An Experimental Comparative Investigation of the Readability of a Flat Chalkboard and a Curved Chalkboard in a Classroom

W. Rodman Snelling
College of William \& Mary - School of Education

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Educational Psychology Commons

Recommended Citation

Snelling, W. Rodman, "An Experimental Comparative Investigation of the Readability of a Flat Chalkboard and a Curved Chalkboard in a Classroom" (1956). Dissertations, Theses, and Masters Projects. Paper 1539272249.
https://dx.doi.org/doi:10.25774/w4-skgw-a512

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

AN EXPERIMENTAL COMPARATIVE INVESTIGATTON OF

THE READABILITY OF A FLAT CHALKBOARD AND
A CURVED CHALKBOARD IN A CLASSROOM

A Thesis

Presented to

the Faculty of the Department of Education College of Willam and Mary

In Partial Fulfillment
of the Requirements for the Degree
Master of Education
by
Willam Rodman Snelling
February 1956

ACKNOMLEDGEMENTS

I wish to gratefully acknowledge the time and effort expended by the many friends, educators, and atudents who made possible these chalkboard experiments. In particular I wish to thank Mr. Merle R. Osborn and Kr. Ralph A. Soden, friends and associates; Mr. Ceorge C. Pitts, principal of Jemee Blair High School; Dr. Poul Sternborg, Wliliamsburg Optometrist; Mr. J. J. Booker, principal of Credock High Sehool; Mr. Vernon Barnes, assistant prinoipal of Cradock High School: and my wife, Anne K. Snelling.PAOE
I. THE FROBLEM AND DEFTNITION OF TERMS USED 1
The problem 1
Statement of the problom 1
Importance of the study 1
Definitions of terms ubed 3
Ohalkboard 3
Angle of vistion 4
Viewing point 4
Reflectance 4
Chalkboard revisiblilty 4
Readability and dietinguishability 5
Total-board-viowing-area 5
Chalkboard developnent 5
Previous chalkboard investigations 7
II. CHALKBOARD CONFIGURATION 10
Basis of ourve selection 10
Selection of a curve 10
Seleation of a appocifle curve 11
Construction of the prototype 13
Ceneral 13
Specifications 14
Comparison of theoretical and actual 14
Surface 14
1II. WILLIAMSEURO TEST PREPARATIONS 16
The site 16
Subjects 18
Preparation of test equipment 18
Form on boarde 18
Groups of symbols 18
Parallel sets 19
Board positions 20
Subject viewing points 20
Photographic viewing points 20
IV. WILLIAMSBURG TEST PROCBDURE 21
Orientation of subjects 21
Viewing procedure 22
Photographic eoverage 24
V. DATA RELATINO TO THE WLlLIAMSbURO tBSTS 26
General 26
Center line test 27
General 27
Viewing point number one 28
Viewing point number two 28
Viewing point number three 28
Viewing point number four 29
Vieving point number five 29
Viewing point number alx 31
Concluaion 31
Broken oircle teste 32
Parallel ilne teata 33
General 33
Viewing point number one 33
Viewing point number two 33
Viewing point number three 34
Viewing point numbor four 34
Vieving point mumber five 34
Viewing point number alx 35
Conclusion 35
Comparison of wieving points 35
Middle area of curved board 36
Commente of subjects 36
General 36
Broken ciroles 37
Center 11ne 37
Parallel Lines 37
Complaints 38
Constructive comments 38
Results of photographic coverage 39
Color photographe 39
Black-and-whte printe 40
General conclusiong of williamburg test 40
VI. CRADCOK TEST PREPARATIONS 43
The site 43
Construction 43
Lighting 43
Color schems and reflectances 45
Chalkboard 46
Subjecta 46
Proparation of test equipment 46
Form on the boards 46
Groups of letters 47
Parallel lines 47
Board position* 48
Viewing polints-general 48
Subject viewing points 48
Photographio viewing points 48
VII. CRADOOK TEST PROCEDTKE 50
General 50
Orientation of subjects 50
Vieuing procedure 52
Coment cards 52
Final commente 52
Photographic coverage 52
VIIL. RESULTS AND OBSERVATIONS OP CRADOCK TESTS 54
General 54
Particular viewing points 54
Viewing point number ono 54
Grouped figures 54
Parallel sets 55
Consideration of general visibility 55
Viewing point number two 55
Groupod Pigures 55
Parallel sets 56
Consideration of generel visibility 56
Viowing point number thres 57
Crouped tigures 57
Parallel sets 57
Conelderation of generel visibility 57
Wewing point number four 58
Crouped flgures 58
Parallel sets 58
Consideration of general visibllity 59
Wawing point number Pive 59
Grouped figures 59
Porallel sets 59
Consideration of general viciblity 60
Viewing point number aix 60
Grouped figures 60
Paxallel seta 62
Consideration of goneral wistbilty 61
Vieulng point number even 61.
Grouped Piguros 62
Parallel sets 62
Considoration of general visibility 62
Viewing point muber elght 63
Grouped fleures 63
Parallel sets 63

Consideration of general visibility 63
Viewing point number nine 63
Pinal viewing points 64
Viewing point number ten 64
Viewing point number aleven 65
Viewing point number twelve 65
Coments by subjects 66
Specifio comments 66
Analysis of rated couments 67
Concluding comments * * . . * * 67
Comparison of subject vieulag points 68
Comparison of Ilnes of grouped figures * 68
Photographic coverage 69
General conclusions of Oradock test 70
IX. swmary and conclusions 72

Ceneral comparison of Mlllameburg and Cradock tests . . . 72
Total board viewing area 72
General summary of teste 72
An outline for future regearch 74
Tables * * 76
bIELOGRAPHI 125
APPERDIXES 128

LIST O TA

TAELE
pade
I. Kumerical Difforence between Corresponding Point on the Theoretical Curve and the Constructed Curve as Measured from the $\mathrm{XAxis}0$
II. Data Concarning Williamburg Subjecta. 77
III. Asadgment of Lettors to Mlaying Carde in Order to Obtain Random Latter Selection 79
IV. Percentage of Center Line of Grouped Mgures Dosignated as Readable and Dietinguishable on Gach Doard by Subjecta at VILIamaburg Viering Point Vo. 1 80
V. Percentage of Center Line of Grouped Figures Designated as Readable and Distinguishable on Each Doard by Subjects at Willamatiarg Viewing Point Ho. 2 .
VI. Percentage of Center line of Grouped Fgures Designetear as Readeble and Distinguishable on Bach moard by Subjects at Williamsburg Viewing Point No. 3 82
VII. Percentage of Center Line of Orouped Figures Designated as Readable and Distinguishable on Each ioard by Subjeote at Willamburg Fieving Polnt No. 483
VIII. Porcentage of Center Line of Grouped Figures Dasignated as Reaiable and Diftinguishable on Each Doara by Subjeets at Williamsinurg Vieuing Point Ho. 5

84
IX. Porcentago of Center Iine of Grouped PLgures Designated as Readable and Distinguishable on Each Board by Subjecta at Wh11 ameburg Viouling Point No. 6
X. Percentage Incraases of Readable Center Line of the Curved Board as Compared to the Mat Boarda at椎111amaburg * 86
XI. Number of Sections of Einoh Soard Which Had Combable ox Distinguisheble Sets of Parallel Linee et Willamsburg VLewng Polat No. $1.0 . \quad 87$

XIII. Nurber of Sections of EAch Board Which Red Countable or Distinguishabie Seto of Parallel Linea at Wliliamsourg

XIV, Number of Sections of Each Board which Had Countable or Diotinguiehable Seta of Pasallel Liss at Willimmburg Vering Point No. $5 \ldots, \quad . \quad . \quad . \quad . \quad . \quad 10$
XV. Area Increase of the Sets of Parallel Lines on the Curved
Board an Opposed to the Hat Board at Williamsurg
MI. Data Concerning Cradock Subjeots. 92
XVII. The Percentages of the Lines of Grouped Figures thich Were Glessified as Readable and Distinguishable from

XVIIT Rumber of Buard Areas Wose Sets of Paraliel Lines Vere Reoorded as Countable and Detinguishable frow Viewing

XIX. The Percentage Increase of Readable Lines of Crouped

Figures and Seotion Inerease of Countable Sets
Recorded in Favor of the Curved Doard at Point No. 1 .
95
xx. The Percentages of the Lines of Crouped Figures Which

Were Classified as \#osdable and Distinguiehable from
Wiewing Point No. $2 . . .|. .|$.
XXI. Wumber of Doard Areas Whose Sets of Parallel Knes Were

Recorded as Countable and Detinguighable from

XXIX. The Percentage Inerease of Matinguighable Lines of

Grouped Figures and Section Incroase of Countable
Sets Recorded in Favor of the Curved Board at Point No. 298
XXIII. The Percentages of the Lhes of Crouped FLgures Which

Were Classified as Readable and Distinguishable fros

XxIV. Number of Boerd Areas Whose Sets of Parallel unee Nere

Recorded as Countable and Dietinguishable fron

XXV. The Percentage Incranse of Readable Lines of Crouped

FHgures and Section Increase of Countabio Sets Recorded
in Favor of the Curved Board at Point Mo. 3 101
EXVI. The Percentages of the Linea of Orouped FLgures Whioh Nere
Classifled as Readable and listinguishable froa Viewing
Point No. 4 102

XXVII Number of Board Areas Whose Bets of Parallel Lines Were Recorded as Countable and Distinguishable from

Vieving Point No. 4 103
ZZVIII. The Percentage Increase of Readable Lines of Grouped
Pigrares and Section Increase of Countable sete Reconded
in Favor of the Curved Doard at Point Wo. 4 . . . 104
XXIX. The Percentages of the Lines of Grouped FIgurea Which

Were Classified ab Readable and Diatingutohable from
Vieving Point No. 5 105
XXX. Wamber of Board Arese Whose Sots of Parellel Lines Were

Recorded as Countable and nistingishable from
Vieving Point Ro. 5. 106
EXXI. The Porcentage Increase of Readable Lines of Grouped
Figuron and Section Increse of Countable Sete Recorded
in Pavor of the Curved Board at Point Ro. 5 107
XXXII. The Percentages of the Lhnes of Orouped Figures Whioh

Were Classified as Readable and Mistinguiahahle from
Viewing Point (\#o. $6 \ldots 108$
XXXIII. Whabr of Bard Areas those Soto of Parbllel lines Vere

Racorded as Countable and Mstinguishable from
Hiowing Point no. 6109
XXXIV, The Percentage Inorease of Readable Lines of Grouped Figures and Section Increase of Comtable Seta Recorded in Fevor of the Curved Board at Point No. 6. . . 210
XXXV. The Percentages of the Lines of Grouped Figures Which Nere Glassifled as Readable and Distinguighable from Viewing Point No. 7 112
XXXVI. Number of Board Areas Whose Sets of Parallel Lines Nere Recorded a Countable and Dhetingulohable from Vieming Point No. 7212

XXVIIL. The Percentage Incranse of Readable Lines of Grouped

> Pigures and Section Inereate of Countable Seta Recorded In Favor of the Gurved Doard at Point No. $7 \quad 113$
XXXVIII. The Fercentages of the Lines of Grouped Figures thith Were Classified as Readable and Distingulahable

XXXIX. Number of Board Arsan hhose sets of Parallel LInes Were

Recorded as Countable and Dintinguishable from

Xi. The Percentage Increase of headable Lines of Grouped

Heures and Section Increase of Countable Sets Mecorded In Favor of the Curved Board at point Wo. 8 116
XLI. The Porcentagee of the Lines of Grouped Plgureg thich Were Classifled as Readable from Vioutug Point No. 10

ELII. The Percentage Increase of Readable Groups of Figures Prom Paint fo. 10 118
XLIII. Frequency Table of Comants Given by Cradoek Subjecta at Sech Viewing Point 219
XIV. Rumerical Ratings Which Kave Been Agaigned to Comments Made by Cradock Spbjeots In Accordance with the Degree of Praise for the Curved Board Contained in the Evaluation 1
XLV. Totals of Ratings Applied to Comments of Each Gradock Subject. and Rank Order of Viewing Pointe Resulting from Crand Totals of Ratings 222

XIVI. Ranked Order of Most Readable Lhes on Flat and Carved Boardo at Vieving Fointa with Sufficient Data for Fanking * * * * * * * * * 123

LTST OF HOURES

RICRX PAOE

1. General Form of the Ellipse 12
2. General Arrangement of Williamburg Test Roon 17
3. Wethod of Examining Chalkboards from Subject Viauing Points
5 and 6 (椎1llamstarg) 30
4o Genural Plan of Gradock Test Room 44
5o Recomended Classroom Reflectenees 45

CHAPTER I

THE PROLEM AND DEFINITION OF TBEAS USED

The development of the blackboand has been slow in eoaparison with the progressive devalopments made in the design and construction of most other school oquipment since the turn of the century. This paper contains the description of a new aoncept of ohaikboard design. It also presents the results of two teate of thia chalkboard one conducted at James niair magh School in Williamsurg; Virginia, and the other conducted at Gradook High School in Portsmouth, Virginia.

I. THE PROLSM

Statement of the Exoblep. This study wes undertaken as a preliminary and exploratory investigation to determine (1) the relative effectivenese of a ourred chalkboard as a visual aid, and (2) the parLucular type of curve which might lend 1 tself to chalkboard use and merit more complete investigation in further intensive etudy.

Thare was no intention in this prelininary investigation to examine each posaible type of ourved surface and arrive at a oonerete conciusion as to the most effective curve for chalkboard construction. The data derived from this atudy is intended merely as a land mark for further and intenge investigation.

Importance of tho Stucy. The chalkboard is the prime visual ald used in clasarooms todey. It ia an intagral part of almost every
classroom In the combry. In fact, the various state departments of edueation virtunlly oompel the achools under their jurisaletion to ereet permment chalkboarge in every claseroom. A mintmun of $16-20$ 1inear feet of ohalkboaxd is recoumended by wost stater, and in one state, North Dakota, 20 Innear feet is required by law. ${ }^{1}$ A llat ohalkboard is normally found at the front of every clssaroom. The use of a flat chalkboard haw resulted in the following complaints and chain reactions which have been noted as a result of the authoris tetching oxportence and ohsarvations of fellow teachers:
(1) Instructors utilizing the chalkboavd have experienced affitculty in reading that which has previously been written on an adjecent panel of the board. In order to revieu a loug ine of writing, the instructor mat stop back from the board until he geins auftielent angle to read the entire surface.
(2) Pupils seated in the classroom have complained that they are unable to read everything that is written on the chaikboard. Many prapils who are seated on the sldes of the room, espectally those near the front. have had to move in order to oopy an assigrment or read writing pleced on the fer end of the chatkboard.
(3) The inability of pupils peated at the sides of the clasaroca to read aterinl placed on the board has reaulted in tho construction of long, reotangular clasarooms in which the chalkboaxd ie looated at one of the short ends.

[^0](4) The use of these long, rectangular classroome hes, in tump caused instruotars to assign aeats to pupils. Thus, those atradents wh geod or excellent eyesight are ascigned to the midale or rear portion of the elascroong, while those with poor oyestight are placed at the front of the room. This nrrangement tends to place the studenta in groups which remain relatively constant from classroom to clasemoom and year to year.
(5) This type of alessroom is not conductve to orfective teacher control over, and eye contact with the individual papilis. furthernore; audiblizty in the rear of the room in less than at the front. The student at the rear of the classroom is seated behind a long row of fellow students-in a position divorced from the tacher by distance and -lasmmas.

None of the above complaints an be considered as contributory to effective and effidient olassrooms. This study represente an attempt to improve the existing classroom aituationg which are reflected in the detrimental aspects of Iinear chalkboards ofted.

II. DEFTNITIONS OF TERMS BSED

Ghsikboand: The use of a large writing surface at the front of a clabsroom has long been common. The term "blackboard" wae naturaliy applied to the firgt "black" "boards" and slete boards which were affixed to the clessroom walla. Reoontiy, however, boards of composition meterial have come into prominence. The tradtional biaok color han been replaced in many ases by pink, green, brown, and even white. Despite the changes of color chalk has remained the universal uriting material. Hence, the
term "chalkboard" has now been acoepted as indicative of a largo board1Hke surface upon which chalk is rubbed in order that a nuber of people may read a single bit of material at the ame time. The term nohaikboard and ita contraction "boaxd" are used interohangeably in this paper.

Angle of Viston This is a term which io used herefn to refer to the angle formed at a point on the chalkbard by the line-oi-alight of a atudent and the tangent to the chalkboard at that point.

Wieving Point: The point on the Rhoor of a classroom from which en entire chalkboard or any portion thereof may be viewed has been reforred to in this paper as a "viewing point". More particuleriy, the point in apace airectly above the point on the floor and at eye level of a seated student is the specific location of a "vieving point". For the akke of simplialty this has been roferred to as a point on the clasvroow Ploor.

Retlectance: Most of the avallable Ifterature concerning chalkboards mates reference to the "reflectance" of a ohalkboard. This is a relative term which destguates the percentage of incident light mich Is deflected from a given board. Thus a ohalkboard having a reflectance of ten per cent worla be one which reflects ten per cent of the light which strikea it and absorbs the remaining 90 per conta

Ghalkboard Revisibility: This is a term which has been colned for the purpose of this report. It is used in reference to the area of a chalkboard that fayst be read after an area of indistinguishable writing has been passed, If, for example, chalkboard were vieved from
a position to the side of the board, the near side of the board might easily be read but writing on the midde portion might not be read. Any easily read portion of the board beyond this non-readable area would be referred to as a "revisible" portion of the soard.

Refdability and Diatinguighability: These are terms which must be defined in relation to one another. Doth are used in reforence to the Vistiblitty of figures written upon the ohalkboards. A figure was olassifled as "readable" if it could be correctly and quickly read from a givon point within the classroom, From the ams point, figure was classified am "diatinguishable" if it could be discerned as a separate and distinet figure but could not be further identified.

20tal-3oard-Hiewing-areg The portion of a dabsmom conslsting of viewing points from which the ontire surface of a chalkbonrd may be read in refexred to es the "total-board-wiewing-ares". Itc size in expressed in temna of the floor area in whith the viewing polnts are located.

III CHALKBOARD DEYKYOPMENT

The Greek and Romans were the Pirst to use a tablet which might be clasalitied as the originai chalkboerd. Inasmeh as this tablot was conem gtrueted of wax, it could be ironed out and reused. This concopt was revolutionary and diatinguiahes it from the earliew and more permanent cunelform witing.

