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ABSTRACT

This research examined the effects of quinoline and 4—azafluorene on 
respiratory electron transport rate (ET), outer membrane permeability and 
topology, oxygen consumption, and viable cell density in Escherichia coli cell 
suspensions. ET was estimated spectrophotometrically using INT
(2—(p—iodophenyl)— 3—(p-nitrophenyl) —5—(phenyl)— 2H—tetrazolium 
chloride), which is reduced in vivo to a red colored formazan (INTF). Both test 
compounds caused anomalous dose—response behavior in INT assays: in a 
defined window of doses, ET rates near or above the controls were observed. 
These doses showed altered INT reduction kinetics, decreased cellular oxygen 
demand, and decreased viable cell densities. Experiments with E. coli 
spheroplast preparations, gram(+) cells, and deep rough mutants suggested that 
the toxicants increased outer membrane permeability and inhibited normal 
respiratory function. Results of cell—free ET assays and transmission electron 
microscopy further indicated altered outer membrane structure and inhibition of 
respiratory ET via, 1) secondary topological effects on the periplasm and inner 
membrane, 2) redox cycling of electrons in the respiratory chain, or 3) both 1 
and 2 together.

Quantitative studies of INT chemical structure and aqueous 
electrochemistry at Hg, C, and P t electrodes were conducted to  address 
analytical shortcomings in the literature. Data include nuclear magnetic 
resonance spectra, results from normal and differential pulse polarography, 
cyclic voltammetry, ring disk electrode, and spectroelectrochemical 
experiments. The route of INT reduction involves a slow one electron
reduction to a tetrazolinyl radical followed by a fast one electron reduction and 
addition of one proton to yield formazan. Results on C and Pt electrodes 
indicated interfering reactions involving adsorbed hydrogen species and the 
possibility of underpotential production of hydrogen gas.
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OBJECTIVES OF THE RESEARCH

NCACs are ubiquitous environmental contaminants arising primarily 

from pyrolysis of organic matter and discharge of coal— and petrochemicals. In 

general, NCACs have not be examined from a detailed toxicological perspective 

(i.e., with respect to mechanisms) even though chemical and quantum 

mechanical considerations suggest that diverse reactivity (e.g., redox cycling, 

protein denaturation) and high mobility (e.g., biomimesis, amphiphilidty) are 

likely in biological systems. The primary goal of the present work was to 

examine the mechanisms of acute toxicity of two common NCACs, quinoline 

and 4-azafluorene (4—AF), in optimized, aerobic, Escherichia coli cells. The 

biochemical variables of major interest were electron transport (ET), oxygen 

consumption, outer membrane stability, and cell viability. It was hypothesized 

that if the NCAC reactivities mentioned above were appreciable, then the 

chosen biochemical variables would be altered in a nonlinear fashion with 

increasing dose, and the magnitude and nature of these alterations could be 

used to infer specific mechanisms of toxicity.

The effects of NCAC treatment on cellular ET were estimated 

spectrophotometrically by measuring changes in the rate of reduction of 

2—(p-iodophenyl)— 3—(p-nitrophenyl)-5— (phenyl)—2/f—tetrazolium chloride 

(INT) to its red-colored formazan (INTF) with dose. Changes in the kinetics 

of INT reduction with dose were of primary interest. In gram(—) bacteria such 

as E. coli, INT reduction can occur only at the plasma membrane and in the 

cytosol, and lipoidal outer membrane layers must be traversed before this can
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occur. As a result, diffusional lag periods before observable INT reduction 

would be expected in normal cells. It was hypothesized that significant 

NCAC—mediated alteration of outer membrane structure or composition would 

be manifested as a change in INT diffusional lag period and therefore the 

kinetics of INT reduction. Further, if the NCACs participated in redox cycling 

in the respiratory chain, it was expected that INT reduction rates would be 

altered (stimulated or depressed) in certain doses as a result of changes in the 

concentration of reducing equivalents. In any case, the results of testing these 

hypotheses would illuminate the assumption of a direct proportionality between 

INT reduction and the metabolic status of control and treated cells. This 

assumption forms the basis of numerous applications of INT found in the 

literature.

To have confidence in mechanistic interpretations derived from 

experiments in whole cell suspensions, it is necessary to understand the 

chemistry of all components of the experimental system. A review of the 

literature on INT and related tetrazolium compounds indicated that errors in 

chemical structure, reaction routes, and electrochemistry were widespread (c/, 

Section VI, Introduction). A secondary objective was therefore to obtain 

quantitative data on the chemical structures of INT and INTF and the 

electrochemistry of INT in buffered aqueous media. It was also necessary to 

examine INT reactivity in cell free systems containing biochemical reducing 

agents, the NCAC reagents, killed E. coli cells, and artificial election carriers. 

The electrochemical experiments were directed towards determining the 

minimum potential of INT reduction at various electrodes and examining the 

mechanism of this reduction. It was hypothesized that INT is reduced via a two 

electron reduction (proceeding through a tertazolinyl radical), followed by



disproportionation with one proton (hydride transfer). Interfering electrode 

reactions involving adsorbed hydrogen species were also postulated.

Subsidiary experiments were performed to elucidate anomalies 

encountered in the INT assays, to provide data not found in the literature, and 

to evaluate the use of INT reduction assays in other experimental systems. The 

potential mutagenicity of INT and INTF was examined using the Ames assay, 

and an electrophoretic DNA binding assay was performed so that safe 

handling/disposal procedures could be formalized. Preliminary experiments in 

eukaryotic cell systems (peritoneal macrophages, marine phytoplankton) and 

cell free preparations (liver S-9) were conducted to evaluate the potential uses 

of INT in these systems. Additionally, thin layer chromatography (TLC) 

followed by mass spectrometery was employed to identify an oxidation product 

of 4—AF which was encountered in the toxicity assays.

The introductory sections I. — V. provide a review of the literature on 

the general environmental chemistry and toxicology of NCAC compounds. 

These subjects are approached from the larger perspective of complex pollutant 

mixtures in the environment, sources of pyrogenic contaminants, reactivities of 

different classes of organic compounds, and mobility of polar and amphiphilic 

materials in environmental and biological systems. Hopefully the review will 

provide a background and rationale for the experiments of the current work,

Subsiquent sections (VI. -  XI.) offer a review of the historical literature 

on tetrazolium salts with emphasis on INT and closely related compounds. 

Research on tetrazolium structure, chemistry, electrochemistry, and uses in 

biochemistry and toxicology are reviewed and the need for quantitative analysis 

is indicated. Also discussed are tetrazolium reduction kinetics and their
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relationship to bacterial outer membrane processes, the evaluation of cellular 

toxicity using tetrazolium reduction assays, and the few data on mammalian 

toxicity and mutagenicity of tetrazolium salts. This should provide both a 

quantitative understanding of tetrazolium salts in the context of the present 

work and justify the chemical analyses performed.



INTRODUCTION

I. Complex Pollutant Mixtures in the Environment

Ever since the Torrey Canyon and West Falmouth oil spill study results 

were publicized in the late 1960’s, there has been widespread interest in the 

fates and effects of petroleum and petrochemical mixtures in the environment 

[1—3]. Observations of organismic response to petroleum and chronic 

hydrocarbon contamination have shown that different oils, and the various 

fractions and compounds comprising them, have different acute and chronic 

toxicities and manifest different kinds of effects [4]. In practice, however, it has 

been frequently overlooked that crude oils, coal tars, combustion-generated 

particulates, and syncrudes are chemical assemblages of extreme complexity 

[4-8]. Consequently, toxicity evaluation has centered on only a small number 

of well—characterized model compounds and simple mixtures [1, 8].

Although complete analytical resolution is not yet possible, studies of 

pyrogenic and fossil organic mixtures have demonstrated the presence of 

thousands to tens of thousands of different compounds [1, 4 — 9]. Depending on 

the mixture, representative chemical classes generally include a spectrum of 

paraffins, naphthenes, liquid hydrocarbon solvents, naphtheno aromatics, 

polycyclic aromatic compounds (PAHs), N—, S— and O— heterocycles, 

organometallic complexes, terpenoid compounds, nitroso species, nitriles, 

carbolines, quinones, alcohols, N-oxides, various charged and uncharged free 

radicals, and their alkyl homologues extending in some cases above [7 — 

14], During the 1970's, attempts to

6
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elucidate the spatial and historical distributions of pollutant chemicals in the 

environment led to the discovery of extended PAH and N-heterocyclic series in 

soils and sediments proximal to urban industrial areas [10, 11]. The latter 

group of compounds included species of up to eight fused rings, with alkyl 

homologues up to C7 [11]. These identifications were followed by the 

demonstration of the global distribution of polycyclic compounds from 

petrochemical discharges and particulate fallout from anthropogenic and natural 

pyrogenic sources [12, 13]. The presence of these materials, particularly the 

aromatic heterocycles, was postulated to be biologically significant, with some 

authors suggesting that natural background levels of mutagenic species in this 

class could have influenced natural selection and the descent of species over 

evolutionary time [14], Subsequent research during this period showed that 

sedimentary levels of pyrogenic PAHs, heterocycles, and their homologues have 

increased rapidly since the American Industrial Revolution [15] and at least one 

epidemiological study has strongly correlated ambient levels of PAHs and 

heterocyclic materials in an industrial area to local patterns of increased human 

cancer relative to a proximal rural area [16].

The presence of reactive chemicals in widely used chemical products and 

human environments has lead to the conclusion that toxicity assessment must 

begin to address the effects of mixtures [17], and that toxicological models and 

protocols should expand to encompass all potentially significant chemical 

species. Despite this consensus, there has been marginal progress towards 

integrating what Blumer (1975) called "the chemical fine structure [of complex 

mixtures]" with toxicological models and attempts to "[fully anticipate] 

biological impacts" [2]. Recognizing this need, Malins (1981) also called for 

more research on "...the environmental fate and biological effects of the polar
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components...and the products of chemically and biologically altered 

hydrocarbons [which] remain almost completely unknown...” [18]. Blumer, 

Malins, and others have stressed the need for pure and applied research on 

hitherto unexamined materials with an emphasis on mechanisms and processes, 

as well as the incorporation of new data into an ecological framework [12 — 18], 

They have emphasised that research should be developed that addresses 

subjects such as larval ecotoxicology, synergism/antagonism in complex 

mixtures, photochemical effects on pollutant reaction routes, and acute effects 

on central homeostatic processes (e.y., electrophysiology, respiration), nutrition, 

and behavior. Although there are significant methodological reasons why 

progress in this direction has been slow, a number of investigators recently have 

initiated studies of novel pollutants in fractionated pyrogenic mixtures. For 

example, Malins and coworkers have shown that nitrogen-containing aromatic 

compounds (NCACs) are mobile and reactive in biological systems and have the 

potential to be very significant from both the cellular/organismal and ecological 

standpoints [19 — 22]. In a series of exemplary papers spanning more than a 

decade, a complex suite of NCACs, PAHs, aromatic amines, nitro-and 

cyano-PAHs, and other materials in creosote and sediments in Puget Sound 

have been characterized and correlated to the presence of an array of 

physiological abnormalities, neoplasia, and proliferative disorders in exposed 

benthic fish [19 —22].

II. Sources and Environmental Chemistry of NCACs

The environmental presence of NCACs is the result of the same processes 

that proliferate PAHs and other condensed ring aromatics: anthropogenic
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combustion of fossil and recent organic matter, petrochemical discharge, forest 

and marsh fires, and geochemical seeps [7, 12 — 14, 23 — 25]. Similarly, they 

reflect the composition of the starting materials and the conditions (pyrolysis 

temperature, trace gas content, degree of photolysis) and time of combustion 

(fjs to millions of years) [14]. High levels of NCACs have been identified in the 

mutagenic polar fractions of urban particulate matter [26], cigarette smoke [27], 

automotive exhausts [28], crude oils [29] and high boiling point distillates [30], 

syncrudes and synfuel process wastes [31], coal tar pitch volatiles [32], and 

creosote [25]. In environmental mixtures, the total observed NCAC content is 

specific to the particular mixture (source material, pyrogenesis), the analytical 

procedures employed (fractionation, acidification/saponification, 

chromatographic methods/detectors, etc.) and the physicochemical processes to 

which the mixture is exposed prior to and during collection/processing. In 

industrial particulates and weathered oils, NCAC concentrations typically range 

between one and two orders of magnitude below the total PAH content, but 

this might well be an artifact of poorly developed methods and unoptimized 

instrumentation [4, 6 , 7, 14]. In the case of combustion-generated particulate 

matter, it is likely that NCACs desorb at high temperatures and enter the gas 

phase, or are bound within the matrix of the particle through covalent or 

metallic interactions [33]. In deposited material, processes such as aqueous 

solvation, photolysis, and complexation with soluble metals or acid—base 

interactions with dissolved materials cause rapid removal of NCACs from the 

source hydrophobic materials. In fresh asphaltic crudes and distillates, NCACs 

are more concentrated, with levels between 0.2  — 0.8 mg/kg in Arabian crude 

oils, to several percent in fresh creosote [25]. In crude and coal oils, the highest 

concentrations of NCACs occur in the > 350° C boiling point distillates along
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with porphyrins, 0 — and S— heteroatomic polynuclear material, and transition 

metal—NCAC complexes, none of which have been studied with great analytical 

resolution [9]. Nitrogeneous materials such as NCACs are undesirable in 

finished distillates because they poison catalysts and form gums (usually 

pyrolytically or photochemically via reaction with xanthins) in fuel oils, and 

efforts are taken to remove them [9]. Hence, in refined petroleum products such 

as light oils, kerosene, and fuel oils, there are low levels of NCACs relative to 

the C j— C^ benzenes and naphthalenes. However, in the so called Bunker oils, 

NCACs are expected in significant quantities because these oils are blends of 

light and residual fractions [14].

An important feature of the heterocyclic moieties of NCACs is the 

predominance of zwitterionic resonance structures in the ground state [34], 

illustrated for pyridine in structures ///through V below.

This characteristic, and the presence of a nonbonding electron pair localized on 

the heteroatom in all electronic configurations allows for high water solublility 

and low octanol:water partition coefficients relative to aromatic hydrocarbon 

species of the same ring number [35, 36], acid-base reactions at physiological 

and environmental temperatures and pH [34], chelation of metal cations in 

aqueous media [37], and facile participation in biological redox reactions [37 — 

39]. The N—heterocyclic ring is electron deficient relative to benzene and this
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explains the resisitance of NCACs to electrophilic substitutions. The presence 

of pyridine (p — 2.26 D) and benzene (fi = 0.0  D) moieties on NCACs makes 

these compounds, especially the bi— and tricyclic species, somewhat 

amphiphilic, and this points to important biophysical and toxicological 

differences between NCACs and PAHs of the same ring number (below). The 

lone pair of electrons and the ability of the rings to accomodate both positive 

and negative spin-unpaired states (as well as "dative" bonding at the nitrogen) 

allows for a range of chemical, enzymatic, and photochemical reactions leading 

to reactive species [40], For the majority of the several unsubstituted NCAC's 

studied under realistic conditions, photochemical degradation in aqueous 

environments proceeded with disappearance quantum yields ($) on the order of, 

or greater than the PAHs of the same ring number [35, 36]. There is some 

evidence that aqueous photochemical reactions of quinoline may give rise to 

mutagenic diol N-epoxides [46], and that the presence of N—heterocycles in 

organic mixtures exposed to sunlight gives rise to stable free radicals, polymeric 

ring systems, and charge transfer complexes of biological significance [41 — 43].

As a result of the properties outlined above, the environmental 

partitioning of NCACs is closer to what might be expected for polar and 

electron—deficient PAHs (e . g 1—naphthalene nitrile). At least one study has 

identified NCACs and polar PAHs (nitriles, quinones) in groundwater near a 

wood treatment plant [44]. The heterocycles, their oxidized and alkylated 

homologues, phenolics, and NCAC nitriles and carbonitriles comprised 

approximately 75 % of the compounds identified and this resulted from 

transport through clays-silt sediments of high organic matter content. The 

number of NCACs identified in groundwater was greater than the the number 

of PAHs and this further indicated selective transport processes favoring NCAC
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transport from sediments to groundwater. This interpretation is supported by- 

sorption and aqueous photochemistry studies conducted under approximated 

environmental conditions [36] and aqueous chelation studies using selected low 

molecular weight (LMW) NCACs and divalent metal cations [37]. 

Qualitatively, it could be assumed that percolation of acidic rainwater (pH 4.7 — 

6.0) or H* exchange at sediment surfaces would facilitate aqueous solvation and 

transport. The pKa values of the few NCACs studied are in the range of 4.0 — 

5.7. When protonated, NCACs become more water soluble than in the reduced 

state and this would be reflected in their n—octanohwater partition coefficients 

(log P) as well as their behavior in an environmental sediment—water system.

In a study of sediments contaminated with creosote, Krone et al. have 

observed disproportionately low levels of LMW NCACs when referenced to their 

concentrations in the source creosote [25]. For example, of the approximately 

100 NCACs identified by GC—MS in source creosote, there was a concentration 

differential based on molecular weight and the total benzene character of the 

individual compounds. Hence, the source creosote contained 26,100 //g/g 

quinoline/isoquinoline (FW — 129), 800 //g/g azafluorene (sic) (FW =  168), and 

< 24 (ig/g diphenyl pyridine (FW  = 231). In the sediments, however, 

quinoline/isoquinoline was < 0.5 //g/g (< 0.0019 % of source), azafluorene 

concentration was 0.67 //g/g (0.082 % of source), and diphenylpyridine 2.2 //g/g 

(9.2% of source). There was a strong relationship between the number of 

benzene rings per NCAC and its presence in the sediments: as benzene ring 

number increased above two (i.e., benzoquinolines), the presence in the 

sediments increased for virtually all isomers. Hence, of the 10 different 

C j—quinoline/isoquinoline isomers identified in the source creosote in high 

levels (c. 6500 ppm cumulative), none were detected in the sediments.
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Conversely, of the 3 C j—benzacridine isomers in source creosote, all were 

detected in sediments. This trend also applied to the carbazoles, 

benzocarbazoles, and all NCACs with alkyl substituents of two carbons or 

greater. The Krone et al study was devoted explicitly to NCACs and employed 

high resolution gas chromatography (HRGC) and HRGC—mass spectrometry 

(HRGC—MS) with N-spedfic detection, so these observations do not reflect 

experimental error or detector sensitivity problems as encountered in analyses 

devoted mainly to PAHs.

