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DISSERTAION ABSTRACT 

Elevated water levels and large waves during storms cause beach erosiOn, 
overwash, and coastal flooding, particularly along barrier island coastlines. While 
predictions of storm tracks have greatly improved over the last decade, predictions of 
maximum water levels and variations in the extent of damage along a coastline need 
improvement. In particular, physics based models still cannot explain why some regions 
along a relatively straight coastline may experience significant erosion and overwash 
during a storm, while nearby locations remain seemingly unchanged. Correct predictions 
of both the timing of erosion and variations in the magnitude of erosion along the coast 
will be useful to both emergency managers and homeowners preparing for an 
approaching storm. Unfortunately, research on the impact of a storm to the beach has 
mainly been derived from "pre" and "post" storm surveys of beach topography and 
nearshore bathymetry during calm conditions. This has created a lack of data during 
storms from which to ground-truth model predictions and test hypotheses that explain 
variations in erosion along a coastline. 

We have developed Coastal Lidar and Radar Imaging System (CLARIS), a 
mobile system that combines a terrestrial scanning laser and an X-band marine radar 
system using precise motion and location information. CLARIS can operate during 
storms, measuring beach topography, nearshore bathymetry (from radar-derived wave 
speed measurements), surf-zone wave parameters, and maximum water levels remotely. 
In this dissertation, we present details on the development, design, and testing of 
CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk 
and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a 
Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of 
shoreline change as well as heightened erosion during storms have previously been 
documented to occur within the field site. In addition, complex bathymetric features that 
traverse the surf-zone into the nearshore are present along the southern six kilometers of 
the field site. In addition to the CLARIS observations, we model wave propagation over 
the complex nearshore bathymetry for the same storm event. 

Data reveal that the complex nearshore bathymetry is mirrored by kilometer scale 
undulations in the shoreline, and that both morphologies persist during storms, contrary 
to common observations of shoreline and surf-zone linearization by large storm waves. 
We hypothesize that wave refraction over the complex nearshore bathymetry forces flow 
patterns which may enhance or stabilize the shoreline and surf-zone morphology during 
storms. In addition, our semi-daily surveys of the beach indicate that spatial and 
temporal patterns of erosion are strongly correlated to the steepness of the waves. Along 
more than half the study site, fifty percent or more of the erosion that occurred during the 
first 12 hours of the storm was recovered within 24 hours of the peak of the storm as 
waves remained large (>2.5 m), but transitioned to long period swell. In addition, spatial 
variations in the amount of beach volume change during the building portion of the storm 
were strongly correlated with observed wave dissipation within the inner surf zone, as 
opposed to predicted inundation elevations or alongshore variations in wave height. 

XI 



Observations of Storm Morphodynamics using Coastal Lidar and Radar Imaging System 

(CLARIS): Importance of Wave Refraction and Dissipation over Complex Surf-Zone 

Morphology at a Shoreline Erosional Hotspot 



DISSERTATION INTRODUCTION 

Substantial development of our nation's coastlines and heightened hurricane 

activity in the last decade has placed a demand on the scientific community for accurate 

predictions of coastal change during storms [see Plant et al., 2010]. Unfortunately, 

monitoring the impact of storms on beaches has mostly focused on analysis of "pre" and 

"post" storm data, with sparse data during storms, leaving researchers with little guidance 

on how to improve predictive models. Complicating predictions further, storm impact is 

rarely homogenous along the coastline-storm response can range from rapid shoreline 

retreat or overwash to beach accretion to little change at all. Areas of the coastline that 

experience heightened erosion rates relative to areas immediately adjacent to them, are 

often termed "erosional hotspots", and can occur at the seasonal to decadal scale [Benton 

et al., 1997], or at the storm-scale [List et al., 2006], in which rapid erosion may be 

closely followed by accretion in weeks to months post-storm. While explanations exist 

for many types of erosional hotspots, such as those located near engineered structures 

(e.g. groins) or inlets [Kraus et al., 2001], hotspots that occur along relatively straight, 

uninterrupted sections of barrier islands remain unexplained and their behavior difficult 

to predict. 

This dissertation attempts to elucidate some of the behavior of erosional hotspots 

during storms, through a combination of observations of the entire beach and nearshore 

system from dune to 1 km offshore and modeling of wave parameters over complex 

nearshore bathymetry. We first present details on new methodology, Coastal Lidar And 

Radar Imaging System (CLARIS), a mobile remote sensing system designed to operate 

and collect data over large distances during storms, and then use the data to analyze 
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patterns in beach, surf-zone and nearshore morphology with respect to modeled and 

observed wave parameters during a storm event. The study is conducted along a 10 km 

region of the Outer Banks of North Carolina previously documented to exhibit both high 

decadal shoreline change rates, as well as reversing-storm hotspot behavior. Data reveal 

that wave refraction over complex nearshore bathymetry may induce feedbacks that 

cause kilometer-scale shoreline embayment and megacusp morphology to persist at both 

the storm and seasonal scale, and that wave dissipation patterns within the inner surf zone 

can explain up to 50% of the alongshore variability in erosion during a storm event. 

The dissertation is divided into three chapters, and each chapter is presented in 

standard manuscript format. Chapter 1 has been submitted to Coastal Engineering and 

chapter 2 has been accepted with revisions in the Journal of Geophysical Research: 

Earth Suiface [doi: 2009JF001561]. A portion of Chapter 3 has been submitted to 

Coastal Sediments '11. The scientific context and content of each chapter is described 

next. 

1.1 Coastal Storms 

Along the east coast of the United States, Hurricanes and Nor' Easters are the two 

types of storms most likely to damage the beach and dune system that fronts barrier 

islands and protects property. Hurricanes are low pressure systems that develop in the 

warm waters of the tropics and threaten the region during the summer and early fall, 

whereas Nor'Easters are extratropical storms that develop in the mid-latitudes, 

threatening the coast from North Carolina to Maine during the fall, winter, and early 

spring. Both types of storms are characterized by strong winds which generate storm 
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surge and large surface gravity waves that can cause severe erosion when they reach the 

coastline. While Hurricanes often present more extreme cases and inflict irreversible 

damage, Nor'Easters can also be extreme, such as Nor'Ida in November of 2009 (a 

remnant hurricane turned Nor'Easter), the Halloween (Perfect) Storm of 1991, or the Ash 

Wednesday Storm of 1962. In most cases, however, Nor' Easters are more moderate 

events that may cause overwash and dune erosion, and often mild property damage. 

Though they are smaller scale events, research suggests that groups of successive 

Nor'Easters may play an important role in the medium to long-term morphological 

evolution of the beach [Lee et al., 1998], and that a slow moving or stationary moderate 

Nor'Easter may have more total wave power than a fast moving Hurricane [Birkemeier, 

1998]. Along the Outer Banks of North Carolina, moderate Nor'Easters frequently batter 

the coast, inflicting property damage, dune erosion, and beach change, and are considered 

significant events at the emergency management level. 

1.2 During-Storm Observations 

Observing beaches during storms presents both physical and scientific challenges, 

as large storm waves and strong winds prevent traditional vessel-based and in-situ 

measurement techniques from operating. To address this problem, recent research in the 

last two decades has focused on developing remote sensing technologies, such as video

imaging [e.g. Lippmann and Holman, 1989; Holman et al., 1993; Holland et al., 1997], 

airborne lidar [e.g. Irish et al., 2000; Sallenger et al., 2003], and X-band radar systems [Bell, 

1999; Ruessink et al., 2002; McNinch, 2007] which are designed to observe the beach and 

nearshore efficiently and remotely during most conditions. These remote sensing 

technologies can provide spatially dense observations of coastal morphology and wave 
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characteristics, including beach topography, nearshore bathymetry, surf-zone wave 

dissipation, and wave runup at the shoreline [Lippmann and Holman, 1989; Holland et al., 

1997; Ruessink et al., 2002; McNinch, 2007]. Information on nearshore and surf-zone 

bathymetry can be obtained from video and radar observations of wave period and length, by 

inverting the linear dispersion relationship to solve for depth from wave celerity, in a process 

known as a bathymetry inversion [Bell, 1999; Stockdon and Holman, 2000; Holland, 2001; 

Plant et al., 2008]. In addition, observations of wave runup can be made by examining the 

leading edge of the swash from sequential video [or radar] images [e.g. Aagaard and Holm, 

1989], information that quantifies storm induced water levels [Stockdon et al., 2006]. 

Lidar data is especially useful in the analysis of pre- to post-storm coastal changes 

[e.g. Sallenger et al., 2004; Sallenger et al., 2006], as well as in beach volume calculations 

[Irish et al., 1996], as the spatially dense data helps to reduce errors associated with 

interpolation and data aliasing common to more traditional profiling techniques [Plant et al., 

2002; Bernstein et al., 2003]. In addition, terrestrial-based lidar can now be collected on 

moving vehicle platforms, enabling rapid data collection of beach topography over large 

areas during storms when low visibility and high winds prevent airborne collection. While 

all three types of technologies have advantages and drawbacks, image rectification processes 

for terrestrial lidar and X-band radar make them more readily transferrable to a mobile 

platform, which expands spatial data collection capabilities when compared to fixed 

installations. 

In chapter 1, we present Coastal Lidar and Radar Imaging System (CLARIS), a fully

mobile system designed to operate during storms and collect topography data of the 

beach from a terrestrial laser scanner as well as bathymetry data from radar-derived wave 

celerity measurements and surf- and swash-zone morphology data from time-averaged 
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radar images. We provide information on the development of CLARIS, testing of 

various methodologies, and provide examples of applications of the data to coastal 

nearshore studies. 

1.3 Storm-Resilient Morphology 

Two decades of video images of the nearshore in combination with earlier 

research suggest that surf zones shorelines transform from three-dimensional forms 

during calm conditions to two-dimensional linear forms during storms in response to high 

waves [Wright and Short, 1984; Lippmann and Holman, 1990; Ruessink et al., 2000; Van 

Enckevort et al., 2004]. There is growing evidence, however, that some previously 

unexplained hotspots are related to complex nearshore bathymetric features, which may 

persist through storm events [McNinch, 2004; Schupp et al., 2006; Miselis, 2007]. In 

particular, along a 5-km region in Kitty Hawk and Kill Devil Hills, NC, a series of shore

oblique trending sandbars and troughs exists, which extend from 15m of water depth into 

the surf zone in 5 m of water depth. This 5-km region is encompassed by the 10 km 

study site analyzed in this Dissertation. 

While correlations between these bathymetric features and heightened erosion at 

the shoreline are well established, how the features influence shoreline morphology in the 

region during storms and over longer time-scales are unknown. Shoreline perturbations 

at many scales (from beach cusps to megacusps) are often associated with bathymetric 

features [e.g. Dolan, 1971; Sonu, 1973; Wright and Short, 1984; Short, 1999; Bender and 

Bean, 2004; Coco et al., 2005; Thornton et al., 2007], and debate regarding their 

formation continues. Some features, such as the megacusps that often develop in 
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response to dredged borrow-pit holes are well understood [Bender and Dean, 2004]. In 

contrast, the processes responsible for the cusp and embayment features that often 

develop congruently with rip currents and undulations in the shore-parallel bar are 

thought to be either forced by hydrodynamic processes (e.g. edge waves) or self

organized by morphodynamic feedbacks [see Coco et al., 2005 for a good discussion]. 

Less information exists on the formation of larger scale features such as alongshore sand

waves or megacusps [Sonu, 1968; Verhagen, 1989; Dolan, 1971], and how they evolve 

through storms despite the fact that they may leave portions of the coast significantly 

more susceptible to erosion during storms [e.g. Thornton et al., 2007]. 

In chapter 2, we use bathymetric inversion data from CLARIS to document the 

persistence of complex surf-zone and nearshore bathymetry during a Nor'Easter, and 

identify a spatial link between storm-resilient shoreline undulations (megacusp and 

embayment morphology) and the persistent shore-oblique bars and troughs. In addition, 

we use the STeady-state spectral WAVE model (STW AVE) to model wave refraction 

during the storm and suggest a possible morphological coupling [e.g. Castelle et al., 

2010]. We speculate that geologically controlled bathymetry may force hydrodynamic 

gradients that lead to self-organized morphology and flow patterns that are able to 

withstand high energy events, preventing traditional storm linearization of the shoreline 

and surf zone from occurring. 

1.4 Predicting Spatial and Temporal Variations in Beach Response to Storms 

Predicting the response of the beach to storms, particularly in regions known to 

experience heightened erosion, at correct temporal (e.g. when will the erosion occur?) 
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and spatial scales (e.g. where will the most erosion occur?), is paramount for the effective 

management of coastal areas. Storm impact is often analyzed by determining change 

between surveys conducted "pre" (often many days to weeks or even months prior) and 

"post" (waiting for wave conditions to be favorable for vessel operations) storm surveys. 

Storm-induced cross-shore transport is traditionally expected to be offshore due to 

offshore directed undertow [Thornton et al., 1996; Gallagher et al., 1998], whereas 

onshore transport in calm conditions is expected due to velocity skewness and wave 

asymmetry [Thornton et al., 1996; Roelvink and Stive, 1989; Elgar et al., 2001; Hoefel 

and Elgar, 2003; Ruessink et al., 2007]. Earlier anecdotal reports have indicated, 

however, that significant amounts of sediment may return to the beach while wave 

conditions are still energetic, suggesting that onshore transport occurs during relatively 

energetic conditions and that the pre/post-storm approach may underestimate the storm's 

real impact [Birkemeier et al., 1979]. Unfortunately, a lack of quantitative topography 

data in the midst of storms has prevented confirmation of this hypothesis. 

In response to the severe coastal change inflicted by hurricanes in the last decade, 

the U.S. Geological Society has implemented a coastal change hazards research program 

which focuses on monitoring and predicting the extent of topographic change during 

extreme storms [see Plant et al., 2010 for an example]. The model they use is based on 

the barrier island storm impact model devised by Sallengar [2000], in which mean and 

wave-driven water levels are compared with beach morphology alongshore to determine 

the impact regime of the storm (e.g. swash, dune collision, overwash, or inundation). 

Wave-driven extreme runup maxima are calculated using an empirical relationship 

derived by Stockdon et al. [2006] which relates the two-percent exceedence elevation of 
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runup to foreshore slope, wave height, and wave length. While the storm-impact models 

perform better than random models (54% accuracy compared to 33%), there is room for 

improvement [Stockdon et al., 2007]. Unfortunately, it is presently unclear whether the 

high error stems from poor predictions of maximum runup, out-dated antecedent beach 

morphology, or an overly simplified modeling approach. 

In Chapter 3, we use semi-daily CLARIS observations of the beach during a 

moderate Nor'Easter to identify spatial and temporal patterns in beach change and 

maximum swash excursion throughout a storm, and use these data to test three 

hypotheses for longshore variable beach change during storms, including the "relative 

runup" approach described above. Our data suggest that the timing of erosion and 

accretion during storms may be strongly influenced by wave steepness, with more than 

half of the original shoreline erosion recovered along 50% of the study site within 24 

hours of the storm peak as waves remained large (>2.5 m), but transitioned to long period 

swell. In addition, the configuration of the inner surf zone and resulting wave dissipation 

amounts seemed to better predict spatial variability in beach volume change, when 

compared with alongshore variations in predicted relative runup or modeled breaking 

wave height. 
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CHAPTER I 

Coastal Lidar And Radar Imaging System (CLARIS): 

A mobile, integrated system for measuring nearshore wave parameters, 

bathymetry, and beach topography during storms 
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CLARIS: Coastal Lidar And Radar Imaging System 

ABSTRACT 

Mapping systems that are capable of quantitatively measuring the elevation of the 
sub-aqueous and sub-aerial coastal system during storms when wave heights are large 
and visibility is reduced are rare. As a result, spatially extensive and temporally dense 
quantitative data on the evolution of beaches and surf-zones during storms are lacking, 
preventing adequate assessment of predictive numerical models, and leaving a reliance on 
"pre" and "post"-storm data sets. We present Coastal1idar ~nd Radar Imaging ,System, 
CLARIS, a fully-mobile system designed to operate during storms and collect topography 
data of the beach from a terrestrial laser scanner as well as bathymetry data from radar
derived wave celerity measurements and surf- and swash-zone morphology data from 
time-averaged radar images. In addition, the combined system provides information on 
wave spectra, including direction and period from the radar data, and wave height within 
the inner surf-zone from lidar data. CLARIS can survey 10-km of coastline in 2 hours 
and provide bathymetry from 2-m water depth to 1.2 km offshore to within 11% accuracy 
as well as topography of the beach and dune to within I 0 em. Surf-zone morphology 
metrics, such as the position of shore-parallel bars and maximum swash excursion are 
objectively extracted from time-averaged mosaics. Current operational limits to CLARIS 
include: (1) beach conditions to be drivable, (2) precipitation to be no more than a light 
rain, and (3) the nearshore wave-field must be sufficiently large to interact with the 
seafloor and be roughened at the surface by strong winds. 
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1. INTRODUCTION 

Beaches and surf zones are dynamic environments that change rapidly during storms 

in response to elevated water levels and changing wave energy. Demand for accurate model 

predictions and a physics-based understanding of storm-induced effects (e.g. beach erosion, 

overwash, surge, and runup) has risen recently, following a decade (1996 to 2005) of 

heightened Atlantic hurricane activity that was one of the most costly in the last century 

[Pielke et al., 2008]. Unfortunately, high-resolution measurements of surf-zone and beach 

morphology, over both short enough temporal scales and large enough spatial scales to 

accurately develop and assess predictive models, are lacking, due mostly to the difficulty of 

observing beaches and surf-zones during storms with traditional surveying methods. To 

address this problem, extensive work over the past two decades has been devoted to 

developing remote sensing technologies, such as video-imaging [e.g. Lippmann and Holman, 

1989; Holman et al., 1 993; Holland et al., 1997], airborne lidar [e.g. Irish et al., 2000; 

Sallenger et al., 2003], and X-band radar systems [Bell, 1999; Ruessink et al., 2002; 

McNinch, 2007] that are capable of observing the beach and nearshore under almost any 

condition. Most of these efforts, with the exception of airborne lidar, however, are fixed 

installations, which limits the spatial extent of observations, and lidar is not safely flown 

during storm conditions. In contrast, we have developed CLARIS: Coastal Lidar and Radar 

Imaging System, a fully mobile system that integrates two state of the art remote sensing 

technologies, a terrestrial laser scanner and X-Band radar, using precise motion and location 

information. We demonstrate that CLARIS is a robust system capable of rapidly (up to 10 

km alongshore in 2 hours) and quantitatively measuring: beach and dune topography 

(accuracy of 10 em), nearshore bathymetry from radar-derived wave celerity measurements 

(10% accuracy), and surf-and swash-zone morphology from time-averaged radar images 

during storms. 
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Cross-shore profiling, a traditional beach surveying technique, uses field 

measurements of beach elevation and surf zone bathymetry to quantity nearshore 

morphology in the cross-shore direction at a particular point alongshore. Mounting 

bathymetric surveying equipment such as echo-sounders on a variety of platforms-jet-skis 

[Dugan et al., 2001], the Coastal Research Amphibious Buggy (CRAB) [Birkemeier and 

Mason, 1984], or amphibious vehicles (e.g. Lighter Amphibious Resupply Cargo (LARC) ), 

have enabled this type of data to be collected in the surf-zone in waves up to 2 m 

(http://www.frf.usace.army.mil/aboutUS/ vehicles.shtml). While cross-shore profiling 

enables researchers to model two-dimensional cross-shore movement of bars [Sallenger et 

al., 1985; Thornton et al., 1996], as well as study seasonal cycles of erosion and accretion 

[Aubrey, 1979; Birkemeier, 1984], the technique suffers from an inability to accurately 

characterize the three-dimensional nature of the nearshore system and how it evolves during 

storms. While swath bathymetry systems mounted on the LARC [McNinch, 2004] can 

accurately map three-dimensional bathymetries in shallow environments, they necessitate 

fairly calm conditions to work most effectively, and often are time-consuming to complete. 

In addition, the collection of wave data over spatially extensive areas, particularly 

within the surf-zone, presents its own challenges. Traditional oceanographic methods of 

wave data collection in the nearshore, such as the placement of instruments on the bottom 

(e.g. A WACs, and pressure sensors), are less effective in the surf zone, as wave breaking 

processes and strong alongshore and cross-shore currents make the instruments difficult to 

maintain. The identification of spatial variations in the wave-field is often left to models, as 

instruments placed on the bottom only provide point measurements of the wave parameters. 

Even the rare cross-shore array of instruments [e.g. Hanson et al., 2009] only provides 

information along one transect, making identification of wave refraction patterns and the 

alongshore length scale of wave groups [e.g. Reniers et al., 2004] difficult. Within the inner 
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surf-zone, wave information is often constrained to height information, as pressure sensors 

are more easily maintained (through burial), than A WACs or Aquadops, which must be 

mounted such that they can withstand the force of breaking waves and remain clear of 

sediment. 

Remote sensing technologies eliminate many of the problems of collecting in-situ 

measurements in the surf zone and can provide spatially dense data on coastal morphology, 

beach topography, nearshore bathymetry, and shoreline runup characteristics. Video imaging 

and X-band radar rely on similar principles: breaking and non-breaking waves create image 

intensity patterns across the surf-zone and nearshore that are exploited using a variety of 

techniques to provide information on wave parameters (including period, direction, speed, 

and dissipation) across the surf-zone and at the shoreline [Lippmann and Holman, 1989; 

Holland et al., 1997; Ruess ink et al., 2002; McNinch, 2007]. Time averages of video frames 

(or radar images) provide maps of surf-zone dissipation which can be used as a proxy for 

shoreline and sandbar morphologies, information that is analyzed with respect to surf-zone 

morphodynamics [Lippmann and Holman, 1990; Ruessink et al., 2000; van Enckevort and 

Ruessink, 2003; Alexander and Holman, 2004; Ranasinghe et al., 2004; Van Enckevort et al., 

2004; Holman et al., 2006] and integrated into realtime bathymetric models (e.g. Beach 

Wizard, see [see Aarninkhof et al., 2005; van Dongeren et al., 2008]. Sequential video time

stacks can also be used to study swash motions including runup-spectra, swash velocities, 

and maximum runup elevations [Aagaard and Holm, 1989; Holland et al., 1995; Holland, 

1998; Holland and Holman, 1999; Ruggiero and Holman, 2004; Stockdon et al., 2006]. In 

addition, measurements of wave celerity, c, (or, alternatively, wavelength, L, since c = LIT, 

where T = wave period) from sequential radar passes [Bell, 1999] or video frames [Stock don 

and Holman, 2000; Holland, 2001; Plant et al., 2008] can be used to explicitly calculate 

bathymetry by exploiting the intermediate and shallow-water depth dependence of wave 
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speed in the nearshore, referred to as a bathymetric inversion. Mobile systems, such as Bar 

and Swash Imaging Radar (BASIR) [McNinch, 2007] and beach or airborne Lidar systems 

[Stockdon et al., 2002], are particularly useful at quantifying the alongshore variability of 

beaches and surf zones due to their extensive range and easy mobility. 

The objectives of this paper are to describe a new tool, CLARIS, that rapidly 

measures beach topography and nearshore bathymetry during storms and to assess its 

accuracy. We begin with a brief background on lidar and radar remote sensing technologies 

as well as some details on the design and development of a robust system for during-storm 

operation. We then present a description of CLARIS and its operation, as well as details on 

data analysis techniques including the extraction of morphology metrics and bathymetry 

estimates. An analysis of the accuracy of the bathymetry inversion techniques and how they 

can be improved through lidar-measured wave parameters, in addition to the success of the 

morphology metric extraction, follows. We end with a brief example of merged laser

derived topography and radar-derived bathymetry. 

2.0 BACKGROUND 

2.1 Relevant Remote Sensing Technologies 

Lidar, radar, and video imaging are the three remote sensing technologies used most 

often by coastal researchers to study the beach and nearshore. Lidar and radar are "active" 

remote sensing systems that send out electromagnetic waves and measure the length of time 

it takes to return, providing information about the position or elevation of a certain feature. 

Video, in contrast, is a "passive" remote sensing system that merely records intensities of 

reflected light. Airborne lidar systems are used to rapidly and accurately map beach 

topography [Sallenger et al., 2003; Sallenger et al., 1999; Stockdon et al., 2002; Mitasova et 

al., 201 0] and nearshore bathymetry [ Setter and Willis, 1994; Lilly crop et al., 1996; Irish and 
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White, I 998; Irish eta!., 2000;], and are especially useful in the analysis of pre- to post-storm 

coastal changes [e.g. Sallenger et a!., 2004; Sallenger et al., 2006]. In addition, Irish and 

others [1996] demonstrate that the high data density typical of lidar systems reduces error in 

volumetric calculations when compared with sparser, more traditional cross-shore profiles. 

Airborne lidar systems, however, cannot be flown during storms, when bathymetric and 

topographic data are needed most to ground-truth models. In addition, airborne lidar is of 

limited use for mapping surf-zone bathymetry when water turbidity is high and the surf zone 

is fully dissipated, as most of the light is attenuated in the water column before it reflects off 

of the bottom [Irish and White, 1998]. Despite these drawbacks and high costs, airborne lidar 

systems have been the best method to densely acquire topographic data over large spatial 

areas. Terrestrial laser scanners are a ground based version of airborne lidar that are gaining 

popularity for analyzing beach morphology changes [Pietro et a!., 2008]. Historically, 

terrestrial laser scanners were static sensors that were often cumbersome to survey large areas 

with, but recent technological advances have enabled mobilization through integration with 

motion sensing units. The ability to mount terrestrial laser scanners on ground-based 

vehicles makes rapid mapping of beach topography less expensive and more accessible than 

traditional airborne techniques. 

X-band radar technology is widely used to determine wave properties and surface 

currents in open and coastal oceans, and recently has been employed in the nearshore [Bell, 

1999; Ruessink et al., 2002; Haller and Lyzenga, 2003; McNinch, 2007]. The basic premise 

of applying radar technology in shallow water environments is that small capillary waves and 

ripples on the sea surface cause Bragg-scattering of the incoming radar energy, which is then 

modulated by the incoming surface gravity waves. This creates what is often termed "sea

clutter:" alternating patterns of high and low intensity radar returns corresponding to the 

incoming waves. In addition, "sea-spikes," high intensity radar returns off of the foamy, 
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rough surface of breaking waves, are also produced and often are the dominant backscatter 

source in the radar image [Haller and Lyzenga, 2003]. Averaging the radar images over time 

produces similar images to Argus video systems [Lippmann and Holman, 1989], such that 

areas of high intensity returns correspond to areas of breaking waves (sandbars and swash), 

and areas of low intensity returns correspond to areas of less breaking (deeper troughs) 

[Ruessink et al., 2002; McNinch, 2007]. Initial research suggests that radar observations are 

well suited for use during storms when optical signals suffer more interference, both from 

relict foam on the sea surface [Haller and Lyzenga, 2003], or rain and mist. In addition, radar 

observations can be collected at any time as daylight is not needed, and are more easily 

rectified in space, especially when the field of view is constantly changing (i.e. on a mobile 

platform). Drawbacks to radar include the loss of horizontal resolution in the far range, the 

attenuation of the signal in heavy downpours, a reliance on extremely accurate heading 

information (expensive) for proper image rectification, and a need for roughened water 

surfaces for reflection success. 

2.2 Development and Design ofCLARIS: Robustness during Storms 

Since one of the desired attributes of CLARIS is the ability to robustly observe 

the nearshore wave-field during storms, we first needed to verify that radar can 

adequately distinguish between relict foam and propagating bores in extremely 

dissipative surf-zones. While McNinch [2007] show that X-band radar can successfully 

reproduce sandbar and swash configurations during 3-m waves, wave-field information 

from single rotation images (needed for the bathymetry inversion exercises) were not 

previously investigated. In addition, while Haller and Lyzenga [2003] investigate the 

sensitivity of radar returns to relict foam, their data only include observations of waves 
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with heights < 1 m. To investigate the robustness of radar during storms, we compare 

radar snapshots ofthe nearshore wave field at the U.S. Army Corps of Engineer's Field 

Research Facility (FRF) in Duck, NC with video snapshots ofthe region from the Argus 

tower during 4-m waves on 25 September 2008 (Figure lA and B, respectively). In 

contrast to the rain-obscured Argus image (Figure lB), wherein the surf-zone is a mesh 

of dissipating bores and relict foam, the radar image (Figure lA) shows clearly delineated 

wave-forms (the higher intensity returns) across the surf-zone. This example 

corroborates the previous work of McNinch (2007] and Haller and Lyzenga (2003], and 

demonstrates that even during 4-m storm waves in light-rain, radar can adequately 

distinguish propagating bores from relict foam in a dissipative surf-zone. This also 

confirms the choice of radar, as opposed to video, for a storm-oriented mobile remote 

sensing system. 