The wax tablet was later replaced by indiviaul tablets of slate. These were first introduced into this country in the late 18th century and became comen in many schools. There in no avallable informationg however; concorning the kinds of aingle, large "blackboards" used in America pritor to 1820. "At that time", reports Paul F. Noos, noted school architect, "blackboards werv used in our conmon schools for arithmeticsl calculations. In 1839, Connecticut reported that blackboards were comnon but not much used. Mackbards were introduced at West Point in 1817. Seven years later at Bowdoin College an instructor named Smyth used one wth exoellent results. In fact, the innovation proved guch a aensam tion that he recelved bit appointment as assistant professor of mathematics a year leter. ${ }^{2}$

The early blackbonids were constructed of wood or of plasterlamplaok mixture. Soon, hovever, the quamries begen to provide large slate slab whioh could be momted on walls. After 1850, glate blackboard received general acceptance, although surfaces of painted nood or glass in the traditionel black vere alao used.

The traditional slato blackbord remina in use today but its popularity is largely limited to slatempoducing areas* The slate boards are in the process of beling roplaced by composition challeboards wheh offer uniform aurfaces, lower costs, and a galaxy of colors. of course,

[^1]black chalkboards are also manufaetured however, the dewand 4 se slight that the laxgest chalkboard manfacturer in the country reported in 1952 that "Elack chalkboards in nev behool construetion, heve almost disappeared since 1947. Production of black 10 so low that it can truly be analyzed as chalkboard for replacement only. ${ }^{3}$

IV. PREVIOUS GKALKBOARD INVESTYGATLONS

Soveral studies have been made in an attempt to dotermine the most effective chalkboxa color and IIghting. These gtadied have been concerned with clasgroom liehting, ohalkboard colors and refleotance factors, height of chaik rails from the floor, and the degree of contrast between ohnlk board and chalk. Then manfacturers first introduced ohelkboards of various pastel colors; bohool architects delighted in selocting the thade which would fit most esthetically the decorative coler seheme of ach new school. The selection was temperad by the long-standing belief that a chalkbeard must provide a high degree of contrast with the ohaik so that witing might easily be visible. In other wowde, "vialbility" was conaw sidered something which could be deternined in a fleeting glance. Therefors, ohalkboards with a Iight raflectane of about ten per cent or lese were selected so that high contrast could be obtained with winte obalk. Green boards were usually selected, but the particular shades were chosen by the architects so es to achieve a color balance with the rest of the
${ }^{3}$ Chslleboexd Remarite, Bulletin CR-2-52, (Chicago Wober Costelle Company, 1952).
room. Such arbitrary seleotion was somevhat refined by a recomendation nade by Ray L. Hamon after some experiments to detexmine a combination of crapon and chalkbord thet might give aceeptable visibility on a high brightness board. He concluded that "probably the optinum combination avallable at present is a chalk whioh is just off wite on a light green chalkboard which hes a light reflection factor of approximately 20 per cent."4 Later, bowever, a mommental study of chalkboard visibility wes made by Darrell Eoyd Harmon. ${ }^{5}$ His investigation is the only independent study which bas been made on sustained vision of various types of chalkboards. With the assintance of four optometriats, a careful and prolonged invostigation was conducted on dark ohalkboards witeh recorded a reflecm tance of 10 per cont of lower and light chalkboardo which recordod refleotances of 15 per cont or higher. It wes concluded that:
a. The greatest viaual issadvantare in austained visuallyoontered taske probably exists in th chalkboards of "normal" contrestm that is, chalkboards on which a dark chalk or crayon is used on a light chalkboard:

The chances are over 7 to 1 that white chaik on a dark chalsboard is more visually edvantageous than dark ohall on a light chalkboard (such as bleck on whte);
bo There $4 s$ no particular visual advantage of dark green chalk boards over black chalkboards, when the reflectaned or the contrast is practically the same;

4Ray L. Hamon, Lhehting Glassrooms Hnited Stetea Department of Education, Pemphlet $N 0$. 104 (Weshington: Government Printing offiee 1948) p. 5.
${ }^{5}$ Darrell Boyd Harmon, A Brelininary Study of the Relation of Sustainad Vigually Centered Activity and Cortain Irpog of Chalkboardg (Anstint Tho Anthor, 1952).
c. The chances are over 15 to $\mathrm{I}_{\text {. }}$ that yellow ohay on a light green chalkboard is more viaualiy advantageous than the high contrast 6 of efther white on black or dark chalk on a light background.

No further studies have been made sinco Harmen" investigationo Much of the 1 iterature published by netional and state educational advisory groupa makea reforemee to chalkboard refleotanee; however, nono of the recommendations have regulted from independent research.

As a result of the ebova diseusalon, it is conoluded that a light green board with a refleotanee of approximately 20 per cent and ueed in conjunetion with yellow chalk provide the most advantageove chalkboard combination.

[^2]
CHAPTER II

GHALKBOARD CONFICURATION

I. BASIS OF CURVE SELECTION

Previous studies have estabilshed the desirebility of 11 ght green composition boarda on which a teacher writes with yellow chalk. Neverthe less, the writer has observed that many pupila within the clasarooms atill experience difficulty in reading that which has been placed on chalkboards. Accepting the resulte of previous research, it is this thesis that the number of chalkboard faults could be further reduced if the angles of Vision at each point on the board were made as near ninety degrees as possible. In other words, this study was predicated on the belief thet a concave ohalkboard would substantlally inorease the angles of viaion and thus alleviate the effects of sinall angles and large distances. It is believed that a curved chalkboard will yield larger angles of vition to those pupils seated at greater distances from a point on the beard and yleld small angles of vision to those seated at chort distances from the same point.

II. SELEOTION OF A CURVE

General: There are innumerable curves, or portions of curves, which would provide the basis for a conoave chalkboard. However, additional conditions oreated by the practical necessity of complying to basic roon design reduce the field of selection considerably. Bince a concave
wall will reduce the squere footage of avallable floor apace in a normal, plane walled room, the curve whieh is elected must keep this loss to a minimu. In addition a sizeable portion of the board muct remain flat so that devices such as rolers and cut-outs may be used as effectively as on conventional chalkboards. This flatness should be at the center of the chalkboard:

Thus, the selected curve must form a concavity whioh is comparatively deep and virtually flat at the center portion. The ourve which appeared best to suit the above conditions was the ellipse. The conical equation of this curve is $\frac{x^{2}}{y^{2}}+\frac{y^{2}}{b^{2}}=1$. Figure 1 , page 12 ; shows the ellipse in ita general form: The length "a is referred to as the semimejor axis. The length "b" is the semiminor axis. As "b" becomes shorter and "a" remains constant; the ellipse flattens out-becoming long
 can be ehaped into a specific ellipse, the npper or lower half of which satisfies the general conditions for a curved chalkboard.

Selection of a Specific Gurva. The selection of speoific ellipse to be used in the investigation was somewhat arbitraxy. There seems to be no precedent to follow in the doteraination of the elliptical form The selection, therefore, was made as a result of consideration of the known factors: (1) A minimum of lost space must reault and (2) A large portion of the curve must be virtually flat. It was belleved that the concavity should be deep enough to produce noticeable ourveture over twothirds the entire length, while producing a flat surface over the oenter third.

A survey of the State Departments of Education was conducted to deternine the recoumendations ande by the States concerning chalkboards. ${ }^{2}$ This revealed that those states which have written recomenciations speaify a mindmur of 20 Innear feet of chalkboard per clessroom. This length was therefore selected as the value of "2a" in the apecific ellipse so as to provide comparison with conventional boards of nomal length.

The aemi-ninor axis was chosen 852.5 feet because this provided considerable depth and yielded approximetely six foet of nearly flat surface.

The equation of the selected curve 18 , therefore:

$$
\frac{x^{2}}{(10)^{2}}+\frac{y^{2}}{(2 \cdot 5)^{2}}=1
$$

or, upon simplimication

$$
x^{2}+16 y^{2}=100
$$

The selection of this ellipse results in a net loss of 10.7 square feet of floor apace in a classroom with a 20 -foot frontage. this loss is aomputed by subtrecting one-half the area of the ellipse from the area formed by a rectangle 20 feet long and 2.5 feet deep (50 m $39.27=10.7$ square feet).

TII. CONSTEUCTION OF THE PROTOTYPE

General. In order to compsre the affectiveness of the proposed chalkboard with the conventional plane chalkboard, a full seale model was construoted. The board consieted of a large and elaborate frame to wich masonite was tatened to provide a writing aurface. Only one-half of the complete chalkboard was construated: that 1 ay onemuarter of the entire

[^3]ellipse. The framerork was constructed so as to allow the extire strue ture to be up-enced and revorsed. Thus, this half-malkboard could form either side of entire elliptical board and therefore suffice for all comparative teats.

Speciftcations. The back support of the atruoture was 10 reet long: hovever, the actual chalkboard surface length anounted to 10.69 feet. Each baee of the board was sufficiently large to keop the four-foot structure uprightemo other means of support was built into the board. Thus, the support could be varied in accordance with the height of the conventional boards with which comparison was made. The board was constructed of two sections whioh were dealgned to be joined in the classroom. This made the baard easy to tranaport to and from the test sites. The photom eraphs in Appendix i thow the chaikboard in ite completed atate. In adaition, Appendix B containg speoifleationg for the prototype board.

Comparison of Theoreticg and Actua. Table 1 , pace \%, shows the slight difference in measurements betweon the theoretical curve and that which was actually constructed. This difference is attributed to unskilled workmanship. The X values in Table I represent distances measured along the x-axis, and the y values indicate the distances of the curves from the x-exte, The symbol yt refers to theoretios positions and the symbol Ya refers to the constructed curve.

Surface. The chalkboard surface consteted of masonite screwed firmly to the fromework. The screu holes were filled with plastic wood
and sanded. This completed surface was then given three costs of a special chelkboard paint monufactured by the Endur Paint Company of Salem, Massachusetts. This paint contained an abrasive which, together With the thick mixture, built up a rough surface of light green. After application of the final cost, the surface was lightiy sanded with fine paper. The finished procuct may be seen in any of the photographs in Appencix L.

The entire process produced a surface which may be termed adequate, but by no means perfect. Some of the screw heads remained visible despite attempts to inset and cover them, and the juncture of the two sections was very noticeable when the board was completely assembled. Furthemore, the application and sanding of the paint wes not held uniform and several "splotches" were visible on the chalkboard. Despite these defects, however, a test of the entire surface revenled a constant reflectance of approximately twenty-two per cent.

WILLLAMSBU日G TEST PREPARATTOUS

I. THE SITE

The firet series of testa was conducted at Jamea Alair Mgh School in Williamsburg; Virgiaia. This is a now sohool which has only recently been completed. In fact, no classes have been held in the achool and the chalkboards wer unused. The olassroont incorporated modern concopts of pastel oolor scheres and fucrescent lighting. The room chosen ss the test site containg two rows of double fluorescent ilghts and is finithed in light oream and brown. ${ }^{2}$ Hgure 2\% page 17 shows the over-all armonsions and arrangement of the room. This room was selected because it contained a chalkboard on the gide well which woula perxit leteral observations at a greater distance than would the front board. The chalkboard was of the hardwood fiber typemsimilar to the basie material oontainad in the curved board and the haxe was practicaily the same in each.

The furniture in this room was removed uith tha exception of tho tables. Four bartuood blooks were placed on these tables and the aurved board was assembled and placed on top of the blocks. This raised the base of the portable board to a helght (30 inches) equal to that of the perrxim nent board.

2The color scheme is shown in color photographs contained in Appendix EE.

	+1+	[+1	+1T.										
$+$			-										
			+				$\underline{+2+}$	-					
			± 1					T		LT	E		
\dagger	-								i+				
					-	-				\square			
-	-	II			c	HACK	BOAR	D+				H	
\square	+					+			+1			I	
						-							
\pm	$++$	$+$				+		- +	+	+			
\square	-T-	7	-1	-	-	FRON	NT-7.	17	-1\%	T-1	H	+t+	
1	H1		-1	T1.	T								
-1-	T7												
						-		$+$					
-												T	
									$\square 1$		\xrightarrow{H}		
			T-1										
-1													
-											H1	\square	
\square													
												+	
	+ 4								-t-				
		-10									1		
-		2											
	- N	+ ${ }^{3}$								TEST:			
											1		
									CHAL	KBOARP			
			\square										
1	$\square+$								H1-				
									+	GF!	+		
		H								4	-		
											1	$+$	
							FEET	-					
								-				\square	
							URE	- 2	-				
	H1,								H1		Hit		
1	-								-1				
								+	+T-1				
		GENGI	RAI	arran	NGEME	NT OF	will	Hins ${ }^{\text {a }}$	urg.	TEST RO	Room		
								+ +i-	-	T			
-1					+	+	\square		+7	IH	-1-9		
		+			+i+	-				-	\bigcirc		
						+				-1:	4		
+			+		H1	-		- +1	- +	-	+ +		
				+		T			H:	+ + -	TH	-	
$1+$			-	-				4	F-	+ +	-	+-	\square
												+1	
										-1-	+	\square	
				$\underline{+1++}$	+								

1I. SUBIECTS

Adult subjects vere ohosen for the prellminary tasts, because they possessed teohnical background and experience. In addition, these subw jects vere acoustomed to classroom vision. Fourteen subjecta were chosen for the tests including three mechantcal engineers, one aeronautical engineer, one lavyer, one criminologiat, a murse, an architect, a mathematician, an advertiser, two teachews, and two housewives; Most os the subjects were approximately 24 years of age and all wero in excellont bealth. A complete list of personal data may be found in Table II, page 77.

Bach aubject was given an eye examination by an optometrist befor the testa comenced. All but one had 20×20 vision; or vision corrected to 20×20 by glasses.

III. PREPARATION OF THST BQUEMENT

Form on Boaxds. Both the Nlat and curved chalkboards were "chalked in" before any writing was placed on efther board. This is a process reconmended by chalkboard mannfacturers in order to insure proper "breaking in". It required the placement of mall amounts of chalkdust in the pores of the board to perut easy exasures it was accompliohed by rubbing the side of chalk orayon over the entire aurface and removing the oxcese dust with a cleen eraser. The process was then repeated.

Groups of Symbols. Groxps of nonsense syllables were printed across the oenter horizontal line of each board. These were comprised of printed letters and/or numbert. All these figures vere deven-alxteenths

Inch tall, three-elghths inch vide, two-eighths inoh aparty and written in white ohalk. Each group contained four figures and the groups were separated by space of one and onemetghth inchet. A total of thirty-four groups were placed on the Llat beard and thirty-five on the curved board.3 A wandou selection of letterg and numbers for use in the nonsense group was obtained my mans of a deek of playing cards. Each card of a deck which had been shuffled twenty times was furned ap singly* In accordince Wh the aadgrments shown in Table III, page 7, the letter cerresponding to the overturned aard was written on a chart. The numbers were aeleoted In a oimilar manner. The face ards and tans were renoved tron the deck and the procedure outlined above was repeated. ${ }^{4}$ Groups of four figures were formed from the rowe and colums of the two charts. The letters were ntilized more than the mubers.

Both the exrved and the Rlat chalzboarde were corvred with sinilar groups of figrares. In other worde, the farst group on the near ond of the flat board oontained letters and mubers Identical to those contained in the corresponding group on the curred board. The sequence of letters and numbers within the corresponding aroupe was ahanged in order to make memorization and recall difflewlt.

Paxalled Sptas. Six bets of vertheal, parallel 11 nes were aleo placed at corresponating loontions on ach type of board. These lines were twelve inohes long and thremeighths inch apart. Three sets were drawn an

[^4]the upper half of each board, and three more sets vere constructed on the lover halves. The number of lines contained in eech set was varted.

At the top and bottom of each board, a line of circlea containing broken ares was constructed. The alrcleg were of alternate aize; the diameter of the larger aircle was three inches while that of the smaller was one and one-half inches. Fach circle contained one break in ita arc. In the larger olrcle this break wa one-fourth inch; in the maller circle it was onemelghth inch.

Board Postitions- Postitions were marked on the floor of the test room so that the curved board conld be moved gutakly to spectifo locam tions. These board positione were electea to pernit comparative testa from verious viewing points whitn the room. The distances from a viewing position to the near point of each board and the angles of Wiston formed at these points vere designed to be equivalent. Appendix E contains the exact positions of the board and the viewing points.

Sublect WLeving Eointg The Vlewing pointe were marked on the floor in grease pencil. These pointe were gix in number and werg arbitraxily selected at the side and end of the room. Appendix I shows the exact locations of these aix viewing points.
ghotorraphie Vieving Ratntg A total of thirty-one photographte viewing points were marked throughout the room ${ }^{5}$ These were neleatel so as to provide photographs of the Nhat and curved board from various anglea and distances throughout the room.
$5_{\text {Appendix }}$ show exact location of each photographic vieving point.

GHAPTER IV

WILLIMMS AROC TEST PROCRDURE

Before actual tests for record were begun, teifal rune of the experiment were conducted utiliting seven different subjecta. Those trials enabled the procedure to be refined to the degree described below. The seven subjects in the trials had no contect uth those who participated In the tests for record.

Orientation of gublects. The teats for record were condueted during the evening hours of the 17th and 18th of August, 1955. Ench night the aubjecta were first assembled in a teachere lounge adjacent to the testing room. As aifferent group of seven aubjects was used each night. two separate orientations were held. In each, the subjects recesved essentially the same information. They were first requested to fill out small personal dath cards. 抽le completing these forms, they were tala that thoy were to be subjects in a test which would corapare two types of chalkboard. They vere generally informed as to the type of meterial thet had been placed on ach chalkboard and briefed as to the sequence of questions that were to be asked while they vieued the board. Rinally they were told that they would be asked to describe what they could gee on a given board at the momant a question was asked. It was stressed that a statement of readeblisty, not a studed guess, would be gought. They were requested to refratn from discusaing the test or the chalkboards until the evening test period was completed.

Wioving Frocedura. One subject at a time entered the testing room with his head turned away from the boards to be testede A small stool seventeen inches high was located direetly over one of the viewing pointe, and the subject was directed to this. The subject was then asked to turn toward the chalkboards and answer a series of questions about what could be seen. A question concerning the flat board was imediatoly followed by an identical question concerning the curved board. To answer these sucm cessive questions, the subjecta pivoted on the stool and faced the board In question. The data thue obtained were recorded by two test assistants.

Attention was first directed to the center line of grouped letters and numbers on the flat board. The subject was asked to read the groups of random letters and numbers, starting with the nearest, until difficulty wa experienced in distinguishing the moparate figares. At this point he was asked to read the letterg contained in each groupo The first group In which only two of the four figures could be read correctly was recorded as the ond point of chalkboard visibility, Inpediately thereafter, the subject was asked whether any other portion of the center Ine could be read. He was then requested to start reading the groups at approximately the point he belleved he could again begin to read. The first group in which three of the four flgures were correctly read was recorded as the initial point of chalkboard reviaibility. This ontire proeese was repeam ted over the leagth of each board.