Laseter et al. [45] also have reported selective weathering processes 

involving LMW hydrocarbons and NCACs. GC—MS studies of

creosote-contaminated sediments that creosote in the lower horizons of core 

samples showed little compositional difference from unweathered source 

materials [45], Analysis of surface layers, however, indicated that LMW 

compounds had been selectively removed by aqueous solvation, physical 

weathering, volatilization, and photolysis.

A clear inference from these studies is that LMW NCACs in 

sediment—water systems partition with the water particularly under conditions 

of low pH (add rain, fulvic materials), and are selectively mobilized from the 

source materials containing hydrocarbons and high molecular weight NCACs. 

It would follow, although it has not been conclusively demonstrated, that water 

soluble fractions (WSF) of mixtures such as heavy crudes, creosotes, coal tars, 

and pyrogenic products of these substances would contain significant quantities 

of LMW NCACs in addition to LMW aromatic hydrocarbons and polar 

products, and that aqueous solvation and probably organometallic associations 

are major partitioning processes in periods immediately following spills. Hence, 

in a fresh spill (or in runoff containing industrial/automotive particulates or
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heavy petro— or coal— tars) the WSF would be expected to contain the highest 

levels of NCACs with the concentrations of these materials decreasing with time 

of weathering.

m . Toxicity and Mobility of NCACs in Biological Systems

In single compound assays, a number of NCAC’s, including quinoline, all 

possible Ci alkyl quinolines, various benzacridine isomers, dibenzo(c,/i)acridine, 

and several of their alkyl homologues have exhibited mutagenic and tumorigenic 

activity in the Ames/Salmonella assay and various mammalian test systems, 

respectively. NCACs and PAHs from creosote contaminated sediments have 

been correlated to extract mutagenicity [46], and neoplasia and proliferative 

disorders in exposed benthic fish [21]. Analyses of coal and shale petroleum 

substitute polar fractions showed that the "most mutagenic" materials were 

NCACs and their partially hydrogenated and alkylated homologues [47]. 

Conversely, aqueous extracts of coal conversion oils yielded one— to five—ring 

mutagenic amines, NCACs, and their alkyl homologues, with "most of the 

mutagenic activity" attributed to the amines [48], Clearly, an assortment of 

chemicals from the nitrogen-containing polar fractions of these mixtures are 

toxic and mutagenic, but the identities of the "hottest" fractions are less well 

established.

In addition to the induction of neoplasia, polar and WSF from heavy 

crudes, particulates, and creosotes have demonstrated a spectrum of acute 

physiological effects on exposed organisms [49, 50] that are not observed upon 

exposure of the same organisms to weathered oil or nonpolar fractions [4]. Most 

notable among these effects are "necroses", impairment of membrane structure,
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altered electrophysiological function (electron transport, respiration), and 

behavioral abnormalities indicating neural impacts [50]. In WSF, these effects 

are frequently "threshold" in nature, i.e., physiological responses exhibit 

anomalous "spikes" in activity vs. increasing dose or exposure times [49, 50]. 

Threshold responses are typical of compounds that 1) are multivalent (react at 

numerous sites), 2) effect critical structures or mechanisms so that extended 

feedback control systems are disrupted, and 3) are "biomimetic". It can be seen 

that certain LMW NCACs would satisfy all of these criteria. Given the 

amphiphilic nature of NCACs mentioned above, and the related differences in 

chemical reactivity and log octanol:water partition values (log P) between 

NCACs and PAHs, it is reasonable to expect significant differences in routes of 

biological activity. This would apply particularly to chemical processes 

associated with lipid bilayers in membranes, uptake/depuration, and 

maintenance of intracellular redox balance. It is known that both log P and 

bioconcentration factors (BC) of NCACs tend to be much lower than PAHs of 

the same ring number, and it follows that hydrophobic interactions with 

membrane bilayers will be different in terms of magnitude and mechanism [51, 

52]. High BC factors are proportional to the extent of sequestering of the 

compound in hydrophobic regions of cells (assuming metabolism is minimal), 

while low values suggest minimal chemical interaction and/or uptake follwed by 

rapid depuration. In multicompartment octanolrwater systems, the arrival of 

chemicals of different log P in the rP1 compartment displays a parabolic 

response surface given by:

log 1/C =  -0.54 (log P)2 +  2.47 (log P) -1 .0 5 ;
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where C is concentration [52]. At all exposure time steps for a single 

concentration C, the peak multicompartment transport rate is at log P values in 

the range {—1.5 to +  1.5}. This reflects the observation that both highly 

hydrophobic and hydrophilic contaminants have difficulty reaching the r f t  

department, the latter because of difficulty in passing a lipophilic barriers, the 

former because of quasi— or irreversible associations with hydrophobic centers. 

As might be guessed from their amphiphilc nature, log P values for NCACs are 

closer to the peak mobility range than their PAH analogues. For the 

compounds of present concern, BC is proportional to the log P [51, 52] and a 

comparison of experimental BC values from experiments with Daphnia pulex for 

representative 2 — 4 ring PAHs and NCACs shows the following order of 

magnitude differences (log P: BC): naphthalene (3.36: 131) vs. isoquinoline 

(0.87: 2.4); anthracene (4.45: 917) vs. acridine (3.84: 29.6), and

benz(a)anthracene (6.12: 104) vs. benz(a)acridine (5.51: 352) [51 — 53]. The 

implication of all this is that WSF threshold effects such as acute 

electrophysiological disturbances must be accounted for by reactions of 

materials that have high mobility in heterogeneous systems, and are labile in 

different cellular sites. The chemistry of LMW NCACs indicates that they 

possess these characteristics. In quinoline-exposed rainbow trout (Salmo 

gairdneri) for example, over 50% of total radiolabelled quinoline was absorbed 

from the water and excreted in unmetabolized form in exposure periods of less 

than 12 h [54]. Conjugated metabolites were accumulated primarily in the 

fluids of the following organs:

gall bladder/bile > eye > gut > kidney* > liver* >  gill* (* trace) [54].
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Conversely, PAHs interact via Van der Waals (hydrophobic) forces and 

sequester in lipid bilayers. Depuration times are consequently longer and this is 

reflected in the high BC values in Daphnia and other test organisms. 

Sequestration in bilayers is followed by equilibrium transport into the aqueous 

cytosolic phase followed by metabolism to polar products. Hence, in the Dolley 

Varden {Salvelinus malma) PAHs accumulated in skin, gills, and liver [54]. 

Reactivity differences are also important: NCACs have the capacity to undergo 

reversible (futile) redox reactions via free radicals, while PAHs resist such 

reactions until they are enzymatically oxidized to quinones. In general, the 

much discussed presence of quinones in vivo is controversial, but if they occur 

the oxidation reaction almost certainly must be cytosolic and prefaced by 

transport of the PAH into the aqueous phase (a slow process). It would seem 

from these reactivity considerations that despite the lack of analytical evidence 

linking toxicities of many WSF to NCAC content, there is ample prima facie 

evidence for the involvement of these compounds in acute effects normally 

attributed to the hydrocarbons almost exclusively [4].

IV. NCACs in Plant Alkaloids

The lack of environmental data notwithstanding, NCAC compounds 

have long been prominent in the literature of medicinal botany [55, 56]. 

Pyridine, quinoline, and isoquinoline ring systems are widespread in higher 

plants as metabolic poisons that are part of what is sometimes called "chemical 

defense". The NCAC-derived chemicals are found throughout the 

heterogeneous class of compounds known as the alkaloids, which are among the 

most diverse and reactive group of toxins known [55]. While NCAC toxins are
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widespread, the relatively inert polycyclic aromatic toxins are comparatively 

limited in phyletic distribution [56], Where PAH ring systems occur in plants, 

they usually are oxidized (as in anthraquinones and naphthodianthrones) and 

are acutely toxic only after irradiation with sunlight [55, 56]. Interestingly, 

there is evidence that the "photoactivation" of these quinones is potentiated by 

the presence of pyrrole and pyridine functionalities (in nitrogen—containing 

amino acids such as tryptophan and pyridine nucleotides, respectively) that act 

as required substrates [55 — 58]. The reactions frequently involve the trasnfer of 

photoexcited electrons from N—heterocyclic centers to oxygen or some other 

carrier. Radicals generated in this process undergo redox cycling and/or 

covalent association with electron—rich centers [58, 59]. Tryptophan and its 

oxidized metabolites are known cancer promoters, which again suggests that 

redox active nitrogen-containing compounds may be operating in many 

toxicological contexts [37, 58].

V. Description of Test NCACs of the Present Work

As the material in the preceeding sections has indicated, most of the 

environmental toxicity data on NCACs has been descriptive, and few NCACs 

have been examined from the standpoint of biochemical processes [2]. When 

the hundreds of NCACs, amines, and alkyl homologues identified in 

petrochemicals are considered in this context, it can be seen that much 

interesting and relevant work needs to be done. Given the concern with organic 

pollutants in the environment, it is important that representative NCACs be 

given the attention that their apparent reactivity and environmental mobility 

would merit. The pharmacology of NCAC-derived plant toxins suggests that
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pollutant NCACs will exhibit mobility and multiple reactivity in cellular 

environments and that this will be manifested in acute bioassays addressing 

central homeostatic processes.

The primary goal of this work was to examine the the effects of quinoline 

( VI) and 4—azafluorene ( VII, "4—AF") in the bacterium Escherichia coli. Both 

compounds are prominent (>  500 ppm) components of high boiling point coal 

tars and creosotes and have been identified in environments contaminated with 

these materials.

Very little data exist on quinoline beyond those reviewed above, and a 

1989 Chemistry Abstracts search on 4—AF showed few chemical data (e.g., 

there is no value for pKa) and no toxicological data whatsoever. The paucity of 

relevant data on the single compounds suggested that work with mixtures 

would be premature. Therefore the bioactivity of the selected NCACs were 

examined in single compound tests. The biological parameters of primary 

interest in this work were respiratory electron transport (ET), oxygen 

consumption, cell viability, and membrane integrity and morphology in wild 

type (+) Escherichia coli cells. E. coli is the most well-characterized cell 

system known, and conditions for its isolation, maintenance, and experimental 

use have been comprehensively described [59, 60]. In E. coli and many other 

prokaryotes, the systems mediating ET and metabolic oxygen consumption are

(VI) (VII)
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tightly bound to the cytoplasmic membrane [64, 65]. The periplasmic and 

cytoplasmic membrane systems have a high degree of connectance with the 

outer membrane and therefore the processes mediated by them were expected to 

be sensitive indicators of NCAC toxicity [59, 60].

VI. Chemistry and Biochemistry of Tetrazolium Salts and Formazans

Phenyl substituted quarternized tetrazoles (i.e., tetrazolium salts) have 

long been employed in biological sciences as indicators of respiratory ET in a 

wide range of organisms and tissues [61 — 65]. In general, however, precise 

quantitative analysis of the various tetrazolium compounds has been limited, 

unavailable in the general literature, or unusable. This has given rise to a 

published assortment of incompatible chemical structures and in  vivo reaction 

mechanisms, as well as a persistent series of erroneous extrapolations and 

conclusions derived from them (below). Although the present study was 

conducted using INT, most of the basic literature has dealt with the 

prototypical parent compound, triphenyl tetrazolium chloride (variously 

abbreviated as TPT, TTC, and TT). The following review, although not 

comprehensive, covers the pertinent literature on TPT and INT with respect to 

chemical structure, electrochemistry, and biochemistry. Several of the 

disagreements and ambiguities in published literature will be indicated, as will 

the need for resolution of fundamental questions.

Triphenyltetrazolium chloride (TPT, VIII) and its substituted 

homologues have been used as indicators of biological electron transport since 

1941 when it was recognized that they could be reduced in vivo to highly 

colored, insoluble products known as formazans (TPTF, IX) [62 — 65]. Since
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then, over 1000 tetrazolium salts and their formazans have been synthesized and 

many of these have been applied to diverse research in chemistry [63], histology 

[65], botany and cereal science [67], microbial ecology [68 — 71], and aquatic 

toxicology [72 — 74].

INT {X)t an iodonitro derivative of TPT, was first synthesized in 1950 as 

part of a systematic attempt to develop optimized tetrazolium compounds for 

biological research [75]. INT was shown to be more easily reduced by cellular 

electron transport systems to INTP {XI) than TPT, and had the further 

advantages of being biochemically substantive [75] and relatively insensitive to 

the effects of light and oxygen [63 — 65, 75].

These chemical properties have made INT the electron transport 

indicator of choice for a number of recent studies, particularly those in which 

quantitative estimates of electron transport/oxygen reduction are desired [76, 

77]. INT reduction is not inhibited

IX. TPTF

X.  INT X I .  INTF
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under aerobic conditions, and spectrophotometric determination of INTF color

development has been shown to be directly related to the electron transport of

chemicals in aqueous solutions and cell suspensions. However, the literature on

many salient chemical and biological properties of TPT and INT shows that

certain fundamental data on these tetrazolium salts frequently have been

inconsistent or inaccurate. These difficulties typically have been manifested as

inconsitent representations of chemical structures of TPT, INT and their

formazans, TPTF, and INTF, respectively [67, 69, 78 — 81]; wide variance in

measured electrochemical quantities such as half wave reduction potential 
r ed

(E j / 2  ) at the same electrode material [84 — 91]; and, interpretations of 
red

structure and with respect to reaction routes, mechanisms, and sites of 

biological reactivity [79, 81, 91, 92]. There also was a paucity of baseline 

toxicological data on INT/INTF, so that routine handling and disposal 

procedures could not be formalized [93].

Selected examples of disparate chemical structures and reduction routes 

for TPT, INT, and their formazans are given in Figure 1. It should be 

mentioned at this point that generally consistent representations of TPT, 

TPTF, and related compounds had been presented in de novo synthesis and 

reactivity papers published in the 1940’s [62, 63, 65]. Unfortunately, these 

studies were conducted in German universities during World War II in research 

programs devoted to "disinfection" and therefore may not have received wide 

press or acceptance. Further, these and subsiquent papers presented no high 

resolution quantitative analysis in support of the proposed structures or 

mechanisms [62, 63, 78], and sometimes featured inconsistent structures [78]. 

Since the late 1960’s, competing structures and putative reaction routes have 

emerged in reputable journals, also lacking quantitative analytical
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FIGURE 1. Examples of Published Structures and Reaction Routes for TPT, 

INT, and Their Formazans.
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V .  „■ ♦ ”

0 O
P) * (P) 2 e /2 H* (P) (P)

B. "TPT": ^v^>N  N f S ^ 1  i X ^ N  [81]

V '  -  U  +ra
0  0

P) P) 2H* (P) „ P]
C. "TPT"; X ^ > N  , N < X ^  --------------------------------------------- [81]

•*>> -  X ‘ * "

O Cp°"la„ xr'
" IN T " i ^ l ,  [C yt. b-C oQ ]r e d  + HC1

(fh I o* ’ (fh I80> 81Jk' x ^  [C yt. b CoQ]



25

support (Figure 1). In some cases, faulty structures from one paper were copied 

incorrectly to another, resulting in a third variation [80, 81]. From the 

examples given in Fig. 1, it should be clear where these (and other) 

inconsistencies would leave a researcher trying to decide on reaction 

mechanisms and electron balance. It can also be seen why many authors have 

summarized the chemistry of tetrazolium compounds variously as artificial 

"hydrogen acceptors" [82], H+ acceptors [67, 79, 83], hydride ion [65], and 

"electron pair" acceptors. It is not clear how the proposed reactants and 

products given in Fig. 1 are to be reconciled (they all supposedly indicate the 

same reaction) or applied to biological reductions.

VII. Electrochemistry of Tetrazolium Salts

red
Table 1 contains a summary of published E ^  values for TPT and INT 

measured at various working electrodes. The between-study variance in values 

obtained in similar media and electrode materials can be attributed to a number 

of factors including low resolution of measurement and a persistent disunity of 

sign conventions and descriptions of electroanalytical systems [94, 95]. It is 

noteworthy that studies of aqueous TPT -♦ TPTF reduction by organic redox 

indicators at neutral pH were conducted years before polarography was 

attempted and reduction potentials for the process were found to be between 

-0.080 and -0.083 V vs. the standard hydrogen electrode (SHE) [63, 67, 96].
r ed

Despite the existence of reduction potentials in this range, polarographic E ^  

values on the order of — 0.490 V vs. SHE are usually cited in biochemical 

literature \e.g. 65, 69, 91]. Many authors have attempted to use this value to 

infer sites of biological reduction of TPT based on estimates of electrochemical
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TABLE 1. Published Half-Wave Reduction Potentials (E^Jg) f°r T PT  and 

INT at Different Working Electrodes.
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0

ComDOund Medium/dH
Working
Electrode

_ r e d  
1/2 

(V vs. 
SHE)* Reference

TPT H2O/7.0 Hg -0 .4 4 65

TPT H20/7.2 Hg -0 .4 9 65, 91

TPT H20/7 .6 Hg -0 .3 7 89

TPT H2O/MeOH/7.0 Hg -1 .3 4 84, 85

TPT H20/5 .9 Pt -  0.337 84

TPT H20/6 .7 Pt -  0,332 84

TPT CHgCN Pt -0 .2 1 86

INT H20/7 .2 Hg -0 .0 9 65, 91

* Converted to hydrogen scale by the author.
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gradients in vivo [65]. As discussed later, however, direct comparison of
red

electrochemical reaction mechanisms and values measured at electrodes 

with enzymatic redox couples in living systems is not-necessarily valid.

Based on the chemistry of TPT, TPTF, and related species, hypothetical 

reaction routes such as the following are frequently cited:

2e"* 2H+
TPT* Cl- ^  " — TPTFe +  HC1;

aq aq 2e-; 2H+ s

where the left side of the reaction represents a fully dissociated ionic salt and 

the right side the formazan precipitate. Although this reaction is balanced, 

there is no evidence to suggest ion pairing with chloride, especially in 

physiological reactions. Polarographic traces of TPT reduction typically 

contained three or more waves, with the first corresponding to generation of the 

formazan, and the others to reduction past formazan to

diphenylbenzylhydrazidin and phenylbenzamidrizone [65]. In some studies, the 

first wave was proposed to be a 4—electron transfer leading directly to the
r fid

hydrazidine and were obtained from composite waves [88, 91]. It has been 

noted that adsorption, catalysis, and maxima problems were encountered on Hg 

working electrodes [84], and it is possible that these conditions obscured 

important mechanistic observations. For example, many published polarograms 

show a slow reduction current beginning approximately +  0.3 V from the first 

maximum [65, 84, 87, 91], which was routinely ignored as an adsorption or 

contaminant artifact [91]. This is curious because the magnitude and 

reversibility of this current was shown to be pH dependent: at pH > 6.0, it 

became resolved into two apparently reversible reduction maxima [84, 91].
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Moreover, it was known that the overall reduction of TPT to TPTF in aqueous 

solution and a t Hg electrodes is influenced by pH, with ease of reduction and 

stability of the formazan increasing exponentially as the pH increases from 7.0 

to 11 [85], although Pearse claims just the opposite with no data or citation 

[91].

