

W&M ScholarWorks

Reports

12-1993

Distribution of Submerged Aquatic Vegetation In The Chesapeake Bay and Tributaries and Chincoteague Bay - 1992

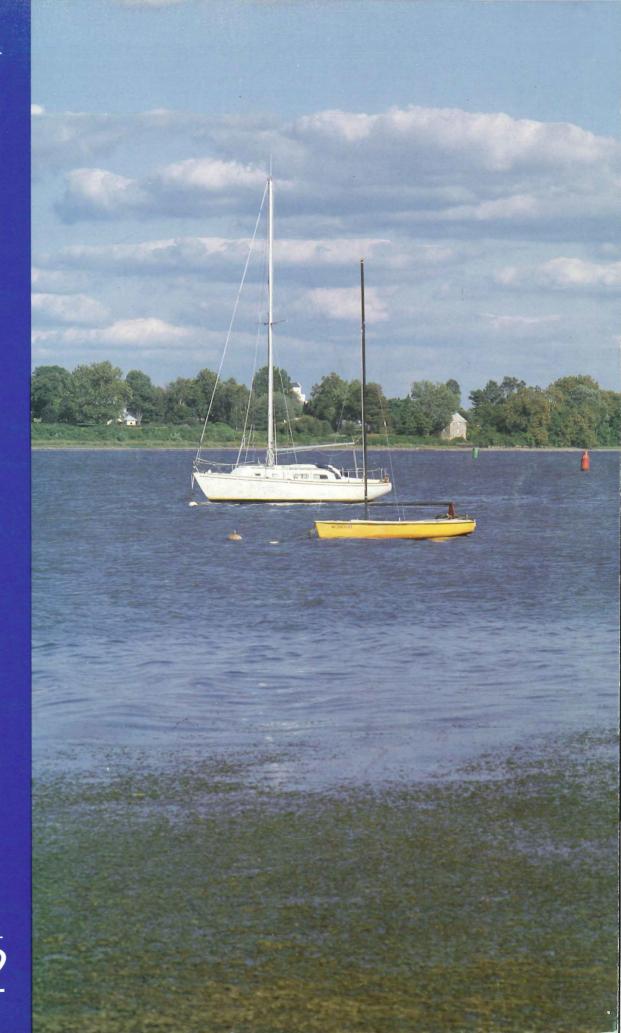
Robert Orth Virginia Institute of Marine Science

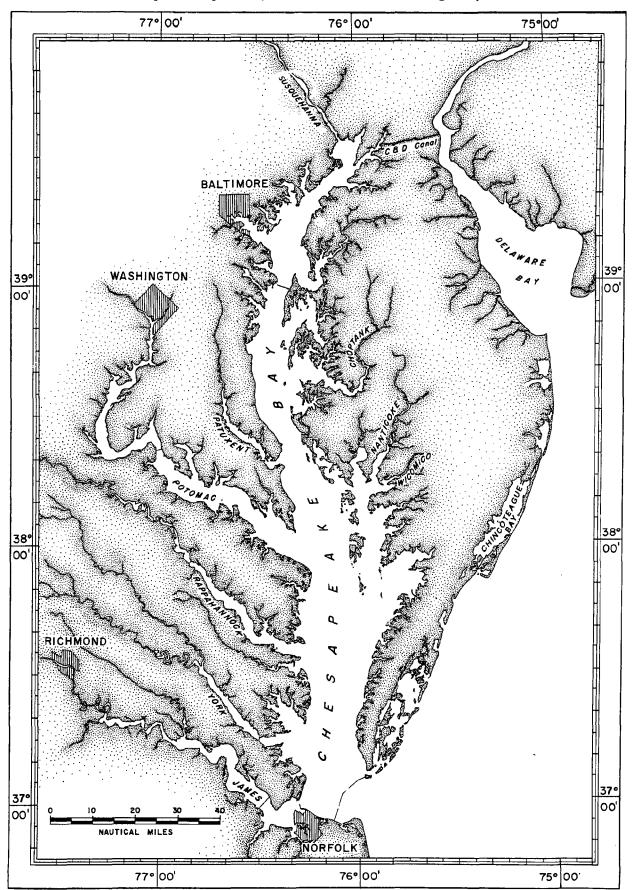
Judith F. Nowak Virginia Institute of Marine Science

Gary Anderson Virginia Institute of Marine Science

Jennifer R. Whiting Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports


Part of the Environmental Sciences Commons


Recommended Citation

Orth, R., Nowak, J. F., Anderson, G., & Whiting, J. R. (1993) Distribution of Submerged Aquatic Vegetation In The Chesapeake Bay and Tributaries and Chincoteague Bay - 1992. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-pt4t-fh95

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

DISTRIBUTION OF SUBMERGED AQUATIC VEGETATION IN THE CHESAPEAKE BAY The College of William and Mary - School of Marine Science - Virginia Institute of Marine Science

Map of Chesapeake Bay and Tributaries and Chincoteague Bay.

Distribution of Submerged Aquatic Vegetation In The Chesapeake Bay and Tributaries and Chincoteague Bay - 1992

by

Robert J. Orth, Judith F. Nowak, Gary F. Anderson, and Jennifer R. Whiting

> College of William and Mary School of Marine Science Virginia Institute of Marine Science Gloucester Point, VA 23062

Funded by:

U.S. Environmental Protection Agency (Grant CB003909-01)

National Oceanographic Atmospheric Administration (Grant No. NA270Z0312-01)

College of William and Mary, School of Marine Science, Virginia Institute of Marine Science

Maryland Department of Natural Resources (C324-93-006)

U.S. Fish and Wildlife Service (14-16-0005-92-9031)

Allied-Signal Foundation

Final Report Submitted to:

U.S. Environmental Protection Agency Chesapeake Bay Program Office Annapolis, MD 21403

Décember 1993

LIBRARY. of the VIRGINIA INSTITUTE of MARINE SCIENCE QK 182

Cover Photograph: The Susquehanna River, Maryland, 1992: Eurasian watermilfoil (*Myriophyllum spicatum*) bed on the south shore near the mouth. (Photography courtesy of Robert Even Owens of Air Photographics, Inc., Martinsburg, West Virginia.)

CONTENTS

.

	Page
TABLES	v
FIGURES	vi
EXECUTIVE SUMMARY	ix
ACKNOWLEDGEMENTS	xiv
SAV SPECIES	1
METHODS	2
Introduction	2
Aerial photography	2
Mapping process	5
SAV perimeter digitization and area calculation	9
Tests of precision and accuracy	9
Standard operating procedures for QA/QC	10
Choice of representative SAV bed	10
Conversion of SAV perimeter points from X,Y centimeters to Universal	10
Transverse Mercator (UTM) coordinates in ARC/INFO 5.0.1 format	11
Calculation of 1992 SAV areas	11
Organizational procedures for analysis and discussion	11
Ground surveys and other data bases	12
RESULTS	19
Data presentation	19
1992 Summary	19
Upper Bay Zone	19
Middle Bay Zone	37
Lower Bay Zone	38
Chincoteague Bay	38
Discussion of sections arranged within zones	38
Upper Bay Zone	38
Susquehanna Flats (Section 1)	38
Upper Eastern Shore (Section 2)	40
Upper Western Shore (Section 3)	40
Chester River (Section 4)	43
Middle Bay Zone	43
Central Western Shore (Section 5)	43
Eastern Bay (Section 6)	43
Choptank River (Section 7)	47

CONTENTS (continued)

RESULTS (continued)

	Patuxent River (Section 8)	49
	Middle Western Shore (Section 9)	49
	Lower Potomac River (Section 10)	49
	Upper Potomac River (Section 11)	53
	Middle Eastern Shore (Section 12)	53
	Mid-Bay Island Complex (Section 13)	53
	Lower Bay Zone	57
	Lower Eastern Shore (Section 14)	57
	Reedville Region (Section 15)	57
	Rappahannock River Complex (Section 16)	60
	New Point Comfort Region (Section 17)	60
	Mobjack Bay Complex (Section 18)	60
	York River (Section 19)	64
	Lower Western Shore (Section 20)	64
	James River (Section 21)	67
	Chincoteague Bay	67
LITE	RATURE CITED	71
APP	ENDICES	73
A		
	and tributaries	75
В		
	Bay sections and Chincoteague Bay	89
~		
C		05
	Bay showing distribution, abundance, and ground truthing of SAV in 1992 .	95 06
	Map Legend	96
-	Number of sources as the of CAN for individual hade and tatals for density	
D	1	202
	categories for each USGS 7.5 minute quadrangle in 1992	203
E	. 1992 SAV ground survey data listed by USGS 7.5 minute quadrangle	
· E	quadrangle and by 1992 SAV bed	231
	Key to Appendix E	232
	Rey to Appendix L	202
F.	1992 Horn Point Environmental Laboratory SAV ground survey	
1.	of the Choptank River and Eastern Bay with listings by latitude and	
	longitude coordinates	247

۲

TABLES

J	Number	Page
1	Guidelines followed during acquisition of aerial photographs	4
2	List of USGS 7.5 minute quadrangles for Chesapeake Bay and Chincoteague Bay SAV study areas with corresponding code numbers	7
3	Area descriptions for each of the 21 sections of the Chesapeake Bay SAV study area	15
4	Total area of SAV in hectares by USGS 7.5 minute quadrangles for 1991 and 1992	20
5	Number of hectares of SAV in 1991 and 1992 for the 21 sections and three zones of Chesapeake Bay, and for Chincoteague Bay	24
6	Number of square meters of SAV in 1992 for each USGS 7.5 minute quadrangle of the 21 sections of Chesapeake Bay and of Chincoteague Bay \ldots	25
7	Number of square meters of SAV in 1992 by density class for the 21 sections of Chesapeake Bay and for Chincoteague Bay	33

FIGURES

	Number	Page
1	Map of Chesapeake Bay and tributaries with Upper, Middle, and Lower zones, and of Chincoteague Bay, with locations of all SAV beds in 1992	x
2	A comparison of the total hectares of SAV for the Upper, Middle, and Lower zones of the Chesapeake Bay in 1991 and 1992	xi
3	Number of hectares SAV per density class in 1992 by section and zone of the Chesapeake Bay.	xii
4	Map of Chesapeake Bay, its tributaries, and of Chincoteague Bay with approximate locations of flight lines for 1992 SAV photo- graphy	3
5	Location of USGS 7.5 minute quadrangles in the Chesapeake Bay, its tributaries, and in Chincoteague Bay with corresponding code numbers.	6
6	Crown density scale used for determining density of SAV beds	13
7	Location of Chincoteague Bay and Chesapeake Bay with Upper, Middle, and Lower zones and 21 sections used for delineation of SAV distribution patterns	14
8	Distribution of SAV in the Susquehanna Flats in 1992 (Section 1)	39
9	Distribution of SAV in the Upper Eastern Shore in 1992 (Section 2)	41
10	Distribution of SAV in the Upper Western Shore in 1992 (Section 3)	42
11	Distribution of SAV in the Chester River in 1992 (Section 4)	44
12	Distribution of SAV in the Central Western Shore in 1992 (Section 5)	45
13	Distribution of SAV in the Eastern Bay in 1992 (Section 6)	46
14	Distribution of SAV in the Choptank River in 1992 (Section 7)	48
15	Distribution of SAV in the Patuxent River in 1992 (Section 8)	50

FIGURES (continued)

.

	Number	Page
16	Distribution of SAV in the Middle Western Shore in 1992 (Section 9)	51
17	Distribution of SAV in the Lower Potomac River in 1992 (Section 10)	52
18	Distribution of SAV in the Upper Potomac River in 1992 (Section 11)	54
19	Distribution of SAV in the Middle Eastern Shore in 1992 (Section 12)	55
20	Distribution of SAV in the Mid-Bay Island Complex in 1992 (Section 13)	56
21	Distribution of SAV in the Lower Eastern Shore (Section 14)	58
22	Distribution of SAV in the Reedville Region in 1992 (Section 15)	59
23	Distribution of SAV in the Rappahannock River Complex in 1992 (Section 16) $$.	61
24	Distribution of SAV in the New Point Comfort Region in 1992 (Section 17) \ldots	62
25	Distribution of SAV in the Mobjack Bay Complex in 1992 (Section 18)	63
26	Distribution of SAV in the York River in 1992 (Section 19)	65
27	Distribution of SAV in the Lower Western Shore in 1992 (Section 20)	66
28	Distribution of SAV in the James River in 1992 (Section 21)	68
29	Distribution of SAV in the Chincoteague Bay in 1992	69
30	Illustration of <i>Chara</i> spp. (Muskgrass)	78
31	Illustration of <i>Nitella</i> spp. (Stonewort)	79
32	Illustration of Najas guadalupensis (Southern naiad)	80
33	Illustration of Vallisneria americana (Tapegrass)	81
34	Illustration of <i>Egeria</i> spp. (Water-weed)	82
35	Illustration of <i>Hydrilla verticillata</i> (Hydrilla)	83

FIGURES (continued)

	Number	Page
36	A comparison: illustrations of <i>Hydrilla verticillata,</i> Elodea canadensis, and Egeria spp	84
37	A comparison: illustrations of <i>Hydrilla verticillata,</i> Elodea canadensis, and Egeria spp	85
38	Illustration of Ceratophyllum demersum (Coontail)	86
39	Illustration of Trapa natans (Water chestnut)	87
40	Illustration of <i>Myriophyllum spicatum</i> (Eurasian watermilfoil)	88

.

.

EXECUTIVE SUMMARY

The distribution of submerged aquatic vegetation, principally rooted vascular macrophytes, in the Chesapeake Bay, its tributaries, and Chincoteague Bay, was mapped during May to October 1992 at a scale of 1:24,000 using black and white aerial photography. SAV bed perimeter information was digitized and stored in a computerized data base. Ground truth information was obtained from the U. S. Fish and Wildlife Service; the University of Maryland Horn Point Environmental Laboratories; Harford Community College, Maryland; Essex Community College SAV Research Group of Baltimore County, Maryland; Maryland-National Capital Parks and Planning Commission, Patuxent River Park; and the College of William and Mary, School of Marine Science, Virginia Institute of Marine Science. Citizen support via the U. S. Fish and Wildlife Service and the Chesapeake Bay Foundation provided additional ground truth information.

In 1992, the Chesapeake Bay had 28,591 hectares of SAV, compared to 25,623 hectares in 1991, with 2,516 hectares (8.7%), 13,713 hectares (48.0%), and 12,362 hectares (43.2%) occurring in the Upper, Middle, and Lower Bay zones, respectively (Figs. 1, 2, and 3). SAV increased in most sections in 1992 with the largest increases in SAV abundance occurring in the Eastern Bay and Choptank River sections. SAV declined in only a few sections, notably the Upper Potomac River section.

In 1992 in the Upper Bay zone, 71.2% (1,792 hectares) of SAV was located in the Susquehanna Flats (Section 1). Overall abundance of SAV increased from the 1991 level (1,684 hectares), while the density of the beds in 1992 increased slightly from 1991. In the flats, 88.6% of all SAV beds were classified as very sparse in 1992 (0-10% coverage) (Figure 3), the same as in 1991, but 8.0% of beds were classified as dense in 1992 (70-100% coverage), an increase of 1.0% compared to 1991. Myriophyllum spicatum, Heteranthera dubia, Vallisneria americana, Hydrilla verticillata, and *Ceratophyllum demersum* were among the six species reported from many of the SAV beds. In the Upper Eastern Shore (Section 2) there were 283 hectares of SAV in 1992 (43 hectares less than in 1991), located principally in the Elk and lower Sassafras rivers, and in Swan, Stillpond, and Churn creeks with M. spicatum and V. americana found most frequently, especially in the Elk River. The Upper Western Shore (Section 3) had 186 hectares of SAV concentrated in Saltpeter, Seneca, and Dundee creeks, compared to 91 hectares recorded in 1991. Myriophyllum spicatum, Elodea canadensis, and C. demersum were frequently cited. In the Chester River (Section 4) SAV abundance (255 hectares) was up 198 hectares from 1991. SAV was most abundant adjacent to Eastern Neck, Eastern Neck Island, and in Gray's Creek in the lower Chester River. Ruppia maritima was most commonly cited.

In 1992, 43.7% (5,994 hectares) of the SAV in the Middle Bay zone was found in the Mid-Bay Island Complex (Section 13), which includes the broad shoal area between Smith and Tangier Islands. This is an increase of 287 hectares over 1991. In this zone, 22.2% (3,047 hectares) of SAV was present in the Middle Eastern Shore (Section 12), primarily in the Barren Island-Honga River area, the Big and Little Annemessex rivers, and the lower section of the Manokin River, with *R. maritima* reported most frequently. Little or no SAV was mapped from the Central

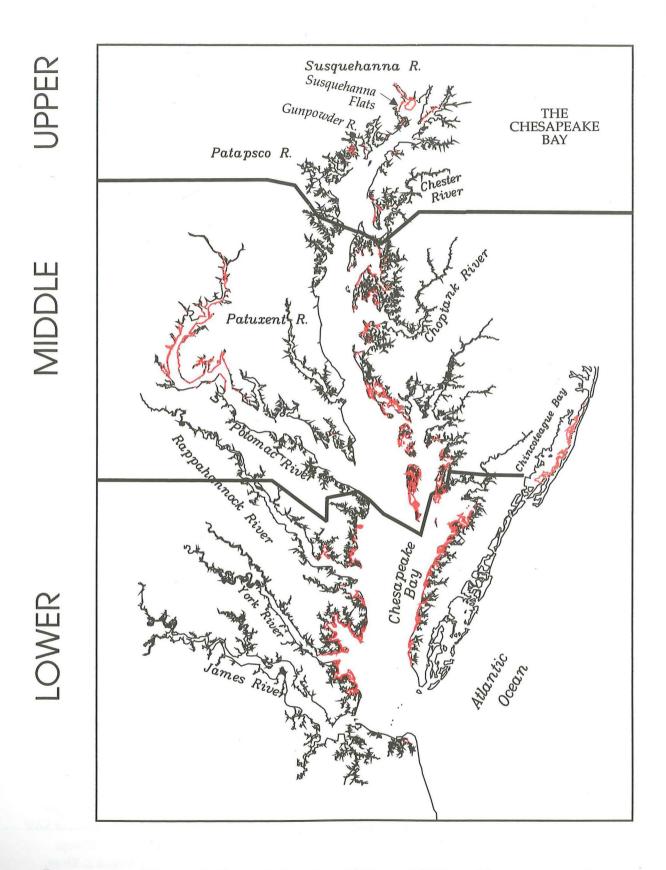


Figure 1. Map of Chesapeake Bay and tributaries with Upper, Middle, and Lower zones, and of Chincoteague Bay, with locations of all SAV beds in 1992 (SAV is shown in red).