The subject was then requested to focus upon the upper row of eircles on the flat board, He was asked to give the Notelock" at which the break in each circle wa located. That 1s, the gubject gave the
position of the split arc which ach of the aircles conteined by replying for example, "five olelock". If the break could not readily be seen, the aubject was asked to so state. This process was repested for the upper Iine on the curved board and again for the lower linea on both boards. The results were mecorded.

Finelly, the subtect wes directed to examine the first two aets of vertical parallel lines on the flat board and count the number of I nes in each. If the subject gave the correct answer it was so recorded; how ever, if the incorrect answer was given twice the set in guestion was recorded as "distingitehable". In the event that no answer was given (1. ee, that the subjeot could merely aee a single, solld line) the set was recorded as 1 ndistingulahable". This procedure was then repeated for the first two sets on the curved board. All sets on each board were considered in like manner and the results recorded. At this point, the subject returned to the lounge, where magezines were provided, and another subject was brought into the test room. This procedure was continued until all of the seven subjects had viewed the boards from one position. Before the cycle of aubjects was repeated at another viewing point, the number of parallel lines in each of the eeta was altered. The rest of the meterial on the boards was left whohanged. All but two of the viewing pointa, wore located far to the side of the ten-foot fixed board. Points five and six were located at the end of the roon and faced the front boards. For these positions, therefore, the right half of the front board wes covered with material identical to that on the aide board. The curved board wak moved in front of the left half of the front board.

At the conclusion of each evening's test, the subjects were handed a five by elght card and requested to "write comments on ayything whioh you have seen or uncergone during the evening: anything or everything which comes to your mind". These statements were then collected and all tast aetivitiea termineted for the ovening.

The entire procedure which has been deseribed above was repeated on the second evening.

Fhotographic Coverage. On the evening following the final test, several color photographe were taken in order to provide vigual evidonce of the comparative hues of the boerda used. These pictures were taken with a 35 mom. camera and flash bulbs. Gack-and-white photographs vere taken imediately thereafter with a $35 \mathrm{~m} . \mathrm{m}$. Bolsey B from the points indicated in Appendix F. These photographs were taken of first the flat board and aecond the curved board. For the second series of shots, the curved board was moved in front of the flat board and all piotures ware retaken. The camera was placed atop a tripod at a height of fortymseven inches, which was considered to be an average eye level of seated atudents. A ctandard photographic Ilght meter was used to measure the foot-candles of 11 ght at each viewing point. The readings were recorded. The aperture and speed of the camera were not altered throughout the ontire sequence of photographs. Only the focus was changed as the canera was movad from one position to another. Pictures of each type of chalkboard were taken from each viewing point, and at points directiy in front and within ten feet of the boards, two or more shots were taken so as to cover the entire board.

The colored pictures were developed by the Kodak Laboratories, but the black-and-white pictures were developed and printed undor spectal and rigia conditiona. These Intter negativen vere processed with fresh chemfals and each remained in the developer the same length of time. They were printed on paper of identical grade and recelved fientical exposures under the enlarger.

ouptsh V

DATA RELATINE 90 TRE WILJAMSEURG TESTS

Qeneral. The chalkboris were examined from a total of six seperate viewing points. Pointe one, two, and three were used during the first evening of test, while points one, four, five, snd sir were used during the second evening ${ }^{\text {I }}$ Since point number one wee used for both evenings, the relative performance of the two groupg of subjects an be compared. An snalysis of the data contained in Appendix G reveals that the first group could read approximately fifty-alx per cent of the letters and numbera on the flat board, while the seoond group read forty-four per cent of the same board. Inabmuch as the second group percentage included a zero recorded by subject 5 b, the performance of the second eroup, as a whole is considered approxinately equal to that of the first group. Any exact group comparison in hindered by the following observations.

It was realized thet chelkboard visibility is infiuenced by several variables. In this experiment an attempt was made to keep all but two of these varkables constant. The distance of the vieving point from the near corner of the chelkboard and the anglo of vision comprised these two exceptions. The success of the attempt to etebilize the remaining factore Is difficult to determine. The contrast between the whte chalk and the writing surfaces was, of course, virtually constant on all boards. The adhosiveness of the chalk to the boards was not apeaifieally meesured;
$1_{\text {Exact }}$ locations of the six vieuing points are show in Appandix Fo
however, no atrference was apparent. The intengity with which the ohalk was applied to each board was relatively eonstant, but all the chalk was not applied by the same individual and a slight variation in intensity may heve resulted. Although the type of light, finorescent, was constant, the degree of light and angle of incident light varied as the location of the curved board was changed. That 1s, the light upon the flat board remained constant while the degree and angle of light on the curved board varied slightly, dependine upon the ralative position of each pot on its surface to the light source. The style of writing was kopt rigidiy constant.

The vision of the subject is the final visibility faotor and werd particular consideration. The eye test administered to the subjecta by an optometrist revealed that all but one had 20×20 vision, or viaion corrected to 20×20 by glasses. This classification 1s; however, a relative one, for there are many variations within this basio category. The optometriat was careful to point out that 20×20 vision is a very broad catogory within which large variations of vision are possible. Thus, the difference in arount of board visible to subjects at a particular viewing point is due largely to varlation in the vision of the subjeots.

I. GEATER LIHE TEST

General. The results of the observations of the center Inse of grouped letters and numbers are contained in the graphs and charts in Appendixes G, H, and I.

Vieuing Point Gmber Gre. An examination of the chart in Appendix G showe that from point number one roughly tuice as much of the center Iine was reacsble on the curved board as on the plane board. Table IV, page 80, gives the percentage of the center line that was classified as "readable" and/or "distinguishable" by each of the fourteon subjects. Each subject who read less than fifty per cent of the flat board more than doubled his percentage in reading the curved board. When oxamined in this 11ght, the deta indseates that the offectiveness of the curved board was considerably greater than twice that of the flat board.

Wewing Boint Humer Tys. Thie point was used during the first evening of tests and by only seven subjects. The reaula of theac readings are found in the graph in Appendix H. It is apparent fron thia graph that the curved board had alight advantage when the center line was viewed from point number two. However; the advantage was not as marted sa that noted at the first vieung point. A comparison of percentages is made in Table V, page 8l. Here, it can be aeen that the amount of readable matter was approximately the same on each typo of board (an average of 66.7 per cent on the curved, compared to 58.3 per cent on the flat board). The curved board does show dectded advantage when the amount of aistingulahsble lettering in considered in conjunction with that which could be read.

VLeving Polnt Sumber three. Once again, subjects in the firat group were the only ones to compare the boards from point number three. This comparison may be seen in the chart in Appendix H. The curved board was considerably more readable from thl point than was the flat board.

A glance at the chart reveals that three of the seven subjects were able to read the entire curved board while none of the subjects could read much more than half of the flat board. Table VI, page 82 containg the percentages of the center inne which ware visible to each subject. The subjects could read approximately twice as much of the center line of the ourved board as the center line of the flat board.

Vieving Point Fumber Foux. This point, as may bean in Appendix H. was located at an extrome distance and angle from the near corner of each board. The angle of viaion was sixteen degrees at the near ond of the boards and fifteen feet from the viewing point. At this extreme position, most of the subjects were able to read only small portions of the conter Inne. Five of the subjecta could read none of the flat board while the two remaining subjecta could read only a swall percentage of the writing. Although Teble VII, page 83, shows that the percentages of dise cernible writing was greater for the curved board, both boards were oxtremely affecult to roed.

Whering Point Kumber Ryeo ${ }^{2}$ This point was looated at the rear of the clasaroom and used oniy by the second group of subjects. It was twenty-seven feet from the front wall of the room. From the data obtalned at this point, the curved board made the eenter ine more readable than
${ }^{2}$ Together with point number aix, tuin viewing points were formed. The vieu of the curved board required from polnt five was actually taken at point alx and vice versa, as may be seen in Figure 3, page This maneuver apeeded the test procedure, bocausa it eliminated many of the troublesome and timemconsuming movements of the curved board. No advarse offects vere ereated by this mancuver.

did the Nat board. The differenee was not apectacular but the chart in Appendix I and Table VIII, page 84 , indicate that the difference was significent. For example, three subjects could read the entire flat board while five subjects could read the antire curved board. In addition, all but one subject recorded a much greater percentage of readable center line on the curved board than on the nat.

Vieving Polnt hume: Six : This was the flad viewing point for the second group of subjects and $14 k e$ number five, was located at the rear of the classroom. There was no significant difference in the vielbility of either board at this point. An examination of Appendix I and Table IX, page 85, indicated that the curved board held a very slight advantage: but, due to the 1 inited number of observations the differonce must be considered insignifisant.

Conclualon. The amount of readable oenter line recorded for each subject on the Rlat board wes equalled or bettered on the curved board at every viewing point tested. ${ }^{3}$ In fact, equal performances were recorded only for those subjecte who suffered from extremely poor vision or those who boasted excellent viston. The former could not read the boards while the latter could read each board in 1 ts entirety. This consideration of the improved performance of the individual, as opposed to the average
${ }^{3}$ The negative percentage incraase shown for subject $3 a$ at viewing point three in Table x does not ditaprove this statenent. The table includes only the percentage increase of that which was recorded as "readable". The subject in question conld read only thirty-five per cent on the curved board, but he could "distinguish" the remaining sixty-five per cent of the flat board; he could read sixty per cent of the center line.
improvement of the groups, is most bigaificant. The comparison of an individual's performances is not complicated by differences in vision of the other aubjecte: only the particular subject's vision is involved. and the difference in performance can be attributed to better viaibility of the material. In Table X , page 86, the percentage of readable center Ine of the curved board as compared to the plane board is given for each subject at ach poaition. The average percentage increage is also com puted. The curved board was most effective when observed from viewing points one, three, and four.

IT. EROKEN CIRCLE TESTS

The teats involving the detection of breaks in the swall and large atrcles were inconclusive and the data has not been included. In the construction of these circles several errors were made which caused the data to be invalid. A thin pencil line had been drawn as a guide ine for the centers of the dreles. The ines had been inadvertently left on the boards at the completion of the dircle construction. These pencil lines oreated the 11lusion that breaks occurred in the ares of the circles at throe and nine ofolock. Furthermore, the large circleg and their breake were of sutch aize that they could be easily distinguished on both boards at all the viewing points; therefore, they sorved no use in the test. The small oircles were of a suitable size, however, they bad not been uniformily constructed. Chalk had been sharpened and applied with the utmost care, but accurate circles could not be constructed free hand, by means of a form device, or by means of a atring radius. In each case the small
size of the cirele and the necessity for clear figures formed by noderately heavy chalk pressure combined to defeat attempts to achieve accurate figures. In addition to these observations, the validity of the data was further lessened by the tendency of the eubjeets to give a "considered guesa" as to the location of the break thoy knew to be present in each oircle.

III. PARALLEL LINE TESTS

General. Appendix J containe a ohart which depicts the realts of the parallel line tests on both boards at the six vieving points.

Wiening Point Mumer One From this point, all the sets of parallel Ines were correotly counted on both boards by four subjects. The resainw der of the subjeete recorded distinot vision improvement when viewing the aurved board. Table XI, page 87, IIsts the number of sections of each board that could be read and distinguished the same mount or more on the ourved board than on the Plat board. An average of 2.75 of the three secthons were countable on the curved chalkbeard, whlle 1.6 of the three sections were countable on the flat board. When compared at this viewing point the curved board was more advantageous than the plane chalkboard.

Veving Point gumber Two Only one subject of the seven who examined the boards from this point registered a variation in the countabllity of the parallel sets on the two boards. Although this one difference was in favor of the ourved board it nust be aonildered insigaffiant, Doth boands aro conaldered oqually advantageaus et this vewing point.

Wieving Pofnt Number Three. A great and significant difforence may readily be noted in the performance of the boards from point three. Few of the aubjeots could count or distinguish any of the sets on the flat board, but every subject could count all the neta of the curved board. Table XII, page 88, lists the sections of the boards which could be counted or distinguished. On the flat board an average of fifty-five per cent of the parallel lines could be counted of distinguished by the seven aubjects. Ae previcualy noted, the curved board was one hundred per cent countable. At this point, therefore, the ourved board proved much more advantageous.

Vieving Point Humer Fonx. Onoe again the curved board wse proven more eavantageots. All the aubjects experienced considerable difficulty In oounting or distinguishing the parailel lines on the plane chalkboard. However, only one subjeot (vision 20x60) falled to count every set corm rectily on the eurved board, suah improvement of viaibility is ghom in Table XIII, page 89, and leaves Iittie doubt ooncerning the superiority of the curvod bowrd at this viewing point.

Mewine Point Mumbex Rive. Three aubjects at this position could count all lines on both boards. The romaining four subjects had difficulty on the flat board, but oould oount all 11 nes on the curved boarde This is not a spectecular difference, but, as may be aeen in Iable XIV, page 90, the average increase of readable pets was notable and is indicam tive of the slight advantage of the curved board at this point.

Vieving Polnt Gumber Six. There was no difference whatsoever in the visibility of the parallel lines on either board from this point. All seven subjeets could count all the lines on both boards.

Conolusion. The number of aets of parallel iines which each subJect recorded as countable on the flat board was equalled or bettered on the curved board at every point tested. of the total fortymine views which were made of the curved board only three reported difficulty in coanting all the lines. In Table XV, page 91, the inorsase in the countable portiong of the curved board as opposed to the plane board is recorded for each subject at each position. The average increase is also computed. The curved board was silghtly more advantageous than the plene board when viewed from points one and five; overwhoiming improvement was recorded at positions three and four.

IV. COMPARISON OF VIENINC POINTS

From the results of the center line and parallel line tests, it is clear that the curved board was equal to or better then the flat board at all viewing points teated. Furthemore, the superiority of the curved bosrd was most noticeable at points one, three, and four. At each of these positions the increase in over-all visibility was very large. Despite the marked improvement in the curvad board at point number four, an examination of Appendix H revenls that this point was virtually out of range for those with normal vision. Point muber throe is the point at which the curved board was mot effective when all factors are considered. The firet point was also extremely favorable to the curved board. At
viewing points two and five the advantage remaned to the eurved board, but at point number aix both boards were equally visible,
V. NUDDLE AREA OT CURVID BOARD

The charts in Appendixes C, E, and I show that the midle area of the curved bosrd was the most difficult portion to read. That is, the portion of the center line betweon board section numbers fourtsen and twentymelght was often diffleult to read on distinguishe This "blind spot may have been caused in part by the imporfect interaection of the two halves of the homemade board and other imperfections previously noted In Chapter II, Section III. Nevertheless, the chlef cause of this "bind apot" is not attributable to board construation. The now mrobable cause was a conbination of distance and angle which was sufficient to nake the writing diffacult to read. The ourve tested did not provide a universal cure for the effects of arall angle and large distance that hes plagued Vision of the flat board. Bach portion of the curved board is not untformly visible from every point within the clasaroom. This particular ourve represents a marked improvement in board visibility but the prosence of this "olind apot" is proof of its Immitations.

VI. COMNHTS OR GUDTETS

General. In Appendix K the written comenta of the aubjects ara quoted. The participants in the Willamaburg experiment were, as noted before, college graduates holding professional and teohnicel degrees. Their comenta are, therefore, explicit and relevant.

Exoken Giroleg. The provious atscusetion of the circlee is further corroborsted by the final oomsents made by the aubjects. The followias excerpts from the individual commente supply further proof to this state ment. Subject 3b stated, "The chalk smear made it hard to tell the tofelock' of the openings in the circies. Also, it seared as if nowe of the openings were larger than others." And subjoct 6b said, "A lot of the difficulty for in seeing spaces on the dreles had to do with the smudges on the bonxd and the vartation in thiakness of the chalk Iine." Thus, the data obtained on the ofrclen was discarded,

Genter Ling. In their comments, the subjects frequently referrod to their inability to read the center portion of the curved board. Aleo, one aubject complained that "the mall row of letters was too sranll to distinguith to be a good teet." The letters were small, fifteen-foot Smellen eye chart letters, and were so selected that orraparative cut-off points for visibllity conld be obtained for ach type of board in a enall test roone Another comment noted the presence of non-unfform letterse Dat perhaps the most important coments vere mede concorning a tendengy to rocall some of the groups of numbers and letterg. One subject aatds "x renembored some answers given from the first chairs (viewing points) " Another wrote, "Thore was a tendency also to remember sono of the numbers-m.

Parallel Lines. No commente wora made concerning the tests whith utilized parallel innes.

Complalnts. Two subjects comanted that the last houre of the experiment were very tiring to eyes that had boen worked all day and had already been used at one or two viewing points earlier in the eveningo

Constructive Compents, the following are the suggestions rade for effecting a more comprehenstve tent of the curved chalkboard. In some cases thase suggeations were specietenliy atated, but the majortty represent thoughts which have been gleand from implieatlons and questions contained in the written compents.

1. Determine the differance, if any, between the visibility of script lettering and printed lettering on the curved board.
2. Dotermine the degree of alfficulty irvolved in mxiting upon a curved board.
3. Deternine the effect of dietortion of writing aue to the curvam ture and asoertain its readablitity.
4. Repeat the experiment veilizing achool ohlidren so subjects.
5. Use olawroom chairs and deak for vieving points in further tests.
6. Test the curved chalkboard under deylight conditions.
7. Wre a flash, recognition test of letters and numbers to determ nalne instantoneous readability.
8. Tho chalkboard should be wahed after aach eracure. All of these suggestions merit diccussion and gome contain the seeds for
 relevant to this particular experiment. The augeestion containad in muber one is minor and has little effect upon the ecmparative visibility
of the two types of boards. The second suggestion does not warwant further investigation beceuse the experimenters discoverea, whlle plaoing teat material upon the boards, that there was no difference in writing upon efther typo of chalkboard. It was noted, however, that the curvature impeded the use of a rigid straight edge to draw lines. The use of a flexible straight edge (such as that constructed of plastic) eliminated this difficulty. The third suggestion, like muber one; is minor and has IIttle effect upon comparative study of the visibility of the two boards; furthernore, the testa utilizing parallel lines were considered deterninere of the major aistortion: namely, apparent compreesion caused by a cmall angle of viaion, The fifth augerestion is irrelevant beaause the stool used in the tests wes set at a helght comparabio to normal high sohool classroom chairs. Finally, suxdges cauned by erasure osnot be washed, as is suggested in number eight, because this would oreato an oven greater contrast with the reat of the chalkboard and water is not recomended for a wood fiber type board. The point is vell taken, however, that greater care should have been maintained so as to eliminate variation in board contrast due to erasure.

VI. RESULTS OF PHOTOGRAPHIO COVERAOE

Color Ehotographe. Five color transparencieg of high resolution were obtained. From these, two ploture vere selected to be made into Roduchrome prints. These are contained in Appendix EE, They serve as evidence of the contrast in bue between the two boardsy and show the test equipaent as asen by a aubject.