It can be seen from Table 1 that the electrochemistry of INT has been 

studied much less than that of TPT. The substituted aryl groups on the former 

could be expected to give rise to complex behavior. Apparently there are no
red

published values for reduction of INT to INTF on P t or C in aqueous 

media.

Experiments in aprotic media suggest that tetrazolium salts such as 

TPT (and, by analogy, INT) undergo e.p.e. type reductions to their formazans 

on P t electrodes [86]. Accordingly, the initial reduction is a reversible 

one-electron transfer leading to a tetrazolinyl radical which is then 

disproportionated by one proton forming a tetrazolinyl radical cation [86]. The 

radical then accepts another electron to yield the formazan;

R* X -«=£=* {R-} +  X  {RH-} X  £=—*■ RH +  X-;

where R + X ' is the monotetrazolium halide, {R*} the tetrazolinyl radical, and 

RH the corresponding formazan. It should be noted that various aspects of this 

scheme are insecure, for example, the {RH-} species has not been demonstrated 

analytically. Also, electron spin resonance (ESR) studies of the tetrazolinyl 

radical {R*} have been equivocal, with different studies confirming both 

resonance-stabilized acyclic [97] and quarternized cyclic [93, 98] structures for 

this system. In protic media, TPT reduction at Hg and P t electrodes has been
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attributed to an e.e.p. sequence, with the disproportionation step occurring 

after the formation of a TPT anion by a two-electron reduction [84, 85]. In 

both aprotic and protic media, it has been repeatedly claimed that the primary 

product at electrodes is either a radical or anion, and that the formazan arises 

by a secondary chemical reaction that is thermodynamically favored [93]. 

Protonation was proposed as the rate limiting step in these models, which 

leaves open the question of the significance of the abovementioned pH effects.

VIII. Tetrazolium Salts and Biological Electron Transport

In addition to the mentioned inaccuracies in the presentation of 

structural, electrochemical, and mechanistic data on TPT, INT, and their 

formazans in published literature, there has also been widespread use of 

unsupported extrapolations from electroanalytical to biological systems. This 

has taken the form, primarily, of attempts to infer sites and mechanisms of 

tetrazolium salt reduction in vivo from data generated at Hg electrodes [c/., 65 

et passim]. This procedure involves the following assumptions: 1) in vivo redox 

potentials are known and electron transport mechanisms are well characterized, 

2) adsorption/catalysis can be ignored in both biological and electrochemical 

systems, and 3) the behavior of redox indicators in the presence of enzymes, 

membranes, and heterogeneous chemical phases is well understood. In general 

none of these assumptions is justified. As a result of the heterogeneity and 

physicochemical disparity between biological and electroanalytical systems, 

sites of biological reduction of TPT, INT, and related compounds cannot be
r cd

directly inferred from data generated at electrodes. Typically, values for 

biological electron transport chains (e.g. NADH -+ CoQ -* cytochromes ■+ oxygen)
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are derived from low resolution experiments in model systems and from 

theoretical relationships between reactant—product free energy changes and
r 6(1

®l/2 59]- These estimates do not account for reactivity effects arising from

microenvironments, catalysis, and quantum mechanical tunneling of electrons 

and protons in living systems [58]. Postulating sites of tetrazolium reduction 

along extended redox systems is further complicated by a lack of understanding 

of the mechanisms of interaction between electron transport proteins and 

carriers and the tetrazolium compounds of interest. For example, the most 

probable reduction route for TPT involves at least three distinct chemical 

species of widely disparate properties, and these need to be elucidated along 

with the detailed mechanisms of biological electron transport before reduction
r ed

sites in vivo can be related to E, y2 obtained in vitro. Pearse [91], Altman [65],
r ed

and others have suggested that in vitro E ^ 2 can be used to estimate relative

"ease of reduction" of different tetrazolium compounds in biological systems,

but this is suspect for reasons given above, and of questionable utility in any
r ed

case. It is not clear how cathodic E ^ 2 values (on Hg, no less) for tetrazolium 

salts A and B  are to be related in biological systems when compound A  might 

react at an iron-sulfur center, and compound £  at a quinone under very 

distinct and different physicochemical conditions and via disparate chemical 

associations and ET mechanisms.

IX. INT and Toxicity Evaluation

Assuming a proportionality between bulk metabolic activity of a cell 

suspension and INTF formation [68], the total development of INTF in a given 

incubation period has been widely used to assess the metabolic status ("health")
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and viability of cells and tissues [63, 65, 67, 83, 91, 92, 99]. Tetrazolium 

reduction assays of wastewater [74, 79], bacteria [73, 81], plankton [80], and 

protozoans [99], normally have been conducted by incubating cultures or cell 

free extracts with the indicators for 10 min — several hours in the presence of 

reduced cofactors (NADH, NADPH) and then extracting the INTF with an 

organic solvent followed by spectrophotometric quantification. Recently, a 

direct INT assay has been developed that does not require a formazan 

extraction step or long incubation periods with the dye [73]. In this procedure, 

the spectrophotmetric time—rate of INTF formation was monitored and the 

"first-order" slope of the INTF vs. time function was used as an estimator of 

the metabolic status of control and toxicant—treated cells [73]. In toxicant 

treatments, decreases in rates of INTF formation relative to untreated controls 

were taken to be diagnostic indicators of toxicity.

The cited assay, however, suffered from a number of shortcomings, not 

the least of which were: aerobic Pseudomonas alcaligenes were grown beyond 

stationary phase (S—phase) and spent culture media was used as substrate for 

INT reduction, 2) only rate data from an undefined "first order" part of the 

curve were used, and variables such as kinetic response type (linear, sigmoidal, 

and parabolic) and lag period before observable INT reduction were not 

examined or mentioned [73]. It is well established that the growth of aerobic 

microorganisms beyond S-phase is accompanied by exponentially decreasing 

levels of dissolved oxygen, decreases in pH, and accumulation of respiratory 

endproducts and wastes in the culture medium [59, 60]. Progressive changes in 

these parameters normally has profound effects on the metabolic status of the 

culture (the onset of anaerobic respiration, senescence, and resting stages are 

observed), and the accumulation of wastes and H+ ions are sources of
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physiological stress [60]. The use of spent media as a metabolic "substrate" is 

therefore a contradiction in terms. Further, when differential INT reduction 

rates are measured in control vs. toxicant—treated cells under these conditions, 

it is not clear that, 1) the response (ET rate) observed will correspond to the 

response of the same cells under optimal conditions (i.e., there could be 

differences in reduction of INT by reduced vs. oxidized respiratory chains) [c/., 

80 for excellent demonstration of NAD(P)H concentration effects on ET] and, 

2) population variances (s) of measrued ET response are unbiased estimators of 

<r, or merely the result of stress—induced narrowing of the normal physiological 

range. That is, there are very real difficulties with the published assay in 

deciding what is causing the observed toxicity (there are uncontrolled stresses 

beyond the pollutant exposure) and whether an optimized culture might display 

a broader range of responses relative to the same pollutant dose (especially in 

undosed controls).

X. INT Reduction Kinetics and Bacterial Outer Membrane Characteristics

From the material reviewed above, it would seem that the design of any 

direct INT reduction rate assay should include the use of optimized cell systems 

and the data should explicitly encompass all kinetic response types. A major 

reason for this is that variations in kinetic responses in gram(—) bacterial 

systems would give information on outer membrane effects caused by toxicants. 

The outer membrane (also called "cell coat", "cell envelope", or "cell wall") is a 

thick lipid-protein assemblage surrounding the peptidoglycan sacculus, 

periplasm, and inner (plasma) membrane systems which acts primarily as a 

molecular sieve and is specific to gram(—) species. In contrast, gram(+)
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bacteria are deficient in these lipid coats, and have thick layers of peptidoglycan 

[60]. In INT assays involving gram(—) bacteria such as Escherichia spp. and 

Salmonella spp., lipoidal outer membrane layers must be traversed by the bulky 

INT molecule before reduction to INTF can occur (60). For passive and active 

transport of solutes in isothermal suspensions of E. coli, molecular weight 

(MW), hydrophobicity, and charge are the major determinants of penetration 

rate [60]. For example, pentose monosaccharides diffuse with rates two orders 

of magnitude greater than disaccharides of the same pentose [60]. This trend 

continues up to an "absolute" MW cutoff occurring around 600 daltons. With 

respect to hydrophobicity, for each 10—fold increase in octanol.-water partition 

coefficient (unchraged species) there is a four— to five—fold decrease in 

penetration rate for cells with intact outer membranes. If the outer membrane 

is removed however, the same hydrophobic solute penetrates more readily. 

Compared with uncharged species of the same MW and hydrophobicity, 

negatively charged solutes have depressed penetration rates while positive 

charged species typically show significant increases [60]. It should be kept in 

mind, however, that these general rules of thumb tend to break down as the 

absolute MW cutoff is approached.

INT (FW =  505.7 for ion pair; without chloride counter ion, MW — 

470.3, ignoring hydration) is close to the MW cutoff for E. coli outer 

membranes, exists as multi—ion (i.e., in addition to the tetrazolium ring charge 

the 3-p-aryl—nitro group exists primarily as a zwitterion, c /, structure X) and 

has a hydrophobic phenyl group, so significant diffusional lag times across E. 

coli outer membranes can be expected. Further, INT is hydroscopic and it is 

possible that packed water molecules exert cage effects that mask some or most 

of the cationic character as "seen" by the bacterium. Such an effect would tend
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to further decrease the penetration rate of the molecule.

In INT assays, toxicant-mediated disruption or alteration of outer 

membrane structure/function (relative to untreated cells) can be expected to 

give rise to changes in transport rates of INT across the outer membrane to 

periplasmic and inner membrane reduction sites. Any such alteration of the 

diffusion rate to catalytic sites would be manifested as a change in lag period 

before detectable INTF production. The measurement of lag period before 

response should therefore provide valuble mecahnistic information in cases 

where toxicants (or purposeful manipulation, e.g., spheroplast generation) alter

outer membranes, without increasing the time or labor needed to run an assay.
!

The possible application of INT reduction rate data for inferring membrane 

effects has not been attempted or suggested in the literature, and the proposed 

link between membrane status and INT reduction kinetics constitutes a major 

hypothesis of this study. A primary reason why this kind of application has not 

been suggested is that utilization of tetrazolium compounds in aquatic 

toxicology has traditionally focused on the development of rapid assays 

measuring a single event: mortality (in the form of ECgg—type numbers). 

There has been very little work related explicitly to processes and mechanisms 

of toxicity. The rather static approach to tetrazolium reduction toxicity assays 

has worked hand in hand with a consistent oversimplification of conceptual 

models of tetrazolium compounds and their relationship to processes of 

biological electron transport.

XI. Toxicity of Tetrazolium Salts

The toxicity of tetrazolium salts has not been examined extensively [93].
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Tetrazolium compounds are not only potential DNA complexing agents, but 

they may form persistent free radicals in vivo [93, 97], and yield metabolic 

products of toxicological significance. Work with cell systems ranging from 

bacteria, fungi, and protoctists, to higher plants, marine organisms, and 

mammals has demonstrated that, in general, tetrazolium salts penetrate plasma 

membranes and associate electrostatically with cellular components such as 

proteins and mitochondria [65]. Toxicity research on a limited number of 

tetrazolium salts has indicated "extreme toxicity" [93] in mammalian systems 

and sublethal doses evidenced neurological disorder. TPT was not found to be 

mutagenic in Escherichia coli or Salmonella typkimurium assays with or without 

metabolic activation, but an alkylated thiazyl derivative of TPT was a direct 

acting mutagen in both systems [93].

The purpose of this portion of the research was to examine some basic 

inconsistencies and uncertainties in the literature on INT and provide needed 

quantitative data. The experimental approach was aimed toward answering 

specific questions on INT chemistry that arose from bioassays and from 

insufficiently resolved problems in previous published work. An extensive 

review of the literature on tetrazolium compounds made it apparent that there 

has been widespread inconsistency and confusion on fundamental issues relating 

to these materials, and that basic quantitative data were lacking. Given these 

difficulties, it was not possible to formulate hypotheses and interpretations 

explaining the NCAC bioassay results. Further, without a consistent 

quantitative model of INT structure and electrochemistry, it was not possible to 

have great confidence in the claims of many recent papers. While interesting in 

itself, preliminary mutagenicity data were clearly necessary to formalize safe 

handling and disposal protocols for INT, INTF, and INT/INTF mixtures in the 

laboratory.



MATERIALS AND METHODS

All glassware was thoroughly washed and rinsed with distilled/deionized 

water, 4 N HC1, and absolute ethanol. As a precaution against 

photomodification of NCAC and bioassay reagents, all stock solutions were 

protected from light by wraping appropriate flasks and tubes in aluminum foil. 

Starting solvents, solutions, media, and glassware were sterilized by autoclaving 

or 0.22 frn. membrane filtration.

I. Reagents and Stock Solutions

Synthetic quinoline (Kodak Chemicals, Rochester, NY) and 

4—azafluorene (4—AF; Aldrich Chemicals, Milwaukee, WI) were obtained in the 

highest purities available (99 % and 97 %, respectively) and were stored under 

nitrogen in a dessicator at 0°C. High purity tributyltin chloride (TBT) stock in 

pH 7.6 Hank's balanced salt solution (HBSS) buffer was provided by Dr. 

Charles Rice and was analysed for impurities by gas chromatography (GC). 

GC analysis gave TBT stock concentration at 5.4 parts per thousand with no 

detected contaminants or degradation products (i.e., butenes). Stock solutions 

of working reagents were prepared daily using spectroscopic grade dimethyl 

sulfoxide (DMSO) for dilution. 4-AF crystals were taken up in small amounts 

(<  1 ml) of hot 100% ethanol and then diluted with DMSO. These master 

stocks were diluted to working dose levels prior to bioassays using 1:2 (v/v) 

DMSO:PBS (PBS =  pH 7.2 phosphate buffered saline) [100]. The dilution of 

NCAC stock solutions with DMSO/PBS was exothermic and care was taken to

37
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avoid thermal effects when treating test organisms in the bioassays (below). 

While DMSO was the primary nonaqueous solvent, additional experiments were 

performed using the following solvents in 1:2 (v/v) dilutions with PBS: 

spectroscopic grade acetone, 100% ethanol (punctilious), acetonitrile, hexane, 

and methanol.

Water soluble quinoline—HC1 was prepared in a separatory funnel by 

dropwise addition of 4 N HC1 to a biphasic quinoline—H2O system. When 

solvation of quinoline appeared complete, solution homogeneity was tested by 

placing aliquots in borosilicate flasks in the beam of a Hughs 3221H red laser. 

Scattering of light from micelles was not observed indicating an aqueous 

quinoline—HC1 solution. An identical H2O—HC1 blank was prepared without 

quinoline for use as a control.

INT (2—(p—iodophenyl)—3—(p-nitrophenyl)—5—

(phenyl)—2H—tetrazolium chloride; Sigma Chemicals, St. Louis, MO; and 

Kodak Chemicals, Rochester NY) and INTF

(2—(p-iodophenyl)—3—(p-nitrophenyl)—5— (phenyl)—formazan; Sigma) were 

obtained by priority mail and were immediately purged with nitrogen and 

placed in a dessicator at 0°C. After using both the Sigma and Kodak products 

for more than a year, it was decided that the Sigma INT was preferable for the 

purposes of this research, even though the HPLC behavior and Fourier 

transform nuclear magnetic resonance (FTNMR, below) spectra of the two 

products were in agreement. This preference was based on qualitative 

observations of appearance, batch consistency, and solution behavior of INT 

from each source. INT for electrochemical analysis was recrystallized twice in 

hot, 100 % ethanol and the crystals were dried in the dark. INT stock solutions 

were prepared by weighing 65 mg INT into 1 ml of absolute ethanol follwed by
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dilution with 9 ml H2O. The mixture was heated in a hot water bath until the 

INT was dissolved, and the resulting solution was passed through a 0.22 pin 

polycarbonate filter (Nucleopore Corp., Pleasanton, CA, 94566). Care was 

taken to avoid exposure of INT solutions to light. This precaution was 

observed because it is explicitly indicated in many publications. Nevertheless, 

preliminary experiments with INT in pyrex flasks exposed to filtered sunlight 

showed no photomodification after 30 min. — 1.5 h. exposures, as inferred form 

FTNMR spectra and retention times on an HPLC C—18 column.

Concentrated stocks of phenazine methosulfate (PMS; Sigma) and 

reduced nicotinamide adenine dinucleotide (NADH; Sigma) were mixed in 

sterile pH 7.4 phosphate buffered saline and diluted to final concentrations of 

0.070 pM and 10 jiM, respectively. Both solutions were 0.22 pm  filtered and 

stored on ice in foil wrapped glass tubes until analysis (below).

II. FTNMR Analyses

INT and INTF standards (Sigma, Kodak) were dissolved in 

hexadeuterated dimethyl sulfoxide (dg—DMSO), 0.22 pm filtered, and transfered 

to sample tubes for Fourier transform nuclear magnetic resonance spectroscopy
IO 1

(FTNMR). C and H spectra were run for all standards on a high field 

General Electric QE 300 NMR Spectrometer and NMR-consistent chemical 

structures for each compound were generated using substituent chemical shift 

data (tfppm), and peak integral — elemental composition methods [34, 101].

Approximately 45 ml of an S-phase E. colt culture (see VI, below) in 

liquid broth was treated with 1.3 mM INT, incubated for 10 minutes at 29° C, 

and centrifuged for 10 minutes at 1200 g. The supernatant was decanted and
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the pellet extracted with small volumes of acetone and water in a separatory 

funnel. The red organic extract containing INTF was recovered, dried under 

reduced pressure, and the resultant material was dissolved in d^-DMSO for 

NMR analysis. Initial *H spectra were analysed at frequencies corresponding to 

£ppm 0 ”  10.5. After determining that only the reference TMS and H2O peaks 

were present between ^ppm 0 — 7.0, only the aromatic spectra (5ppm 7.0 — 9.0) 

were recorded.