To exemplifY the challenges associated not only with designing a mobile system 

that can remotely measure wave parameters and beach topography during storms (e.g 

computer hardware, writing acquisition software, etc.), we include a brief description of 

the difficulties in simply selecting a vehicle platform that could successfully traverse the 

beach through a variety of substrates during elevated water levels. Earlier versions of the 

system include: (1) an ATV plus associated trailer that houses the radar and computers 

(Figure 2A), (2) an RTV with the radar and computers on the back (Figure 2B), (3) a 

stackable configuration in which the RTV is secured to the deck of the FRF' s LARC 

(Figure 2C), and finally, ( 4) the current configuration on a military issue, 24-volt, diesel, 

1986 Chevy Blazer (Figure 2D). Versions (1) and (2) perpetually ended up stuck in the 

sand due to a combination of low gear power, tire inadequacy, and low ground clearance. 
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Version (3), though successful at navigating the beach during storms, is inefficient and 

expensive to operate. Version (4)'s success can be attributed to its four-wheel drive gear 

ratios, light weight, and wide-tires that create an optimal vehicle for beach driving. In 

addition, the added height of the military blazer (when compared with the A TV and 

RTV) also decreases problems of radar shadowing in the far range from irregular beach 

topography, such as high berms or beach cusp horns. Though CLARIS can successfully 

drive through the occasional swash inundation on common beach substrates (tested in 

water levels up to ~ 30cm), it is not the best vehicle for beach driving during the most 

extreme conditions, such as those encountered during hurricane landfalls. In order to 

make the system fully mobile during extreme storms, the system will be mounted on a 

new, tracked-vehicle platform that is capable of operating while inundated in up to~ 1.5m 

of water and can easily traverse debris-laden beaches (Figure 2E). 

3.0METHODS 

3.1 CLARIS Operational Overview 

CLARIS couples simultaneous collection of radar data in the nearshore with laser 

data of the beach, enabling mapping of near-seamless topography and bathymetry from the 

dune to 1 km offshore, as well as collection of wave parameters including direction and 

period across the nearshore, and wave height within the inner surf-zone. Roughly 10 km of 

beach is surveyed in 2 hours, and surveys are conducted in the two hour window centered at 

low tide to maximize beach width for driving and ensure relatively constant water level 

during the surveys. 

The radar component ofCLARIS is BASIR [McNinch, 2007], a mobile 4kW X-band 

(9410 +/- 30 MHz) beach radar system designed to remotely map the swash, nearshore bars, 
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and nearshore wave field. BASIR is updated in this system to include time-stamps associated 

with each radar shot for improved rectification and calculation of azimuth resolution during 

high-wind conditions. BASIR data is herein referred to as "radar data". Radar data is 

collected at predetermined locations along the beach spaced roughly 800-1 OOOm apart. The 

heading angle of the initial radar pulse is recorded using an Applanix© POS-LV motion 

system with an accuracy <0.5 degrees, and the location of the center of the radar image is 

recorded using Real-Time Kinematic GPS to 10 to 15 em accuracy. At each location, the 

radar completes 256 rotations at - 0.83 Hz, for a sampling duration of about 5 minutes. 

Though we recognize that this sampling time will not capture the longest period surf-beat 

oscillations, Guza and Thornton [ 1985] observe that on beaches with incident waves ranging 

between 0.05 and 0.15 Hz, 90% of infragravity energy occurs in frequencies between 0.005 

and 0.05 Hz. Thus, our sampling duration of -305 s enables averaging over most variations 

in wave breaking due to wave groupiness and surf beat and provides a reasonable balance 

between sample duration and spatial coverage. Furthermore, since radar stops are spaced 

800-1000 m apart and the range of the radar is 1.2 km, the overlap regions obtain a 

discontinuous, cumulative total of about 10 minutes ( -610 s ). Surf-zone morphology 

metrics, waterline position, bathymetry, and wave period and direction are estimated from the 

radar data. 

A Riegl3D Terrestrial Laser Scanner (Riegl VZ-390i) scans the topography starboard 

of the vehicle during transit between radar stops. Terrestrial laser scanner data will be 

referred to as "lidar data" throughout the remainder of this paper. An Applanix© POS-L V 

motion system is used to measure motion (pitch, roll, and orientation) of the vehicle during 

the lidar survey, which are post-processed using Applanix© PosP AC software for increased 

accuracy. The motion data are then combined with the GPS position to rectify the lidar data. 

Survey precision is on the order of 1.3 em and accuracy is +/- 5-10 em. Point-cloud density 
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is ~30 to 40 points per m2
, with higher density in the near-range and cross-shore direction. 

Since surveys are generally conducted while transiting shore-parallel, the lidar is aimed 

seaward to record foreshore topography at the same time as the radar survey. After all 

locations have been surveyed with the radar, CLARIS is driven back down the beach in the 

opposite direction so the lidar can scan the upper beach and dune, the portion of the beach 

least likely to have changed during the 2-hr radar survey. The lidar surveys are first edited to 

remove any surveyed beach-goers, birds, houses, spikes, and waves, and then gridded in IVS 

Fledermaus 7.0 using a weighted moving average (1m grid, 1 m weight). Beach morphology 

metrics, such as beach slope, shoreline contours, and beach volume, are then extracted from 

and compared between consecutive lidar surveys. 

3.2 Radar Mmphology Mosaics 

Raw, binary radar files are read into MATLAB and organized into range, azimuth, 

and rotation (time) space. Data manipulation on the radar returns is performed to address 

both range fall-off and azimuth scatter artifacts. The data are corrected using an empirically 

defined cubic fit ( eqn. 1 ), to ensure that similar objects at different distances from the radar 

produce similar return values: 

lcorrecreAr,a,t)= I(r,a, t) * (1.5e-7 
r

3 + l.2e-3r 2 + l.Sr + 188.5} (1) 

where r is range (distance from the radar, ranging from 3 to 1200 min steps of 3m), a is each 

azimuthal radar bearing, t is each rotation, and l(r,a,t) is the radar intensity at each range, 

azimuth, and time location. Range resolution is 3 m, a function of analogue to digital 

sampling using a 50MHz card, and temporal resolution is 1.2 s. The radar images are then 
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rectified through a polar transformation from azimuth-range space using heading and position 

information, to Cartesian coordinates (e.g. NC State Plane Easting and Northing, Horizontal 

Datum: NAD1983), and the centers of the radar images are removed to prevent problems 

with over-saturation in the near range (Figure 3A). To create the morphology mosaics, the 

radar data is first gridded into a study-site wide, pre-defined alongshore/cross-shore/time 

three-dimensional grid, using a nearest neighbor gridding algorithm (Figure JA-B) to 3-m 

spatial resolution. To accommodate overlap between stops, the temporal domain is extended 

to 512 samples so that information from two stops alongshore (256 samples from each) can 

be used. While this does not create a continuous 512-point time series, and thus harmonic 

shifts in wave parameters may exist, the extra data are useful for averaging over surf-beat 

and infragravity fluctuations. Radar returns at each grid node are then averaged in time, and 

smoothed in the alongshore direction using a 30-m weighted-moving average, to create a 

seamless morphology map of the area. 

3.3 Morphology Metrics 

Surf-zone morphology metrics, such as bar and swash position (from radar-observed 

dissipation peaks), as well as the radar-defined waterline, are extracted from the time

averaged morphology mosaics by analyzing the shape of each cross-shore, time-averaged, 

radar intensity profile at every 3-m location alongshore. Figure 3C shows an example of a 

time-stack of radar intensities at a particular location alongshore-the incoming waves are 

visible as the streaking white lines across the image. By averaging these time-stacks through 

time, a cross-shore profile of radar intensities can be created (Figure 3D) which has peaks 

and valleys that often correspond to various morphological features. Peaks in radar 

intensities correspond to highly dissipative areas, such as the shore-parallel bars and swash 
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zones, where as the valleys correspond to the beach and nearshore shore-parallel troughs. 

Peaks are identified using the "findpeaks" function in MATLAB which compares each data 

point in the profile to its neighbors and, if it is larger than both neighbors, classifies it as a 

peak. Depending upon the data, some initial smoothing of the time-averaged profile (e.g. a 

10-m weighted moving average) or threshold values are set to smooth out any noise in the 

signal. To classify the peaks, their position relative to the valley of the beach is noted: the 

swash peak is identified as the first peak seaward of the beach (pink dot and line in Figure 

3C, D), the next peak after the swash is the first shore-parallel bar (e.g. the blue dot and line 

in Figure 3C,D), and any subsequent peaks correspond to outer bars (e.g. the orange dot and 

line in Figure 3C,D). While this methodology provides a good indicator of the number of 

offshore bars, it is important to note that the peak in dissipation over the bars may not 

necessarily correspond to the peak of the sandbar itself, as variations in water-level and 

wave-height, in addition to bathymetry, can influence where waves break [Ruessink et al., 

2002; McNinch, 2007]. The position of the maximum swash excursion during the sampling 

time is found by identifying the first location with a positive slope seaward of the valley of 

the beach (yellow line and dot, Figure 3C-D), as this location represents the most landward 

position that the high intensity swash reached during the time of observations. Edges of 

features are found by identifying locations of maximum slope in the cross-shore intensity 

profile (e.g. the offshore edge of the inner bar in Figure 3D is shown by the green dot). 

Once the morphological features are identified, morphology metrics pertinent to the 

identified research questions can then be extracted from the data. For example, to determine 

the number of offshore bars at any given location alongshore, the number of peaks seaward 

of the first swash peak is counted. To determine the width of the inner surf-zone, the cross

shore distance between the maximum observed swash excursion and inner-bar edge is found. 
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In addition, integrals under the time-averaged radar intensity curve may be useful proxies for 

wave dissipation across the surf-zone. 

3.4 Bathymetry Inversion Calculations 

To obtain bathymetry estimates from the radar data, wave celerity is calculated 

from observations of radar intensity time series using a simple 2D cross-shore cross-

spectrum correlation analysis [Stockdon and Holman; Plant et al., 2008]. Each radar 

rotation is gridded into an 1.8 km alongshore by 1.2 km cross-shore 5 m spaced grid, and 

time series of radar intensities (dt = 0.83 Hz) are extracted at each grid node. Each time 

series is band-pass filtered (0.05 to 0.2 Hz), and each spatial grid (rotation) is smoothed 

in the alongshore direction using a 50-m weighted moving average to create more 

coherent wave crests. The cross-spectrum, Pxy, (eqn. 2a, Figure 4A) and coherence 

estimate, Cx_n (eqn. 2b, Figure 4B) are then calculated between alternating grid nodes in 

each cross-shore profile (e.g. node 1 to node 3, node 2 to node 4, etc.): 

(2a) 

where y = X;+ 2 (2b) 

where Y indicates the Fourier transform, * indicates the complex conjugate, A is the 

amplitude, t/Jshifi is the phase shift, i is the cross-shore position index, j indicates which 

cross-shore profile (alongshore position), andfis frequency. To find the frequency ofthe 

most coherent wave, Cxy is then summed alongshore for each cross-shore position, and 
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the frequency of maximum coherence is found for each cross-shore position. The mode 

of these frequencies is identified as the frequency of the most coherent wave (j), and the 

corresponding phase shift at that frequency is extracted from the cross-spectral estimate 

for all grid nodes. These phase shift measurements are then divided by L1x (the distance 

between the cross-spectral correlated time series) to find the wavenumber, k = 27r/L = 

¢shift I L1x (Figure 4C). This method of estimating wavenumber assumes shore-parallel 

waves with no wave-current interaction, and only utilizes information from the most 

coherent (dominant in radar signal) wave form. 

Once wavenumber is estimated at each grid node, the linear dispersion equation 

(eqn 3a) is inverted and solved for h, water depth (eqn 3b): 

w2 = gktanh(kh) (3a) 

h = Itanh-'(!!CJ 
k gk 

(3b) 

Where w = 27if= wave radian frequency of maximum coherence, and g = 9.8 m s-2
• As 

waves approach the shoreline, they become non-linear and their abrupt increase in height 

makes them travel faster than what is predicted by linear dispersion theory, a process 

known as amplitude dispersion. If this is not taken into account, the depths predicted by 

the above method are too deep when compared with the actual water depth [Holland, 

2001]. To combat this problem, a modified cnoidal wave theory equation (eqn 4a) 

[Holland, 2001] is solved iteratively within the surf zone: 

h~ (~)' 
g-aH 

(4a) 
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with H = yh, y == 0.4 [Thornton and Guza,l982] (4b) 

To prevent a step-like feature where linear dispersion and modified cnoidal wave theory 

meet, equation 4a is used from the shoreline out to the theoretical breaking wave depth, 

hBw, and equation 3b is used from the offshore edge up to hBw - 1, and spatial 

interpolation algorithms are used to fill in the gaps between these regions. The water 

depths are then subtracted from a measured water (tide) level at a nearby tide station, and 

thus referenced to a vertical datum (e.g. NA VD88). Bathymetry from each stop is then 

de-spiked and mosaicked together alongshore in IVS Fledermaus 7.0 using a weighted 

moving average (5-m grid, 15-m weight). 

4.0 RESULTS AND DISCUSSION 

4.1 Lidar Topography 

The example lidar data shown in Figure SA, B demonstrates the superiority of lidar to 

more traditional surveying methods: lidar provides complete spatial coverage and high data 

density, enabling three-dimensional features such as the beach cusps in Figure 5B to be 

robustly mapped without the data aliasing errors common in traditional survey methods 

[Plant et al., 2002]. One of the drawbacks to lidar data is a time-consuming editing process, 

as any beachgoers or cars present on the beach at the time of surveying (Figure 5B) are also 

mapped. In addition, the removal of houses is necessary to ensure proper dune elevations 

during gridding, and sand-fences often make the base of the dune difficult to identify. Once 

the lidar data is edited, it is gridded, and pertinent elevations contoured-e.g. the MHW 

shoreline is shown in Figure A-B (white line). In addition, the gridded lidar files can be 

transformed into alongshore/cross-shore space and profiles extracted at 1-m increments. 

26 



CLARJS: Coastal Lidar And Radar Imaging System 

From these profiles, beach slopes and volumes are easily calculated, and changes are mapped 

between sequential surveys. 

4.2 Bathymetry Inversion Error Assessment 

The accuracy of the bathymetry inversion is assessed through a comparison with a 

swath interferometric bathymetry survey of a 5-krn section of nearshore in Kitty Hawk, 

NC. This region is characterized by complex bathymetry in which a series of shore

oblique bars and troughs extend from 4 to 14 m of water depth [see McNinch, 2004; 

Miselis, 2007; Brodie and McNinch, companion paper; also Figure 8, later in this 

manuscript). A swath bathymetry survey of the area is used to assess the accuracy of 

bathymetry inversion due to the location's complex nearshore bathymetry [McNinch, 

2004] which cannot be adequately mapped using single-beam profile surveys. One 

reason for assessing the error of the bathymetry inversion at such a complex site is to 

determine how much error using only the cross-shore component of wave celerity 

introduces to our depth calculations. Ideally, the swath and CLARIS survey would be 

conducted simultaneously to obtain the best error estimates. The two systems, however, 

require drastically different weather conditions for ideal operations: the swath survey 

requires calm, low wave conditions, whereas CLARIS is optimal in > 2 m waves with 

strong onshore winds to ensure wave coverage out to I krn offshore. Due to the difficulty 

associated with forecasting a calm weather window long enough for a swath survey (in 

this case 2-days) that immediately precedes rough, stormy conditions, we are forced to 

utilize the best weather combination available. Therefore, a CLARIS bathymetry 

inversion from the morning of April 16 (Hs = 2.8 m, T= 10.7 s, Sshoreline = 5 degrees (72 

degrees true north)) is compared to a swath survey from April 08- 09, leaving one week 
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of separation between the two surveys. Though we also conducted a CLARIS survey on 

the night of April 15 (during building conditions), this survey is not used, as the wave 

field was a high-angle (8shoreline = 24 degrees (44 degrees true north)), short-period (T= 

6.2 s), wind-wave, and thus not ideal for the inversion exercises. Although a week 

separation exists between the swath bathymetry survey and the CLARIS survey, wave 

heights did not exceed 1.5 m in the week between the two surveys, and thus any real 

change in bathymetry between the two surveys is believed to be minimal and confined to 

the very inner-surf zone. 

The two data sets are interpolated to coincident 5-m grids, and the water depth 

predicted by the bathymetry inversion is compared to the water depth measured by the 

swath survey at each grid node. This comparison produces a total of 176,259 analysis 

points that range in depth from 1 to 15 m (Figure 6) and cover 4.41 km2
• Total RMS 

error is 0. 72 m with a mean absolute error of 0.54 m and a standard deviation of 0.12 m. 

Mean percent error and RMS percent error are also calculated for the total data set and 

found to be 8.3% and 11.6% respectively. Maximum errors range from -2.4 m to 3.8 m, 

with negative numbers indicating too deep of a prediction and positive indicating too 

shallow of a prediction. Total RMS percent error and absolute mean percent error, 

compare well with those of Holland [200 1] but are significantly smaller than those of 

Stockdon and Holman [2000] (RMS error= 34%). Stockdon and Holman's analysis does 

not include any compensation for amplitude dispersion, and as such, their RMS error 

estimate is improved (29%) during low wave conditions (H<=1 m). Our comparably 

lower error estimates, even during highly non-linear storm wave conditions, confirm 
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Holland's [2001] finding that the use of the modified cnoidal wave equation can 

significantly improve the performance ofbathymetry inversions. 

RMS error and RMS percent error are also calculated for each wave region: 

intermediate waves, shallow-water waves, and breaking waves. Similar to other 

bathymetry inversion studies, our analyses show increased accuracy with depth (where 

the linear dispersion equation is more applicable). RMS percent error is smallest in the 

intermediate water depths at 7.8%, followed by the shallow water region at 1 0.3%, and 

the surf-zone water depths at 15.4%. RMS absolute error is opposite, with the surf-zone 

region having a RMS error of 0.59 m, the shallow water region at 0.63 m and the 

intermediate region at 0.8 m. As depicted in Figure 6, in the shoaling region between ~ 7 

m and the edge of the surf zone, estimates are consistently deeper than observed. Wave 

data from the cross-shore array at the Duck FRF pier during the survey show shoaling did 

occur in this region during the survey, with wave height increasing from 2.8 m in 8 m of 

water depth to 3.1 min 6 m water depth, suggesting that amplitude dispersion needs to be 

compensated for in this region as well as in the breaking region. Unfortunately, as of yet 

no remotely sensed techniques have been developed to provide spatial coverage of wave 

heights across and along the surf zone during storms. While the input of a constant 

alongshore wave height at a few points cross-shore (e.g. from the rare cross-shore wave 

array) may be helpful on alongshore-uniform shorefaces, it will not adequately describe 

the wave field above complex features [e.g. Munk and Traylor, 1947] such as those found 

in this study site. 

The high errors within the breaking region (RMS percent error= 15.4%) are most 

likely due to ( 1) the non-linear properties of breaking waves; and (2) spatial interpolation 

29 



CLARIS: Coastal Lidar And Radar Imaging System 

schemes forced to interpolate down to the too-deep estimates at the edge of the shallow

water wave region. Error assessment between the shoreline and depths less than 2 m can 

not be assessed in this study due to inaccessibility of the region with the swath system. 

Error is assumed very high in this region due to (I) the extreme non-linear relationship 

between water depth and bore (as opposed to wave) celerity in the inner surf zone [Stive, 

1984; Svendsen et al., 2003; Bonneton et al., 2004]; and (2) the large importance of 

infragravity contributions to water depth (their amplitudes are often a significant 

proportion of the water depth) in this region [Guza and Thornton, 1982; Wright et al., 

1982; Guza and Thornton, 1985]. To help improve accuracy between the shoreline and 

2-m water depth, we are investigating how to derive helpful parameters such as bore 

celerity, wave height, and water level from simultaneously collected laser data of the 

inner surf zone. 

Preliminary results suggest that time series of offshore-directed laser scans of the 

swash and inner surf-zone (fixed, narrow swaths across the surf-zone) collected during 

the 6-minute radar stops provide tremendous amounts of data on swash and bore heights. 

For example, Figure 7 A shows -1.5 s of instantaneous water level measurements ( dt = 5 

Hz), in which incoming bores and down-rushing swash are visible. These data are then 

averaged through time to reconstruct the inner-surf zone setup profile (Figure 7B), or 

analyzed for wave spectra to obtain infragravity heights (Figure 7C), among other 

physical processes, including wave-runup or even breaking wave type from the shape of 

incoming bores. Error associated with this methodology, including (I) that induced by 

spectral analysis over relatively short time-series to resolve infragravity motions, and (2) 

the potential for shadowing of the troughs in the far range, still needs to be quantified and 
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compared against more common methodologies, such as video-imaging or pressure 

sensors. 

Spatial patterns of bathymetry-inversion error are also assessed (Figure 8). 

Visually, the swath bathymetry (Figure SA) and the CLARIS bathymetry inversion 

(Figure 8B) compare well, with both showing the expression of three large shore-oblique 

troughs cutting across the nearshore. High errors are seen in the region over the shore

parallel bar, the region most likely to have changed during the one week lapse time. The 

swath survey appears to define the shore-oblique bars slightly more clearly. This is 

evident in the spatial percent error map (Figure 8C), where a spatially coherent pattern of 

"too-deep" errors is apparent: the highest errors are located on the inshore portions of the 

shore-oblique bar crests immediately adjacent to the shore-oblique troughs on the down

drift side. This could be due to three factors: (1) wave height, and thus amplitude 

dispersion, is significantly amplified in these locations from wave-crest convergence as 

the waves refract over the bathymetry; (2) our assumption of shore-parallel waves is 

violated due to wave refraction patterns, and thus cross-shore wave number is greater 

than total wave number; or (3) an on-shore current is artificially increasing wave celerity 

in these regions. Future implementation of a full 20 cross-spectrum analysis [e.g. Plant 

et al., 2008] will eliminate our current assumption of shore-parallel waves and help to 

reduce some of the error associated with refraction over complex bathymetry. Overall, 

3.2 km2 of our area has an error of less than 10%, which represents 72% of the total 

region. 
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4.3 Morphology Metrics 

Morphology metrics extracted from the time-averaged radar data provide important 

information about the surf-zone, especially the inner surf-zone, a region where bathymetric 

data from the bathymetry inversion is less robust. Figure 9A shows an example of a time

averaged radar morphology mosaic with identified morphological features. The morphology 

mosaic is from the same location in Kitty Hawk, NC where the bathymetry inversion error is 

assessed. Using the peak-classification scheme described in the methodology section, the 

morphology mosaic is interpreted in Figure 9B, with regions of wave breaking shown in 

white, and regions of less wave breaking shown in blue. The cross-shore location of peak 

dissipation over the outer shore-parallel bar varied significantly alongshore, and is adequately 

located by the peak-picking technique. Since the location of wave breaking over the bar can 

vary significantly with changes in water level (tide) or wave height, rarely does the crest of 

the sandbar align directly with the peak in wave dissipation above it, [Lippmann and Holman, 

1989; Ruessink et al., 2003]. Despite the potential for environmental conditions affecting 

dissipation patterns above the bar, the position of the crest of the outer bar derived from the 

swath bathymetry survey from a week prior (black dot-dash line, Figure 9A) compares well 

with the peak in dissipation over the outer bar identified by the peak-picking technique. 

Notable discrepancies occur at around 5000 m alongshore, and between ~5500 and 6500 m 

alongshore, and may be due to a variety of factors including true movement, water level 

effects, or confused peak identification due to complex bathymetry. It is important to note 

that the highly irregular shape of this outer shore-parallel bar is most likely due to its 

dissection by the shore-oblique bar and trough features shown in Figure 8A and B. Thus, the 

peak-picking technique appears to be robust despite the highly three-dimensional nature of 

this study site. 
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The inner surf-zone is characterized by an inner bar that is around 75 m offshore 

between 3000 and 4500 m alongshore, moves ~25 m closer to the shoreline between ~4500 

and 5500 m alongshore, and eventually appears to merge with the beach between ~5300 and 

7300 m alongshore (narrow and thick black lines in Figure 9A). Since the swath survey did 

not extend within 2-m of water depth up to the beach, comparison with actual inner surf-zone 

morphology is impossible; however, the objective peak-picking technique confirms our 

visual interpretation of both the image and field-based observations of wave breaking 

patterns during the survey. The offshore edge of the inner bar is mapped using the steepest 

slope technique described previously. The technique seems fairly insensitive to dissipation 

cause by any shore-oblique features (e.g. at ~4300 and 5000 m alongshore), most likely 

because the extended cross-shore dissipation over these features produces low slopes, and 

thus a position closer to the peak of the inner bar is identified. 

Figure 9C shows two example morphology metrics that are extracted from this data 

set: (1) number of offshore bars (blue stars) and (2) width of the inner surf-zone (red line), 

defined here as the distance between the objectively identified offshore edge of the 

dissipation over the inner shore-parallel bar and the radar-observed waterline. Recent 

research suggests that the configuration of the surf-zone, notably the number of offshore 

shore-parallel bars, may have significant impacts on the type and severity of erosion 

occurring at the beach [Lippmann et al., 2004; Shand et al., 2004]. In addition, the inner 

surf-zone is one of the most crucial areas for modelers to correctly parameterize in order to 

predict sediment transport at the shoreline, as its morphology affects the amount of energy 

and momentum that reach the shoreline and is ultimately available for sediment transport. 

For example, shorelines that have wider surf-zones, and therefore more wave-dissipation and 

onshore directed radiation stress, may experience higher wave-setup than areas with narrower 

surf-zones [Longuet-Higgins and Stewart, 1964). In addition, the slope of the sub-aqueous 
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foreshore and inner surf-zone may have important implications for the type of wave-breaking 

occurring at the shoreline (e.g. spilling vs. plunging breakers), and therefore the sediment 

transport response [Beach and Sternberg, 1996; Voulgaris and Collins, 2000]. While not 

explicitly measuring the physical processes at work (e.g. dissipation, radiation stress, or 

breaking wave shape), these morphology metrics may be simple methods for parameterizing 

otherwise complicated physical processes, and have potential for integration into predictive 

models. 

The position of the radar-observed waterline can also be intersected with lidar

measured topography, providing an accurate elevation of the waterline. This measurement 

thus provides the elevation associated with the most shoreward swash excursion during the 

time of observation at locations spaced 3-m alongshore. This technique may have potential 

for quantifying alongshore variations in wave-runup over large distances during storms; 

however, how this measurement compares with the 2% exceedence elevation used in current 

maximum runup models [Stockdon et al., 2006] is still being assessed. Potential sources of 

error associated with this technique include: the short sampling time compared to longer 

infragravity fluctuations, and the low spatial resolution of radar (when compared to video, for 

example) which can add error to the location of the swash front. 

4.4 Seamless Topography and Bathymetry during Storms 

Figure I 0 shows an example Df merged lidar topography data of the beach with 

radar-derived bathymetry inversion data of the surf-zone and nearshore. Since neither the 

lidar data nor bathymetry data are anisotropic like traditional survey data [e.g. Bernstein 

et al., 2003], the two data sets are merged using IVS Fledermaus 7.1 and gridded to a 5-m 

grid using a weighted moving average of 5-m as opposed to more complicated gridding 
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algorithms techniques [e.g. Mitas and Mitasova, 1999; Mitasova et al., 2005]. 

Bathymetry data is clipped at 1-m of water depth, and lidar data is given preference over 

bathymetry inversion data anywhere that overlap occurs (occasionally, the lidar may 

record elevations down to 1-m ofwater depth during swash run-down). The cross-shore 

profile shown in Figure 1 OB illustrates the seamless topography from dune to 15-m of 

water depth. The inner and outer shore-parallel bars, as well as a portion of a shore

oblique feature, are clearly visible. Future work will aim to improve the high error 

between the sub-aqueous foreshore and inner-bar, visible as a pronounced "kink" in the 

profile at around 50-m offshore. Specifically, lidar-observed bore height, speed, and 

water level will be explored to improve the accuracy of the bathymetry inversion in this 

region. In addition, dissipation information recorded by the radar may also be used in 

conjunction with model-predicted dissipation proxies, such as the energy of the surface 

roller [Aaminkhof and Ruessink, 2004], to solve for water depth, similar to the Beach 

Wizard approach [ Aaminkhof et al., 2005; van Dongeren et al., 2008]. 

Seamless elevation data of the beach and nearshore during storms are invaluable 

for ground-truthing models, measuring morphology evolution, calculating beach and 

nearshore sediment volumes, and quantitatively analyzing spatial and temporal patterns 

ofbeach erosion during storms. Furthermore, CLARIS enables simultaneous analysis of 

the coastal system as a whole, from the dune, across the beach, through the swash and 

surf-zones, and into the nearshore. Though the accuracy may not be as high as more 

traditional surveying techniques, the ability to rapidly acquire during extreme conditions 

is un-paralleled. For example, Freeman and others [Freeman et al., 2004] present 

seamless topography and bathymetry data of a 0.5 km stretch of coastline near Cape 
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Hatteras, that took 5 days and required 4-different surveying methodologies (walking 

backpack-mounted RTK-GPS, ATV-mounted RTK-GPS, jetski-mounted echo-sounder, 

and a vessel-mounted interferometric swath system) to complete. In contrast, CLARIS 

requires only two people and one vehicle, and can easily map a 0.5 km stretch of 

coastline and bathymetry in under an hour. 