Black-gnd-Mhite Prints. Three rolls of black-andwithte plotures were taken of the flat and curved boards from the points indicated in Appendix F. Upon development of these flips it was discovered that one of the rolls had been defective. A Ilght atreak appeared down the conter Inne of the entire film. Inamauch as the center of each picture had been focused upon the center line of the board, the piatures thus obtained vere useleas as evidence of comparative viaibility. In addition, the picture taking procedure had not been offectively conceived. In order to avold excessive movement of the ourved board, photographs had first been taken of the Mat boand from all points, after which the sequence of photographe was repeated for the curved board. Thie procedure did not take inte sccount the possible differences in separate rolls of film of the anm type and make. Thus, most of the piotures of the ourved board were lost tue to the faulty fllw. Photographs of both the flat and curved boaxd from each viewing point should have been taken on the aare roll of film. Appendix Le contains soveral photographs of the two typen of boards whioh were taken from viewing points which recelved edequste photographia covero age. The resolution in these photographs is not aufficient to allow com parative readings of the center line of small figures, but the large letters marking the conter 13 ne groups may bo used for comparison.

VIL. GENTRAL COWCLUSTONS OF UILEXASBURO TEST

As a result of the test procedure and dath that have been presentad, discuased, and analyzed in this and the preceding chapter; the following major conclusions have been drawn concerning the teats conducted at Jamea glair High School.

1. The curved board was proven as vialble or more visible than the flat board at every viewing point teated.
2. In comparison with the flat board, the curved ohalkboard was most effective at positions one three, and four.
3. The use of mroken circles as a testing device was inadequate.
4. Greater care should have been exerclsed in the placenent of test material upon the ohalkboards.
5. The general procedure employed in testing chalkboard vieibillty was adequate.
6. Groups of letters and numbers, end aeta of parallel lines were effective measures of board visibility.
7. Reading aloud of the center line groups tenced to enable subm jects to recall certain groups.
8. The viaion of the first group of aubjects, as whole, wes approximately equal to that of the second, but the use of two groups created an undesirable variable and made exact comparisons of viewing point performances impossible.
9. Large differences in individual reading performaneas at any single viewing point were caused by variation in the degree of 20×20 vision.
10. Factors affecting chalkboard visibility, with the exception of angle and distance, were held fairiy constant.
11. The "blind spot" in the center of the curved board was caused largely by a combination of large distances and mall anglea of vision.
12. An insufficiont number of viewing points ware teated to detormine the effectivaness of the curved board throughout the classroon,
13. The procedure employed in obtaining the series of black-andwhite photographs wan poorly concelved.
14. Furthor teste were noeded to correct the errors in proeedurs somiltted thus far, to clarify and substantiate the resul ts that appeared from these initial tests, and to compare the flat and curved boarda under more varied yot rigorous conditions.

GHAPTER VI

CRADOCK TEST PREPARATIONS

*. THE STYE

Construation. Gradock High School in Portemonth, Virginia, was selected for the sacond aeries of chalkboard teets. This was a new school, completad in the late sumerv of 1954. The claseroome had received one year's use before this test; however, being of cinderberick construction, thoy were in oxcellent condition. A dual room dealgned for use in health oduaation classes was chosen as tho specific test site. This was a long, rectangular classroom which when separated a sliding parthtion, formed two separate classrooms of standard aime (twenty-two by twentymelght feet). One of these rocus was equipped with a slde chalkboard which was so placed that the test could be easily conducted. Removal of the sliding partition allowed lateral Fieuing points to be selected as desired. Figure 4y page ahows the general plan of this test room. The deaks and the chairs were removed from the room to allow movement of the curved board. large table was moved into the room to aupport the curved board at a height equal to that of the permanent boarde

Hghting. The room was equipped ut th fiuorescent 11 ghts which diffused the light rather evenly, A light netor recorded relatively constant readings of fifteen to twenty foot-oundles at various points about the room under artifioial lighto ${ }^{2}$ This IIght was furnished by two fluoresoent fixtures which esoh contained two bribs. In addition, natural IIght was

IThe IIght neter was aimed at the same chalkboard at all poaitions.

\cdots				,		
	Cl				\vdots	$-$
$\frac{\square}{\cdots}$	CHALKBCA		O		DOWS	\cdots
$\left[\begin{array}{ll:l} \because & & \\ & \vdots & \vdots \end{array}\right.$					SECTIONS DRESCENT	$\begin{aligned} & \text { OF } \\ & \text { IGHTS } \end{aligned}$
!	CORKBOARO					
						-7
\cdots						
$\because \cdots$ \cdots \vdots \vdots	-		PLAN OF CRA	24		$\|$$\square$ \cdots \cdots \cdots \cdots \cdots $\cdots \cdots$ \cdots \cdots \cdots
	$\therefore \cdots$	\cdots		$\because \cdot \cdots$		
-	… \cdots				$1 \quad \vdots$	\cdots \cdots \cdots \cdots
-	\cdots		$!$	1	.	\cdots \cdots \cdots $\cdots \cdots$ \cdots - \cdots \cdots -
	i	$\cdots$$\vdots$ \vdots \vdots	\%			-1 \cdots

provided from a row of six windows which were eveniy opaced on the mall opposite the test chalkboard. Each window contained five panes four of which were oovered with a window shade to shut out the glare of the sune Dark green drapas were also provided.

Color Scheme and Rothactances. The half of the tost room which has been desigasted as "A" in Figure 4 on page 44 was finishad in a very pastel green which gave a refleotanoe reading of approximatoly twontymone per cent. The floor wag made of a dark green; wottled tile (refleotance twelve per cent). A whito cefling of elghty per cent reflectancy covered the notire test room. The upper two-thirds of the walls at the "B" ond of the room wero finished in a pastel yellow (reflectance forty per cent) and the lower one-third was finished in the pastol green previously deseribed. The tile floor was a light grey whioh recorded a reflectance of seventaen per cent. Thus the room was decorated in general accordance with modara color schemes and recoumonded reflectances. ${ }^{2}$ The reflectances at the nh" end of the room were slightly less than those at the "g" end-and leas than those recomnended. Hovever, for the apecific purposes of this test the difference was considered very silght and of no consequence in the use of the two comneoting rooms. The mportant fact is that both rooms are in keoping with general concepte of modern clasaroom design.
${ }^{2}$ Pamphiet Ho. 104 of the U. S. Office of Education recommends the construction of clasmrooms with reflectances as indicated in Figure 5, below.

Chalkboard. The chalkboard was of the wood-fibre type and recorded a reflectance of approximately twenty per cent. It was four feet in height and the aluminum chalkrall was two and one-half feet above the floor. The chalkboard which had been seleoted for the test had been used very littles, beause it was on the side of the room. Thie particular chalkboard had not received much nore uge than the curved chalkboard.

II. SUBJECTS

Ten subjects were selected from the senior alass at Cradock. Hive were girls and five were boys. Sach of these students had vision, or Vision corrected by glasses, which had been classified as 20×20 in tests conducted by a school nurge. They were all of approximately the aame age (seventeen) and had I. Q. ratinge which ranged about avorage. Table XVI, page 92, contains all personal data which is pertinent to this aiscussion.

III. PREPARATION OF TEST EQUIPMENT

Form on the ponrds. In order to insure equivalent ohalk content on both types of the chalkboards, they vere firat wathed and then "ohelked in" with yellow chalko This chaik was of fine quallty, "dustless" crayon which was well suited to the newa of the test, because it conld be sharpened to a hard point for use in placing fine lettering upon the chalkboards.
${ }^{3}$ The term "chalked in" is discussed in Chapter II, page 18.

Groupg of Lettexs. Inacmach as the use of nonsense eyllablec of lotters and numbers had proved a successful device for doternining chalkboard readability, the asme type of group symbola were again omployed. This time, hovever, they were pleced in single lines at the top and bottom of each board as vell as in the center. It was felt that such an arrangem ment would enable the viaibility of all three arean to be determined and the offect of three dimencionel angles of viefon thus discovered. A total of thirty numbered groups of four figures vere placed in each line. These groupa were obtained and ereoted on the boards in the sase maner as in the tests at Williamsburge ${ }^{4}$ The apacing between the groups, however, was Increased to two Inches so that the groups might be readily Identified as separate units from the lateral viewing pointa, Detalled meaurements which give the exact form of the chalkboards are pictured in Appendix $\mathrm{M}_{\text {* }}$

Parallel Mines. Vertical sets of parallel lines vere also placed on the chalkboards. These had proven succesaful in deternining the degrea of distortion caused by the angle of vision and its distance from the viewing point. Ten seta were placed on each board: five on the upper half and five on the lower half. These lines were twalve Inches long and five-sixteenths inch apart. The number of lines in ash sat varied bem tween five and twelve. Appendix M illustratea the exact locations of these sets of parallel lines.

No further material was placed on elther board.

[^5]Board Positions. The positions of the curved board with respect to the viewine points were obtained in the same mannor as in the teat at Willamsburg. ${ }^{5}$ Exact board positions are shown in Appendix N_{0}.

Vioving Pointe-Genoral. Since the classroos was but twenty-two feet uide, distant viewing points were impossible for the permanent side board. The llat boaxd at the " B^{n} end of the room was therefore used for all dietant examiantions. Material identical to that on the side flet board was placed on thie ond board.

Sublect Viewing Points. These vieving points were marked on the floor in grease pencil. They were twelve in number and were selected at the side of the chalkboard and also well to its front. The aelection was somewhat arbitraxy, but it wes largely determined by the resulte of the Whllamburg fest. Specifically, viewing point number four had been Cound to be Firtually out of range for nornel vision of the boarda, and from Viewing point number six both boards were proven to be equally visim ble. Therefore, Cradock viewing points were chosen within what was contidered normal range of vistion for at least a portion of each baardg and outaide of the area which would appear to allow total viaion of each board. The twelve points which were selected are shown in Appendix 0_{0}

Photographic Mawing Points. A total of thirty-four points were selected as photographic viewing points. Only eix of these points were

[^6]located within a ten-foot radius of the center of the plat chalkboard, because both boards could be easily read within most of this area. The romaining pointa were selected whth regard to the same quallifications as the subject viewing points. The exact locations of ell photographic viewo ing points are shown in Appendix 0_{a}

CRADOOK TEST PROCEDURE

Qeneral. The tests were conducted during the school days on the 19th and 20th of September; 1955. Six vieuing points were used on each of the test days; one point was used each class period. The over-all test procedure was very similar to that followed in the previous test.

Orientation of Subjectg. Prior to the start of the testa on the
first day, the ten subjects vere assembled and the folloving information first day, the ten subjects were assembled and the following information was read to them.

You have been selected as subjects for the test of a aection of a new ohalkboard. During this test period of two days you will be asked to cone to the testing roon once every clags period for approximately five minutes. Tou vill be exoused from each class for ten minutes in accordance with a schedule which will be cona true ted.

During the entire test you will please refrain from discussing any of the test, or anything connected with the test. Ploase keep your thoughts to yourself until after the two-day test perlod has elapsed. Do not discuss this with your friends, and moat important-do not alscuag the teat amongst others in thi group.

Every fiveminute period which you spend in the teat room will be slightly different, but will conform to a general pattern. You will wait outside the door of the test room until the subjeat preceding you has left the rommdo not wait within earehot of the door.

As you enter, please walk stralght to the typing ehair which will be proainentily placed within the room. Keep your eyea focused on the floor until you have seated yourself and you are asked to look toward the chalkboards. I will be standing with a pointer and uill then ask you to tell whether or not you can cleariy distinguish groups of small numbers and letters to which I will point.

Each chalkboard vill contain three lines of mall-sized numbers and letters. The letters and numbers making up these lines will appear in groups of four. I will point to one group at a tino and ask you to read them individually. Please reply immediately; do notmi rem poatmo not atare at a singlo letter or group for any length of
time. If you ahould fixate on a letter for several seconds your oyes will gradually adjust and enable you to make a "good guesa". We are after a quiok answer of what you see at first glance.

In addition to these three lines of letters and numbers there are ten groups of parallel, vertical lines. I will point to esch group and ask whether or not you can sue the lines an separate and distinct. In other words, could yon count the number or lines, if necessary? There will be, therefore, three possible anevers: II cannot distinguish the separate 11 nes'; 'I can distinguish the lines, but I cannot count theri', or 'I can count them'.

Ae you leave the test roon after each session, piok up a comment card and Pill it out Inmediataly upon your return to class-it will take about two minutes. Keep the completed card until your next session and hand it to me at that time. These cards contain geveral comprative questions. Please answer as you feel-make them zour thoughts.

After the Einal sesalon, Tueaday, sixth period, I will ask you to anewer a fow general questions. When all this has been completed, I will be glad to discuas any questions which you may have concernm ing the tests or the chalkboords.

This written orientation gave asourance that each gubjeot received identical information, and no information which might later influence test reaponses.

Whewing Procedure. The subjects were ushered into the test room and seated in the same manner as those who partioipnted in the willamaburg tests. ${ }^{6}$ A straight-backed chair, hoight aeventeen inohes, was provided for the aubject at the viewing point. In accordance with the Fiewing procedure previcusly described, the subject wair requested first to exemine the groups of small lettore and numberg. The visibility of the conter line of the Hat board was the first to be recorded. Immediately thereafter, the center
${ }^{6}$ See diecussion of viewing procedure in Chapter IV, Section I, page 22.

Iine of the ourved board was vieved and the reaults were recorded. This proceture was then repeated for the top and bottom lines of each boarde Finally, the comtability of the sete of parallel $11 n e z$ was recorded. Fron time to time, the maber of Lines in the parallel sots was altered.

Compent Garde. Small comment cards were handed each subjeot at the conclusion of every vieving sesion. This card contained the followIng questions: (1) How Ald the two boaxds compare from this position? (and give your reason for thinking so); (2) List all advantagea and disadvantages of ach board which you noticed in this position only. These questions were answered betwoen viewing sessions while the pieving point was freoh in the subjectis minde

Final Coments. At the completion of the tests at all twive vieuing points, the subjects were questioned concerning their over-all opintions of the teat and the curved board. These questions were four in number and were repeated for ach subject. The cozments were obtained in recorded conversations which were held with one atudent at a time. The text of this taped conversation was as follows

You have now participated in this entire experimento what are your over-all opinions of the curved board as opposed to the flat board? Would you like to see this board used in classroms? Would it help you? Do you have any comente to make about the test procedure itself?

Photographto Coveracte. No colored photographs were taken of this test roong black-and-white photographs were taken from the viewing pointe indicated in Appendix 0 . These pioturee were taken during the
daylight hours on non-test day so that the same type of Ilght (daylight and fluorescent) would be used for the photographs as was used by the subjects, A Laica camora containing Adox number fourteen film, a filn of extremely high resolution, was used for thege plotares. The camera was placed upon a aturdy tripod so that the len was fortyomeven inches from the floor. The ahutter speed was kept conatant at onemfourth of a seoond and the aperture remained $f / 5.6$. Cnly the focus was changed from one vieving point to another. Three rolls of thirty-ais oxposures each were taken within the test room. Care was exercised to ins in that come parable view of the flat and curved boards wore taken on the same roll of Illmo Half a roll of piotures wat taken of the flat board, then the ourved board was moved in front of the permanent board and the shots vere repeated. At points directiy in front and within ten feet of the boards ${ }_{g}$ two or more bhots were taken so as to cover the entire board.

CHAPTER VIII

RESUTS AND OBSERVATIONS OF CRADOCK TESTS

Qencral. The diseussion relative to viaibility factors which has been included in Chapter V is also applicsble to the Cradock test. Thore were only two fuctors which were alterod in this second test: (1) 11Iumination was by the combination of flnorescent light and sunlight, and (2) yellow chalk rather than white chaik was used on the bosrds. A noted in Chapter V, the vision of aubjects who were classified as 20×20 varied ereatly and is reaponsible for the lasge differences in reading ability recorded anong the subjects at each viewing point.

I. pafticular viewima poInTs

The trelve subject vieving pointe are piotured in Appendix 0.

Viouing Point Hmber One

Grouped HIgureg. ${ }^{1}$ All IInes of grouped Cl gurew were seen better on the curved board than on the flet board when viewed from this point. This sharp difference may be seen in the line graphs and in the adjacent tables. Table XVII, page 93, roveals that approximately forty per cent of each of the lines on the flat board could be read while eighty to ninety per eent of the curved board could be read. The upper IIne of

[^7]PIgures proved the most difficult to read of those on the curved bonrd the center ilne was read most effectively. Over-all, the ourved board was alightiy more then twice as offective as the plane board in presenting readable ilgures from this viewing point.

Parallel gete. The sets of parallel Ines were also much more Visible from point number one. This large difference is shown in Teble VVIII, page 94, and in the graph in Append $4 x$ Po Woll over twice the number of areas of parallel sets were countable on the curved board than on the flat. Approximately ninotymix per cent of the surface of the flat board was countable and distinguishable while fiftyotvo per cent of the flat board was in thin same cetegory.

Constioration of Genoral Vipibility. As a result of the figured alted in the preceding two paragraphs, it appear that the curved board is approximately twice as viaible as the flat board from this positione This enciusion ia further aubstontiated by the comparison of individual improvement recorded for all the board material. Table XIX, page 95 show a visibility increase of alnost half of the entire ohelkboard surw face when the curved board was viewed. The center portion of the curved board was readable only to those of exceptional vision.

Yleving Yoint Rumber $\lambda \mathrm{g}^{2}$

Grouned Mgureg. This point proved to be beyond the range of the

2Line graphs depicting results of tests of grouped figures at Viewing Point humber two are contained in Appendix R.
readablilty for the small figures on both types of boards. The groups vere more easily distinguished, however, on the curved then on the flat board. The inne graph in Appendix R points up this marked increase in distinguishability, as does Table $X X$, page 96 . It may be noted from this table that approximately twenty-five per cont of the material on the flat board could be distinguished as opposed to approximately elghty-five per cent of that on the curved board. In this case, the lover Ine on the curved board proved the most fisible.

Parallel Seta. None of the sets of parallel lines on the flat board could be counted. On the curved board, however, Table XXI, page 97, shows that 3.2 of the five section of parallel line aets were countable. In fact, ninety-bix per cent of the curved board could be counted or distinguished as compared to twenty-four per cent of the flat board. Inasmach as the flat board could not be counted it ia aifficult to approximate the degree of improvement provided by the curved board. A comparison of both the diatinguishable and countable area indicates that the ourved board was approximately four times more advantageous in this position.

Consideration of General Hialbility. The curved board was approximately three or four times more sdvantageons. This statement. of courseg is based upon only the meager data which could be obtained at this vieuing point. The point was out of the resdablity range of the mall letters used in the tost. Once again, the center area of the ourved board was the most aifficult area to see clearly

Yheuing Point Number Three ${ }^{3}$

Grouped Plgures. Neariy half of the abjects could read all three lines of grouped letters on the curved board, but no one could read even half of any line on the flat board. The percentagea of each Ine which were readable are hown in Table XXIII, page 99. Approximately thirty per cent of the material on the flat board could be read, while oighty-five per cent of the curved board could be read-indioating that the curved board was almost three times as effective as the conventional boerd.