III. Spectrophotometry

With the exception of the spectrochemical analysis of INT (below), all 

spectrophotometry was accomplished using a Shimadzu UV 160 double beam 

recording spectrophotometer with a temperature-controlled Microflow cuvette 

carriage (Shimadzu Instruments Inc., Columbia MD). The Microflow unit was 

connected to a water bath incubator via peristaltic pump and this allowed for 

maintenance of constant solution temperature during bioassays.

UV—visible electronic absorbance spectra for NCAC’s and bioassay 

reagents were generated using Hellma QS 1000 quartz cuvettes (10 mm). INT 

bioassays (below) were conducted at A =  490 nm in Fisher Brand optical glass 

(> 360 nm) cuvettes. All analyses were conducted at 31 — 37.5° C. This range 

of assay temperatures resulted from changes in room temperature and the 

inability of the Microflow unit to compensate fully for low temperatures in a 

poorly—heated lab with an exhaust hood running. The within-assay 

temperatures were periodically monitored by inserting a thermometer into the 

reference cuvette solution, and were found to vary by less than 2 °C.



41

IV. Electrochemistry

Extensive analyses were undertaken to arrive at an understanding of the 

aqueous electrochemistry of INT, and to address conceptual difficulties in the 

published literature. A primary objective was to estimate the potential at 

which the reduction of INT to INTF begins at various electrodes and to 

postulate reduction mechanism(s). Other experiments were designed to explore 

the use of various electroanalytical systems in the examination and 

quantification of pollutant redox effects in buffered aqueous media and, 

possibly, in simulated biological media.

All electrochemical work was performed in the laboratory of Dr. Robert 

J. Gale (Department of Chemistry, Louisiana State University, Baton Rouge, 

LA) with the supervision of Dr. Gale, and the assistance of Dr. Roberto L. 

Wong and Dr. Kenneth R. Carney. Analyses were conducted at room 

temperature with three electrode cells consisting of Ag/AgCl or saturated 

calomel—KC1 (SCE) reference electrodes; platinum mesh, platinum plate, 

dropping mercury (DME), vitreous carbon, vitreous carbon rotating disc (RDE) 

and glassy carbon/Pt rotating ring disc (RRDE) working electrodes; and 

platinum wire counter electrodes [102]. Solutions of INT (1.0 — 10 mM) were 

prepared as above in sterile pH 7.2 phosphate buffered saline (PBS), with 

additions of absolute ethanol as needed to prevent filming of the water insoluble 

INT reduction products. Samples were deoxygenated with dry argon or 

nitrogen prior to analysis, and electrodes were cleaned with concentrated HNO3, 

H2SO4, acetone, and absolute ethanol between runs. Hardware included a 

EG&G/PAR Potentiostat/Galvanostat (Model 273), PAR Polarographic
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Analyser (Model 384), PAR Differential Amplifier (Model 116), Pine 

Instruments RDE3 Potentiostat, Hewlett Packard 7044a X—Y recorder, and 

Tektronix DS 468 Oscilloscope.

Two spectroelectrochemical systems were assembled for the purpose of 

establishing the potential at which the onset of INT reduction occurs and for 

evaluating the use of spectroelectrochemistry for future assays.

1. Reflectance spectroelectrochemistry: An SCE reference, and P t wire 

counter electrode were fitted into a cubic teflon reaction chamber (5 cm sides)
9

with a post electrode containing a polished 1 cm P t plate at its apex. The 

electrode was positioned so that a thin cell existed between the plate and a 

quartz window in the wall of the reaction chamber which was filled with 

INT-saturated PBS. The reaction chamber was positioned so that the window 

and the platinum plate electrode were in the beam of a Hughs 3221 H—PC red 

laser, which was reflected at right angles to a photodetector. The laser beam 

was modulated using a 42.6 Hz chopper which was monitored by an infrared 

diode. The reaction chamber electrodes were connected to a D.C. voltage 

source (EG&G/PAR Potentiostat/Galvanostat Model 273), the working plate 

electrode, photodetector, and the infrared diode were connected to a PAR 

Model 116 Differential Amplifier which was connected to the oscilloscope and 

the X—Y recorder. Since it was not possible to enclose this large system in a 

Faraday cage, extraneous sources of EMR (fluorescent lights, outlets, other 

analytical equipment), noise from the power source, and all internal junctions 

had to be identified and filtered. The function of the amplifier was to 

discriminate between background signals (intensities =  mA to A) and the 

relatively small sample signal (a /iA) from the reflected laser light reaching the
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photodetector. It was hypothesized that the electrodic reduction of INT to 

INTFfl^  (aqueous Amax=  480 nm) would result in adsorption of intermediates 

and products and, consequently, decreased absolute reflectance off the working 

electrode. This would be manifested as decreased amplitude of the 42.6 Hz 

signal which would be isolated by the amplifier and related to the working 

potential range. The entire system was enclosed in a black wooden shed to 

prevent extraneous light from impinging on the photodetector. Voltage was 

swept from +1.000 to — 1.000 V vs. SCE.

—22. Spectrophotometric analyses of the reduction of 10 M INT solutions 

in 50 % PBS/ethanol (v/v) were accomplished using a three electrode cell fitted 

into 10 mm diameter spectrophotometric cuvettes. The sample beam was 

directed into the P t—mesh and transmittance was set instrumentally to 100%. 

The reference cuvette contained the INT solution and a P t—mesh electrode with 

no applied potential. Specifications: SCE reference, 1 cm* P t—mesh working 

electrode, and P t—wire counter electrode; transmittance monitored at 490 nm 

vs. applied voltage using a Beckman Double Beam UV/Visible 

spectrophotometer, negative sweep @ 1 mV/sec from +0.35 V to —1.0 V vs. 

SCE.

Additional experiments at various electrodes were performed using 

normal and differential pulse polarography (NPP and DPP, respectively), and 

cyclic voltammetry (CV). First wave characteristics prompted questions as to 

whether currents measured in NPP and DPP on vitreous carbon were faradaic. 

Using the RDE, mass transport controlled reduction was tested by observing
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first wave reduction characteristics and solving the Levich equation (done 

entirely by computer):

i =  0.627iFD2/ 3y_1/ 6c® w1/ 2;

where t is limiting current density, n number of electrons transfered, F  is the 

Faraday constant, D is diffusivity (cm2/s), v is kinematic solution viscosity
A

(viscosity/density; cm / s), cm is bulk solution concentration (M), and u) is 

rotation rate of RDE (s ^). Except when a reaction limits the current, this 

equation describes the rotation rate dependence of cathodic (and anodic) 

limiting currents at high overpotentials (in this case, a relatively fast sweep). 

At a constant rotation rate limiting currents can be related to electrons 

transfered in a particular wave. Solutions of 0.2 x  10-7 M INT in 1:1 

PBS/ethanol (v/v) were analysed (w = 27t rev./s =  6283 s_I, sweep — 100 

mV/s) in a sealed chamber which was degassed between runs. The diffusion 

coefficient of INT was estimated to be 3.8 x 10_B cm2/sec using the 

Hayduk—Laudie chemical constituent method [103]. For comparative purposes, 

this method was applied to TPT and the estimated D was found to be in error 

by 14% relative to the experimental D value obtained by Tiselius [84],

Dependence of the first reduction wave on pH was tested using NPP on 

vitreous carbon with 10-2 M solutions of INT in pH 3, 9, and 12 PBS/EtOH 

(1:1) scan rate 10 mV/s. RDE experiments using DPP in the presence of 10-2 

M INT were conducted to detect underpotential production of hydrogen (H2). 

Conditions: scan 1; C disk 0.0 V vs. SCE (static), P t ring; swept positive at 100 

mV/s from — 0.3 V to +  0.5 V vs. SCE. Scan 2; disk — 0.180 V vs. SCE; ring 

swept positive as above (5t between scans < 10 s). All solutions were degassed
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for 30 min between runs with dry argon, and the working electrode was cleaned 

and polished.

V. Identification of a 4—azafluorene Oxidation Product

Stock solutions of 4-AF were unstable and chromogenic reactions 

between 4—AF degradation product(s) and DMSO were observed repeatedly 

(see Results and Discussion, Section V). Solutions of the 4—AF products in 

DMSO were spotted on thin layer alumina chromatography plates (TLC) and 

eluted with an acetonitrile:acetone (75:25 v/v) mobile phase. Developed plates 

were examined under UV lamps (A =  254 nm and 350 nm) and resolved bands 

were excised and extracted with fresh acetonitrile followed by 0.22 /mi filtration 

and volume reduction under dry nitrogen. Samples of each extract were then 

applied to the probe of a DuPont 21—492B MS double-focusing sector mass 

spectrometer with electron ionization. Spectra were recorded for each of the 

TLC bands and for 4-A F and quinoline standards.

VI. Microbiological Techniques

Isolates of Escherichia coli were obtained from 0.45 /mi filtered 

Rappahannock River VA surface water using a standard recovery procedure 

[104, 105]. Eight presumptive (P < 0.01) E. coli isolates meeting the 

requirements of this procedure were streaked onto brain-heart infusion (BHI) 

slants and designated as Ei, E2,... Eg. Colonies from each were transfered to 

BHI broth and incubated at 44.5 °C with gyrorotary shaking (100 rpm). 

Growth curves were monitored using optical density at 650 nm and the strain
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exhibiting most rapid growth under these conditions was selected for 

characterization using standardized in vitro diagnostic assays for 

Enterobacteriaceae (api20E; API Analytab Products, Plainview NY). The 

selected strain was conclusively identified as E. coli using these procedures (P < 

10-6) and was used in all further work.

Routine preparation of stationary phase (S—phase) E. coli test 

suspensions was performed as follows: cells were picked from BHI slants and 

transfered to 20 ml of BHI broth and grown overnight at 35.5 — 37.5° C. This 

culture was ammended to 300 ml of fresh BHI broth in 500 ml Erlenmeyer 

flasks and incubated at 35.5 — 37.5° C with gyrorotary shaking (100 rpm) for

6.5 — 8.0 h. The S—phase culture medium was transfered to sterile 50 ml 

polycarbonate tubes at room temperature and centrifuged for 20 min at 1200 g 

in a Sorvall RB-5C centrifuge. The supernatant was decanted and the pellet 

resuspended to the original volume in sterile PBS containing 0.14% agar. The 

0.14% agar increased the viscosity of the suspension medium so that 

sedimentation during subsequent pipeting steps was minimized. The suspension 

was vortexed vigorously for 90 s and then sonicated using a Sonifier Cell 

Disruptor Model W185 (Heat Systems/Ultrasonics Inc. Plainview NY) on the 

lowest setting (5 one-second bursts). The susupension was again vortexed for 

90 s and allowed to stand for 10 min in the incubator. This was used as the 

starting test suspension for all bacterial bioassay procedures described below.

Isolates of wild type (+) Streptococcus salivarius and (+) Salmonella 

typhimurium (118/100 A) were obtained from Ms. Martha Rhodes (Bacteriology 

Department, Virginia Institute of Marine Sciences, Gloucester Point, VA, 

23062), and deep rough (r/a) mutants of S. typhimurium (TA 98, TA 100) were 

donated by Dr. Bruce N. Ames (Department of Biochemistry, University of
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California, Berkeley, CA). The latter were tested for genetic markers and 

processed according to protocols [106].

S. salivarius was incubated aerobically for 10 h in BHI broth at 35.5° C 

with gyrorotary shaking (100 rpm). The (+) and (rfa) Salmonella typhimurium 

cultures were grown with the same specifications for 12 h in nutrient broth 

(Oxoid No. 2 , Oxoid USA, Columbia MD). Following incubation, all cultures 

were taken through the centrifugation—PBS resusupension procedures described 

above for E, coli

VII. Electron Transport (INT Reduction) Assays

Rates of electron transport (ET) were estimated in the cell systems 

mentioned above using the reducible dye INT. Using bacterial stock solutions 

prepared as described above, the procedure summarized in Figure 2 was used for 

INT assays (modified from reference 73):

Routine controls for these assays included: 1) a "killed11 control which 

followed the assay procedure above using autoclaved cells, 2 ) NCAC control 

which tested for reaction between INT, the toxicant, and supporting media in 

the absence of cells, and 3) solvent control (0.2 ml solvent with no toxicant). 

Results of the latter control are reported in the results as dose =  0.

VIII. Viable Cell Enumeration

Viable cell densities of E. coli test suspensions and NCAC treatments 

were estimated using direct counts (epifluorescence microscopy) and overnight 

culture procedures on BHI agar. Cells were prepared for enumeration



FIGURE 2 . Revised Direct INT Reduction Assay Procedure.
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1.5 ml of bacterial stock culture (10B cell/ml) 
added to 12 ml dilution tubes containing 

0.7 ml PBS/0.3 ml BHI at 37.5° C. 
i

vortexed 3 sec. and placed in water bath 
at 37.5° C for 40 min. 

i
0.2 ml of NCAC dose in 1:2 DMS0 /H 2 0 , or 

0.2  ml of solvent system (control) 
was added to culture; vortexed 3 s; n =  3 — 6 .

60 min incubation, 37.5° C.

0.3 ml BHI and 0.2 ml INT solution added to culture 
in the water bath, vortexed 1 s, culture transfered to 

spectrophotmeter; INTF absorbance vs. time 
monitored immediatly at A — 490 nm for 210  s.

Electron transport rate given as change in absorbance 
at 490 nm per 30 s time interval.

Reference cuvette: all ingredients except INT 
which was replaced by 0.2 ml PBS.

Recorded lag time (s) before burst of INTP formation using a stopwatch 
(for untreated cultures, lag time typically 60 — 100 s) 

and maximum rate of INTP formation per 30 s interval 
(i.e., maximum slope of absorbance vs. time).
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immediately after the 60 minute incubation period shown above for the INT 

assay.

Direct counts were performed using a procedure adapted from Haas 

[pers. comm]. Cell suspensions were diluted to approximately 10fl cells/ml in 

PBS. 2 ml was placed in a glass column fastened over 0.22  pm Nucleopore 

polycarbonate filters on vacuum flasks. The filters had been soaked for 24 h in

0.2 % irgalan black (Ciba—Geigy) to provide an opaque background. Forty pi of 

6% glutaraldehyde was added followed by 200 pi of 4’,6—diamidino—2—phenyl 

indole ("DAPI", 0.01 % in distilled H2O, w/v; Sigma). After 2 minutes, 40 p lo l 

3, 6-diaminoacridine ("proflavin", Sigma, 0.033 % in distilled H2O, w/v; 

Sigma) was added followed by incubation at room temperature for 10 min. The 

mixture

was filtered at low vacuum (2  20 mm Hg) and the filter mounted on a glass 

slide.

Observations of DAPI—proflavin treated cultures were made using a 

Zeiss standard epifluorescence microscope equipped with an HBO Hg lamp and 

63X and 100X PlanNeoFluor objectives. The cytoplasm of E. coli was stained 

with proflavin and fluoresced green whereas the DNA of the cells stained with 

DAPI fluoresced blue. Use of both stains provided a means of cross referencing 

any equivocal fluorescence that may have arisen from non-cellular staining in 

the visual field.

IX. Spheroplast Generation

E. coli test suspensions prepared as described and resuspended in pH 7.4 

PBS (without 0.14% agar) were centrifuged at 1500 g (27 °C, 40 min). The
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pellet was resuspended to the original volume in 10 mM Tris buffer 

(tris(hydroxymethyl)- aminomethane) containing 10 mM 

ethylenediaminetetraacetic acid (EDTA), and 1 % decyl sodium sulfate (DSS). 

The suspension was ultrasonicated at low frequency for 15 s and allowed to 

equilibrate for 5 min at room temperature. The culture was then centrifuged 

for 30 min (1500 g; 27 °C) and the pellet resuspended in PBS (pH — 7.4). 2 

mg/ml of fresh Iysozyme (Sigma) was added with gentle swirling followed by 

incubation at room temperature for 12 min. The cells were centrifuged (1500 g\ 

27 °C) and the pellet was resuspended in 5 ml of 100 mM Tris buffer followed 

by rapid dilution to 1 mM with PBS. The resulting spheroplasts were vortexed, 

centrifuged again for 20 min (1500 g) and resuspended to the desired final 

volume with PBS. This suspension was held in an incubator at 37.5 °C and 

INT analysis was performed in the absence of organic solvents or toxicants.

Spheroplasts were lysed by treatment with 1 % DSS and 0.2 N NaOH 

solutions followed by equimolar additions of 0.2 N HC1. Lysates were assayed 

for INT activity before and after 0.22 fim membrane filtration.

X. Oxygen Consumption Assays

Ninety ml volumes of sterile PBS were bubbled with air for 2  h in a 

water bath incubator at 37.5 °C, and then analysed for oxygen content using a 

Strathkelvin Model 781b Oxygen Meter (Strathkelvin Instruments, Beardsden, 

Glasgow, UK). Ten ml E. colt cultures were prepared as per the INT assay 

protocol and added to 90 ml of O2—saturated PBS in the water bath. At 60 s 

intervals, 1 ml aliquots were introduced to the electrode chamber and percent O2 

saturation values were recorded over a 15 min time period. This was repeated



52

in duplicate for 1) control cultures and, 2) NCAC treatments at various doses.

XI. Transmission Electron Microscopy fTEMl

Four E. coli suspensions grown and prepared according to the INT assay 

protocol were treated with 0.2 ml INT stock solution and fixed with 3 % 

glutaraldehyde/0.1 M sodium cacodylate after reaction times of 0, 2, 5, and 12 

minutes. Two further cultures were treated with 37 parts per million (ppm) 

quinoline—HC1 and incubated along with a solvent control culture (containing 

the acidified H2O supporting solvent in the absence of quinoline) for 60 min. at

37.5 °C. Afterwards, 0.2 ml of the INT stock was added to one quinoline—HC1 

treatment which was fixed as above after 2 minutes. The other quinoline—HC1 

culture and the solvent control were fixed without the addition of INT.

Fixation, mounting, cutting, and microscopy of samples were performed 

by Ms. Patrice L. Mason (Department of Histology, Virginia Institute of Marine 

Sciences, Gloucester Point, VA 23062). The fixation procedure was modeled 

after a standard glutaraldehyde/Os0 4  procedure [107]. Samples were cut on a 

Reichert—Jung Ultracut E and photographed on Hitachi HU—11B TEM and 

Zeiss CEM902 transmission electron microscopes.

XII. NADH-PMS-INT Assay

The non-enzymatic reduction of 0.2 mM INT by 5 /M  NADH was 

measured spectrophtometrically at A =  490 nm in PBS, pH 7.4. Assays were 

run in triplicate with and without addition of 0.02 (M  phenazine methosulfate 

(PMS), a flavin analogue, in PBS. The effects of DMSO and 30 ppm quinoline
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in DMSO on the rate of INT reduction were measured in all treatments.