Hectares of SAV in Each Zone of the Chesapeake Bay, 1991-92

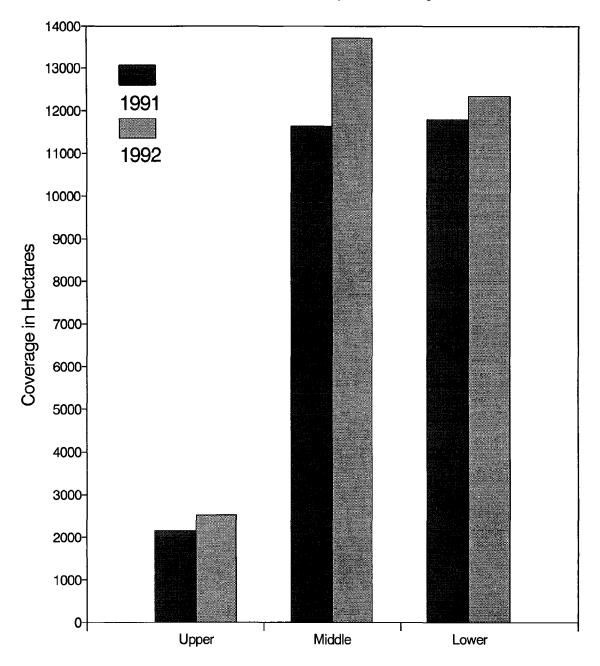


Figure 2. A comparision of the total hectares of SAV for the Upper, Middle, and Lower zones of the Chesapeake Bay in 1991 and 1992. (Refer to Figures 1 and 7 for zone locations.)

Hectares of SAV in 1992 by Section

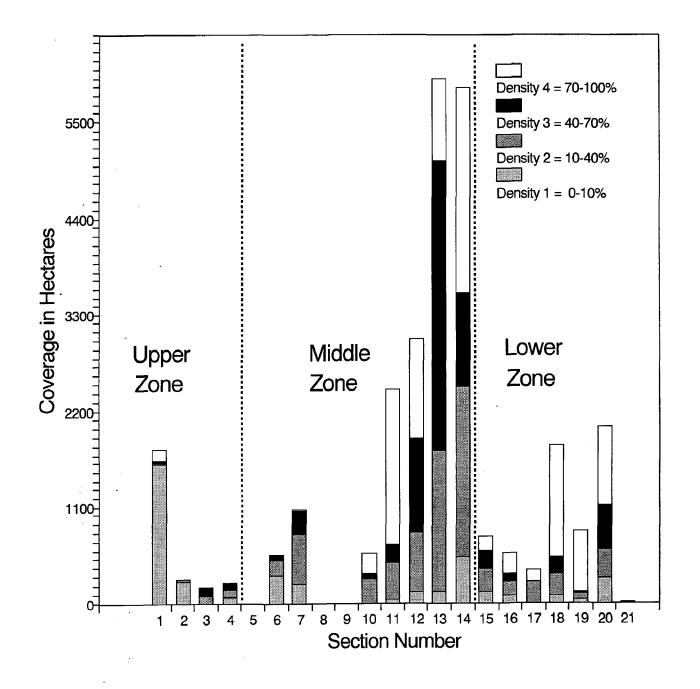


Figure 3. Number of hectares SAV per density class in 1992 by section and zone of the Chesapeake Bay. (Refer to Figure 7, Table 3, and Appendix B for section locations and boundaries.)

Western Shore (Section 5), Patuxent River (Section 8), and Middle Western Shore (Section 9). Citizens' surveys reported *Zannichellia palustris* at numerous locations in the South and Severn rivers, while 12 species were reported from the small marsh creeks in the upper Patuxent River.

The Middle Bay zone also includes the entire Potomac River, where 3,033 hectares of SAV were present in 1992. SAV was concentrated in two distinct regions: 1) the Upper Potomac River (Section 11) with 2,462 hectares; and 2) the upper portion of the Lower Potomac River (Section 10) with 571 hectares, including Nanjemoy Creek and Port Tobacco River. The total abundance of SAV in the Upper Potomac section decreased by 554 hectares from 1991. Declines in SAV were most notable in the Alexandria, Mt. Vernon, and Fort Belvoir quadrangles, primarily in the mainstem river, the southern edge of the large bed at the Woodrow Wilson Bridge, and in Piscataway Creek. Ground survey data were limited in this section in 1992 to only Citizens' surveys with five species reported: M. spicatum, V. americana, H. verticillata, Najas guadalupensis and C. demersum. SAV increased in the Eastern Bay and Choptank River sections for the first time since the late 1980's. SAV in the Eastern Bay (Section 6) increased 486 hectares from 1991 to a total of 554 hectares in 1992. In the Choptank River (Section 7) it increased 971 hectares from 1991 to a total of 1,085 hectares in 1992. Most of the increase in the Eastern Bay occurred in the Miles River, while in the Choptank River section SAV beds were most abundant in Harris and Broad creeks and in Trippe Bay. Three species were reported from Sections 6 and 7, with R. maritima most commonly cited.

In 1992, distribution and abundance of SAV in the Lower Bay zone were similar to 1991. In this zone, 47.9% (5,920 hectares) of the SAV was found in the Lower Eastern Shore (Section 14) around the Fox Islands and the mouths of major creeks (i.e. Cherrystone Inlet and Hungars, Mattawoman, Occahannock, Craddock, Pungoteague, and Onancock creeks). Along the western shore of the Chesapeake Bay, SAV was abundant in Mobjack Bay (Section 18) (14.7% of SAV in the Lower Bay zone), in the lower York River (Section 19) (6.7% of SAV in the Lower Bay zone), and in the Lower Western Shore (Section 20), specifically Back River and the Drum Island Flats area adjacent to Plum Tree Island (16.4% of SAV in the Lower Bay zone). There were 778 hectares of SAV mapped in the Reedville Region (Section 15) in 1992, a 22.5% increase over 1991. There were 396 hectares of SAV identified in 1992 in the New Point Comfort Region (Section 17) compared to 339 hectares in 1991. SAV abundance was up 15.3% from 1991 in both the Piankatank and Rappahannock rivers (Section 16). The James River (Section 21) had less than 4 hectares of SAV in 1992. *Zostera marina* and *R. maritima* were the abundant species in this zone.

SAV in the Chincoteague Bay section increased in distribution with 3,324 hectares mapped in 1992 compared to 2,746 hectares in 1991. Most of the SAV in Chincoteague and Sinepuxent bays, which consisted of *Z. marina* and *R. maritima*, was located along the eastern side of the bay behind Assateague Island. Some small beds, consisting of *R. maritima*, were located along the western side of Isle of Wight and Assawoman bays.

ACKNOWLEDGEMENTS

We would like to gratefully acknowledge all federal and state agencies who financially supported this project: the U. S. Environmental Protection Agency (USEPA); the U. S. Fish and Wildlife Service (USFWS); the Virginia Council on the Environment's and MD-DNR's Coastal Resources Management Program of the National Oceanographic and Atmospheric Administration (NOAA), under the Coastal Zone Management Act of 1972 as amended by the Office of Ocean Coastal Resource Management (OCRM); the Maryland Department of Natural Resources (MD-DNR); and the Virginia Institute of Marine Science, School of Marine Science, College of William and Mary (VIMS). Also, we thank Allied - Signal, Inc. for providing supplemental funding for this work. Additionally, the Virginia Department of Environmental Equality, Division of Intergovernmental Coordination, EcoMAPS Office, under the direction of Dr. Adam A. Frisch, provided GIS support.

Acknowledgement would not be complete without commendation for the groups which provided ground truthing of SAV beds which was used in conjunction with interpretation of the 1992 photography. USFWS with the Chesapeake Bay Foundation (CBF) organized citizens to report locations and species composition of grassbeds around the bay. J. Court Stevenson and Kellie Splain of the University of Maryland Horn Point Environmental Laboratories (HPEL), Stan Kollar of Harford Community College (HCC), and the Essex Community College SAV Research Group of Baltimore County, Maryland provided ground truth information for certain specific regions of the Maryland portion of the Bay. Patuxent River Park staff provided ground truth data for the Patuxent River. Ken Moore, Curtis Harper, Jill Goodman, and James Fishman of VIMS provided ground truth information for the lower bay.

The production of this report required the dedication of numerous scientists, technicians, artists, photographers, and others. The following people deserve a note of thanks: Rich Batiuk and Carin Bisland, USEPA-Chesapeake Bay Program Office; Ed Pendleton and Kathyrn Reshetiloff, USFWS; Vincent Pito, MD-DNR; and Christina Pompa, CBF.

We are especially grateful to the dedicated VIMS personnel who contributed greatly to the production of this report: Leah Nagey, Martin Cavaluzzi, and Jennise Knight for their tremendous assistance and perservation in digitizing the SAV maps, editing the digital data files, mapping ground truth information, and for their constant, careful efforts to maintain high quality control; Melanie Rippon for assistance in designing the map products with ARC/INFO; Wanda Cohen, Harold Burrell, Kay Stubblefield, Sylvia Motley, Billy Jenkins, and Ruth Hershner of the VIMS Publications Center for report production services; and Pat Hall for computer services.

Michael Upchurch, Virginia Division of Mineral Resources; Randy Karin, Maryland Geological Survey, and Claud Summers, USGS, National Cartographic Information Center (NCIC), and the Mid-Continent Mapping Center were helpful in the procurement of high quality topo maps. Craig Breen, Professional Blueprinters, Inc., Newport News, VA, provided high quality reprographic services. Air Photographics, Inc. conducted the aerial photographic missions and was responsible for the high quality aerial photographs.

Aquatic plant illustrations were provided by the Information Office of the University of Florida, Institute of Food and Agricultural Sciences, Center for Aquatic Plants (Gainesville) and were drawn by Laura Line Reep, biological illustrator.

SAV SPECIES

The term "submerged aquatic vegetation" for the purpose of this report encompasses 19 taxa from 10 vascular macrophyte families and 3 taxa from 1 freshwater macrophytic algal family, the Characeae, but excludes all other algae, both benthic and planktonic, which occur in the Chesapeake Bay and its tributaries (Appendix A). Although these other algae do constitute a portion of the SAV biomass in the Chesapeake Bay and tributaries (Humm, 1979), this study has not attempted to identify, delineate, or discuss the algal component of the vegetation nor its relative importance in the flora, except for the Characeae. This is the case, for example, with the benthic marine algae, including many macrophytes, which sometimes co-occur in the same beds as vascular plants, even as epiphytes on vascular plants.

Ten species of submerged aquatic vegetation are commonly found in the Chesapeake Bay and its tributaries. Zostera marina (eelgrass) is dominant in the lower reaches of the bay. Myriophyllum spicatum (Eurasian watermilfoil), Potamogeton pectinatus (sago pondweed), Potamogeton perfoliatus (redhead grass), Zannichellia palustris (horned pondweed), Vallisneria americana (wild celery), Elodea canadensis (common elodea), Ceratophyllum demersum (coontail), and Najas guadalupensis (southern naiad) are less tolerant of high salinities and are found in the middle and upper reaches of the bay (Stevenson and Confer, 1978; Orth et al., 1979; Orth and Moore, 1981, 1983). Ruppia maritima (widgeon grass) is tolerant of a wide range of salinities and is found from the bay mouth to the Susquehanna Flats. Approximately twelve other species are only occasionally found and, when present, occur primarily in the middle and upper reaches of the bay and the tidal rivers (Appendix A). Hydrilla verticillata (hydrilla), a recently introduced species, presently dominates SAV beds in the tidal freshwater reaches of the Potomac River. It has also been reported again in 1992 in the Susquehanna Flats where its growth has not been as widespread as in the Potomac River (Kollar, pers. comm.).

Zostera marina and R. maritima are the dominant species reported from Chincoteague Bay.

METHODS

INTRODUCTION

Black and white aerial photography at a scale of 1:24,000 was the principal source of information used to assess distribution and abundance of SAV in the Chesapeake Bay, its tributaries, and Chincoteague Bay in 1992. There were 1,514 photographs from 141 flight lines which were carefully examined to identify all SAV beds. Outlines of SAV beds were subsequently drawn onto USGS 7.5 minute quadrangles and then digitized, which provided a digital data base for analysis of bed areas and locations. Ground survey information collected in 1992 was tabulated, placed onto the same 7.5 minute quadrangles, and entered into the SAV digital data base.

AERIAL PHOTOGRAPHY

The 1992 SAV aerial photography was obtained by Air Photographics (Martinsburg, West Virginia) using a Wild RC-20 camera with a 153 mm (6 inch) focal length Aviogon lens and Agfa Pan 200 film. The camera was mounted in the bottom fuselage of Air Photographics' Piper Aztec, a twin engine reconnaissance aircraft. Photography was acquired at an altitude of approximately 12,000 feet, which yielded 1:24,000 scale photographics.

Flight lines to obtain the photography were predetermined by Air Photographics to include all areas known to have SAV, as well as those areas which could potentially have SAV (i.e. all areas where water depths were less than 2 m at mean low water). There were 141 flight lines covering 1,785 miles of shoreline and yielding 1,514 exposures. Flight lines included land features that were necessary to establish control points for accurate mapping (Figure 4). Sections of the upper Rappahannock, upper York, and most of the James rivers were not photographed for analysis because of prior determination of the continued absence of SAV in these areas.

Flight lines were prioritized by sections. Flights were timed to occur during the peak growing season of species known to occur in the sections. In addition, specific areas with significant SAV coverage were given priority. Dates of photography for each quadrangle are noted on each map in Appendix C.

General guidelines followed during acquisition of aerial photography (Table 1) address tidal stage, plant growth, sun elevation, water and atmospheric transparency, turbidity, wind, sensor operation, and plotting. Adherence to these guidelines assured acquisition of photography under nearly optimal conditions for detection of SAV, thus insuring accurate photointerpretation. Deviation from any of these guidelines required prior approval by VIMS staff.

Quality assurance and calibration procedures were consistently followed. The altimeter was calibrated annually by the Federal Aviation Administration. Camera settings were selected by automatic exposure control. Sun angle

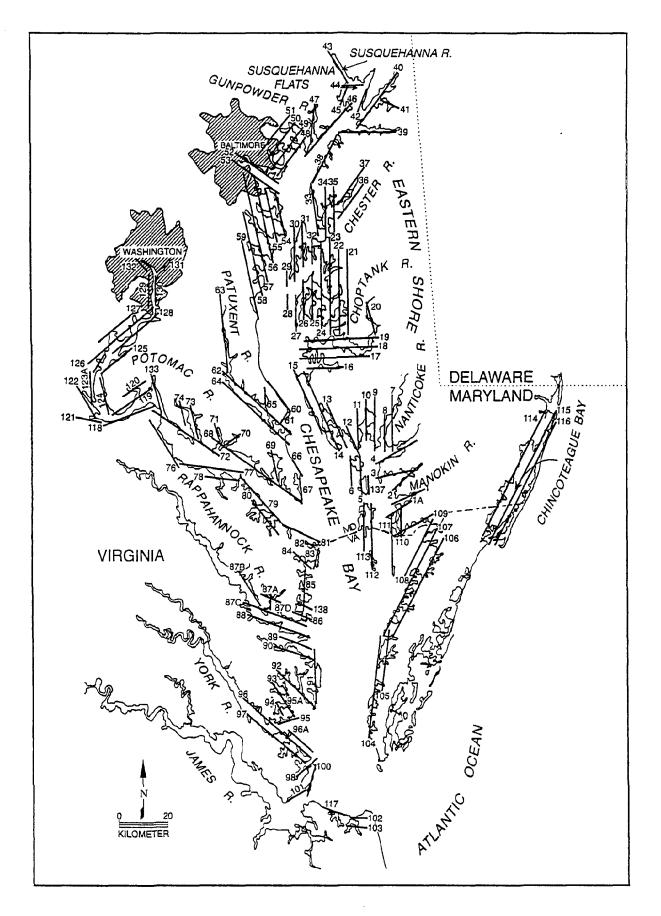


Figure 4. Map of Chesapeake Bay, its tributaries, and of Chincoteague Bay with approximate locations of flight lines for 1992 SAV photography.

	TABLE 1
	Guidelines Followed During Acquisition of Aerial Photographs.
1.	Tidal Stage - Photography was acquired at low tide, +/- 0-1.5 ft., as predicted by the National Ocean Survey tables.
2.	Plant Growth - Imagery was acquired when growth stages ensured maximum delineation of SAV, and when phenologic stage overlap was greatest.
3.	Sun Angle - Photography was acquired when surface reflection from sun glint did not cover more than 30 percent of frame. Sun angle was generally between 20° and 40° to minimize water surface glitter. At least 60 percent line overlap and 20 percent side lap was used to minimize image degradation due to sun glint.
4.	Turbidity - Photography was acquired when clarity of water ensured complete delineation of grass beds. This was visually determined from the airplane to insure that SAV could be seen by the observer.
5.	Wind - Photography was acquired during periods of no or low wind. Off-shore winds were preferred over on-shore winds when wind conditions could not be avoided.
6.	Atmospherics - Photography was acquired during periods of no or low haze and/or clouds below aircraft. There could be no more than scattered or thin broken clouds, or thin overcast above aircraft, to ensure maximum SAV to bottom contrast.
7.	Sensor Operation - Photography was acquired in the vertical mode with less than 5 degrees tilt. Scale/altitude/film/focal length combination permitted resolution and identification of one square meter area of SAV (at the surface).
8.	Plotting - Each flight line included sufficient identifiable land area to assure accurate plotting of grass beds.

was measured with a sensor on the plane. Flight lines were plotted on 1:250,000 scale maps to allow for overlap of photography. To minimize image degradation due to sun glint, the camera was equipped with a computer controlled intervalometer which established 60% line overlap and 20% sidelap. An automatic bubble level held the camera to within one degree tilt. The scale/altitude/film/focal length combination was coordinated so that SAV patches of one square meter could be resolved. Wind speed was monitored hourly. Under normal operating conditions, flights were usually conducted under wind speeds less than 10 mph. (Above this speed, wind-generated waves stir bottom sediments which can easily obscure SAV beds in less than one hour). The pilot used experiential knowledge to determine what acceptable level of turbidity would allow complete delineation of SAV beds. During optimum flight conditions the pilot was able to distinguish bottom features such as SAV or algae at low tide. Excessively turbid conditions precluded photography. Determination of optimum cloud cover level was based on pilot experience. Records of this parameter were kept in a flight notebook. Every attempt was made to acquire photographs when there was no cloud cover below 12,000 feet. Cloud cover did not exceed 5% of the area covered by the camera frame. A thin haze layer above 12,000 feet was generally acceptable. Experience with the Chesapeake Bay has shown that optimal atmospheric conditions generally occur two to three days following passage of a cold front, when winds have shifted from north-northwest to south and have moderated to less than 10 mph. Within the guidelines given for prioritizing and executing the photography, the flights were planned to coincide with these atmospheric conditions where possible.

All film was processed by Air Photographics. A 9 inch x 9 inch black and white contact print was produced for each exposed frame. Each photograph was labeled with the date of acquisition as well as flight line number. Film and photographs were stored under appropriate environmental conditions to prevent degradation.

