The Development of an Industrial Arts Measurement Knowledge Test

Chester H. Gutzler
College of William \& Mary - School of Education

Follow this and additional works at: https://scholarworks.wm.edu/etd
Part of the Educational Assessment, Evaluation, and Research Commons, and the Other Education Commons

Recommended Citation

Gutzler, Chester H., "The Development of an Industrial Arts Measurement Knowledge Test" (1952). Dissertations, Theses, and Masters Projects. Paper 1539272244.
https://dx.doi.org/doi:10.25774/w4-a4m1-ty67

This Thesis is brought to you for free and open access by the Theses, Dissertations, \& Master Projects at W\&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W\&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

THE DEVELOPNEANT OF AN INDUSTRIAL ARTS MEASUREMENT KNOWLEDGE TEST

A Project
presented to
the Faculty of the Department of Education College of William and Mary

\qquad

In Partial Fulfillment
of the Requiments for the Degree Master of Education

by
Chester H. Gutzier
August 1952

ACKNOWLEDGENENT

For helpful suggestions and guidance during the writing of this project, the writer wishes to express his appreciation to the mombers of his committee: Dx. Kemeth Gleeton, Dr. Howard Holland, Dr. Luther McRae, and Mr. George Myers.

The uriter also is indebted to all the industrialarts instructors of Virginia for their aid in providing date for this project.

TABCE OF COMIBDIS

LIST OF TABIES AND FIGURES

TABLE PAGE
Io Industrial-Arts Teachers! Choices of iterns for Inclusion in a Measurement Knowledge Teat 16
II. Cooffictonts of corroiations and the standard Error of the Coefflcients for the Kiowledge Heasuxement Tost Given to the Sixth, Seventh, and Eic*th Grado Pupils $\quad 1 \quad 22$
FIGURE

1. Percentile Curve Representing the Distribution of Scores of Sixth, Seventh, and Elghth Grade
Puplle, on the Industrial Apta Measurement
Knowledge Test 24

OHAPTER

THE RROBLEM AND ITS LITERAMURE

This study was an attempt to asscover the different levels of achievement in terms of measurable information that junfor high-school pupils possess at the beginning of an industrial-arts exploratory course. The information gained from the investigation is intended for use in individual and group guidance of pupils and for improving the quality and the effectiveness of industrial-arts instruction. Newkirk and Greene express the idea that the diagnosis of skill and knowledge of the individual industrial-arts pupil. as well as that of the class is of great value in promoting instructional efflolency.

Teacher planning in industrial-arts is somewhat more complicated than in some subject matter fields. This situation is due in part to the confusion that exists in the ranks of industrial-arts education for leading indust-rial-arts educators have expressed much indecision as to the principles and practices of an industrial-arts program. Thus it is understandable that even more confusion must

[^0]exist in the minds of administrators who are trying to fit an industrial-arts program into the sohool curriculum. ${ }^{2}$ Moreover, there is a trend toward increasing the responsibility placed on the shoulders of the industrial-arts instructors end many times this includes the development of the course of study as well as the individual course planning. ${ }^{3}$

The industrial-arts movement has undergone several great changes the most important influence, perhaps, was the Smith-Hughes Act, which elearly defined vocationgl education. This act resulted in emphasis being placed on vocational education and only recently has industrial-arts. began to assume importance on its own merits, ${ }^{4}$

Frank C. Moore ${ }^{5}$ has defined industrial arts as one of the practical arts, form of non-vocational education, which has for its purpose giving information alout and experience in the use of tools, materials, and processes incident generally to the home and industry. This viewpoint

[^1]iliustrates the great ohange that has taken place from the turn of the century to the present. In the late twenties industrial-arts instruction emphasised the development of skills and fundamental tool processes: the main objective being to produce a skilled worker. The present day objectives ${ }^{6}$ such as: (1) interest in industry: (2) appreciation and use; (3) self-discipline and initiative; (() cooperative attitudes; (5) health and safety; (6) interest and achievement (7) orderly performance; (8) drawing and design; and (9) shop skills and knowledge, tend to reverse the earlier objectives. The unfortunate result of this change of motives is that not all of the industrial-arts educators have acepted the new objectives.

The investigator hopes that this study will aid the industrial-arts instructor in solving one of his many problems; namely, improving the quality and offectiveness or industrialarts instruction on both the individual and class level. This objective can be achieved through the location of achievement levels, in terms of measurable information that Junior-high school pupils, possess at the begining of an exploratory industrial-arts course. With the location of this information the industrial-arts instructor may better adjust his planiling to the actual needs of his olass"。

[^2]It was the purpose of this study to construet and use a paper and pencil test for discovering, in terms of measurement knowledge, the achievement level of junior-high soncol pupils at the start of an industrial-arts exploratory course.

The following definitions apply to terms Irequently used in this study: Knowiedge is considered as the ecquaintance with facts and things Measurement Knowledge is thought of as acquaintance whth those facts and things that are capable of being computed, compared or repxesented by a standard or porportioned by rule, skill, as used by Selvidge and Fryklund ${ }^{7}$ is interpreted as applied knowledge.

It was recoganized that measurement knowledge was one of many industrial-arts readiness factors that was important and one that would lend itsels to study, therefore this investigation is limited to that one factor. Measurement knowleage was selected for investigation because of the investigator s beliet that such knowledge is a prime factor If students are to make satisfaotory progress in an industrialarts program, Furthermore, under speclal ablilties in the aims of education section: the Trade and Industry Education Serviae

[^3]of the Division of Vocational Eaucation lists this factor in the Virginia Industrial Arts Handbook ${ }^{8}$ Greene, Jorgensen, and Gerberich 9 also believe that Industrial-arts instruction could be made more effective through the appraisal of pupil's measurement knownedge.

