-year time scales. 

Increases in the C:N:P stoichiometry of the bulk DOM suggest either that inputs of C- 

and N- rich organic matter accelerated during this period or that selective 

heterotrophic utilization of P rich compounds became more prevalent.

Accumulations of C- and N- enriched DOM, relative to P, are important to 

quantify for complete understanding of biogeochemical cycling in the world’s oceans. 

If C-and N- rich DOM accumulate under conditions favoring nitrogen fixation, 

revision of our understanding of carbon transport to the deep-ocean in oligotrophic 

systems may be required. New production defines the process whereby the removal 

of particulate and dissolved material from the surface ocean is balanced by input of 

new nitrogen into the surface ocean (Dugdale and Goering 1967, Eppley and Peterson 

1979). If the observed DOM production and utilization imbalances are fueled by 

nitrogen fixation then new nitrogen input may not necessarily be temporally coupled 

to vertical export of carbon. The near-surface accumulation of C-and N-rich DOM 

comprises an alternate pathway to vertical export for multi-year carbon storage. 

Considered together, such near-surface C and N pooling may require reconsideration 

of the NPSG’s capacity for carbon storage. Unlike the seasonal accumulation and 

export of DOM witnessed in the oligotrophic Sargasso and Mediterranean Seas, the 

EZ of the NPSG appears to focus DOM dynamics on interannual to interdecadal time 

scales. Such behavior reflects multi-year production imbalances and reflects the 

NPSG capacity for sub-decadal C- and N- DOM storage in the upper water column.
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Heterotrophic bacterial production in the NPSG

One of the primary objectives of this dissertation was to evaluate the 

importance of heterotrophic bacterial production (HBP) to carbon cycling in the 

upper ocean of the North Pacific Subtropical Gyre (NPSG). Bacterial carbon fluxes 

were estimated from time-series observations of heterotrophic protein production 

rates at Station ALOHA. The results of these studies revealed that HBP constitutes a 

major pathway of organic matter production, equivalent to roughly 15% of the annual 

primary production, and more than three times greater than particle export in this 

system.

Carbon production by heterotrophic bacteria in the NPSG was similar to rates 

measured in other oligotrophic ocean systems including the Sargasso and western 

Mediterranean Sea (Table 1). Direct comparison between the present study and 

studies in these other ecosystems is hampered by the observation that sunlight has a 

strong positive influence on heterotrophic production in the NPSG and its impact is 

still mostly unknown in these other ecosystems. Nonetheless, comparison with these 

other systems provides a relative basis for assessing the magnitude of carbon flow 

into the microbial food web in these different ecosystems.

The establishment of the Bermuda Atlantic Time-Series (BATS) has provided 

a wealth of information on HBP in the Sargasso Sea. HBP in the photic zone at 

BATS averages 5.8 mmol C m'2 d'1 (Carlson et al. 1996), roughly equivalent to HBP 

measured in the dark in the NPSG. Similarly, rates of primary production in the two 

ecosystems are roughly equivalent (Karl et al. 2002); however, there are several
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Table 1. Mean photic zone heterotrophic bacterial production in various open 
ocean ecosystems.

Location

Sargasso Sea

Equatorial Pacific

North Atlantic Spring 
Bloom

Subarctic North 
Pacific

Ross Sea, Antarctica 

Mediterranean Sea

North Pacific 
Subtropical Gyre

HBP Study
(mmol C m'2 d*1)

5.8 Carlson et al.
1996

19 Ducklow et al.
1995

23 Ducklow et al.
1993

4.7 Kirchman et al.
1993

4.6 Ducklow et al.
2001

Light: 4.1 Mor£n et al.
2001

Dark: 8.8

Light: 8.3 This study

Dark: 5.1

Comments

Nine
time-series cruises to 

BATS, 1991-1993

Two -1 month 
cruises in spring and 

fall of 1992

Three -1 month 
cruises in the 

spiing/summer of 
1989

Two cruises in the 
spring of 199?