Parallel Sety. A large alfference was recordod in the countabllity of the sets of paraliel lines at this point. All but one set of lines could be counted by all the subjects. Table XXIV, page 100 , shows that an average of but two sections of parallel seta could be counted on the Nat board as opposed to an average of 4095 on the auryed board. The curved board was virtuily one hundred per cent visible in this regard.

Constderation of Genorn Yisthility. The discussions in the tbove paragraphe indieate the advantage of the curved board when viewed fros this point. The visibility increase is shown in Table $X X V_{0}$ page 10, and indicates that more than half of the board which had been aifficult to diacern on the plane board became clearly visible on the ourved board.

[^8]As has been noted at previous viewing pointe, the center portion of the curved board was the most difficult area to read. The fact that virtually all the parallel lines were readily counted on the ourved board indicates that this point is the first in the test to give adequate perspective to sither type of board.

Vieuing Point Number Four

Grouped Figureno ${ }^{4}$ This viewing point was within the readable range for all points on the curved board, may been in Table Kryi, page 102. Once agein, however, the flat board was not as readable as the curved board. On the hat board an average of twomtiliras of each line of grouped figures was said to be readable by the subjects. The entire curved board was readablo. This is a significsnt difference and one that shows that there are points from which the entire ourved board nay be read while only a portion of the plane board may be read with equal eaee. It is impossible to estimate the numerieal advantages ahown by the aurved board at this polnt.

Parallel Sats. A greater portion of the parallel lines on the nat board could be counted from this point than was the case from those points tested heretofore. Once again, the lines on the curved board proved more Fisible, but the difference between countability on the flat and ourved boards was considerably less than at points previously tested.

[^9]Nevertheless, the curved board proved moat favorable, because all but one subject could count all of the parallel lines on the eurved board. This comparative Vialbility may be seen in Appendix P and in Table XAVII, page 103.

Congideration of Gonoral Viatbility. This Vioving point is within the range of clear vibion of the entire curved board, but not the flat board. Therefore, it is obvious that the aurved board is most advantageous and affords maximua visiblliby et this point. This statement is further substantiated by Table XXVIII, page 104, whieh shows the individual gaina in reaiability and countablity on the currad board.

Vauing Eoint Rember Hys

Grouped Elgarese ${ }^{5}$ This point, 1ike number four, is within the range of total readability of the curved board. only one subject, number elght, encountered difficulty in reading the entire curved board. Approximately half of each of the linee on the Plat board was viaible. Thus, the difference is great and algaificantly in favor of the curved board. The percentage in Table XXIX, page 105. give mumerical substantiation to these conclusions.

Farallel sats. The observations contained in the above paragraphs are in hamony with the resulte of the examination of the sets of parallel ilnes. That is, all of the aets of parallel lines wich were on

[^10]the curved board could be counted whereas only two subjects could count all the parallal lines on the flat board. Table XXX ahow that approximately 4.2 of the five set aress could be readily counted. The inorease In number of sections is not spectaculax, tut the difforence is nonthow less signifiaant.

Consideration of General Visibilitr. Viewing point number five proved to be very similar to number four. Both pointe wore uithin the range of clear vistbility of the curved board. Point number five; how ever, was near the ofter boundary of this range as was evidenced by the fallure of zubject number eight to read the ontire center and upper linea of grouped figures. Table XXXI, page 107, shows the increase in Visibility recorded for ench subject. Since the inerease is positive throughout, the superiority of the curved board in this position camot be questioned.

Vieving Point Munber Six
No dats wer obtained for subject number four at this point, because the school schedule prevented the subject from attending the viewing seasion.

Grouped pleques. Severial of the subjects had difficulty in reading the entire curved board! but approximately ninety per cent of the ourved board could be readi Pable KXXII, page 108 on the previous page shows the individual percentages for the subjecta. More than tuice

[^11]as much of the material on the eurved board could be read as on the plans board. Wen reoding diffieulty was oncountered on the curved board it occurved in the conter portion.

Parallal Setif. The parallel lines were not complotely countable on ofther board. The flat board was the last effective surface as less than half (average) of the sots could be counted. These differencen are show in Table pXKIII, page 109 , and definitely favor the curved board.

Considaxation of General Visibility. As has beon the case at provious viewing points, a marked advantage was recorded for the curved board at point number six. Ae shown in Table XXXIV, page 110, all unbjecte showed large increases in readable and countable material when the curved board wae vieved. This position was definitely beyond the range of readability for the antire ourved board.

Mieving Posnt Mumbex Soven

Grouped Exgures ${ }^{7}$ The portions of the Eraph in Appendix W uhich are outilned and crossmhatehed, and the asteriaked numbers in the follow ing tibles, represent groups of figures that conld be "read with difficulty. This term was used at this and the succeeding point to indicats groups which could not be read clearly but which could be read with no more than one of two mistakes. It la by no means an accurate masaure and

[^12]is effective merely when a student's performance is compared with one of his previous performanees rated in the same maner.

Approximately one-third of the flat board could be read while virtually the entire curved board could be read. On each board, the center 11 ne was the easiest to read, although the othar lines were read nearly as well. Deapite the fact that this viewing point was at a considerable distance and narrow angles from the chalkboards an effective comparison was made. The outctanding performance of the curved board may be seen in Table $X X X V$, page 111.

Parallel Sets. All of the subjecto could count all of the parallel lines on the curved board. In comparison, only one subject could count all the parallels on the flat board and an average of only three of the five sets could be counted ivy the subjects. Table XXXVI, page 112, reVeals the curved board's superiority at this point:

Consideration of General Vistbility. The ourved board was proven most advantageous at thi point. The large increases in readability ond countabllity noted in Table XXXVII, page 113 , coupled with the fact that virtually the entire ourved baard was clearly visible to all subjects. provides strong evidence of the curved board's superiority. The flat board was two to three temes less offective than the ourved.

Wewing Point Number Bight

Abstract

Groupsd Flpures: ${ }^{8}$ One aubject was recorded as "reading with difficulty at this point. The remaining subjects reported excelinnt results in reading the curved board. Table xXVIIS page 114 , indicates that over ninety per cent of the curved board could be read as oppased to approximately sixty per cent of the plane board. Once again the center line was the most readable of the three lines on each type of chalkboard.

Parallel Setg. There wis not a great aifference recorded in the countability of the paraliels on the two boards. However, it is notabie that all sets vere countable on the curved board while some difficulty was expressed by three subjects in counting the parallels on the plane board. Table XXXIX page 115, contains data relative to this discusaion.

Congideration of Genersl Yiaibility. This viewing point was at considerable distance from the board and therefore caused the stabjecte some difficulty in discerning the small letters and mumbers. Neverthem Less, the data proved that the curved board was once again the nost advantageous. Table $\mathrm{XI}_{\text {, }}$ page 116 , show that the readability and countebility gains were not spectacular, but were impressively poaitive for each subject.

Wiewing Point Mmber Mine
An examination of the line graphs in Appendix Y and the chart in
${ }^{8}$ Line graphs deploting reaults of grouped figures at Viewing point Number Blght are conteined in Appendix X_{*}

Appendix O reveals that this viewing point was within the clear visibility range for both chalkboarde. Indeed, no difference was recorded in the visiblifty of atther board from the polnts both boards were equally advantageous.

Final Mowing Points

The final three viewing pointa (numbers ten, eleven, and twelve) are in a class by themselves. From the chart in Appendix 0 it may be seen that each of these points was located twonty-nine feet from the front wall of the olassroom. In addition, the plane chalkboard at the front of the ${ }^{1 g^{n}}$ end of the room was used for these viewing points alone. The distance to the boards from each viewing point was such that the small eigures writton on the boards were difficult to diseem; however, in most cases enough data on the visibility of the boards was obtained to permit meaningful comparisons. This was not the case with the parallel lines. At each point the parallel could easily be ounted on both boards. thus rendering comparison useless. Hinelly, the lighting on the two boards at this end of the room was not uniform-dark areas occurred on both boards. For comparison purposes, however, the boards each received approximately the ame amount of light at correaponding board areas. Vhouing Eoint Hunher Ten ${ }^{9}$

The aubjects reported very ilttie difference in reading the two boards from this point. It esn be seen from Table XLI, page 117, that

[^13]that approximately seventy-five per cent of the plane board could be read while slightly over eightymive per cent of the curved board could be read. This ahows a slight advantage for the curved board, but it cannot be considered significant. Indeed, Table XLII, page 118, shows so very 1ittle percentage incrase that it mast be concluded thet the two boarde vere equally visible.

WHeulng Point Mumer 基loven

The data obtained at this viewing point vere insufficient and hence, inconclueive. Only two or three subjeots could read any material on efther board. Those data which are available are contained in the Iine graphs in Appendix AA. All subjects reported that both boards could be diatinguished oqually well. In short, it can only be concluded that neither board was more visible from this point and that aceurate comparison is impossible because of a lack of exacting deta.

Hiewing Point Mumber Molye

The data gathered at this point were inmufficient. The entire surface of each board was distinguishable to all subjects, but only a few subjects could read any material. An examination of the line graphs in Appendix BB shows the small amount of data that were obtained for readable material. It oan be seen that the curved board was slighty more visible than the Rat board, but the data are very skiapy and not eignificant. The two boards can only be considered equally visible frow this viewing point.

II. COWHENTS m SUBTECTS

Spectine Gommentis. The subjects who partieipated in the Credook teste subaitted comments at the conclusion of each viewing session. These aomments were chort comparisons of the visibility of the two boards from the particular viewing points. A total of one hundred twenty coment cards were received during the entire test period. These coments vere consolidated and a frequency table was compiled.

Since the comments were given in answer to questions which requested a comparison of the relative visibiluty of eech type of boards the number of distinct, comparative phrases was rather 1imited. All the comparative phrases wich appeared in these comments were then noted, and a frequency table vas constructed. For oxample, the comments recelved at viewing point number Pive were listod in a colum together with the frequency with whioh the comment was made and by whem it was subtitted. The results are shown in Table KLIII on page 119. These listed comonts contain more promeurved expressions than promelat expreese Lons. These phrases were producte of the subjects' ow thoughts and were not provoked by an outside source.

In order to aohieve an objectivo appratsel of likes and dislikes expressed in these ooments, each phrase in the frequency table was given a numerical rating in terme of 1 ts promess toward the curved board. That in, those phrases which were judged most favorable to the curved board were rated plus five, while those which were most favorable to the plane board wore rated minus five. Ratings of various phrases ranged from minns five to plus five and are shown in Table XLIV, page 121.

The numerical values were then complied for each viewing point in accoxd ance with the frequency table deseribad in the above paragraph. These final values were positive or negative according to the addition of the signed numbers in each colump. No subject was bilowed to amase more than ten positive or negative points at any one vieving position. The resulta of this numerical ovaluation appar in Table XIV on page 122* Excessive points attributed to the individuals to any one viewing point bave been removed from the "corrected totals".

Analysis of Rated Corments. The ratings which were asstiened to the coments were sonewhat arbitrary, but they did provide a numerical evaium ation of the subjects thoughts. These coments represent fealings Father than frots and aerve to qualify the rindings of the sctual testse In Table XLV, page 122, the ratings given by aubjeats at each vieuing point are totaled and the viewing points given rank standing with reapect to their total soores. Positive numbers are prompurved, while negative are prooflat. These rankings cannot be considered exact because they are the result of arbitrary ratingws However, they are indicative of the genoral attitudes of the subjects toward the chalkboards. It is obvious that the subjecta considered the curved board very advantageous at the first elght viewing points. At the last four points both boarde were considered to be approximately equal. In short, these ocments tend to substantiate the data recorded during the tests.

Concluding Comesntg. At the conciusion of the tests, final conm ments of the subjects were pleced on a tape recorder. These were allinclusive statements of the entire test which gave their opinions
concerning the effectiveness of the two types of boards and the test prom codure itself. All these comments are quoted in Appendix 60 exactiy as they were recorded at the test bite. It will suffice to note that all the statements were favorable to the curved board, and that all subjects expressed a desire to see curved boards accepted as the clasaroom stando ard. There were no aritical coments made concerning the test procedure.

III. COMPARISON OF SUETECT VIEWING POIMTS

From the resulte of the reading and parallel ilne tests, it is concluded that the curved board was equal to or better than the plane board at all viewing points tagted. Furthernore, the curved board proved superior at the first eight points. These pointe vere those from which nerrow angles of vistion were formed and where the curved board was expected to provide the greatest improvement in board visibility. Points four and Pive vere whthin the classroom area from which the entire curved board could be read. At those damo points only a portion of the flat board could be read. This seems to prove that the curved beard was not oniy nore readable bat also that the curved board increased the number of pointe from which an entire chalkboard could be read.

Viewing point number nine was within the total board vieuing area for both the Mat and curved boards. At the final three piewing points each board proved approximately equally visible although the points were Firtually out of readable range for both boards.

Comparinon of Lings of Grouved Eigures. Three Lineo of grouped figures had been placed on each boaxd so that the visisilfty of all areas
of the boards could be determinea. The differences in ine readability on each board were alight, but the results have shown that the center IIne was the most visible of the three lines at every vieving point, except numbers two and ten. Thie fact may be seen in tahle KLVI, page 123. which Iista the ranks of the Ifnes at each point which had information sufficient to permit comparison of readable parcentages. Point number two was beyond the range of accurate reading and the differences between the center and lower lines weve not sfenificant, At powition number ten the center line of the flat board was the leact readablemonce again the viewing point lay beyond the range of accurato reading. The relatively poor readability of the upper ifne at each point is even more sallent than the good readablitty of the center line. This poor showing may be atuributed Iargely to glare. The gtudent had to $100 k$ Blightiy upward in order to view the upper 11 n and in so doine he was mubfected to an increase in 14ght weflected by the board. In short. the angio of vision more nearly approximoted the angle of inciaent light than was the ase at the center Ine. Thus, it is concluded that although angle of vision may account for part of the blicht varistions in readabllity betwoen the Ines of figures on a single board, the major factors affeoting thi change are amount of 1ight and angle of inoldent 1ight.

IV. PHOTORRAPHLO COVERACE

Photographs were taken from the thirtymfour viewing painta shown on the right-hend side of Appendix 0 . These pictures provide visual proot of the comparative effectiveness of the two boarde. The photegraphe
gubstantiate the findings of the tests, because those pletures taken from the sldes of the boards show the curved board to be more readable than the flat board. In particular, photographic viewing pointe eleven, sixteen, seventeen, twenty-one, twenty-two, twenty-three, twenty-foux, twentyfive, twenty-six, twentymeight, twenty-nine, thirty, thirtymone, thirtyw three, and thirty-four show that the ourved board is more advantegeous than the plane board. In the remaining positions the two boards may be seen to be of approximately equal visibility Exception to thie atatement muat, however, be taken at points one, two, and five these points were directly in front of, and close to, the sharpeat bond curvature and the canera lens wam incapable of bringing the entire curved area of the board into focus. These photographs are contained in Appendix DD.

V. GENERAL CONCLISTONS O CRADOCK TEST

As a result of the data which have been presented and analyzed, aeveral general conclueions may be made concerning the tests condueted at Gradook Hegh Sehool.

1. The curved board was proven as visible or more visible than the flat board at every viewing point tested.
2. The curved board man most effective at points whioh formed narrow angles of vistion on the flat board. That is, points to the side of the board vere most favorable to the curved chalkboard
3. The enter Itne of grouped figures on each board was most eastly read and the upper line wes the most difficult.
4. The total board vieving area was greater for tho curved board than for the flat. The entire ourved board nould be read from nore points within the classroon than could the mat board.
5. Additional tests were neaded to determine (1) the specifie relationship between dintance and angle of vision which together cavee ereas of chalkboard to be unreadible and (2) the exact ciassron area from which the entire surfece of ach type of board might be read.

SUMMARY AND CONCLUSIONS

I. GENERAL COMPARISON OF WLLIAMSBORG AND CRADOOK TESTS

The ohalkboard tests which were concucted at hilliansburg and Gradock generally aubstantiated one another, At Williamsburg, the data strongly favored the aurvec boaxd. These tests, however, had been hens perec by errors in procedure, a lack of yellow chalk, end lack of teet refinement, Nonotheleas, the superiorlty of the curved board was easily recognized in these initial tests. The rosults of the Cradock testa vere corroborated by those at Williamshurg. Viewing pointe dindar to those at Willamsburg revealed aimilar reaulta and appeared firnly to eatablish the superionity of the curved board. Its visibality was equal to, or ereater then, the flat board all positions.

II. TOTAL BOARD VIEMTG AREA

The tests whith have been described above proved that there axisted points within the alasarooms from which the entire surfece of a chellsboasd could be easily read. It was also nhown that some of these points wore the same for ench type of board, and that there wore others from which only the curved board could be read in its ontirety. This indieated that the total board viewing area of the curved board was greater than that of the flat board.
III. GENERAL SDMMARY OF TESTS

The chalkboard testa wich have been reported in this paper have provided proof of the greater visibility of a curved ohalkboard as opposed
to the conventional rlat board. It has been shown that the curved board enabled subjects to read small figures and count parallal lines more effectively at every poaition tested. Furthermore, subjects could see the entire curved board at viewing points from which only portions of the flat board could be seen. The exat degree of improvement provided by the curve has not been determined but it has been closely approximated from several different approaches.

The curved board which wac tasted did not provide perfect visibllity from all pointa within a nomal simed clasaroom, The center area of the board appeared to have a "blind spot" whioh was caused ohlefly by large alatance and amall angle of vieton. Testes were not conducted at every point within the classroom and the determination of the area of total board visibility was largely theorotical. Nevertheless, the evidence unistakably points to the use of ourved chalkboards as a means of achieving better chalkboard viaibility.

The inmiting distances which were obtained in the tests were cmall. This was caused by the use of mall figures as a teoting deviee. It mast be remembered that in nomal clesaroom usage all thege distances would be increaced in accordance with the increase in figure sizemprow vided all other factors, such as lighting, remain constant. A ourved chalkboard, therefore, would anale classroons to be altered so that the chalkbond might be placed on the long side of a rectangular clasarocima This would create a cmall loss in actual floor apace, but it would also eliminate the problems which have resulted from present classroom arrangement. In particular: It would virtually eliminate the necensity for
grouping students according to eyesight, it would allow teachers aloser contact to numbers of a rather large class, and it would allow the teaoher to read the entir chalkboard while standing relatively close to any pore tion of the board.

In any case, the curve is definitely advantageous: but, the question remains, "What curve will provide maximum deairable resulta?"