MAPPING PROCESS

For this analysis USGS 7.5 minute quadrangle maps were utilized for mapping SAV beds from aerial photography, for digitizing the SAV beds, and for compiling SAV bed area measurements. Figure 5 gives locations of 179 quadrangles in the study area which includes all regions with potential for SAV growth. Most quadrangles are sequentially numbered for efficient access to data. The name corresponding to each quadrangle in Figure 5 is listed in Table 2. Identification and delineation of SAV beds by photointerpretation utilized all available information including: knowledge of aquatic grass signatures on film, distribution of SAV in 1992 from aerial photography, 1992 ground truth information, and aerial site surveys. USGS 7.5 minute quadrangle maps (1:24,000 scale) printed by the Mid-Continent Mapping Center of the National Cartographic Information Center on stable transparent mylar were used as base maps. Distortion-free, identical copies of these base maps were made at the same scale on stable transparent mylar using a contact diazo process.

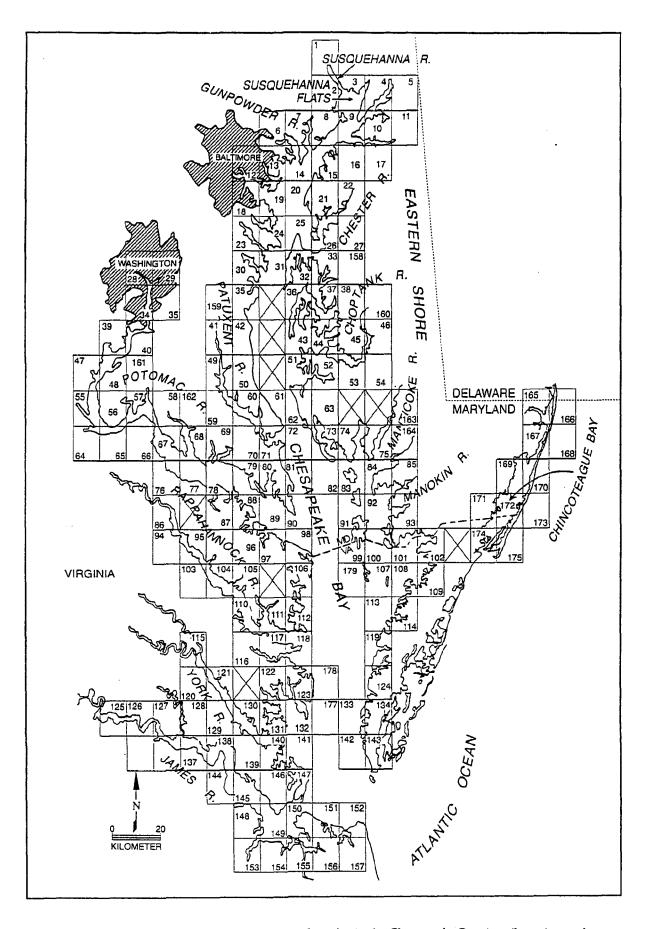


Figure 5. Location of USGS 7.5 minute quadrangles in the Chesapeake Bay, its tributaries, and in Chincoteague Bay with corresponding code numbers . (See Table 2 for quad names.)

TABLE 2

List of USGS 7.5 Minute Quadrangles for Chesapeake Bay and Chincoteague Bay SAV Study Areas with Corresponding Code Numbers. (See Figure 5 for Location of Quadrangles. ARC/INFO Generated 7.5 Minute Quadrangles with SAV Beds and Groundtruthing Are Reproduced in Appendix C.)

- 001. Conowingo Dam, Md.-Pa.
- 002. Aberdeen, Md.
- 003. Havre de Grace, Md.
- 004. North East, Md.
- 005. Elkton, Md.-Del.
- 006. White Marsh, Md.
- 007. Edgewood, Md.
- 008. Perryman, Md.
- 009. Spesutie, Md.
- 010. Earleville, Md.
- 011. Cecilton, Md.
- 012. Baltimore East, Md.
- 013. Middle River, Md.
- 014. Gunpowder Neck, Md.
- 015. Hanesville, Md.
- 016. Betterton, Md.
- 017. Galena, Md.
- 018. Curtis Bay, Md.
- 019. Sparrows Point, Md.
- 020. Swan Point, Md.
- 021. Rock Hall, Md.
- 022. Chestertown, Md.
- 023. Round Bay, Md.
- 024. Gibson Island, Md.
- 025. Love Point, Md.
- 026. Langford Creek, Md.
- 027. Centreville, Md.
- 028. Washington West, Md.-D.C.-Va.
- 029. Washington East, D.C.-Md.
- 030. South River, Md.
- 031. Annapolis, Md.
- 032. Kent Island, Md.
- 033. Queenstown, Md.
- 034. Alexandria, Va.-D.C.-Md.
- 035. Deale, Md.
- 036. Claiborne, Md.
- 037. St. Michaels, Md.
- 038. Easton, Md.
- 039. Fort Belvoir, Va.-Md.
- 040. Mt. Vernon, Md.-Va.
- 041. Lower Marlboro, Md.
- 042. North Beach, Md.
- 043. Tilghman, Md.
- 044. Oxford, Md.
- 045. Trappe, Md.

- 046. Preston, Md.
- 047. Quantico, Va.-Md.
- 048. Indian Head, Va.-Md.
- 049. Benedict, Md.
- 050. Prince Frederick, Md.
- 051. Hudson, Md.
- 052. Church Creek, Md.
- 053. Cambridge, Md.
- 054. East New Market, Md.
- 055. Widewater, Va.-Md.
- 056. Nanjemoy, Md.
- 057. Mathias Point, Md.-Va.
- 058. Popes Creek, Md.
- 059. Mechanicsville, Md.
- 060. Broomes Island, Md.
- 061. Cove Point, Md.
- 062. Taylors Island, Md.
- 063. Golden Hill, Md.
- 064. Passapatanzy, Md.-Va.
- 065. King George, Va.-Md.
- 066. Dahlgren, Va.-Md.
- 067. Colonial Beach North, Md.-Va.
- 068. Rock Point, Md.
- 069. Leonardtown, Md.
- 070. Hollywood, Md.
- 071. Solomons Island, Md.
- 072. Barren Island, Md.
- 073. Honga, Md.
- 074. Wingate, Md.
- 075. Nanticoke, Md.
- 076. Colonial Beach South, Va.-Md.
- 077. Stratford Hall, Va.-Md.
- 078. St. Clements Island, Va.-Md.
- 079. Piney Point, Md.-Va.
- 080. St. Marys City, Md. 081. Point No Point, Md.
- 082. Richland Point, Md.
- 083. Bloodsworth Island, Md.
- 084. Deal Island, Md.
- 085. Monie, Md.
- 086. Champlain, Va.
- 087. Machodoc, Va.
- 088. Kinsale, Va.-Md.
- 089. St. George Island, Va.-Md.
- 090. Point Lookout, Md.

(continue on next page)

091. Kedges Straits, Md.	136. Claremont, Va.
092. Terrapin Sand Point, Md.	137. Surry, Va.
093. Marion, Md.	138. Hog Island, Va.
094. Mount Landing, Va.	139. Yorktown, Va.
095. Tappahannock, Va.	140. Poquoson West, Va.
096. Lottsburg, Va.	141. Poquoson East, Va.
097. Heathsville, VaMd.	142. Elliotts Creek, Va.
098. Burgess, VaMd.	143. Townsend, Va.
099. Ewell, MdVa.	144. Bacons Castle, Va.
100. Great Fox Island, VaMd.	145. Mulberry Island, Va.
101. Crisfield, MdVa.	146. Newport News North, Va.
102. Saxis, VaMd.	147. Hampton, Va.
103. Dunnsville, Va.	148. Benns Church, Va.
104. Morattico, Va.	149. Newport News South, Va.
105. Lively, Va.	150. Norfolk North, Va.
106. Reedville, Va.	151. Little Creek, Va.
107. Tangier Island, Va.	152. Cape Henry, Va.
108. Chesconessex, Va.	153. Chuckatuck, Va.
109. Parksley, Va.	154. Bowers Hill, Va.
110. Urbanna, Va.	155. Norfolk South, Va.
111. Irvington, Va.	156. Kempsville, Va.
112. Fleets Bay, Va.	157. Princess Anne, Va.
113. Nandua Creek, Va.	158. Wye Mills, Md.
114. Pungoteague, Va.	159. Bristol, Md.
115. West Point, Va.	160. Fowling Creek, Md.
116. Saluda, Va.	161. Port Tobacco, Md.
117. Wilton, Va.	162. Charlotte Hall, Md.
118. Deltaville, Va.	163. Mardela Springs, Md.
119. Jamesville, Va.	164. Wetipquin, Md.
120. Toano, Va.	165. Selbyville, Md.
121. Gressitt, Va.	166. Assawoman Bay, Md.
122. Ware Neck, Va.	167. Berlin, Md
123. Mathews, Va.	168. Ocean City, Md.
124. Franktown, Va.	169. Public Landing, Md.
125. Westover, Va.	170. Tingles Island, Md.
126. Charles City, Va.	171. Girdle Tree, MdVa.
127. Brandon, Va.	172. Boxiron, MdVa.
128. Norge, Va.	173. Whittington Point, MdVa.
129. Williamsburg, Va.	174. Chincoteague West, Va.
130. Clay Bank, Va.	175. Chincoteague East, Va.
131. Achilles, Va.	176. Anacostia, D.CMd.
132. New Point Comfort, Va.	177. East of New Point Comfort, Va
133. Cape Charles, Va.	178. Bethel Beach, Va.
134. Cheriton, Va. 135. Savedge, Va.	179. Goose Island, Va.

SAV beds from the 1992 aerial photographs were then mapped onto these diazo mylar copies of USGS 7.5 minute quadrangles. Delineation of each SAV bed was facilitated by superimposing the photographic print with the appropriate diazo mylar quadrangle on a light table. SAV bed boundaries were then traced directly onto the diazo mylar quadrangle with a pencil. Where minor scale differences were evident between a photograph and a quadrangle, or where significant shoreline erosion or accretion had occurred since USGS publication of a map, either a best fit was obtained or shoreline changes were noted on the quadrangle.

In addition to delineating SAV bed boundaries, an estimate of SAV density within each bed was made by visually comparing each bed to an enlarged Crown Density Scale similar to those developed for estimating forest tree crown cover from aerial photography (Fig. 6, p. 13). Bed density was categorized into one of four classes based on a subjective comparison with the density scale. These were: 1, very sparse (<10% coverage); 2, sparse (10-40%); 3, moderate (40-70%); or 4, dense (70-100%). Either the entire bed or subsections within the bed were assigned a bed density number (1 to 4) corresponding to the above density classes. Some beds were subsectioned to delineate where variations in SAV density occurred. Additionally, each distinct SAV unit (bed or bed subsection) was assigned an identifying two letter designation unique to its map. Subsections were futher identified as contiguous beds by the addition of two letters unique to that sequence. These contiguous bed identifications aid the tracking and analysis of single natural bed units that were subsectioned due to variation in SAV density. Coupled with the appropriate SAV map number and year of photography, these two letter designations uniquely identify each SAV bed in the data base.

SAV PERIMETER DIGITIZATION

The perimeters of all SAV beds mapped from the aerial photography onto the diazo mylar copies were digitized in a clockwise direction using a NUMONICS Model 2400/2200 DigiTablet Graphics Analysis System with a resolution of .001 inches (.00254 cm) and an accuracy of .005 inches (.0127 cm). All coordinates were transmitted to a PRIME 9955 computer for data management and analysis via software developed at VIMS. The perimeter of each SAV bed was defined by a polygon with a linear data point density of 127 per chart inch (50 per cm, 5 meter ground resolution). The total number of points defining any SAV bed is dependent on overall bed size. The SAV bed perimeter was stored as X and Y coordinates in centimeters from the quadrangle origin (lower left corner).

TESTS OF PRECISION AND ACCURACY

Prior and subsequent to each digitization session, the NUMONICS instrument was checked manually against a digitizing standard. This was accomplished by securing a diazo mylar quadrangle with SAV polygons to the digitizing tablet. Then the mylar standard was secured to the same quadrangle and digitized four times. The information from digitizing the standard was transmitted to the beginning of the SAV bed perimeter file on the computer. This same procedure was followed at the end of each digitizing session. When this file was processed by the computer, the digitized area of each standard was compared to the known area of the standard. If a variation between the known and the mean of the observed areas exceeded 1.0%, a warning was printed advising the operator to check the digitizing system. In addition, checks were made with respect to the absolute location of the digitizing standard as secured to the map. A comparison was made between the location of the standard before and after the digitizing session. If the absolute location differed by more than 0.10 cm another warning was printed. Any movement in absolute location can be indicative of digitizer instrument drift or chart movement during the digitization session. These checks assure that the final calculated bed locations are as accurate as possible.

Maximum accuracy was maintained by exclusively using mylar quadrangles and standards rather than paper ones which can change scale as a function of changes in air temperature and humidity in the digitizer room.

A complete outline of the digitization procedure can be found in Orth et al., 1988.

STANDARD OPERATING PROCEDURES FOR QUALITY ASSURANCE/ QUALITY CONTROL

Standard operating procedures (SOPs) were developed to facilitate orderly and efficient processing of the 1992 SAV maps and the SAV bed perimeter computer files produced from them, and to comply with the need for consistency, quality assurance, and quality control. SOPs developed include: a detailed procedure outlining 46 steps for digitization of SAV maps; a 47 step checklist for editing SAV perimeter computer files to insure completeness and accuracy; a digitizer log in which all operations were recorded and dated, which was used to guide and record editing operations; and a flow chart used to track progress of all operations including all changes in file names. Examples of these SOPs are in Orth et al., 1988.

CHOICE OF REPRESENTATIVE SAV BED

Part of the quality assurance/quality control program was designed to isolate and remove anomolous data and to obtain accurate and representative SAV bed polygons. Every SAV bed mean area was the result of at least four independent digitizations of the perimeter of each SAV bed. The computer calculated area for each replication, and the three bed perimeters most similar in terms of area were then used for the calculation of a mean area. The three replicate areas used in the mean area calculation were required to be within 5% or less from that of the mean area. All replicates whose areal differences were in excess of 5% of the mean bed area were flagged by the VIMS quality assurance/quality control computer program for additional error assesment. The VIMS error rate was normally less than 1%. The replicate bed perimeter whose area was most similar to the mean area was identified as the "best bed" and was chosen as representative of that SAV bed. The "best bed" perimeter coordinate points were then saved by the computer program and transferred to the ARC/INFO GIS system for area calculations and inclusion in the SAV data base.

CONVERSION OF SAV PERIMETER POINTS FROM X,Y CENTIMETERS TO UNIVERSAL TRANSVERSE MERCATOR (UTM) COORDINATES IN ARC/INFO 5.0.1 FORMAT

The EPA Chesapeake Bay Program Computer Center manages its geographic data base using Environmental Systems Research Institute (ESRI) ARC/INFO Geographic Information System (GIS) (ESRI, 1989). During 1991, the VIMS SAV program began converting its operation from the Prime to ARC/INFO based on a SUN Sparc 2 Unix workstation. With the assistance of the Virginia Department of Environmental Equality, EcoMAPS Office, procedures were developed in 1991 to convert/transform the best bed perimeter points from X,Y centimeters to UTM based coordinates in ARC/INFO 5.0.1 format. This involved construction of data transfer files in an ARC/INFO standard format ("generate"). This was done on the VIMS PRIME for each 7.5 minute quadrangle with SAV beds present. Four files per quadrangle were produced:

- 1. Polygon file containing SAV bed coordinates in digitizer-based centimeters.
- 2. Attribute file containing SAV bed labels, density, species composition, and dates.
- 3. Tic file containing map corner locations in digitizer-based coordinates (cm).
- 4. Geo file containing corresponding latitude and longitude positions for map corners.

The "generate" files were then transferred to the workstation and imported into the ARC/INFO system.

A set of automated ARC/INFO routines were used to input quadrangle-based SAV "generate" data into ARC/INFO 5.0.1 format, and to assist in interactive editing of SAV polygons. ARC/INFO-based SAV polygons were displayed and edited by VIMS staff. SAV polygons appearing on the computer display screen were compared to their counterparts on the diazo mylar quadrangles. Discrepancies and artifacts were edited using a suite of ARC/INFO editing "tools". ARC/INFO-based data sets were considered satisfactory for submission to the EPA when the shape, location, and label of all SAV beds corresponded to those on the diazo mylar quadrangles. ARC/INFO-based SAV data were transformed to UTM coordinates, Zone 18, and submitted to EPA for final review, analysis, and deposition to archives.

CALCULATION OF 1992 SAV AREAS

The SAV coverages in UTM ARC/INFO Zone 18 format were used to calculate area in square meters for all SAV beds. These areas are reported as USGS 7.5

minute quadrangle totals in Table 4, and section and zone totals in Tables 5 and 6. Section and zone totals were calculated by using an overlay operation of the polygons on the SAV beds in ARC/INFO. The definition of the sections used in this analysis are provided in Table 3.

ORGANIZATIONAL PROCEDURES FOR ANALYSIS AND DISCUSSION

Discussion of the distribution of SAV in the Chesapeake Bay and tributaries has been organized into three zones as established by Orth and Moore (1982) and modified by Orth et al., (1989) (Fig. 7). The Lower Bay zone is the area from the entrance of the bay to a line originating from Smith Point at the mouth of the Potomac River, to approximately 3 nautical miles south of Tangier Island, then extending to just below the Little Annemessex River mouth. From this line north to the Chesapeake Bay Bridge at Kent Island is the area referred to as the Middle Bay zone. The area between the Chesapeake Bay Bridge and the Susquehanna Flats is referred to as the Upper Bay zone.

The salinity within each zone roughly coincides with the major salinity zones of estuaries: polyhaline ($18-25^{\circ}/\circ\circ$), Lower zone; mesohaline ($5-18^{\circ}/\circ\circ$), Middle zone; oligohaline ($0.5-5^{\circ}/\circ\circ$), Upper zone. Although the major rivers and smaller tributaries of Chesapeake Bay have their own salinity regimes, the distribution of SAV in each river is discussed within the zone where it connects to the bay.

In addition, 21 sections of the bay are identified for a more detailed discussion of SAV distribution (Fig. 7, Table 3). These sections, which were first delineated for the 1984 SAV survey (Orth et al., 1985) and slightly modified for the 1987 SAV survey (Orth et al., 1989), denote relatively distinct parts of Chesapeake Bay and its tributaries that are readily identifiable. The section boundaries used for analysis and discussion of the 1992 SAV distribution and abundance data were used for the 1987, 1989, 1990, and 1991 reports (Orth et al., 1989; Orth and Nowak, 1990, Orth et al., 1991, Orth et al., 1992). Sections 1 through 4 are located in the Upper Bay zone, sections 5 through 13 in the Middle Bay zone, and sections 14 through 21 in the Lower Bay zone. SAV distribution in Chincoteague Bay is presented and discussed separately from the Chesapeake Bay. Appendix B gives the latitude and longitude of the boundary points of each Chesapeake Bay section and of Chincoteague Bay in decimal degrees.