Six, 1-2 month 
cruises between 

1994-1997

One cruise in 
February 2000

Nine time-series 
cruises to Station 

ALOHA, 2000-2002
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fundamental biogeochemical differences between the NPSG and the Sargasso Sea. 

Most noticeably, the upper ocean at BATS is seasonally transformed by the injection 

of nutrient-rich deep water during the winter, in contrast, mixed layers at HOT rarely 

penetrate the nutricline, resulting in nearly continual nutrient deprivation (Karl et al. 

2002). In addition, concentrations of inorganic nitrogen (N) are much more variable 

at BATS than at HOT; NO3' + NO2' concentrations at BATS range between -10-1000 

pM. Moreover, concentrations of inorganic phosphorus (P) are roughly an order of 

magnitude lower at BATS than HOT (Cavender-Bares et al. 2001).

The influences of sunlight on HBP in the Sargasso Sea are still largely 

unknown but several differences in upper ocean plankton community structure 

between BATS and HOT suggest that HBP might not depend on light to the same 

extent as in the NPSG. For example, the mean photic zone abundance of 

Prochlorococcus is roughly an order of magnitude greater at Station ALOHA than at 

BATS. In contrast, Synechococcus abundance at BATS can exceed concentrations 

measured at Station ALOHA by more than an order of magnitude (Cavender-Bares et 

al. 2001). The relationship between HBP and Prochlorococcus observed in the 

NPSG (Section I) suggests Prochlorococcus may be linked to the photostimulated 

production; if this is the case, then sunlight is likely to play a greater role in HBP at 

Station ALOHA than at BATS.

The causes of the differences in bacterioplankton population structure among 

these two oligotrophic ocean systems are unknown; however, BATS consistently 

experiences wintertime convective mixing and nutrient input while HOT does not, a 

factor that likely impacts the abundance of the bacterial populations. Despite these
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important differences in plankton structure and upper ocean biogeochemistry, both 

primary and secondary carbon production in these two systems appear roughly 

comparable.

Studies in the western Mediterranean Sea suggest that HBP may partly 

depend on sunlight, with HBP ranging between 4-8 mmol C m'2 d‘‘ (Table 1, Gasol et 

al. 1998, Mordn et al. 2001). The influence of sunlight on HBP in the Mediterranean 

Sea appears somewhat different than in the NPSG; HBP in the Mediterranean was 

consistently lower when measured in the light than in the dark (Table 1, Mordn et al. 

2001). Generally, the upper ocean biogeochemistry in the Mediterranean Sea is more 

similar to the Sargasso Sea than to the NPSG. For example, the abundance of 

chlorophyll containing bacteria in the Mediterranean resembles that at BATS; 

Prochlorococcus accounts for ~103-104 cells ml'1 (roughly two orders of magnitude 

lower than at HOT) and Synechococcus abundance averages ~104 cells ml*1, or 

roughly an order of magnitude greater than found in the NPSG. In addition, inorganic 

N concentrations in the upper ocean are roughly an order of magnitude greater in the 

Mediterranean than at HOT.

The apparent differences in the light-response of HBP in the NPSG and the 

Mediterranean Sea provide additional support to the hypothesis that Prochlorococcus 

demonstrates light-stimulated Leu incorporation in response to the dearth of inorganic 

N available in the upper ocean of the NPSG. This hypothesis is consistent with a 

recent study demonstrating DON utilization by natural populations of 

Prochlorococcus in the Arabian Sea (Zubkov et al. 2003).
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The heterotrophic response to light

One of the most important findings of this study was that Leu incorporation 

rates in the upper ocean were significantly enhanced by sunlight. The mechanisms 

responsible for this possible photoenhancement of heterotrophic production remain 

unclear, however, the results suggest that carbon fluxes into the microbial food web 

are significantly greater due to abiotic or direct biotic photostimulation of 

heterotrophic production.