IV. AN OUTLINE FOR FUTURE RESEAROH

The results of those oxperiments indicate that further research is needed to determine the specific curve which will lend itself most effectm ively to chalkboard use. It would appear that the ellipse is very effective as a chalkboard curve, but the specifle member of this family remains to be deternined, It is also possible that another type of ourve may better satisfy the requirements for chalkboard construction. In order to determine this, more testing is required.

Another approach to the problem of classroom vision might evolve from the results of these inftial experiments. A curved board has been shown to permit better viaibility in normal rectangular claserooms. It covld also be true that the clacsyon design could be offectively and officiently altered so as to better conform to a partioular type of curved chalkboard; it merits investigation.

TA HE I

NOMERICAL DIFFGRENCE BETMEEN CORHESPOUDIKG POINTS ON THE THEORETCAL CURVE AND THE CONSTRUCTED CURVE AS MEASURED FROM THE X AXIS *

Feet	Inches			Peet		Inches	
X	It	Ye	$\mathrm{Yt-7e}$	X	It	Ya	Y t-7a
0	30.00	30.00	-	6.25	23.43	24.19	-0.76
0.5	29.94	29.81	0.13	6.5	22.80	23,75	-0.95
1	29.91	29.62	0.29	6.75	22.35	23.25	0.90
1.5	29.64	29.37	0.27	7	21.21	22.56	-1.35
2	29.40	29.00	0.40	7.2	20.82	21.94	-1.12
2.5	29.19	28.44	0.75	7.4	20.16	21.31	-1.15
3	28.62	28.12	0.50	7.6	19.50	20.56	-1.06
3.25	28.35	27.94	0.41	7.8	18.88	19.87	-. 99
3.5	28.18	27.56	0.62	8	18.00	19.19	- 2.19
3.75	27.78	27.37	0.41	8.2	17.16	18.37	-1.23
4	27.52	26.81	0.71	8.4	16.23	17.50	-1.27
4.25	27.16	26.81	0.35	8.6	15.30	16.56	-1.26
4.5	26.76	26.56	0.20	8.8	14.26	15.62	-1.36
4.75	26.37	26.25	0.12	9	13,08	14.62	-1.54
5	25.98	25.94	0.04	9.2	11.85	13.50	-1.65
5.25	25.41	25.50	-0.09	9.4	10.20	12.12	col. 92
5.5	24.95	25.25	-0.30	9.6	8.37	10.50	-2.13
5.25	24.54	24.87	-0.33	9.8	6.00	8.50	-2.50
6	24.00	24.56	-0.56	10	0.00	1.81	-1.81

* Yt = distance of theoretical curve, in inches, from X axis. In $=$ distance of actual curve, in inches, from X axis.
TABLE II
DATA CONCERUTMG WILLIMMSBURG SUBEECTS

Name	Sex	Age	Oecupation	```Yrs. of High School and College```	Years aince Sehool	Degree	Profession	Height of 	$\begin{aligned} & \text { Right } \\ & \text { Eyye } \end{aligned}$	Left Eye	Both Byes	Nearsighted	Glasses
Blalock, D.	N	26	(Engineer) Service Man	9	2	$\begin{aligned} & B_{0} S_{0} \\ & \text { Ac. } \end{aligned}$	Aeronautical Enginees	$52^{\prime \prime}$	20/20	20/20	20/20	\checkmark	\checkmark
Caython: D.J.	F	23	$\begin{aligned} & \text { Clerk- } \\ & \text { Typist } \end{aligned}$	3	6	-	-	$52^{\prime \prime}$	20/20	20/20	20/20	-	-
Cawthon, D.M.	M	24	(Bngineer) Service Man	8	1	M。E。	Nechanicel Engineer	$55^{\prime \prime}$	20/20	20/20	20/20	\checkmark	\checkmark
$\begin{aligned} & \text { Domino, } \\ & \text { C.M. } \end{aligned}$	F	35	Housewlfe	4	14	R.N.	Nurse	$50^{\prime \prime}$	20/20	20/20	20/20	-	-
$\begin{aligned} & \text { Hipp, } \\ & \text { J.D. } \end{aligned}$	M	26	(Engineer) Service Man	8	5	$\begin{aligned} & \text { B.S. } \\ & \text { M.E. } \end{aligned}$	Nechanical minginear	53**	20/20	20/20	20/20	\checkmark	-
$\begin{aligned} & \text { Hirsch; } \\ & \text { D.R. } \end{aligned}$	H	25	$\begin{aligned} & \text { (Clerk-Typist) } \\ & \text { Service Kan } \end{aligned}$	9	2	B.S. Business	Law	$54^{\prime \prime}$	20/20	20/20	20/20	\checkmark	\checkmark
Johnson, M.	F	23	Housewife	8	3	A.B.	--	$50^{\prime \prime}$	20/20	20/20	20/20	-	-
Johnson, T.	4	24	(Polf ceman) Service Man	9	2	$\begin{aligned} & A \cdot B_{0} \\ & A . B . \end{aligned}$	Criminology	$52^{\prime \prime}$	20/20	20/25	20/20	\checkmark	
Kagen, M.I.	*	25	(Aathematician) Service Man) 10	2	M.S. Math	Acturrial Mathematicia	$50^{\prime \prime}$	20/20	20/20	20/20	\checkmark	$\sqrt{ }$

Name	Sex	Age	Oceupation	Yrs. of High School and College	Years since School	Degree	Profession	Helght of Eyes	$\begin{aligned} & \text { Right } \\ & \text { Eye } \end{aligned}$	Left Eye	3oth Eyes	Nearsighted	Classes
$\begin{aligned} & \text { Prigge, } \\ & \text { R.N. } \end{aligned}$	M	25	(Engineer) Service Men	10	1	B. of Arch.	Architect	$52^{\prime \prime}$	20/200	20/60	20/60.	\checkmark	\checkmark
$\begin{aligned} & \text { Prigge, } \\ & \text { R.E. } \end{aligned}$	F	23	Housewlfe	8	2	A.B.	Teacher	52^{4}	20/20	20/20	20/20	-	-
Seligman, W.	M	26	(Engineer) Service Man	9	2	B.N.E.	Mechanical Engineer	$49^{\prime \prime}$	20/20	20/20	20/20	-	-
Thusius, P.M.	F	22	Teacher \& Housevife	8	1	B.S.	Teacher	51*	20/20	20/20	20/20	\checkmark	\checkmark
Thnsiug, D.A.	M	24	(Administra Service Man	9	2	B. 3.4.	Advertising	$52^{\prime \prime}$	20/20	20/20	20/20	-	-

TABLS III

ASSICMENT OF LETTERS TO PLAYYMG GARDS
IN ORDER TO OBTAIN GANDCM
LETHER SELECTION

Red Cards	Assigned Letter	Elack Cards	Assignod Letter
1	A	1	\#
2	B	2	0
3	c	3	F
4	D	4	0
5	E	5	R
6	\%	6	s
7	G	7	T
8	H	8	7
9	1	9	V
10	J	10	W
Jack	K	Jack	X
Queen	1	Queen	$\underline{7}$
King	M	King	z

 AND DLSTINGUISHADLE ON EACH BOARD BI SUBTECTS

AT WLLLIAMSBURG VIEWLMG POINT NO. I

Subject	Flat		Cumbed	
	Readable	Distinguishable	Peadable	Distinguishable
la	53	0	100	0
2 a	56	0	85	15
30	42	0	88	0
40	24	0	74	0
5 e	88	0	100	0
6 a	80	0	100	0
78	100	0	100	0
1b	32	0	74	26
2 b	53	0	100	0
3b	0	0	0	0
46	53	0	100	0
5 b	44	0	100	0
6b	21	0	100	0
76	56	0	100	0
Total	611	0	1,221	41
Avg 8	43.6	0	87.2	2.9
Over-all	age	43.6		

TABE V

PERCENTAGE OR CONTER LINE OF GROUPED TIGURES DESTGMATED AS READABES
AND DISTIMGUISHABLE ON EACH BOARD EX SUBTEOTS
AT WILLIAMSBURO VIEMING POINT WO. 2

Subject	Rat		Curred	
	Readable	Distinguishable	Readable	Distinguishable
$1 a$	60	0	100	0
2 a	62	0	79	21
3 a	60	0	35	65
48	91	0	100	0
5 a	91	0	100	0
6a	0	0	9	0
7 F	44	0	44	32
Total	408	0	467	118
Avg *	58.3	0	66.7	17
Over-all	rage	3		. 7

ABLe VI

 AT WLLIANSEUR VIWUTNC POLHT NO. 3

Subject	Flat		Curved	
	Readable	Distinguishable	Readable	Distinguishable
12	53	0	100	0
$2 a$	56	0	68	32
3 a	56	0	94	6
42	50	0	100	0
50	68	0	100	0
6 a	24	0	62	0
78	56	0	91	9
Total	363	0	615	47
AvE \%	52	0	88	6.7
Overeall	rage			

TABLE VII
PERCRNTAGE OF CENTER LIEE OF GROUPED FIGUES DESIGNATED AS READA前E AND DISTINGUISHASKE OA EACH EOARD EY SUBJECTS AT VILLIAMSBURG VIEWING POINT NO. 4

Subjeet	Flat		Curved	
	Readable	Distineuishable	Readable	Distinguishable
1 b	0	0	30	44
2 b	20	0	100	0
3b	0	0	12	41
$4 b$	0	0	78	9
5b	0	0	0	0
6 b	9	0	82	0
76	0	0	35	0
Total	29	0	277	94
Avg \%	3.1	0	39.6	13.4
Over-all	rage			

TABLE VIII

PERCENTAGE OF CEXTER LXNE OF GROTJRD FIGURES DESTOMATED AS READABLE
AND DISTIMOUISHABLE ON EACH BOARD EK SUBJECTS
AT WILLLAMSGURG VIEUING POINT NO. 5

Subject	Flat		Curved	
	Readable	Distinguishable	Readable	Distinguiahable
1 b	56	0	100	0
2 b	100	0	100	0
3b	38	0	56	26
4 b	100	0	100	0
56	0	0	0	0
6b	44	0	100	0
7 b	100	0	100	0
Total	438	0	556	26
Avg ${ }^{\text {P }}$	62.6	0	79.4	3.7
Over-all	rage			. 1

TABLE IX
PERCENTAOE OR CEATER IINE OF CROUPD FIGURES DESIGNATED AS MADABLE AND DISTIMGUISHAELE ON EACH BOARD B BUBJEGTS AT WILLIAMS日URG VIEWING POINT NO. 6

Subject	I2at		Curved	
	Readable	Distinguishable	Readable	Distinguishable
1 b	100	0	100	0
2 b	100	0	100	0
3b	53	0	77	23
4 b	100	0	100	0
56	0	0	0	0
6b	100	0	100	0
76	100	0	100	0
Total	553	0	577	23
Avg \%	79	0	82.4	3.3
Over-all	rage			

TABEE K
PRRCENTAGE INCEBASES OF READABLE GENTER LINE OF THE CURVED BOARD AS COMPARED TO THE FLAT BOARD, AT WILLIAMS BIRG

Subject	Viewing Points					
	1	2	3	4	5	6
12	47	40	47			
2 a	29	17	12			
3 a	47	-25	38			
4 a	12	9	50			
53	20	9	32			
6 a	79	9	38			
7 a	44	0	35			
1b	50			30	44	0
2 b	0			80	0	0
3b	42			. 2	18	24
4 b	47			. 8	0	0
56	0			0	0	0
6 b	47			73	56	0
76	56			35	0	0
Average	37.1	8.4	36	35.4	17	3.4

TABLE XI
NUMBER OR SECTIONS OF BACH BOARD WIICH HAD COWTABEE OR DLSTMNUUSHABLS SETS OF PARALLEL LINES AT WILLIANSBURO VIEHIMG POINK NO. 1

Subject	Flat		Curyed	
	Countable	Distinguishable	Countable	Distingus.ehable
1a	1	0	3	0
2 a	1.5	0.5	2	1.
3 a	3	0	3	0
4 a	3	0	3	0
5 a	3	0	3	0
$6 a$	1	1	3	0
76	2	0.5	3	0
1b	2	1	3	0
2 b	3	0	3	0
3b	1	2	3	0
46	2	1	3	0
50	0	2	0.5	2.5
6 b	2	1	3	0
76	2	1	3	0
Total	26.5	10	38.5	3.5
Average	1.6	0.7	2.75	0.25
Over-all	Average .	2.3		3
Over-al1	Percentage	\%		0\%

TABLE XII
NWMBTR OF SECTIONS OF EACH BOARD WHICH BAD COUNABEE
or distinguishable sets of parallel LINES at
WILLIMSBERG VIEWING POINT NO. 3

Subiect	Mat		Curred	
	Counteble	Dlstinguishable	Countable	Distinguiskable
Ia	1	0	3	0
$2 a$	1	0	3	0
3 a	1	0	3	0
4 a	2	0	3	0
5 a	2	0.5	3	0
6 a	2	0	3	0
76	2	0	3	0
Total	11	0.5	21	0
Average \%	1.57	0.07	3	0
Over-al1	rage	64		
Over-all	reentage			

TABLE XIII
NOMBER OP SBGTIONS OF EACH BOARD WHICH HAD COUMTABLE OR DISTINGUISHABLE SETS OF PARALLEL LIHES AT WILLIAMSBURG VIEWING POINT NO. 3

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguishable
1b	0	0	3	0
2 b	1	0	3	0
3b	0.5	1	3	0
4 b	0.5	0	3	0
5b	0	1	1	1
6 b	0	0	3	0
7 b	0	1	3	0
Total	2	3	19	1.
Avg ${ }^{\text {\% }}$	0.29	0.43	2.7	0.14
Over-all	erage			
Orer-all	reentage			

TA BLE XIV
 Nomber of sections of Eace board MiICH Had coumtaile OR DISTHMOISHABLE SETS OR PARALELL LINES AT WLLIAMSBURG VIEMING POIMN NO. 5

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguishable
1b	1.5	1.5	3	0
2 b	3	0	3	0
3b	3	0	3	0
46	2	1	3	0
56	1	1	3	0
6b	2.5	0.5	3	0
7 b	3	0	3	0
Total	16	4	21	0
Avg \%	2.3	.57	3	0
Over-all	average			
Over-all	percentage 9			

TABLE XV
AREA INGREASE OF THE SETS OF PARALLCL LINES ON THE
CURVE BOARD AS OPPOSED TO THE RLAT
BOABD AT WTLLIAMSBERG

Subject	Viewing Points					
	1	2	3	4	5	6
$1 a$	2	0	2			
2 a	0.5	1	2			
3 a	0	0	2			
40	0	0	1			
5 a	0	0	1			
$6 a$	2	0	1			
7a	1	0	1			
1b	1			3	1.5	0
2 b	0			2	0	0
3b	2			2.5	0	0
4 b	1			2.5	1	0
5b	0.5			1	2	0
6 b	1			3	0.5	0
7 b	1			3	0	0
Avg increase	0.86	0.16	1.57	2.43	0.71	0
Percentage increase	29\%	5\%	52\%	81\%	24\%	0

TABLD XVI
SLOTIEAS YDOUVEO ONINHFHOO WLW

Subjects	Sex	Age	Class	1.2.	Hame of I.Q. Test	Date of Test	Fr.	Averag Soph.	$\frac{\mathrm{s}}{\mathrm{Jr}}$		Right Eye	$\begin{gathered} \text { Left } \\ \text { Eye } \\ \hline \end{gathered}$	Both Eyes	G1asses
1	N	17	Senior	113	California Short Form Test of Mental Moturity Intermediate 150 Short Form	10/3/51	A	B	B^{+}	48°	20/20	20/20	20/20	
2	M	17	Senior	109	Same as above	10/3/51	6^{+}	0	c^{+}	50°	20/20	20/20	20/20	
3	F	17	Senior	90	Same as above	10/3/51	c	0	\square^{-}	48*	20/20	20/20	20/20	
4	F	17	Senior	108	California Short Forw Test of Mental Maturity Intermediate 147 Short Form	5/2/53	B^{-}	A	B	$48^{\prime \prime}$	20/20	20/20	20/20	
5	F	16	Senior	104	Same as No. 1	12/4/55	A^{-}	A^{-}	A^{*}	$47^{\prime \prime}$	20/20	20/20	20/20	
6	M	17	Senior	102	Same as No. 1	11/4/55	B	D	0	$47^{\circ 1}$	20/20	20/70	20/20	\checkmark
7	N	17	Sentor	103	Same as No. 4	2/14/51	B^{+}	\square^{5}	B^{+}	49^{n}	20/20	20/20.	20/20	
8	F	37	Senior	105	Same as No. 1	11/4/55	A^{-}	E^{-}	B^{+}	48"	20/20	20/20	20/20	
9	M	17	Senior	105	Same as No. 1	11/4/55	0^{+}	B	6	52^{*}	20/20	20/20	20/20	
10	F	17	Senior	84	Same is No. 4	3/27/51	D	D	D	47°	20/20	20/20	20/20	

TABLE XVII
THE PERCENTAGES OP THE LINES OF GROUPED FIGURES

Sabject	Fhat			Curved		
	${ }_{\text {Bpper }}^{\text {b }}$	Center	${ }^{\text {Lower }}$	${ }_{8}^{\text {Upper }}$	${ }_{\text {Center }}$	${ }^{\text {Liower }}$
1	43	43	40	87	93	100
2	30	37	37	77	87	87
3	33	33	37	73	80	73
4	37	43	40	100	90	90
5	43	50	43	93	90	93
6	40	43	43	77	90	80
7	43	47	43	93	100	100
8	30	30	27	40	77	53
9	33	37	37	77	100	100
10	37	40	37	80	100	100
Total	399	403	383	797	917	876
Avg. 8	39.9	40.3	38.3	79.7	91.7	87.6

TABLE XVIII
NTMBER OF BOARD AREAS WHOSE SETS OR PARALLML LINES WERE RECORDED AS COUWTAHE AND DTSTMGUSSHABEE

FROM VIEWLNO POIM NO. 1

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguishable
1	2	0	5	0
2	2	1.5	5	0
3	1	1	4	2
4	2	1	5	0
5	1	1	4	1
6	2	1	5	0
7	2	0.5	5	0
8	2	1	5	0
9	2	1	3	0.5
10	1	1	4	0.5
Avg. \%	1.7	0.9	4.5	0.3
	2.6	52\%	4.8	96\%

Tame XIX
THE PERCNNTAGE TNCREASE OF READABLE LINES OF GROUPED FIOURES AND SECTION INOREASE OF COUNTABLE SETS RECORDED IN FAVOR OF THE CURVED BOARD AT POINT NO. 2

Subject	Readable Group Increase Percentage		Lower	Countable Section Increase
	Upper	Center		
1	44	50	60	3
2	47	50	50	3
3	40	47	36	3
4	63	37	50	3
5	50	40	50	3
6	37	47	37	3
7	50	53	57	3
8	10	47	26	1
9	44	63	63	3
10	43	60	63	25
Avg. ${ }^{\text {\% }}$	38.5	49.4	36.6	2.5