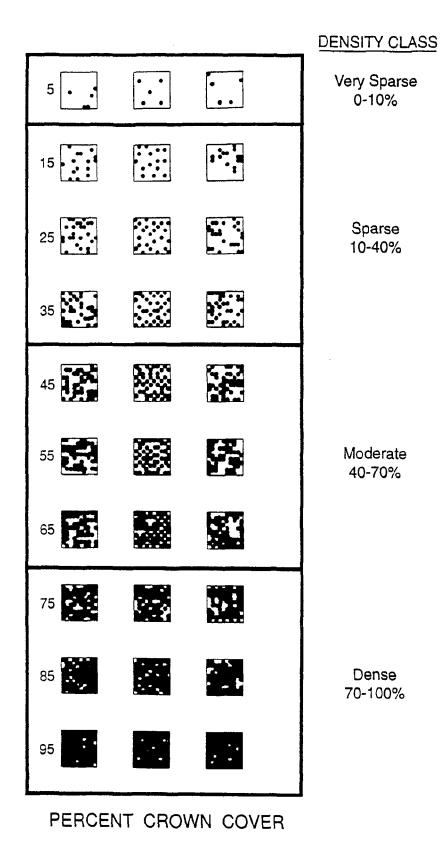


Figure 6. Crown density scale used for determining density of SAV beds. (Numbers on left represent three different arrangements of SAV that make up that category.)

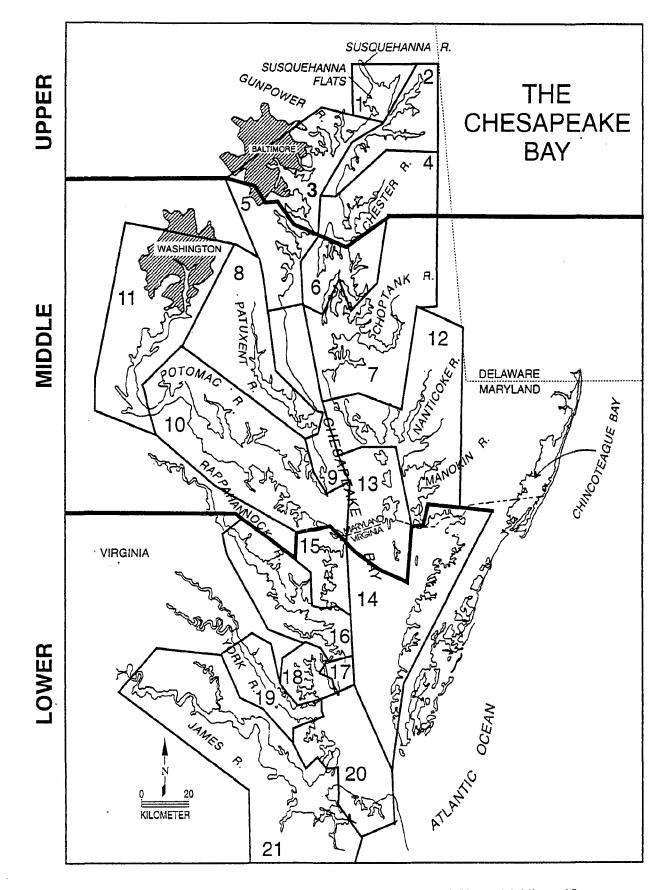


Figure 7. Location of Chincoteague Bay and Chesapeake Bay with Upper, Middle, and Lower zones and 21 sections used for delineation of SAV distribution patterns. (See Table 3 and Appendix B for exact boundary positions.)

	TABLE 3		
Area Descriptio	ons for Each of the 21 Sections of the Chesapeake Bay SAV Study Area.		
Section 1.	Susquehanna Flats - all areas between and including Spesutie Island and Turkey Point at the mouth of the Elk River to include the Northeast River.		
Section 2.	Upper Eastern Shore - all areas in the Elk, Bohemia, and Sassafras rivers, and areas on the eastern shore above the Swan Point quadrangle.		
Section 3.	Upper Western Shore - all areas south of Spesutie Island and north of the Chesapeake Bay Bridge to include the Bush, Gunpowder, Middle, Patapsco, and Magothy rivers.		
Section 4.	Chester River - includes all of the Chester River, Eastern Neck, and areas north of the Chesapeake Bay Bridge on Kent Island extending to north of Swan Point.		
Section 5.	Central Western Shore - all areas south of the Chesapeake Bay Bridge and north of Holland Point on Herring Bay to include the Severn, South, and West rivers and Herring Bay.		
Section 6.	Eastern Bay - all areas south of the Chesapeake Bay Bridge on Kent Island and north of Tilghman Island from Green Marsh Point to include the Wye, East, and Miles rivers, Crab Alley and Prospect bays, and Poplar, Jefferson, and Coaches islands.		
Section 7.	Choptank River - all areas south of Tilghman Island from Green Marsh Point and north of Taylor Island to include the Choptank and Little Choptank rivers.		
Section 8.	Patuxent River - all areas in the Patuxent River.		
Section 9.	Middle Western Shore - all areas south of Holland Point at Herring Bay and north of Point Lookout on the Potomac River not including the mouth of the Patuxent River.		
Section 10.	Lower Potomac River - all areas between the mouth of the Potomac River to a line extending from Maryland Point on the north shore, just above Nanjemoy Creek, to Somersett Beach on the south shore.		
Section 11.	Upper Potomac River - all areas upstream of the Lower Potomac River Section to Chain Bridge at Washington D.C.		
Section 12.**	Middle Eastern Shore - all areas south of Taylor Island and north of a line bisecting Cedar Island to include the Big and Little Annemessex, Honga, Nanticoke, Wicomico, and Manokin rivers, and Fishing Bay.		
Section 13.**	Mid-Bay Island Complex - all areas in and adjacent to Bloodsworth, South Marsh, Smith, and Tangier islands.		
Section 14.**	Lower Eastern Shore - all areas south of a line bisecting Cedar Island and located just above the Maryland-Virginia border to Fisherman's Island.		

.

(continue on next page)

	TABLE 3 (concluded)
Section 15.	Reedville Region - includes the area between Windmill Point on the Rappahannock River and Smith Point at the mouth of the Potomac River.
Section 16.	Rappahannock River Complex - includes the entire Rappahannock and Piankatank rivers, and the Milford Haven area.
Section 17.	New Point Comfort Region - includes the area from New Point Comfort Lighthouse north to Garden Creek just south of Milford Haven.
Section 18.**	Mobjack Bay Complex - includes the East, North, Ware, and Severn rivers, the north shore of Mobjack Bay from New Point Comfort Lighthouse to the North River, and north of a line bisecting the large shoal area around the Guinea Marshes.
Section 19.**	York River - all areas of the York River from north of the Porpotank River to the mouth, including south of a line bisecting the large shoal area around the Guinea Marshes and the north shore of Goodwin Island.
Section 20.**	Lower Western Shore - includes all areas south of Goodwin Island to Lynnhaven Inlet, including Broad Bay but not including the James River.
Section 21.	James River - all areas in the James River including the Chickahominy River.
et al., 1989) w were retained	2, 13, 14, 18, 19, and 20 were given new boundaries for the 1987 report (Orth which also changed the delineation of the three zones. These new boundaries of for the 1989, 1990, and 1991 reports (Orth and Nowak, 1990; Orth et al., al., 1992) and for this report. (Refer to Figure 7 and Appendix B for eations.)
÷ •	

GROUND SURVEYS AND OTHER DATA BASES

Ground surveys were accomplished by cooperative efforts from a number of agencies and individuals. Although not all areas of the bay were surveyed, the data did provide valuable supplemental information. The surveys confirmed the existence of some SAV beds mapped from the 1992 aerial photography, as well as SAV beds not visible from the photography. The surveys also provided species data for many of the SAV beds. Ground survey information supplied to VIMS researchers was included on the SAV distribution and abundance maps reproduced in Appendix C. Each survey was designated by a unique symbol to identify the different methods of sampling. In most cases, the symbols on the SAV maps (Appendix C) have been enlarged and offset from the actual sampling point to avoid confusion with the mapped SAV bed. Where species information was available, it was included on the map. Because of space limitations on the maps reproduced in Appendix C, occasionally one or more survey points were combined where the information was duplicated. All ground survey data supplied to VIMS are tabulated in either Appendix E or F.

In Maryland, ground survey data were obtained in 1992 by the Patuxent River Park staff, through three SAV research projects, and by the Citizens' volunteer survey. Data from the following three surveys were compiled by the USFWS. Patuxent River ground survey data were obtained by the Maryland-National Capital Parks and Planning Commission Patuxent River Park staff. The Essex Community College SAV Research Group of Baltimore County, Maryland, contributed ground survey data for quadrangle 14. The Citizens' volunteer survey, under the guidance of the USFWS and the Chesapeake Bay Foundation (CBF), identified SAV locations and SAV species when possible throughout various areas of the Chesapeake and Chincoteague bays. Volunteers, who were recruited through press releases, newsletters, and personal letters, were provided with a SAV identification guide, reduced 1990 SAV maps to aid in the location of SAV beds, and data sheets for reporting visits to numerous sites around the bays. USFWS staff compiled data from the three surveys and mapped the data on copies of 1990 SAV distribution maps (USGS 7.5 minute quads with 1990 SAV beds). These maps were supplied to VIMS SAV researchers and transferred to the 1992 SAV distribution maps reproduced in Appendix C. Data from the three surveys were also tabulated by USFWS. This table became the basis of the much expanded table published in Appendix E.

One 1992 SAV project being conducted on the Susquehanna Flats by Stan Kollar of Harford Community College, Maryland, provided data in the form of species presence by percentage.

A SAV research group at the University of Maryland Horn Point Environmental Laboratories (HPEL) also provided 1992 ground survey data in collaboration with the VIMS research team. Shorelines of the Choptank, Miles, Wye, and Chester rivers, as well as Eastern Bay and Trippe Bay, were sampled from June 26 through August 27. Samples of the bottom were taken every 20-50 m using a rake dragged along the bottom. This survey concentrated on the lower half of the Choptank River from the Horn Point Laboratory to the mouth of the river. In addition, 12 transects were run perpendicular to the shoreline where SAV abundance was estimated every 10 m for a distance of 200 m. Choptank River and Eastern Bay ground survey data are presented in Appendix F.

For those areas in Virginia waters where aerial photographic evidence of SAV beds was inconclusive, photoverification was accomplished by ground truth surveys. Observations were principally made from small boats and by divers snorkeling over areas indicated from the photographs. In the York, Piankatank, and Rappahannock rivers, where VIMS researchers had transplanted SAV (principally eelgrass), transplant sites were also examined carefully by divers for any extant SAV. VIMS scientists also surveyed a number of sites in the Chesapeake Bay as part of an intensive quantitative SAV study (VIMS, unpublished data). Data for Virginia waters were also collected by the Citizens' volunteer survey (compiled by the USFWS). In addition, a great deal of ground survey information could be extrapolated from earlier studies (Orth et al., 1979; Orth and Moore, 1982). SAV beds in the lower bay contain primarily one or two species and most areas have not undergone wide fluctuations in distribution and abundance since the first bay-wide survey in 1978.

Ground survey data from all sources reported here were added to the USFWS table and each SAV siting was cross-referenced with its associated 1992 SAV bed location. This expanded ground survey table is presented in Appendix E.

RESULTS

DATA PRESENTATION

SAV distribution data are presented by quadrangle (Table 4), by section and zone (Table 5), by quadrangles within a section (Table 6), and by density class (1, 2, 3, 4) for each section (Table 7). Quadrangle maps annotated with all SAV beds are presented in Appendix C, while individual bed areas for each quadrangle are given in Appendix D. Appendix E tabulates all ground truth data for 1992. Appendix F lists latitude and longitude coordinates of the ground survey of the Choptank River and Eastern Bay area by HPEL staff. The 1992 SAV distribution data and species occurrences are first discussed relative to the Upper, Middle, and Lower Bay zones, respectively. The 21 sections of the Chesapeake Bay and Chincoteague Bay are then discussed individually, and the data compared to results from the 1991 survey of SAV distribution and abundance (Orth, et al., 1992). SAV is plotted for each section and for Chincoteague Bay in Figures 8 through 29. SAV beds are plotted in red, and bold, black lines represent section boundaries. USGS 7.5 minute quadrangles are represented by a grid of numbered rectangles (refer to Table 2 for quadrangle names listed by map number). Specific names of rivers, creeks, or points of land which are not found on the section plots, are on the quadrangle maps for that section.

1992 SUMMARY

In 1992, the Chesapeake Bay had 28,591 hectares of SAV, compared to 25,623 hectares in 1991, with 2,516 hectares (8.7%), 13,713 hectares (48.0%), and 12,362 hectares (43.2%) occurring in the Upper, Middle, and Lower Bay zones, respectively (Figs. 1, 2, and 3). SAV increased in most sections in 1992 with the largest increases in SAV abundance occurring in the Eastern Bay and Choptank River sections. SAV declined in only a few sections, notably the Upper Potomac River section.

Upper Bay Zone

In 1992 in the Upper Bay zone, 71.2% (1,792 hectares) of the SAV was located in the Susquehanna Flats (Section 1). Overall abundance of SAV increased from the 1991 level (1,684 hectares), while the density of the beds in 1992 increased slightly from 1991. In the flats, 88.6% of all SAV beds were classified as very sparse in 1992 (0-10% coverage) (Table 7; Figure 3), the same as in 1991, but 8.0% of beds were classified as dense in 1992 (70-100% coverage), an increase of 1.0% compared to 1991. *Myriophyllum spicatum*, *H. dubia*, *V. americana*, *H. verticillata*, and *C. demersum* were among the six species reported from many of the SAV beds. In the Upper Eastern Shore (Section 2) there were 283 hectares of SAV in 1992 (43 hectares less than in 1991) located principally in the Elk and lower

Т	ABLE 4	
Total Area of SAV in Hectares by USGS	7.5 Minute Quadrangle	s for 1991 and 1992.
QUADRANGLE	1991	1992
001. Conowingo Dam, Md Pa.	0	0
002. Aberdeen, Md.	8.79	[*] 14.98
003. Havre de Grace, Md.	1,652.84	1,745.68
004. North East, Md.	75.36	126.21
005. Elkton, MdDel.	24.97	0
006. White Marsh, Md.	#	0
007. Edgewood, Md.	0	.43
008. Perryman, Md.	0	8.78
009. Spesutie, Md.	87.15	45.08
010. Earleville, Md.	155.01	116.16
011. Cecilton, Md.	0	0
012. Baltimore East, Md.	0	0
013. Middle River, Md.	4.40	16.07
• 014. Gunpowder Neck, Md.	84.24	155.87
015. Hanesville, Md.	4.02	26.19
016. Betterton, Md.	.60 3.89	2.47 2.98
017. Galena, Md. 018. Curtis Bay, Md.	5.09 #	2.98
019. Sparrows Point, Md.	#	#
020. Swan Point, Md.	3.81	5.39
021. Rock Hall, Md.	9.74	12.34
022. Chestertown, Md.	<i>).</i> , 1 0	12.54
023. Round Bay, Md.	#	#
024. Gibson Island, Md.	#	#
025. Love Point, Md.	0	Ö
026. Langford Creek, Md.	42.04	220.66
027. Centreville, Md.	0	0
028. Washington West, Md D.C.	3.96	9.92
029. Washington East, D.C Md.	#	0
030. South River, Md.	#	#
031. Annapolis, Md.	#	0
032. Kent Îsland, Md.	1.58	69.59
033. Queenstown, Md.	4.24	87.40
034. Alexandria, Va D.C Md.	453.72	318.29
035. Deale, Md.	#	#
036. Claiborne, Md.	59.47	231.64
037. St. Michaels, Md.	3.68	243.63
038. Easton, Md.	#	0
039. Fort Belvoir, Va Md.	160.27	133.72
040. Mt. Vernon, Va Md.	526.17	254.57
041. Lower Marlboro, Md.	#	#
042. North Beach, Md.	-	0
043. Tilghman, Md.	12.54	222.47
044. Oxford, Md.	6.28	115.79
045. Trappe, Md.	0	0
		(continue on next page)

;

Table 4 (c	ontinued)	
QUADRANGLE	1991	1992
046. Preston, Md.	0	#
047. Quantico, Va Md.	805.93	594.92
048. Indian Head, Md Va.	355.27	336.04
049. Benedict, Md.	#	0
050. Prince Frederick, Md.	-	-
051. Hudson, Md.	62.85	515.96
052. Church Creek, Md.	2.24	105.79
053. Cambridge, Md.	0	5.66
054. East New Market, Md.	0	0
055. Widewater, Va Md.	648.13	730.95
056. Nanjemoy, Md.	140.79	168.32
057. Mathias Point, Md Va.	290.27	292.05
058. Popes Creek, Md.	20.13	1.30
059. Mechanicsville, Md.	0	0
060. Broomes Island, Md.	#	#
061. Cove Point, Md.	#	#
062. Taylors Island, Md.	30.01	62.39
063. Golden Hill, Md.	8.92	29.23
064. Passapatanzy, Md Va.	#	12.24
065. King George, Va Md.	64.17	74.45
066. Dahlgren, Va Md.	58.33	33.98
067. Colonial Beach North, Va.	46.62	47.76
068. Rock Point, Md.	#	0
069. Leonardtown, Md.	0	0
070. Hollywood, Md.	#	0
071. Solomons Island, Md.	#	#
072. Barren Island, Md.	121.72	433.61
073. Honga, Md.	861.83	1,326.88
074. Wingate, Md.	460.31	480.81
075. Nanticoke, Md.	0	0
076. Colonial Beach South, Va.	0	0
077. Stratford Hall, VaMd.	0	0
078. St. Clements Island, Va Md.	#	#
079. Piney Point, Md Va.	0	0
080. St. Mary's City, Md.	0	8.81
081. Point No Point, Md.	-	-
082. Richland Point, Md.	20.91	45.90
083. Bloodsworth Island, Md.	801.70	1,024.10
084. Deal Island, Md.	24.35	68.75
085. Monie, Md.	7.28	0
086. Champlain, Va.	0	0
087. Machodoc, Va.	0	0
088. Kinsale, VaMd.	0	0
089. St. George Island, Md VA	1.74	3.08
090. Point Lookout, Md.	0	0
091. Kedges Straits, Md.	884.83	971.21
092. Terrapin Sand Point, Md.	261.07	267.81
093. Marion, Md.	305.93	278. 4 3
		(continue on next page)