Overall, photoenhancement of Leu incorporation accounted for greater than 

half of the light-incubated protein production in the upper ocean. Rates of both light- 

and dark- Leu incorporation were positively correlated with the abundance of 

Prochlorococcus and non-chlorophyll containing bacteria. While the relationship 

between the non-chlorophyll containing bacteria was not unexpected, the apparent 

relationship between Prochlorococcus and heterotrophic productivity suggests two 

possibilities: 1) Prochlorococcus directly incorporates amino acids, or 2) 

heterotrophic bacterial growth was indirectly linked to the abundance of 

Prochlorococcus.

Several experiments were conducted in both the upper and lower water 

column at Station ALOHA to evaluate the nature of the relationship between protein 

production rates and inadiance (Leu-E) over a range of light fluxes (0-1200 pmol 

quanta m'2 s'1). The results of these experiments suggested two important aspects of 

the heterotrophic response to irradiance: protein production varied with irradiance in 

a manner similar to the photosynthetic response to light (P-E); and the response of 

heterotrophic production to light differed only slightly in the upper and lower photic
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zone. Similar to the P-E relationships observed in this study and previous 

investigations of the NPSG (e.g. Ondrusek et al. 2001), the Leu-E response in the 

upper photic zone typically exhibited a saturation response, increasing asymptotically 

at low light fluxes and saturating with increasing irradiance. However, upper photic 

zone Leu incorporation rates appeared more responsive than photosynthesis at low 

light fluxes, displaying optimal iiTadiances between 183-296 mmol quanta m'2 s '1, 

compared to -600 mmol quanta m'2 s'1 for photosynthesis. In the lower photic zone, 

Leu incorporation rates often displayed significant photoinhibition at light fluxes 

greater than 18-130 mmol quanta m'2 s'1, and photosynthetic rates saturated at 26 

mmol quanta m'2 s'1.

The results from Section I and II suggest a number of potential processes may 

photostimulate bacterial production in the NPSG (Figure 1). Direct utilization of 

solar energy by photoautotrophic and photoheterotrophic bacterial assemblages might 

result in photoenhanced heterotrophic protein production. For example, light-driven 

photosynthetic production of labile DOM could result in a tight temporal coupling 

among heterotrophic and photoautotrophic bacteria in the upper ocean (Figure 1, 

pathway A). There are many examples of tightly coupled plankton dynamics in 

subtropical oceans ecosystems, with bacterial production often closely synchronized 

with photoautotrophic production. Presumably HBP at Station ALOHA demonstrates 

some temporal coordination with primary production (PP); however, regression 

analyses did not reveal a consistent relationship between PP and HBP (Section I).

The time scale of the coupling between PP and HBP may be considerably shorter than
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Figure 1. Various light-driven processes that could result in light-stimulated 

heterotrophic production at Station ALOHA. Processes include biotic and abiotic 

influences of solar energy on upper ocean biogeochemical processes. Pathway A: 

Light energy fuels photoautotrophic production of labile DOM, triggering 

heterotrophic response to increased flux of labile DOM. Pathway A requires a tight 

temporal coupling between heterotrophic and photoautotrophic bacterial assemblages. 

Pathway B: mixotrophic utilization of DOM by facultative photoautotrophs. An 

example of this pathway is the heterotrophic utilization of amino acids such as 

leucine to supplement the cellular nitrogen requirements of Prochlorococcus. 

Pathway C: photoheterotrophic production by rhodopsin-containing or AAnP 

bacteria. Utilization of sunlight as an energy source and DOM as a carbon and 

nutritional supplement could result in light-stimulated heterotrophic production by 

these groups of bacterioplankton. Pathway D: Abiotic transformation of DOM by 

UV or PAR could photochemically alter upper ocean DOM inventories, producing 

N H / or labile DOM. This process could indirectly result in light-stimulated 

heterotrophic production.
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the intervals sampled between cruises in this study. Appropriate evaluation of the 

temporal coupling between PP and HBP would need to include much higher 

frequency sampling (i.e. hourly) than was undertaken in this study.