5.0 CONCLUSIONS 

We presented Coastal Lidar and Radar Imaging System, CLARIS: a mobile, 

remote sensing system for mapping seamless nearshore bathymetry and beach 

topography, as well as surf- and swash-zone morphology during storms. CLARIS can 

survey I 0-km of coastline in 2 hours and provide bathymetry from 2-m water depth to 1.2 

km offshore to within 11% accuracy, as well as topography of the beach and dune to 

within 10 em. The bathymetry-inversion technique used in this study presents two new 

contributions to the field: (1) information from multiple locations alongshore were 

mosaicked together to provide roughly 1 0 km2 of bathymetry data during large waves 

(Hsig 2: 3 m); and (2) the use of a modified cnoidal wave equation (eqn 6a) solved 

iteratively with a wave-height depth dependence (eqn 4b) for the breaking-wave region, 

as suggested by Holland [2001], demonstrated skill. Surf-zone morphology metrics 

derived from the time-averaged radar data were objectively extracted and used to 

characterize the inner surf-zone where bathymetry estimates have high error. Terrestrial 

lidar provided a fast, accurate, and spatially dense technique for mapping three

dimensional beach and dune topography. Operational limits to CLARIS include the need 

for: (1) beach conditions to be drivable, (2) precipitation to be no more than a light rain, 
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and (3) the nearshore wave-field must be sufficiently large to interact with seafloor and 

roughened at the surface by strong winds (i.e. storm conditions are preferable). 

6.0 ACKNOWLEDGEMENTS 

The authors wish to acknowledge the US Geological Society (G09PG00195) and 

the US Army Corps of Engineers IRIP 653HC8 for their support of this research. We 

would also like to thank the entire crew at the USACE Field Research Facility for their 

technical and field support, especially M. Forte, J. Pipes, and H. Wadman. 

37 



CLARIS: Coastal Lidar And Radar Imaging System 

REFERENCES 

Aagaard, T., and J. Holm (1989), Digitization of Wave Run-up Using Video Records, J. 
Coast. Res., 5(3), 547-551. 

Aarninkhof, S. G. J., and B. G. Ruessink (2004), Video observations and model 
predictions of depth-induced wave dissipation, IEEE Trans. Geosci. Remote Sens., 
42(11), 2612-2622. 

Aarninkhof, S. G. J., B. G. Ruessink, and J. A. Roelvink (2005), Nearshore subtidal 
bathymetry from time-exposure video images, J. Geophys. Res., JJO(C6). 

Alexander, P. S., and R. A. Holman (2004), Quantification of nearshore morphology 
based on video imaging, Mar. Geol., 208(1), 101-111. 

Aubrey, D. G. (1979), Seasonal patterns of onshore/offshore sediment movement, J. 
Geophys. Res, 84(CIO), 6347-6354, doi:l0.1029/JC084iCIOp06347. 

Beach, R. A., and R. W. Sternberg (1996), Suspended-sediment transport in the surf 
zone: response to breaking waves, Cont. Shelf Res., 16(15), 1989-2003, doi: DOl: 
I 0.10 16/0278-4343(96)00029-5. 

Bell, P. S. (1999), Shallow water bathymetry derived from an analysis ofX-band marine 
radar images ofwaves, Coast. Eng., 37(3-4), 513-527. 

Bernstein, D. J., C. W. Freeman, J. Park, M. F. Forte, P. T. Gayes, and H. Mitasova 
(2003), Spatial Survey Design Analysis for 3D Mapping of Beach and Shoreface 
Morphology, Proc. Int. Conference on Coastal Sediments 2003, . 

Birkemeier, W. (1984), Timescales ofNearshore Profile Change, Proc. of the 19th Coast. 
Eng. Conference, ASCE, 1507. 

Birkemeier, W. A., and C. Mason (1984), The CRAB: A unique nearshore surveying 
vehicle, J. Surv. Eng., 110(1), 1-7. 

Bonneton, P., V. Marieu, H. Dupuis, N. Senechal, and B. Castelle (2004), Wave 
transformation and energy dissipation in the surf zone: Comparison between a non-linear 
model and field data, J. Coast. Res., SI 39. 

Dugan, J.P., W. D. Morris, K. C. Vierra, C. C. Piotrowski, G. J. Farruggia, and D. C. 
Campion (200 1 ), Jetski-based nearshore bathymetric and current survey system, 
J.Coast.Res., 17(4), 900-908. 

38 



CLARIS: Coastal Lidar And Radar Imaging System 

Freeman, C. W., D. J. Bernstein, and H. Mitasova (2004), Rapid Response 3D Survey 
Techniques for Seamless Topo/Bathy Modeling: 2003 Hatteras Breach, North Carolina, 
Shore Beach, 72(2), 3. 

Guza, R. T., and E. B. Thornton (1982), Swash oscillations on a natural beach, J 
Geophys. Res., 87(C1), 483-492, doi: 10.1029/JC087iCOlp00483. 

Guza, R. T., and E. B. Thornton (1985), Observations of surf beat, J Geophys. Res., 
90(C2), 3161-3172, doi:10.1029/JC090iC02p03161. 

Haller, M. C., and D. R. Lyzenga (2003), Comparison of radar and video observations of 
shallow water breaking waves, IEEE Trans. Geosci. Remote Sens., 41(4), 832-844. 

Hanson, J. L., H. C. Friebel, and K. K. Hathaway (2009), Coastal wave energy 
dissipation: observations and STWAVE-FP performance, 11-th International Workshop 
on Wave Hindcasting and Forecasting, Halifax, NS, 18-23 October. 

Holland, K. T. (200 I), Application of the linear dispersion relation with respect to depth 
inversion and remotely sensed imagery, IEEE Trans. Geosci. Remote Sens., 39(9), 2060-
1072, doi: 10.1109/36.951097. 

Holland, K. T., and R. A. Holman (1999) Wavenumber-frequency structure of 
infragravity swash motions, J Geophys. Res., 1 04(C6), doi: 10.1 029/1999JC900075. 

Holland, K. T., R. A. Holman, T. C. Lippmann, J. Stanley, and N. Plant (1997), Practical 
use of video imagery in nearshore oceanographic fieldstudies, IEEE J Oceanic Eng., 
22(1), 81-92. 

Holland, K. T., B. Raubenheimer, R. T. Guza, and R. A. Holman (1995), Runup 
kinematics on a natural beach, J Geophys. Res., 100(C3), 4985-4993. 

Holland, K. T. (1998), Beach cusp formation and spacings at Duck, USA, Cont. Shelf 
Res., 18(1 0), I 081-1098. 

Holman, R. A., A. H. Sallenger, T. C. Lippmann, and J. W. Haines (1993), The 
application of video image processing to the study of nearshore processes, 
Oceanography, 6(3), 78-85. 

Holman, R. A., G. Symonds, E. B. Thornton, and R. Ranasinghe (2006), Rip spacing and 
persistence on an embayed beach, J Geophys. Res., 111(CI), 
doi: I 0.1 029/2005JC002965. 

Irish, J. L., W. J. Lillycrop, and L. E. Parson (1996), Accuracy of sand volumes as a 
function of survey density, Proc. on the 251

h Int. Conf on Coastal Engineering, 
September 26, Orlando, vol. Ill, pp.3736- 3749. 

39 



CLARIS: Coastal Lidar And Radar Imaging System 

Irish, J., J. McClung, and W. Lillycrop (2000), Airborne lidar bathymetry: the SHOALS 
system, PIANC Bulletin, 103, 43-53. 

Irish, J. L., and T. E. White (1998), Coastal engineering applications ofhigh-resolution 
lidar bathymetry, Coast. Eng., 35(1-2), 47-71. 

Lillycrop, W. J., L. E. Parson, and J. L. Irish (1996), Development and operation of the 
SHOALS airborne lidar hydrographic survey system, SPIE Selected Papers, Laser 
Remote Sensing of Natural Waters: From Theory to Practice, edited by Victor I. Feigles 
and Yuriji. Kopilevich, St. Petersburg, Russia, vol. 2694, pp. 26-37 

Lippmann, T. C., and R. A. Holman (1989), Quantification of sand bar morphology: A 
video technique based on wave dissipation, J. Geophys. Res., 94(C 1 ), 995-1011. 

Lippmann, T. C., and R. A. Holman (1990), The spatial and temporal variability of sand 
bar morphology, J. Geophys. Res., 95(C7), 11575-11590. 

Lippmann, T. C., S. Kannan, and J. List (2004), The Relationship OfNearshore Sandbar 
Configuration to Shoreline Change, Ocean Sci. Meet. Suppl., Abstract OS32F-06, 
Portland. 

Longuet-Higgins, M. S., and R. W. Stewart (1964), Radiation stresses in water waves; a 
physical discussion, with applications, Deep Sea Res., 11, 529-529-562. 

McNinch, J. E. (2007), Bar and Swash Imaging Radar (BASIR): A Mobile X-band Radar 
Designed for Mapping Nearshore Sand Bars and Swash-Defined Shorelines Over Large 
Distances, J. Coast. Res., 23(1 ), 59-74. 

McNinch, J. E. (2004), Geologic control in the nearshore: shore-oblique sandbars and 
shoreline erosional hotspots, Mid-Atlantic Bight, USA, Mar. Geol., 211(1-2), 121-141. 

Mise lis, J. L. (2007), Nearshore morphology and lithology: links to framework geology 
and shoreline change, Ph.D. Dissertation, School ofMarine Science, William and Mary, 
Williamsburg, VA. 

Mitas, L., and H. Mitasova (1999), Spatial interpolation, Geographical Information 
Systems: Principles, Techniques, Management and Applications, Wiley, 481. 

Mitasova, H., L. Mitas, and R. S. Harmon (2005), Simultaneous spline approximation 
and topographic analysis for Iidar elevation data in open-source GIS, IEEE Geosci. 
Remote Sens. Lett., 2(4), 375-379. 

Mitasova, H., E. Hardin, M. F. Overton, and M. 0. Kurum (2010), Geospatial analysis of 
vulnerable beach-foredune systems from decadal time series oflidar data, Journal of 
Coastal Conservation,, 1-12, doi: 10.1007/s11852-010-0088-l. 

40 



CLARIS: Coastal Lidar And Radar Imaging System 

Munk, W. H., and M.A. Traylor (1947), Refraction of ocean waves: a process linking 
underwater topography to beach erosion, J Geol., 55(1), 1-26. 

Pielke Jr, R. A., J. Gratz, C. W. Landsea, D. Collins, M.A. Saunders, and R. Musulin 
(2008), Normalized Hurricane Damage in the United States: 1900-2005, Nat. Hazards 
Rev., 9(1), 29-29-42. 

Pietro, L. S., M.A. O'Neal, and J. A. Puleo (2008), Developing terrestrial-LIDAR-based 
digital elevation models for monitoring beach nourishment performance, J Coast. Res., 
24(6), 1555-1564. 

Plant, N. G., K. T. Holland, and M. C. Haller (2008), Ocean Wavenumber Estimation 
from Wave-Resolving Time Series Imagery, IEEE Trans. Geosci. Remote Sens., 46(9), 
2644-2659. 

Plant, N. G., K. T. Holland, and J. A. Puleo (2002), Analysis of the scale of errors in 
nearshore bathymetric data, Mar. Geol., 191 (1-2), 71-86. 

Ranasinghe, R., G. Symonds, K. Black, and R. A. Holman (2004), Morphodynamics of 
intermediate beaches: a video imaging and numerical modelling study, Coast. Eng., 
51(7), 629-655. 

Reniers, A. J. H. M., J. A. Roelvink, and E. B. Thornton (2004), Morphodynamic 
modeling of an em bayed beach under wave group forcing, J. Geophys. Res, 1 09(C 1 ), 
doi: 10.1 029/2003JC002083. 

Ruessink, B. G., P. S. Bell, I. M. J. van Enckevort, and S. G. J. Aarninkhof(2002), 
Nearshore bar crest location quantified from time-averaged X-band radar images, Coast. 
Eng., 45(1), 19-32. 

Ruessink, B. G., I. M. J. van Enckevort, K. S. Kingston, and M. A. Davidson (2000), 
Analysis of observed two- and three-dimensional nearshore bar behaviour, Mar. Geol., 
169(1), 161-183. 

Ruggiero, P., and R. A. Holman (2004), Wave run-up on a high-energy dissipative beach, 
J Geophys. Res, 109(C6), 1-12, doi: 10.1029/2003JC002160. 

Sallenger Jr, A. H., P. Howd, J. Brock, W. B. Krabill, R.N. Swift, S. Manizade, and M. 
Duffy ( 1999), Scaling winter storm impacts on Assateague Island, MD, VA, Proc. Int. 
Conference on Coastal Sediments 1999, New York, June 21-23, 1999. 

Sallenger Jr, A. H., W. B. Krabill, R.N. Swift, J. Brock, J. List, M. Hansen, R. A. 
Holman, S. Manizade, J. Sontag, and A. Meredith (2003), Evaluation of Airborne 
Topographic Lidar* for Quantifying Beach Changes, J Coast. Res., 19(1 ), 125-133. 

41 



CLARIS: Coastal Lidar And Radar Imaging System 

Sallenger Jr, A. H., R. A. Holman, and W. A. Birkemeier (1985), Storm-induced 
response of a nearshore-bar system, Mar. Geol., 64(3-4), 237-257, doi: DOl: 
I O.I 0 I6/0025-3227(85)90 I 07-0. 

Sallenger, A. H., C. W. Wright, K. Guy, and K. Morgan (2004), Assessing storm-induced 
damage and dune erosion using airborne lidar: Examples from Hurricane Isabel, Shore 
Beach, 72(2), 3-7. 

Sallenger, A., H. Stockdon, L. Fauver, M. Hansen, D. Thompson, C. Wright, and J. 
Lillycrop (2006), Hurricanes 2004: An overview of their characteristics and coastal 
change, Estuaries and Coasts, 29(6), 880-888. 

Setter, C., and R. J. Willis (I994), LADS--From development to hydrographic operations, 
Proc. US Hydro. Conf, THe Hydrographic Society Spec. Pub. No. 32, pp 134-139. 

Shand, R. D., P. A. Hesp, and M. J. Shepherd (2004), Beach cut in relation to net 
offshore bar migration, J. Coast. Res., . 

Stive, M. J. F. (1984), Energy dissipation in waves breaking on gentle slopes, Coast. 
Eng., 8(2), 99-I27, doi: DOl: 10.IOI6/0378-3839(84)90007-3. 

Stockdon, H. F., J. Sallenger A.H., J. H. List, and R. A. Holman (2002), Estimation of 
Shoreline Position and Change using Airborne Topographic Lidar Data, J. Coast. Res., 
18(3), 502-513. 

Stockdon, H. F., and R. A. Holman (2000), Estimation ofwave phase speed and 
nearshore bathymetry from video imagery, J. Geophys. Res., 105, doi: 
I O.I 029/I999JCOOOI24. 

Stockdon, H. F., R. A. Holman, P. A. Howd, and J. Sallenger Asbury H. (2006), 
Empirical parameterization of setup, swash, and runup, Coast. Eng., 53(7), 573-588. 

Svendsen, I. A., W. Qin, and B. A. Ebersole (2003), Modelling waves and currents at the 
LSTF and other laboratory facilities, Coast. Eng., 50(I-2), I9-45. 

Thornton, E. B., and R. T. Guza (I982), Energy saturation and phase speeds measured on 
a natural beach, J. Geophys. Res., 87(CI2), 9499-9508. 

Thornton, E. B., R. T. Humiston, and W. Birkemeier (I996), Bar/trough generation on a 
natural beach, J. Geophys. Res., 101(C5), I2097-I2I10. 

van Dongeren, A., N. G. Plant, A. Cohen, D. Roelvink, M. C. Haller, and P. Catalan 
(2008), Beach Wizard: Nearshore bathymetry estimation through assimilation of model 
computations and remote observations, Coast. Eng., 55(12), 10I6-I027. 

42 



CLARIS: Coastal Lidar And Radar Imaging System 

van Enckevort, I. M. J., and B. G. Ruessink (2003), Video observations of nearshore bar 
behaviour. Part 1: alongshore uniform variability, Cont. Shelf Res., 23(5), 501-512. 

Van Enckevort, I. M. J., B. G. Ruessink, G. Coco, K. Suzuki, I. L. Turner, N. G. Plant, 
and R. A. Holman (2004), Observations of nearshore crescentic sandbars, J. Geophys. 
Res., 109(C6), doi:10.1029/2003JC002214. 

Voulgaris, G., and M. B. Collins (2000), Sediment resuspension on beaches: response to 
breaking waves, Mar.Geol., 167(1-2), 167-187, doi: 10.1016/S0025-3227(00)00025-6. 

Wright, L. D., R. T. Guza, and A. D. Short (1982), Dynamics of a high-energy dissipative 
surf zone, Mar.Geol., 45(1-2), 41-62, doi: 10.1 016/0025-3227(82)90179-7. 

43 



CLARIS: Coastal Lidar And Radar Imaging System 

FIGURE CAPTIONS 

Figure 1. Comparison of radar and video snapshots of a nearshore wave-field during 

storm conditions. Panel A shows a single rotation image from the radar with clearly 

defined wave-forms (horizontal high-intensity, linear features). The location of the 

Argus tower is noted, and the approximate view-field of camera cl is illustrated by the 

white trapezoid. Panel B shows a video snapshot of the same area from I 0 minutes prior 

to the radar. Peak wave parameters recorded by the 8-m array (white star, panel A) at 

1000 EST were: Hs=4.1 m, Dir = 88o, Tp=13.6s. 

Figure 2. Evolution of CLARIS. Panels A through C are earlier versions of the system, 

and panel D shows the current configuration and integration of the radar, lidar, RTK

GPS, and POS-L V (motion) data. The extreme-storm vehicle platform is shown in panel 

E, and can be safely inundated in up to 1.5 m of water. 

Figure 3. Morphology metric extraction. Each radar rotation (panel A) from every radar 

stop is gridded into an alongshore/cross-shore/time grid (panel B). Morphology metrics 

are extracted by averaging cross-shore time stacks of radar intensities (panel C) through 

time, and identifying peaks, valleys, and slope changes in the cross-shore intensity profile 

(panel D). 

Figure 4. Example wavenumber calculation along a sample cross-shore profile. The 

amplitude ofthe co-spectrum is shown in panel A, with the coherence estimate shown in 

panel B. The frequency of peak coherence at each location in the cross-shore profile is 
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denoted by the black stars, and the resulting wavenumber (solid) and wavelength 

(dashed) calculation, is plotted in panel C. 

Figure 5. Example of point-cloud lidar topography. Panel A shows a wide-angle view of 

lidar data from Kitty Hawk, NC, and panel B is a zoom-in (black box, panel A) 

illustrating the detail recorded by the lidar data. 

Figure 6: Bathymetry inversion point by point error assessment. The solid black line 

represents the 1: 1 line and the dashed black lines indicate plus or minus 10%. Note the 

depth bias between - 7 and 4 m. 

Figure 7. Lidar-observed swash and inner surf-zone wave parameters. In panel A, 

incoming bores and down-rushing swash are visible in an example 7 lidar "sweeps" 

during a lidar time-series. Meaning all of the recorded lidar elevations through time (blue 

dots, panel B) enables calculation of the shoreline setup profile (magenta line, panel B). 

In addition, wave spectra (H, T) can be calculated at each location (in this case, every 10 

em) along the profile (panel C). 

Figure 8: Bathymetry inversion spatial error assessment. Swath bathymetry (panel A) 

shows more detailed features than the smoother bathymetry inversion (panel B). Percent 

error assessment (panel C) suggests the highest errors occur over the complex, steep 

features, as exemplified around 4300 m, 5800 m and 6800 m alongshore. 
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Figure 9: Morphology mosaic and extracted metrics. In panel A, a radar morphology 

mosaic is shown with objectively identified morphological features from dissipation 

peaks, as well as the crest of the outer shore-parallel bar from the swath bathymetry data 

(dash-dot line). In panel B, the morphology mosaic is interpreted based on the 

objectively identified features, and shows an inner bar merging with the swash between 

-5200 m alongshore and 7300 m alongshore. In panel C, two example morphology 

metrics, #of offshore bars (blue stars) and inner surf-zone width (red line), are plotted. 

Figure 10: Seamless topography and bathymetry. Merged lidar and bathymetry data from 

Kitty Hawk, NC are shown in panel A, with lidar point-cloud data overlaid. 

Morphological features such as an inner, outer, and shore-oblique bar are visibile in the 

cross-shore profile (A- A') shown in panel B. 
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CHAPTER2 

Storm morphodynamics at shoreline erosional hotspots: 

persistent three-dimensional morphology measured by CLARIS 

Manuscript citation: Brodie, KL and McNinch, JE (Accepted). Storm morphodynamics at shoreline 
erosional hotspots: persistent three-dimensional morphology measured by Coastal LiDAR and Radar 
Imaging System (CLARIS). Journal of Geophysical Research: Earth Surface, doi: 2009JF001561. 
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ABSTRACT 

During storms, conventional theory suggests shorelines and surf-zones linearize 
into two-dimensional forms. Shoreline hotspots interrupt this behavior, introducing 
anomalous behavior and alongshore variability in storm-induced beach erosion, and 
challenging our understanding of storm-morphodynamics. The physical processes 
driving shoreline hotspots are not well understood due, in part, to the difficulty of 
observing them during high-energy conditions with traditional in-situ surveying methods. 
This work presents semi-daily (dt = 12 hours) observations of shoreline hotspots along 10 
km of coastline on North Carolina's Outer Banks during a storm (Hsig,&m > 3 m) using 
Coastal Lidar And Radar Imaging System, CLARIS. CLARIS couples X-Band radar 
with a 3D terrestrial laser scanner, providing observations of beach topography and 
nearshore bathymetry from radar-derived wave celerity measurements. In addition, the 
Steady-State Spectral Wave Model, STW AVE, is used to model wave transformation 
during the storm. We demonstrate that three-dimensional shoreline, shore-parallel bar, 
and nearshore morphologies persist through the storm, and as a result wave dissipation is 
also alongshore variable. The shape of the beach and outer shore-parallel bar mirror the 
nearshore bathymetry, with the curvature of shoreline perturbations an order of 
magnitude smaller than bathymetry perturbations. We propose that the shoreline is 
morphologically coupled to nearshore bathymetry by hydrodynamic feedbacks induced 
by wave transformation over geologically controlled, persistent features. Gradients in 
wave height, direction, and radiation stress are strongest during shore-parallel swell 
conditions due to oblique nearshore contours, and may induce convergent and divergent 
longshore transport or 2D circulation that enhances shoreline morphology and focuses 
erosion. 
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1. INTRODUCTION 

The morphological evolution of beaches and surf-zones has been the topic of 

many studies [e.g. Wright and Short, 1984; Lippmann and Holman, 1990], and as such, 

down-state morphology evolution during calm conditions is well understood and modeled 

[Ranasinghe et al., 2004]. A lack of observations during storms, when beaches and surf

zones become high- energy dynamic environments, has created a reliance on "pre" and 

"post" storm data in the analysis of storm-response of the coastal system. A common 

observation for event-response of the nearshore system is that three-dimensional features, 

such as crescentic or transverse bars in the surf-zone and cusp features on the shoreline, 

are smoothed or "reset" into linear forms post-storm [Wright and Short, 1984; Lippmann 

and Holman, 1990; Ruessink et al., 2000; Van Enckevort et al., 2004]. Despite this 

storm-driven linearization, there is growing evidence that pre-storm alongshore-variable 

beach or nearshore morphology may leave certain areas of the coastline more susceptible 

to erosion, perhaps contributing to the existence of shoreline hotspots [Sallenger Jr, 2000; 

McNinch, 2004; Schupp et al., 2006; Stockdon et al., 2007; Thornton et al., 2007; Houser 

et al., 2008]. Here we explore the relationship between shoreline morphology and 

complex nearshore bathymetry, and the apparent persistence of these features at a 

shoreline hotspot during a storm event. Specifically, we present daily, spatially extensive 

(10 km alongshore and 1 km in the cross-shore direction) observations of beach 

topography and nearshore bathymetry along a shoreline hotspot during a storm and 

investigate the observed morphological evolution with respect to modeled wave 

transformation. These data reveal a possible morphologic coupling between shoreline 

dynamics and storm-resilient, geologically controlled nearshore bathymetry that counters 
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traditional ideas of storm morphodynamics. Namely, we demonstrate ( 1) the persistence 

of three-dimensional morphology during storms; (2) the development of a complex wave

field during low-angle waves; and (3) a spatial coupling between nearshore bathymetry 

and shoreline morphology that is likely driven by self-organized flow patterns forced by a 

bathymetric template. 

Shoreline hotspots are regions of coastline that experience excessive erosion or 

accretion during storms, and thus are characterized by anamolously high shoreline change 

rates (see McNinch, 2004 for a complete description of types of hotspots). While some 

shoreline hotspots, such as those located near engineering structures [see Kraus et al., 

2001], inlets [Dean and Work, 1993; Fenster and Dolan, 1996], or certain bathymetric 

irregularities such as borrow-pit holes [Bender and Dean, 2004; Benedet and List, 2008] 

are well understood, hotspots that occur along relatively straight, un-interrupted 

shorelines [McNinch, 2004; Fenster and Dolan, 1993; Kraus and Galgano, 2001; List et 

al., 2006], are an example of a type of alongshore-variable storm response that can not 

yet be predicted by physics-based models. Extensive field work along the Outer Banks 

of North Carolina and southern Virginia has spatially correlated shoreline hotspots with 

nearshore shore-oblique sandbars and troughs, nearshore heterogeneous sediment 

deposits, and underlying paleo-channels [McNinch, 2004; Schupp et al., 2006; Browder 

and McNinch, 2006; Miselis, 2007], but the morphodynamics explaining the cause of 

these hotspots are still unknown. In fact, it is still unclear whether the associated 

irregular bathymetry persists throughout storms, thus altering the storm wave field and 

influencing surf-zone dynamics, or whether it is smoothed and reforms post-storm 

[McNinch and Miselis, 2009]. This work is motivated in large part to measure nearshore, 
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surf-zone, and shoreline morphology at a shoreline hotspot during storms to test whether 

irregular morphology may persist through storms and if the nearshore and shoreline 

remain coupled. 

Specific objectives of this paper are to: (1) measure the evolution of shoreline 

morphology and nearshore bathymetry at an erosional hotspot during a storm; and (2) 

identifY the morphodynamic relationship between the morphology and hydrodynamics 

that drive this evolution. We hypothesize that: (1) three dimensional nearshore 

bathymetry and shoreline morphology persists during storms, and (2) wave 

transformation over the irregular bathymetry leads to alongshore gradients in wave 

height, direction, and dissipation that influence shoreline response. We use remote 

sensing technologies, specifically the simultaneous collection of terrestrial LiDAR and 

radar data from CLARlS, Coastal LiDAR And Radar Imaging System [Chapter 1, this 

dissertation], to investigate the evolution of the entire nearshore system along a shoreline 

hotspot daily over the course of a storm event. We then use the STeady-state spectral 

WAVE model Full-Plane version, STWAVE-FP, [Smith et al., 2001; Smith and 

Sherlock, 2007] to model wave transformation during the observed storm over the 

nearshore bathymetry of the erosional hotspot. In the following section, we present 

background on general theories of storm-event nearshore morphodynamics and alongshore

variable beach morphology. We then present details on the field site and the observed storm 

event, as well as describe the methodologies used in the study, including a brief description 

of CLARIS methodology and an evaluation of the wave model. Results are divided between 

CLARIS-derived field observations of morphology and modeled wave transformation. In the 

discussion, we present an analysis of the observed nearshore, surf-zone, and shoreline 
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morphology and use the wave-modeling results to propose ideas relating to hydrodynamic 

gradients driving the observed storm morphodynamics. 

2. BACKGROUND 

2.1 Surf-Zone Morphodynamics 

On intermediate beaches, the morphology of the surf-zone is widely documented 

to rapidly evolve from three-dimensional bar configurations to two-dimensional shore

parallel forms, often termed "reset" events, when exposed to high energy waves [e.g. 

Lippmann and Holman, 1990; Ranasinghe et al., 2004; Van Enckevort et al., 2004]. 