XIII. Eukariotic Cell Systems and Cell Free Preparations

1. Macrophage INT Assay

Peritoneal macrophages were obtained from the toadfish Opsanus tau 

using a 50 ml glass syringe with a 18 guage spike [108]. The peritoneal cavity 

was flushed repeatedly with physiological saline (Hanks Balanced Salt Solution, 

HBSS; 6 ppt salinity, pH 7.6) and fluids from several fish were combined in 

sterile centrifuge tubes. These were centrifuged for 10 min at 550 g, followed by 

resuspension of the pellet in small amounts of buffer until cell numbers of 2 — 4
g

x 10 were achieved, based on cell counts of serial dilutions. The macrophages 

were stored in HBSS at

15 °C. Stock solutions of phorbol myristate acetate (PMA) and calcium 

ionophore A23187 (Cl) in DMSO were diluted in HBSS to final concentrations 

of 0.16 pM and 1.6 pM, respectively [116]. 0.2 ml of macrophage suspension was 

treated with buffer, PMA, or Cl, followed by addition of 0.2  ml of 10' 4 M INT 

solution and absorbance at X =  490 nm was monitored for 210 s in 0.5 ml 

optical glass cuvettes.

2. Marine Phytoplankton-INT Assays

Mature liquid cultures of two species of Tetraselmis sp., Chlorella sp., 

Monochrysis sp., Isochrysis sp (Tahitian), Dunaliela sp. were provided by Mr. 

D. Abernathy (VIMS, Gloucester P t., VA). Chlorophyll absorbance was 

measured at 560 nm and culture volume was adjusted with filtered York River 

water (salinity =  11 ppt) to provide a common chlorophyl density between



54

cultures. 15 ml of each culture was treated with 0.8 ml of INT stock, placed in 

sunlight for 6 hours and examined visually for INTF production every 2 hours.

3. Chemical Reduction of INT

NADPH in PBS was screened to determine its ability to directly reduce 

INT at physiological pH, and the time requirements for this process. Ascorbic 

add was also tested in PBS and PBS adjusted to pH > 9.0 with 4 N NaOH. 

The reduction product(s) of the ascorbic acid treatment were subjected to 

FTNMR. Sterile solutions of NADPH solutions (pH 7.4, 5 mg/ml) were 

ammended with 0.4 ml INT stock and absorbance spectra were recorded every 

15 minutes for 3 h.

4. S-9 Preparations

Liver S—9 preparations from the spot Leostomus xantkurus were 

prepared by Mr. D. Sved from pooled corn oil— and 3—methyl cholanthrene 

(3—MC)/corn oil—injected (10 mg/kg body weight, IP) specimens kept in 

aquaria. To 50 fiL of the S-9 mix, 50 nL of tris (1//M), 100 fiL NaCl (0.5 M),

0.400 mM NADH, and 33 fiL INT (0.1 mM) were added followed by monitoring 

of absorbance vs. time at A =  490. Maximum ET for blanks (no S—9), carrier 

control S—9, and 3—MC—treated S—9 were recorded (N =  2 ).

XIV. Mutagenicity Evaluation of INT and INTF

Standard mutagenicity testing was performed on unpurified INT and 

INTF using the Ames/Salmonella assay according to protocols [106]. Strains 

TA97, TA98, TA100, and TA102 were used in spot tests and TA 98 and
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TA 100 for preincubation tests. Test solutions were INT in PBS, INTF in 50% 

EtOH/PBS, and an equimolar INT/INTF mixture in 50% ethanol/PBS exposed 

to laboratory light for 3 hours. Phenobarbitol induced rat liver S—9 (Litton 

Bionetics Inc., Charleston, S. C. 29405) was preincubated with the test 

solutions and bacteria for 20 minutes at 45° C, followed by culturing.

In addition to the Ames assays, it was of interest to examine the ability 

of INT and INTF to interact with DNA in vitro. Two strains of E. coli 

containing the human oncogene plasmids PSVg—neo or VERB—b (ATTC, 

Bethesda, MD) were grown in 50 ml ampicillin/tetracycline nutrient (LB) 

media (BRL, Bethesda, MD) and tested for the presence of plasmids by 

streaking onto ampicillin containing LB agar (the plasmids are coextensive with 

with the antibiotic resistance "R—factor" plasmid, PBR 322). Viable isolates 

were transfered to 500 ml LB nutrient broth and grown overnight at 37.5°C 

with gyrorotary shaking (100 rpm). Aliquots of the S—phase culture were then 

transfered to 2 L flasks containing ampicillin/tetracycline and grown overnight 

under similar conditions. When cultures reached the midpoint of log phase 

(based on OD ^ q ) , multicopy plasmids were amplified by treatment of cultures 

with 3 ml of sterile chloramphenicol stock (34 mg/ml).

After 10 h incubation in the presence of chloramphenicol, cells were 

pelleted by repeated centrifugation (7—12 x 10 g) and DNA was extracted and 

purified by standard phenol/chloroform/isoamyl alcohol methods [109]. 

Precautions for handling, storage, and disposal of human oncogenes were 

observed. After final ethanolic precipitation of plasmids, VERB—b extracts 

were given to Dr. L. Ellis for DNA probe work in Crassostrea virginica, and the 

5.4 kB PSVg—neo plasmid was retained for the present work. The plasmid 

pellet was resuspended in sterile TE buffer and stored at 0° C. DNA
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concentration and purity were estimated spectrophotometrically using 

absorbance at A =  260 nm according to the following:

1 absorbance unit (@ A =  260) 2 50 ^g/ml DNA.

A b s . 2 6 o / A ^ s * 2 8 0  =  ^  P u r i t y  I 1 1 7 ]-

Hence, after correction for purity, plasmid DNA was estimated to be 476 ^g/ml. 

The PSVg—neo plasmid fraction was then assayed using submerged agarose gel 

electrophoresis (SAGE) with various starting dilutions of plasmid DNA, and 

agarose concentrations between 1.0 — 1.3%. 10 — 20 fA aliquots of plasmid and 

standards (1 kB supercoiled and linear ladder DNA standards; BRL Products, 

Bethesda MD) were placed in sterile wells and diluted to desired concentrations 

with a glycerol/EDTA/SDS stop solution. After many trial runs, the following 

parameters were used for all SAGE: 1% agarose (volume =  65 ml), 12 well 

comb, 20 fA injection volume, 2 x 10 ~2 stock dilution,

t =  11 mA, V =  24 V, run time = 1 6 —24 h, gels stained with approximately 1 

mM ethidium bromide (EB, Sigma) in TEB [109] buffer and read using a 

Sprectroline Model TR—302 Transilluminator (excitation A =  302 nm, 

fluorescence A =  590 nm). After conclusive identification of the supercoiled 

PSVg—neo plasmid band, the supercoiled fraction was seperated from a 

"nicked” circular population using preparative SAGE on low melting point 1% 

agarose followed by phenol/chloroform extraction (3 X) and NaCl/ethanol 

precipitation. Next, 20 fiL of 1 mM INT, 1 mM INTF, and 1 fiM EB stocks 

were ammended to 1.4 fig 1 kB supercoiled ladder and 2.0 — 2.5 fig of purified 

PSVg—neo plasmid extract and relative mobilities (cm) were recorded. 

Treatment of 1 — 20 kilobase (kB) plasmids with EB results in significant
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unwinding of the supercoiled helix, causing changes in electrophoretic mobility. 

Any significant alkylation or intercalation of DNA by INT or INTF would cause 

molecular volume increases and concomitant reductions in mobility relative to 

untreated DNA. The magnitude of this reduction could be referenced to EB 

treatments and used to infer relative degrees of reaction between the 

tetrazolium salt and DNA. As a result of time and financial contraints, dose vs. 

mobility assays were not conducted.



RESULTS AND DISCUSSION

I. Chemical Structure and Solution Behavior of INT and INTF

Figure 3 contains the aromatic portion of the *H FTNMR spectra for

INT, INTF, and the acetone extract from INT—treated E. coli cells along with
13consistent chemical structures. C FTNMR spectra were run on all standards 

and were in agreement with elemental composition values provided by the 

manufacturers. The presented *H spectrum for INT is superior to a published 

INT spectrum, which was generated using a low field instrument containing 

no peak pick or integral data [110]. The poor resolution of the cited spectrum 

and the lack of supporting data made independent verification of postulated 

chemical structure impossible [110]. One author [93] has suggested the 

following structure for the tetrazolium ring:

R\ N -------N/ R
I IN M? N

X I I .  I A
R

The stated rationale for this structure [93] was that electronic resonance 

structures can be drawn with positive charges located at each tetrazolium ring 

position, and therefore representation XI I  is qualitatively superior to those with 

localized double bonds (c/, structure X, above). A shortcoming of 

representation XII  is that it suggests an equivalence of the tetrazole ring

58
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FIGURE 3. Fourier Transform Nuclear Magnetic Resonance (FTNMR) 

Spectra. A. INT standard. B. INTF standard. C. Acetone 

extract from INT—treated E. coli cells.
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nitrogens that might lead to difficulties in the interpretation of reactivity or 

spectral data. Irrespective of representation, the following considerations are 

important and have been major sources of confusion regarding these compounds: 

1) a quaternized nitrogen lends charge to the system and is a diagnostic feature 

of the entire class of compounds [73, 93, 97], 2) the iodo and nitro 

functionalities are electron—withdrawing and should increase the cationic 

character of the tetrazolium ring, enhance substantivity, and stabilize the 

hypothesized tetrazolinyl radical system relative to TPT, 3) the electron 

deficient tetrazole structure indicates that INT would be reactive towards 

nucleophiles, and this accounts for its documented resistance to acids and other 

oxidants, and, 4) there is no evidence for covalent association between the 

halide and the tetrazolium ring as previously suggested [80, 81]. With respect 

to INT reactivity toward nucleophiles, it might be expected that direct 

reactions such as the following between the test NCACs of this work and INT 

would be significant:

Experiments measuring absorbance spectra of quinoline and INT mixtures (this 

work), indicated that no such reactions occurred in aqueous media in the 

temperature range used in the bioassays. It is known that pyridine will react
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with TPT in nonpolar media at elevated temperature, but apparently high 

activation energies are required [63]. Both INT and quinoline are hydroscopic 

(quinoline much more so) and it is probable that H2O cage effects inhibit 

kinetic processes that would lead to direct NCAC—INT chemical reactions with 

even minimal yields.

Spectra B and C (Fig. 3) show an acyclic, uncharged formazan system 

with the highest-order nitrogen being tertiary. This structure arises from the 

2e_ reduction of INT and addition of one proton. In biological reductions, this 

is a hydride transfer route [65]. Apparently there are no published spectra 

demonstrating the in vivo reduction route from INT to INTF using extracts 

from treated organisms, and the examples in Fig. 3 (along with resonance and 

photochemical considerations) discount other conceivable structures for the 

formazan that could be postulated based on a hydride reduction (see resonance 

system A, below).

It can be seen from system A that use of tetrazole structure X II  above [93] as a 

conceptual model might lead to erroneous INTF structures even when one has 

access to quantitative analysis such as NMR and the reaction route.

The simple acetone extraction gave good recovery of INTF from the 

INT—treated E. coli cells as indicated by decolorization of cell residues.



63

Interestingly, the INTF—E. coli extract spectrum appears subtly different than 

the INTF standard (c/., Fig. 3 C and B, respectively), particularly with respect

this difference resulted from stabilization of the 2H  proton on the formazan by 

some cellular material, e.g., a fatty acid carried over in the extraction. For 

instance, in dg—DMSO the 2H  formazan proton might be free to exist in two 

resonance structures (B and B’, below), while under the influence of 

electrostatic forces of cellular materials in the extract, the statistical weight of 

the resonance is shifted overwhelmingly to the major structure (B, below);

to the peaks at £___ 7.52 — 7.63 (equivalent to 1.14 proton units) and theppm
smaller signal at 5ppm 7.33 — 7.25 (0.338 proton units). One wonders whether

m ajor m inor

C = 0

where B is NMR consistent, and B’ and C are hypothetical with C showing a 

possible interaction of INTF (B) with a CH3-(C H 2) —COO* fatty acid. Several
71/
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authors [63, 65] have suggested that mesomeric structures for tetrazolium 

compounds similar to B  and B* above are likely, but only in systems with 

symmetric aryl groups (e.g., TPT). But this is not entirely consistent with 

modern resonance theory [34, 35] and does not preclude skewed distributions of 

INTF resonance forms. The dipole moments of the 2— and 3— aryl groups 

(ignoring tetrazolium ring effects) are 1.71 D and 4.28 D [34, 35] and this would 

favor only a 2.5:1 statistical predominance of form B  over form B \  

Interestingly, the ratio of proton units between £ppm 7.52 — 7.63 and 7.33 — 

7.25 in the FTNMR spectra (Fig. 3) is 3.4:1, whereas in the E. coli extract only 

the latter peak is apparent, with increased height. A shift in resonance 

distribution under the influence of a chemical interaction could account for the 

loss of the single proton signal at £ppm 7.52 — 7.63 in the E. coli extract. 

Hydrogen signals from the fatty acid in system C would not be detected in this 

region of the field, and since all other interactions are electrostatic with 

heteroatoms, shifting of the C *H signals relative to standards would be 

expected to be minimal.

The chemical reduction of tetrazolium compounds (especially TPT) with 

cellular reductants such as NADH, NADPH, and ascorbic acid (pH >  9.0) have 

been reported [65], but the time dependence of the reduced nicotinamide 

reactions and the endproducts of ascorbic acid reduction have not been well 

resolved. Figure 4, A and B shows absorbance spectra for the nonenzymatic 

INT reduction by NADPH at pH 7.4 (dt = 15 min). This suggests that direct 

nonenzymatic or acellular INT reduction by reduced nicotinamides is not a 

factor in assays involving INT incubation periods of less than 60 min. It has 

been claimed repeatedly (based on absorbance spectra) that ascorbic acid does 

not reduce tetrazolium compounds beyond the formazan. Nevertheless,
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FIGURE 4. Direct Reduction of INT by NADPH. NADPH in PBS (5 mg/ml; 

pH 7.2), 0.05 mM INT. Scans at 15 min. intervals.
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FTNMR spectra of ascorbic acid/INT solutions in water at pH 9 contained

some 25 major peaks and many minor signals in the aromatic region, which

indicated multiple reduction products. Proton signals from ascorbate itself were

in the ranges 5ppra 1*0 — 5-5 and 9.0 —12.0, not in the aromatic range examined

(Snnm 7.0 -  8.5). v ppm *

II. Electrochemistry of INT

The rather complicated electrochemistry of INT in buffered aqueous 

systems was examined using several working and reference electrodes. Since the 

latter have different standard potentials relative to the SHE, the following 

standard potential values at 25° C can be used to convert data from figures to a 

common scale:

Ag/AgCls vs. SHE 4 E 0 =  -  0.2224 V 

SCE vs. SHE 4 E 0 =  -  0.2415 V.

Figures 5 and 6 show normal and differential pulse polarography (NPP 

and DPP respectively) of INT/PBS. NPP gave three resolved maxima (-0.168,
red

-0.350, and -0.714 vs. Ag/AgCl) with E ^  the wave approximately 

-0.150 V vs. Ag/AgCl (or +0.073 V vs. SHE). DPP produced at least five 

resolved peaks (-0.096, -0.238, -0.328, -0.648, and —1.166 V vs. Ag/AgCl) 

(Fig. 6), but these peaks shifted with concentration in a nonlinear manner 

indicating product adsorption complications [c/, 102]. To ameliorate 

adsorption difficulties, 100% ethanol was added to the PBS to increase 

solubilities of reactants and products and a vitreous carbon working electrode
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FIGURE 5. Normal Pulse Polarogram; 0.133 mM INT in PBS with 2 drops of 

Triton X—100 maxima suppressor; Static Mercury Drop Electrode 

(Model 303A); 1 drop/s; 2 mV/s scan rate.
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FIGURE 6 . Differential Pulse Polarogram; 0.133 mM INT in PBS; 2 drops 

Triton X—100 maxima suppressor; Static Mercury Drop Electrode 

(Model 303A); 1 drop/s; 2 mV/s scan rate.
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was substituted for Hg. Figure 7 shows a normal pulse polarogram of INT/PBS 

on vitreous carbon showing three waves (-0.17, —0.52, and —0.82 V vs. SCE) 

with much lower amplitudes than Hg. The first wave is broad and small, 

indicating irreversibile electron transfer and interfering electrode processes, and 

the rising linear background is probably due to H* reduction and hydrogen 

filming on the electrode surface. Filming by a blue-green product was noted 

especially on carbon, but also on large area platinum electrodes. This suggested 

that radicals or dimerization reactions were occurring at some potential in the 

experimental range, but this was not pursued quantitatively. Theoretically, 

dimers could be formed via cathodic or anodic reactions of INT or INTF 

respectively (Fig. 9 , below), and the fact that diformazans of nitrotetrazolium 

blue (NTB) and other compounds are blue to purple in aqueous media lends 

support to this conjecture [65], Further, it is known that free radicals of several 

tetrazolium salts are green to black in organic media [65, 91]. Figures 8 and 9 

show results of cyclic voltammetry (CV) at the same vitreous carbon electrode. 

In all CV, three peaks were well resolved and increases in scan rate caused 

peaks to shift slightly negative, again suggesting irreversible and complicated 

reduction processes. Figure 9 shows that each reduction peak gave rise to one 

or more oxidation waves on reverse scan indicating irreversibility as well as the 

presence of different pathways for oxidation and reduction on carbon. Similar 

mechanistic differences for oxidation and reduction have been reported for TPT 

on P t [86]. In all CV’s, the approximate peak ratios of the first two waves were 

1:1 indicating a sequence of two one-electron reductions.

Since the apparent kinetics of the first wave could have been an artifact 

of many processes including heterogeneous mass transport, additional
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FIGURE 7. Normal Pulse Polarogram; vitreous carbon electrode; 16.4 

fM  INT in SO % ethanol:PBS (v/v); 2 drops Triton X—100 

maxima suppressor; 2 drops/s; 5 mV/s scan rate.



74

0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0

VOLTS VS. SCE



75

FIGURE 8 . Cyclic Voltammogram on Vitreous Carbon Electrode. 