Light-stimulated bacterial production might also result from mixotrophic 

growth by upper ocean phototrophs. Selective utilization of DOM (like leucine) as a 

supplement to photoautotrophic production would presumably exhibit a response to 

sunlight, corrdinated with increased growth by photosynthesis (Figure 1, pathway B). 

Alternatively, a significant portion of the upper water column bacterial assemblages 

may grow photoheterotrophically, utilizing light as an energy source and DOM as 

carbon and reductant sources (Figure 1, pathway C). If this were the case, 

heterotrophic growth and production would be significantly greater in the light than in 

the dark.

A third process considered throughout this dissertation is that light-stimulated 

bacterial production occurred by an indirect abiotic pathway via photoproduction of 

labile DOM or inorganic nutrients (Figure 1, pathway D). Although not evaluated 

directly in this study, high light fluxes (particularly UV-A and UV-B) are a 

characteristic of oligotrophic ocean ecosystems. UV radiation has several possible 

influences on microbial growth in the upper ocean. Direct absorption of UV light by 

upper ocean plankton assemblages may damage DNA, and reduce heterotrophic 

production (Jeffrey et al. 1996). All of the experiments described in this study were 

conducted in polycarbonate bottles, minimizing the impact of UV light on bacterial 

production. While not specifically tested, the estimates of HBP reported in this study 

may overestimate the actual flux of carbon into heterotrophic bacteria due to the
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detrimental influences of UV light. However, as described in Section I, the overall 

influence of UV should be restricted to the upper 30 m of the water column and likely 

not reduce depth-integrated rates of HBP in the photic zone by mote than -12%.

Heterotrophic production might also demonstrate light-stimulation if 

photoproduction of bioavailable forms of nutrients from DOM was occurring at 

appreciable rates in the upper ocean. Photolytic production of both N H / and amino 

acids from marine DOM has been observed (Bushaw et al. 1996, Bushaw-Newton 

and Moran 1999), and could potentially play an important role of introducing labile 

nitrogen into the upper ocean at Station ALOHA. However, high-energy radiation 

(i.e. UV light) is believed the major spectral component necessary for photochemical 

conversion of DOM, so the potential importance of this process was not included in 

this study.

Based on the analyses of the Leu-E and P-E responses to irradiance (Section 

II), and analyses of the temporal relationships between heterotrophic production and 

photic zone inventories of bacterial assemblages (Section I), Leu incorporation in the 

NPSG appears at least partly regulated by the unicellular cyanobacterium 

Prochlorococcus. Growth in the nutrient-poor upper ocean likely requires that the 

plankton assemblages utilize the larger pool of DOM as an additional nutrient 

resource. Prochlorococcus is estimated to be the most abundant photosynthetic 

organism on Earth (Partensky et al. 1999); if the growth of Prochlorococcus exerts 

fundamental control over both primary and secondary production in large areas of the 

world’s oceans, it is imperative that we reevaluate its contributions to global carbon 

fluxes.
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Previous studies have documented long-term, increasingly oligotrophic 

conditions in the upper ocean of the NPSG. In particular, several studies have 

hypothesized that decreases in upper ocean concentrations of phosphorus may be 

linked to the increased abundance of nitrogen-fixing cyanobacteria in the NPSG (Karl 

et al. 1995,1997). The paucity of inorganic nutrients in the upper ocean of the NPSG 

may select for groups of phototrophic prokaryotes that supplement or entirely meet 

their cellular N and P requirements using the relatively large pool of DOM. The 

ability to harvest sunlight for energy while obtaining carbon, nutrients, and energy 

from DOM presumably increases bacterioplankton productivity in this sunlight-rich, 

nutrient-poor open ocean ecosystem.