Many field and modeling studies have therefore focused on understanding and predicting 

the 2-D, wave-driven, cross-shore movement of sediment and sandbars in response to 

storms [Aubrey, 1979; Birkemeier, 1984; Roelvink and Bmker, 1993; Thornton et al., 

1996; Gallagher et al., 1998; Elgar et al., 2001; Plant et al., 2001; Hoefel and Elgar, 2003; 

van Rijn et al., 2003; Ruessink et al., 2007]. A common conceptual model for the 2-D 

event response of the nearshore system is that shoreline erosion and offshore movement 

of the shore-parallel bar during storms is closely followed by post-storm shoreline 

accretion and onshore shore-parallel bar movement [Aubrey, 1979; Birkemeier, 1984; 

Lee et al., 1995]. Sub-aerial beach erosion during storms is often attributed to elevated 

water levels allowing storm waves to flatten steep beach faces [Komar, 1998]. The 

offshore movement of the shore-parallel bar is driven by cross-shore gradients in 

suspended and bedload sediment transport caused by intensified undertow at or just 

shoreward of the bar due to concentrated breaking of large storm waves over the bar 

[Thornton et al., 1996; Gallagher et al., 1998; Ruessink et al., 2007]. The cause of post

storm accretion and onshore bar migration is attributed to asymmetries in wave orbital 
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velocity or acceleration beneath non-linear shoaling swell waves during calm conditions 

[Elgar et al., 2001; Hoefel and Elgar, 2003; Ruessink et al., 2007; Bowen, 1980]. Others 

have suggested that horizontal flow patterns associated with the return to three

dimensional bar configurations under low energy conditions may drive some of the 

onshore bar movement un-modeled by purely two-dimensional, cross-shore transport 

models [Plant et al., 2006]. 

While the direction of sandbar movement during storms is well understood, the 

mechanisms driving linearization of the shore-parallel bar (and shoreline) remain 

speculative, and modeling attempts at these "upstate" transitions are rare (an extensive 

literature search produced only one example: Smit et al. [2005]). Lippman and Holman 

[1990] note that transitions to linear forms can occur in less than one day following 

increases in wave energy associated with storms, and many others have also attributed 

upstate bar linearizations to high wave energy [Ranasinghe et al. 2004; Van Enckevort et 

al., 2004; Castelle et al., 2007]. Strong alongshore currents derived from high-angle 

waves during the building portion of storms may help smooth three-dimensional bar 

configurations into two-dimensional forms [Sonu, 1973; Komar, 1998; Lafon et al. 

2005], often creating deep, continuous troughs between bars and the shoreline [Senechal 

et al., 2009]. In contrast, straightening of crescentic bars under shore-normal waves has 

also been observed by Van Enckevort et al. [2004] and Castelle [2007], suggesting 

mechanisms other than alongshore currents may also be important. While the physical 

processes driving surf-zone linearization may still be unclear, consensus is that sandbar

linearization is expected during high-wave storm conditions. 
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2.2 Three-Dimensional Shoreline Shapes 

The nearshore is inherently a three-dimensional system, in which cross-shore 

undertow and rip currents, alongshore littoral drift, wave orbital currents, and vertical 

turbulent mixing all combine to create spatial gradients in sediment transport that shape the 

beach and the surf zone. Three-dimensional shapes on the beach, presumably built by these 

complex circulation patterns, have been observed at many different spatial and temporal 

scales and can range from beach cusps to alongshore sand waves. At the smallest scale, 

foreshore rhythmic beach cusps with alongshore length scales of 5 to 50 m and cross-shore 

excursions of 5 to 10 m, can persist from days to months [Holland and Holman, 1996]. At 

the next largest scale, megacusp/embayment features, thought to be related to rip currents and 

rhythmic alongshore bars, have alongshore length scales on the order of 1 OOs of meters with 

cross-shore excursions up to 50 m, and also persist from days to months [Wright and Short, 

1984; Lippmann and Holman, 1990; Thornton et al., 2007]. Arrhythmic megacusps with 

alongshore length scales of 100 to 2000 m and cross-shore excursions of up to 100 m can 

persist for much longer time scales (days to several years) and are poorly understood [Dolan, 

1971]. Finally, alongshore sand waves, with alongshore length scales of 2 to 6 km and cross

shore excursions of up to 200 m, can persist from months to decades and often slowly 

migrate alongshore [Stive et al., 2002]. 

With the exception of small-scale beach cusps and np current related 

megacusp/embayments, little research has focused on analyzing how the larger-scale three

dimensional features evolve through storms. Their presence and evolution is significant, 

nevertheless, as it can drastically alter the apparent width of the beach and shape of the 

shoreline, potentially making certain areas more susceptible to wave setup and erosion during 

storms. For example, Thornton et al. [2007] showed that along the coast of southern 

Monterey Bay in California, dune erosion is significantly pronounced behind large rip-
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current related shoreline embayments, due to the swash of large storm waves covering the 

narrow beach associated with the embayment and colliding with the dune base. In addition, 

they note that these large scale features (order of magnitude - 200m) are often straightened 

during storms through both erosion of the megacusp horns and filling of the embayments 

(Thornton et al., 2007). 

3.0 STUDY AREA 

3.1 Field Site 

This work is conducted along a -10 km region of the northern Outer Banks of North 

Carolina from northern Kill Devil Hills north to Kitty Hawk (Figure 1 ). The Outer Banks are 

a long, linear series of wave-dominated [Hayes, 1979], microtidal barrier islands that stretch 

-200 km along the Atlantic Ocean and front the Currituck, Albemarle, and Pamlico Sound 

estuaries. The storm season traditionally occurs during the fall, winter, and early spring and 

is characterized by frequent extratropical storms, colloquially known as Nor'easters [Lee et 

al., 1998]. Tropical storms and hurricanes can affect the area during the late summer and 

early fall. Storms events, defined as waves > 2 m for > 8 hours, are characterized by average 

maximum wave heights of 3.1 m with a standard deviation of 0.85m (from 1987 to 2008, 

http:/h.vww.frf.usace.army.millstorms.shtml). Lee et al. [1998] have shown that successive 

storm events can have a large impact on beach and surf-zone morphology and play an 

important role in meso-scale (year to decade) cross-shore profile evolution on the northern 

Outer Banks. Analysis of long-term (decadal) shoreline change data and bathymetric surveys 

along the Outer Banks have identified areas in the nearshore with high bathymetric relief, 

characterized by shore-oblique sand bars and troughs, that spatially correlate with areas 
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experiencing anomalously high decadal shoreline-change rates and underlying geologic 

features such as paleo-channels [McNinch, 2004; Browder and McNinch, 2006]. 

This specific portion of the northern Outer Banks (Figure 1) is chosen for this study 

because of its classification as a decadal shoreline erosional hotspot with atypical nearshore 

bathymetry: a series of shore-oblique bars and troughs extend from -500 m offshore in 4 m 

water depth to -1000 m offshore in 14 m of water depth [McNinch, 2004]. The locations of 

the shore-oblique bars and troughs are spatially correlated with areas on the shoreline that 

exhibit high long-term and short-term shoreline change rates [Schupp et al., 2006]. 

Nearshore sediments are vertically and horizontally heterogeneous [Miselis, 2007], with 

muddy-gravel deposits found in the trough features of the shore-oblique bar-field. The 

muddy-gravel deposits are exposed fluvial infill of the Paleo-Roanoke River Valley, which 

suggests that underlying geology is influencing modern day coastal morphodynamics in this 

region [Browder and McNinch, 2006; Schupp et al., 2006]. Analysis of short-term (event

scale) shoreline change data suggests that portions of this region exhibit reversing-storm 

hotspot behavior, wherein high erosion is closely followed by high accretion in days to weeks 

after the storm [List et al., 2006a]. Longer-term (decadal) shoreline change data indicate that 

the region is also an erosional hotspot, having an average annual retreat rate of -2 m yr-1 

[Benton et al., 1997]. 

3.2 Reference Line 

All data are transformed to a local alongshore/cross-shore reference coordinate 

system based on a reference line that begins at (905,296.743 m NC State Plane Easting, 

266,063.982 m NC State Plane Northing) and trends -150 degrees true north along the 

general angle of the coastline (Figure 1). Alongshore coordinates increase to the 
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southeast, and cross-shore coordinates increase in the offshore direction. The reference 

coordinate system allows for easy analysis of alongshore and cross-shore trends, 

alignments, and distances between features, as well as aids in identifying three

dimensional features that often have small cross-shore amplitude to alongshore 

wavelength ratios. 

4.METHODS 

4.1 Storm Event & CLARIS Surveys 

The studied storm is a Nor'Easter that occurred from 15 April2009 to 18 April 2009. 

The storm produced significant wave heights >2m for- 37 hours in 8 m of water, peaking 

on 16 April 2009 at 3.4 m. Reported wave parameters were observed at the 8-m array 

located at the U.S. Army Corps of Engineer's Field Research Facility (FRF) in Duck, NC, 

approximately 10 km north of the study site. 

The field site was surveyed with CLARIS every 12 hours during the storm, resulting 

in 6 surveys (Figure 2). CLARIS is a mobile, remote-sensing tool that couples X-Band 

Radar with a 3D Terrestrial Laser Scanner (Figure, 3). CLARIS surveys provide 

bathymetry estimates from radar-measured wave celerity (accurate to within+/- 10% of the 

water depth), morphology maps of the nearshore from time-averaged radar intensities 

(similar to time-averaged Argus images), and topography of the beach and dune from 

terrestrial scanning lidar (accuracy of +/- 10 em). For details on specific CLARIS 

methodology, including operation and data manipulation, please refer to Chapter 1. The 

CLARIS surveys provided beach topography and morphology data for all surveys and 

bathymetry data for 3 surveys ( 16 April AM survey, 16 April PM survey, and the 17 April 

AM survey). A lidar-only CLARIS survey was also collected on 28 April2009 to document 
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the post-storm recovery of the beach. Specific details on CLARIS-observed data are 

presented below. 

4.1.1 CLARIS- Lidar Data Analysis 

After editing to remove waves, people, and other data artifacts, the lidar data are 

gridded in IVS Fledermaus 7.1 using a weighted moving average (1 m grid, 1 m weight). 

The mean-high-water (MHW) shoreline is contoured for each survey (herein referred to as 

"the shoreline"), and is used to analyze morphology during the storm. The shoreline is first 

smoothed using a 200-m running averaged to remove small-scale undulations and 

morphology, such as beach cusps. Similar to Lazarus and Murray [2007], we use the 

curvature, K, of the smoothed MHW shoreline to identify large scale three-dimensional 

morphology. Convex shapes (megacusps) are defined by positive values of curvature, and 

concave shapes ( embayments) are defined by negative values of curvature: 

a2y 

8x2 

K = ---'=-=-----..,.3 

['+(:)']' 
(1) 

where x andy are alongshore and cross-shore position relative to the reference line. Zero-

crossings of curvature are then used to identify the alongshore length scales of observed 

three-dimensional features. 

Alongshore variations in mean beach slope are also investigated. To calculate mean 

beach slope, a best-fit linear regression line is fitted to each cross-shore profile of lidar data 

(spaced at 1-m alongshore) between the base of the dune and the farthest seaward extent of 
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the edited and gridded lidar data. These data are then smoothed using a 200-m weighted 

moving average for comparison with the shoreline morphology data. 

4.1.2 CLARIS- Bathymetry 

Bathymetry data from CLARIS are obtained by solving the linear dispersion 

relationship and a modified cnoidal wave theory equation for water depth [see Holland et 

al., 2001; Chapter 1, this dissertation] using radar-derived wave celerity measurements, 

called "bathymetry inversion". Root-mean-squared accuracy of the specific bathymetry 

inversion technique is +/- 11.6% of the actual water depth, with the highest errors within 

the wave breaking region (+/- 15.4%) [Chapter 1, this dissertation]. Bathymetry is 

estimated for the three during-storm surveys (environmental conditions must be such that 

waves are large and roughened by the wind in order to be adequately observed with 

CLARIS) and nearshore morphology is both visually and quantitatively assessed. Due to 

the ~ 11% error in water depth associated with the bathymetry inversion, the extraction of 

a particular isobath is difficult. To account for the uncertainty, the cross-shore location of 

a select isobath from a given survey is found by meaning the cross-shore location of 

water-depths plus or minus 10% of the select isobath every 5 m alongshore. To 

statistically analyze the morphology of the nearshore during the storm, the three 

bathymetry inversions are averaged through time and the 5- and 8-m isobaths extracted 

using the method described above. Isobath curvature is then calculated and compared 

with shoreline curvature. 

In order to statistically test relationship significance, appropriate levels of sample 

independence need to be defined. List et al., 2003, suggest that sample independence is on 

the order of -300 m in this region based on alongshore length scales of autocorrelation 

69 



CLARJS-measured storm morphodynamics 

independence. A similar test of autocorrelation decay performed on the shoreline and isobath 

data in this study find sample independence to be on the order of 500 m. As such, sample 

size is reduced from 1,928 samples (spaced at 5-m increments) to 19, making the degrees of 

freedom (do f) equal to 18 (N-1) in the alongshore direction. 

4. 1.3 CLARIS- Morphology Mosaics 

Time-averages of radar data over the nearshore create morphology maps based on 

patterns of wave dissipation in the surf-zone that are similar to time-averaged video 

images [Ruessink et al., 2002; McNinch, 2007]. In fact, Haller and Lyzenga [2003] show 

that radar is less sensitive to relict foam in the surf-zone and thus a more accurate 

measure of active wave-breaking processes when compared with video. These 

morphology maps will herein be referred to as "morphology mosaics", as information 

from multiple locations alongshore are mosaicked together into one seamless image. The 

radar morphology mosaics are then used to characterize the morphology of the surf-zone, 

where bathymetry estimates have higher error, and also to identify alongshore-variations 

in wave-dissipation patterns. 

Identification of alongshore variations in dissipation of wave energy across the surf

zone is important, as wave dissipation plays a direct role in forcing important hydrodynamic 

processes occurring in the surf-zone, such as water level and currents [Longuet-Higgins and 

Stewart, 1962; Longuet-Higgins, 1970]. In particular, the width of the surf-zone has been 

observed to scale with the alongshore spacing of rip currents, wave-setup elevation at the 

shoreline, and cross-shore transitions between the dominance of wave and wind generated 

currents, among other processes [Longuet-Higgins and Stewart, 1964; Bowen, 1969; Hino, 

1974; Symonds et al., 1982; Huntley and Short, 1992; Feddersen et al., 1998]. In these 
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studies, surf-zone width is often nebulously defined as the "zone of wave-breaking", though 

in practice it is a difficult measurement to make, particularly in complex bathymetric settings, 

as time variations in wave-height (surf beat) may occasionally induce breaking significantly 

seaward of the shore-parallel bar [Symonds et al., 1982]. Techniques for identifying surf

zone width have included calculations based on measured wave parameters and known beach 

profiles [e.g. Huntley and Short, 1992], time-averaged video images of wave dissipation 

[Conley et al., 2008], energy flux gradients [Feddersen et al., 1998], and the distance to the 

crest of the shore-parallel bar [Holman et al., 2006]. Unlike video systems, where breaking 

waves are clearly visible as white pixels, the contact between fully breaking waves and steep

shoaling waves in radar data is less obvious, making extraction of a radar intensity contour 

that corresponds to the edge of the surf-zone difficult. 

Similar to Holman et al. [2006], we use the location of the shore-parallel bar as a 

proxy for the edge of the fully-dissipating region of the surf-zone. We define the location of 

the offshore edge of the shore-parallel bar by the position of the mean 5-m isobath, as 

calculated from the bathymetry inversion. Repeated bathymetric surveys of this area during a 

two-year period coincident with this study indicate that the offshore base of the outermost 

shore-parallel bar is routinely within+/- 30 em of 5-m of water depth [Wadman et al., 2008]. 

In addition, comparisons between the bathymetry-inversion derived 5-m isobath and the 

approximate edge of radar dissipation in the morphology mosaics independently confirm 

these findings (see Figure 9, presented later in the text). Unfortunately, anomalously high 

rates of bar movement during the storm are observed, suggesting that present levels of 

uncertainty associated with the bathymetry inversion currently prevent a robust analysis of 

bar movement during the storm. For example, at the most extreme, we observe up to 100 m 

of movement of the 5-m contour in 12 hours, which is significantly higher than previously 

published rates of bar migration observed in the northern outer banks (up to~ 1 mlhr [Holman 
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and Sallenger, 1993]). Therefore, we conservatively use the mean position of the 5-m 

isobath from the three bathymetry inversions to strictly analyze alongshore variations in wave 

dissipation patterns during the storm, as opposed to attempting to quantify the temporal 

evolution of the surf-zone or bar movement. 

Other morphological features, such as the identification of shore-parallel sandbars 

and the radar-observed waterline, are objectively identified by fmding peaks (locations of 

intense wave-breaking), valleys (locations of less wave breaking such as over troughs), 

and slope changes (edges of features, such as the waterline) in cross-shore profiles of 

time-averaged radar intensity [Chapter 1, this dissertation]. 

4.2 Wave Model 

The STeady-state spectral WAVE model Full Plane version, STW A VE-FP, is 

used to model wave transformation over nearshore bathymetry during the storm event in 

order to assess spatial variations in wave height and direction (and subsequently radiation 

stress), the dominant hydrodynamic forcing mechanisms in the surf-zone. STWAVE-FP 

solves the steady-state conservation of spectral wave action along wave rays enabling the 

modeling of wave transformation (refraction, shoaling, and breaking) and wind-wave 

generation in the nearshore [Smith et al., 2001; Smith and Sherlock, 2007]. STW AVE

FP assumes a mild bottom slope with no wave reflection, a spatially homogeneous 

offshore wave-field, steady-state waves and winds (i.e. wave-generation from winds 

assumes fetch-limited or fully-developed conditions), and linear refraction and shoaling. 

STWA VE-FP is used in this study because it was recently calibrated for an optimal 

bottom friction coefficient using the FRF cross-shore wave array in Duck, NC [Hanson et 

al., 2009a]. Though STWA VE-FP attempts to improve wave modeling within the surf-
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zone through the use of a wave-steepness breaking criterion, as opposed to a simple 

depth-dependence breaking criterion, the non-linear nature of breaking waves in the surf

zone makes them difficult to model using linear wave theory, and thus wave heights 

predicted by STWAVE-FP within the surf-zone are neglected in this study. We first 

evaluate the performance of STW A VE-FP for the storm of interest at the FRF in Duck, 

NC, and then use it to model wave transformation over the irregular nearshore 

bathymetry in Kitty Hawk, NC. 

4.2.1 Model Setup 

Model setup is identical between the Duck and Kitty-Hawk field sites, with the 

bathymetry grids (both 10m x 10m resolution) the only difference in the two runs (see 

Figure 1 for model grid in Kitty Hawk, NC). The model is forced hourly at the offshore 

boundary with spectral wave and wind data from the FRF 17-m waverider buoy (note, 

wave conditions at the 17-m isobath in Duck, NC and Kitty Hawk, NC are assumed 

similar), and is run for 10 directional sweeps to ensure maximum accuracy. Water level 

data is input from the FRF pier gauge and held spatially constant across the domain. 

Bottom friction is parameterized using a spatially constant bottom friction coefficient, 

with manning's coefficient set to 0.073, as calibrated by Hanson et al., [2009a]. Given 

the heterogeneity in sediment found at the Kitty Hawk field site (rippled gravel deposits 

often exposed in the shore-oblique troughs), the assumption of spatially constant bottom 

friction may be a source of error in the model results; however, defming spatially variable 

bottom friction coefficients given gross sediment parameters is beyond the scope of this 

study. 
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4.2.2 Model Performance: Duck, NC 

STW A VE-FP is evaluated at the FRF in Duck, NC using observations from the 

cross-shore wave array [Hanson et al., 2009a]. The cross-shore wave array features a 

suite of A WACs and waveriders located at varying depths across the inner shelf and 

nearshore from 5 to 26m water depth. For this study, data from the 5-m, 6-m, 8-m, and 

11-m A WACs are used to evaluate the performance of STW A VE-FP. A comparison of 

the model wave spectra and time series of peak wave height and period at the 5-m 

AWAC during the building stage of the storm can be found in Figure 4. STWAVE-FP's 

performance is quantitatively evaluated using Interactive Model Evaluation and 

Diagnostic System (IMEDS) v2.6 [Hanson et al., 2009b; Hanson and Devaliere, 2009] 

which computes normalized performance scores (PS) at each station (location of 

observational data) based on error metrics such as root-mean-square-error, bias, and 

scatter index. PS are combined across error metrics using a weighted average based on 

sample size. The resulting normalized scores for model performace range from 0 (totally 

uncorrelated with observations) to 1 (perfect agreement with observations). PS are 

computed for each wave component (wind-wave, mature swell, young swell, etc.) and its 

attributes (e.g. height, period, and direction), as well as for the full spectrum. 

Overall model performance, based on comparisons at the 5-, 6-, 8-, and 11-m 

AWAC, is 0.9, signifying that the errors were only within 10% ofthe means. Across all 

stations for the full spectrum, the model is better at predicting wave period and direction 

(PS of 0.93 and 0.92 respectively), than wave height (PS of 0.87). In addition, model 

predictions at all stations for wind-sea height and period (PS of0.78 and 0.9 respectively) 
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are worse than those of the swell height and period (PS of 0.89 and 0.94 for the mature 

swell and PS of 0.82 and 0.95 for the young swell). 

Model performance for wave height is lowest at the 5-m A WAC (0. 79) with 

STW AVE under predicting wave height across the spectrum on average by 0.29 m, with 

an rms error of 0.36 m. A detailed analysis of the 5-m A WAC model/observation 

comparison follows, as this is close to the region where wave parameters are analyzed in 

Kitty Hawk. Wave height is more poorly predicted for the wind-sea component at the 5-

m AWAC (PS = 0.69, bias = -0.53 m) when compared with the swell components (PS = 

0.85, bias= -0.16 m for young swell and PS = 0.89, bias= 0.09 m for mature swell). 

Errors are highest during the building and falling portions of the storm, with peak wave 

height errors reaching > - 0.60 m five times during the storm (see light blue shading, 

Figure 4C). The errors during the building phase of the storm are expected as strong 

onshore winds and short period wind-waves caused breaking, a very non-linear process, 

to dominate wave transformation at the 5- and 6-m A WACs [J.L. Hanson, unpublished 

data, 2009]. During the falling portion of the storm, light offshore winds and longer 

period swell produce cleaner wave conditions with shoaling dominating the wave 

transformation [J.L. Hanson, unpublished data, 2009]. Since STWA VE has been shown 

to perform well during swell-dominated clean conditions such as these [Hanson et al., 

2009a], the errors are somewhat unexpected, and may be improved by using a lower 

bottom friction coefficient within the shallower regions [J.L. Hanson, personal 

communication.]. 

Despite these errors, the overall model performance score of 0.9 suggests that 

STW AVE is well suited for the modeling of this storm, with the realization that wave 
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heights may be under-predicted close to shore during some portions of the storm. As 

such, we proceed with application of the model to the Kitty Hawk field site. 

4.2.3 Model Outputs 

Model results at Kitty Hawk are analyzed with respect to spatial distributions in 

peak wave parameters, specifically: zero-moment wave height (Hmo), peak wave period 

(Tp), and mean wave direction (cxm). These parameters are output from STWA VE-FP at 

each grid node for each model time step (in this case, hourly), during the storm. In 

addition, STWAVE-FP calculates the radiation stress tensors: Sxx, Sx;,, and S.lJ'' using 

linear wave theory and integrating through the spectrum (see Smith et al., [2001] for 

equations). Pertinent gradients in radiation stress are then calculated and summed to 

provide the total stress exerted by the waves in both the alongshore (eqn, 2a) and cross-

shore ( eqn. 2b) directions: 

as"'). as}y 
r =-+-· (2a) 

y ax ay 
as as"'). 

Tx =~+- (2b) ax ay 

S.RESULTS 

5.1 Morphology 

Morphological evolution of the beach and nearshore bathymetry during the storm, 

as observed with CLARIS, is discussed below. The shoreline morphology, nearshore 

bathymetry, and any spatial links between them are first explored, followed by a 
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presentation of the morphology of the fully-dissipating surf-zone, including shore-parallel 

bar shape. 

5. I. I Shoreline Morphology during the Storm 

Large-scale megacusps and embayments are observed along the MHW shoreline 

during every survey, including the pre-storm, during-storm, and post-storm surveys 

(Figure 5A). The megacusps and embayments are defined by zero-crossings of the 

shoreline curvature (Figure 5B) where values of positive curvature correspond to convex 

shapes (megacusps) and values of negative curvature correspond to concave shapes 

(embayments). The alongshore width of the individual features, defined as the distance 

between zero-crossings in the curvature, range in size from -4 70 to 1000 m wide, 

averaging -690 m and are arrhythmic. The wavelengths of the megacusp/embayment 

pairs, defined as the distance between every-other curvature zero crossing, range from 

1090 m to 1730 m, with an average of 1440 m, and thus are much larger than common 

rip-current embayment or crescentic bar related features, which scale on the order of 1 Os 

to lOOs ofm [e.g. Sonu, 1973; Wright and Short, 1984; Walton Jr., 1999; Thornton et al., 

2007]. The megacusps and embayments begin at -3500 m alongshore and are most well 

defined up to -7000 m alongshore, although two poorly defmed megacusps are observed 

along the remaining 3 km of the study site. Shoreline curvature changes negligibly along 

the three most well-defined megacusps and embayments during the storm, showing no 

apparent straightening of the coast during this storm. 
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5.1.2 Nearshore Bathymet1y during the Storm 

The previously-observed shore-oblique bar and trough features in this region 

[McNi~ch, 2004; Browder and McNinch, 2006; Schupp et al., 2006; Miselis, 2007] are 

present in the pre-storm swath survey (Figure 6A) and in all of the bathymetry inversions 

during the storm (Figure 6B to D). Similar to the megacusp and embayment features, the 

shore-oblique bars and troughs are arrhythmic and present in the study site between 

-3500 m alongshore and -10,000 m alongshore, with the three most pronounced troughs 

lying between -3500 and 7000 m alongshore. The troughs trend obliquely into the 

shoreline at an angle of -45 degrees to the coast. They are narrower onshore at their 

heads and broaden offshore. Using the same convention as the shoreline, the length scales 

of the shore-oblique bars are investigated using the curvature of the mean 5-m isobath. 

The mean width of the individual bars and troughs alongshore, is -700 m, ranging in 

width from 500 m to 1100 m, and the wavelengths of the bar/trough pairs range from 

1100 m to 1900 m with a mean of 1400 m. For a more thorough description of these 

features, see Miselis [2007]. 

5.1.3 Morphological Links between Nearshore Bathymetry and Shoreline Mmphology 

Similarities are observed in the shape of the complex nearshore bathymetry and 

shoreline morphology during the storm (Figure 7 A and B), such that the shoreline 

megacusp and embayment features align with the nearshore shore-oblique bars and 

troughs, respectively. Specifically, a cross-correlation of mean shoreline curvature with 

the curvature of the mean 5- and 8-m isobath produces significant results at the 95% 

confidence interval or higher: R=0.69 at a lag of 15 m, p-value = 0.01, dof=18; and 
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R=0.50 at a lag of 280m, p-value = 0.05, dof=l8 respectively (Figure 7C and D). The 

positive correlation coefficient indicates that where the shoreline curvature is convex (or 

concave) the nearshore isobaths are also convex (or concave), with a lag that increases in 

the offshore direction, consistent with the oblique nature of the nearshore features. 

Curvature amplitudes are an order of magnitude larger for the nearshore isobaths than for 

the shoreline. 

Alongshore variations in the mean beach slope between the dune and waterline 

are also observed (Figure 8A), and investigated with respect to shoreline morphology 

(Figure 8B). Mean beach slope ranges from as flat as 2.2 degrees on the megacusp at 

~3800 m alongshore to as steep as 8.2 degrees in the northern region of the study site 

(~2500 m alongshore). Within the most well-defmed shore-oblique bar/trough and 

megacusp/embayment region (between 3000 m and 7500 m alongshore), a statistically 

significant relationship exists between shoreline curvature and mean beach slope such 

that megacusps are generally flatter, and embayments are steeper (~=0. 72, dof = 8, p

value = 0.04, Figure 8C). 

5.1.4 Surf-Zone Morphology 

In addition to the shore-oblique features, shore-parallel bars are present 

throughout the length of the study site, and are identified by peaks in radar intensity 

offshore of the shoreline/swash peak (Figure 9A). The radar image is interpreted in 

Figure 9B, with locations of high wave dissipation (bars and swash) shaded in white and 

locations of low wave dissipation (troughs and offshore) shaded in blue. 
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In the northern portion of the study site, two shore-parallel bars are present- peak 

dissipation over the inner bar is roughly 75 m offshore of the shoreline and peak 

dissipation over the outer shore-parallel bar is ~225m offshore of the shoreline. Between 

~4300 m and ~5300m alongshore, the inner bar moves closer to the shoreline, and is only 

separated from the swash by ~50 m. South of 5300 m, wave dissipation over the inner 

bar appears to merge with wave dissipation in the swash suggesting the inner bar has 

either welded to the shoreline or is close enough that wave dissipation does not decrease 

in the trough between the bar and shoreline. The inner bar moves back offshore under 

A val on pier, merging briefly again between -7800 m and ~8200m, and then remains 

offshore throughout the remainder of the study site. The outer shore-parallel bar is 

continuous throughout the study site and has obvious landward kinks where the shore

oblique troughs extend closer to the beach (Figure 9A, B). This three-dimensionality of 

the shore-parallel bar persists throughout the storm, with the morphology mosaics 

yielding dissipation patterns and shapes very similar to Figure 9A during all of the storm 

surveys. Also shown in Figure 9A is the good agreement between the 5-m isobath from 

the bathymetry inversion and the radar morphology mosaic representation of the outer 

edge of the fully-dissipating region. 