SCE reference electrode; 16.4 fM  INT in 50 % 

ethanohPBS (v/v); 2 drops Triton X—100 maxima 

suppressor; scan rates (bottom to top): 10, 50, 100, 200, 

500, mV/s.
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Figure 9. Cyclic Voltammogram on Vitreous Carbon Electrode. 

SCE reference electrode; 66 fjM INT in 50 % ethanol: PBS 

(v/v); 150 mV/s scan rate.
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experiments were conducted using the RRDE. Degassed solutions of 0.20 x 10’7 

M INT in 1:1 PBS/ethanol (v/v) were analysed with respect to the first 

reduction wave, and data were used to solve the Levich equation, which 

provides a test that currents measured at the RRDE are faradaic [94, 102]. The 

RRDE experiments were run at a single rotation rate which gave a well 

controlled mass transfer regime. Solution of the Levich equation gave n values 

(number of electrons transfered) between 0.1 and 0.9, again suggesting 

irreversible one electron transfers in the first wave. DPP was also attempted in 

this system, but was subject to large startup transients especially at the faster 

sweep rates. As a result, data on the first wave were obscured.

Laser reflectance spectroelectrochemistry of INT reduction was 

unsuccessful in determining the minimum reduction potential for INT to INTF 

mainly because the changes in measured current from the photodetector were 

too small to be discerned from the background currents, which were some 2 —3 

orders of magnitude greater. Heavy deposits of INTF were noted on the 

electrode after all runs, indicating that reduction was occurring on Pt well 

positive of —1.0 V vs. SCE. This efficiency of this system could be optimized 

and modified by reducing the intensity of the incident beam, changing incident 

wavelength, and increasing the depth of the thin optical cell, but this was not 

done because of time constraints. A heavy particle recoil spectrometer also 

could be added to the thin cell system to detect potentials at which various 

sorption events occurred (i.e., Hads, INT, INTF, and any intermediates) and the 

effects of redox active pollutants (e.g., quinoline) on reduction potential and 

sorption characteristics. The study of redox-active toxicants in such an 

experimental system would allow for interpretation of mechanisms and effects of 

these materials on biological ET processes.
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FIGURE 10. Spectrochemical Identification of Minimum INT Reduction 

Potential on P t Mesh Electrode. 10 ' 2 M INT in 50 % 

ethanol:PBS (v/v); A =  490 nm
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FIGURE 11. Electronic Absorbance Spectra of INT (a) and INTF (b) 

Standards in 50 % ethanol:PBS (v/v).
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Results of the spectrophotometric determination of the minimum reduction 

potential at which INTF could be detected optically on platinum mesh is shown 

in Figure 10. Production of INTF was monitored at A =  490 nm because a 

prominent, unambiguous peak occurs at this wavelength in its solution 

absorption spectrum (Figure 11). The spectroelectrochemical system was able 

to detect the onset of INT reduction on P t mesh. The reduction of INT 

apparently began at -0.117 to -0.126 V vs. SCE (+0.116 and +0.125 vs. SHE) 

and continued beyond — 0.5 V vs. SCE. These results were reproducible, but as 

with mercury, adsorption of INTF was observed on the working and sometimes, 

counter electrodes. The onset of INT reduction occured positive of the standard 

potential for H + reduction, and the results suggested the possibilty of 

underpotential generation of reactive hydrogen species at the electrodes where 

filming occured (see below). This spectroelectrochemical system is promising 

for future examination of redox effects of various pollutants in aqueous and 

simulated biological media (e.g., a mixture of fatty acids) and for exploring the 

significance of such effects in simulated membrane systems.

Figure 12 summarizes the results of numerous experiments addressing 

the pH dependence of the first wave on vitreous carbon using NPP. It can be 

seen that at pH =  3.0 the first wave peaks abruptly, whereas at pH =  9 and pH 

=  12, the waves are much broader. The differences in this wave at pH — 3 and 

pH > 7 on carbon as well as spectrochemical observations on P t (Fig. 10) 

strongly suggested the possibility of competition for adsorbed hydrogen species 

by INT (or intermediates) and reactions resulting in the formation of molecular 

hydrogen. The exact nature of the INT interaction with the electrode and 

adsorbed hydrogen species is not known and could not be inferred from the data 

of the present work. The presence of 1) irreversible one electron reductions in
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FIGURE 12. First Reduction Wave Characteristics as a Function of pH. 

A. pH 11; B. pH 9.0; C. pH 3. 10"» M INT in 50 % 

ethanohPBS (v/v), NPP at vitreous carbon electrode, 100 

mV/s scan rate.
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the first wave, 2) presumed dimerization products, 3) pH effects, 4) 

approximate 1:1 peak current ratios from the first two reduction waves in CV
red

and, 5) the very positive E ^  of INT on Pt suggested that INT is reduced via a 

direct slow one electron reduction, followed by a relatively fast one electron 

reduction and disproportionation (center route, below). It seems likely that the 

reduction to INTF procedes through a tetrazolinyl radical intermediate. If the 

disproportionation step is limiting, as suggested in the literature [85, 86], it is 

not clear how the exponential inverse proportionality between formazan 

production and [H+] concentration can be explained without postulating 

interfering reactions involving hydrogen.

Given these data and that of previous authors, the following reaction scheme, 

shown as. the uppermost route, cannot be ruled out (all potentials are vs. SHE):

H ^ —P t / + 0. iso V H j — P t / * 0 - too V
------------------------------- • H + +  {INT • } ---------------------------------

e - / P t / + „ .  l i e  V e - / H  ♦
INT* C l-  ^  r ^  ^  { I N T - }  ^  =■ r- ■■ IN T F s

H + {H-} +  INT
2 e ' / P t / <  + o - 0 5 o V f

2 H + ^   "> 2 {H-}   1 H 2

The species w —Pt above represents weakly adsorbed hydrogen at a surface site 

on the Pt electrode, which gives a current maximum at approximately +  0.100 

V vs. SHE [c/, 94, 102]. It is significant that a TPT radical analogous to the 

{INT-} proposed above has been identified in TPT formazan oxidations at 

electrodes and as a reduction product in microsomal cytochrome P—450 

preparations [65]. In the latter case, the tetrazolinyl radical reduced O2 to
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superoxide anion, thereby inhibiting the rate of formation of formazan and 

explaining the oxygen sensitivity of TPT reduction in biological systems. 

Under anaerobic conditions, the TPT tetrazolinyl radical further reacted to give 

TPTF. Conversely, the biochemical reduction of INT to INTF is not inhibited 

by oxygen [64, 65, 75] suggesting that, 1) INT does not form a tetrazolinyl 

radical, 2) the radical is generated in a rate limiting step followed by very rapid 

reduction and disproportionation to INTF that is favored over oxidation by O2, 

or, 3) the radical is stable in the presence of oxygen either thermodynamically 

or through chemical sequestering in anaerobic microregions of the cell. 

According to the present data, it is likely that the INT tetrazolinyl radical 

species is formed at P t electrodes and that the formation of INTF is inhibited 

by hydrogen ion concentrations above 10 ~7 M.

Experiments addressing the hypothesis of underpotential hydrogen 

evolution using DPP on the RRDE were inconclusive and further experiments 

using C fiber bundle electrodes are under consideration.

III. Mutagenicity Evaluation of INT and INTF

INT, INTF, and an irradiated solution of both compounds were not 

detected as mutagens in the Ames/Salmonella assay. In general, these 

compounds were toxic to the test bacteria, with culture lawns turning red upon 

incubation, and growth inhibition (i.e., pindot colonies, reduced background 

lawns) observed at 100 fiM doses in all treatments. In all strains tested except 

TA 98, complete inhibition of revertant colonies was observed at concentrations 

of 2 — 7 mM for all test solutions. Treatment of cultures with S9 caused rapid 

( < 1 0  min) reduction of INT to INTF and was therefore not used in INT
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treatments. Otherwise, the S9 treatments gave no differences in reversion rate 

from controls. Despite the negative findings in these preliminary assays, very 

careful handling and disposal of these materials was observed. As with all 

bioactive compounds, especially those that are thought to form free radicals, 

obscure cellular and genetic interactions can occur that are not detected in 

single species tests. For example, results of binding assays using the PSVg—neo 

plasmid and supercoiled ladder DNA suggested that INT could interact with 

DNA in vitro. Results of assays measuring electrophoretic mobility of plasmid 

DNA and supercoiled and linear DNA ladder standards are shown in Fig. 13. 

The mobility of the same materials treated with INT, INTF, and ethidium 

bromide (EB) are shown in Figure 14. The gel reproduced in Fig. 14 allows for 

the comparison of SAGE mobility for purified PSVg—neo and 1 kB supercoiled 

ladder DNA controls vs. treatments with EB (a known intercalating agent), 

INT, and INTF (suspected intercalating agents), Pre-electrophoretic 

treatment of 1 — 20 kB supercoiled plasmids with EB is known to result in 

significant changes in mobility, with the intermediate weights (5 — 15 kB) 

showing the most pronounced effects [109]. It is evident from Fig. 14 that INT 

caused small mobility changes (smearing and distortion of terminal bands) in all 

treated samples relative to untreated controls, and the degree of mobility 

inhibition was related to MW of the plasmid for EB and INT treatments (c/, 

lanes 7 — 14, Fig. 14). These mobility changes were similar to, but not as 

pronounced as those caused by EB. No mobility effects were observed for INTF 

which suggests that the interaction between INT and DNA was electrostatic. 

In native DNA, electrostatic repulsion between two monovalent phosphodiester 

groups is attenuated and dimensionally stabilized by one Mg2+ ion. This
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FIGURE 13. SAGE Mobility of PSVg—neo Plasmid DNA Relative to

Linear and Supercoiled Ladder DNA Standards. 20 fiL 

injection.

Lane: 1, 6 , 13: Supercoiled ladder*; 0.07 fig/fA.

2 , 9 , 12: PSVg—neo Stock; 0.24 fig/fA.

3, 8: PSVj-neo Stock; 0.08 ^g//d.

4, 7, 11; PSV2—neo Stock; 0.048 /J,gf{A.

5, 10; Linear Ladder DNA Standard**.

14; Control.

Kilobase (kB) Size of DNA Ladder Standards (bottom to top):

* Supercoiled Ladder: 16.21, 14.17, 12.14, 10.10, 8.07, 7.05, 6.03, 5.01, 3.99, 

2.97, 2.07.

** Linear Ladder: 12.216, 11.198, 10.180, 9.162, 8.144, 7.126, 6.108, 5.09, 4.07, 

3.054, 2.036, 1.636, 1.018, 0.517, 0.506, 0.396, 0.344, 0.298, 0.220, 0.201, 0.154, 

0.134, 0.075.
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FIGURE 14. Effect of Ethidium Bromide, INT, and INTF on SAGE

Mobility of PSVg—neo Plasmids and Supercoiled Ladder 

DNA.

Lane: 1 , 6 : PSVg-neo Plasmid DNA, 0.025 figffA*.

2: Linear Ladder DNA; 0.5 fig/fA 

3 — 5: PSVg-neo DNA; 0.008 fig/fA * (not detected).

7: PSVg—neo DNA +  30 (A ethidium bromide stock (1 

( M ) .

8 : Supercoiled Ladder Stock +  30 (A ethidium bromide 

stock (1 (M )

9: Supercoiled Ladder + 10 fiL INT (1 mM stock).

10: Supercoiled Ladder +  10 (iL INTF (1 mM stock).

11: PSVg—neo DNA +  10 fiL INT stock.

12: PSVg-neo DNA +  10 fiL INTF stock 

13: PSVj-neo Stock; 0.025 figlfA*.

14: Supercoiled Ladder Standard.

+ Approximate concentration, 

t Lane Overloaded.
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interaction is critical in maintaining the tertiary structure of the DNA helix 

[111]. If INT competes for negatively charged sites normally occupied by Mg or 

chelates the metal in a way similar to its chelation of Nb(V) [66], then the 

repulsion between phosphates would be greater, torsional effects and molecular 

volume would increase, and electrophoretic mobility would decrease. An 

increase in phosphodiester repulsion also would open the helix and increase its 

suseptibility to noncovalent intercalative binding (perhaps via one of the planar 

phenyl groups) [111]. In the INT—treated DNA bands (Fig. 14) the intensity of 

post electrophoretic EB staining was decreased relative to untreated controls 

and INTF treatments. This suggests an intercalative as well as electrostatic 

mechanism of INT/DNA interaction, or, conversly, a quenching of EB 

fluorescence by associated INT. It was not possible to conduct further 

experiments addressing this question, nor was it feasible to attempt to examine 

the tetrazolinyl species without analytical support. Like many free radicals, 

however, it is likely to have mutagenic properties and is a promising candidate 

for future electrophoretic studies of DNA binding. As an electrophile, the 

tetrazolinyl radical likely would possess the ability to dimerize or react 

covalently with nucleic acid bases.

As with the Salmonella mutagenicity results, the plasmid mobility assays 

were not conclusive by themselves, but did support reactivity predictions made 

solely on the basis of quantum mechanics and the documented behavior of 

analogous compounds. The potential for ionic associations between INT and 

DNA supports the conclusion that INT should be regarded as a potential 

carcinogen until comprehensive testing has been conducted.
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IV. The Revised Direct INT Bioassav

As mentioned, it was necessary to modify the published direct INT assay 

[73] for the purposes of the present work. This was because the use of optimized 

cultures was thought to be essential for valid interpretation of toxicity and for 

an understanding of the full range of responses characteristic of the bacterium 

[60]. The latter was important because it was necessary to evaluate the 

technique with respect to its proposed use as a rapid toxicity assay, as well as in 

mechanistic work.

The INT assay procedure described in Materials and Methods was 

designed to correct for at least three sources of systematic error in the 

previously published method [73], i.e., 1) obvious sources of uncontrolled 

toxicity (anaerobiosis, pH effects, and substrate limitation from using spent 

culture in the assays) were reduced, 2 ) problems with uneven delivery of cells to 

dose tubes (from random clumping/settling) were minimized by sonication and 

the use of 0.14 % agar in the PBS resuspension medium and, 3) ET estimates 

used in dose-response regressions and assays of different cell systems were 

optimized so that all salient information was included in comparisons.

With respect to 3) above, it was necessary to evaluate options for 

statistical handling of data. Published methods commonly have called for 

estimates of ET based on a terminal absorbance value for INTF after an 

extended incubation time (10 — 60 min.) of cultures with INT [73, 74]. More 

recently, the maximum slope of the "first-order" part of the INT reduction 

curve has been employed without a formazan extraction step [73]. Using data 

from 8 replicate samples of a control culture prepared according to revised
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protocols of this work, the following methods of ET estimation were compared:

1) final INTF absorbance after 10 min incubation of cultures with INT, 2) "first 

order" rate of INTF vs. time per 30 s interval, 3) probit slope values for the 

total ET response surface for a 210 s run and, 4) an integrated value of total 

INTF absorbance after 210 s (given instrumentally as "activity"). It was found 

that use of the final absorbance value after 10 min. incubation of bacteria with 

INT was more reproducible (c. v. =  3.5 %) than any of the shorter (210 s) rate 

estimates, but the method tended to obscure important differences in the 

treatments, and gave no information on kinetics (below). The long run time per 

sample was also prohibitive in terms of benchlife of the incubated test 

suspensions, which showed decreases in INT activity after 3.5 h. The maximum 

slope, probit slope, activity value estimates for ET showed more variability 

than did values of final absorbance but had comparable c.v.’s (13.2 %, 10.0%, 

and 13.6%, respectively). The response surfaces of these were indicative of the 

variability between treatments and were thought to be better for discerning 

subtle or gradient changes in ET response with toxicant treatment. Linearizing 

the total absorbance vs. time function using a probit transform was time 

consuming and did nothing to improve comparability between runs (the 

maximum slope estimates were equivalent) and obscured small variations in lag 

time response. Hence, it was decided that maximum slope and lag time values 

conveyed all salient information available, and were most appropriate terms of 

time and experimental flexibility. The computed activity value was not used 

because it was insensitive to nonlinearities and gave erroneous values if a run 

was terminated before the 210 s time had elapsed. The latter was sometimes 

necessary when, in threshold doses (below), lag time was not observed and 

absorbances were off scale before completion of the 210 s run. The use of
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activity values under these circumstances would have given inaccurate and 

unusable data. The published method [73] was nebulous on these points, and 

the results included only ECgg values that had been generated by regressing 

INT slope values on dose. The meaning of "first order", method of calculation 

of maximum slopes, length of the run period, and considerations pertaining to 

kinetic variations were not reported or mentioned. The run time of 210 s for 

the present work was chosen because it became clear that 1) lag times before 

response in controls and most toxicant treatments were between 60 — 100 s, and 

these were followed by rapid absorbance increases at A =  490 nm for the 

remainder of the run and 2) by 200 — 210 s, virtually all absorbance vs. time 

functions were outside the linear range of the spectrophotometer.

With respect to the sources of stress within the growth culture medium, 

Figure 15 summarizes the results of comparative INT assays run using the 

published method [73] vs. the revised method of the present work. The INT 

assays were run in tandem after initial growth periods of 8 , 16, and 36 h. The 

long incubations were used because the published method used 20 — 24 h post 

S—phase cultures of the aerobe Psuedomonas alcaligenes, and the revised 

protocol of this work calls for incubation times corresponding to the early stages 

of S-phase (Figure 16). Figure 15 shows that the use of spent growth medium 

as a dosing medium and substrate for INT work gave lower ET rates at all 

incubation times relative to the the method used for this study. The very long 

lag periods before response and low pH values of suspensions from the published 

method [73] indicated that addic and oxygen—limited conditions gave rise to 

altered respiratory states (anaerobic respiration and/or resting states). The 

bacteria prepared using the revised method showed vigorous INT responses and 

short lag times (70 — 90 s) at all incubation times. Variance in the INT
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FIGURE 15. Comparison of INT Reduction Assays. Maximum INTF 

Response vs. Incubation Period (8,16, 36 h)
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FIGURE 16. Escherichia coli Growth Curve.
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response of the two treatments appeared similar, but lag time c.v.s were 

between 4.7 — 20% over the entire test period for the revised method, and 7.6 — 

74 % for the published . Assuming that results derived from E. coli can be 

compared to those for a Psuedomonas sp., it is not surprising that the toxicity 

work in the published method had very low variability. The effect of toxicants 

would amplify those of medium toxicity and limit the range of ET responses in 

treatments.

The agar/PBS resuspension and sonication steps were designed to 1) 

raise pH values characteristic of the spent medium (measured range =  6.0 — 

6.5) to optimum values in the resuspension (measured range =  6.9 — 7,3) and,

2 ) facilitate separation of cell clumps without deleterious effects on the bacteria. 