TABLE 4 (continued)	
QUADRANGLE	1991	1992
. 094. Mount Landing, Va.	-	-
095. Tappahannock, Va.	-	-
096. Lottsburg, Va.	0	0
097. Heathsville, VaMd.	0	0
098. Burgess, VaMd.	0	#
099. Ewell, MdVa.	2,605.93	2,543.16
100. Great Fox Island, Md Va.	1,421.02	1,504.94
101. Crisfield, MdVa.	318.73	321.69
102. Saxis, VaMd.	1.26	2.86
103. Dunnsville, Va.	-	-
104. Morattico, Va.	0	0
105. Lively, Va.	0	0
106. Reedville, Va.	242.79	302.51
107. Tangier Island, Va.	782.21	601.73
108. Chesconessex, Va.	1,052.51	1,042.80
109. Parksley, Va.	483.10	461.99
110. Urbanna, Va.	5.39	11.25
111. Irvington, Va.	165.03	165.60
112. Fleets Bay, Va.	391.85	475.89
113. Nandua Creek, Va.	441.55	473.91
114. Pungoteague, Va.	976.18	949.27
115. West Point, Va.	-	-
116. Saluda, Va.	0	0
117. Wilton, Va.	16.00	18.18
118. Deltaville, Va.	107.54	142.86
119. Jamesville, Va.	621.64	634.02
120. Toano, Va.	-	-
121. Gressitt, Va.	-	-
122. Ware Neck, Va.	321.73	318.37
123. Mathews, Va.	260.64	326.70
124. Franktown, Va.	627.61	718.67
125. Westover, Va.	#	-
126. Charles City, Va.	-	-
127. Brandon, Va.	#	-
128. Norge, Va.	-	-
129. Williamsburg, Va.	-	-
130. Clay Bank, Va.	0	#
131. Achilles, Va.	1,010.88	1,040.46
132. New Point Comfort, Va.	1,448.69	1,486.00
133. Cape Charles, Va.	362.17	361.03
134. Cheriton, Va.	82.73	87.25
135. Savedge, Va.	-	-
136. Claremont, Va.	-	-
137. Surry, Va.	#	-
138. Hog Island, Va.	-	-
139. Yorktown, Va.	.71	1.16
140. Poquoson West, Va.	554.65	582.94
141. Poquoson East, Va.	1,151.41	1,161.06
		(continue on next page)

TABLE 4 (concluded)		
QUADRANGLE	19 91	1992
142. Elliotts Creek, Va.	68.17	111.96
143. Townsend, Va.	.72	0
144. Bacons Castle, Va.	-	-
145. Mulberry Island, Va.	-	-
146. Newport News North, Va.	-	-
147. Hampton, Va.	381.24	380.63
148. Benns Church, Va.	-	-
149. Newport News South, Va.	_	0
150. Norfolk North, Va.	-	-
151. Little Creek, Va.	0	0
152. Cape Henry, Va.	23.66	19.55
153. Chuckatuck, Va.		
154. Bowers Hill, Va.	-	-
155. Norfolk South, Va.	-	-
156. Kempsville, Va.	-	-
157. Princess Anne, Va.	0	0
158. Wye Mills, Md.	0	0
159. Bristol, Md.	#	#
160. Fowling Creek, Md.	Ö	Ő
161. Port Tobacco, Md.	12.65	12.60
162. Charlotte Hall, Md.	8.97	0
163. Mardela Springs, Md.	0	0
164. Wetipquin, Md.	0	0
165. Selbyville, Md.	0	0
166. Assawoman Bay, Md.	1.23	7.94
167. Berlin, Md.	11.13	10.69
168. Ocean City, Md.	17.67	23.57
169. Public Landing, Md.	0	0
170. Tingles Island, Md.	1,066.44	1,180.30
171. Girdle Tree, Md Va.	0	0
172. Boxiron, MdVa.	672.52	771.61
173. Whittington Point, Md VA	363.68	399.10
174. Chincoteague West, Va.	.63	6.27
175. Chincoteague East, Va.	612.86	924.70
176. Anacostia, D.C Md.	0	0
177. East of New Point Comfort, Va.	0	8.67
178. Bethel Beach, Va.	0	0*
179. Goose Island, Va.	0*	214.79
TOTAL SAV - Chesapeake Bay	25,623.47	28,591.23
TOTAL SAV - Chincoteague Bay	2,746.17	3,324.18
NOTES:		. . .
- = Indicates quadrangle not pho		
0 = Indicates quadrangle photog		
0* = This quadrangle was newly p		
years mapping. SAV beds lo		
<pre>the overlapping portion of th # = SAV detected by ground trut</pre>		e.
# = SAV detected by ground trut	ning only.	

.

TABLE 5

Number of Hectares of SAV in 1991 and 1992 for the 21 Sections and Three Zones of Chesapeake Bay and for Chincoteague Bay.

	701/7		(HE	AREA CTARES)
	ZONE	SECTION	1991	1992
	Upper	1. Susquehanna Flats 2. Upper Eastern Shore	1,684.06 326.19	1,791.97 282.96
	••	3. Upper Western Shore	91.00	185.97
		4. Chester River	56.68	255.16
		Zone Total	2,157.93	2,516.06
		5. Central Western Shore	0.00	0.00
		6. Eastern Bay	67.89	553.93
-	-	7. Choptank River	113.92	1,085.39
		8. Patuxent River	0.00	0.00
	Middle	9. Middle Western Shore	0.00	0.00
		10. Lower Potomac River	581.10	571.03
		11. Upper Potomac River	3,016.04	2,461.96
		12. Middle Eastern Shore	2,177.51	3,046.93
		13. Mid-Bay Island Complex	5,707.36	5,993.93
ج • ، -		Zone Total	11,663.82	13,713.17
,		14. Lower Eastern Shore	5,719.50	5,920.17
		15. Reedville	634.64	778.40
· · ·		16. Rappahannock Rvr. Complex	508.93	586.84
	Lower	17. New Point Comfort Region	338.87	395.91
•		18. Mobjack Bay Complex	1,787.76	1,818.03
	•	19. York River	803.53	830.08
		20. Lower Western Shore	2,005.75	2,029.07
		21. James River	2.74	3.50
•		Zone Total	11,801.72	12,362.00
	Total SAV f	or Chesapeake Bay	25,623.47	28,591.23
	Total SAV f	or Chincoteague Bay	2,746.17	3,324.18

•

TABLE 6

Number of Square Meters of SAV in 1992 for Each USGS 7.5 Minute Quadrangle of the 21 Sections of Chesapeake Bay and of Chincoteague Bay. (Map Code Numbers from Table 2 in Parentheses.)

AREA	QUADRANGLE	SECTION
0.0	Conowingo Dam (1)	Susquehanna Flats - 1
149,831.1	Aberdeen (2)	-
17,456,826.6	Havre de Grace (3)	
0.0	North East (4)	
0.0	Elkton (5)	
0.0	Perryman (8)	
313,027.0	Spesutie (9)	
0.0	Earleville (10)	
17,919,685 sq.n		
1,791.97 hectare		
4,427.96 acre		
1,262,108.6	North East (4)	Upper Eastern Shore - 2
0.0	Elkton (5)	••
0.0	Perryman (8)	
89,549.8	Spesutie (9)	
1,161,552.2	Earleville (10)	
0.0	Cecilton (11)	
0.0	Gunpowder Neck (14)	
261,890.4	Hanesville (15)	
24,691.6	Betterton (16)	
29,768.6	Galena (17)	
0.0	Swan Point (20)	
0.0	Rock Hall (21)	
0.0	Chestertown (22)	
2,829,562 sq.n		
282.96 hectare		
699.19 acre		
0.0	White Marsh (6)	Upper Western Shore - 3
4,258.2	Edgewood (7)	
87,846.4	Perryman (8)	
48,190.1	Spesutie (9)	
0.0	Baltimore East (12)	
160,704.6	Middle River (13)	
1,558,671.1	Gunpowder Neck (14)	
0.0	Hanesville (15)	
0.0	Curtis Bay (18)	
0.0	Sparrows Point (19)	
0.0	Swan Point (20)	
0.0	Round Bay (23)	
0.0	Gibson Island (24)	
0.0	Love Point (25)	
1,859,671 sq.r		
185.97 hectare		
459.53 acre		

	TAE	BLE 6 (continued)	
	SECTION	QUADRANGLE	AREA
	Chester River - 4	Betterton (16)	0.00
	-	Galena (17)	0.00
		Swan Point (20)	53,924.98
		Rock Hall (21)	123,377.38
		Chestertown (22)	0.00
		Love Point (25)	0.00
		Langford Creek (26)	2,206,641.97
		Centreville (27)	0.00
		Kent Island (32)	0.00
		Queenstown (33)	
			2,551,606 sq.m 255.16 hectares 630.50 acres
	Central Western Shore - 5	Curtis Bay (18)	0.00
		Round Bay (23)	0.00
		Gibson Island (24)	0.00
		Love Point (25)	0.00
•		South River (30)	0.00
		Annapolis (31)	0.00
		Kent Island (32)	0.00
		Deale (35)	0.00
		North Beach (42)	0.00
			0.00 sq.m
			0.00 hectares 0.00 acres
•	Eastern Bay - 6	Centreville (27)	0.00
	·	Annapolis (31)	0.00
		Kent Island (32)	695,903.29
		Queenstown (33)	706,355.76
		Claiborne (36)	2,043,062.67
		St. Michaels (37)	2,093,988.72
•		Easton (38)	0.00
•		Tilghman (43)	0.00
		Öxford (44)	0.00
		Wye Mills (158)	0.00
			5,539,310 sq.m
,			553.93 hectares 1,368.76 acres
	Chapter River 7	Centreville (27)	1,508.70 acres
	Choptank River - 7	Claiborne (36)	273,318.02
•		St. Michaels (37)	342,314.36
		Easton (38)	0.00
		Tilghman (43)	2,224,675.28
		Oxford (44)	1,157,879.37
		Trappe (45)	0.00
		Preston (46)	0.00
		Hudson (51)	5,159,589.99

TABI	LE 6 (continued)	
SECTION	QUADRANGLE	AREA
Choptank River 7 (continued)	Church Creek (52) Cambridge (53) East New Market (54) Taylors Island (62) Golden Hill (63) Nanticoke (75) Wye Mills (158)	1,057,899.07 56,570.84 0.00 581,667.35 0.00 0.00 0.00
	Fowling Creek (160)	<u>0.00</u> 10,853,914 sq.m 1,085.39 hectares 2,682.00 acres
Patuxent River - 8	Deale (35) Lower Marlboro (41) North Beach (42) Benedict (49) Prince Frederick (50) Mechanicsville (59) Broomes Island (60) Cove Point (61) Leonardtown (69) Hollywood (70) Solomons Island (71) Bristol (159) Charlotte Hall (162)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Middle Western Shore - 9	North Beach (42) Prince Frederick (50) Hudson (51) Broomes Island (60) Cove Point (61) Taylors Island (62) Solomons Island (71) Barren Island (72) St. Marys City (80) Point No Point (81) Richland Point (82) Point Lookout (90)	0.00 acres 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sq.m 0.00 hectares 0.00 acres
(continue on s	next page)	

TABLE 6 (continued)			
S	ECTION	QUADRANGLE	AREA
L	ower Potomac River - 10	Nanjemoy (56)	1,683,182.02
		Mathias Point (57)	2,920,495.95
		Popes Creek (58)	12,960.03
		Mechanicsville (59)	0.00
		King George (65)	157,381.36
		Dahlgren (66)	339,814.89
		Colonial Beach North (67)	477,579.75
		Rock Point (68)	0.00
		Leonardtown (69) Hollywood (70)	0.00 0.00
		Solomons Island (71)	0.00
		Colonial Beach South (76)	0.00
		Stratford Hall (77)	0.00
		St. Clements Island (78)	0.00
		Piney Point (79)	0.00
		St. Marys City (80)	88,068.03
		Champlain (86)	0.00
		Machodoc (87)	0.00
		Kinsale (88)	0.00
		St. George Island (89)	30,843.04
	,	Point Lookout (90)	0.00
		Lottsburg (96)	0.00
		Heathsville (97)	0.00
•		Burgess (98)	0.00
	,	Port Tobacco (161)	0.00
•.		Charlotte Hall (162)	0.00
			5,710,325 sq.m 571.03 hectares
			1,411.02 acres
ι	Jpper Potomac River - 11	Washington West (28)	99,168.04
•		Washington East (29)	0.00
•		Alexandria (34)	3,182,946.35
		Fort Belvoir (39)	1,337,177.45
		Mt. Vernon (40)	2,545,660.49
		Quantico (47) Indian Hoad (48)	5,949,240.79
		Indian Head (48) Widewater (55)	3,360,444.49 7,309,476.61
		Nanjemoy (56)	476.61 0.00
		Mathias Point (57)	0.00
		Passapatanzy (64)	122,388.84
		King George (65)	587,149.44
έ. ·		Dahlgren (66)	0.00
		Port Tobacco (161)	125,953.20
		Anacostia (176)	0.00
		· · ·	24,619,606 sq.m
•			2,461.96 hectares
i			6,083.50 acres
		e on next page)	

TAI	BLE 6 (continued)	
SECTION	QUADRANGLE	AREA
Middle Eastern Shore - 12	Taylors Island (62) Golden Hill (63) Barren Island (72) Honga (73) Wingate (74) Nanticoke (75) Point No Point (81) Richland Point (82)	42,191.44 292,336.70 4,336,058.85 13,268,758.99 4,808,052.24 0.00 0.00 458,963.19
	Bloodsworth Island (83) Deal Island (84) Monie (85) Terrapin Sand Point (92) Marion (93) Great Fox Island (100) Crisfield (101) Mardela Springs (163) Wetipquin (164)	1,166,053.46 687,463.11 0.00 256,564.14 2,784,284.28 1,407,520.43 961,030.42 0.00 0.00 30,469,277 sq.m 3,046.93 hectares 7,528.96 acres
Mid-Bay Island Complex - 13	Richland Point (82) Bloodsworth Island (83) Deal Island (84) Kedges Straits (91) Terrapin Sand Point (92) Ewell (99) Great Fox Island (100) Tangier Island (107) Goose Island (179)	0.00 9,074,956.39 0.00 9,712,057.35 2,421,497.55 25,431,589.65 5,737,818.70 5,413,491.08 _2,147,915.90 59,939,327 sq.m 5,993.93 hectares 14,811.00 acres
Lower Eastern Shore - 14	Marion (93) Great Fox Island(100) Crisfield (101) Saxis (102) Tangier Island (107) Chesconessex (108) Parksley (109) Nandua Creek (113) Pungoteague (114) Jamesville (119) Franktown (124) Cape Charles (133) Cheriton (134) Elliotts Creek (142)	0.00 7,904,094.78 2,255,894.78 28,636.86 603,820.00 10,427,992.06 4,619,932.11 4,739,141.63 9,492,697.56 6,340,243.26 7,186,743.83 3,610,336.86 872,515.82 1,119,605.90
(continue o	n next page)	

.

	TABLE 6	6 (continued)	
	SECTION	QUADRANGLE	AREA
	Lower Eastern Shore - 14 (continued)	Townsend (143)	0.00
		Goose Island (179)	0.00
,			59,201,655 sq.m 5,920.17 hectares 14,628.74 acres
	Reedville Region - 15	Heathsville (97)	0.00
		Burgess (98)	0.00
		Reedville (106)	3,025,141.41
		Irvington (111)	0.00
		Fleets Bay (112)	4.758.904.96
			7,784,046 sq.m 778.40 hectares
			1,923.43 acres
	D 1 1 D		1,923.43 acres
	Rappahannock River		0.00
	Complex - 16	Tappahannock (95)	0.00
		Lottsburg (96)	0.00
		Dunnsville (103)	0.00
		Morattico (104)	0.00
		Lively (105)	0.00
		Urbanna (110)	112,508.52 1,655,982.70
		Irvington (111) Fleets Bay (112)	0.00
		Saluda (116)	0.00
		Wilton (117)	181,838.41
		Deltaville (118)	1,428,551.72
		Ware Neck (122)	0.00
		Mathews (123)	2.489.521.80
			5,868,403 sq.m
			586.84 hectares
			1,450.08 acres
	New Point Comfort		_,
	Region - 17	Mathews (123)	325,729.38
		w Point Comfort (132)	3,546,698.89
		v Point Comfort (177)	<u>86,705.86</u>
	Last of New		3,959,134 sq.m
			395.91 hectares
•			978.29 acres
	Mobjack Bay Complex - 18	Ware Neck (122)	3,183,667.36
		Mathews (123)	451,751.51
		Claybank (130)	0.00
		Achilles (131)	7,119,986.87
	New	w Point Comfort (132)	7,424,901.79
		w Point Comfort (177)	0.00
			18,180,308 sq.m
			1,818.03 hectares
			4,492.35 acres
	(continue on next j	0.900)	,

	TABLE 6 (continued)	
SECTION	QUADRANGLE	AREA
York River - 19	Toano (120)	0.0
	Gressitt (121)	0.00
	Norge (128)	0.00
	Williamsburg (129)	0.0
	Clay Bank (130)	0.00
	Achilles (131)	3,284,615.58
	New Point Comfort (132)	3,888,417.76
	Hog Island (138)	0.00
	Yorktown (139)	11,558.29
	Poquoson West (140)	1,116,197.49
	Poquoson East (141)	
		0.00
	East of New Point Comfort (177)	0.00
		8,300,789 sq.m
		830.08 hectares
		2,051.13 acres
Lower Western Shore - 20	New Point Comfort (132)	0.0
	Poquoson West (140)	4,713,203.69
	Poquoson East (141)	11,610,619.39
	Elliotts Creek (142)	0.0
	Newport News North (146)	0.00
	Hampton (147)	3,771,344.00
	Norfolk North (150)	0.0
	Little Creek (151)	0.00
	Cape Henry (152)	195,521.32
	Kempsville (156)	0.00
	Princess Anne (157)	0.00
		20,290,688 sq.n
		2,029.07 hectares
		5,013.83 acres
James River - 21	Toano (120)	0.0
	Westover (125)	0.0
	Charles City (126)	0.0
	Brandon (127)	0.0
	Norge (128)	0.0
	Williamsburg (129)	0.0
	Savedge (135)	0.0
	Claremont (136)	0.00
	Surry (137)	0.0
	Hog Island (138)	0.0
	Yorktown (139)	0.0
	Bacons Castle (144)	0.0
	Mulberry Island (145)	0.0
	Newport News North (146)	0.00
	Hampton (147)	34,956.00
	Benns Church (148)	0.00
	Newport News South (149)	0.0
、		
(itinue on next page)	

TABLE 6 (concluded)			
SECTION	QUADRANGLE	AREA	
James River - 21 (continued)	Norfolk North (150) Little Creek (151) Chuckatuck (153) Bowers Hill (154) Norfolk South (155) Kempsville (156) Princess Anne (157)	0.00 0.00 0.00 0.00 0.00 0.00 34,956 sq.m 3.50 hectares 8.65 acres	
Chincoteague Bay	Selbyville (165) Assawoman Bay (166) Berlin (167) Ocean City (168) Public Landing (169) Tingles Island (170) Girdle Tree (171) Boxiron (172) Whittington Point (173) Chincoteague West (174) Chinoteague East (175)	0.00 79,364.98 106,890.61 235,723.28 0.00 11,802,958.86 0.00 7,716,100.35 3,991,047.98 62,688.86 <u>9,246,987.32</u> 33,241,762 sq.m 3,324.18 hectares 8,214.05 acres	