The cross-shore distance between the mean radar-observed waterline and mean 5-

m isobath, used as a proxy for the width of the fully-dissipating region, varied 

significantly alongshore during the storm (Figure 9C). This region of wave dissipation 

was widest where shore-oblique bars were present (up to 340 m wide) and narrowest 

onshore of the shore-oblique troughs (down to 220m wide). 
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5.2 Wave Model 

The results of STW A VE-FP for the storm in Kitty Hawk show significant 

alongshore variations in wave height (Figure lOA) and wave direction (Figure lOB), and 

subsequently in along- and cross-shore gradients of radiation stress (Figure 1 OC and D, 

respectively), as the waves transform over the irregular bathymetry during the storm. 

Alongshore variations in wave height, direction, and radiation stress gradients are 

explored along a shore-parallel strike line just outside the surf-zone (500 m offshore, 

solid thick black line in Figure 10). Alongshore variations in cross-shore gradients of 

radiation stress are also explored just inside the surf-zone, along the thick dashed line in 

Figure lOD. To identify temporal patterns in the alongshore-variations, hourly time

stacks of wave height and wave direction along this strike line are plotted (Figure llA 

and B, respectively), and analyzed with respect to peak wave parameters at the seaward 

boundary in 17-m of water depth (Figure llC -D). Due to the highly oblique waves 

during the building portion of the Nor'Easter, strong edge effects are observed in the 

northern portion of the model domain, and as such analysis is restricted to the southern 

-6000 m of the domain. Some of these edge effects may be negated in the future by 

using nested grids. 

5.2.1 Alongshore Variations in Wave Height 

Wave height varied alongshore during the storm, with higher waves observed on 

the crests of the shore-oblique bars (Figure 1 OA), at roughly 3500 m, 4500 m, 6000 m, 

7000m and 8500 m alongshore (Figure llA). To analyze the temporal evolution of the 

alongshore variations in wave height, the range and standard deviation in wave height 
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alongshore are also calculated along profile a-a' during the storm (Figure liE). Wave 

height is defined as significantly alongshore-variable when the range in wave height 

alongshore is > 0.50 m and the standard deviation in wave height alongshore is > 0.1 m. 

These conditions occur when wave height at the seaward boundary exceeds 1 m (between 

the pink lines in Figure llA,C, and E). During this period, standard deviation and range 

in wave height alongshore are greatest during the building period of the storm, when 

waves are characterized as short period and high angle (from the start of the storm until 

16 Apr at 12 pm). 

5.2.2 Alongshore Variations in Wave Direction 

Alongshore variations in wave direction, specifically the convergence (yellow

white-blue transitions) or divergence (blue-white-yellow transitions) of wave direction 

relative to alongshore, are observed along the axis of the shore-oblique bars and troughs 

(Figure lOB). Divergence is observed at roughly 4000 m, 5500 m, 6800 m, 8000 m, and 

8500 m alongshore, where as convergence is observed at -4500 m, 5800 m, 7000 m, and 

8300 m alongshore (Figure liB). These convergence/divergence patterns do not occur 

until 16 Apr at 12 pm (solid green line in Figure liB through E), just before the peak of 

the storm, which coincided with the transition to both long-period swell (dash-dot line, 

Figure llC) and shore-normal waves (Figure liD). 

5.2.3 Alongshore Variations in Radiation Stress 

Convergences and divergences in the direction of alongshore gradients in 

radiation stress are denoted in Figure 1 OC by the transition from red-white-blue and blue-
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white-red, respectively. Convergences in the alongshore radiation stress gradients are 

seen on the crest of the shore-oblique bars at roughly 3500 m, 4500 m, 5800 m, 6800 m 

and 8200 m alongshore, where as divergence is seen at 4000 m, 5500 m, and 6500 m 

alongshore in the shore-oblique troughs, during the peak of the storm. Spatial gradients 

in cross-shore radiation stress are also apparent in Figure lOD. Onshore directed 

gradients in radiation stress indicate zones of decreasing wave height, usually due to 

wave breaking, where as offshore gradients in radiation stress indicate zones of 

increasing wave-height, usually due to wave shoaling. Thus, the most striking feature in 

the spatial distribution of cross-shore radiation stress gradients, occurs on the edge of the 

fully-dissipating surf-zone region (transition from dark blue to red at roughly 400 m 

offshore in Figure lOD), where stress gradients abruptly change from offshore to onshore 

with the onset of wave breaking. 

6. DISCUSSION 
6.1 Three-Dimensional Morphology 

Though the coastal zone has historically been studied as a two-dimensional 

system [e.g. Aubrey, 1979; Birkemeier, 1984; Roelvink and Bmker, 1993; Thornton et al., 

1996; Gallagher et al., 1998; Elgar et al., 2001 ], the ubiquity and importance of complex, 

three-dimensional morphology in the shoreline, surf-zone, nearshore, and inner-shelf is 

now widely recognized [e.g. Lippman and Holman, 1990; Ruessink et al., 2000; 

McNinch, 2004; Murray and Thieler, 2004; Van Enckevort et al., 2004; Plant et al., 2006; 

Thornton et al., 2007]. In fact, a growing body of literature exists that correlates regions 

with complex bathymetry and heterogeneous sediment in the nearshore and inner shelf 

with regions of elevated shoreline change along barrier islands, particularly along the east 
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and gulf coasts of the United States [McNinch, 2004; Schupp et al., 2006; Houser et al., 

2008; Everts et al., 1983; Riggs et al., 1995; Schwab et al., 2000; Harris et al., 2005]. 

Speculations about the physical processes driving these spatial correlations assume that 

the complex, three-dimensional bathymetric features persist during storm events, causing 

wave refraction, and ultimately gradients in sediment transport that drive alongshore 

patterns of focused erosion at the shoreline [McNinch, 2004; Schupp et al., 2006; Houser 

et al., 2008], similar to the more often studied borrow-pit associated erosional hotspots 

[Bender and Dean, 2004; Benedet and List, 2008; Benedet et al., 2007]. While deeper, 

shoreface attached sand-ridge systems have been shown to persist on long time scales 

[Swift et al., 1972; Swift, 1981; McBride and Moslow, 1991; Ca1vete et al., 2001], 

observations of shallower nearshore and surf-zone features during storms are difficult to 

obtain, and as such, the first assumption of this conceptual idea has remained un-tested 

until this point. In fact, traditional understanding of surf-zone morphodynamics during 

storms specifically contradict this idea, instead documenting the evolution of surf-zones 

and shorelines to two-dimensional, linear forms during storms [e.g. Lippmann and 

Holman, 1990; Van Enckevort et al., 2004; Ranasinghe et al. 2004]. The observations of 

storm-resilient three-dimensional shoreline, surf-zone, and nearshore morphology 

presented in this study, and discussed below, suggest a morphodynamic coupling that 

prevents both uniform longshore transport through this region and an evolution to a two

dimensional system during storms. 
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6.1.1 Persistent Nearshore Bathymet1y and Shoreline Morphology 

Despite an extensive data set consisting of over 10 years of swath bathymetry 

surveys at the Kitty Hawk, NC erosional hotspot, a lack of bathymetry data during storms 

prevented researchers from defmitively concluding whether the shore-oblique bars and 

troughs persisted through storms or whether they merely re-formed in the identical 

locations post storm [McNinch and Mise lis, In Press]. The results presented here, most 

notably in Figure 6A to D, of spatially extensive, radar-derived, during-storm bathymetry 

definitely show for the first time shore-oblique bar and trough features persisting during 

> 3-m storm waves. 

Given the order of magnitude of the errors in the bathymetry inversion (mean 

absolute error = 0.54 m; rms error = 0. 72 m) compared to the order of magnitude of the 

nearshore bathymetric relief ( -5 m from crest to trough), we are confident in the use of 

the bathymetry inversion to determine the presence of the shore-oblique bars and troughs 

through the storm. Visual comparison of both the spatially extensive bathymetric maps 

and the morphology of the 8-m isobath (Figure 6), as well as the curvature analysis of the 

mean 5- and 8-m isobath (Figure 7C), all confirm the presence of shore-oblique bars and 

troughs during the storm. The persistence of these features is unexpected, as sandbars are 

often shown to evolve and migrate during-storms [e.g. Lippmann and Holman, 1990]. 

For example, Konicki and Holman [2000] studied smaller scale transverse bars in the 

inner and outer surf-zone at Duck, NC, and observed almost constant shifting, 

destruction, and formation of the features. Migration of transverse bars was also 

observed in a modeling study during oblique waves by Ribas et al. [2003]. In addition, 

larger-scale shoreface attached ridges found in 4- 20m water depth are often observed to 
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migrate alongshore in the direction of storm-driven longshore currents [Swift, 1981; 

Calvete et al., 2001; Walgreen et al., 2003). The persistence of the surf-zone and 

nearshore bathymetric features in this study during a storm supports prior assertions that 

their location may be geologically controlled [McNinch, 2004; Browder and McNinch, 

2006]. 

The morphology of the outermost shore-parallel bar also remains constant during 

the storm and appears to mirror the nearshore bathymetry, showing landward kinks 

wherever it is intersected by the shore-oblique troughs. The persistence of the three

dimensionality of the shore-parallel bar is probably a result of the persistence of the 

shore-oblique bars and troughs-the wave breaking point is closer to shore where there 

are steep, deep troughs, and the wave-breaking point is farther offshore on the flatter, 

shallower shore-oblique bars. This creates a wider zone of wave dissipation where shore

oblique bars are present and a narrower region of wave-breaking where shore-oblique 

troughs are present (Figure 9C). The impact of consistent alongshore variations in surf

zone width, and thus alongshore gradients in dissipation, is explored briefly in section 

6.2.2 in reference to alongshore-variable water levels and surf-zone circulation. 

Persistent three-dimensional morphology is also observed in the MHW -shoreline 

within the shore-oblique bar and trough field. Several large-scale beach megacusp and 

embayment features (wavelengths ~ O(lOOOm)) are documented along the study site. 

Within the most well-defmed megacusp/embayment region, mean beach slope is 

correlated with shoreline shape (Figure 8C; R=0.72 at 0 lag, p=0.04), such that 

megacusps are generally flatter and embayments are steeper, similar to erosive rip current 

embaymentlmegacusps [Dalon et al., 2007]. The shape of the features, as defined by 
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shoreline curvature, changes negligibly during the storm, and their position also remains 

fixed. The stationary persistence of these features contradicts most other observations of 

large-scale (0(100-1000m)) megacusps, which document prominent alongshore 

migration in the direction of longshore currents [Dolan, 1971; Walton Jr, 1999; Bruun, 

1954; Sonu, 1968; Verhagen, 1989; Thevenot and Kraus, 1995; Gravens, 1999; Galal and 

Takewaka, 2008] or smoothing [Thornton et al., 2007] during storms. In addition, the 

wavelengths and arrhythmic nature of the megacusp/embayment features suggest that 

these features are not a result of random perturbations or edge-wave forced processes 

such as those that may govern the evolution of smaller scale rhythmic three-dimensional 

shoreline features [e.g. Guza and Inman, 1975; Coco and Murray, 2007]. Instead, we 

argue that these persistent shoreline morphological features are controlled by the 

persistent nearshore bathymetry, and thus indirectly controlled by underlying geologic 

features [McNinch, 2004; Browder and McNinch, 2006]. Spatial evidence of this 

morphological coupling [see Castelle et al., 2010] is presented below, and the 

hydrodynamic processes possibly responsible are explored in section 6.2. 

6.1.2 Mmphological Coupling of the Shoreline, Surf-Zone, and NearshoreBathymetry 

A clear spatial relationship exists between nearshore bathymetry and shoreline 

morphology along the field site. Shoreline morphology mimics nearshore bathymetry, 

with shoreline megacusps and embayments aligning with nearshore shore-oblique bars 

and troughs, respectively (Figure 7). The spatial alignment is demonstrated by the 

significant positive correlation in shoreline and 5- and 8-m isobath curvature (R=0.69 at a 

lag of 15m, p=0.01; and R=0.50 at a lag of280 m, p=0.05; respectively). The increasing 
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spatial lag with depth between shoreline curvature and isobath curvature is consistent 

with the oblique nature of the features (Figure 7). 

Shoreline perturbations at many scales are often associated with bathymetric 

features [e.g. Dolan, 1971; Sonu, 1973; Wright and Short, 1984; Short, 1999; Bender and 

Bean, 2004; Coco et al., 2005; Thornton et al., 2007]. The curvature analysis of map

view expressions of nearshore isobaths and the MHW-shoreline presented here suggests 

that there may be a quantifiable relationship between the size of a bathymetric 

perturbation and the resulting amplitude of the shoreline "bump" (Figure, 12). 

Specifically, shoreline curvature (KsL) is found to be significantly (R2=0.8, p<<0.001) 

related to isobath curvature ( K 5_m ), by the relationship below: 

KsL = O.l4K5-m (3) 

This relationship implies that nearshore bathymetric features must contain an order of 

magnitude larger relief to alter the wave field enough to create the shoreline perturbations 

that accompany them. 

The clear spatial alignment and persistence of the nearshore, surf-zone, and 

shoreline three-dimensional features suggests a morphological coupling along the Kitty 

Hawk erosional hotspot. The idea of morphological coupling is recently presented by 

Castelle et al., [20 1 0], as a mechanism that blurs the line between traditional "template

forcing" approaches and more recent "self-organization" mechanisms (see Coco and 

Murray, [2007] for an extensive review), as the initial hydrodynamic gradients are 

"forced" by a specific "template", but the resulting morphological evolution is "self

organized". We propose that hotspots associated with persistent, irregular bathymetry, 

such as the Kitty Hawk erosional hotspot studied here, are governed by a morphological 

88 



CLARIS-measured storm morphodynamics 

coupling in which geologically-controlled bathymetry [McNinch, 2004; Browder and 

McNinch, 2006] alters the storm wave-field (Figure 10) and forces hydrodynamic 

gradients that induce positive feedbacks between flow, sediment transport, and persisting 

morphology of the surf-zone and beach. 

6.2 Nearshore Hydrodynamics 

Wave refraction over complex bathymetry is widely documented to result in 

regions of elevated wave height over shallower features due to wave-ray convergence, 

and regions of decreased wave height over deeper features due to wave-ray divergence 

[Munk and Traylor, 1947; O'Reilly and Guza, 1993; Bender and Dean, 2003]. Wave 

modeling results from STW A VE-FP in this study expectedly show a similar development 

of alongshore gradients in wave height and direction as the waves transform over the 

bathymetry (Figure 1 OA-B). Since nearshore bathymetry is shown to be relatively static 

during the storm (Figure 6), we assume that the temporal evolution of gradients in wave 

height and direction presented in Figure 7, and resulting radiation stress gradients (e.g. 

Figure 6), are an accurate representation (within the confmes of the assumptions in the 

wave model) of wave-driven hydrodynamic forcings operating in the nearshore during 

the Nor'Easter. That is, although we do not use a bed-updating model, we believe it is 

valid to assess temporal trends in wave-driven forcing components outside of the surf

zone, where bathymetry is shown to be relatively static during the storm. 
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6.2.1 Wave Height and Direction 

Model results show higher, converging waves over shore-oblique bar crests and 

lower, diverging waves over shore-oblique troughs (Figure I 0 A,B). Interestingly, while 

gradients in wave height exist throughout the course of the storm, the initiation of the 

alongshore convergence/divergence patterns in wave direction begins just before the peak 

of the storm when the spectrum transitions from high angle wind waves to shore-parallel 

swell (Figure liB-D). While stronger refraction patterns during swell conditions are 

expected, since longer period waves interact more with the irregular bathymetry, the 

stronger refraction under shore-parallel waves is counter-intuitive, since higher angle 

waves are often thought to produce more complex wave fields [Hartog et al., 2008]. It is 

important to remember that at this site, bathymetric contours are highly oblique with 

features oriented along the dominant high angle wave approach (northeast}-not shore

parallel or square (such as borrow-pits). Therefore, low-angle, shore-parallel waves 

refracting over oblique bathymetry produce a more variable nearshore wave-field at this 

bathymetrically complex region. 

This may also explain why our results of persistent shoreline "bumps" seem to 

contrast those of Lazurus and Murray [2007], who observed long-term smoothing of the 

coastline, arguably resulting from a persistent low-angle wave climate [Ashton and 

Murray, 2006]. Here, the refraction of low-angle swell waves over oblique bathymetry 

results in spatial variations in wave height (Figure 13A) and direction (Figure 13B) that 

align with shoreline morphology (Figure 13C). Thus, instead of creating a smoothing 

effect on shoreline morphology [Ashton and Murray, 2006; Ashton et al., 2001], low

angle waves interacting with shore-oblique bathymetric features may enhance, or at the 
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very least maintain, three-dimensional shoreline morphology. This idea supports 

observations since April 2008 [Brodie and McNinch, 2008] that show shoreline 

morphology in this region is relatively static, persisting not only during storms, but also 

on seasonal time scales, even after quiescent periods (Figure 13D). Though shoreline 

mobility (patterns of erosion and accretion) is apparent in Figure 13D, it is interesting to 

note that the shoreline merely steps back and forth, preserving its shape. Clearly, more 

work is needed to identify how short-term processes (storm to seasonal) might scale-up to 

produce the decadal patterns in shoreline evolution observed by Lazarus and Murray 

[2007]. 

6.2.2 Gradients in Radiation Stress and Implications for Flow 

Spatial gradients in wave height and direction lead to spatial gradients in radiation 

stress, a tensor that describes the direction and magnitude of the wave-driven forces 

acting on the water. Gradients in the cross-shore component of the total stress exerted by 

the waves, r x , occur when wave height changes, such as during wave shoaling and 

breaking. The most pronounced feature in Figure lOD is the sharp gradient between on

and offshore directed r x at the offshore edge of the surf zone. Spatial gradients in the 

alongshore component of the total stress exerted by the waves, r Y , are also apparent 

(Figure 1 OC), with the strongest gradients occurring along the axes of the shore-oblique 

bars and troughs (Figure lOC) where waves are converging and diverging, respectively. 

Solving the balanced cross-shore and alongshore momentum equations allows for 

prediction of flow in the surf-zone and nearshore. In the cross-shore direction, gradients 

in radiation stress are balanced by pressure gradients, [Longuet-Higgins and Stewart, 
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1964], which can lead to alongshore-variations in water level and result in pressure 

(head) gradients. These head gradients, are then compared with the wave driven forces 

( r Y ), bed shear stress, and advective accelerations to calculate the magnitude and 

direction of alongshore flow. Benedet and List [2008] illustrate how un-equal balancing 

of these forces alongshore can induce gradients in flow and resulting sediment transport 

that explain hotspot formation onshore of dredged borrow-pits. While we do not solve 

directly for flow in this study, we do make inferences as to the importance of the pressure 

vs. wave driven ( r)') components of alongshore flow based on the results of our wave 

modeling and radar-derived morphology observations. 

Outside the surf zone along profile a-a' (Figure 10), rY (Figure 14A) is more 

spatially variable than rx (solid line, Figure 14B). Spatial gradients in alongshore stress, 

r Y , would promote flow divergence on the axes of the shore-oblique troughs and 

convergence on the crests of the shore-oblique bars (Figure 1 OC), reinforcing their 

existence. Elevated waves and dissipation over the shore-oblique bars (Figure 1 OA), 

however, may lead to higher-water levels, forcing head gradients in the opposite 

direction. Since we observe persistence of the bathymetry during the storm, and not 

smoothing or filling (likely outcome from head-gradient flows), we speculate alongshore 

flow outside the surf zone is dominated by wave-driven forces ( r Y ). Interactions 

between flow and alongshore-variable bed shear stress (due to sediment variations 

between the troughs and bars) also need to be considered. For example, elevated 

turbulence above the coarser troughs may prevent settling, keeping more sediment in 
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suspension and helping to further enhance the bathymetry [Green et al., 2004; Murray 

and Thieler, 2004]. 

Model skill of STW A VE-FP is assumed low within the surf-zone due to its linear 

breaking criterion and prevents the extension of our analysis of the wave model results 

through the surf-zone and up to the beach. We can, however, analyze alongshore 

variations in the onset of wave breaking along profile b-b' (dashed line on Figure lOD), 

and compare modeled patterns of wave breaking to radar intensities from the morphology 

mosaic and our calculated mean width of the fully dissipating region. Profile b-b' has a 

mean depth of 4.5 m, ranging from 3.5 m to 6.2 m. Significant alongshore variation is 

observed in both rx (Figure 14B, dashed line) and radar intensity (Figure 14C). For 

example, in the gray shaded region on Figure 14B, modeled rx decreases from+ 60 N m· 

2 to -10 N m·2, indicating a zone of intense wave breaking is immediately adjacent to a 

zone of wave shoaling. Within the same shaded box, radar intensity mirrors the patterns 

in modeled rx: a region of high radar intensity (wave breaking) is immediately adjacent 

to a region of low radar intensity (less breaking or shoaling). In addition, the mean width 

of the fully dissipative surf-zone during the storm decreases by about 100 m in this same 

region (Figure 9C). 

Since water level (wave setup) scales with the amount of wave breaking 

(dissipation) [Longuet-Higgins and Stewart, 1964], we speculate that water levels within 

the surf-zone may be highly alongshore variable in this region. In contrast to outside of 

the surf-zone, where pressure-gradient flows may be less important, within the surf-zone, 

pressure gradients may contribute significantly to flow patterns. For example, increased 

dissipation over shore-oblique bars may create head gradients that induce divergent 

93 



CLARIS-measured storm morphodynamics 

alongshore flow at shoreline megacusps. The flow would then converge in embayments, 

flowing offshore and out the shore-oblique troughs, similar to a rip current. This flow 

would help to enhance the bathymetry, as well as the morphology of the shoreline, and is 

possibly an example of a self-organizing behavior forced by the bathymetric template. 

In addition, the possible existence of strong, offshore-directed flows could result 

in the eventual loss of beach and inner surf-zone sediments offshore, as opposed to the 

continual alongshore transport of sediments through the region. Interestingly, this region 

was one of the few areas along the northern Outer Banks where depth of closure was not 

observed within the 10-m isobath during a five year period of time from 2001 to 2006 

[Birkemeier et al., 2006]. Birkemeier et al. [2006] defme depth of closure as the location 

where cross-shore profiles merge offshore, and thus represents the seaward limit of 

significant sediment transport. The lack of observed closure in this region suggests that 

sediment is mobile out to 10 m water depth (at least during large storms), significantly 

deeper than other regions along the Outer Banks with more simple shore-parallel 

contours. 

Though we have not directly solved for circulation patterns and flow in this study, 

we believe that our during-storm observations of ( 1) persistent, complex, nearshore 

bathymetry; (2) a three-dimensional surf-zone; (3) a persistent, undulating shoreline; and 

(4) wave-modeled alongshore hydrodynamic gradients, all suggest that uniform, storm

driven alongshore transport is interrupted in this region. Specifically, alongshore 

variations in wave- and pressure-driven flow induced by the geologically controlled 

bathymetry may create gradients in longshore transport, perhaps even generating 2D 

circulation patterns, that shape the shoreline and associated erosional hotspots. 
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7. CONCLUSIONS 

We applied a new tool, CLARIS, to the investigation of storm morphodynamics at 

an erosional hotspot associated with irregular nearshore bathymetry. Three-dimensional 

shoreline, shore-parallel bar, and nearshore bathymetry morphologies were shown to 

persist through the storm event, and as a result, wave dissipation was also highly 

alongshore variable. The shape of the beach and outer shore-parallel bar were observed 

to mirror that of the nearshore bathymetry, with the plan view shoreline perturbations 

having an order of magnitude smaller curvature than the associated bathymetric 

perturbations, related specifically by equation 3. 

STWA VE-FP was used to model wave transformation over the nearshore 

bathymetry during the storm event, and indicated that alongshore gradients in wave 

height existed throughout the storm, and that alongshore convergence and divergence 

patterns in wave direction were created just before the peak of the storm, as the wave

field transitioned from high-angle wind waves to shore-parallel swell. Alongshore

variable wave height and direction patterns aligned with the three-dimensional shoreline 

morphology (megacusp and embayments), and consistent patterns of refraction during 

low-angle waves may be responsible for the longer-term persistence of curved shoreline 

morphology and nearshore bathymetry in this region. 

Analysis of modeled radiation stress gradients suggest longshore transport outside 

of the surf-zone is dominated by wave-driven forces that lead to convergence on the 

shore-oblique bar crests and divergence in the shore-oblique bar troughs. Within the 

surf-zone, model results coupled with radar-observed dissipation suggest pressure-driven 

forces may be important, perhaps inducing 2D circulation patterns that enhance shoreline 
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morphology. We propose that morphological coupling [Castelle et al., 2010] exists at 

erosional hotspots of this type, wherein geologically controlled bathymetry forces 

hydrodynamic gradients that lead to self-organized morphology and flow patterns that are 

able to withstand high energy events, preventing traditional storm linearization from 

occurring. Further hydrodynamic studies including current and water level observations, 

as well as process-based numerical modeling studies, are needed to test these ideas. 
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FIGURE CAPTIONS 

Figure 1: Location map of study site in Kitty Hawk, NC showing an aerial photograph of 

the area with 2006 swath bathymetry (colors) and the reference line (black line) with 

distances alongshore. 

Figure 2: Nor'easter wave conditions and CLARIS survey times. Solid black line depicts 

significant wave height in 8-m water depth, and the dashed line shows peak period, both 

recorded by the FRF linear array. Colored vertical lines indicate the times of the semi

daily CLARIS surveys. 

Figure 3: Coastal LiDAR and Radar Imaging System (CLARIS). A mobile, remote

sensing vehicle that couples X-band radar and a terrestrial laser scanner. 

Figure 4: STW AVE Spectrum Comparison at 5-m A WAC, Duck, NC. An example 

spectrum during the building portion of the storm illustrates the good agreement between 

observations (panel A) and model results (panel B). Wave height (panel C) and peak 

period (panel D) also show good agreement, with the highest residuals in significant 

wave height occurring during the building and falling portions of the storm (light blue 

shading, panel C). Panel E shows the wind field for the storm, with the red dashed line 

indicating time of the spectrum comparison. 
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Figure 5: Shoreline morphology during the storm. Distance along the reference line is 

plotted on the x-axis. Sequential CLARIS surveys (colored lines) of the MHW shoreline 

position during the storm (Panel A) showed persistent megacusps (blue-shaded boxes) 

and embayments that were defined by negative and positive values of shoreline 

curvature, respectively (panel B). 

Figure 6: Nearshore bathymetry during the storm. Distance along the reference line is 

plotted on the x-axis, and cross-shore distance from the reference line is plotted on they

axis for all panels. Shore-oblique bars and troughs were observed in the pre-storm swath 

bathymetry survey (panel A), and in the during-storm bathymetry inversions on 16 Apr 

AM (panel B), 16 Apr PM (panel C), and 17 Apr AM (panel D). The 8-m isobath (black 

line) and the region of depths within plus or minus 10% of 8 m (dotted black line) have 

been highlighted to illustrate the persistence of the nearshore features. 

Figure 7: Spatial alignment of morphological features. The mean nearshore bathymetry 

during the storm (panel A) mirrored the mean MHW shoreline morphology during the 

storm (panel B), with nearshore shore-oblique bars/troughs aligning with shoreline 

megacusps/embayments. This relationship was exemplified by the similarities in 

curvature (panel C) of the shoreline (solid blue line) with curvature of the 5- (solid black 

line) and 8-m (dashed black line) isobath. Cross-correlation analyses (panel D) revealed 

a significant positive relationship between shoreline and isobath curvature with a lag that 

increased offshore. 
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Figure 8: Shoreline morphology to beach slope comparison. Mean beach slope (solid 

line, panel A and B), shoreline morphology (dashed line, panel A), and shoreline 

curvature (dotted line, panel B) are plotted along the entire study site. In panel C, mean 

beach slope is statistically related to shoreline curvature (R2=0.72, p=0.04) within the 

most well-defined shore oblique bar/trough field (gray region, panel B) such that convex 

regions are flatter and concave regions are steeper. 

Figure 9: Shore-parallel bar and surf-zone morphology during the storm. Distance along 

the reference line is plotted on the x-axis for all panels. The radar morphology mosaic is 

shown in panel A, with warmer colors representing high radar intensity returns, and 

cooler colors representing low radar intensity storms. The waterline (thick solid line), 

swash zone (narrow solid black line), inner bar (dashed black line), and 5-m isobath 

(dotted black line), are denoted for the 16AM survey. Interpretation of the morphology 

mosaic is shown in panel B. White regions correspond to places of wave breaking, blue 

regions correspond to places of low wave dissipation, and the yellow region represents 

the beach. Note the good agreement of the mean 5-m isobath with the offshore edge of 

the surf-zone. The distance between the mean waterline (solid black line, panel B) and 

the mean 5-m isobath is shown in panel C, and shows substantial alongshore variability 

during the storm. 