TABLE XXI

NOMETR OF bOARD AREAS WHOSE SETS OF PARALLEL LINES WRE RECORDED AS COUNTA BLE AND DISTMGUISHA延E

FROM VIENIKG POITI NO. 2

Subjeot	Hat		Curved	
	Countable	Distinguishable	Countable	Distinguishable
1	0	1	4	1
2	0	1	2	3
3	0	1	5	0
4	0	1	2	3
5	0	1	3.5	0.5
6	0	1	3	2
7	0	1	1	4
8	0	0.5	3	1
9	0	1	4.5	0.5
10	0	3	4	2
Avg. \%	0	1.2	3.2	2.6
	1.2	24\%	4.8	96%

TABLE XXII
THE PERCENTAGE INCREASE OF DISTINGULSHAZLE LINES OF GROUPED FIGURES AND SECTION INCREASE OF COUNTABLE SETS RECORDED IN FAVOR OF THE CURVED BOARD AT POINT NO. 2

Subject	Distinguishable Group Increase Peroentage		Lower	Countable Section Increase
	Upper	Center		
1	47	67	60	4
2	64	67	67	2
3	60	74	70	5
4	47	43	60	2
5	36	47	50	3.5
6	53	56	47	3
7	80	67	73	1
8	70	63	60	3
9	56	83	70	4.5
10	34	43	74	4
Average	54.7	61	63.1	3.2

vEnIn POINT NO. 3

TABLS XXIV
NOMIER OP BOARD AREAS WHOSE SETS OF PARALLEL LINES WERE RECORDED AS COUMTABLE AND DSTINGUISHAELE

FROM VIENING POINT NO. 3

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguishable
1	3	2	4.5	
2	2	1	5	0.5
3	2	3	5	0
4	1	4	5	0
5	2	1	5	0
6	2	1	5	0
7	2	1	5	0
8	2	1	5	0
9	2	2	5	0
10	2	3	5	0
Average	2	1.9	4.95	0.05
	3.9	78%	5	100\%

Th BLe XXV

THE PERCENTAGE TMCREASE OF READABLE LINES OF GROUPED FIOURES AMD SECTION IWOREASE OF COUNTABLE SETS RECORDED IH FAVOR OF THE CURVED BOARD AT POINT NO. 3

Subject	Readable Group Increase Percentage		Lower	Countabls Section Increase
	Upper	Center		
1	53	50	53	1.5
2	66	60	70	3
3	64	73	67	3
4	53	50	57	4
5	60	44	63	3
6	53	50	43	3
7	70	60	63	3
8	16	40	13	3
9	77	77	77	3
10	36	64	64	3
Avg.	54.8	56.8	57	2.95

TABLE XWI
THE PERCENTAGES OF THE LINES OF GROUPED TIGMES

Subject	Flat			Curved		
	$R^{\text {Tppene }}$	$\begin{aligned} & \text { Center } \\ & \text { R } \quad 0 \end{aligned}$	$\mathrm{R}^{\text {Lover }}$	${ }_{\mathrm{R}}^{\text {Uppeqr }}$	$\begin{aligned} & \hline \text { Center } \\ & \mathrm{R} \end{aligned}$	$\mathrm{E}_{\mathrm{Lower}}^{\text {L }}$
1	73	80	77	100	100	100
2	67	60	67	100	100	100
3	57	67	67	100	100	100
4	60	70	67	100	100	100
5	63	63	60	100	100	100
6	53	57	57	100	100	100
7	80	80	80	100	100	100
8	40	43	47	100	100	100
9	80	70	60	100	100	100
10	53	57	50	100	100	100
Total	626	647	632	1000	1000	1000
Avg. \%	62.6	64.7	63.2	100	100	100

TABLB XXVII
MOMBER OF BOARD AREAS WHOSE SETS OF PARALLEL kINES WRE REOCRDED AS CODNPARE AND DISTIMCUISHABLS

FHOM VIEMINO POINT NO. 4

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguisheble
1	4	1	4	1
2	4.5	0.5	5	0
3	4	1.	5	0
4	4	1	5	0
5	4	1	5	0
6	3	2	5	0
7	5	0	5	0
8	4	1	5	0
9	4	1	5	0
10	3	2	5	0
Average	3.95	3.05	4.9	0.1
	5	100\%	5	100\%

TAELE XXVIII
THE PERCRNTAGE INGREASE OR READABLE LINES OF GROUPRD FTGURES AND SECTION INCREASE OF COUNTABEE SETS RECORDED IN FAYOR OF THE CDEVED BOARD AT PONT NO. 4

Subject	Readable Group Increase Percentage		Lower	Countable Section Increase
	Opper	Center		
1	27	20	23	0
2	33	40	33	0.5
3	43	33	33	1
4	40	30	33	1
5	37	37	40	1
6	47	43	43	2
7	20	20	20	0
8	60	57	53	1
9	20	30	40	1
10	47	43	50	2
Avg.	37.4	35.3	36.8	0.95

TABE XXIX

Subjoct	Mat			curved		
	Uppor	${ }^{\text {Conter }}$	${ }^{\text {Lowar }}$	Dpper	Conter	Lower
1	67	70	67	100	100	100
2	60	57	53	100	100	100
3	63	67	70	100	100	100
4	53	60	57	100	100	100
5	67	77	60	100	100	100
6	40	37	33	100	100	100
7	67	70	70	100	100	100
8	30	47	57	80	90	100
9	63	63	57	100	100	100
10	70	57	60	100	100	100
Total	521	605	584	980	990	1000
Avg. \%	52.1	60.5	58.4	98.0	99.0	100

	NUMEER OE BOARD AREAS GHOSE SETS OF PARALIEL LINES WERE RECORDED AS COUMYAELE AND DISTINGUISHABEE FROM VIENTNO POINT NO. 5			
	Flat		Curved	
Subject	Countable	Distinguishable	Countable	Distinguishable
1	5	0	5	0
2	4.5	0.5	5	0
3	5	0	5	0
4	4	1	5	0
5	4	1	5	0
6	3	2	5	0
7	4	1	5	0
8	4.5	0.5	5	0
9	4	1	5	0
10	4	1	5	0
Average	4.2	0.8	5	0

TABLE XXXI
THE PERCENTAGE IMCREASE OF RBADABTR LINES OP GROUPRD FIGURES AND SECTION INGREASE OF COUNABLE SETS RECORDRD IN TAVOR OF THE GURVED gOARD AT POIMT NO. 5

Subject	Readable Group Increase Percentage		Lover	Countable Saction Increase
	Upper	Center		
1	33	30	33	0
2	40	43	47	0.5
3	37	33	30	0
4	47	40	43	1
5	33	23	40	1
6	60	63	67	2
7	33	30	30	1
8	50	43	43	0.5
9	37	37	43	1
10	30	43	40	1
Avg.	40	38.5	41.6	0.8

TABLE XXXII

TABLE XXXIII				
	NWMER OF BOARD AREAS WHOSE SETS OF PARALLEL LTNES WERE FRCO VIEWINO POINT NO. 6			
Subject	Countable	Distinguishable	Cometable	Distinguishable
1	2	2.5	5	0
2	1	2	4	1
3	4	1	5	0
4	-	-	-	-
5	2	1	4	1
6	1.5	2.5	5	0
7	1	2	4.5	0.5
8	1	3	5	0
9	2	1	5	0
10	4	1	5	0
Average	2.06	1.8	4.72	0.28

TABLS XXXIV

THE FERCENTAGE INGREASE OF READABLE LINES OF GROUPED FIGURES AND SEGTION THOREASE OF GOUHTABLE SETS RECORDED IN FAVOR OF THE CURVED BOARD AT POINT MO. 6

| | Readable Croup
 Increase Fercentage
 Uper | Center | Countable
 Section |
| :---: | :---: | :---: | :---: | :---: |
| Subject | | | |

TABLIE XXXV
tus percemages or the lines of grouped pigures which here

Subject	Flat			Curved		
	${ }_{R^{\text {Hpper }}}^{p}$	$\begin{aligned} & \text { Center } \\ & \mathrm{B} \\ & \hline \end{aligned}$	$R_{R_{D}^{\text {Lower }}}^{D}$	${ }_{R^{\text {Dppor }}}^{\text {pen }}$	$\begin{aligned} & \text { Center } \\ & B_{B} \end{aligned}$	$\mathrm{R}^{\text {Lower }}{ }_{\mathrm{D}}$
1	43	33	40	97	100	100
2	23	20	23	83	83	77
3	23	27	27	83	93	93
4	30	:23	27	100	100	100
5	17	23	13	100	100	100
6	53*	50*	40^{*}	100*	100*	87
7	20	33	30	97	100	100
8	57"	60%	53*	100*	100*	100*
9	30	47	43	87	97	100
10	33	37	23	97	97	100
Total	309	353	323	944	970	957
Avg. \%	30.9	35.3	32.3	94.4	97.0	95.7

TABIE XXXVI
MUMER OF BOARD AREAS WROSE SETS OF PARALLEL LINES WRRE
RECORDED AS CODNTABLE AND DISTINGUISHARE
FROM VIEUTNG POINT NO. 7

Subject	Flat		Curved	
	Countable	Distinguishable	Countable	Distinguishabla
1	3	2	5	0
2	2	2	5	0
3	5	0	5	0
4	2	3	5	0
5	2	2	5	0
6	2	3	5	0
7	3	2	5	0
8	3.5	1.5	5	0
9	3	2	5	0
10	4	1	5	0
Average	2.95	2.85	5	0

TABLE XXXVII
THE PERCENTAOE INCREASE OR READA DLE LINES OF GROUPED FIGURES AND SECTION INCREASE OF COMTABLE SETS RECORDED IN FAVOR OF THE CURVED BOARD AT POTNT NO. 7

Subject	Readable Group Increase Percentage		Lower	Countable Section Inorease
	Upper	Center		
1	54	67	60	2
2	60	63	54	3
3	60	66	76	0
4	70	77	73	3
5	83	77	87	3
6	47*	50\%	47*	3
7	77	67	70	2
8	43*	40*	47*	1.5
9	57	50	57	2
10	64	60	73	1
Avg.	61.5	61.7	64.4	2

ThBLE XXXVIII

Subjeot	Flat			Curved		
	${ }_{{ }^{\text {Dpper }}}^{\text {D }}$	$\begin{aligned} & \text { Center } \\ & R \end{aligned}$	$\mathrm{R} \quad \mathrm{D}$	$R_{B}^{\text {Upper }}$	$\begin{aligned} & \text { Center } \\ & \text { R } \end{aligned}$	Lower
1	83	90	90	100	100	100
2	17	37	30	23	80	83
3	43	50	43	90	100	100
4	53	60	53	93	100	100
5	47	47	47	100	87	83
6	30	27	37	93	87	73
7	60	70	70	100	100	100
8	100*	100*	100\%	100*	100\%	100*
9	77	60	53	97	100	100
10	53	53	40	100	100	100
Total	563	594	563	896	954	939
Avg. \%	56.3	59.4	56.3	89.6	95.4	93.9

TABLE XXXIX
NWIOR OF BOARD AREAS WHOSE SETS OF PARALLEL LINES WERE
RECORDED AS COUNTABLE AND DISTIVGUISHABIS
FROM VIENIM POIMT NO. है

Subjoct	Hat		Ourved	
	Countable	Distinguisheble	Countable	Distinguishable
1	5	0	5	0
2	3.5	1.5	5	0
3	5	0	5	0
4	4	1	5	0
5	3	2	5	0
6	5	0	5	0
7	5	0	5	0
8	5	0	5	0
9	5	0	5	0
10	5	0	5	0
Average	4.55	0.45	5	0

TABE XL
THE PERCENTAGE INCREASE OF READABLE LTNES OF GROUPED FIGURES AND SECTION INCREASE OF CODTTABLE SETS RECORDES IN FAVCR OF THE GURVED BOARD AT PONT WO. 8

Subject	Readable Group Increase Percentage		Lower	Countable Section Increase
	Upper	Center		
1	17	10	10	0
2	6	43	53	1.5
3	47	50	57	0
4	40	40	47	1
5	53	40	36	2
6	63	60	36	0
7	40	30	30	0
8	0	0	0	0
9	20	40	47	0
10	47	47	60	0
Avg.	33.3	36	37.6	0.5

TABLE XII
THE PERCENTAGES OF THE LINES OF GROUPED FIGURES

TABLE XLII

THE PERCENTAOE INCREASE OF RGADABLS
GROUPS OF FTGURES FROM
POINT NO. 10

Subject	Readable group Increase percentage		
	Upper	Center	Lower
1	0	0	0
2	0	100	67
3	3	0	0
4	0	0	0
5	0	0	0
6	27	37	17
7	0	0	0
ε	0	0	0
9	3	3	0
10	7	4	7
Avg.	4	1.4 .4	9.1

TABLE XIIIT
FREQUENCY TABLE OF COMMEMS GIVEN BY GRADOCK
SUBJECTS AT EACH VIEUTNG POINT

table milit (Cominued)

Numbers in colums refer to subjects.

TABLE XLIV
NUMERICAL RATTNGS WHICH HAVE BEEN ASSIGNED TO COMMENTS MADE BY CRADOCK SUBTECTS* IN ACCORDAVEE UITH THE DEGREE OF PRAISE FOR THE GURVED BGARD CONTAINED

In The EVALUATION

	Refer to Rlat Pro Con				Refer to ourved Pro Con				Neutral
Numbered comments	10	2	8	7	11	16	1	13	3,6,4
	5b			9	25	17	19	14	
					18		20		
					5 a		21.		
							12		
Assigned ratings	-5	-I	1	2	5	2	1	-4	0

* Table XIII lists the comments received.

TABLE XLV

TOMLS OF RATLNCS APPLIED TO COMENTS* OF BACH CAADOCK SURJECT, AND RANK ORDER OF VIBUNG POINTS RESULTMG

FROM GRAND TOTALS OF RATINCS

Subject	Viewing points											
	1	2	3	4	5	6	7	8	9	10	11	12
1	$14-8$	11-14	3	4	4	3-2	6	5	-4	-9	0	-1
2	13	19	17	17	12	15	17	10	0	7	0	8-5
3	6	12-4	1	8	6	16	12	5	5	5	6	8
4	8	94.4	11	3	6	0	3	3	0	$5-4$	2	2
5	7	78.4	8	7	11	6	12	12	-9	-4	5	8
6	7×4	74	4	3	9	6	3	6	-4	$5-4$	7	2
7	14	9	8	13	12	17	12	6	0	0	1	-4
8	8	1.5	15	8	4	8	2	10	3	7	7	1
9	8	5		3	8	11	7	7	5	-5	2	-4
10	7	5	7	0	5	0	11	0	4	0	0	0
True total	80	79	73	66	76	81	83	64	-13	3	30	15
Corrected total ${ }^{*}$ *	69	52	60	56	72	62	69	64	-13	3	30	15
Rank order	2	7	5	6	2	4	2	3	11	10	8	9

* Table XLIII contains coment frequenay ohart, and Tablo XLIV contains ratinge given to each coment.
** No subject was allowed to amse more than ten positive or negative points at any one viewing position.
TABLE XIVI

BH BLICORAPHY

BIELIOGRAPHI

Allon, Carl J. "A Suggested Design for Chaikboard Lighting, IlIninating Encineoring: XIVII (1), 1952.

American Association of School Administrators Amerioan Sehool buildinge. Twentymeventh Yearbook. Washington: Amarican Aszociation or School Administrators, 1949.

Baker, Lester: Color PZanning in Sehool Intarioxs. New York: New York City Board of Education, 1949.

Hamon, Fay L. Lakting Glebsroons. U. S. Office of Bducationg Pamphlet No. 104. Washingtion Government Frinting office, 1948.

Hiarmon, Darfell Boyd. A Prelininary Stuidy of tha Relation of Sustained Visualiy Contered Acinity and Cortain Types af Ghalkbosrda. Austin, Texas: the author, 1952.

Hopkinson, R. G. Studieg of Kighting and Wigion in Schools. Transactions of the IIlumineting Engineering Soosety, Vol. XIV, Wo. 8. London: 1949.

Kable, Louise. "Chaikboard Mumber Oxe Visusl Aide" Journal of the Nationel Education Agsociation; 37: May, 1948 .

Kahler, William N. "Chalkboard Visibility Tests, "Schoo Rginese Affalrs, $16:$ December, 1950.

Kahler, William N. MVisibility of Chalkboards for Clesaroons," Amexicen School Board Jcumna, 121:47-49, December, 1950.

Mullen, W. F., and W. R. Nxons Take mother Look at the Katural Slate Gackboard," American Sthool Board Journal, 122.38-41, June, 1951.

Mullen, W. F. The A-Bels of Chalkboard Salection, Use and Gerg. Engor, Ponnsylvaniat David Stoddard and Sons, 1953.

Mullon, W. F. "Slate Chalkboarda Provite Eye Easo," Amarican School Boned Journal, 124:46, June, 1952.

Hew Fingland Sohool Development Council. The Elemontexy Sohool Chaseroom. Cankridge: New England School Development Council, 1950.

Noca, Paul F. "Chalkboard and Its Pature," Anarican Sehood and DniverEtty. 1946.

Parsons, Edgar W. "Light Green Chalkboard," Amerioan School and Oniversity, 1947.

Schmidt, H. W. "Blackboards, Their Height and Width, " American School Board Journal, September; 1930.

Sweet's Architectural File, Sweet's Catalogue Service, (Division of F. W. Dodge Corporation), New York, 1953.

United States Office of Education. Remodeling of School Buildings. Bulletin No. 17. Washington: Government Printing Office, 1950.

APYEDTIXSS
A. Consolidated Data Shest on State Replios
B. Specifications of Prototype Eoard
O. Diagran of Matorial Placed upon Chalkboards at Williamsburg
D. Table of Random Letters and Numera Derdved Bepaclally for Chalkboard Testa

Locations of Curved Board with Reppect to Hat Board and Wiewing Point at Wiliassburg
F. Photographic and Subject Vieudng Points at W111amsbura O. Viowing Point Fo. 1

EWIliasmburg Viouing Points Mo. 2; 3. and 4 Peading Genter Line

W21Lashurg Viewing Points \%os 5 and 6 Reading Center Line
Countability and Diatinguishability of Verticel mad Parallal Linew, WLILamsbuag Test

Coments Obtajned from Whliamblurg Subjects
Selected Plotures from Hilliemsburg Photographite Vleving Points

Diagram of Mstarial Placed Upon Chalkboarde at Gradock
Logations of Curved Doard whth Respeet to Flet board and Viowing Points at Oratock

Fhotegraphic and Subsect Vieving Points at Creaock
Countable and Distinguishable Sets of Parallel Linea at all Subject VLewing Points。 Oradock Test

APTGRDIX
NOMENOLATURE
Q. Credoox Viewing Point Bo 1
R. Cradock Viewing Point No. 2
S. Cradock Viewing Point No. 3
T. Cradock Vtewing Point Noe 4
V. Cradock Viowing Point No. 5
V. Gradock Viewing Point Wo. 6
W. Cracock Viewing Point Ko. 7
K. Cradook Viewing Point No* 8

1. Gradook Viowing Point Noo 9
z. Oradock Viewing Point No. 10
A. Cradook Viewing Point No. 11

B8, Cradock Viewing Point *o. 12
C0. Pinal Comenta of Cradock Subjects Tape Reoorded
Do. Credock Photographa
ER.