TABLE 7				
Number of Square Meters of SAV in 1992 by Density Class for the 21 Sections of Chesapeake Bay and for Chincoteague Bay.				
SECTION	DENSITY	AREA		
Susquehanna Flats - 1				
	Density 1 = Density 2 = Density 3 = Density 4 = Total =	15,878,168 326,612 290,209 <u>1,424,696</u> 17,010,685		
Upper Eastern Shore - 2	10tal =	17,919,685		
	Density 1 = Density 2 = Density 3 = Density 4 = Total =	2,441,091 312,214 46,488 <u>29,769</u> 2,829,562		
Upper Western Shore - 3	10(a) –	2,829,302		
	Density 1 = Density 2 = Density 3 = Density 4 =	0 699,030 1,025,417 135,224		
Chester River - 4	Total =	1,859,671		
	Density 1 = Density 2 = Density 3 = Density 4 = Total =	677,674 1,018,659 809,262 <u>46,011</u> 2,551,606		
Central Western Shore - 5		2,001,000		
	Density 1 = Density 2 = Density 3 = Density 4 = Total =	0 0 0 0 0		
Eastern Bay - 6	10001 -	0		
-	Density 1 = Density 2 = Density 3 = Density 4 = Total =	3,090,711 1,872,309 576,291 0 5,539,310		
		(continue on next page)		

TABLE 7 (continued)		
SECTION	DENSITY	AREA
Choptank River - 7		
	Density 1 =	2,047,594
	Density 2 =	5,882,511
	Density 3 =	2,781,556
	Density 4 =	142,253
	Total =	10,853,914
Patuxent River - 8		
	Density 1 =	0
-	Density $2 =$	Ö
	Density $3 =$	0
	Density 4 =	Q
	Total =	0
Middle Western Shore - 9		
	D!! 1	0
	Density 1 =	0 0
	Density 2 = Density 3 =	0
·	Density 3 = Density 4 =	0
	Total =	0
Lower Potomac River - 10		
Lower Fotomac Niver - 10		
	Density 1 =	0
	Density 2 =	2,638,734
	Density 3 =	610,418
	Density 4 =	<u>2,461,174</u>
	Total =	5,710,325
Upper Potomac River - 11		
	Density 1 =	364,474
	Density $2 =$	4,262,209
	Density 3 =	2,199,869
	Density 4 =	17,793,053
	Total =	24,619,606
		(continue on next page)

TABLE 7 (continued)	
SECTION	DENSITY	AREA
Middle Eastern Shore - 12		
	Density 1 =	1,213,62
	Density 2 =	6,899,97
	Density 3 =	10,857,98
	Density $4 =$	<u>11,497,69</u>
	Total =	30,469,27
Mid-Bay Island Complex - 13		
	Density 1 =	1,253,29
	Density $2 =$	16,248,98
	Density 3 =	33,195,64
	Density $4 =$	9,241,40
	Total =	59,939,32
Lower Eastern Shore - 14		
	Density 1 =	5,136,823
	Density $2 =$	19,700,72
	Density $3 =$	10,773,838
	Density $4 =$	23,590,273
	Total =	59,201,65
Reedville - 15		
	Density 1 =	1,138,942
	Density $2 =$	2,759,77
	Density $3 =$	2,129,396
	Density $4 =$	1.755.93
	Total =	7,784,046
Rappahannock River Complex - 16		, ,
· ·	Density 1 =	771,169
	Density $2 =$	1,777,44
	Density $3 =$	928,83
	Density $4 =$	2,390,95
	Total =	5,868,40
New Point Comfort Region - 17		
	Density 1 =	4,698
	Density $1 =$ Density $2 =$	2,487,138
	Density $2 =$ Density $3 =$	2,407,130 95,23
	Density $4 =$	1,372,06
	Total =	3,959,134
	1011 -	5,202,10
		(continue on next p

TABLE 7 (concluded)		
SECTION	DENSITY	AREA
Mobjack Bay Complex - 18		
	Density 1 = Density 2 = Density 3 = Density 4 =	840,022 2,539,918 1,968,326 12,832,041
York River - 19	Total =	18,180,308
101K MIVEI - 17	Density 1 = Density 2 = Density 3 = Density 4 = Total =	288,695 891,328 251,039 <u>6,869,727</u> 8,300,789
Lower Western Shore - 20	10101 -	0,000,107
	Density 1 = Density 2 = Density 3 = Density 4 =	2,866,109 3,223,007 5,045,001 <u>9,156,572</u>
	Total =	20,290,688
James River - 21		0
	Density 1 = Density 2 = Density 3 = Density 4 =	0 0 34,956 0
	Total =	34,956
Chincoteague Bay		505 (80
	Density 1 = Density 2 = Density 3 = Density 4 = Total =	587,629 1,795,307 11,550,219 <u>19,308,607</u> 33,241,762
Chesapeake Bay Total	Total =	33,241,702
· · · · · · · · · · · · · · · · · · ·	Density 1 = Density 2 = Density 3 = Density 4 = Total =	38,013,093 73,540,558 73,619,765 <u>100,738,846</u> 285,912,262

Sassafras rivers, and Swan, Stillpond, and Churn creeks with *M. spicatum* and *V. americana* found most frequently, especially in the Elk River. The Upper Western Shore (Section 3) had 186 hectares of SAV concentrated in Saltpeter, Seneca, and Dundee creeks, compared to 91 hectares recorded in 1991. *Myriophyllum spicatum, E. canadensis,* and *C. demersum* were frequently cited. In the Chester River (Section 4) SAV abundance (255 hectares) was up 198 hectares from 1991. SAV was most abundant adjacent to Eastern Neck, Eastern Neck Island, and in Gray's Creek in the lower Chester River. *Ruppia maritima* was most commonly cited.

Middle Bay Zone

In 1992, 43.7% (5,994 hectares) of the SAV in the Middle Bay zone was found in the Mid-Bay Island Complex (Section 13) which includes the broad shoal area between Smith and Tangier Islands. This is an increase of 287 hectares over 1991. In this zone, 22.2% (3,047 hectares) of the SAV was present in the Middle Eastern Shore (Section 12), primarily in the Barren Island-Honga River area, the Big and Little Annemessex rivers, and the lower section of the Manokin River, with *R. maritima* reported most frequently. Little or no SAV was mapped from the Central Western Shore (Section 5), Patuxent River (Section 8), and Middle Western Shore (Section 9). Citizens' surveys reported *Z. palustris* at numerous locations in the South and Severn rivers while 12 species were reported from the small marsh creeks in the upper Patuxent River.

The Middle Bay zone also includes the entire Potomac River, where 3,033 hectares of SAV were present in 1992. SAV was concentrated in two distinct regions: 1) the Upper Potomac River (Section 11) with 2,462 hectares; and 2) the upper portion of the Lower Potomac River (Section 10) with 571 hectares, including Nanjemoy Creek and Port Tobacco River. The total abundance of SAV in the Upper Potomac section decreased from 1991 by 554 hectares. Declines in SAV were most notable in the Alexandria, Mt. Vernon, and Fort Belvoir quadrangles, primarily in the mainstem river, the southern edge of the large bed at the Woodrow Wilson Bridge, and in Piscataway Creek. Ground survey data were limited in this section in 1992 to only Citizens' surveys with five species reported: M. spicatum, V. americana, H. verticillata, N. guadalupensis and C. demersum. SAV increased in the Eastern Bay and Choptank River sections for the first time since the late 1980's. SAV in the Eastern Bay (Section 6) increased 486 hectares from 1991 to a total of 554 hectares in 1992, while in the Choptank River (Section 7) it increased 971 hectares from 1991 to a total of 1,085 hectares in 1992. Most of the increase in the Eastern Bay occurred in the Miles River, while in the Choptank River section, SAV beds were most abundant in Harris and Broad creeks and in Trippe Bay. Three species were reported from Sections 6 and 7, with *R. maritima* most commonly cited.

Lower Bay Zone

Distribution and abundance of SAV in 1992, in the Lower Bay zone, were similar to 1991. In this zone, 47.9% (5,920 hectares) of the SAV was found in the Lower Eastern Shore (Section 14) around the Fox Islands and the mouths of major creeks (i.e. Cherrystone Inlet and Hungars, Mattawoman, Occahannock, Craddock, Pungoteague, and Onancock creeks). Along the western shore of the Chesapeake Bay, SAV was abundant in Mobjack Bay (Section 18) (14.7% of SAV in the Lower Bay zone), in the lower York River (Section 19) (6.7% of SAV in the Lower Bay zone), and in the Lower Western Shore (Section 20), specifically Back River and the Drum Island Flats area adjacent to Plum Tree Island (16.4% of SAV in the Lower Bay zone). There were 778 hectares of SAV mapped in the Reedville Region (Section 15) in 1992, a 22.5% increase over 1991. There were 396 hectares of SAV identified in 1992 in the New Point Comfort Region (Section 17) compared to 339 hectares in 1991. SAV abundance was up 15.3% from 1991 in both the Piankatank and Rappahannock rivers (Section 16). The James River (Section 21) had less than 4 hectares of SAV in 1992. Zostera marina and R. maritima were the abundant species in this zone.

Chincoteague Bay

SAV in the Chincoteague Bay section increased in distribution with 3,324 hectares mapped in 1992 compared to 2,746 hectares in 1991. Most of the SAV in Chincoteague and Sinepuxent bays, which consisted of *Z. marina* and *R. maritima*, was located along the eastern side of the bay behind Assateague Island. Some small beds, consisting of *R. maritima*, were located along the western side of Isle of Wight and Assawoman bays.

DISCUSSION OF SECTIONS ARRANGED WITHIN ZONES

Upper Bay Zone

1. Susquehanna Flats

There were 1,792 hectares of SAV in the Susquehanna Flats section in 1992 (Tables 4-7; Figure 8; Appendix C, Maps 2, 3, and 9) compared to 1,684 hectares mapped in 1991. Eight percent of the total coverage of SAV in this section was dense (class 4), 1.6% was moderate (class 3), 1.8% was sparse (class 2), and 88.6% was very sparse (class 1) (Table 7; Figure 3). SAV beds were located principally in two main areas: 1) sparse to dense fringing beds in the Susquehanna River consisting primarily of *M. spicatum*, with *H. dubia*, *V. americana*, *H. verticillata*, and *C. demersum* from Robert Island to the river mouth at Havre de Grace on the west side, to Stump Point at the mouth of Mill Creek on the east side, and in Mill Creek, Furnace Bay, and Baker Cove; and 2) a large area of very sparse SAV

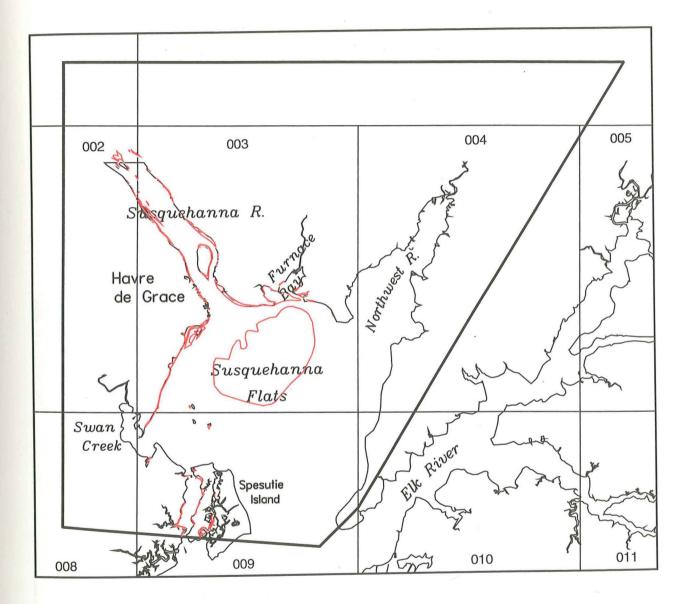


Figure 8. Distribution of SAV in the Susquehanna Flats in 1992 (Section 1).

located in the broad shoal area at the river mouth. This broad shoal area consisted primarily of small patches of *M. spicatum*. In addition, SAV beds were again mapped in Spesutie Narrows where most SAV is found as small, fringing beds of *M. spicatum* and *H. verticillata*. The Citizens' Survey reported *M. spicatum* and *Potamogeton crispus* in the Northeast River.

A total of six species (*M. spicatum*, *H. dubia*, *V. americana*, *H. verticillata*, *C. demersum*, *P. crispus*) have been reported either by Stan Kollar of Harford Community College or the Citizens' Survey.

2. Upper Eastern Shore

There were 283 hectares of SAV mapped for the Upper Eastern Shore section in 1992 (Tables 4-7; Figure 9; Appendix C, Maps 4, 5, 9, 10, 15, 16, and 17) compared to 326 hectares mapped for 1991. In this section 1.1% of the total coverage of SAV was dense (class 4), 1.6% was moderate (class 3), 11.0% was sparse (class 2), and 86.3% was very sparse (class 1) (Table 7; Figure 3). Principal locations of beds were in the Elk River, Swan Creek, lower Sassafras River, Still Pond, and the mouth of Churn Creek. Very little or no SAV was mapped in the Bohemia River or along the mainstem of the bay from Still Pond to Swan Point.

Ground survey data from Stan Kollar and the Citizens' survey reported 5 species in this section (Maps 4, 9, 10, 15, 16, and 17) with *M. spicatum* and *V. americana* found most frequently, especially in the Elk River. *Potamogeton perfoliatus*, *P. crispus*, and *Potamogeton pectinatus* were also reported.

3. Upper Western Shore

There were 186 hectares of SAV mapped from the aerial photographs in 1992 for the Upper Western Shore section (Tables 4-7; Figure 10; Appendix C, Maps 7, 8, 9, 13 and 14) compared to 91 hectares in 1991. Of the total coverage of SAV in this section 7.3% was dense (class 4), 55.1% was moderate (class 3), and 37.6% was sparse (class 2) (Table 7; Figure 3). SAV beds were concentrated in Saltpeter, Dundee, Seneca, and Romney creeks, and Middle River, in and adjacent to Galloway Creek. SAV was mapped in the lower Spesutie Narrows in 1992, the first time SAV was mapped in this part of section 3. Very little or no SAV was again reported in the Back, Patapsco, Bush, Gunpowder, and Magothy rivers.

Ground survey data from the Citizen's survey and Essex Community College reported 6 species in this section (Maps 7, 13, 14, 19, 23, and 24) with *M. spicatum*, *E. canadensis*, and *C. demersum* were found most frequently in Saltpeter, Dundee, and Seneca creeks, where SAV has been most abundant. *Vallisneria americana* and *Z. palustris* were also reported in these same areas but less frequently. *Zannichellia palustris* and *R. maritima* were reported from other creeks and rivers with *Z. palustris* most numerous at locations in the Magothy River.

Figure 9. Distribution of SAV in the Upper Eastern Shore in 1992 (Section 2).

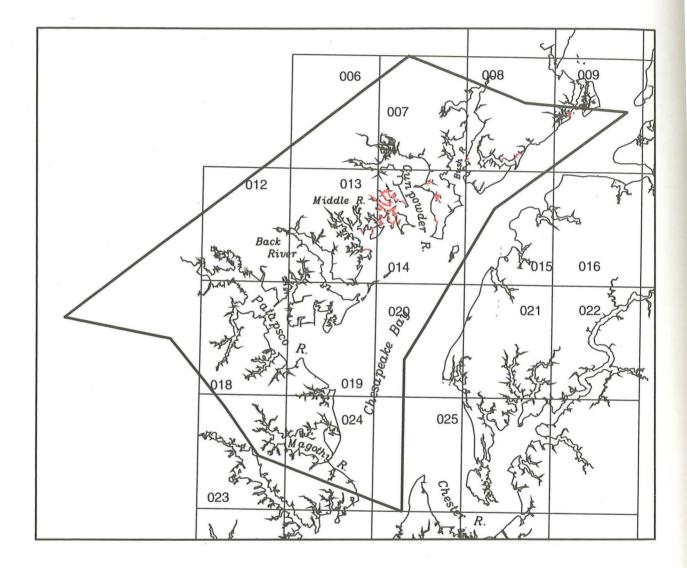


Figure 10. Distribution of SAV in the Upper Western Shore in 1992 (Section 3).

There were 255 hectares of SAV in the Chester River section in 1992 (Tables 4-7; Figure 11; Appendix C, Maps 20, 21, 26, and 33) compared to 57 hectares in 1991. In this section, 1.8% of the total coverage of SAV was dense (class 4), 31.7% was moderate (class 3), 39.9% was sparse (class 2), and 26.6% was very sparse (class 1) (Table 7; Figure 3). This is the first year in which SAV has increased in this section. SAV has continually declined in this section since 1987 when 515 hectares of SAV were mapped, and large, dense beds of *R. maritima* dominated this section. Most of the SAV, and where the greatest increase occurred, was located adjacent to Eastern Neck and Eastern Neck Island, especially near Eastern Neck Narrows, and in Grays Creek, a tributary entering the Chester River. Additional SAV beds in the Chester River were located in Robin Cove and adjacent to Quaker Neck. Rock Hall Harbor, and Haven, Swan, and Huntingfield creeks, located above Eastern Neck on the Chesapeake Bay, supported the remaining SAV beds in this section.

Three species of SAV were reported from this section by Citizens' and HPEL surveys in 1992: *Potamogeton perfoliatus, Z. palustris,* and *R. maritima* (Maps 20, 21, and 26). *Ruppia maritima* was most commonly cited, especially in the Chester River. HPEL staff ran a 200 m transect in Fryingpan Cove in Eastern Neck Narrows. They found *P. perfoliatus* occurring along 5 points of the transect and *R. maritima* occurring at only 1 point. Plants were very patchy, with 2% or less of the sample being SAV. No plants were found beyond 100 m. A second transect conducted along the eastern shore of the lower Chester River adjacent to Robin Cove found no SAV.

Middle Bay Zone

5. Central Western Shore

There was no SAV observed from the aerial photography in the Central Western Shore section in 1992 (Tables 4-7; Figure 12). This was similar to 1991. Citizens' surveys found *Z. palustris* at numerous locations in the Severn and South rivers (Maps 23 and 30) and at one location at the mouth of the Rhode River (Map 35). *Ruppia maritima* was reported at a few locations in the South and Rhode rivers.