Bacterial growth in the NPSG forms an important pathway of carbon flow in 

the ocean. Moreover, the oligotrophic waters of the subtropical gyres result in a 

complex microbial food web that obscures explicit distinctions between the 

contributions of heterotrophic and autotrophic productivities. One of the primary 

conclusions of this study is that sunlight significantly increased the flux of carbon 

into bacterial biomass. Whether this process occurred as a result of diverse 

physiological capabilities of the upper ocean bacterial assemblages, or resulted from 

photostimulated production of labile DOM or inorganic nutrients, the net result was 

that roughly half of the measured heterotrophic production in this system appears 

directly fueled by solar energy.
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Climate-induced changes in biogeochemistry in the NPSG

Section m  of this dissertation focused on the temporal dynamics of upper 

ocean DOM inventories in the NPSG, and evaluated how long-term climate-driven 

changes in ocean biogeochemistry may have impacted organic matter concentrations 

at Station ALOHA. The results from the analyses in Section m  demonstrated that 

inventories of DOC, DON, and DOP in the upper ocean have all undergone multi­

year accumulations; however, toward the latter half of the observation period (1993-

1999) DOP inventories ceased accumulating while concentrations both DON and 

DOC continued to increase. The accumulating DOC was a relatively minor 

component of upper ocean organic carbon fluxes, accounting for -1-2% of the annual 

primary production in this ecosystem. Nonetheless, the pathway may provide a 

temporary storage for fixed carbon in the upper ocean.

The results of Section in provide support to previous studies that have 

described recent changes in upper ocean biogeochemistry in the NPSG. Increases in 

both the abundance and activity of nitrogen-fixing bacteria through the past decade 

have been ascribed to climate-driven stabilization of the upper water column in the 

NPSG (Karl 1999, Dore et al. 2003) and the introduction of fixed N has been 

hypothesized to have begun to drive the upper ocean toward a P limited ecosystem 

(Karl et al. 1997). In addition, long-term increases in the concentration of chlorophyll 

a and the abundance of phototrophic bacteria are hypothesized to reflect climate- 

induced alteration of upper ocean biogeochemical processes (Karl et al. 2001). 

Accompanying these changes in bacterial abundance and activity, upper ocean
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organic matter inventories appear to have grown increasingly rich in C and N, relative 

to P.

Long-term accumulations of DOC and DON in the upper ocean may 

substantially alter microbial food web processes in the NPSG. In particular, 

increasing availability of DOC and DON may provide a source of energy and 

nutrients to sustain heterotrophic or mixotrophic bacterial growth. If the bacterial 

assemblage were able to utilize this accumulating DOM, the total carbon flux into the 

bacterial assemblage would likely increase, enhancing remineralization and altering 

food web dynamics in the upper ocean. However, the observation that DOM is 

accumulating also suggests that this material resists bacterial degradation over annual 

time scales. The poor nutritional “quality” of this accumulating DOM is likely to 

restrict bacterial utilization of this reduced carbon (Thingstad et al. 1997, Carlson and 

Ducklow 1996).

The impact of light-enhanced heterotrophic production could also 

substantially alter DOM dynamics in the NPSG. One explanation for the long-term 

increases in bulk DOM inventories in the NPSG could relate to the diversity of 

metabolic capabilities expressed among the photic zone bacteria in the NPSG. Both 

photoheterotrophic and mixotrophic production are important pathways of organic 

carbon production in this ecosystem, and both of these physiologies are likely to 

directly impact heterotrophic bacterial growth efficiencies (HBGE) (Yurkov and 

Beatty 1998, Kolber et al. 2001, Karl 2002). In Section I, a simple budget of organic 

carbon fluxes revealed that HBGE in the upper ocean at Station ALOHA could be as 

great as 29%; in comparison, the HBGE in the oligotrophic Sargasso Sea is -14%
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(Carlson et al. 1996). Increased growth efficiencies by photoheterotrophic and 

mixotrophic bacteria may increase the upper ocean bacterioplankton HBGE, thereby 

increasing the flux of carbon into the microbial loop relative to obligate heterotrophy.