The 1iterature of the Inaustrial-Arts Education field Was explored for material pertinent to the problem, and no directiy related information concerning the problem was discovered.

The need for an achievement test of measurement knowledge was evident throughout the fourteen years of industrial-arts teaching experinece of the investigator. Actually the need for a device to measure the achievement level of the individuel and class measurement knowledge at the beginning of an industrial-arts exploratory course had always seemed to exist. ${ }^{10}$ Measurement knowledge in indust-rial-arts is similiar in all psyohological aspects to knowledge in other school subjects that are now being measured effectively with an objective-type examinatione Data
${ }^{6}$ Virginia Industrial Arts Hanabook, 1948 (Riohmond: The Trade and Industrial Education Service of the Division of Vocational Education stato Board of Education, 1948), Part 4 . $\mathrm{pp}_{\mathrm{C}} 13-14$.

9
Harry A. Greene, Albert N. Jorgensen, and J. R_{*} Gerberich, Measurement and Evaluation in the Secondary School (New York: Longmans Greene, and Co.) P. 456 10 Newkirk and Greene, op. olt., p. 14
secured through the use of a measurement knowledge objective type test is much superinr to the teacher's unaided judgement and should greatiy, improve shop instruction. 11 Selvidge and Fryklund ${ }^{12}$ also state that a program of testing is most effective whon it is used for diagnosing individual. learming difficulties and individual needs. The development of achievement tests deslgned especially for this flela should encourage shop instructors to detormine the readiness of their pupils for the industrial-arts course.

The ineasurement knowledge test was constructed for use in juniormhigh school exploratory industrial-arts courses in the Portsmouthe Virginia Public Schools, and pupils In the sixth, seventh, and elghth grades for the sohool session of 1951-52 were selected as subjects for the study No attempt was rade through the use of the teat to establish achievement levels and norms other than for use in the public school System of Portsmouth, Virginia.

II. PROGEDURE

The primary step in the construction of the industrialarts measurement knowledge test was the collection of data from which test items oould be formulated. The questionnaire method was selected as the means to secure the necescary data.

11 Newkirk and Greones on oit. pp. 43-45.
12 Selvidge and Frykluna, on. alt. "p. 360.

In the construction of the questionnaire, suggestions revealed in the Research Bulletin, "The Questionnaire," developed by the National Edueational Association ${ }_{0}{ }^{13}$ were closely followed by the investigator. The measurement knowledge items ${ }^{14}$ gelected for inolusion in the questionnaire check lists were selected from the official Virginia elementary atate course of study, elementary text books, and elementery source books. The items selected represented the measurement knowledge that should have been acquired by the pupils in previous elementary experiences.

Analogous measurement knowledge items were classified into fifteen different sections; The questionnaire recipLents, all the white industrial-erts teachers in Virginia, were given instructions to place oheck marks by each item showing the amount of measurement skill and knowledge they belleved a junior-high school pupil should possess as ho enters an industrial-arts exploratory course. Cheok marks were placed in the columns labled None, Little, Muoh, and Mastery. The terms "skill" and "knowledge" were defined on the questionnaire for ease of interpretation. Spaces were provided in which adaitional items could be added by the industrial-arts instructors who answered the questionnaire.

[^4]A preliminary try out of the questionnaire was made using ifve industrial-arts instructors in the Portsmouth. Virginia city school system, Revision of the instrument was made in 1ine with augegtions offered gring thia try-out. one major change was made, in the form of the column lay-out to facllitate easier reading and cheoking of items. A lettex of transmittal ${ }^{15}$ was developed explaining the purpose and stating sponsorship by the Virginia state Supervisor of Trade and Industry. Several questions were added to the Eeneral information section ${ }^{16}$ of the questionnaire at the request of the Depertment of Trade and Industry, This general Infore mation section was included to secure background information about the recipients of the questionnaire.

The questionnaire was mailed to all white industrialarts teaohers in Virginia. The mailing list was supplied by the state Department of Trade and Industry and Included the names of 187 white industrial-arts instructors. Two followmp cards ${ }^{17}$ were sent out; the first, ten days after the questionnaire was mailed and the second, twenty ays later. Replies were recieved from 127 of the 187 instructors, a 68 per cent return. The returns included four question-

[^5]naires which were marked unclaimed, three which were not completed because the addressees were in military service, and five which were marked incorrectly; therefore, a total of tivelve returnes could not be used. The remaining 115 replies were employed in identifying which measurement knowledes items yere to be included in the test.

CHAPTER II

THE DEVELOPHENT OF THE INDUSTRIAL-ARTS MEASUREMENT KNONLEDGE TEST

The measurement knowledge items checked by the $1 n-$ dustriel-arts instructors on the questionnaire were to serve as the basis for construction of the measurement knowledge. test. After the test was constructed and following two revisions, the final form of the instrunent was given to 221 Junior-hlgh school pupils taking exploratory industrial-arts courses. The reliability of the test was checked statistically and norms for Portsmouth, Virginia school system were established.

I. QUESTIONNAIRE DATA

The industrial-arts measurement knowledge test was de signed as a pencil and paper type teat, 18 so the skill (perfor* mance) factor was not included only the knowleage (of measurement) factor was considered in this study . Inciusion or rejectIon of measurement knowleage items for tegt items was determined by clessifying the items checked by the respondents into columns labled "much" and "mastery" as one category, and columns "11ttle" and "none" as another category. The

[^6]measurement knowledge items checked by a majority or over 50 per cent of the respondents in the columns "much" and "mastery" were selected for inclusion in the test. 19

Comon practice and experience in teaching are factors Which may be relled upon to help define Judement concerning areas of knowledge about which pupils should know: The investigator selected the industrial-arts instructors of the state to help judge which measurement knowledge the test should be concerned with.