6. Eastern Bay

There were 554 hectares of SAV identified from the Eastern Bay section in 1992 (Tables 4-7; Figure 13; Appendix C, Maps 32, 33, 36, and 37) compared to 68 hectares reported in 1991, a 714.7% increase. In this section, 10.4% of the total coverage of SAV in this section was moderate (class 3), 33.8% was sparse (class 2), and 55.8% was very sparse (class 1) (Table 7; Figure 3). Most of the SAV was

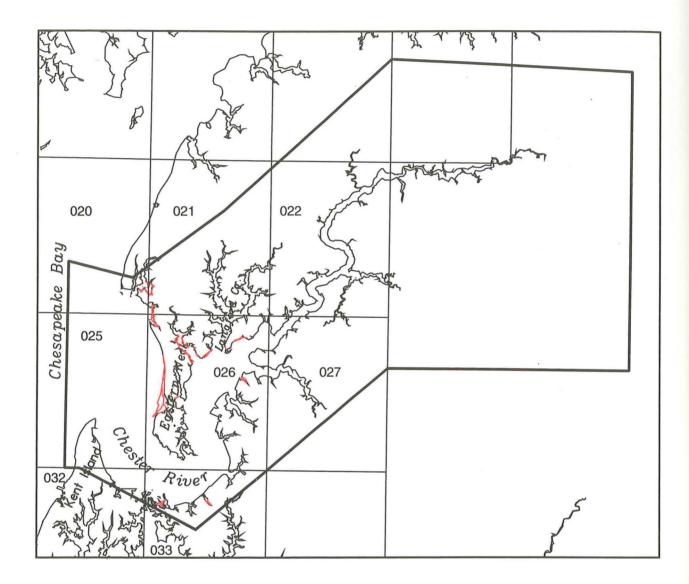


Figure 11. Distribution of SAV in the Chester River 1n 1992 (Section 4).

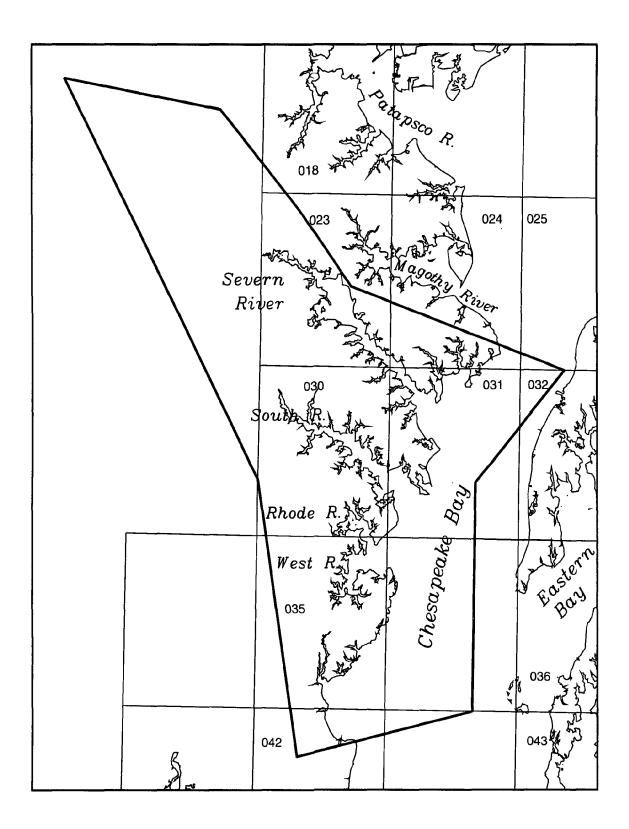


Figure 12. Distribution of SAV in the Central Western Shore in 1992 (Sect6ion 5).

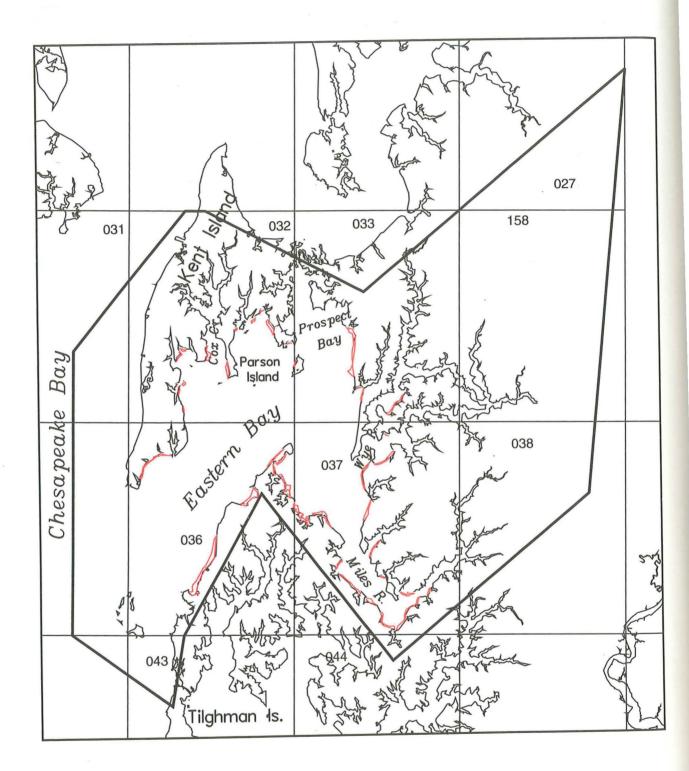


Figure 13. Distribution of SAV in the Eastern Bay in 1992 (Section 6).

found in the lower Miles River, where little SAV was reported in 1991. Other SAV beds were located in the lower Cox Creek, Wye River, the eastern shore of lower Kent Island, Parson Island, Harbor Cove on Eastern Bay, Piney Neck, Crab Alley Bay, and between Wades Point and Claiborne on Eastern Bay.

Only two species of SAV were reported from this section by Citizens' and HPEL surveys: *Z. palustris*, *R. maritima* (Maps 32, 33, 36, and 37; Appendix F) with *R. maritima* most commonly cited. HPEL staff conducted three transects in the Eastern Bay area.

Ruppia maritima accounted for less than 2% cover at 7 points along a transect run from the western side of Parsons Island. No SAV was found beyond 170 m. *Ruppia maritima* was more abundant along a transect run from the southern tip of Kent Island between Kent and Long Point. This species was found at 7 points out to 150 m from the shoreline accounting for up to 90% of the coverage at the inshore stations (30 m from shore). At the third transect between Claiborne and Wades Point *R. maritima* was abundant at only two points in the first 30 m and was absent from the remainder of the transect.

7. Choptank River

There were 1,085 hectares of SAV observed in the Choptank River section in 1992 (Tables 4-7; Figure 14; Appendix C, Maps 43, 44, 51, 52, 53, and 62) compared to 114 hectares in 1991, an increase (851.8%) that is greater than any other section in 1992. In this section, 1.3% of the total coverage of SAV was dense (class 4), 25.6% was moderate (class 3), 54.2% was sparse (class 2), and 18.9% was very sparse (class 1) (Table 7; Figure 3). SAV was found in moderate to sparse beds in Blackwalnut Cove at the southern tip of Tilghman Island; Cators, Oyster, Point, and Cook Point coves; James Island; Brannock Bay; Tred Avon River; Harris, Broad, Chapel, Island, Irish, and Covey creeks; and off the Little Choptank River in Hudson and Brook creeks.

Three species of SAV were reported from this section by Citizens' and HPEL surveys: Z. palustris, R. maritima, and P. pectinatus (Maps 43, 44, 46, 51, 52, and 53; Appendix F) with R. maritima most commonly cited. HPEL staff conducted seven transects in the Choptank River area. Ruppia maritima accounted for less than 20% cover at 6 points along a transect run in Brannock Bay with no SAV reported beyond 150 m. No SAV was found along a second transect just north of the Brannock Bay transect although the aerial survey mapped SAV in the area. No SAV was found along a transect run from the western side of Ragged Island at the mouth of the Little Choptank River. Ruppia maritima was more abundant along a transect run from the southern tip of Tilghman Island at Blackwalnut Point. SAV was present at all points out to 200 m and was present beyond the transect. A transect run from Cooks Point Cove found no SAV although the aerial survey reported abundant SAV. However, the transect was run off a point from which no SAV was reported in the aerial survey. The Chapel Creek transect had R. maritima occurring along the entire 200 m transect, with 14 points have greater than 50% coverage of SAV. The aerial survey has consistently reported SAV in this area. The transect between Change and Nelson Point on the

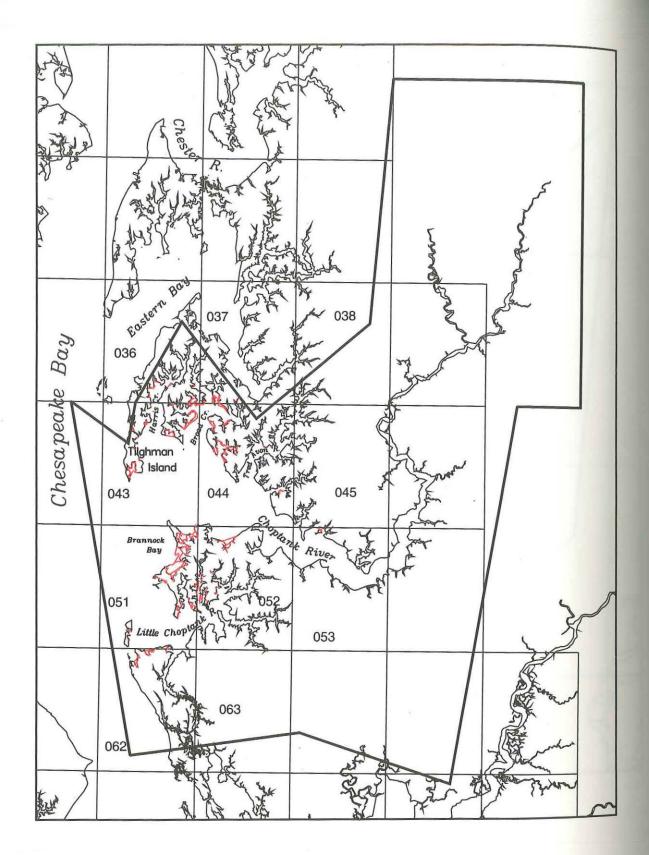


Figure 14. Distribution of SAV in the Choptank River in 1992 (Section 7).

Choptank River had a very patchy distribution of *R. maritima*, although it was abundant (greater than 20% coverage) at five points along the 200 m transect.

8. Patuxent River

There was no SAV observed from the aerial photography in the Patuxent River section in 1992 (Tables 4-7; Figure 15) similar to 1991. The Patuxent River Park and Citizens' surveys reported 12 species occurring in this section primarily in the marsh creeks in the upper portions of the Patuxent River (Maps 41, 60, and 159): *E. canadensis, C. demersum, V. americana, Z. palustris, N. guadalupensis, Najas gracillus, Najas minor, P. crispus, Potamogeton pusillus, P. pectinatus, and Potamogeton epihydrus. Zannichellia palustris and R. maritima were reported from the lower portion of the Patuxent River in Saint Leonard, Pearson and Harper creeks (Maps 61 and 71).*

9. Middle Western Shore

There were no SAV beds identified in the Middle Western Shore section in 1992 (Tables 4-7; Figure 16) similar to 1991. *Zannichellia palustris* and *R. maritima* were reported by Citizens' surveys from Goose Creek just south of the Patuxent River mouth (Map 71).

10. Lower Potomac River

There were 571 hectares of SAV identified in the Lower Potomac River section as indicated on the 1992 aerial photography (Tables 4-7; Figure 17; Appendix C, Maps 56, 57, 58, 65, 66, 67, 80, and 89) compared to 581 hectares reported in 1991. In this section, 43.1% of the total coverage of SAV was dense (class 4), 10.7% was moderate (class 3), and 46.2% was sparse (class 2) (Table 7; Figure 3). Most of the SAV occurred in the region near the Route 301 bridge, and along Nanjemoy Creek and Port Tobacco River, as well as along the shoreline adjacent to these two creeks. SAV beds were found fringing the eastern side of Mathias Point Neck to an area just below the Route 301 bridge. Several small beds were observed in Machodoc, Rosier, and Cuckhold creeks, the St. Marys River, and in Calvert Bay at the mouth of Smith Creek.

Ground survey data was available only from Citizens' surveys for Maps 66, 78, 80, and 98. *Zannichellia palustris* was reported from two creeks off the Lower Machodoc Creek (Map 78) and in the St. Marys River (Map 80). *Ruppia maritima* was reported from the St. Marys River and Cubitt Creek in the lower Potomac River. Three species were reported from off Mathias Point Neck: *V. americana, E. canadensis,* and *P. perfoliatus*.

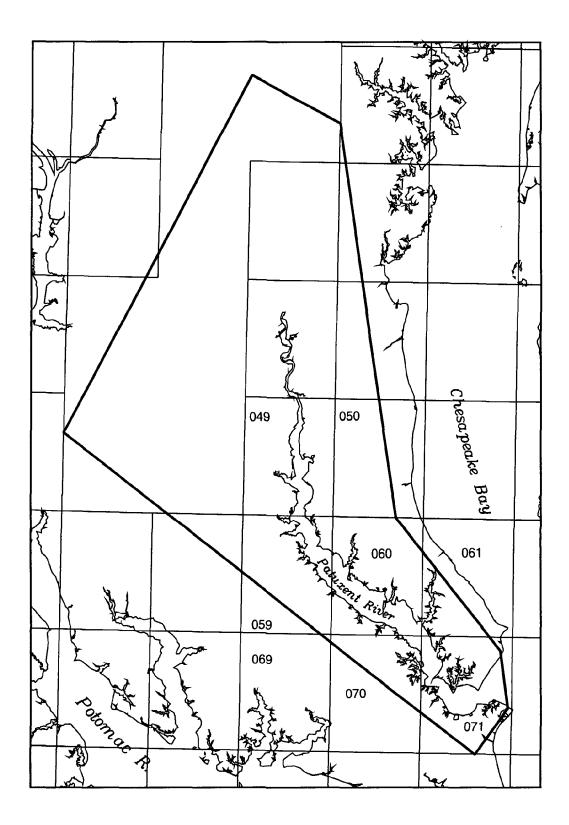
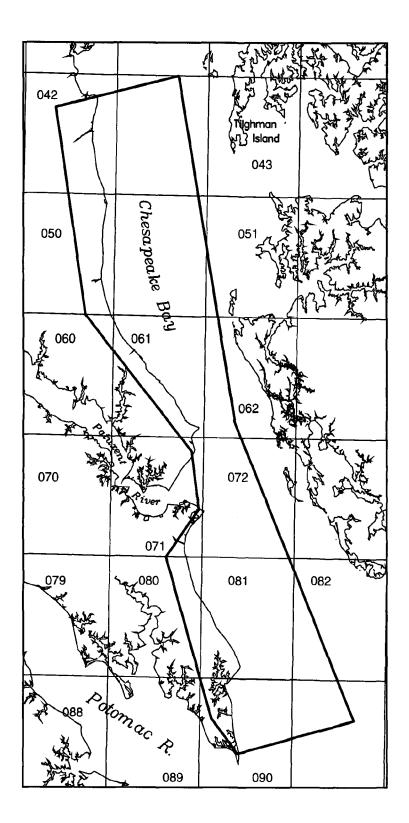



Figure 15. Distribution of SAV in the Patuxent River in 1992 (Section 8).

Ń

Figure 16. Distribution of SAV in the Middle Western Shore in 1992 (Section 9).

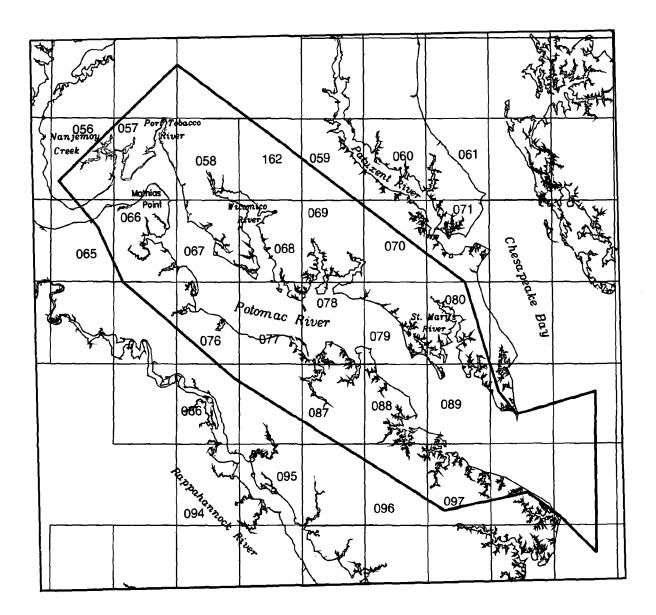


Figure 17. Distribution of SAV in the Lower Potomac River in 1992 (Section 10).

11. Upper Potomac River

There were 2,462 hectares of SAV mapped in the Upper Potomac River section (Tables 4-7; Figure 18; Appendix C, Maps 28, 34, 39, 40, 47, 48, 55, 64, 65, and 161) in 1992 compared to 3,016 hectares reported in 1991, a decrease of 18.4%. A total of 72.3% of the SAV beds were densely vegetated (class 4), 8.9% was moderate (class 3), 17.3% was sparse (class 2), and 1.5% was very sparse (class 1) (Table 7; Figure 3). Declines in SAV were most notable in the Alexandria (Map 34), Mt. Vernon (Map 40), and Fort Belvoir (Map 39) quadrangles, in particular in the mainstem of the Potomac River, the southern edge of the large bed at the Woodrow Wilson Bridge, and in Piscataway Creek. SAV beds increased in size in Aquia Creek. SAV beds were first noted in Potomac Creek although COG reported *H. verticillata* at one location in 1991. SAV is still absent from Occoquan and Belmont bays (although COG reported some SAV in 1991 in Belmont Bay) but some SAV beds were located and mapped at the mouth of the Occoquan River in 1992.

Ground survey data was available only from Citizens' surveys for Map 40. Five species were reported: *M. spicatum*, *V. americana*, *H. verticillata*, *N. guadalupensis* and *C. demersum*.

12. Middle Eastern Shore

There were 3,047 hectares of SAV identified in the Middle Eastern Shore section (Tables 4-7; Figure 19; Appendix C, Maps 62, 63, 72, 73, 74, 82, 83, 84, 92, 93, 100, and 101) in 1992 compared to 2,178 hectares reported in 1991. In this section, 37.7% of the SAV was dense (class 4), 35.6% moderate (class 3), 22.6% sparse (class 2), and 4.0% very sparse (class 1) (Table 7; Figure 3). SAV beds were very abundant in: 1) the Honga River, 2) between Barren Island and Meekins Neck-Upper Hooper Island, and 3) the lower Manokin and the Big and Little Annemessex rivers. No SAV beds were observed in Fishing and Monie bays, and in the Nanticoke and Wicomico rivers. Ground survey data were available for this section in 1992 from Citizens' surveys (Maps 72, 74, 82, 84, 100, 101). *Ruppia maritima* was reported most frequently, while *Z. palustris* was present in only one area (Map 74).