The vast majority (generally >80%) of DOC consumed by heterotrophic 

bacteria is used to generate energy to sustain basic cell functions such as transport and 

construction of biomass (del Giorgio and Cole 2000). Catabolic processes are both 

the dominant pathways of carbon flow and the primary energy generating 

mechanisms for obligate heterotrophic bacteria (Figure 2, del Giorgio and Cole

2000). Bacteria] catabolism of DOM for energy results in a large respiratory carbon 

fluxes among natural heterotrophic bacterial assemblages. As a result, HBGE in 

many marine ecosystems appears relatively low (5-20%) (del Giorgio and Cole 

1998). By obtaining energy from the sun rather than metabolizing organic matter for 

energy, photoheterotrophic bacterial growth is expected to be more efficient than 

obligate heterotrophic metabolism (Kolber et al. 2001, Karl 2002). By meeting 

cellular energy demands through harvesting of sunlight, photoheterotrophic bacteria 

may selectively utilize labile DOM containing bioessential nutrients (particularly N 

and P) rather than utilizing DOM as an energy source. Such selective DOM 

utilization might increase the proportion of biosynthetic precursors direcdy 

incorporated into biomass, and increase net growth rates (Figure 3).

By reducing organic matter catabolism and efficiently transforming carbon 

into bacterial biomass, photoheterotrophic or mixotrophic growth has the potential to 

significantly reduce the carbon demand required by the bacterial assemblages in the
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Figure 2. Schematic based on del Giorgio and Cole (2000) displaying the dominant 

pathways of energy flow in heterotrophic bacteria. ATP production occurs by 

catabolism of DOM and intracellular energy reserves (pathways a and e). ATP is 

utilized for cellular functions such as transport (b), anabolic reactions that build 

cellular constituents (c), and to maintain cellular constituents (d). The growth rate of 

the bacterial population is determined by the rate that carbon enters the anabolic 

pathways to build biomass.
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Figure 3. Schematic of cellular energy generation and partitioning in 

photoheterotrophic or mixotrophic bacteria. ATP production and utilization pathways 

are similar to Figure 2, but solar energy provides the dominant source of ATP, with 

smaller fluxes derived from substrate level and oxidative phosphorylation. Energy 

gained from sunlight decreases the cells dependence on catabolism as the sole energy 

yielding processes, and provides additional energy to fuel biosynthesis (anabolic 

pathways), resulting in a net increase in the growth rates of the population.
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upper ocean. Reduction of the carbon flux through the bacterial assemblages could 

allow DOM production to outpace utilization, and result in accumulation of carbon- 

rich DOM in the upper ocean. By harvesting energy from sunlight and using both 

CO2 and labile DOM in anabolic processes, mixotrophic production could decrease 

bacterial dependence on semi-labile or refractory DOM, allowing multi-year 

accumulations of these pools of DOM.

Climate change and its impact on NPSG biogeochemistry

Ocean-climate models predict that anthropogenic emission of CO2 may 

dramatically alter Earth’s climate. One potential consequence of increased CO2 

emissions is an increase in the upper ocean temperatures throughout the tropics and 

subtropics. Such climate-driven changes in upper ocean temperature could 

presumably impact ocean circulation. One potentially important consequence of 

ocean warming is stabilization of the upper ocean water. In the NPSG, this process 

could substantially impact ocean biogeochemistry (Figure 4). In particular, restricted 

vertical mixing may further exacerbate the isolation of the upper photic zone, 

enhancing the oligotrophic conditions. Restriction of convective mixing and nutrient 

input may select for diazotrophic bacteria, and effectively tighten P recycling in the 

upper ocean. Inventories of DOC and DON would be expected to continue to 

accumulate due to the activities of N-fixing bacteria, and restricted vertical dilution of 

upper ocean inventories.
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Figure 4. Schematic depicting predicted influence of climate warming and enhanced 