The general information section of the questionnaire showed that the average Virginia industrial-arts instructor had approximately ten years teaching experience in his field and represented twenty-six different fields of industrial-arts instruction, ranging from the fourth grade through college level. The heaviest concentration of experience was in the elghth grade through the eleventh grade; and furthermore, the school year 1950-51 found the majority of the industrial-arts instructors also teaching in those gradea. Another interestIng fact disclosed that a major number of the school systems represented by the 115 shop ingtructors began industrial-arts programs in the seventh or eident grades. Therefore, the investigator believes that the opinions expressed by the indust-rial-arts instructors who represent such a wide range of

19 See Questionnaire. p. 12-14.

experience and training, afford a valid basis for the construction of questions in the junior-high school measurement knowledge test 20 The questionnaire tabuation indicated that forty-nine items in thirteen sections should be included in the measurement knowledge test. The sections labled Metric Measure, Cubic Measure, and Formulas were ohecked "1ittle" or "none" by a large pereentege of the industrialmarts 1 n struotors on the questionnaire. Therefore, test items "cup" and "ounce" In the Liquid Measure Section, as well as "degree" in the Symbol Section were also excluded as the basis for test, Inch, foot, yard, and dozen were the only items out of over a hundred choices that the industrialmarts in* structors selected for inclusion by neariy unaminous opinion. A11 Items in the Linear Measure Section were checked as important enough to be used as bases for test questions. Thirty-four items out of the forty-nine selected by the shop instructors for inclusion were ohosen by more than a 2 to 1 majority, while thirtymfour of the fifty-two items were excluded by the same ratio. The selection and resection of items to be included in the measurement knowledge test by the indust-Fial-arts teachers indicated a close agreement in a majority of cases.

20 Newhirk and Greene op. eit. p. 32.
21
See Table I_{6} pp. 16-18:

INDUSTRIAL-ARTS TEACHERS' CHOICES OF ITEMS FOR INCLUSION IN A MEASUREMENT KNOWLEDGE TEST

VALUE			VALUE	
$\begin{array}{cc} \\ \\ & \\ \therefore & \\ \therefore & \\ & \end{array}$		$\therefore \quad \therefore \quad \therefore$		$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{U}! \\ & \mathrm{C} \\ & \mathrm{H}: \\ & \therefore \\ & \vdots \\ & \vdots \end{aligned}$
Linear Measure		Liquid Meesure		
Yara	20.95	Callon	26	89
Hoot	9106	Quart	22	\% 8
Inch	7108	Plnt	24	91.
Hals Inch	10105	Hale pint	36	79
Quarter Ench	20.95	Cup :	58	57
Eighth Inch	3184	- Tnce	59	56
SIxteenth Inoh	4669	Decimal Preasure		
Metric Moasure		1. Whole Number	19	96
Meter	10411	. 1 Tenth	35	80
Decimeter	$\begin{array}{ll}109 & 6\end{array}$, 01 Hundreath	51.	64
Centimeter	$108 \quad 7$.001 Thousandth	72	43
Millimeter	1096	.0001 Ten Thousandth	89	26
Kilometer	1096	.00001 Hundred :	98	17
Kilowatt	10114	, 000002 M11110nth	100	15
Kilocycle	10510	\%14.		
		$\frac{\text { Aneles }}{360^{2}} \mathrm{irnle}$		
Symbols		180. Straight Line	37	78
$\times \mathrm{P} 1$	7639	90° Right Angle	36	79
\angle Angle	6847	60° Angle	62	53
- Degree	5857	45 ${ }^{\circ}$ Angle	52	63
"Inch	2887	30° Angle	64	51
' Foot	29.86	Acute Angle	76	39
\triangle Triangle	6748	Obtuse Angle	77	38
\%Per cent	4768			
v Square Root	8629			

TABLE I (continued)

IMDUSTRTAL ARTS TEACHERS CHOLCES OF IMENS FOR INCLUSION" DN A MEASUREMENY KMOWLEDCE TEST.

TABLE I (continued)

The following formula was used to approximate the number of test items that should be alloted to each section of the questionnaire.

Number of questionnaire itemo $\frac{\text { in each section. ... }}{49} x$

75 (The number of test items). (The humber of questionnaire Atems to be inciuded from all sections).

The number of test items representing each selectad questionnaire iter was developed by the use of the above formula. The test originally inciuded more than seventy-five items, which inclaently seemed suitable for a forty-rive to fifty minute time limit. This number (seventy-five) was arrived at expermentially by giving a longer test to forty-nine juniorhigh achool pupils and computing the average completion time.

One of the most satisfactory and reliable objectivetest exercises in the measurement of industrial-education information is the multiplemesponse. After stuay of authorities in the field of test construction, Lindquist in particular ${ }^{23}$ it was decided to use a consistent type of item, nemely multiplemresponse, throughout the test. An attempt was also made to use as much non-verbal material as possible

[^7]In the development of the multiplemresponse stems. The general suggestions for construction of objective test Items listed in Greene, Jorgensen, and Gerberion ${ }^{24}$ were closely Iollowed in constructing the test.

The plan suggested by Remmers and Gage ${ }^{25}$ was adhered to in the development of the afrections for aministering and scoring the test ${ }^{26}$ A separate answer sheet was devised on which the pupil recorded his answers ${ }^{27}$ A manual scoring key was also developed. 28

II. TEST TRIALS AND REVISIONS

The test was given to a group of fifteen pupils-five from each of the sixth, seventh, and eighth grades respectively. After study of the results, the test was revised and changes were made to oliminate items that were too difficult, too easy, and pooply stated, A record of all questions asked by pupils during administering of trial test, aided in making necessary revisions. the revised test had a total of eighty-five test items.