Figure 10: Results of STWA VE-FP in Kitty Hawk at the peak of the storm. Distance 

along the reference line is on the x-axis and distance cross-shore from the reference line 

is on the y-axis for all panels. Alongshore variations in wave height (panel A) are 
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observed during the storm event, with higher waves concentrated on the crests of the 

shore-oblique bars. Alongshore variations in wave direction are also observed (panel B). 

with patterns of convergence (yellow-white-blue transitions) and divergence (blue-white

yellow transitions). Wave direction is shown in degrees relative to shore-normal, with 

positive degrees (warmer colors) indicating a counter-clockwise deflection and negative 

degrees (cooler colors) indicating a clockwise deflection. Alongshore and cross-shore 

stress are shown in panels C and D respectively. The thick solid black line (a- a') and 

the dashed line (b- b') in panel D identify the location of shore-parallel strike lines used 

in subsequent analysis. 

Figure 11: Analysis of alongshore variations in the modeled wave field. Timestacks of 

wave height (panel A) and wave direction (panel B) along profile a - a' (Figure 10) 

demonstrate the temporal evolution of the complex wave field. Development of wave 

direction convergence (yellow-white-blue transition) and divergence (blue-white-yellow 

transition) is indicated by the green line (in panels B-D). Timing of the development of 

the wave field is analyzed with respect to wave parameters at the seaward boundary of 

the model in 17-m water depth, with height and period shown in panel C, and direction 

shown in panel D. Convergence and divergence in wave direction begins just before the 

peak of the storm as the wave field transitions to long-period (intersection of green line 

and dash-dot line in panel C) and low angle swell (indicated by the green line and near 

shore-normal arrows in panel D). Alongshore variations in wave height, defmed by the 

alongshore standard deviation (solid line, panel E) and range (dashed line, panel E) in 
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wave height, are significant when wave height exceeds lm (between the pink lines in 

Panels A, C, and E). 

Figure 12: Relationship between isobath and shoreline curvature. Curvature of the 

MHW shoreline (y-axis) is an order of magnitude smaller than the curvature of the 5-m 

isobath (x-axis). The reduced number of data points represent spatially independent 

data. 

Figure 13: Alongshore variations in wave parameters and shoreline morphology. A 

relationship was observed between alongshore variations in wave height (panel A) and 

wave direction (panel B) with shoreline morphology (panels C and D): higher (gray 

boxes), diverging waves (indicated by red opposing arrows) aligned with shoreline 

embayments and lower, converging waves (indicated by green arrows) aligned with 

shoreline megacusps (panel C). Panel D shows the persistence of shoreline morphology 

in this region since April2008. 

Figure 14: Alongshore variations in hydrodynamic forces. Alongshore variations in ty, 

shown here along profile a - a' (panel A), may drive convergent and divergent flow in 

the nearshore. Alongshore variations in tx (panel B) are significantly greater along 

profile b-b', just inside the fully-dissipated region (dashed line), than along profile a-a' 

(solid line), and are similar to alongshore variations in radar intensity (panel C) at the 

same location. The shaded gray box indicates the region discussed in depth within the 

text. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
A. MHW Shoreline Position 
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Figure 6 
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Figure 7 
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Figure 8 

A. Mean Beach Slope (solid line) & Shoreline Morphology (dashed line) 
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Figure 9 

A. Radar Morphology Mosaic with Identified Morphological Features and 5-m Isobath (16 AM Survey) 
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Figure 10 
A. Modeled Wave 
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Figure 11 

18-Apr 12 PM 

18-Apr 12 AM 

17-Apr 12 PM 
Q) 

~17-Apr 12 AM 

16-Apr 12 PM 

16-Apr 12 AM 

15-Apr 12 PM 

A. Alongshore variations in wave height 
along profile a- a' during the storm 

3000 4000 5000 6000 7000 8000 9000 
Distance Alongshore (m) 

g 4 
.... 3 ..c 
en 
.(ij 

2 ..c 
Q) 

> 
"' ~ 

0 

B. Alongshore variations in wave direction 
along profile a- a' during the Storm 

3000 4000 5000 6000 7000 8000 9000 
Distance Alongshore (m) 

15-Apr 12 PM 16-Apr 12 AM 16-Apr 12 PM 17-Apr 12 AM 17-Apr 12 PM 18-Apr 12 AM 
Time 

30 
"' ::;, 

20 "*" a 
10 3 

"' :::T 

0 ~ 
::;, 
0 

-10 3 
!!!.. 

-20 ~ 
<e. 

-30 

2 

120 



Figure 12 :-4 
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Figure 13 
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Figure 14 
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CHAPTER3 

Spatial and temporal patterns of beach change during storms: 

relationships to runup maxima, mean water levels, inner surf-zone dissipation, 

and breaking wave parameters. 

Partial Manuscript Citation: Brodie, KL and McNinch, JE (Submitted). Beach change during a 
nor'easter: relationships to wave steepness and inner surf zone dissipation. Coastal Sediments 'II. 



ABSTRACT 

Observations of spatial variations in beach response to stonns are ubiquitous 
along the world's coastlines. Recent hypotheses that explain alongshore variations in 
beach change during stonns include: variations in wave height alongshore, higher relative 
runup elevations compared to antecedent beach morphology, and decreased numbers of 
offshore sandbars. Unfortunately the difficulties associated with collecting littoral data 
during storms have prevented adequate tests of these hypotheses. In addition, anecdotal 
evidence suggests significant amounts of recovery may occur along beaches when waves 
are still large, suggesting that traditional methods of "pre-" and "post" -stonn surveys may 
underestimate the total impact of storms on beaches. We observed 10 km of beach on 
the Outer Banks of North Carolina semi-daily during a Nor'Easter using CLARIS, and 
analyzed spatial and temporal patterns in both shoreline and beach-volume erosion and 
accretion with respect to modeled wave parameters and radar observed surf-zone 
morphology. In addition, we measured alongshore variations in observed wave runup 
maxima and compared them to predicted R2% statistics using the Stockdon et al. [2006] 
equation. Data indicate that the timing of erosion and accretion during stonns may be 
strongly influenced by wave steepness. More than half of the original shoreline erosion 
recovered along 50% of the study site within 24 hours of the stonn peak as waves 
remained large (>2.5 m), but transitioned to long period swell. Spatial variations in 
beach volume change during the building portion of the stonn were not explained by 
either alongshore variations in wave height or predicted relative runup. Instead, the 
configuration of the inner surf zone seemed to control spatial variability in beach volume 
change, with double-barred regions experiencing less erosion than single barred regions. 
Specifically, the amount of wave dissipation in the inner surf-zone, as measured using 
time-averages ofX-band radar returns, explained 50% ofthe variability in beach volume 
change during the building portion of the storm. In addition, spatial and temporal 
patterns in the Iribarren number showed promise at predicting both alongshore and 
temporal variations in the direction and magnitude of cross-shore transport during the 
stonn 
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1.0 INTRODUCTION: 
Correct predictions of how beaches respond to storm events and evolve at 

seasonal to decadal time-scales are critical for the effective management of coastal 

resources, especially along heavily populated and dynamic barrier islands. Specifically, 

predictions of alongshore variations in both sediment loss from the beach and inundation 

during storms are crucial for increasing storm preparedness and for effectively managing 

development. Recent field studies have correlated regions that experience exacerbated or 

alongshore-variable shoreline change at both storm and decadal time scales with various 

geomorphic features, including: irregular nearshore sandbar configuration [Kannan et al., 

2003a; McNinch, 2004], antecedent geology [Riggs et al., 1995; Thieler et al., 1995; Miselis 

and McNinch, 2006], rip-current related embayments [Thornton et al., 2007], or low dune or 

berm heights relative to extreme-storm water levels [Stockdon et al., 2007; Sallenger Jr, 

2000]. Despite these observations, a physics-based explanation for alongshore-variable 

shoreline change is lacking. Attempts at numerically modeling the behavior of shoreline 

hotspots during storms are rare, and the quantitative data needed to ground-truth the 

predictions are even more rare. Here, we provide observations of beach volume and 

shoreline change from terrestrial lidar data collected semi-daily during a Nor'Easter on the 

Outer Banks of North Carolina. We then compare these changes with simultaneous 

observations of surf- and swash-zone morphology from X-band radar as well as modeled 

wave transformation during the storm to analyze patterns of erosion and accretion. The data 

suggest that spatial and temporal variations in beach-volume change during moderate storms 

are not well predicted using traditional erosion-based metrics such as wave height and 

relative runup. Instead, large-scale spatial variations in shoreline and beach-volume change 

seem to be dependent on wave dissipation and breaking type which reflects variations in 

inner surf zone morphology and wave steepness. 
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Visual observations of the beach during high-energy conditions and post-storm 

rack-lines have long suggested that maximum water levels during storms are often much 

higher than measured water levels in the surf-zone and can vary significantly alongshore. 

A growing body of literature suggests that comparing maximum and mean water levels 

reached during storms with variations in beach and dune morphology will therefore be a 

good predictor of areas of the coast that are particularly susceptible to coastal erosion and 

damage during extreme storms [Sallenger, 2000; Stockdon et al., 2007; Plant et al., 

20 I 0]. Specifically, these state of the art predictive models estimate maximum run up, 

defined as the highest elevation reached by oscillating swash over a given time-period, 

along a stretch of beach for a given storm condition and then classifY the impact regime 

(swash, dune collision, overwash, inundation [see Sallenger, 2000]) based on the 

antecedent morphology [Stockdon et al., 2007]. While the storm-impact models perform 

better than random models (54% accuracy compared to 33%), there is clearly room for 

improvement [Stockdon et al., 2007]. Unfortunately, due to the difficulty of 

quantitatively measuring maximum runup over large spatial scales (1 Os of km), it is 

unclear whether the high error stems from poor predictions of maximum runup, out-dated 

antecedent beach morphology, or an overly simplified modeling approach-neither 

variations in longshore transport, the effects of irregular surf-zone morphology, nor the 

dynamic evolution of the beach morphology during the storm are included. Though these 

simplifYing assumptions are certainly advantageous from a predictive standpoint, and 

perhaps less important during the most extreme events when complete inundation is 

likely, their effects on predictions still need to be quantified. 

Efforts to numerically model erosional hotspots have been mostly confined to 

explaining decadal hotspots, and focus on the contribution of persistent convergence and 
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divergence patterns in longshore transport to shoreline change. The approaches have varied, 

ranging from one-line models (e.g. the CERC equation) that compare deep-water wave angle 

to shoreline morphology [e.g. Ashton et al., 2003] to Benedet and List [2007], who use 

Delft3D, a complex process-based model, to solve the full momentum equations and simulate 

wave transformation, nearshore currents, sediment transport, and ultimately morphology 

change onshore of a borrow pit. Explanations for hotspots at the storm-scale are lacking; but 

speculations abound. One thought is that storm-driven transport is dominated by cross-shore 

sediment exchange between the beach and inner-surf and swash-zones with alongshore

variable sandbar configurations modulating this response [Kannan et al., 2003; Lippmann et 

al., 2004]; however, previous attempts at testing this hypothesis were hindered by the 

difficulties of observing beaches and surf-zones during storms. Another thought is that 

irregular offshore bathymetry may focus wave energy during storms along different areas of 

the beach, leading to intensified erosion onshore of those regions [Schupp et al., 2006]. 

The objectives of this paper are to observe the evolution of the beach semi-daily 

during a storm, and analyze spatial and temporal patterns of erosion and accretion with 

respect to wave climate (e.g. breaking wave height and wave length), surf-zone 

morphology (e.g.# of offshore bars and dissipation patterns), and runup elevations. We 

test three hypotheses from the literature that attempt to explain alongshore patterns in 

erosion during storms: (I) that regions of elevated wave height caused by refraction over 

irregular nearshore bathymetry align with areas of increased erosion [e.g. Schupp et al., 

2006]; (2) that regions with comparably higher storm runup elevations relative to beach 

morphological features experience heightened erosion [e.g. Sallenger et al., 2000]; and 

(3) that regions with single to no offshore sandbars experience more erosion during 

storms than regions with multiple offshore sandbars [Kannan et al., 2003]. We use 
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Coastal Lidar and Radar Imaging System (CLARIS) to record high-resolution beach 

topography from a terrestrial lidar scanner, and swash and surf-zone morphologies from 

X-band radar. CLARIS also provides elevations of runup alongshore during the storm, 

through the intersection of the most landward-observed swash excursion from the radar 

data with simultaneously collected beach topography data. In the following section we 

present background on runup, wave-breaking type, and cross-shore sediment transport, 

and then provide details of the observed storm and some brief background on the study 

site. We then discuss the methodology and present results of the shoreline and volume 

change analysis, runup observations and predictions, and surf-zone morphology. We 

conclude with a discussion of (1) the discrepancies between the observed and predicted 

runup elevations, and (2) the spatial and temporal patterns in beach volume change 

during the storm with respect to the three stated hypotheses, as well as wave steepness 

and the Iribarren number. 

2.0 BACKGROUND 

2.1 Maximum Runup 

Maximum runup is the sum of astronomical tide, surge, wave-driven setup, and 

wave run up, and is thus an indicator of the elevation up to which swash zone processes, 

the principle mechanism for sediment transport between the beach and surf-zone 

[Masselink and Hughes, 1998], are active. Alongshore variations in maximum runup can 

be attributed to two of its main forcing components: wave-driven setup and runup. 

Wave-driven setup is the super-elevation of the mean water level due to cross-shore 

gradients in radiation stress induced by wave breaking [Longuet-Higgins and Stewart, 
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1964], and is often measured at the shoreline by meaning the elevation of the swash over 

a given time-period [e.g. Stockdon et al., 2006]. Wave runup is the time-varying 

elevation of the most shoreward swash excursion on the foreshore, with maximum run up 

often defined as the 2% exceedence elevation of run up over a given time period [e.g. 

Holman, 1986; Stockdon et al., 2006]. Alongshore variations in runup and setup may be 

forced by alongshore variations in foreshore slope, surf-zone morphology, wave 

parameters (e.g. height or wavelength), foreshore grain-size, and infragravity energy. 

Relationships between runup or setup and these variables have been the focus of 

many studies, and the relationships found often varied depending on the type of beach 

studied [e.g. Guza and Thornton, 1981; Holman and Sallenger, 1985; Nielsen and 

Hanslow, 1991; Hanslow and Nielsen, 1993; Raubenheimer and Guza, 1996; Ruessink et 

al., 1998; Ruggiero and Holman, 2004]. Stockdon et al. [2006] provide a good review of 

the aforementioned relationships and propose a new empirical relationship between the 

2% exceedence elevation of run up (R2) and foreshore beach slope (fJ1), local wave height 

(e.g. 10-m water depth) reverse-shoaled to its deepwater equivalent (Ho), and deep-water 

wavelength (Lo): 

(1) 

The above relationship had a root-mean-squared-error of 32 em and is suggested for use 

on all beaches, except under extremely dissipative conditions when frictional dissipation 

of waves may be an important term in the momentum equation. While the 
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parameterization (Eq .. 1) is based on three main variables, Stockdon et al. [2006, 2007] 

found that the majority of variability in maximum run up is often attributable to foreshore 

slope. Although only a few spatial data sets were available to test the above equation, 

preliminary findings suggest that significant variation in runup existed that was not well 

predicted by the above model when beach morphology was highly alongshore variable, 

[Stockdon et al., 2006]. Stockdon et al.'s preliminary results, in combination with the 

weak performance of the storm impact models during lower impact regimes (e.g. swash 

and dune-collision), demonstrate the need for spatially extensive observations ofrunup. 

Large-scale spatial observations of runup are difficult to ascertain using 

traditional methods of measuring water level at the shoreline, such as resistance wires or 

pressure sensors [e.g. Guza and Thornton, 1982]. Consequentially, studies have been 

limited to collecting data in time at a single location. Newer, video-based estimations of 

runup [Holman and Sallenger, 1985; Guza and Thornton, 1982; Holman and Guza, 1984; 

Aagaard and Holm, 1989; Holland et al., 1995] allow for an expansion of observations 

into the spatial domain [Ruggiero et al., 2004, Ruessink 1998, Stockdon et al., 2006]. 

The video-estimates of runup compare well with very near-bed wire or sensor 

measurements, but are more sensitive to thin tongues of foamy runup and therefore often 

have higher means, variance, and maxima than the wire measurements [Holland et al., 

1995]. While video observations from fixed towers increase spatial observations up to 

the kilometer scale, measurements on the order of tens of kilometers are still difficult due 

to the limited view-field of fixed cameras. McNinch [2007] showed that X-band radar

derived swash measurements compare well with video-derived swash, suggesting that 

mobile radar could be used to map swash excursions over large distances alongshore. 
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2.2 Wave Breaking in the SurfZone 

Wave breaking is the dominant energy input to the coastal system and a driving force 

in suspension of sediment and its subsequent transport. After traversing the open ocean and 

transforming over nearshore bathymetry, waves break in the surf zone when the velocity of 

the water particles in the wave crest exceeds the velocity of the wave itself [Iversen, 1952]. 

The form of wave breaking-spilling, plunging, or surging-is thought to depend on both the 

slope (/J) of the beach (or surf-zone) and the steepness of incoming waves [Galvin, 1968], 

often parameterized by the non-dimensional Iribarren number [Battjes, 1974]: 

(2) 

where H is wave height, L is wavelength, and oo indicates their deepwater values. Spilling 

breakers are more likely to occur at low Iribarren numbers when wave steepness is high 

(large, short-period waves) and beach slope is flatter, where as plunging breakers are more 

likely to occur at higher Iribarren numbers when wave steepness is low (long-period waves) 

and beach slope is steeperr. Though threshold values have been defined in the laboratory 

(spilling occurs when .;"' < 0.5; plunging occurs when 0.5 < .;"' < 3.3) by Galvin [1968] 

and Battjes [1974], field measurements are rare and reveal more scattered results 

[Weishar and Byrne, 1978]. Field observations are often complicated by the fact that the 

wave field is not monochromatic and that beach slope can vary alongshore, allowing multiple 

forms of wave breaking to occur along the same stretch of beach at the same time. 

Depending upon the type of breakers, wave energy is dissipated differently in the surf 

zone, and turbulence transferred to the bed at different rates. Beach and Sternberg [ 1996] 
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note that plunging breakers have a higher breaking wave height (Hb) to water depth (h) ratio 

across the surf-zone than spilling breakers or bores, and Wang et al., [2002] measure a 

greater rate of wave-height decay following plunging breaking vs. spilling breaking. In 

addition, large variations in the amount and vertical distribution of suspended sediment under 

spilling and plunging waves has been observed [Beach and Sternberg, 1994; Kana, 1979; 

Nielsen, 1984]; with jets of turbulence during plunging breakers reaching all the way through 

the bottom boundary layer and suspending large amounts of sediment near the bed [Voulgaris 

and Collins, 2000]. In addition, Wang et al. [2002] find that longshore transport rates are 

significantly higher under plunging breakers than spilling breakers for a similar wave height, 

particularly in the inner-surf and swash zone. 

2.3 Cross-Shore Sediment Transport 

There is some speculation that the rapid erosion and accretion characteristic of 

storm-scale shoreline hotspots can be explained by cross-shore sediment exchange 

between the beach and inner surf zone [see List et al., 2003; List et al., 2006], and thus an 

understanding of the processes controlling sediment transport in the swash and inner surf 

zone is key. Many studies have focused on predicting the direction of cross-shore 

sediment transport in the outer surf-zone [e.g. Birkemeier, 1984; Sallenger et al., 1985; 

Roelvink and Bmker, 1993; Thornton et al., 1996; Gallagher et al., 1998; Elgar et al., 

200 I; Plant et al., 2001; Ruess ink et al., 2007], and on- and offshore sandbar migration is 

explained by variations in the importance of unsteady wave forcing (e.g. velocity 

skewness and wave asymmetry [Thornton et al., 1996; Elgar et al., 2001; Ruessink et al., 

2007; Roelvink and Stive, 1989; Hoefel and Elgar, 2003]) and mean flows (e.g. offshore 

directed undertow [Thornton et al., 1996; Gallagher et al., 1998]), respectively. More 
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poorly understood is the direction of net sediment transport in response to changing wave 

conditions in the inner-surf and swash zones, where breaking-wave and bore-induced 

turbulence may penetrate down to the bed [see extensive review by Masse link and Puleo, 

2006]. 

Sediment transport is usually predicted using shear stresses induced by turbulence 

created in the bottom boundary layer [Nielsen, 1992]. In the inner-surf zone, however, 

where water depth is shallow compared to the height of waves or bores, turbulence may 

be introduced by the breaking part of a bore, particularly during bore collapse and the 

initiation of swash uprush [Voulgaris and Collins, 2000; Jackson et al., 2004; Hsu and 

Raubenheimer, 2006]. The slope of the beachface at the bottom of the foreshore controls 

the type of breaker or bore, and thus the amount of turbulence advected into the swash 

zone, and resulting suspended sediment profile [Masselink and Puleo, 2006]. The slope 

of the beachface also influences the speed of swash downrush, and thus can effect 

interactions between the down-rushing swash and incoming bores, and ultimately 

sediment transport patterns [Holland and Puleo; Butt and Russell, 2005; Masselink et al., 

2009]. Extreme swash downrushes at infragravity frequencies can collide with incoming 

bores, causing the bores to become almost stationary and create a hydraulic jump [Butt 

and Russel, 2005] that enhances offshore transport, particularly if no collision occurs 

with the next uprush. During storms, as infragravity energy becomes dominant in swash 

zones, increased occurrences of hydraulic jumps and increasing wave period relative to 

swash duration, both may contribute to heightened offshore transport [Holland and Puleo, 

200 I; Butt and Russel, 2005]. Thus, modeling or predicting the direction of transport at 

the shoreline may require resolving individual swash "events" [e.g. Masse link et al., 
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2009; Holland and Puleo, 2001], or knowing characteristics ofthe waves and beach slope 

at the shoreline (as opposed to offshore or at the edge of the surf-zone). 

3.0 STUDY AREA 

3.1 Field Site 

Despite the linear morphology of the northern Outer Banks ofNorth Carolina and 

the relatively featureless, planar continental shelf, significant alongshore variation in 

beach response to Nor'Easters and Hurricanes is often observed. Along a 40 km section 

of coastline from Nags Head north to Duck, for example, there are regions that can be 

classified as decadal accretional and erosional hotspots, reversing-storm hotspots, or 

merely as static over both long and short time scales [List et al., 2006; McNinch, 2004; 

Fenster and Dolan, 1993]. The section of coastline studied here spans ~ 10 km in Kitty 

Hawk and Kill Devil Hills and has been previously observed to experience both 

heightened and alongshore-variable erosion at the short-term storm scale [Miselis, 2007; 

Schupp et al., 2006; McNinch, 2004; List et al., 2006]. 

A portion of the I 0-km study site is known as the Kitty Hawk erosional hostpot, 

due to it's high decadal shoreline change rate of -2 m yr·' [Benton et al., 1997], and has 

been extensively surveyed over the past decade with a suite of geophysical tools including: 

interferometric swath bathymetry surveys, Chirp sub-bottom seismic surveys, side-scan sonar 

surveys, vibracores, RTK GPS beach topography surveys, and mobile X-band radar (see 

McNinch and Miselis [2009] for a good review). These field efforts have revealed that 

offshore of the erosional hotspot, a series of geologically controlled shore-oblique trending 

sand bars and troughs exist that are underlain by the paleo-Roanoke River channel [Miselis 

2007; Browder and McNinch, 2006; McNinch, 2004]. The beach and nearshore sediment is 
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both horizontally and vertically heterogeneous [Miselis, 2007], with coarse gravel, 

presumably derived from old fluvial infill, exposed in the bottom of the nearshore troughs 

[Schupp et al., 2006] as well as exposed in patches on the beach [Miselis, 2007). The shore

oblique bars and troughs have been observed to persist during Nor'easters [Brodie and 

McNinch, In Review; Chapter 2, this Dissertation] and are also present in pre- and post

Hurricane Isabel (storm of record for this region) swath bathymetry surveys [Miselis, 2007]. 

In addition to persistent three-dimensional nearshore bathymetry, the study site is also 

characterized by three-dimensional shoreline morphology: a series of kilometer-scale 

megacusps and embayments mimic the nearshore bathymetry in the region and also persist 

during storms [Brodie and McNinch, In Review; Chapter 2 this Dissertation). The persistent 

shoreline morphology is likely the result of self organizing behavior forced by wave 

transformation over the persistent nearshore bathymetry [Brodie and McNinch, In Review; 

Chapter 2, this Dissertation). 

In contrast, the northern 3-km of the study site has a more classic, convex shoreface 

with straight, shore-parallel depth contours, and a relatively steeper, narrower, beach [Brodie 

and McNinch, In Review; Chapter 2, this Dissertation). Visual observations of the beach 

suggest that runup during storms frequently inundates houses along these 3 km of coastline, 

as no protective dune remains in front of the houses. 

3.2 Storm Event 

Extratropical storms in the fall and winter, colloquially known as Nor'Easters, are 

the most common storm along the Outer Banks ofNorth Carolina. While hurricanes can 

hit the area in the summer months, studies suggest that the majority of morphological 

change occurs in response to successive groups of Nor'Easters [Lee et al., 1998; 
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Birkemeier et al., 1999]. Though the effects of a Nor'easter aren't usually as catastrophic 

as extreme hurricanes, the storms often cause overwash and frequent dune erosion and 

damage to houses that are nearest the ocean. They are significant events as far as home

owners and coastal managers are concerned, and have been observed to cause up to 30 m 

of shoreline change during a single storm [List et al., 2006]. In this study, we document 

the response of the beach to a Nor'Easter in April2009 every 12 hours (Figure IA) using 

CLARIS. 

The surveyed Nor'easter occurred from 15 April 2009 to 18 April 2009 and resulted 

in waves in 8 m water depth that were> 2m for~ 37 hours, as recorded by the 8 m Array at 

the U.S. Army Corps of Engineer's Field Research Facility (FRF) in Duck, NC, located 

approximately I 0 km north of the study site. Waves peaked on 16 April 2009 with 3.4 m 

high waves in 8 m of water depth, with breaking observed out to at least 6 m of water depth 

(unpublished data, Hanson 2009). Wave steepness was high during the building period of the 

storm, and decreased systematically throughout the storm (Figure lA-B). Waves were high 

angle at the beginning of the storm, becoming more shore-normal just before the peak of the 

storm at noon on the 161
h (Figure 1 C). Surge peaked before the wave height on the morning 

ofthe 16th (Figure ID). Winds were strong and onshore throughout the building part of the 

storm, decreasing dramatically after the peak of the storm, and switching to light offshore 

winds by midday on the 17th. Peak surge coincided with peak wind speed (Figure IE). 

This storm exemplifies a typical Nor'Easter on the Outer Banks, with most of the 

erosion confined to the beach and base of the dune. While overwash deposits were noted in 

some locations along the northern portion of the study site, our runup elevations do not 

reflect this as surveys were conducted in the two hour window centered at low tide to 
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maximize beach width for driving and ensure relatively constant water level during the 

survey. 

3.3 Reference Line 

All data were transformed to a local alongshore/cross-shore reference coordinate 

system based on a reference line that begins at (905,296.743 m NC State Plane Easting, 

266,063.982 m NC State Plane Northing) and trends ~150 degrees true north along the 

general angle of the coastline (Figure 1.0). Alongshore coordinates increase to the 

southeast, and cross-shore coordinates increase in the offshore direction. The reference 

coordinate system allows for easy analysis of alongshore and cross-shore trends, 

alignments, and distances between features, and aids in bringing out any three

dimensional features that often have small cross-shore amplitude to alongshore 

wavelength ratios. Please note that herein, "distance alongshore" refers to distance along 

the reference line, and "distance cross-shore" refers to distance along perpendicular lines 

to the reference line, not along perpendicular lines to the local shoreline orientation. 

4.0METHODS 

4.1 CLARIS: Coastal Lidar and Radar Imaging System 

CLARIS is a new, mobile, coastal surveying tool that enables simultaneous 

collection of radar data of the nearshore and topography data of the beach and dune from 

a terrestrial laser scanner (see Chapter I). The methodology and applications of radar to 

coastal surveying are similar to that of video [Lippmann and Holman, 1989], as the 

foamy rough surface of breaking waves and swash cause high-intensity radar returns 

[Bell, 1999; Ruessink et al., 2002; Haller and Lyzenga, 2003; McNinch, 2007]. As such, 
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radar data can be used to infer bathymetry (Bell, 1999; Brodie and McNinch, In Review) 

as well as map swash and sandbar morphology (Ruessink et al., 2002; McNinch, 2007). 

In this paper, the radar data is used to record time-series of swash excursions along the 

beach in order to extract the position of the maximum-observed swash excursion during 

each survey. In addition, radar morphology mosaics and inferred bathymetry are used to 

extract important environmental parameters on inner and outer surf-zone morphology. 

Topography data is collected with a Riegl 3D Terrestrial Laser Scanner (Riegl VZ-390i) 

which scans to starboard of the vehicle during transit between radar stops. Terrestrial laser 

scanner data will be referred to as "lidar data" throughout the remainder of this paper. 