Sonication was initiated because cell sedimentation and clumping during 

pipeting was observed when normal (unthickened) PBS was used as the 

resuspension medium. Visual observations of sonicated cells in DAPI 

procedures indicated that the light sonication step was successful in separating 

the cell aggregates. Further, INT responses were stimulated in the suspensions 

relative to unsonicated cultures (Table 2). The light sonication had a 

stimulatory effect on E. coli with treatment times of < 30 s. Sonication for 

more than 30 s caused reduction in INT response, probably because of heating 

of the medium. Therefore the length of preparative sonication of E. coli test 

suspensions was limited to 5 one second bursts at low fequency.

V. Solution Behavior of the NCAC Reagents

Quinoline master stock solutions in DMSO exhibited indefinite shelf life 

under nitrogen at 0 °C, with no significant degradation products observed in
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TABLE 2 . Effect of Sonication Time on INT Response and Viable Cell 

Density in E. coli.



104

Sonication 
Time (sec)t

Lag
Time (sec)

Max.
INT Slope

CFU/ml 
(BHI agar)

0 50 (4)* 255 (3)* 109

5 87 (5) 253 (11) 109

10 57 (5) 366 (18) 109

20.0 63 (6) 420 (17) 109

t Instrument on low setting (setting =  2 ). 
* Population standard deviation; N =  3



105

FIGURE 17.A. Electronic Absorbance Spectra of 4—AF (a) and 4—AF

Degradation Products (b) After Reaction With DMSO (5 

min.). B. 4-AF Degradation Products (c); 15 min. 

reaction with DMSO. C. 4—AF Degradation Products (d); 

25 min. reaction with DMSO.
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routine checks of absorbance spectra and occasional analysis by capillary 

column GC. This was not the case with 4—AF, which degraded under these 

conditions to a chromogenic product that reacted with the DMSO:PBS carrier 

to form a red solution, which gradually turned crimson, violet, and then 

green—black. Absorbance spectra of 4—AF and the degradation product(s) are 

presented in Fig. 17. As a result of this degradation problem, data from several 

INT assays, cell counts, and oxygen consumption studies had to be discounted 

because the red reaction product obviously was not the test compound of 

interest. Thereafter, 4—AF master stock solutions were checked immediately 

before each dose application in the bioassays to make certain that degradation 

had not occurred. Also, 4—AF crystals were dissolved directly in DMSO rather 

than first dissolving them in small amounts of hot EtOH followed by DMSO. 

Interestingly, the 4—AF degradation product did not appear to be photolytic in 

origin. Exposure of quinoline and 4-AF solutions in 1:2 (v/v) EtOH/PBS in 

borosilicate flasks to natural and artificial sunlight (GE Quartzline Lamp, 

Q500T 3/cc) for relatively extended periods suggested that quinoline had a low 

4*, while 4—AF was more photoreactive. The latter estimates were 

semiquantitative and based on product absorbance spectra (Fig. 18). Although 

presumptive 4—AF photoproducts and altered absorbance spectra were observed 

after 30, 60, and 90 min irradiation periods with the Quartzline lamp, these 

products were red—brown in solution and showed no propensity to react with 

DMSO. It was concluded that chemical oxidation was responsible for the 4-AF 

products.
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VI. Identification of a 4—AF Oxidation Product

Normal phase HPLC analysis of the green—black 4—AF degradation 

mixture in DMSO showed that at least 5 different compounds and/or isomers 

were present. Thin layer chromatography of this mixture resolved two major 

bands. One band was fluorescent (excitation A =  254 nm and 350 nm) and the 

other was non fluorescent at both wavelengths. The non fluorescent product 

was less polar than the fluorescent material (infered from chromatographic 

mobility) and was red-brown in color. This product gave a mass spectrum with 

a molecular ion at m /z =  151 and fragments at 139 and 93. The mass spectrum 

of the fluorescent product was consistent with 4—azafluorene—9-one (Figure 19). 

The other products in the mixture were assumed to be isomers of the 

4—azafluorene standard reagent.

VII. NCAC/INT Bioassav Results with Mechanistic Interpretations

Treatment of aerobically grown E. coli cultures with increasing doses of 

quinoline and 4—AF gave nonlinear responses in electron transport (ET) as 

measured by the reduction of INT to INTF (Figures 20 and 21). With both 

NCAC’s, dose vs. ET functions decreased linearly to around 50% inhibition 

(i.e., the E C ^), increased to levels near or above the controls, and then 

decreased rapidly to background levels. The "threshold" dose range where 

stimulation of ET was noted was more discrete with quinoline (22 — 40 ppm) 

than with 4—AF (400 — 600 ppm), but in both cases the apparent ET kinetic 

response in this range differed markedly from controls and lower doses. In the 

controls and low doses, both NCAC’s gave ET rate functions that were 

characterized by lag periods of 60 — 100 seconds (no INTF formation), followed
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FIGURE 18. A and B. Electronic Absorbance Spectra of 4—AF (1) and

Photodegradation Products. Irradiation Times: 30 

min (2); 60 min (3); 90 min (4); 360 min (5).

C. Electronic Absorbance Spectra of Quinoline (1) 

and Quinoline Irradiated for 12 h. (2).
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FIGURE 19. Mass Spectra. A. Quinoline standard. B. 4-azafluorene 

standard. C. 4-azafluorene degradation product in DMSO 

(4—azafluorene-9-one).
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by rapid linear increases in absorbance at X =  490 nm (reduction of INT to 

INTF by ET). This lag period, which showed a temperature dependence, was 

assumed to be the diffusion time of INT molecule across the outer membrane of 

the bacteria. At threshold doses, lag periods were not observed, the ET 

function was parabolic, and ET rates were stimulated (Figures 22 and 23). 

Assays conducted with other toxicants such as tributyl tin chloride (TBT; 

Figure 24) yielded expected dose—response functions with constant lag times. 

TBT was chosen for comparative purposes because 1) it was available in high 

purity, 2) it is membrane—active [112] and, 3) at threshold doses it is known to 

inhibit respiratory ET and oxidative phosphorylation via hydrophobic 

associations with ET enzyme complexes [112],

It can be seen from Figures 20 and 21 that the nonlinearities in electron 

transport were more pronounced with quinoline than 4—AF, and these occurred 

in a range of concentrations that might be encountered environmentally. For 

this reason and the degradation problems with 4—AF mentioned above, 

additional experiments were conducted using quinoline as the model toxicant. 

It was hypothesized that threshold doses of quinoline caused alterations of outer 

membrane the "cell envelope" surrounding the plasma membrane)

permeability that allowed for instantaneous diffusion of the INT molecule to 

inner membrane reduction sites. To examine this, INT reduction was 

monitored in gram(+) ceils (ie., cells naturally deficient in outer membrane 

lipids; e.g., S. salivarius), and gram(—) cells that had diminished outer 

membranes from chemical or genetic manipulation (E. coli spheroplasts and S. 

typhimurium  rfa mutants, respectively). These data were referenced to wild 

type gram(—) cells with intact outer membranes and are presented in Figures 25 

and 26. These figures illustrate a gradient of ET kinetic response types ranging
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FIGURE 20. Effect of Quinoline Concentration on INT Reduction Rate 

in E. coli.
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FIGURE 21. Effect of 4—azafluorene Concentration on INT Reduction 

Rate in E. coll
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FIGURE 22 . Effect of Quinoline Concentration on INT Reduction 

Kinetics in E. coll
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FIGURE 23. Effect of 4—azafluorene Concentration on INT Reduction Kinetics

in E. coli
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FIGURE 24. Effect of Tributyltin Chloride Concentration on INT 

Reduction Rate in E. coli.
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from roughly sigmoidal (with lag periods before response) in gram(—) systems, 

to instantaneous linear and parabolic responses in cell systems with diminished 

or no outer membranes. Treatment of wild type S. typkimurium and E. coli 

with a threshold dose of quinoline (37 ppm) caused the ET response to change 

from sigmoidal to parabolic, and resemble the response of the gram(+) cells. 

This corresponds to the predicted diffusions! behavior of INT in the presence of 

lipoidal outer membranes. In general, as lipoidal outer membrane character was 

decreased (wild type E. coli and S. typkimurium > rfa mutants > spheroplasts 

> gram(+) S. salivarius), the penetration time of INT was decreased as well. 

The decrease in lag time corresponds to a decreased interaction between INT 

and outer membrane structures, presumably lipids, and increased rates of access 

to inner membrane catalytic sites. In the threshold NCAC doses, the data 

suggest a similar increase in access to these sites, and the increased rates 

indicate an increased degree of reduction in the respiratory chain (discussed 

further below).

Questions arose as to whether the stimulated ET noted in the threshold 

doses was occasioned by increases in cell number (via adaptation or stimulated 

growth on the NCAC) or respiratory oxygen consumption. Table 3 shows that 

incubation of cultures with threshold doses of quinoline (35 ppm) for 60 minutes 

caused reductions in DAPI counts and much larger reductions in overnight 

viabile counts. In 4—AF treated cells, overnight viability was reduced 7 — 9 

orders of magnitude in doses much below the threshold range. These findings 

showed that while threshold doses gave stimulated ET responses after an hour 

of incubation, this was unrelated to cell number at the time of analysis and was 

inversely related to overnight viability. Figure 27 illustrates the effects of 

various doses of quinoline on oxygen consumption in treated E. coli Cultures
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FIGURE 25. INT Reduction Kinetics in Various E. coli Cell Systems.



2.
50

0

126

O

CM

O
00

O
LO

oCM

O
CD

O
CD

OrO.

O
o O O o o o o o o o
LO O LO o LO o LO o LO o
CM O q LO CM o LO CM o
CM CM T—* T—■ o o d d

O  to

O O

LU Li-i ^
0  0
U) CD 0

CO CO LU

<  CO O Q

w u  0 6 t  =  Y  3 0 N V 8 8 0 S 8 V  J I N !

TIM
E 

(s
ec

)



127

FIGURE 26. INT Reduction Kinetics in Deep Rough Mutants (rfa) and 

Gram(+) Cell Systems.
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TABLE 3. Effect of Quinoline and 4—azafluorene Concentration on 

Overnight Viability and Direct Count Cell Densities in E . coli.
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NCAC
Concentration

(ppm)

Overnight
Plate

Count*

Direct
DAPI

Count*

Quinoline 0.0 108-101° 108
0 .0(b)* 10° 108
5.0 10° - 10°

10.0 10° -107
15.0 10fl-107
20.0 102-103 108
25.0 1 0 1 - 1 0 2
30.0 1 0 1 - 1 0 2
35.0 1 0 1 - 1 0 2 107-108
40.0 1 0 1 - 1 0 2
50.0 < 101
80.0 < 101

4-azafluorene 0.0 108 108
0 .0(s)t 108 108

10.0 108
20.0 107-108
30.0 105 _  106
40.0 103 -  104
50.0 103 -  104
90.0 102-103 108

100.0 1 0 1 - 1 0 2 108

* colony forming units per ml. 
t DMSO solvent control.
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incubated with 37 ppm quinoline showed decreased oxygen demand relative to 

controls. ET analysis of these cultures gave the typical lag time before INT 

reduction in controls, while at 37 ppm quinoline, the response was parabolic 

with no lag, and INT reduction was stimulated above controls by a factor of 

1.96. It is known that approximately 90% of total oxygen demand in E. coli is 

accounted for by cytochrome oxidases, which are tightly bound to the inner cell 

membrane, and conduct electrons from reduced terminal cytochrome(s) to 

oxygen [59, 60]. The ET and oxygen demand data suggest that the activity of 

these oxidases (or some other intermediate electron carriers) were inhibited at 

threshold doses of quinoline. In general, inhibition of terminal electron 

transport in the presence of adequate substrate is accompanied by accumulation 

of reducing equivalents (e.y., ubiquinol) in the respiratory chain [60] and 

decreases in respiratory ATP production [113, 114], The resultant decrease in 

cytosolic [ATP]/[ADP][Pi] ratios gives rise to stimulated respiratory ET to Og 

[60, 113, 114]. Under conditions of chemical inhibition, however, this 

homeostatic compensation for [ATP] decreases cannot occur. Other oxidants, 

c.g., tetrazolium compounds, can be reduced in the presence of ET inhibitors 

and frequently exhibit stimulated rates in inhibited vs. uninhibited systems 

[115,116].

Theoretically, NGAGs such as quinoline and 4-AF could inhibit electron 

transport either through terminal blocking of electron transfer (protein 

denaturation as with TBT, chemical oxidation of electron carriers) or by 

scouring of electrons followed by redox cycling with some other material present 

in the cell. The latter process has been observed with certain PAH quinones,
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FIGURE 27. Effect of Quinoline Concentration on Cellular Oxygen 

Demand in E. coli
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which are able to oxidize NADH, reduce cytochrome c and oxygen, and 

nonenzymatically oxidize very stable aromatic systems such as benzo(a)pyrene 

[117, 118]. Further, several dialkyl pyridine and quinoline compounds have 

been shown to inhibit cytochrome P—450 activity and heme biosynthesis via a 

redox mechanism proceeding through radical cation intermediates [119]. In the 

present work, the accumulation of reducing equivalents, redox cycling of 

electrons via NCAC intermediates, and an increase in outer membrane 

permeability could account for the observed NCAC threshold effects in the 

absence of increased cell number and oxygen reduction. The data suggest that 

multilevel toxic effects of the NCACs gave rise to conditions of reduced 

homeostatic ability that were manifested in ET anomalies and reduced cell 

viability. Also, it appears that the primary assumption of the INT rate assay 

(i.e., direct proportionality bewteen INTF production rate and metabolic 

"health" of a cell system) was not supported with respect to NCAC—treated E. 

coli [65, 69 — 74, 79 — 83]. This is significant because tetrazolium reduction has 

long been proposed as a reliable method for monitoring the health of wastewater 

microorganisms subjected to contamination [79] and for monitoring polluted 

environments. The responses observed in this work could easily apply to other 

contaminants and species, and would be especially significant in real world 

treatment facilities, where effluent composition and toxicity typically is highly 

variable from day to day.

Results of assays measuring nonenzymatic reduction of INT by NADH as 

effected by PMS, DMSO, and 37 ppm quinoline are summarized in Figure 28. 

In the time period of the assay (100 sec.), direct INT reduction by NADH was 

not observed (c /, NADH results, Fig. 4). The addition of PMS, however, 

catalyzed rapid electron transfer from NADH to INT. At 37 ppm quinoline the
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FIGURE 28. Effect of Threshold Concentration of Quinoline on 

PMS—Mediated Reduction of INT by NADH. Noncellular 

system, pH 7.2, N =  3.
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NADH/PMS reduction of INT appeared to be further stimulated. No attempt 

was made to demonstrate quinoline concentration effects on stimulation of ET. 

For the threshold runs reported, quinoline caused marked stimulation of ET 

rate and total INT reduction per 100 s interval relative to the DMSO controls. 

The stimulation of ET from NAD(P)H to oxidants such as tetrazoliura salts and 

oxygen by flavin analogues (e.g., PMS) has been well established. It is also 

known that reduced flavin dehydrogenase systems (containing a PMS-like 

catalytic center) can be directly oxidized by tetrazolium salts but not by 

oxygen, because the catalytic moeity is shielded in the native state [59], This 

gives an important insight to the reasons for depressed oxygen reduction in the 

threshold NCAC treatments while, at the same time, INT reduction indicated 

vigorous ET: inhibition of ET reaching terminal oxidases would cause the O2 

binding sites to saturate. At the point of saturation, O2 consumption (binding 

followed by reduction) would be curtailed. Opportunistic (i.e., non enzymatic) 

O2 reduction at flavin centers also would not occur for reasons already given. 

This leaves open the possibility of oxidation of pyridine-linked systems, which 

can be oxidized by oxygen directly, albeit at slow rates relative to enzymatic 

reduction. The results from Figs. 27 and 28 indicate that appreciable levels of 

nonenzymatic oxidation of pyridine linked systems are not occurring and this 

further suggests that redox cycles are operating, that inhibit the ability of O2 to 

oxidize molecules in the respiratory chain. The lack of detected threshold 

anomalies in TBT treated E. coli further reinforces the redox hypothesis 

because TBT causes ET inhibition by denaturing proteins, not by redox cycling, 

and oxidation of pyridine-linked systems can still occur in TBT treated systems 

[112].
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VIII. Effects of Solvents on INT Reduction Kinetics

Although the characteristic ET response in solvent controls was identical 

to untreated controls in terms of lag time and apparent kinetics, it was of 

interest to examine potential interactions between the quinoline and the DMSO 

solvent system. Stimulated, parabolic ET responses at critical doses of 

quinoline had been observed in other solvents systems, viz. Tween 80: ethanol: 

water (1:5:94 % v/v/v), so a  range of different solvents were examined. Figure 

29 summarizes the effects of five solvent carriers (8 % final concentration) and 

37 ppm quinoline treatments on lag time and ET rate in E. coli suspensions. 

Acetone and, to a lesser degree, ethanol caused reductions in lag times in the 

absence of quinoline. In the case of acetone, the addition of quinoline did not 

significantly alter the electron transport response relative to the solvent alone. 

In other solvents however, addition of quinoline caused electron transport 

kinetics to change from sigmoidal to parabolic and gave stimulated ET rates. 

In the absence of organic solvents (z.e., the H2O/HCI treatment), 

quinoline—HC1 gave similar results. Apparently, there was a significant degree 

of synergism between quinoline and DMSO in terms of ET rate, but not lag 

time. Work with mitochondria and submitochondrial particles has shown that 

high levels of DMSO (5 — 20 %) increase membrane permeability and facilitate 

electron transfer between thiol groups on dehydrogenases and tetrazolium 

acceptors [121]. But there are numerous problems in comparing mitochondria 

with gram(—) bacteria, and even greater difficulties in comparing 

submitochondrial particles with anything else. For example, mitochondria lack 

an outer membrane and peptidogtycan sacculus characteristic of gram(—) 

bacteria, and have porous, highly specialized catalytic inner and outer "plasma"
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FIGURE 29. Effect of Solvent System (8 % final) and Threshold 

Concentration of Quinoline on Lag Period and INT 

Reduction Rate in E. coli.
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membrane systems. Submitochondrial particles are inside-out relative to the 

intact organelles and assays are frequently conducted in augmented, decidedly 

nonphysiological, media. Data on DMSO-ET effects in these systems can 

therefore be used only in a heuristic sense when interpreting bacterial data. A 

DMSO—mediated stimulation of ET was suggested by the results of one 

bacterial—INT reduction study in which the toxicity of various herbicides was 

found to be depressed in DMSO relative to acetone and ethanol [73] (c /, the 

INT response in these solvents in Fig. 29). Although there was no discussion of 

specific rates or presentation of graphic data in this study, the increase in 

herbicide dose needed to reach the ECgg in DMSO could have resulted from a 

solvent stimulation of ET. In the INT assays of this work, however, these 

effects were not observed in solvent controls, NCAC doses outside the threshold 

range, or in the PMS assay described above. The results presented in Figure 29 

were obtained using solvent concentrations above those used in the INT assays, 

which were kept between 2.5 — 4%, Assays with increasing levels of DMSO (0 , 

6%, 20%, 30%, and 50%) did not evidence lag time changes or significant 

toxicity until concentrations were greater than 20 %, at which point significant 

ET activity was not detected in 210 s runs. The reduction of lag time and 

stimulation of INT response by quinoline in several different solvents, including 

water, indicates that the chemical characteristics of the NCAC, not the solvent, 

accounted for the observed ET anomalies at the threshold doses.