24 Greene, Jorgensen, and Gerberich, op cit. pp.2187-
25 H. H. Remmers and N. L. Gage, Educational Measurement end Evaluation (New York: Harpers \& Bros. 1943). p. 197

26 See Appendix B. p. 59
27 See Appendix B. pp. 60-61
28 See Appendix B. pp. 60-61

The number of items in paxt $\%$, the Numbers Section, was doubled in order to reduce error. It was felt by the investigator that in this scction, whick involved arithmetic computation, that chance error might be introduced in single item presentation; thas, the number of itens ass coudea and In the scoming chedit for the Mmbors section was halrea to keep the total possible score at seventy-five. The axrangenent of itens in the test booklet was changed to conforg to the organization of itews in the questionnaire. The decision to use the timed nethod for giving the test was also made at this time. These changes necessitated a new set of directions and a new answer sheet with a new scoring ley.

The revised test was given to thirty-four sixth; seventh, anc eighth giede pupils. The maximum time aliotment for the individual sections of the test was established at the point where 90 per cent of the pupils completed the test. 29 This suegested time schedule is included in the instruations for administering the test. Again the results were checked and minor revisions were made.

Eollowing the second revision, the test was given,

[^8]during the fall tem of the school year 1051-5e, to 21 atxth grade pupils, 55 seventh grade punils, and 145 olghth grade punils for a total of $2 \overline{2} 1$ pupils enrolled in exploratory in-dustrial-arts courses 31 dustrial-arts courses.
III. SQARTSEICAL PROCBDURE

The \bar{F} earson product-momont formula was used to compute the reliability coefflcient of tho two halves of the test by the split-half method using the odd and even numbered items. The reliability of one-half of the test was established, and following this, the Spearman-Brom prophecy fomula was used in estimating the reliability for the whole test. The standard error of the coefficient of correlation was computod for all grades. Table No. II reveals the Iumbers, Hals Test Coefficients of Correlations, Whole Test Coefficients of Correlations, and The Standard Error of the Coefficients of Correlations.

TABLE MO. II

Grade	Number of Pupils	Coefficients of Corr elations		Standard oi Coenf
Sixth	21	.7869	.8807	:084
Seventh	55	¢8012	. 0895	048
Eighth	145	. 8477	. 9176	.060

31 see Test. pp. 25-47

Woma for portsmouth, Virginia school systen wero developed for the investigator's own use. 32 The percentile curves show that the eichth erade muns rether consistentiy above the othor two grades; however, about 18 per cent of the eighth grade fall bolow the medium of the sixth grade. the medium of e sixth and seventh exades very but two points while the difference in nedium of the soventh and eighth grades is four points. The a_{1} of the ofghth grade is approximately the same as 83 of the seventh grade. Also the spread between the sixth and seventh grade in Q1 is six points while betweon the seventh and eight grade it is only four points. In regards to Q_{3} all three rrades show approximately the same four point spread. The coefficient of variation between the sixth and seventh grade shows a variability of nearly 80 per cent on measurement knowledce. Between the seventh and eighth grade this coefficient is nearly 90 per cent. Also between the sixth and eighth grade the coefficient of variability muns nearly 91 per cent.

FIGURE 1

PERCENTILE CURVE REPRESENTING THE DISTRIBUTION OF SCORES OF STXTH, SEVENTH, AND EIGHTH GRADE PUPIIS, ON THE INDUSTRIAL ARTS MEASUREMENT KNOWLEDGE TEST

INDUSTRIAL ARTS TEST
MEASURIDTAT NO. LEDGE

DIRECTIONS:

This is a test of your achievement, in the elementary grades, of Measurement Knowledge.

The test is made up of 12 parts. Each part will be timed.

There are 85 questions in the test.
You are to start and stop working at Teacher's Command.
Try to answer all questions.
There are several answers suggested for these questions. Select the answer which you think is correct. place an X through the letter of that answer on the answer sheet.

Do lot Mark Test Booklet. All answers must be on the answer sheet.

Following is a sample question to show you how to mark your answers.

Sample

1. Gasoline is sold in what way?

Answer

1. a. x c. d_{0}
a. pound
b. gallon
c. cup
d. ounce

Fill in the space provided for name, school, age, and grade, at the top of the answer sheet.

DO NOT TURN PAGE UNTIL COMMAND IS GIVEN:

PART I

1. The picture below represents which one of the following measures?

a. rod
b. inch
c. foot
d. yard
e. meter
2. The picture below represents which on of the following measures?
a. yard

b. foot
c. meter
d. rod
e. inch
3. The picture below represents which one of the following

		measures?

a. eighth inches
b. sixteenth inches
c. half inches
d. quarter inches
e. inch
4. The picture below represents which one of the following

a. sixteenth inches
b. eighth inches
c. quarter inches
d. half inches
e. inch
5. The picture below represents which one of the following

a. quarter inches
b. half inches
c. sixteenth inches
d. inch
e. eighth inches
(TURN PAGE)

PART I
6. The picture below represents which one of the following measures?
a. eighth inches
b. sixteenth inches
c. quarter inches
d. half inches
e. inch
7. The picture below represents which one of the following measures?

a. sixteenth inches
b. quarter inches
c. half inches
d. inch
e. eighth Inches
8. If an inch is divided into halves which one of the answres bolow would be the correct number of parts in the inchr

> a. four
> b. sixtcen
> c. two
> d. eight
Q. Which answer listed below would be the smallest part of an inch?
a. half
b. sixteenbin
c. quarter
a. eichth
10. which answer listed below would be the largest part of an inch?
a. sixteenth
b. half
c. eighth
d. quarter
(DO MOT TURN PAGE)