Survey precision is 1.3 em and accuracy is+/- 10 em. Point-cloud density is ~30 to 40 points 

per m2
, with higher density in the cross-shore direction. Unfortunately, the lidar survey from 

the evening of 16 April 2009 (Figure IA) has been discarded in this analysis due to poor 

RTK-GPS quality. Topography data is used in this paper to extract the elevation associated 

with the maximum swash excursion, as well as to measure foreshore slope, shoreline change, 

and volume change during the storm. 

4.1.1 Maximum Swash Excursion Observations 

The position of maximum swash excursion is objectively picked based on cross

shore profiles of averaged radar intensity, as described in Brodie and McNinch, In 

Review (Chapter 1, this Dissertation). This position is then intersected with the Iidar 

topography data and elevations extracted every 3 m alongshore. It is important to note that 

because the surveys are collected at low-tide and not high-tide, the elevation associated with 

the maximum swash excursion presented here merely represents maximum excursions during 

the time of the survey, and not the absolute maximum water level reached during the tidal 
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cycle. In addition, observed runup maxima (Rmax-obs) only represent 12-mintues of data, as 

opposed to the 17 to 120 minutes used in Stockdon et al. [2006] to calculate R2%, a statistical 

representation of maximum runup, and thus have the potential to be somewhat lower than 

predicted runup maxima. 

4.1.2 Foreshore Slope, Shoreline, and Volume Extraction 

Foreshore slope is estimated from the lidar data every meter alongshore by fitting 

a linear regression line to data between a meter above the observed maximum swash 

elevation and the offshore edge of the observed lidar profile. In circumstances where the 

number of data points in this segment is less than 4 (only 12% of the time), the linear 

regression line is fit to the bottom half of the observed lidar profile. 

Upper beach volume is calculated every 1m alongshore by extracting the area 

under the lidar profile between the base of the dune and the mean high water (MHW) 

contour. Though the surveys are conducted at low tide and mean water level is less than 

MHW for all of the surveys (Figure 1D), occasionally the lidar profile does not extend 

down to the MHW contour due to wave runup and setup processes. During these times 

(the 15PM and 16AM surveys), the end oflidar profile is extrapolated down to the MHW 

contour using the best-fit foreshore slope extracted by the above method. In addition, we 

chose to only calculate change in upper-beach volume (i.e. not including the dune), as 

sand-fences and house porches often prevented accurate determination of the face and 

crest of the dune along the study site. The MHW contour is then used to compute 

shoreline change during the storm. Though portions of the MHW contour represent 

extrapolated data, the trends are similar to that of the 1.5 m contour (the lowest contour 

observed in all surveys), and the extrapolation method is similar to the widely cited List 
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et al. [2006] study of shoreline change. The ability to calculate volume change at 1-m 

intervals along beaches during storms is a marked improvement over volume change 

calculations from interpolated profiles, and more rigorously assess the storm's impact on 

the beach when compared with traditional shoreline change methods. 

4.1.3 Radar Morphology Mosaics 

Averaging radar returns through time produces images that show persistent 

patterns of wave breaking in the nearshore, similar to time-lapsed video images [e.g. 

Lippmann and Holman, 1989; Ruessink et al., 2002; McNinch, 2007]. Intensity of the 

time-averaged radar returns (in this case normalized on a scale from 0 to I) can then be 

used as a proxy for dissipation. From these dissipation patterns, morphology of the surf 

and swash-zone can be inferred [McNinch, 2007; Brodie and McNinch, In Review; 

Chapter 1, this Dissertation]. Information from multiple locations alongshore can be 

mosaicked together to create a "morphology mosaic", from which important morphology 

metrics are extracted. Specifically, we are concerned with the number of peaks in 

dissipation seaward of the valley of the beach, as this is a proxy for the number of 

offshore sandbars, as well as the width of the inner and outer surf-zones. The width of 

the inner surf zone is defined here as the distance between the maximum observed swash 

excursion and the offshore edge of the inner bar or swash zone (in the case of a welded 

inner bar), whichever is farthest seaward. Namely, the inner surf zone here describes the 

morphology of the surf and swash zones inside of the outermost shore parallel bar. The 

width of the outer surf-zone is defined here as the distance between the 5-m isobath, used 

as a proxy for the offshore base of the outer bar (see Chapter 2, this Dissertation for an in 
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depth discussion of this metric), and the offshore edge of the inner surf zone as defined 

above. These parameters are then used in the analysis of alongshore variations in 

shoreline change. 

4.2 STWAVE-FP Modeled Wave Parameters 

In chapter 2, the steady-state spectral wave model full-plane version (STW AVE

FP) is first assessed at the FRF in Duck, NC for the studied storm and then used to model 

wave transformation during the storm at the field site. In this paper, significant wave 

height and peak period is extracted along the 5 and 10-m contours (approximate edge of 

the surf zone) hourly, every 10-m alongshore. In order to calculate appropriate values of 

the Iribarren number (Eq .. 2), wave height is linearly reverse shoaled to its deepwater 

equivalent assuming no wave refraction, similar to Stockdon et al. [2006]. Peak wave 

period (Tp) is converted to deepwater wavelength (Loo) using the deep water 

approximation ofthe linear dispersion equation. Wave parameters are available at every 

I 0-m alongshore throughout the study site and every hour during the storm. 

4.3 Stockdon eta/. [2006] Runup Model 

STW A VE-FP modeled wave parameters and observed foreshore slope are used to 

force Eq. I during the storm. Specifically, the modeled wave parameters are converted to 

their deepwater equivalents, per Stockdon et al. [2006], by linearly reverse-shoaling 

them, assuming no wave refraction. In order to obtain estimates of foreshore slope 

hourly during the storm, foreshore slope is linearly interpolated between survey times at 

each location alongshore (Figure X). The wave-driven component of R2% is then 
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computed from these variables every hour during the storm according to Eq. 1. The 

model is run a total of three times, once using wave parameters extracted at the 5-m 

contour and reverse shoaled (model run 1 ), once using wave parameters extracted at the 

10-m contour and reverse shoaled (model run 2), and a final time using the 10-m reverse

shoaled wave parameters and only the initial foreshore slope (model run 3). The different 

model runs were chosen to test the errors introduced by using static slope conditions, as 

well as to test whether accounting for wave refraction over the highly complex 

bathymetry at this location improved predictions. 

The Iribarren number is used to identifY locations and times when the wave 

conditions and foreshore slope are such that the dissipative form ofEq. 1 should be used 

(i.e. when .;"' <0.3, according to Stockdon et al. [2006]). To add in background water 

levels, thereby converting the R2% predictions to a datum, the water level data recorded at 

the FRF pier (Figure lD) are added to the predictions. To find the equivalent cross-shore 

position of this predicted run up, the predicted elevation is intersected with the lidar data 

from the 5 surveys. Predicted elevations and waterline positions at the time of the 

CLARIS surveys are then compared with observations. 

S.ORESULTS 

5.1 Shoreline and Volume Change during the Storm 

Despite the persistence of shoreline megacusp and embayment morphology 

during the storm (Figure 2A), significant spatial and temporal variability in shoreline 

change is observed (Figure 2B). Shoreline change is calculated between each survey 

time pair (Figure 2B), termed "inter-survey change'', and also between the pre-storm 
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15PM survey and end-storm 18AM survey, termed "net change" (Figure 2C, red line). In 

addition, shoreline change is calculated for the recovery period in the I 0-days after the 

storm, termed "recovery". During the first 12 hours of the storm, as waves increase in 

height and period, 78% of the study site experiences erosion (magenta line, Figure 2B). 

Erosion is greatest between ~5000 and 8000 m alongshore, with a smaller area of erosion 

in the northern portion of the study site at ~2000 m alongshore. No clear relationship is 

observed between shoreline erosion and shoreline morphology (e.g. megacusps, denoted 

by the blue shaded regions in Figure 2). During the next 24 hours (16AM to 17 AM 

Survey) as waves peak and begin to fall and wave period levels off at around 12 s, 72% 

of the region experiences accretion (yellow line, Figure 2B), with 50% or higher of the 

shoreline erosion recovered along more than half the study site. Recovery continues in 

smaller amounts along 70% of the study site during the remaining portion of the storm 

(cyan and purple lines, Figure 2B). 

Overall net shoreline change (red line, Figure 2C) suggests the Nor'Easter is an 

erosive event, as 63% of the region is erosive, 28% accretive, and the remaining 9% 

shows no significant change. Note that while 78% of the region experienced erosion 

during the first 12 hours of the storm only 63% ofthe region experienced net erosion over 

the entire storm due to the significant accretion in the 12 hours following the storm peak 

(see discrepancy between magenta line in figure 2B and red line in 2C at around 7000 m 

alongshore, for example). Ten days after the storm, shoreline recovery appears to mirror 

the storm-driven erosion (green line, Figure 2C), similar to the observations of List et al. 

[2006]. 
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In Figure 2D and E, upper beach volume changes are plotted in a similar manner 

to shoreline change, with inter-survey changes plotted in Figure 2D, and net and recovery 

volume changes plotted in Figure 2D. Upper beach volume change during the storm 

shows similar patterns to shoreline change, with almost all of the volume loss occurring 

during the first 12 hours of the storm (magenta line, Figure 2D), when mean water levels 

reached their peak (Figure 1 D). Fifty percent of the region experiences significant 

volume loss during this time (magenta line, Figure 2D); however, only 16% of the region 

(mostly confined to the two southern most embayments at 7000 and 8500 m alongshore) 

experiences volume gain on the upper beach during the following 24 hours (yellow line, 

Figure 2D). No significant volume change on the upper beach is observed during the 

waning portion of the storm (cyan and purple lines, Figure 2D). Net volume change 

during the storm indicates a loss along 31% of the study site (red line, Figure 2E), with 

16% of the study site still experiencing net volume loss 1 0 days later (Figure 2F). Thus, 

while volume gains in the 10 days post-storm mirror the patterns of volume loss during 

the storm (Figure 2E), the magnitude of recovery is less along some portions of the study 

site (Figure 2F). 

5.2 Foreshore Slope Change during the Storm 

Timestacks of alongshore variations in foreshore slope (magnitude denoted by the 

colors) during the storm are shown in Figure 3. During the first 12 hours ofthe storm, 

foreshore slope steepens (cool colors changing to warm colors) by more than a half 

degree along 56% of the study site, flattens along 12% of the study site, and remains 

within a half degree of its initial slope along 32% of the study site. During the next 24 
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hours (16AM to 17 AM survey) 40% of the study site flattens, 16% steepens, and 44% 

remains within a half degree of its slope just before the peak of the storm (16AM survey). 

Between the 17 AM and 17PM survey, slopes in 50% of the region remain the same, 29% 

flatten, and 19% steepen. Percentages are similar between the 17PM and 18AM survey. 

Slope varies by as much as 6 degrees in the embayment centered at 7000 m alongshore, 

and up to 5 degrees in both the embayment at 5800 m alongshore and the megacusp at 

3800 m alongshore. A net flattening during the storm is only observed in the embayment 

at 7000 m, with steepening or no significant change observed elsewhere. 

5.3 Runup Observations and Predictions 

Observed maximum runup (Rmax-obs) is plotted for each survey in Figure 4, with 

our overall observed maximum elevations during the storm connected by the black line. 

Rmax-obs varies by as much as 3-m over the course of the storm, ranging alongshore by as 

much as 2m during a given survey (Figure 4). Maximum observed runup for the entire 

storm is highest between 1 000 and 4000m and 8000 to 9000 m alongshore, and occurs 

during the 17 AM survey along most of the study site. Observed run up appears to be 

consistently lower between -5000m and 8000m alongshore for all surveys. 

A comparison between Rmax-obs and predicted R2% by the Stockdon et al. [2006] 

model (Eq. 1) for each survey is shown in Figure 5. While both R2% and Rmax-obs vary 

significantly alongshore, predicted R2% shows considerably less variance during the 

15PM and 18AM surveys when compared with the observed elevations, and is 

significantly underestimated during the 15PM survey (Figure 5A). In addition, though 

coherent spatial patterns are apparent in the predicted runup elevations, they appear to be 
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out of phase with the spatial patterns in the observed data (see, for example, comparisons 

with the 16AM survey in Figure 5B). Predicted R2% shows better agreement in the steep 

northern section of the study site (between 1000 and 3000 m alongshore), but is 

consistently too low in the southern I 000 m of the study site. Predicted and observed 

magnitudes are similar between 5000 and 8000 m alongshore; however, spatial 

undulations are not correlated. For all surveys, model run I (5-m wave parameters, 

evolving slope) shows better qualitative agreement with observations. 

Root-mean-squared error (RMSE) and bias for the three different model 

predictions are shown in Table I. Scatter plots of each model run verses observed data 

can be found in Appendix A. No significant relationships between predicted and 

observed data for the individual surveys are observed. With the exception of model run I 

(5-m wave parameters, evolving slope) during the I7PM survey, all three model 

predictions have significant negative biases for all of the surveys, with the extreme 

occurring during the pre-storm I5PM survey. RMSE is highest for model run 3 (10-m 

wave parameters, static slope), the most commonly used form of the Stockdon et al 

[2006] equation, and lowest for model run I (5-m wave parameters, evolving slope), 

though all are higher than Stockdon et al [2006]'s overall RMSE of0.38 m. The overall 

mean bias of -0.24 m of model run I is similar in magnitude to Stockdon et al. [2006]'s 

mean bias of -0.17 m. A point-by-point comparison of model run I predicted R2% 

elevations with observed data for all the surveys is shown in Figure 6. The squared 

correlation indicates a positive relationship between predictions and observations, but 

that predictions explain only 16% ofthe variability ofthe data. 
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Since maximum inundation position is usually of more importance to 

homeowners along the coastline than elevation, the predicted maximum runup elevations 

from model run 1 (the closest to observed) are converted to swash excursion distances 

and compared with the radar-observed position of the maximum swash inundation for 

each survey in Figure 7 A-E. The predicted maximum runup elevation during the 1 5PM 

survey is so low that swash excursion position could not be calculated along 80% of the 

field site, as the lidar data did not extend low enough (the seaward edge ofthe lidar data 

is equivalent to the instantaneous most landward edge of the swash at the time of each 

lidar shot, and thus should be significantly less than maximum runup the majority of the 

time). The highest swash excursion differences occur in the southern most portion of the 

study site where a storm-persistent, pronounced cusp field extends across the beach from 

the 3 m contour down to the waterline (visible as high frequency undulations in the colors 

between 8000 m and 9000 m alongshore in Figure 7 A-E). A second, storm-persistent 

beach cusp field is also present from 2500 to ~4000 m alongshore, but it is confined more 

to the upper beach, and swash excursion errors are not as high. 

Timestacks of predicted runup elevations from model run 1 at every location 

alongshore for the entire storm, are plotted in Figure 8, with colors indicating elevations. 

Black horizontal lines indicate survey times. Low frequency, tidal-forced water level 

fluctuations are visible as the alongshore-persistent bands of alternating cooler and 

warmer colors (note bands of cooler colors are centered near the solid black lines, 

indicating the survey took place at low tide). Maximum predicted runup elevations over 

the course of the storm (stars) occur near the storm peak, which happens to coincide with 

high tide (but not the highest high tide, see Figure 1D). To classify the storm impact 
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regime based on the Sallenger [2000] scale, maximum predicted runup elevations are 

compared with the elevation at the base of the dune from the 15PM (pre-storm) survey. 

If runup elevation < dune base elevation (magenta stars, Figure 8), the impact regime is 

classified as swash, whereas if the runup elevation is > dune base elevation (white stars, 

Figure 8), the impact regime is classified as collision. The runup model predicted the 

storm impact to be mostly in the swash regime (runup confined to the upper beach), with 

a few occurrences of collision (run up colliding with the base of the dune) in the northern 

portion of the study site and in the embayments centered at 5500 and 7000 m alongshore. 

Field observations of storm damage to houses and "overwash" deposits in the northern 

end of the study site support the model predictions. It is important to note that there is no 

dune in the northern portion of the study-site, and the extracted dune base elevation 

actually corresponds to the elevation at the base of houses along the shoreline. Thus, 

when the model predicts "collision" in the northern portion of the study site, the run up is 

most likely colliding with house pilings or "under-washing" beneath the houses, and 

depositing the observed "overwash'' onto NC Route 12. Unfortunately, elevations 

behind the first line of houses are not scanned in this study, and therefore we cannot 

quantitatively confirm the presence of overwash, though qualitative observations support 

the prediction. In contrast, the collision regime predicted in the embayments at 5500 and 

7000 m alongshore is not supported by either data (the lidar data shows no significant 

change in the position ofthe dune base) or qualitative field observations during the storm. 

Interestingly, the embayment at 7000 m alongshore did experience significant damage 

during Nor'Ida in November of 2009 (see http://frf.usace.army.mil/vets/veterans.shtml, 

for more information) with two houses collapsing. 
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5.4 Surf-Zone Morphology 

The morphology of the surf-zone is characterized in Figure 9A and B through 

analysis of the radar morphology mosaic. The morphology is described in detail in 

Chapter 2, and thus is only briefly addressed here. An outer shore-parallel bar is present 

along the length of the study site that has persistent undulations where it is intersected by 

shore-oblique troughs, creating an alongshore variable outer surf-zone width (red line, 

Figure 9C). An inner bar is also present along the study site that welds to the shoreline 

between 5500 and 7500 m alongshore. This creates a variable number of peaks in 

dissipation seaward of the beach along the study site (green stars, Figure 9C), and thus 

variations in the width and characteristics of the inner surf-zone (blue line, Figure 9C). 

The variations between the two regions are exemplified in the field photos and example 

radar time series stacks and averages shown in Figure I 0. In the northern end of the 

study site, three distinct zones in dissipation exist-the swash, inner bar, and outer bar 

(Figure lOA-C) where as in the welded inner bar region, only two peaks in dissipation are 

apparent (Figure 1 OD-F). The welded inner bar region is characterized by a wide, 

dissipative sub-aqueous foreshore traversed by dissipating bores (Figure IOD). In 

contrast, the double-barred region in the north is characterized by a narrower swash and 

steeper foreshore dominated by swash uprush and downrush as opposed to bore collapse 

(Figure I OA). 

5.5 Hypothesis Tests of Alongshore Variable Change Metrics 

To test the three hypotheses for alongshore variable erosion during the storm, we 

defined three metrics: wave height, relative runup, and the number of offshore peaks in 
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dissipation, and compared them to the volume change observed during the building 

portion of the storm, when the most erosion occurred. We did not use net volume change 

or during-storm inter-survey volume change, as all of the metrics are increased or 

decreased erosion metrics, and do not address the possibility of accretion. For 

hypotheses 1 and 2 we use cross-correlation analysis and linear regression analysis, 

reporting the correlation coefficient (R) and the squared correlation (r2
) respectively, 

whereas a student's t-test is used to test hypothesis 3. Significance levels are determined 

using p-values calculated with 15 degrees of freedom ( d.F. ). Effective degrees of 

freedom are determined by dividing the total number of samples (600) by the lag 

associated with initial autocorrelation decay of the beach volume change data (40). 

To test hypothesis 1, that alongshore variations in wave height lead to alongshore 

variations in erosion, mean wave height at the 5-m contour during the building portion of 

the storm is compared with volume change (Figure I IA). Cross-correlation analysis 

yields an insignificant negative correlation coefficient (R=-0.16, p=0.53), and regression 

analysis indicates that wave height explains close to 0% (/ =0.02) of the variability in the 

observed beach volume change (Figure liB). Interestingly, though the overall 

correlation coefficient indicates an inverse relationship (regions of higher wave height 

correlate with regions of negative shoreline change), the two variables appear positively 

correlated between 5500 m and 7000 m alongshore. 

To test the second hypothesis, that elevated maximum runup relative to beach 

morphology is a good predictor of alongshore variations in storm-induced erosion, 

relative runup, the ratio between predicted maximum R2% (from model run 1) during the 

building portion of the storm and the elevation of the dune toe from the 15PM survey, 
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Droe, is plotted with volume change in Figure llC. We chose to use predicted R2% as 

opposed to our observations of run up, in order to (1) reflect the true state-of-the-art 

application of the models, and (2) to prevent any biases from our sampling during low

tide. Though the dune crest is often used in this type of prediction for extreme storm 

events, we chose to use Droe as our reference indicator, as the storm impact fell mostly in 

the swash or dune collision regimes. Higher ratios of R2% I Droe indicate that runup 

advances closer to the base of the dune than locations with lower ratios. That is, runup 

covers a significant portion of the upper beach when R2% I Droe is high. Hypothesis 2 

proposes a negative correlation between R2% I Dtoe and volume change since high values 

of R2% I Droe are thought to indicate net erosion (large negative values of volume change). 

Cross-correlation analysis indicates a statistically insignificant negative correlation 

between R2% I Droe and beach volume change (R=-0.29, p=0.26). Squared correlation 

indicates that R2% I Droe explains only 8% of the variance in volume change during the 

building portion of the storm. 

To test the third hypothesis, that regions with fewer offshore sandbars may 

experience heighted erosion, the number of offshore peaks in dissipation from the radar 

morphology mosaic is compared to volume change during the building portion of the 

storm (Figure 11 E). Since the number of offshore bars is effectively a binary response, 

cross correlation analysis is not preformed. While chi-squared tests are often used to test 

significance of a categorical outcome, it is difficult to categorized storm response. An 

obvious category is erosion or accretion, however, hypotheses 3 merely associates the 

number of offshore bars with "more" or "less" erosion [Kannan et al., 2003], not erosion 

vs. accretion. Therefore, the volume change is split according to number of offshore 
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peaks in dissipation, and a student's t-test is preformed to identify whether the two 

populations had significantly different mean volume changes. The t-test produced 

significant results (p=0.01, Figure 11F), indicating that the mean volume change for 

locations with only 2 offshore peaks in dissipation is significantly less than the mean 

volume change for locations with 3 offshore peaks in dissipation. While the number of 

offshore bars appears to be a good predictor of the general trend in beach erosion along 

the study site (e.g. heightened erosion between 5500 and 7500 m alongshore), it cannot 

describe the smaller-scale fluctuations or differentiate between "less erosion" and 

accretion. 

5.6 Wave Steepness and Iribarren Number during the storm 

Spatial and temporal patterns of breaking wave steepness are also investigated in 

relation to beach volume change between the surveys. Modeled 5-m wave parameters are 

used to calculate mean wave steepness for every location alongshore between each 

survey pair, and are plotted against inter-survey beach volume change in Figure 12. A 

general pattern is observed between wave steepness and volume change such that erosion 

occurs at high wave steepness values, accretion at moderate wave steepness, and no 

significant change when waves have moderate to low steepness (Figure 12A). 

Specifically, wave steepness is greater than 0.038 for 95% of the erosive data (Figure 

12B). During times of no significant change, 93% of the data is < 0.038, with a 5% 

exceedence value of 0.039 (Figure 12C). The accretive data also has a similar 95% 

exceedence value of 0.038, and is skewed towards higher values of wave steepness than 

the no change data, with a slightly higher median. 
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Since breaker type (spilling vs. plunging) appears to be important in defining the 

characteristics of sediment transport at the shoreline, evolving wave steepness and 

foreshore slope during the storm are compared through the calculation of the Iribarren 

number (Eq. 2). Figure 13A is a timestack of values of Iribarren numbers (shown by 

color variations) every hour alongshore. The Iribarren number is lowest during the 

building portion (between the 15PM and 16AM surveys) of the storm as steep waves 

attack the beach face, and is less than 0.5 (the threshold for laboratory spilling breakers, 

Battjes [1974]) along the majority of the study site south of 3000 m alongshore (Figure 

13A). In fact, the threshold for dissipative conditions, ,;"' < 0.3, (as opposed to 

intermediate or reflective, see Wright and Short [1984]) occur at around 4000, 5500, 

6500, and 7500-8500m alongshore. After the peak of the storm, ,;"' increases along the 

majority of the study site, particularly between 1 000 and 4000 m and 7000 and 9000 m 

alongshore, where ,;"' increases to> 1.25, the threshold for reflective beaches [Wright and 

Short, 1984; Stockdon et al., 2006]. Exceptions to this occur at the megacusp located at 

4000m alongshore, and to a lesser extent at 8000 m alongshore (Figure 13A), where ,;"' 

remains < 0.5 or less at some locations, until the 17 AM survey (Figure 13A). The region 

between 4000 and 7000 m alongshore remains classified as an intermediate beach 

between the 16AM and 18AM surveys (Figure 13A). 

6.0 DISCUSSION 

6.1 Comparisons between Predicted and Observed Runup 

The Stockdon et al. [2006] runup model is widely used to predict runup during 

extreme storm events and, ultimately, variations in shoreline change [e.g. Stockdon et al., 
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2007]. The model is based on the Holman et al. [1986] observations that maximum 

run up scales with the Iribarren number, and relates wave parameters observed in I 0-m of 

water depth and foreshore slope to the 2% exceedence value of runup, based on an 

empirical fit over data from a wide range of beach types and wave conditions. Though 

our observed position of maximum run up during the storm is not statistically identical to 

the 2% exceedence runup calculated by Stockdon et al. [2006], we feel that the two 

quantities are still comparable, but one should not be used to "prove" or "disprove" the 

validity of the other. We expect our runup elevations to be somewhat lower than the R2% 

predictions, as our observations are over a shorter time period and thus may not include 

all of the infragravity fluctuations. In contrast, we observe a negative bias between the 

predicted and observed data, suggesting that the model under-predicts maximum runup at 

this field site for this storm (consistent with the slight negative bias indicated by 

Stockdon et al., [2006]). 

Three model runs are run with the goal of identifYing the scale of the errors 

introduced by the static slope assumption and the use of I 0-m wave parameters as 

opposed to an evolving slope and wave parameters more specific to the surf zone. The 

use of a static slope changes predictions by as much as I m in some locations (Figure 5), 

though the total RMSE when compared to observed data is only slightly improved by 

including an evolving foreshore slope (from 0.76 to 0.74). Interestingly, including an 

evolving slope did significantly improve the total overall bias by 11 em (from -0.6 to -

0.49). The largest improvement to the model came from including 5-m reverse-shoaled 

wave parameters, as opposed to 10-m reverse-shoaled wave parameters, which decreased 

the RMSE to 0.61 and the bias to -0.24, closer to the mean bias of -0.17 reported by 
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Stockdon et al. [2006]. This is likely because this field site is characterized by highly 

irregular surf-zone and nearshore bathymetry, and so including the effects of wave 

refraction from 10-m to 5-m of water depth improves model predictions. While 10-m 

wave parameters may be adequate on beaches with shore-parallel depth contours, we 

suggest that wave parameters at the edge of the surf-zone may more adequately reflect 

external wave forcing on runup at more complex field sites. 

Predicted R2% explains only 16% of the overall variability in observed runup. 

Runup predictions are excessively poor during the 15PM survey, and are so low that they 

often don't intersect the seaward edge of the lidar profile (Figure 7A). Recall that surge 

is included in the predicted R2% elevations, and thus the considerably lower predicted 

values reflect poor modeling of the wave-driven component of R2%. Waves during the 

15PM survey are steep, short-period, building wind waves, which produce low Iribarren 

numbers, the basis of the Stockdon et al. [2006] relationship, and thus lead to rather low 

maximum runup calculations. Our considerably higher observations of runup maxima 

during this survey may indicate the presence of larger infragravity fluctuations that are 

not well-predicted by the infragravity portion of the Stockdon et al. [2006] model. Runup 

predictions are consistently better during the 17 AM through 18AM surveys, when longer 

period swell dominates. Note surge is relatively similar during the 15PM through 17 AM 

surveys (Figure 1 D), and thus the better predictions during the 17 AM survey, reflects 

better parameterization of wave-driven runup. In addition, there appears to be a 

consistently large discrepancy between the predicted and observed elevations at the 

southern end of the study site in the pronounced cusp field between 8000 and 9000 m 

alongshore. This may be due to two factors: ( 1) errors in observations due to the 
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potential for radar shadowing by the high cusp horns, or (2) incorrect parameterization of 

runup in a cusp field due to infragravity induced circulation (as suggested by Stockdon et 

al. [2006] to occur when beach morphology is alongshore-variable). The cusp field 

between 8000 and 9000 m alongshore is unique in that the cusps are high amplitude and 

extend across the upper beach almost from the dune toe all the way down to the waterline 

creating high relief on the beach (in contrast to the cusp field present between 3000 and 

4000 m alongshore which appears to be confined, surprisingly, to the upper beach, with a 

more uniform foreshore). In region between 8000 and 9000 m alongshore, the high cusp 

horns may shield the radar from observing the correct position of runup behind it, 

particularly during the down-rush, biasing the radar observations high. More research is 

needed to appropriately ground-truth the radar measurements, particularly in regions with 

high relief. 