stratification of the upper ocean in the NPSG. Deepening of the thermocline due to 

warming of upper ocean would restrict vertical nutrient fluxes, and enhance 

conditions conducive to the growth of N2-fixing bacteria. In addition, phototrophic 

bacteria (PB) capable of utilizing DOM as a nutrient and energy source may become 

increasingly abundant. Mixotrophic and photoheterotrophic production by PB 

bacteria would increase heterotrophic bacterial production (HBP) and increase 

heterotrophic bacterial growth efficiency (HBGE). Increased utilization of sunlight 

as an energy source would decrease the heterotrophic demand for DOM, resulting in 

upper ocean accumulations of DOC and DON.
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The impact of climate-driven upper ocean stratification could substantially 

alter heterotrophic production in the NPSG. Increased stratification might favor 

physiologically diverse bacteria. In particular, organisms capable of utilizing DOM 

to fulfill cellular nutrient demands, and simultaneously harvesting energy from the 

sun might be favored over obligate photoautotrophs or strict heterotrophs (Figure 4). 

Increased productivity by photoheterotrophic and mixotrophic bacterial assemblages 

may further emphasize the role of the microbial food web in this ecosystem. In total, 

future changes to the physical structure of the upper ocean may substantially alter 

nearly every aspect of biogeochemical cycling in the NPSG. Our understanding of 

the processes that regulate the functioning of the microbial loop in the open ocean 

provides a basis for forecasting how the oceans will respond to the inevitability of 

global climate change.

Future Directions

This study may have raised more questions than it has answered. Several 

important ideas need to be followed up on in order to understand the processes 

controlling the observations in this study. In particular, understanding the factors that 

regulate the temporal dynamics in upper ocean DOM inventories may provide insight 

into the apparent long-term accumulation of DOM in the upper ocean. In addition, 

careful evaluation of the processes governing the photoenhanced heterotrophic 

production in this ecosystem is required. By isolating the specific mechanisms that 

resulted in light-stimulated Leu incorporation, it may be possible to quantify the 

importance of the various light stimulated heterotrophic pathways described in this
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study. Various experimental approaches may be employed to identify the specific 

photoheterotrophic bacteria in this system. Such experiments include isolating 

Prochlorococcus from the other members of the bacterioplankton assemblage by 

cultivation based approaches. Cultivation-based appraoches would allow 

determination of the physiological capacilities of the organisms under strictly 

controlled laboratory conditions. Such experiments may provide insight into the 

interactions of growth, nutrients assimilation, and light. In addition, utilization of 

nucleic acid probes to target specific populations of Prochlorococcus could be 

combined with substrate autoradigraphy, yielding information on whether 

Prochlorococcus is capable of amino acid assimilation. Similar methods could be 

applied to examine how different photoheterotrophic bacteria (including the AAnP 

and rhopsin-containing bacterial populations) influence Leu incorporation rates in the 

upper ocean. In addition, RNA-based approaches could be utilized to target the 

expression and diversity of photoheterotorphic bacterial amino acid transport systems. 

Finally, experimental determinations of heterotrophic growth efficiencies could 

provide constraint on the importance of photoheterotrophic and obligate heterotrophic 

production and remineralization.

Additional research efforts should also be direct at understanding the factors 

that limit heterotrophic utilization of accumulated DOC and DON in the upper ocean 

of the NPSG. Experimental studies which examine the factors that limit 

heterotrophic utilization of DOM at Station ALOHA could be undertaken and 

quantification of DOM production and removal rates might provide insight into the 

relatively lability of the accumulated C and N pools. In addition, by understanding
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the major forms of bacterial metabolism in the upper ocean may yield clues into how 

microbial population dynamics influence carbon and nutrient cycling in the upper 

ocean. There are many questions yet to be answered, but hopefully this research will 

open new doors of opportunity to advance our understanding of ocean 

biogeochemistry and ecology.
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