INDUSTRTAL ARTS TESE
PARI II

1. The sign ($/$) is the same as which one of the following answers?
a. foot sign
b. dollar sign
c. per cent sign
d. inch sign
e. degree sign
2. This sign (\%) is the same as which one of the following answers?
a. dollar sign
b. foot sign
c. inch sign
d. degree slgn
e. per cent sign
3. This sign (') is the same as which one of the Iollowing answers?
a. foot sign
b. degree sign
c. inch sign
d. per cent sign
e. dollar sign
4. If John wishes to order a 28 inch bike from a catalogue, which answer below shows the correct way to write this?
a. 28°
b. $28^{\prime \prime}$
c. 28%
d. 28°
5. John also wishes to order a 12 foot boat, which measure below shows the correct way to write this?
a. 12°
b. 12:
c. 12%
d. 12^{*}
(DO NOT TURN PAGE)

Indormata zav Bam
PRET: III

1. Wiach unswex belo: is tho comroct mane fox bottio a in the above picture?
a. quart
b. pint
c. gallon
d. hali piat
2. Wich answer below is the correct name for bottle in the picture?
a. pint
b. gallon
c. quart
d. half pint
3. Which answer beqow is corroct for bottle I th the pieture?
a. gallon
b. quart
c. half pint
d. Bint
4. Eicht boys buy a gallon of ice cream and divide it evenly, which answer below shows the mount each would recoive?
a. quart
b. pint
c. half pint
d. hali gallon

INDUSTRIAI ARTS TRST

PART III

5. If each boy receives a half pint of milk, how many boys will a gallon serve?
a. 8
b. 4
o. 16
d. 32
6. Four boys wish to drink a quart of chocolate milk, if cach receives the same amount which answer below is correct?
a. gallon
b. pint
o. half pint
d. hale quart
(DO NOT TURN PAGE)
7. This number (75.) is the same as minch one of the rollowing answers?
a. tenth
b. whole number
c. hundredth
c. thousandth
8. This number (.S) is tho same as which one of the following answers?
a. whole number
b. thousandth
c. hundredth
d. tenth
9. This number (.58) is the same as which one of the following answers?
a. thousandth
b. hundredth
c. whole number
d. tenth
10. Which answer below is a tenth?

11. Which answer below is a hundredth?

a.	9.
b.	.74
d.	.894
d.	.7

1. The picture below represents which one of the followine answers?

a. 45 degree angle
2. 90 degree angle
e. 190 degree angle
e. 760 degree angle
e. 15 degre angle
3. The picture below represents which one of the following answers?
a. 75 degree angle
b. 90 degree angle
c. 180 degree angle
d. 360 degree angle
e. 45 degree ancle
4. The picture below represents which one oi the following answers?

a. 180 degree angle
b. 45 degree angle
c. 90 degree angle
d. 360 degree angle
e. 75 degree angle
5. The picture below represents which one of the following answers?
a. 360 degree angle
b. 180 degree anele
c. 45 degree angle
d. 75 degrec angle
e. 90 degree angle
6. A 90 degree angle is the same as which one of the answers below?
a. circle
b. straight line
c. half a right angle
d. right angle
Livouncian ach 2. jT
SARTV6. A 45 begree angie is tho same as minch onc of beesuswers below?
a. right angleb. half a right angle
c. circle
d. straight line
(DO HOT TURN PAGE)

PART VI

3. The picture below reprosents which one of the followns ansveros?

1	2	3	4	5	6	7	8	9	10	11

a. scale (rule)
b. compass
c. yard stick
d. divider
2. The picture below reprosents mioh one of the following ansmers?

a. yard stick
b. divider
c. compass
d. scale (rule)
E. Which one of the instruments below would you need to dxaw a straight line?
a. compass
b. scale (rule)
c. divider
d. protractor
(DO NOT TURN PAGE)

INDUSTRIAL ARTS TEST

PART VII

1. This picture represents which one of the answers below?

a. square
b. triangle
c. circle
d. rectangle
e. octagon
2. This pieture represents which one of the answers below?

3. This picture represents which one of the answers below?

a. sguare
b. cube
c. triancle
d. circle
e. rectangle
4. This picture represents which one of the ansters below?

a. rectanglo
b. cube
c. circle
d. triangle
e. hexagon
5. Which figure in the list below is most like a pancake?

> a. square
> b. rectangle
> c. circle
> d. triangle

INDUSTRIAL ARTS TEST

PART VII
6. Which figure in the list below is most like a pat of butter?
a. rectangle
b. oircle
c. square
d. triangle
7. Which figure in the list below is most like a dollar bill?
a. circle
b. square
c. rectangle
d. triangle
8. This picture represents which one of the answers below?

a. square
b. rectangle
c. triangle
d. circle
e. trapezoid
(DO NOT TURN PAGE)

INDUSTRIAL ARTS TRST

PART VIII

1. A dozen apples could be evenly divided anong how many boys?
a. 8
b. 6
c. 15
d. 28
2. Hggs are usually sold by which one of the following ways?
a. bushel
b. ounce
c. pound
d. dozen
3. John's mother brought home 24 oranger, how many dozen was this?
a. 6
b. 8
c. 4
d. 2
4. A pound of candy was divided between 8 boys, how many ounces did each receive?
a. 8
b. 2
c. 6
d. 4
5. Mary's mother spilled half of a pound of sugar, how many ounces remained?
a. 32
b. 8
c. 16
d. 4