IX. Ultrastructural Evidence of NCAC—Mediated Membrane Effects

The effects of quinoline-HCl on E. coli membrane structure as evidenced 

by transmission electron microscopy (TEM) are presented in Figure 30, A — G.
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Figure 30 A shows the solvent control with cells appearing morphologically 

normal and showing no signs of structural distortion. Parts B and C show the 

same cells after 2 minutes and 12 minutes of incubation with INT 

(respectively). In both, INTF deposits can be seen extending from periplasmic 

regions into the cytoplasm, with apparently undisrupted outer membrane layers 

surrounding the inclusions. Fig. 30 D and E give two perspectives on 

quinoline—HC1 treated cells in the absence of INT. The presence of outer 

membrane wrinkles and topological distortion relative to the controls can be 

readily seen (note periplasmic space and outer surface). Parts F and G show 

the quinoline-HCl treatments after incubation with INT for 2 minutes. INTF 

inclusions are very prominent in these treatments and fill the periplasmic space 

and cytoplasm to a larger extent than control cells incubated with INT for 12 

minutes (c /, Fig. 30 C, F, G). The outer membranes appear fragmented and 

overall cellular shape is highly distorted. The difference in INTF inclusions 

between the quinoline-HCl cells and control cells after 2 and 12 min incubation 

with INT (respectively) supports the results of the spectrophotometric rate 

assay.

It is interesting to note that the inner membranes in Fig. 30 D and E 

also appear to be affected by the outer membrane distortions, and this suggests 

that in addition to permeability problems, additional secondary effects may 

have occurred. ET molecular complexes operate by concerted creation and 

destruction of macromolecular wavefunctions [58] which open and close 

catalytic centers through protein conformational changes. Many of the ET 

complexes are embedded in the membrane and accept electrons from diffusable 

carriers such as ubiquinone. It can be clearly seen that physical and chemical 

inner membrane integrity is therefore essential for proper functioning. 

Departure from normal membrane topology would result in decreased efficiency
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FIGURE 30. Transmission Electron Micrographs of Control and 

Quinoline—HC1 Treated E. coli.

A. Solvent Control (34,660 X). PS =  periplasmic space;

OM =  outer membrane.

B. Solvent Control +  0.3 ml INT Stock (12,600 X). 2 

min. incubation with INT. F =  INT—formazan 

deposit.

C. Same as B.; 12 min incubation with INT.

D. NCAC Treatment, 37 ppm quinoline—HC1 

(12,600 X).

E. Same as D. (21,000 X).

F. Same as D., with 0.3 ml INT stock (17,280 X).

G. Same as F. (21,000 X).
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of electron transport (e.y., sequestering or distorting of active sites, increasing 

energy of activation for conformational changes, increasing distances between 

sites), and this would reinforce the redox effects of the NCACs. The high 

degree of connectance between the outer and inner membrane structure and 

function makes differentiating these processes difficult. Resolution of these 

processes would require a much higher degree of analytical sophistication than 

was available for this study.

INT activity was not detected in 0. 22 fim filtrates of E. coli treated with 

37 ppm quinoline, and there was no detected change in UV/visible absorbance 

spectra of these filtrates. Similarly, freeze—thaw and spheroplast lysis filtrates 

did not reduce INT. Sucrose—mediated osmotic shock and lytic ultrasonication 

for 8 min. eliminated INT activity, in both test suspensions and filtrates. This 

indicated that the threshold membrane effects were not lytic in nature and did 

not involve the liberation of detectable amounts of free lipid or protein Rom 

outer membranes. Treatment of E. coli with 37 ppm quinoline dose and 

equimolar amounts of Mg24 (60 min) did not cause a decrease in the threshold 

response as might be expected if the NCAC were weakening of the outer 

membrane via chelation of coordination ions between the lipopolysaccharide 

layers. The chemical environment surrounding divalent cations in a lipid 

membrane vs. that in aqueous suspension are highly disparate, so addition of 

cations to the suspension does not constitute a conclusive falsification of the 

chelation hypothesis. For example, treatment of E. coli with EDTA gave a 

parabolic response, but it was depressed relative to untreated cells. The lack of 

increased ET in the EDTA treatment would be expected since EDTA does not 

enter the respiratory chain and cause accumulation of reduced equivalents via 

redox cycling as postulated for the NCACs.
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IX. Results of INT Reduction Assays in Assorted Eukaryotic Systems

1. Macrophage INT Assay

Macrophages from Opsanus tau have been used to examine pollutant 

effects on immune systems of fish, and recently, to elucidate molecular 

mechanisms of toxicity from membrane active toxicants such as TBT [108]. 

The latter procedure involved examination of "oxidative burst" electron 

transport, which, under normal circumstances, is the mechanism by which 

macrophages kill phagocytized microorganisms. In general, when leucocytes, 

including macrophages, are stimulated, they may undergo a CN— insensitive 

respiratory burst resulting in secretion of reactive oxygen intermediates (ROI) 

via a membrane bound NADPH-dependent oxidase complex. Concomitantly, a 

smaller metabolic burst may be initiated in which arachidonates are cleaved 

from bound phospholipid pools and liberated for prostaglandin metabolism —a 

process also giving rise to ROI [108, 112, 122]. These processes can be 

modulated by artificial means (including toxicant treatment) and the deviation 

from normal behavior can be used in mechanistic toxicology. For example, in 

the presence of certain effectuators (phorbol esters, calcium ionophore), the 

oxidative burst can be triggered artificially, and the resulting 

"chemiluminescent" response quantified using a superoxide—activated luminol 

reaction system in a scintillation counter [123]. Pollutant treatments can 

depress or stimulate this response, or, in the case of TBT, give threshold spikes 

over an extended dose range [108].

The interaction of macrophage membrane receptors with bacterial or 

particulate ligands is thought to give rise to buildup of superoxide anion during
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phagocytosis via the following "second messenger" mechanisms (c/, review, ref. 

122).

where PLC is phospholipase c; PIP phosphatidylinositol—bis—phosphate, DAG 

is diacylglycerol, IP 3 inositol triphosphate, and PK is protein kinase c.

The significance of these pathways to the present work is that metabolically 

dormant ("resting") macrophages can be induced to begin ET leading to  ROI 

by chemicals that mimic various steps in this natural process. Calcium 

ionophore (Cl), for example, mimics the effect of elevated levels of soluble IP3 

which are normally only present after receptor interaction at the membrane 

signalling immanent phagocytosis. The effect of Cl and IP3 is to increase Ca3+ 

and feed forward the arachidonate pathway (uppermost path). PMA (a cancer 

promoter derived from plants of the genus Eupkorbea) mimics the effects of 

DAG, which interacts with PK , lowering its affinity for Ca2+ and thus
Lr

"uninhibiting" PK . PK thereupon becomes activated and activates the c* c
NADPH oxidase system in the membrane,which produces the superoxide used 

to destroy the phagocytized materials. The macrophage will turn on superoxide 

generating systems via second messengers soon after the membrane 

ligand—receptor reactions have occurred, but superoxide concentrations will not 

rise to peak levels for up to 20 minutes after induction, as quantified by

membrane
r e c e p t o r — « 2+ dependent

a r a c h i d o n a t e  
______ T pathw ays

r e a c t i o n  \
DAG = ^ P K  P r o t e i n  — ■—>NADPH = > ROI

jj o x i d a s e
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scintillation counting [123]. It would seem that this lag corresponds to the time 

it would take the cell to complete phagocytosis and for all second messenger 

pathways to become fully activated. These mechanisms of NADPH oxidase 

activation are not well resolved and it was of interest to know whether 

oxidative burst as measured in chemiluminescence studies was the effect of both 

postulated pathways ( i.e., arachidonate and PK activation) or whether one 

pathway operated rapidly, while the other behaved more as a long term system 

which became constitutive over an active period and then slowly tapered off. 

Based on the number of postulated steps involved in these pathways, it was 

expected that the PKC pathway would "spike" rapidly (DAGs are readily 

formed and transported) while the arachidonate pathway would operate more 

gradually and indirectly. The ability to differentiate these pathways has 

obvious implications for the interpretation of mechanisms in 

macrophage—pollutant assays. The purpose of this experiment was to take a 

few preliminary steps toward resolving this problem, and evaluate the use of 

INT for estimating electron transport in a novel system. Referring to Fig. 31, it 

was found that untreated macrophages did not reduce INT in the 210 s 

treatment period and this response was not effected by additions of Cl at levels 

found to be optimal in chemiluminescence studies [108]. Although not 

presented in Fig. 31, the Cl assays were monitored for 630 s and no activity was 

observed. Treatment with PMA, however, stimulated a rapid and continuous 

reduction of INT over the entire period of the runs. Although further work is 

needed, these results suggest that 1) INT can be used to examine activated 

macrophage electron transport and to differentiate between the various possible 

pathways leading to ROI and, 2 ) the effect of DAG-mimicing agents appears to 

include immediate stimulation of NADPH oxidase O2 ET in treated
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FIGURE 31. Effect of Calcium Ionophore A23187 (Cl) and Phorbol 

Myristate Acetate (PMA) on INT Reduction in Resting 

Peritoneal Macrophages From The Toadfish Opsanus Tau. 

N =  2.
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macrophages. Liberation of intracellular Ca2+ pools by IP 3—mimicing agents 

has a delayed effect probably leading through arachidonate pathways (as 

indicated by chemiluminescence). The instantaneous induction of the 

"activated" state for PMA—treated macrophages does not appear to have been 

reported. It would be interesting to evaluate the threshold oxidative burst 

reaction mediated pollutants such as TBT [108] with respect to both of these 

pathways using INT.

2 . Liver S—9 INT Assay

S—9 fractions from 3—MC treated spot appeared to have greater ET rates 

relative to corn oil controls, but since only two replicates were available, 

statistical tests were not conducted. The maximum d(INTF)/(30 s) rate results 

are as follows: blanks =  no activity; corn oil controls =  40, 52; and the 3—MC 

treatments =  54, 72 (values are change in absorbance/30 s x 100; A =  490 nm). 

The means of these estimates are close to 2 a units apart, and exhibit c.v.s 

around 13 — 14 %, which would probably decrease to an acceptable range (< 10 

%) with more replicates. At the time of writing, experiments are being 

designed to optimize the S—9/INT assay. Hopefully an S—9/INT assay of 

increased sensitivity can be developed for use in environmental screening.

3. Marine Phytoplankton INT Assay

The behavior of INT in phytoplankton cultures was much less dynamic 

than in the bacterial cultures, even in the presence of sunlight. It was therefore 

decided that phytoplankton would not be acceptable for further examination of



155

the ET anomalies and membrane effects described above for bacteria, or as test 

organisms in toxicity assays using INT reduction. Within 4 hours of INT 

exposure, the Tetraselmis sp. and Isockrysis sp. had observable quantities of 

INTF, while the Monochrysis sp., Dunaliela sp.t and ChloreUa sp. were less 

active or inactive. The INTF deposits appeared to be cytoplasmic and localized 

in dark bodies. Based on visual observation, the plankton showed the follwing 

INT reactivities: Tetraselmis (both species) > Isockrysis > Monochrysis > 

ChloreUa, Dunaliela. It would seem that assays using INT for enumeration or 

metabolic assessment of natural plankton assembalges would have to include 

removal of all bacteria, including nanobacteria, which would reduce INT much 

more rapidly than was observed for these cultures and confute the data.



SUMMARY OF CONCLUSIONS

There has been both inaccuracy and inconsistency in the presentation of 

structural, electrochemical, and mechanistic data on TPT, INT and their 

formazans in the published literature. This is due, in part, to the difficulties of 

working with these materials in complex environments such as electroanalytical 

and biological systems. As a result of the heterogeneity and physicochemical 

disparity between these systems, sites and mechanisms of biological reduction of 

TPT, INT, and related compounds cannot be directly inferred from data 

generated at electrodes. The presented chemical structures of INT and INTF 

standards as well as INTF extracted from treated bacterial cells are supported 

by quantitative analysis. Other possible structures of INTF have been 

considered and are counterindicated based on spectrophotometric and FTNMR 

data. These results and the hydride reduction route supported by the 

electrochemical and FTNMR studies should help to resolve some of the basic 

representational difficulties found in the literature.

Electrochemical data presented showed a) NPP and DPP of INT gave
r ©d

E f / 2  of the first wave between +0.126 and +0.073 V vs. SHE, b) the minimum 

reduction potential for formation of INTF on Pt was between +0.116 and 

+0.125 V us. SHE (c/, Table 1), and the values on C electrodes were 

comparable, c) INT —» INTF reductions at Pt and C electrodes appeared to be 

mediated by two direct one-electron reductions and disproportionation by one 

proton (hydride transfer), and d) the presence of interfering reactions involving 

adsorbed H species or radicals were indicated on Pt and C. Observations from a 

thin cell spectroelectrochemical system were inconclusive, but optimization of 

the system and addition of recoil spectrometry would probably aid in

156
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interpreting reactions of adsorbed species during reductions. The 

spectrophotometric system was sensitive and reproducible in detecting the 

minimum reduction potential of INT on P t mesh and holds promise for further 

work elucidating the effects of toxicants on ET. Results with all analytical 

systems indicated that further work is needed to fully understand INT 

electrochemistry at electrodes and in vivo. Hopefully, this work has provided a 

quantitative basis for future study.

Although not detected as mutagens in the Ames test, INT, INTF, and 

mixtures of the two were handled with caution. Based on the positive results in 

electrophoretic DNA unwinding assays, it would appear prudent to regard these 

materials as mutagens until conclusive multispecies tests have demonstrated 

that no cancer risk exists.

The INT reduction assay used in this study for NCAC toxicity 

estimation apparently did not fullfill the assumption of a direct proportionality 

between INTF formation and cell viability or metabolic status as suggested in 

recent work. The method did, however, give information on membrane effects 

and prompted further experiments addressing related phenomena and 

mechanisms of toxicity. The INT assay showed a threshold dose transient in 

ET that corresponded to an altered respiratory state in cells treated with 

threshold levels of the NCACs. The use of optimized cell suspensions was an 

important factor leading to the observation of NCAC threshold effects. At 

threshold doses, estimates of ET vs. oxygen consumption/cell viability gave 

opposing pictures of the status of treated cells. It would seem, therefore, that 

tetrazolium reduction assay results from wastewater or natural environmental 

systems should be interpreted with caution. Perhaps the most fitting use of this 

kind of assay is to study the behavior of toxicants or other materials with
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respect to membranes and redox pathways in whole bacterial or 

microeukaryotic (e.g., macrophage) cells. The preliminary results of INT 

reduction assays in S—9 fractions were encouraging, but many procedural 

questions need to be explored before conclusions on the applicability of the 

method to rapid environmental screening of organisms can be reached.

Results of the NCAC bioassays strongly suggest that the test NCACs 

disrupted several homoestatic processes in B. coli Respiratory ET systems, 

oxygen reduction, and membrane permeability and structural topology all 

evidenced NCAC threshold effects. Results of ET rate assays in cells with 

differing degrees of outer membrane lipid content, NCAC oxygen consumption 

assays, noncellular NCAC-PMA—INT assays, and transmission electron 

microscopy supported the following conclusions: a) NCACs acted in some way 

to increase outer membrane permeability, b) impacts on the outer membrane 

probably caused periplasmic and inner membrane processes to be affected either 

chemically or structurally, c) the NCACs entered the respiratory chain and 

inhibited ET to oxygen probably by redox cycling, and d) the cumulative 

impacts on membrane and respiratory systems was sufficient, in the threshold 

doses, to cause significant reductions in viable cell counts of overnight cultures. 

It was not possible to differentiate between processes suggested in b and c 

above.

An important characteristic of organisms is that they become 

dynamically unstable when processes approach or exceed critical boundaries. 

Cellular and organismic homeostasis is mediated by superimposed and 

interdependent systems of nonlinear feedback processes. In such nonlinear 

complex systems, the observed responses to multilevel effects such as 

intoxication are frequently threshold in nature [c/., 49, 50, 108]. Toxicological
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thresholds are being increasingly noticed in subcellular and cellular systems

[108], and it would seem logical to begin looking for them at higher levels of 

organismic and ecological organization.

The membrane and electrochemical effects observed in this work 

suggested that NCACs may be important in determining the toxicity of 

complex mixtures. This is particularly applicable to the processes of membrane 

transport of lipophilic species (such as high molecular weight PAHs), free 

radical toxicity and intracellular redox buffering, cocarcinogenesis, and 

membrane-mediated developmental effects.

Environmental PAH—NCAC mixtures contain an abundance of chemical 

species that likely possess interesting and unexplored toxicological properties. 

Of particular interest to the author are materials such as PAH and azaarene 

nitriles, NCAC organometallic complexes, photooxidized species, N-oxides and 

radicals, and N— substituted azaarenes and carbolines. These and other 

constituents of mixtures (e.g., O— and S— containing aromatics and polar 

oxidation products) should be addressed with a view towards uncovering novel 

pathways and effects while simultaneously upgrading our existing models.

As mentioned previously, the physiology and electrochemistry of 

tetrazolium salts have been somewhat oversimplified, and a great deal of 

relevent and interesting work remains to be done. Apparently, the use of 

tetrazolium salts for demonstrating threshold state transitions and pollutant 

membrane effects has not been reported elsewhere. In the course of this work, 

the use of microscopic imaging systems [124] in monitoring the reduction of INT 

by NCAC treated and pristine E. coli was explored and important qualitative 

data were gathered on INT physiological effects. At present, the feasibility of
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expanding these applications to other organisms and populations is under 

consideration.
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