6.2 Temporal Patterns of Beach Evolution during the Storm 

Anecdotal evidence of surprising amounts of beach recovery when waves are still 

energetic has long suggested that traditional methods of"pre"- and "post"-storm surveys, 

which often wait for the return to calm conditions, may underestimate the full impact of 

the storm on the beach [Birkemeier, 1979]. For example, in this study, the apparent 

discrepancy between the magenta and red lines in Figure 2B & C and Figure 2D & E, 

respectively, highlight the difference between the "net" change over the course of the 

storm (red lines), and the change that occurs during the building portion of the storm 

(magenta lines). The data presented here represent, to the best of our knowledge, one of 

the first highly resolved spatial and temporal high-resolution data sets of beach 
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topography evolution during a storm, and thus allow for the analyses of the timing of (1) 

maximum erosion during the storm and (2) the switch in the dominant direction of cross

shore sediment transport during the storm. 

6.2.1 Importance ofWave Steepness 

Data in Figure 2 show a remarkably high percentage of the overall net erosion 

occurs during the first 12 hours ofthe storm when steep, short period waves dominate. In 

contrast, even though waves still exceed 2.5 m during the next 24 hours (including the 

peak of the storm), the storm's impact switches to more accretive conditions, as the 

waves transition to long period swell. Variations in modeled breaking wave steepness 

seem to predict these changes well (Figure 12)-mean wave steepness is high during the 

first 12 hours of the storm when erosion is observed, moderate during the following 24 

hours when the majority of accretion takes place, and low during the last two surveys 

when little significant change occurs. Iribarren numbers during the building phase of the 

storm are also low ( ~oo < 0.5) along the majority of the study site (Figure 13) indicating 

that breakers with more spilling characteristics may dominate the surf-zone. Spilling 

characteristics are promoted by both the steep, shorter period growing sea, as well as by 

the strong onshore winds [Galloway, 1989] which are typical characteristics of 

Nor'Easters. While surf-zone wave parameters and foreshore slope exhibit first order 

control on wave breaking type, wind conditions can also have a significant effect on 

wave breaking characteristics. Strong onshore winds promote both early breaking and 

more spilling characteristics, thereby widening the surf-zone, where as offshore winds 

delay breaking and promote more plunging characteristics, narrowing the surf-zone, 
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changing relationships between breaking wave height and depth [e.g. Galloway et al., 

1989; King and Baker, 1996]. Net erosion and offshore transport during spilling, 

dissipative breaker conditions is also consistent with previous field and laboratory 

observations [e.g. Sallenger et al., 1985; Kubo and Sunamura, 2001; Wang et al., 2003]. 

Though breakers with plunging characteristics suspend and transport more sediment than 

spilling breakers [Kana 1977, 1978; Beach and Sternberg, 1996; Voulgaris and Collins, 

2000], undertow is thought to be more important during dissipative storm conditions 

[Thornton et al., 1996; Gallagher et al., 1998; Ruessink et al., 2007], and thus the net 

direction of transport is offshore. In contrast, since plunging breakers tend to occur for 

waves of lower steepness (on steeper beaches), when wave heights are smaller and 

wavelengths longer (e.g. swell conditions), wave asymmetry is higher during the shoaling 

phase, and thus net transport is onshore [Elgar et al., 2001; Hoefel and Elgar, 2003; Wang 

et al., 2003]. 

One of the drawbacks of using the Iribarren number to determine wave breaking 

type is that it compares deepwater or breaking wave characteristics to the slope of the 

foreshore, quantities that only interact with each other during quiescent periods when no 

bar is present and waves are only breaking at the shoreline (e.g. shore break). In order to 

more accurately predict the direction of sediment transport by the Iribarren number, 

breaking wave parameters should be compared to the slope immediately under the actual 

location of wave breaking-i.e. outer surf-zone wave steepness should be compared to 

the offshore slope of the shore-parallel bar, while shore-break wave steepness should be 

compared to the slope of the foreshore. These parameters are difficult to measure 

simultaneously in the field, and thus deepwater or breaking wave characteristics are used 
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more often. We believe that lidar time-series data of wave parameters in the inner surf 

zone from CLARIS may be helpful in the future at quantifying the error introduced by 

using deepwater or outer surf-zone parameters in predicting wave breaking type at the 

shoreline [see Chapter I, this dissertation]. Despite the potential for errors, outer surf

zone wave steepness and the Iribarren number seem to be good overall indicators of 

temporal trends in the direction of net transport during the storm at this field site. 

6.2.2 Importance of Mean Water Levels 

Peak erosion of the upper beach also coincides with the peak in mean water level 

during the first 12 hours, as opposed to the peak in wave runup maxima. Surge peaks just 

before the 16AM survey (light blue line, Figure 2D), consistent with the observed wind 

speed maxima, suggesting most of the surge is caused by wind-driven setup across the 

region. In contrast, predicted runup maxima for the whole storm (stars, Figure 8) and 

observed runup maxima over the whole storm (black line, Figure 4), peak at the storm 

peak and 17 AM surveys, respectively. The time of these peaks are considerably after the 

surge peak, when wave period and height are higher. Note the discrepancy between 

predicted and observed runup maxima over the whole storm is due to the low-tide timing 

of the CLARIS surveys. This suggests that both shoreline erosion and upper-beach 

volume change during moderate storms may be more sensitive to mean water levels as 

opposed to runup water levels. In addition, although the position of the shoreline 

recovers fully in the 10 days following the storm, the magnitude ofupper-beach accretion 

is less than the magnitude of upper beach erosion during the storm (Figure 2F), indicating 

that no mechanism is available to rapidly transport sediment back to the upper beach after 
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mean water levels subside. Thus the overall net effect of the storm on the beach may also 

be due to the length of elevated mean water levels: if surge remains high as waves 

transition to long period swell, the storm may induce a net volume gain to the upper 

beach, whereas if surge subsides before waves transition to long period swell, net volume 

change may be a loss over the storm. 

6.3 Spatial Patterns of Beach Evolution during the Storm 

Superimposed upon general temporal trends in beach erosion during storms is 

significant spatial variability in the amount of erosion (or accretion) that occurs [e.g. List 

et al., 2006; Stockdon et al., 2003]. Predicting these variations is important both to 

coastal planners managing development and homeowners preparing for approaching 

storms. Spatial variability is observed in response to extreme events, such as hurricanes 

[e.g. Stockdon et al., 2003], as well as to smaller, more frequent events, such as 

Nor'Easters [List et al., 2006]. We test three hypotheses for alongshore-variable beach 

erosion during a Nor'Easter on the Outer Banks [Figure 11]. Hypothesis 1 extends the 

effects of alongshore variable wave height in the nearshore and surf-zone onto the 

shoreline. It proposes that wave focusing over irregular bathymetry creates regions with 

elevated wave height at the shoreline that could potentially lead to increased erosion. 

This is hypothesized by Schupp et al. [2006] to occur at this field site in Kitty Hawk, NC. 

Hypothesis 2 is the recent storm-impact-scaling approach [Sallenger 2000], that 

compares maximum and mean water levels to various beach morphological features, such 

as the dune crest or base. Hypothesis 3 is a fairly simple model that merely predicts a 

relationship between decreased numbers of offshore sandbars and increased erosion at the 

shoreline [Kannan et al., 2003]. 
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Comparisons between the three different predictors and beach volume change 

during the building portion of the storm suggest that the simple bar model (hypothesis 3) 

produces the best results. Neither wave height nor relative runup, R2% I Droe, produced 

significant correlations with beach volume change. The number of offshore bars does, 

however, predict the overall regional trend of increased erosion between 4500 and 7500 

m alongshore during the building phase ofthe storm (Figure liE and F). More erosion is 

observed onshore of where the inner bar has welded to the shoreline, creating only two 

offshore peaks in dissipation (a wide swash zone and offshore shore-parallel bar; Figure 

IOC-F). In contrast, less erosion is observed onshore of the double-barred regions, 

characterized by three peaks in dissipation (a narrow swash zone and inner and outer bar; 

Figure lOA-C). Since the morphological expression ofthe swash zones is very different 

between the two regions, we hypothesize that the driving hydrodynamic processes are as 

well. In the erosive region, where waves have only dissipated over the outer shore

parallel bar before reaching the shoreline, bore height may be higher at the base of the 

swash (supported by in-field visual observations, see Figure lOC vs. A), and has more 

energy available to transfer to the sediment at its collapse. In addition, the flatter slope of 

the sub-aqueous foreshore due to the welded inner bar may promote an early transition to 

spilling characteristics at the start of the storm in this region, prolonging erosive 

conditions. The constant presence of incoming bores may also increase the likelihood of 

hydraulic jumps, which promote offshore sediment transport [Butt and Russell, 2005]. In 

addition, our observations of maximum runup (Figure 3) are consistently lower in this 

region, suggesting that the highly dissipative foreshore is limiting run up inundation [e.g. 

Stockdon et al., 2006], and preventing a return mechanism for sediment to the beach. 
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In contrast, the narrow swash observed onshore of the double-barred, Jess-erosive 

regions, suggests Jess energy is reaching the beach and therefore sediment transport is 

reduced. Since waves are dissipated over two bars before reaching the shoreline, the 

initial bore height may be lower and energy at incident frequencies most likely depressed, 

exposing the beachface to less energetic swash dynamics [e.g. Masse link and Puleo, 

2006]. The combination of dominant infragravity motions and steeper foreshore slopes 

may be responsible for the comparatively higher runup maxima [Stockdon et al., 2006] 

observed in the single-barred regions. While runup maxima may be higher, swash 

interactions with incoming waves may be less energetic, preventing significant profile 

adjustment and subsequent shoreline change. 

Since the intensity of radar returns in the nearshore can be used as a proxy for 

wave dissipation [see Chapter 1 ], we sum the total dissipation over the inner surf zone, 

and compare it to beach volume change during the building portion of the storm (Figure 

14). Correlation analysis indicates dissipation in the inner surf-zone and volume change 

are significantly positively correlated such that areas with less energy dissipation in the 

inner surf zone experience more volume loss (R=0.71, p=0.001). Linear regression 

analysis indicates that alongshore variations in inner surf zone dissipation explained 50% 

of the variability in volume change during the building portion of the storm, confirming 

the simple bar hypothesis that increased dissipation over multiple offshore sandbars leads 

to decreased erosion onshore. 
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6.4 Other Metrics for Predicting the Relative Magnitude and Direction of Cross-Shore 
Sediment Transport during Storms 

All of the metrics tested in this study are "erosion metrics", that is, they are all 

designed to predict alongshore variations in erosion during storms and disregard the 

possibility of accretion. Storms can often have a net accretional effect, however, with 

significant percentages of the eroded beach volume returning in less than 24 hours 

following the peak of the storm [Birkemeier, 1979]. For example, in this study the 

greatest inter-survey loss in beach volume occurrs at 7000 m alongshore during the 

building portion of the storm. In the 24 hours following this erosion, including the peak 

of the storm, almost equal accretion occurrs on the upper beach (Figure 2D), leaving a net 

change over the course of the storm of close to 0 (Figure 2E). At the shoreline, accretion 

during the falling portion of the storm exceedes erosion during the building portion ofthe 

storm in this same region, creating a net accretional effect on the shoreline (Figure 2B). 

This is similar to the results of Houser and Greenwood [2007] who observe initial 

offshore movement of a swash bar (resulting in shoreline erosion), followed by rapid 

onshore movement of the same swash bar during the peak of a storm, resulting in rapid 

shoreline accretion. In that case, the direction of movement of the swash bar is 

dependent on mean water levels altering the position of wave breaking over the bar-

during the initial high water levels, waves broke landward of the swash bar crest, causing 

offshore movement, but as water levels receded (and wave height changed negligibly), 

wave breaking occurred on the seaward slope of the swash bar driving it onshore at a rate 

of 1 m hr-1
• Due to the almost continual dissipation of waves across the sub-aqueous 

foreshore in the welded-inner bar region in our study area, it is difficult to distinguish the 

movement of the welded inner bar in the radar intensity images. Nevertheless, the 
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observed pattern of erosion and accretion is consistent with that described above by 

Houser and Greenwood [2007] for the rapid on and offshore movement of a swash bar. 

Metrics need to be created that are capable of predicting not only erosion during storms, 

but also accretion, and the relative importance (and perhaps reversal) of on-and offshore 

transport, particularly within the inner surf zone, during a storm event. 

To this end, we investigate the relationship of inter-survey volume change with 

median wave steepness along the study site during the storm, as changes in the direction 

of sediment transport in the surf-zone can be related to wave type (large storm waves 

favor offshore transport, whereas smaller swell waves favor onshore transport). A 

threshold value of wave steepness (~0.038) differentiates well between erosive and 

accretive or no change conditions; however, the difference between accretion and no 

change is less clear (Figure 12). Data suggest intermediate values of wave steepness will 

result in accretive conditions, but the results are far from conclusive. Given that the 

Iribarren number, ~oo , varies both spatially and temporally during the storm (Figure 13), 

describing characteristics of wave breaking and thus variations in the driving forces of 

sediment suspension and transport under breaking waves, ~"' is compared with net 

volume change during the storm. Specifically, the percentage of time that ~oo < 0.5 

during the storm is plotted with net volume change in Figure 15. A relationship is 

apparent in which areas that experienced net erosion experienced low ~oo for a longer 

period of time. That is, regions with high erosion rates are subjected to breakers with 

more spilling characteristics for a longer period of time. Areas that rarely experienced 

~"' < 0.5 (e.g. the region between 1000 and 3000 m alongshore), also experienced little 

significant change during the storm. The two exceptions to this pattern are on the 
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megacusps at 4000 and 8000 m alongshore, where extensive periods of low .;"' resulted 

in little significant shoreline change during the storm. Here, spilling conditions prevailed 

over longer periods of time and the width of the inner surf-zone was highest (Figure 9C). 

These data suggest that extremely dissipative conditions may have dominated, increasing 

the importance of frictional losses and reducing the amount of energy that reached the 

shoreline. 

Median .;.., is also calculated between each survey time-pair and compared to 

inter survey volume change in Figure 16A, similar to our comparison with wave 

steepness in Figure 12A. A positive relationship between .;.., and volume change is 

observed; however, threshold values are more difficult to determine. For the erosive data, 

.;.., is< 0.6 eighty-four percent of the time and< 0.5 sixty-six percent of the time (Figure 

16B), where as for the accretive data, .;"'is> 0.6 eighty-four percent ofthe time and> 

0.5 eighty-six percent of the time (Figure 160). In addition, .;.., is < 0.6 and 0.5 only 

nineteen and eight percent of the time for the no change data (Figure 16C), suggesting 

that a transition between erosive conditions and accretive/no change conditions occurs at 

around .;, =0.5 to 0.6, comparable to the transition between spilling and plunging 

breakers observed in the laboratory by Battjes [1974]. Similar to wave steepness, 

however, the Iribarren number has difficulty distinguishing between no significant 

change and accretion. 

Our data suggest that wave steepness and its relative value in comparison to 

foreshore slope (the Iribarren number), in addition to the configuration of the surf-zone 

(one vs. two bars) and subsequent dissipation within the inner surf zone, are important in 

predicting the erosion/accretion response of the beach to moderate Nor' Easters. Along 
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this field site, wave steepness is modulated by irregular offshore bathymetry, which 

induces wave refraction and causes wave height to vary alongshore (see Chapter 2). The 

lack of a direct relationship between wave height and beach erosion, however, suggests 

other factors modulate the response of the beach. Specifically, variations in the amount 

of dissipation within the surf-zone due to irregular bar configurations appear to also be 

important. In addition, variations in both foreshore slope and surf-zone slope may induce 

alongshore variations in wave breaking type that alter the direction or amount of cross

shore sediment transport between the beach and inner surf-zone in different regions 

alongshore. Finally, while three dimensional circulation patterns within the surf-zone, 

induced by the shore-oblique features may also be important, observed erosion patterns 

during this storm did not align with expected erosional currents in the embayments (see 

Chapter 2). This may be due to the fact that most of the erosion during this storm occurrs 

during the high-angle waves characteristic of the building portion of the storm, when 

wave convergence and divergence patterns are not as complex (see Chapter 2). More 

work is needed to address how all of these factors interact with each other to produce the 

observed erosion and accretion patterns throughout the course of the storm. 

7.0 CONCLUSION 

We observed 10 km of beach on the Outer Banks of North Carolina semi-daily 

during a Nor'Easter using CLARIS, and analyzed spatial and temporal patterns in both 

shoreline and beach-volume erosion and accretion with respect to modeled wave 

parameters. In addition, we measured alongshore variations in observed wave runup 

maxima and compared them to predicted R2% statistics using the Stockdon et al. [2006] 
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equation. We then tested three previously proposed hypotheses for predicting 

alongshore-variable response to storm events, and evaluated their success during the 

storm. Our data suggest: 

• The majority of both shoreline and upper beach-volume erosion occurred 

during the building portion of the storm when wave steepness and surge were 

highest, and Iribarren numbers low. 

• Recovery of> 50% of the original shoreline erosion occurred along more than 

half the study site during the next 24 hours, as waves peaked and subsequently 

transitioned to less-steep, long-period swell. 

• In contrast to the shoreline, only 16% of the study-site experienced accretion 

on the upper beach during the falling portion of the storm, perhaps due to low 

mean water levels preventing transport to the higher elevations. 

• Runup elevations during the storm are better predicted using an evolving 

foreshore slope and breaking-wave characteristics (as opposed to wave 

parameters from 10 m water depth) in the Stockdon et al. [2006] model, 

however, they still only explain 16% of the variability in the observed runup 

elevations. 

• Alongshore-variable breaking wave height and relative runup elevation are 

not good predictors of alongshore variations in beach volume change at this 

site during a moderate Nor'Easter. In contrast, the number of offshore bars 

appears to exert first order control on regional patterns of erosion, such that 

double-barred regions experience less erosion than single barred regions, 

supporting the work ofKannan et al. [2003]. 
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• Inner surf zone dissipation, quantified using summed radar return intensities, 

explained 50% of the variability in volume change during the building portion 

of the storm, confirming that alongshore variations in surf-zone morphology 

and its effect on wave dissipation near the shoreline is important for predicting 

beach erosion during storms. 

• Spatial and temporal patterns m the Iribarren number show promise at 

predicting both alongshore and temporal variations in the direction and 

magnitude of cross-shore transport during the storm, however, more work is 

needed to further incorporate interactions between alongshore-variable surf

zone configuration, mean water levels, and swash-zone processes into a 

predictive metric. 
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FIGURE CAPTIONS 

Figure 1. Physical characteristics of the Nor'Easter. Wave parameters, including 

significant wave height and peak period, wave steepness, and wave direction (relative to 

shore normal) as recorded by the 17-m waverider at the USACE-FRF pier are shown in 

panels A-C, respectively. Water level recorded by the NOAA tide gauge at the end of the 

pier is shown in panel D, where as wind speed and direction (relative to true north) are 

plotted in panel E. Vertical colored lines represent timings of surveys: 15PM survey 

(purple), 16AM survey (cyan), 16PM survey (green), 17 AM survey (yellow), 1 7PM 

survey (orange), 18AM survey (magenta). 

Figure 2. Shoreline and volume change during and post-storm. In panel A, the MHW 

shoreline is shown for all surveys, with locations of megacusps shaded in blue. In panel 

B, inter-survey shoreline change is shown whereas in panel C, net shoreline change over 

the whole storm and shoreline change during the recovery period is shown. Panels D and 

E are similar to B and C, except for volume change. Panel F shows the overall volume 

change from the pre-storm 15PM survey to the recovery 28PM survey. Dotted lines in all 

show plus or minus 1 0 em significange thresholds. 

Figure 3. Foreshore slope during the storm. In panel A, spatial-time stacks oflinearly 

interpolated foreshore slope during the storm are plotted. Warmer colors are steeper 

slopes, cooler colors are flatter slopes. Solid black lines represent times of CLARlS 

surveys. Panel B shows wave height in 17-m water depth for reference. 
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Figure 4. Observed runup during the storm. CLARIS observations ofrunup maxima are 

shown for each survey (colored dots). Runup maxima over all the surveys during the 

storm are connected by the black line, with the majority of run up maxima occurring 

during the 17 AM survey (yellow dots). 

Figure 5. Spatial predicted and observed runup comparison. Panels A-E show observed 

(blue) and predicted runup maxima from each model runs 1-3 (red, green, black, 

respectively) for each CLARIS survey. 

Figure 6. Relationship between observed and predicted runup. Predicted runup maxima 

from model run I are compared with observed runup maxima during each survey. Linear 

regression analysis (blue line) indicates predicted runup explains only 16% ofthe 

variability of observed runup. A I: I relationship is described by the black line. 

Figure 7. Comparison of observed swash inundation and predicted swash inundation. 

Runup maxima predictions are converted to maximum swash inundation position 

(magenta line) and compared to observed maximum swash inundation (black line) for 

each survey. Colors indicate lidar derived beach topography. Largest differences 

between observed and predicted swash inundation consistently occur between 8000 and 

9000 m alongshore in the high-relief cusp field. 

Figure 8. Predicted run up maxima during the storm. Spatial time-stacks of predicted 

runup maxima from model run I are shown. Time is on the y-axis, and distance 
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alongshore is on the x-axis. Runup maxima are represented by colors, with warmer 

colors indicating higher elevations and cooler colors indicating lower elevations. Black 

lines denote CLARIS survey times, and start denote total predicted runup maxima for the 

whole storm. Storm impact is identified by comparing runup maxima to the elevation of 

the dune base, with magenta stars indicating the "swash" regime, and white starts 

indicating collision with the base ofthe dune. 

Figure 9. Surf-zone morphology from radar morphology mosaic. Panels A shows an 

example radar morphology mosaic during the storm, with warmer colors representing 

high radar intensity returns, and cooler colors representing low radar intensity returns. 

The waterline (thick solid line), swash zone (narrow solid black line), inner bar (dashed 

black line), and 5-m isobath (dotted black line), are denoted for the 16AM survey. 

Interpretation of the morphology mosaic is shown in panel B. White regions correspond 

to places of wave breaking, blue regions correspond to places oflow wave dissipation, 

and the yellow region represents the beach. In panel C, outer surf-zone width (red line), 

inner surf-zone width (blue line), and the number of peaks in dissipation offshore ofthe 

beach (green stars) are shown. Outer and inner surf-zone width both vary significantly 

alongshore with variations in outer surf-zone width controlled by the shore-oblique bars 

and troughs and variations in inner surf-zone width controlled by the position of the inner 

bar. 

Figure 10. Photo and radar characterization of single vs. double barred regions. In panels 

A-C respectively, an example photo, radar intensity timestack, and time-averaged radar 
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intensity profile are used to characterize the double-barred region between 1000 and 4000 

m alongshore. In panels D-F the same data is used to characterize the single-barred 

region between 5500 and 7500 m alongshore. In panels B and E, light colors represent 

high-intensity radar returns off of breaking waves. Horizontal lines correspond to the 

morphological features (colored dots) identified objectively using the time-average radar 

intensity profiles in figure C and F. The double-barred region is characterized by a 

narrow swash zone, where as the sinlge-barred region is characterized by a wide, 

dissipative swash. 

Figure 11. Hypothesis tests of alongshore variable beach change metrics. Panels A-B, C

D, and E-F, show the hypothesis tests of the erosion metrics: wave height, relative runup, 

and# of offshore bars, respectively. In panels A and C the spatial cross-correlation 

between volume change (red line, right axis) and wave height and relative runup (blue 

lines, left axis), respectively are shown, where as linear regression of the variables are 

plotted in B and D. The black line represents the linear best fit. In panel E, number of 

offshore peaks in dissipation (blue stars, left axis) and volume change (red line, right 

axis) are shown. Results of the student's t-test are shown in panel F. 

Figure 12. Comparison of inter-survey beach volume change and mean wave steepness. 

Panel A compares inter-survey volume change with mean wave steepness between the 

each survey time-pair. Erosive locations are shaded in blue, no change in green, and 

accretive locations in blue. Histograms of wave steepness values based on the volume 

change type classification are shown in panels B through D, respectively. The black line 
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on panel A represents a wave steepness threshold of0.0385 that separates erosive 

conditions from no-change or accretive conditions based on statistics calculated for each 

volume change type. 

Figure 13. Iribarren number during the storm. Spatial time-stack oflribarren numbers 

during the storm, with time on they-axis and distance alongshore on the x-axis. Colors 

represent values oflribarren numbers, with warmer colors indicating higher values 

(regions that are intermediate to reflective with more plunging breakers) and cooler 

colors indicating lower values (regions that are more dissipative with spilling breakers. 

Figure 14. Relationship between inner surf-zone dissipation and beach volume change. A 

significant, positive correlation between the sum of radar return values across the inner 

surf zone, used as a proxy for dissipation (blue line) and beach volume change during the 

building portion of the storm (green line), in shown in panel A. Linear regression analysis 

(black line, panel B) suggests inner surf-zone dissipation explains 50% of the variability 

in beach volume change during the building portion of the storm. 

Figure 15. Comparison of percentage of time ~oo < 0.5 (spilling breakers) to volume 

change. Net volume change during the storm (15PM to 18AM survey), is shown in dark 

blue, with the percentage of time Iribarren numbers indicate spilling breakers shown in 

cyan. The two variables agree well, with the exception of at 4000 and 8300 m 

alongshore. 
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Figure 16. Comparison of inter-survey beach volume change and median Iribarren 

number. Similar to Figure 12, panel A compares inter-survey volume change with 

median Iribarren number between the each survey time-pair at each location alongshore. 

Erosive locations are shaded in blue, no change in green, and accretive locations in blue. 

Histograms oflribarren numbers based on the volume change type classification are 

shown in panels B through D, respectively. The two black horizontal lines on panel A 

represents an Iribarren number threshold of 0.5 to 0.6, which somewhat separates erosive 

conditions from no-change or accretive conditions. The threshold value is based on 

statistics calculated for each volume change type. 
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Table I 
RMSE(m) 

MODEL 15PM I6AM 17AM I7PM 18AM ALL 
5-m waves, dynamic slope 0.79 0.69 0.55 0.48 0.51 0.61 

I 0-m waves, dynamic slope 0.84 0.67 0.68 0.65 0.81 0.74 
10-m waves, static slope 0.84 0.71 0.71 0.69 0.83 0.76 

BIAS (m) 
5-m waves, dynamic slope -0.62 -0.33 -0.1 -0.02 -0.13 -0.24 

10-m waves, dynamic slope -0.69 -0.29 -0.41 -0.41 -0.64 -0.49 
10-m waves, static slope -0.69 -0.39 -0.46 -0.43 -0.64 -0.6 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
A. Photograph of Double-Barred Regeion 

D. Photograph of Single-Barred Regeion 
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Figure 11. 
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Figure 12. 
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Figure 13. 
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Figure 14. 
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Figure 15. 
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Figure 16. 

~A~·---.-----.----,-~--.---~ 2.5 r-

..... 
(]) 

..0 
E 
::J 
z 
c 
(]) ..... ..... 
ro 

..0 
·;:: 

2 

1.5 

. . 

• 4 ... . .. , .. .. . . .... .. . ., .. 
0.5 

Erosion 
oL----L----~~~~--~--~. 
-30 -20 -10 0 10 20 

Accretion 

Volume Change (m3/m) 

Ill 
(]) 
u 
c 
(]) ..... 
::J 

~ 200 
0 
0 
'*I: 

Ill 
(]) 
u 
c 
~ 
::J 
u 
u 
0 
0 
'*I: 

60 

40 

20 

Mean:O.SO 
Median: 0.46 
% < 0.5 =66% 
% < 0.6=84% 

1.5 2 

Mean:0.83 
Median:0.78 
%< 0.5=8% 
%<0.6= 19% 

2 

Mean:0.73 
Median: 0.71 
% < 0.5 = 14% 
%<0.6= 16% 

oLL==~J--L~~~~==5~----~2~ 
0 0.5 1. 

Iribarren Number 

n 
c 
3 
3 
c 

0.5 ~ 
:;:::· 
f1) 

""0 
0 
'T1 

0 

n 
0.8 c 

3 
0.6 3 

c 
iiJ 

0.4 !:!'. 
< 
f1) 

0.2 ""0 

0 
0 'T1 

n 
c 

0.8 3 
3 0.6 !:.. 
Q) 

0.4 ~· 
f1) 

0.2 ""0 
0 

0 
'T1 

196 



VITA 

Katherine L. Brodie 

Born in Duxbury, Massachusetts, 13 October 1984. Graduated magna cum 
laude from Milton Academy in Milton, Massachusetts. Earned a B.A. in Earth 
Sciences with High Honors from Dartmouth College in Hanover, New Hampshire, 
graduating magna cum laude in 2006. At Dartmouth, was the 2006 recipient of the 
Upham Award in the Earth Sciences department for best senior thesis, and the 2005 
recipient of the Estwing Award in the Earth Sciences department for outstanding 
work in a collaborative environment. Entered the masters of science program at the 
College of William and Mary, School of Marine Science in 2006, receiving the 
William J. Hargis, Jr. Fellowship Award in 2007 for superior academic performance 
in the first year of study. Successfully by-passed the masters of science degree, 
entering the doctoral program in June of 2009. Graduate work received outstanding 
student paper awards in 2008 and 2009 at the American Geophysical Union Fall 
Meeting in San Francisco, California. Will graduate in May 2010 with a Ph.D. in 
Marine Science, with a concentration in geological oceanography. 

197 


	Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot
	Recommended Citation

	ProQuest Dissertations