INSMGTLIAL AHMS TYST
Pate IX

1. Which one of the answers below describe this number $\left(\frac{1}{2}\right)$? 1. Which one of the answors below describe this number ($1 / 2$)?
a. decimal
b. whole number
c. mixed number
d. fraction
2. Which one of the answers below describe this number (4 $\frac{1}{2}$) ?
a. fraction
b. decimal
c. Whole number
d. mixed number
3. Which one of the answers below describe this exanple (7×10) ?
a. division
b. subtraction
c. addition
d. multiplication
4. Which of the answers below describe this example (8.2)?
a. addition
b. division
c. subtraction
a. multiplication
5. Add (rork on scratch paper, mark answer on answer shoet)

a. 47188
b. 49189
c. 43188
d. 43178
6. Add

a. $15 \frac{1}{2}$
b. $15 \frac{1}{4}$
c. 16
d. $16 \frac{1}{2}$
(IURI PACE)

INDUSTRIAL ARTS TEST

PART IX
7. Add

$$
\begin{aligned}
& 53 / 8 \\
& 74 / 5 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { a. } 13 \frac{7}{8} \\
& \text { b. } 14 \frac{7}{40} \\
& \text { c. } 137 / 5 \\
& \text { d. } 137 / 40
\end{aligned}
$$

8. Add

$$
\begin{array}{r}
2 \mathrm{ft}_{\mathrm{o}} 3 \mathrm{in} \\
4 \mathrm{ft}_{0} 9 \mathrm{in} \\
\hline
\end{array}
$$

a. 6 ft .11 in.
b. 7 ft. 1 in.
c. 7 ft
d. 6 ft. 6 in.
9. Add

$$
\begin{array}{r}
41 \mathrm{~b}, 9 \mathrm{oz} \\
1 \\
\hline
\end{array}
$$

a. 51 lb .1 oz.
b. 6 1b. 3 oz.
c. 61 lb .1 oz.
d. 3 1b. 1 oz。
10. Subtract

$$
\begin{array}{r}
5945 \\
4672 \\
\hline
\end{array}
$$

11. Subtract

$$
\begin{aligned}
& 5 \frac{1}{2} \\
& 31 / 7 \\
& \hline
\end{aligned}
$$

a. 1264
b. 1273
c. 1274
d. 1275

$$
\begin{aligned}
& \text { a. } 21 / 7 \\
& \text { b. } 2 \\
& \text { e. } 2 / 4 \\
& \text { d. } 21 / 5 \\
& \text { d. } 1 / 2
\end{aligned}
$$

12. Subtract

$$
\begin{array}{r}
91 / 4 \\
50 \quad 5 / 8 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { c. } 415 / 32 \\
& \text { d. } 40 \mathrm{l} / 2
\end{aligned}
$$

PART IX
13. Subtract

> | 7 lb |
| :--- |
| $5 \mathrm{lb} \mathrm{oz}_{0}$ |

a. 21 lb .5 oz .
b. 11 b . 11 oz .
c. 131 lb .6 oz .
d. 1 Ib. 19 oz.
14. Multiplication

$$
\frac{2}{5} \times \frac{3}{5}
$$

15. Multiplication

$$
4 \frac{1}{2} \times 8 \frac{3}{4}
$$

16. Multiplication

$$
93 / 8 \times 1 / 5
$$

$$
\begin{aligned}
& \text { a. } 9 \frac{3}{40} \\
& \text { b. } 17 / 8 \\
& \text { c. } 92 / 3 \\
& \text { d. } 98 / 5
\end{aligned}
$$

17. Division

$$
9 2 \longdiv { 1 5 6 4 }
$$

a. 25
b. 17
c. 15
d. 19
18. Division

$$
1 / 2 \div 1 / 4
$$

19. Division

a. 110
b. 11
c. 10
d. 12

20. Division
 $7 / 8 \div \frac{1}{2}$

$$
\begin{aligned}
& \text { a. } 1 / 2 \\
& \text { b. } 13 / 4 \\
& \text { c. } 7 / 16 \\
& \text { d. } 8 / 16
\end{aligned}
$$

(DO NOT TURN PAGE)

1. Which answer below is the same as part X in the picture?
a. end
b. edge
c. face
d. side
2. Which enswer below is the same as part Y in the picture?
a. end
b. top
c. edge
d. bottom
3. Which answer below is the same as part 2 in the picture?
a. top
b. end
d: edge
(TURIT PAGE)

LWUOSTLIL ARLS THST
PART
4. Which answer below is the same as part U in the picture?
a. width
b. thickness
c. length
d. heighth
5. Which of the answers below is the same as part V in the picture?
a. length
b. thickness
c. depth
d. width
6. Which of the answers below is the same as part w in the picture?
a. thickness
b. width
c. length
d. depth
7. A block of wood similar to the above picture, would have how many surfaces?
a. 3
b. 4
c. 5
d. 6
8. A blook of wood similar to the above picture, would have how many odges?
a. 1
b. 2
c. 4
d. 6
(TURN PAGE)

INDUSTRIAL ARTS TESS

PART X

9. A block of wood similar to the above picture, would have how many ende?

$$
\begin{array}{ll}
a_{*} & 6 \\
b_{5} & 4 \\
c_{0} & 1
\end{array}
$$

(DE NOT TURN PAGE)

INDUSTRIAL ARTS TEST

PART XI

1. Which answer below is the name of part X in the above picture?
a. circumference
b. radius
c. diameter
d. degree
2. Which answer below is the name of part Y in the above picture?
a. diameter
b. radius
c. arc
d. circumference
3. Which ansver below is the name of part Z in the above picture?
a. circumference
b. diameter
c. degree
d. radius
4. The diameter of a circle is the same as how many radii?
a. 4
b. 6
c. 2
d. 8
(IURN PAGE)

INDUSTRSA ARTS TEST

PART XI

5. Which of the parts below is the longest part of a circle?
a. diameter
b. radius
c. arc
d. circumference
(DO NOT IURN PAGE)

INDUSTRIAL ARTS TEST

PART XII

1. Mrs. Jones' kitchen measures 12 ft . by 15 ft. , how many square feet of linoleum would she need to completely cover the floor?

a. 27 sq . f b. $45 \mathrm{sq} . \mathrm{f}$ c. 180 sq .