Calored Photographs of west Equipment and It Arrangement

	Returned	Make Color Reconmendations	slate Green Black	Cree	Compos: Hack	on. Other	\pm
Alabama	yes	no				4	
Aleska							
Arizons							
Arkensas							
Celifornis	yes	yes	$A \quad A$	A	A	A	
Colorado	yes	no	$A \quad-1$	A	A	A	
Connecticut	yes	no	A A	A	A	A	
Delamare							
Florida	yes	no	$A \quad A$	A	A	4	
Georgia	yes	Fes	$A \quad A$	R	A	A	
Hawail	yes	yes		B			
İaho							
111inois	7es	no	$A \quad A$	A	A	A	
Indiena	7es	no	$A \quad A$	A	E	1	
Iova	yes			R		+	
Kanges	yes			R			
Kentucky	yes	yos	R	R			
Louistana							
Maine							
Maryland	yes	no					
Mespachu8ettg							
Mohigan							
Minnesota							
Wisgisgiopt	yos			E			
Wesouri							
Montans	yeg	Fes	R	R			
Mebragka							
Mevade							
Ney Kampahtre							
New Jerser	yes	yees		8			
Mew Mexico	yes	no	$A \quad A$	A	4	A	
Wor York	yes	yes	$A \quad A$	A	A	A	
Yorth Carolina	yes	yes	A ${ }^{\text {A }}$	R	A	A	
North Dakota	yes			1	2		
Dh10	yes	no	A ${ }_{\text {a }}$	A	A	A	
Oclahora							
Orezon	788	yes		R			
Penneylvante	7 Fes	no	$A \quad A$	A	A	A	
Mhode Island							
South Carolina							
Tennessee	Yes	yes		R			
Texas	yes	no	$A \quad A$	A	A	A	
Dtah	yes	no	$A \quad A$	A	A	A	
Vermont	yes	Tes	R				
Virginia	yes	no	A A	A	A	A	205
Hashington							
West Virginie	yes	no	$A \quad A$	A	A	A	
Wisconsin	Jes			R			
Wroming	yes	no	A \quad A	A	A	A	

APPENDIX B

SPECIFICATIONS OF PROTOTYPE BOARD

APPENDIX D

TABLE OF RANDCN LETTERS AND NMBERS DERTVED ESPEGALLY FOR GHALKBOARD TESTS*

RANDOM LETTERS

π	H	0	D	0	0	J	I	E		0	A	X	V	
2	F	Y	Y	V	E	M	S	H	D	1	J	W	K	
U	c	A	M	0	2	Q	F	W	K	Q	S	6	B	
T	0	N	B	N	1	v	v	8	Q	T	0	Y	R	
V	H	K	M	Q	M	T	N	L	K	H	X	1	F	
E	F	1	Y	D	0	0	D	0	A	0	B	Q	n	\mathbf{S}
N	E	I	3	C	0	A	2	J	W	X	W	P		

RANOM NOMBERS

6	7	1	9	8	5	6	4	2	9	2	5	8	2	4
5	4	8	5	4	3	7	3	6	6	3	9	1	2	7
1	7	3	2	8	9	6	7	6	9	6	4	5	2	1
8	7	2	3	7	5	9	8	5	9	4	1	3	5	1
2	6	8	4	3	1	2	4	8	7	3	9	5	8	2
7	4	2	9	8	4	6	4	2	3	8	6	9	2	5
3	7	7	6	1	1	5	9	5	9	4	3	3	6	1
1	7	8												

* Refor to Table IV for derivation of numbers and letters.

DISTANCE IN FEET

A-FIRST GROUUP B-SECOND GROUP		WILLIAMSBURG					VIEWING 7 8 9					NO. 1 $12\|13\| 1$		APPENDIX G							CENTER				LINE)			28	29	30	31	32	33	34		
		1	$2]$	4	5	6				4	15			16	17	18	19	20	21	22	23	24	25	26	27											
BLALOCK	14																																			
CAWTHON D.J.																																				
CAWTHCN D M.	3A																																			
HIPP	4 A																																			
HIRSCH	$5 A$																																			
THUSIUS P.	6A																																			
THUSIUS D	7 A																																			
DOMINO	18																																			
JOHNSON M.	28																																			
JOHNSON T	38																																			
KAGEN	48																																			
PRIGGE R N	58																																			
PRIGGE R. E	68																																			
SELIGMAN	78																															\cdots				

Group 1

The curved board was definitaly easler to read. Figures were more easily distinguished and parallel lines were much easier to distinm guish. Beginning and ending letters and figures in each group were post easily read. The section of the curved board, where the substantial curve begen, was the most difficult portion of the curved board to read but thin fection of the curved board was more aasily reed than the second quarter of the atraight blackboard."

2a

"I could soe the letters, lines, and figures on the far end mooh better on the curved board thes on the etraight boarde"
"The flemures on the durved board in the nidale vere not so cleazo on a whole I thought the ourved board was clearer:"

$2 a$

My impreasions wer that the curved blackhoardy from aertatn positions, was much easker to see than the atraight one. I think tho lighting was constant and clace approximately the samo on both boards."
$3 a$
"I can't see the overmall objective of the test; however, the teat may show how various oyes react under different conditions. I sincerely think I could read all the lettere and numbers on the curved board. I think a more positive test oovid be obtained by using uniform letters."
"In all three postions, I found it easier to distinguish letteres breaks in circles, ote, on the curved board. Many times I could apparently give the correct answer for the flat board, when actually; I was not too eure of myself."
(1) Wuch easier to read letters and figures on the curved board. Last poaition of reader gave best visibility of both boards. For we the amall row of letters was too mall to distinguish to be a good test; also, the two middle letters were orowded together."

6 a

"Could you be experimenting with the possibilities of cinemsscope type blackboards? I think there are definite possibilities. How bout soript on the curved areas? Is it difricult for the teacher or student to write on a curve? Do the vords and letters bunch yp gnd make reading gleficult from distance?"

7

Groun II

"The tests were very thorough. Hoving always had good vision and no trouble reading on a blackboard the curved board is still a definite relief and more restful. I would highly recommend the curved board for schools."

$1 b$

"I think for a better survey should use some chilaren toom. Would like a test in daylight to see the glare on the flat ve. curved board. Should try sitting in desk position. I thought the curved board much easier to read at point No. I (more noticeable). Could read much better from right comer of room at point No. 6 than from the left at point No. 5. Would like for curiosity to have a flash teat-1.e., only look at board for a second for identiflication like the student whose eyes are constantly up and down from desk to board snd adjusting quickly. Most interesting."

2b

"At point No. 4 I believe that the olose end of the homemade chelkboard was slightly warped, thus making it difficult to distinguish some of the mall letters."
"It might have been more securate if the board had been washed after each erasure. The chalk smear made it hard to tell the "o'clock" of the openings in the circles. Also, it seemed as if some of the openings were larger than others."
(From point No. 1) *After reading from both boards, I concluded that it was genarally easier to read from the curved board. At this point I decided that the purpose of the test was to prove the over-all efficiency of the curved board."
(From point No. 4) I felt that I was doing a lot of guessing. Nevertheless, it did seem easier to read from the curved board, especially when it came to distinguishing separate lines. In reading the small letters, at times, I thought I could read a group-but after reading the first letter in the group I couldn't determine the other three."
(From points No. 5 and 6) nI had the same feeling in reading letter groups as I did at point No. 40 . In moving from one chair to the other I remembered some answers given from the first chairs. This was especially true as regards the oircles. I belleve I was influenced to some degree by this, and it affected answers from the second chair."

$4 b$

NOTE: No written coments were received from subject 5b.
"A lot of the difficulty for in seeing spaces on the circles had to do with the smudges on the board and the variations in thickneas of the chalk line. Alsombeing at the end of the day, uy eyes became very tired and it became difficult to focus so constantly."

6b
"I generally was able to see numbers, figures, letters, ete. better on the curved board than on the flet board. There was a tendency elso to remember some of the numbers and positions of breaks during the first two sessions. During the third session my eyes were a little tired and I had a headache."

[^14]

[^15]
APPENDIX M
DIAGRAM OF MATERIAL
CHALKBOARDS AT CRADOCK.

PLACED UPON.

						APR	X-N											
				- 0 cat	tions	bF CUR	RVED	BOARD		ITH								
				RESPE	ctito	- ELAT	BOARD	D AND										
				MIEWIN	v 6 poin	NTS AT	Cra	pock										
			-		L	-	-	-										
							7	7										
-			clat.		1-	-		\#										
			board															
-	1					+	-	-										
					152	3.64		-17										
					C. +1	-	-											
					,													
					4													
Or:	1		H-	I	H/	7	+\%											
																\square		
					23													
			\bigcirc	-	-	,	It											
						67	-											
										-								
+	+7		+		-	!	-									\%		
			\square			+	H											
	Latibo	WARD					curi	VED 80	OARD				AT	BOA		D-		
			- +			+	+t	$+$										
							H-1	$+$								FI		
H			-				,	H						-				
\pm	\square		\square				-	-										
+	$\underline{+1}$		+				-	$+$								T		
\dagger								+										
$+1$	+ +	II	-					\square						-				
														H-1				
	-													4				
	,							+						1				
	1		H					+						-				
									1									
	9	1																
	+ +	+					.	--						-				
								+1	10.							12		
	\square			\bigcirc														
									same		URV			cat		a +		
							+	TAL	ALL	Th				NTS				
					-		\square			-				\square				
					4					$\underline{1}$								
				-				-								-		
						H		-										
	-				-1-1									\pm				
	+			$+$	-		+	0		+								+
				+			+											
	$-H$	-		$1+$	-			\pm			\#							

DISTANCE IN FEET

APPENDIX R CRADOCK VIEWING POINT NO. 2

TOP FLAT

CENTER FLAT

	$-\operatorname{lnm}+\log$	$\operatorname{Mon} 0 \mid=$	$=2 m+2$	$=1 \geqslant 0$		$=\approx \approx \mathfrak{m} / 2$	$\sqrt{2} x^{2} \sqrt{2}$	
	区OD							
	-	-						
	crecre							
	10<							
	-							
	-1020	81						
	Le2ele							
	U1220	2,						
	B4L0	10						
	Ler							
	-8XXX							

BOTTOM FLAT

TOP CURVED

CENTER CURVED
 BOTTOM CURVED

APPENDIX S CRADOCK VIEWING POINT NO. 3					
top flat	top curveo				
+dolyely					
	W\|IIII				

	-				
-r+rrrareelel					
-	---------				
II					
A	IIIIIII				
	T				

	-				
	\|				
	-				

APPENDIX X
 CRADOCK VIEWING POINT NO. 8

APPENDIX B‘B CRADOCK VIEWING POINT NO. 12

top flat						- top	Curved		
	HImy	(abale $=$ N							(2xtwn
1									
2					2				
3					3				
4					4				
5					5				
${ }^{6}$					6				
- - $^{\text {¢ }}$									
8					8				
9					9				
$\frac{10}{}$					10				
						CENT	ter curved		
F-							-		
4									
¢									
3					3				
4					4				
					5				
5 6 7					6				
${ }^{6} 7$					7				
${ }^{8}$					8				
9 10 10					9				
					(10)				\#\#\#
BOTTOM FLAT						вотто	Tom curved		
- - Mavab						Dfonk	\#\#xadeve	(2)	
- 1									
3 4					3	\#	HHM		
					4				
$\begin{array}{\|l\|} \hline 4 \\ \hline 5 \\ \hline \end{array}$					5				
$\begin{array}{\|l\|} \hline \frac{5}{6} \\ \hline 6 \\ \hline \end{array}$					-				
${ }^{7}$									
8					8				
9					9				
	,			\#\#\#\#\#	10				

TAPR REGCRDED

Questions:

1. Your name plesse?
2. Tou have now participated in thia entire experiment-what are youx overmall opinions of the curved board as opposed to the flat board?
3. Would you like to see this board used in claasroons?
4. Would it help you?
5. Do you have any comenta about the test procedure itasif?

Answers:

Q1.
Q2. It's definitely better.
Q3. Yes, gir:
Q4. Yes, sir.
Q5. No, I don't think so.

Q1. Cavolyn Kennedy:
Q2. I Iike the curved board better. Because in most positions I could aee more elearly the numbra and the lines.

Q3. Tes, sir.
W4. Yes, sir.
Q5. No, sir.

Qu. Marforie Molson.
Q2. It's much easter to read and I think it's aay on the gyes because it more or leas follows the curve of the eyes. You don't have to tura your head-just more or less your eyes.

Q3. Yes, sir.
Q4. I think so, very mach.
Q5. I think it was carried on very vell and I think it's a good test.

Q1. Ronald Maxon.
Q2. Well, I believe that the curved board is best over a large area. becanse the plane board is all right if you are looking straight at it, but from an angle it has many difficulties ond oy atrains: and I belleve over-all that the ourved board is better:

Q3. I would.
Q4. I bellove it would help no because it acems to take some of the train off of your eyen frow an angle.

Q5. No, I thought that the test procecure was all right. It didn't tire ue for looking at it. In the future the curved board will be the thing:

Q1. John Pliner.
Q. Well, the main thing I've seen, it seems to make it eesier to sec from more different angles.

Q3. Yes sir. I believe I would. It makes it easier to take notea from.
Q4. Yes sir, I belleve so.
Q5. No, sir.

Q1. Sarah Littie.
Q2. I 1ike the curved board because I think you can see a whole lot more from the different positions. You can see much more from the curved board.

Q3. 7es.
Q4. I think it would.
Q5. No, except I think it's a very good idoa and I have onjoyed doing thie; I realiy would like to gee the curved board used in classrooms.

Q1. Eugene Lopes.

Q2. Well. I think the curved board is much easier to read and oount lines. It's better-mach better.

Q3. I certainly would.
Q4. Yes, it would.
Q5. I think they vere carried on right.

Qu WILlism Eekroade
Q2. The flgures are much plainer and easier to read.
Q3. Yes, I would. I see a speat, number of advantagee to ito
Q4. Yes, I think so.
Q5. No, I think it was very interesting to partiorpete in it and I think I gained a littie knowledge frow ito
Q. Toway Chiltion.

Q2. Vell, dir, the curved board is derinitely advantageats in certain positions for angles, for looking on from the side, why; it is a definite advantage. You can see it from nlmost any ancle much better than you asn the flat board. The flat board, though, I think Is better for straightmon looking.
23. I think it would be very helpful in olasarooms, perticularly when looking from side to side. It can be eeen from almost any angle. Which I say \rightarrow

Q4. Tes, 1 think it would beonuse man then I've sat in parts of the roons where ith been imposaible to see one end of the board bebause of the glare, ete., which was on it and I think the surved board would eliminate that.

Q5. Well, I think that it was a very well conducted test and I and from that I could see from it, it should be very concluslve: I belleve that from the opinions gotten it will definitely show that the curved board has everything over the flat one.

FLAT
PHOTOGRAPHIC VIEWING POINT NO. 1; RIGHT SIDE OF BOARDS.

FLAT
PHOTOGRAPHIC VIEWING POINT NO. 1 ; LEFT SIDE OF BOARDS.

PHOTOGRAPHIC VIEWING POINT NO. \%.

FLAT
PHOTOGRAPHIC VIEWING POINT NO. 13; RIGHT SIDE OF BOARDS.

PHOTOGRAPHIC VIEWING POINT NO. 13; LEFT SIDE OF BOARDS.

FLAT
PHOTOGEAPHIC VIENING POINT NO. 15.

CURVED

FLAT
PHOTOGRAPHTC VIEWING POINT NO. 17; RIGHT SIDE OF BOARTS.

FLET
PHOTOGRAPHIC VIEWING POINT NO. 30.

FLAT
PHOTOGRAPHIC VIEWING POINT NO. 31.

COLORFD PYOTOCRAPHS OF TEST EQTIPMFMT AM TTS ARPANGEMENT

BIOCRAPHICAL SKETCH

I was born and brought up in Greenfield, Massachusetts, and attended Deerfield Aeademy in Deerfield, Msssachugetts. I was graduated gna oum laude from powdoin College in Brunswick, Maine, with an A. B. degree in thematics. After attendm ing Harvard Graduate Sohooi, I taught mathematios and coached athletios at Cradock High Sehool in Portmouth, Virginia. In 1954, I was called to active duty in the D. 3. Arwy and was stationed at Fort Fustis, Vilginia. Over the past two years I have completed the requirenents for a Mester's degree in education at the Colleg of William and Mary. I intend to complete requirements for a Dootor's degree at the Dniveraity of Virginia in order to further prepare for a career in education.

[^0]: $\mathrm{I}_{\text {A }}$ Ifst of recommendations of the several states is contained in Appendix A.

[^1]: ${ }^{2}$ voca, Paul F., "Cheilkboart and Ita Future", Amortcan School and Univeraity, 1946.

[^2]:

[^3]: $I_{\text {Complete results of thio aturvey are contained in Appendix A. }}$.

[^4]: 3the bourd amrangement is mown in Appendix 0 .
 4 The eherts of randon numbers and letters are contained in Appendix D.

[^5]: 4 See aiseussion in Chapter III, Section III, page 18.

[^6]: ${ }^{5}$ See diseussion of board positions in Chapter III, Section III, page 20.

[^7]: Line graphs depicting results of testa of grouped figures at Viewing Point fumber One are contained in Appendix Qo

[^8]: ${ }^{3}$ Line graphs depicting resulta of tests of grouped figures at Viewing Point Wumber Three are contained in Appendix \mathbf{S}_{6}

[^9]: 4Line graphs depieting recults of tests of grouped figurea at Vieving Point Namber Bour are contained in Appondix T.

[^10]: 5ine graphs depicting results of tests of grouped figures at Vieving Point Number Five are contained in Appendix U.

[^11]: 6rine graphs deploting reault. of tegts of grouped figures at View ing Point Mumber Six are contsined in Appendis V.

[^12]: TLine graphe deploting resuits of grouped IIgures at Viowing point Humber Seven are conteined in Appendix W_{0}.

[^13]: Tine grophs depicting results of grouped figures at Viewing point Number ten are contained in Appendix Z.

[^14]: CDRVED AKD FLAT bOARD FROM PHOTCORAPHIC VIEXIMC POLET Nousich

[^15]: NMMER