2. Mr. Brown wishes to paint his bedroom floor which measures 15 ft . by 20 ft . If a gallon of paint will cover 200 sq. ft. which answer shows the correct amount of paint needed?
a. 1 gal.
b. 1 gal.
c. 2 gal.
d. 2 gal.
3. A squere foot is made up of how many square inches?

(DO NOT TURN PAGE)

SUMMARY, CONCLUSIONS, AND RECOIPENDATIOMS
I. SUMIJARY

This study acoomplished its avowed purpose to construct a pencil and paper test for discovering, in terms of moasurement knowledge, the achievement level of junior-high school pupils at the start of an industrial-arts exploratory course. Using such sources as elementary text books, elementary source books, and the official Virginia slementary state course of study, items were identified for inclusion in a questionnaire which was designed to reveal what should be asked on a measurement knowledge test. The questionnaire was distributed to all white industrialarts instructors in Virginia.

Of the 101 items Iisted in the questionnaire forty-nine were selected for inclusion in the test. The forty-nine items were classified in the following categories: Inear feasure, Symbols, Angles, Decimal Measure, Liquid ieasure, Instruments, Ilumbers, Figures, Terms, Parts of Circle, Square Measure, and Miscellaneous. Metric Measure, Cubic Measure, and Formulas were not selected as suitable for test items.

Since the ftems for the questionnaire were identified from standerd text books, courses of study and the like, and since 115 incustrial-arts instructors selected particular itoms
from the list; it is believed that the tect had curricular valicity.

After the test mas fiven to $2 e l$ sixth, seventh; and eiphth arode pupils the reliability of the dest was computed using the split-half method. The "whole test" coefficient of correlation for each grade was $.03,03, .32$, respectively. It was also discovered that certain speciric items such as, item number 6, Part VIT, itcm numbera 2, 3; 4, and 5, Part IV, and itom 1 , Part 2 shom tho need Sor revision in ordor to make the test more offective.

The percentile curves for the three grades show each to be approximately the same variability in meaturement knowledge:
I. COMCRUSIORS

On the basis of the foregoing datay the foliowing conclusions seom to be justifiod:

1. The test was relisable statistically.
2. The test wac valic. The test seeminely had curricular valiaity.
3. Cn the basis of the results it is concluded that the test has value, when used as an achisvement test, in locating incivadual differences on the incivicual as ell as the class Ievel in industrial-aits mersurement knowiedce.
4. The test needs rovision before it may be given effectively to additional groups.

II. RECOMRENDATIONS

In view of the above conclusions the following reconmendations are made:

1. A further study of industrial-arts readiness to determine the factors necessary for inclusion in an industrialarts test should materially aid in the development of this type of testing.
2. The development of a skill factor test of measurement would be another worthwhile addition to supplement the measurement knowledge test.
```
BIBLIOGRAPHY
```


BIBLIOGRAPIY

A. BOOnS

 farthotic Ue Une Grace Eight, Philadelphia: Jom turnaton vompany, 1946. 312 pp.

Arithmetic We Use Grade Seven, Philadelphia: John C. minston Uompany, 1946. 312 pp.
, Arithmetic We Use. Grade Six, Philadelphia: Jom C. Winston Company, 1943. 312 po.

- Arithmetic We Use. Grade Five, Philadelphia: John C. Wraston Company, 1948. 312 pp .
- Arithmetic We Use. Grade Four, Philadelphia: John C. Vinston Company, 1948. 308 pp.
- Arithmetic We Use. Grade Three, Philadelphia:

Cohri C.Winston Company, 1948, 308 pp .
Buckingham, Burdette Ro, Elementary Arithotic. Boston: cinn and Company, 1947. 744 pp.

Clark, John R., R. I. Baldvin, and C. H. Clark, Arithmetic for Young America. Grade Eight, Hew York: world Book Company. 1044. 402 pp.
, Arithmetic for Young America. Grade Seven, New Voriz:
, Arlthmetic for Young America. Grade Six, Nen York:
Wor $\frac{\text { Arlthnctic for Young America. }}{\text { Book Compary, } 1044 .} 297 \mathrm{pp}$.

- Arithmetic for Zounc America. Grade Five, Mew York: World Book Company, 194t. 314 pp .
- Arithmetic for Younc America. Grade Four, llow York: Norld Book Company, 1944.
- Axithmetic for Young Arerica. Grade Thrce, Hew York: World Book Company, 1044. 314 pp .

Friese, John F., Course Making in Industrial Education. Peoria: Nanuel Arts Press, 1544. 297 pp.

Greene, Liarry A., Albert M. Jorgensen, and J. R. Gerberich, Measuroment and Evaluation in the Secondary School. New York: Longmans, Greene, and Company, 1944.670 pp.

Indquist, E. F. Educational Noasuroment. Washington, D. C.: American Council of Education, 1951. 819 pp .
 In Thexstwlal Edueation. New tork: Jomn wiley and Sons. Inc. T36. 204 pp.
 Zyaluation. New Yorl: Marpers \& Frothers, 1943. 578 pp.

Ruch, G. H., The Objective or Mew Type Exominatione Chicaso: Scott, Foresman © Company, Ter\%. 475 pp .

Selvidee, R. We, and Veme G. Pryklund, Principies of Trade and Industrial Teaching. Peopia; Chas A. Bennett Company, Inc., 1946. $305 \mathrm{pp}$.
B. PERIODICAL ARTICLES

Noore, Frank C., "Improving Instruction in Industrial Arts," American Vocational Journal, 22:7, May, 1047.

Wyors, Edward L., "The Next Twenty Years in Industrial Arts" Industrial Arts and Vocational Education. 40:31\%, Oot., 1951.

E. PUBLICATIONS OF IEARUED ORGAMIZATIONS

Lancaster, Dobney I., George J. Oliver, and Melen R. Fenderson, "Courge of Study for Virginia Elementary Schools" Vol., XXV, vay, 1943. Richmond: Division of Purchase and printing.
"ithe Questionnaire," Reseanch Bulletins of the National Education Association, 1930. 50pp.

Virginia Industrial Arts landbook, Richond: Tho Trade and Industrial Eduction service of the Division of Vocational Education State Board of Education, 1043. Part I. 123 pp.

APPENDIX A.

4 Lawrence Circle Portsmouth, Va.

May 16, 1951

Dear Sir:

Dr. B. H. Van Oot, State Supervisor of Trade and Industrial Education in Virginia, has given me permission to send questionnaires to the Industrial Arts Instructors of the State, in order that I may secure information for use in the construction of a diagnostic industrial arts test of measurement skill and knowledge. This test to be designed for use on the junior high level.

It is hoped that the study, of which the test is to be a part, will be of value to industrial arts instructors as an aid in improving course planning in the light of individual differences of pupils.

All information you submit will be treated confidentially and impersonally. Names and places will not be used in the study.

Your immediate attention will be greatly appreciated, a copy of the completed test will be sent on request.
NAME
ADDRESS
SCHOOL ADDRESS
TOTAL YEARS TEACHING EXPERIENCE IN INDUSTRIAL ARTS
gircle the grade or grades you are now teaching industrial arts
CIRCLE THE GRade OR GRADES YOU HAVE tadght INDUSTRIAL ARTS
$1,2,3,4,5,6,7,8,9,10,11,12$, adult
CIRCLE THE STARTING GRADE FOR INDUSTRIAL ARTS IN YOUR SCHOOL

$$
1,2,3,4,5,6,7,8,9,10,11,12,
$$

CHECK TYPE OF SHOP ORGANIZATION IN YOUR SCHOOL
PLEASE LIST THE INDUSTRIAL ARTS FIELDS IN WHICH YOUR ARE TEACHING, OR
 PLEASE FEEE PREE TO COMMENT ON ANY PHASE OF THIS QUESTIONNAIRE, OR ON INDUSTRIAL ARTS MEASUREMENT. ANY EXPRESSION OF OPINION WILL BE APPRECIATED.

FOLLOW-UP-CARD (COPY)

5/23/51

Dear Sirt

Thank you for your prompt response to ny questionnaire. If you have so requested, a oopy of test will be sent you upon its completion.

In case you have not, as yet, completed the questionnaire, please do so at your earliest convience, as your reply is necessary for the construction of this test.

Sincerely
Chester H. Gutzler

APPETDIX B

DIRECTIONS FOR ADMINTSTERTNG
 AND
 SCORTIVG TEST

There is a total of seventy five possible points on this test. The arithmethie section (Part IX) is soored one half point for each correct answer. Provide scrap paper for working this section. Apply rules of good testing when administering this tost. When scoring count only correct answers.
suggested time schedure
Part I 5 minutes
Part II 2 minutes
Part III 3 minutes
Part IV 2 minutes
Part V 3 minutes
Part VI 2 minutes
Part VII 3 minutes
Part VIII 2 minutes
Part IX 15 minutes
Part X 4 minutes
Part XI 2 minutes
Part XII 2 minutes
TOTAL TINE 45 MINUTES

MEASUREMENT KNOWLEDGE TEST
 ANSWER SHEETY
 KEY (continued)

PARE XI

1. a. b. c. d. e.
2. (a. b. c. d. e.
3. a. b. ce d. e.
4. a. b. ©. d. e.
5. a. b. c. (d) e.

PARTI XII

1. a. be C. d. e.
2. a. (b) c. d e.
3. a. b. co d. o.

[^0]: 1 Kouis V. Newkirk end Harry A. Greene " Tests and Measurements in Industrial Education (New York: John Wiley and Sons Inc*: 1935): pp. 22-27.

[^1]: ${ }^{2}$ Edward L. Myers, "The Next Twenty Years in Industrial Arts, "Industrial Arts and Vocational Education, 40: 317, October 1951.
 3. John F. Friese, Course Making in Induatrial Education (Peoria, Ill.: Manual Arts Press, 1946), pp. 7-8* ${ }^{4}$ Hyers, op cit. pp. 317.
 ${ }^{5}$ Frank C. Moore, "Improving Instruetion in Industrial Arts, "American Vocational Journal, 22:7, May, 1947.

[^2]: ${ }^{6}$ Supra. pp. 2-3.

[^3]: ${ }^{7}$ R. We Selvidge and Verne C. Fryklund, Principles of Trade and Industrial Teaching (Peoria, Il1.: Chas, A. Bennett Co. Inc. 1946), p. 170

[^4]: 13 "The Questionnaire," Research Bulletin of the National Education Association, Vol. VII, No. I (Washington: National Education Association, 1930), pp. 14-24.

 14
 See Questionnaire, pp; 12-14

[^5]: 15 See Appendix A $_{n} p_{\eta} \cdot 55$
 16. See Appenaix A. p. 56

 17 See Appenaix A. p. 157

[^6]: 18
 Supra. p. 5.

[^7]: 22 IbIA.; p. 109:
 23 F. F. Lindquist, Educational Measurement (Washington, $D_{0} C .:$ American Council of Eaucation, 1951). p. 173.

[^8]: 29
 G. M. Kuch, The Objective or Now-Type Examination. (Chicago, I11.: Scott, Foresmen \& Co., 1929). p. 154

 30 See Appendix B. p. 59