13. Mid-Bay Island Complex

There were 5,994 hectares of SAV mapped in the Mid-Bay Island Complex in 1992 (Tables 4-7; Figure 20; Appendix C, Maps 83, 91, 92, 99, 100, 107, and 179) compared to 5,707 hectares reported in 1991, a 5.0% increase. This section contains 20.9% of the SAV in the entire Chesapeake Bay, slightly less than the 22.3% in 1991. However, the density of SAV has decreased since 1991. In 1992 15.4% percent of the SAV within this section was in dense beds (class 4) compared to 59.0% in 1991. In the rest of the classes 55.4% was moderately dense

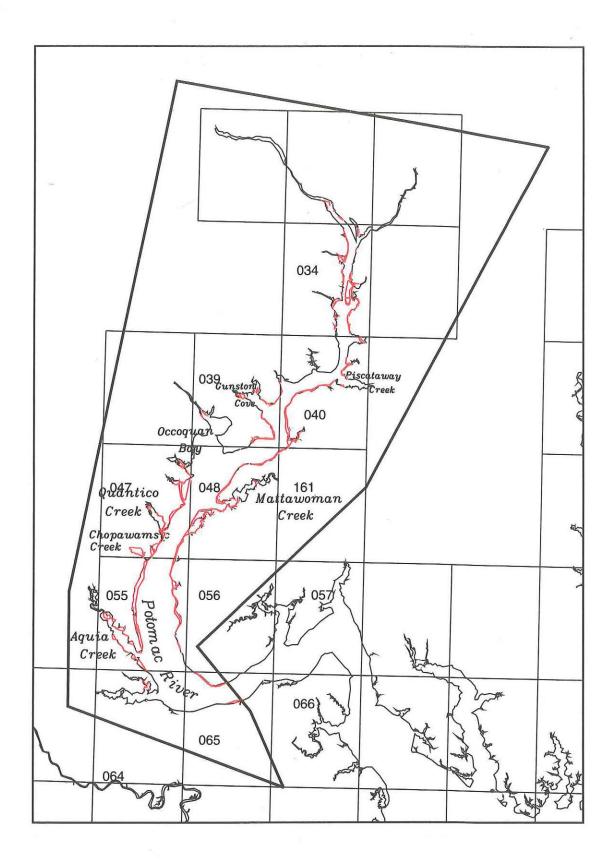


Figure 18. Distribution of SAV in the Upper Potomac River in 1992 (Section 11).

54

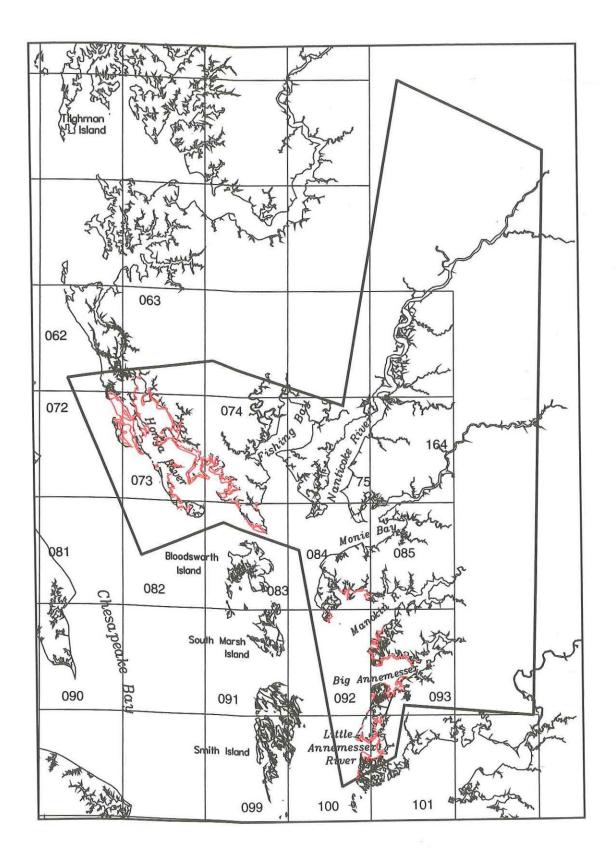
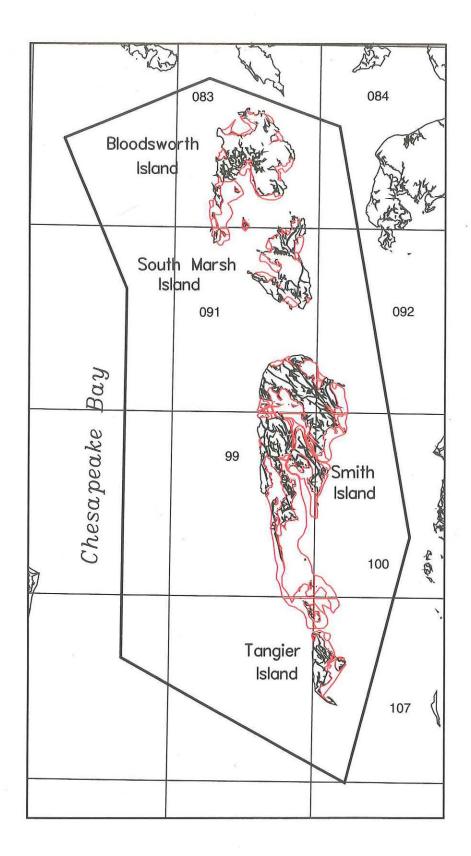



Figure 19. Distribution of SAV in the Middle Eastern Shore in 1992 (Section 12).

55

(class 3), 27.1% was sparse (class 2), and 2.1% was very sparse (class 1) (Table 7; Figure 3).

SAV is present in dense to moderate beds along the broad, expansive shoal area between Tangier Island and Smith Island; the eastern side of Tangier Island; Mailboat Harbor; and on the shoals and in the coves adjacent to Bloodsworth, South Marsh, Holland, Adam, and Spring islands. There was no ground survey data available for this section in 1992, although both *Z. marina* and *R. maritima* have been reported previously throughout this section.

Lower Bay Zone

14. Lower Eastern Shore

There were 5,920 hectares of SAV observed in the Lower Eastern Shore section in 1992 (Tables 4-7; Figure 21; Appendix C, Maps 100, 101, 102, 107, 108, 109, 113, 114, 119, 124, 133, 134, and 142) compared to 5,720 hectares reported in 1991. In this section 39.8% of the total SAV was dense (class 4), 18.2% was moderate (class 3), 33.3% was sparse (class 2), and 8.7% was very sparse (class 1) (Table 7; Figure 3). Large, dense beds continue to persist at the mouth of Cherrystone Inlet near Cape Charles, and at the mouths of Hungars, Mattawoman, Occohannock, Craddock, Pungoteague, Onancock, and Chesconessex creeks. Large, dense beds also occur at the Big Marsh area near Chesconessex Creek, at Webb Island off the mouth of Deep Creek, and on the large shoal area on the eastern side of the Fox and Cedar Islands. There was no SAV from Elliots Creek just below Cape Charles to Fishermans Island at the mouth of Chesapeake Bay. Ground survey data were limited in this section. Although both Z. marina and R. maritima have been reported previously throughout this section, the Citizens' surveys reported Z. marina and R. maritima in Nassawadox Creek (Map 124) and R. maritima in Beasley Bay (Map 109) while VIMS staff reported Z. marina at the mouth of Kings Creek near Cape Charles (Map 133).

15. Reedville Region

There were 778 hectares of SAV identified in the Reedville Region in 1992 (Tables 4-7; Figure 22; Appendix C, Maps 106 and 112) compared to 635 hectares reported in 1991. In this section, 22.5% of the total coverage of SAV was dense (class 4), 27.4% was moderate (class 3), 35.5% was sparse (class 2), and 14.6% was very sparse (class 1) (Table 7; Figure 3). *Zostera marina* and R. *maritima* were the two species identified by VIMS and Citizens' surveys (Maps 106 and 112). Most beds were found in Little, Fleets, and Ingram bays; Dymer, Indian, Dividing, Ball, and Cloverdale creeks; Dameron Marsh; and adjacent to Fleeton Point.

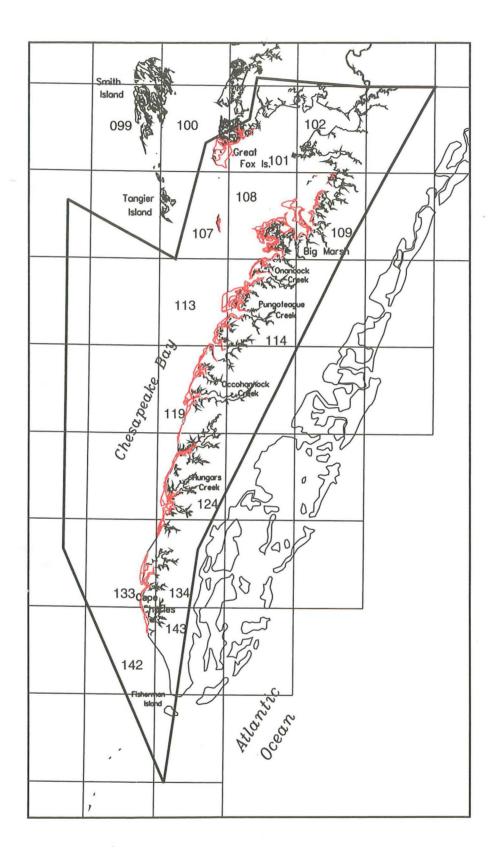


Figure 21. Distribution of SAV in the Lower Eastern Shore in 1992 (Section 14).

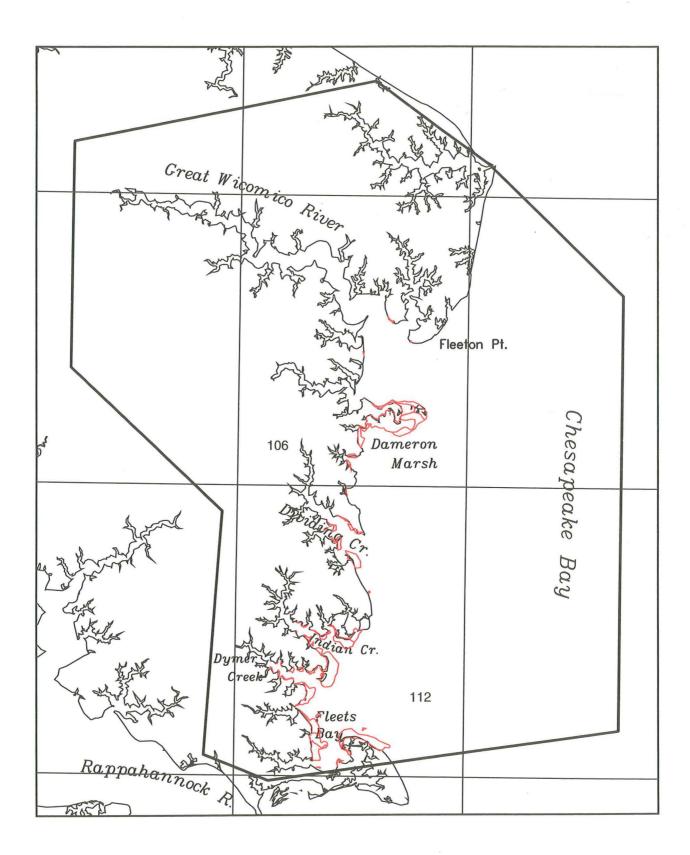


Figure 22. Distribution of SAV in the Reedville Region in 1992 (Section 15).

16. Rappahannock River Complex

There were 587 hectares of SAV observed in the Rappahannock River Complex in 1992 (Tables 4-7; Figure 23; Appendix C, Maps 110, 111, 117, 118, and 123) compared to 509 hectares reported in 1991. In this section 40.7% of the total coverage of SAV was dense (class 4), 15.8% was moderate (class 3), 30.3% was sparse (class 2), and 13.1% was very sparse (class 1) (Table 7; Figure 3). Dense, moderate, and sparse beds were present in the Corrotoman River; along the north shore of the Rappahannock River between Carters Creek and the Corrotoman River; Milford Haven; the lower Piankatank River; and the mouth of the north shore of the Rappahannock River between Mosquito Point and Deep Hole Point. Ruppia maritima is the dominant species in both the Rappahannock and Piankatank rivers while Z. marina is found in only isolated beds (from ground surveys by VIMS staff of SAV in Maps 110, 111, 117, 118, and 123) e.g. Burtons Point in the Piankatank River. One Citizens' survey observation reported *R. maritima* in Map 110 off Towles Point in the Rappahannock River. The large SAV bed adjacent to Windmill Point that has been slowly expanding naturally since 1989, with both Z. marina and R. maritima present now covers an area of 28.4 hectares, up from 13.3 hectares in 1991. SAV beds are abundant in Milford Haven but are principally located along the north shore with both Z. marina and R. maritima present.

17. New Point Comfort Region

There were 396 hectares of SAV identified in the New Point Comfort Region in 1992 (Tables 4-7; Figure 24; Appendix C, Map 123, 132, and 177) compared to 339 hectares reported in 1991. In this section 34.7% of the total coverage of SAV was dense (class 4), 2.4% was moderate (class 3), 62.8% was sparse (class 2), and 0.1% was very sparse (class 1) (Table 7; Figure 3). SAV beds were present from New Point Comfort to just north of Horn Harbor. SAV beds were visible in the northern end of Winter Harbor for the first time since 1978. VIMS staff confirmed the presence of SAV at this location which consisted of both *Z. marina* and *R. maritima* (Map 123), the same species present in other beds in this section. Because reproductive shoots of *Z. marina* were observed (this species flowers in the second year of its life cycle), it is likely that these beds were previously present.

18. Mobjack Bay Complex

The Mobjack Bay Complex contained 1,818 hectares of SAV in 1992 (Tables 4-7; Figure 25; Appendix C, Maps 122, 123, 131, 132 and 177) compared to 1,788 hectares reported in 1991. SAV beds consisting of both *Z. marina* and *R. maritima* (ground surveys were made by VIMS staff and citizens of SAV in Maps 131 and 132) were abundant along the entire shoreline of Mobjack Bay, as well as in the

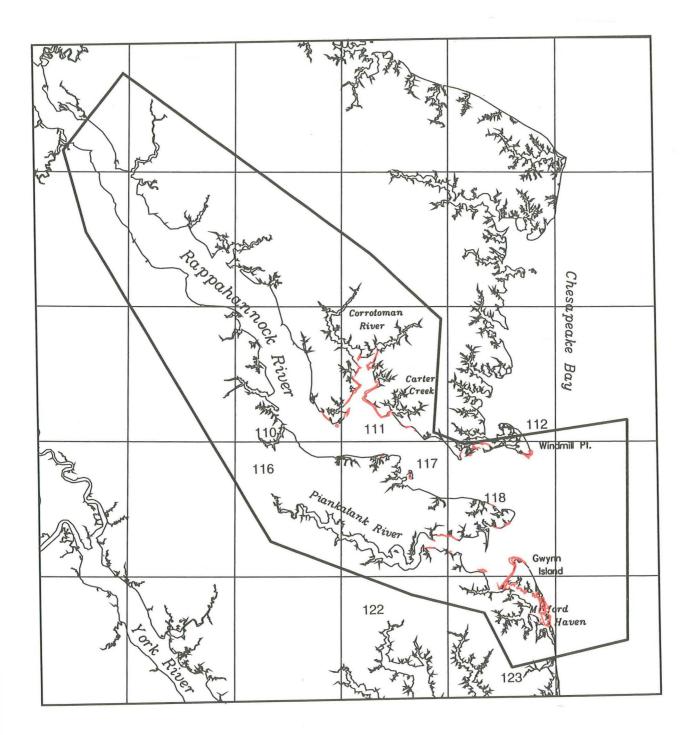


Figure 23. Distribution of SAV in the Rappahannock River Complex in 1992 (Section 16).

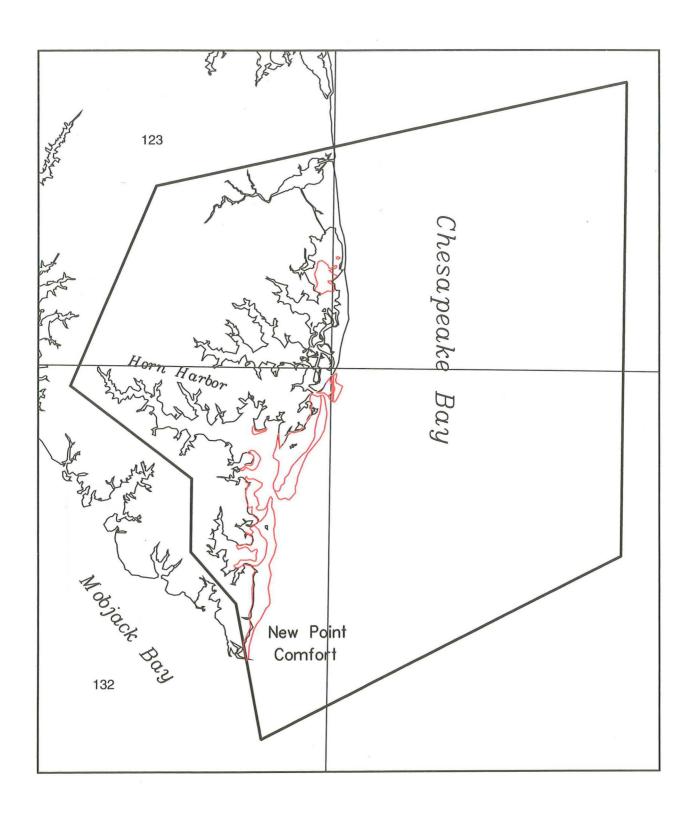


Figure 24. Distribution of SAV in the New Point Comfort Region in 1992 (Section 17).

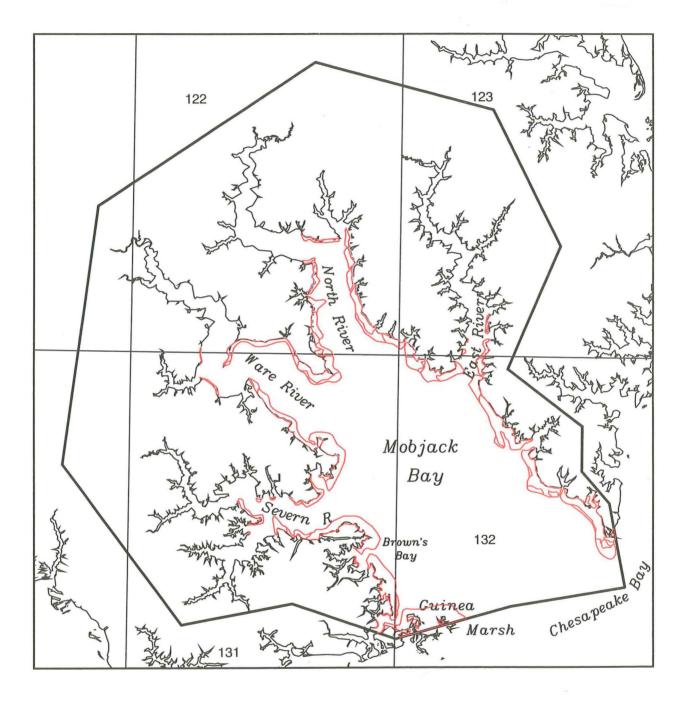


Figure 25. Distribution of SAV in the Mobjack Bay Complex in 1992 (Section 18).

lower reaches of the four tributaries: Severn, Ware, North, and East rivers. The Mobjack Bay area continued to harbor some of the more extensive SAV beds on the western shore of the lower Chesapeake Bay. In this section 70.6% of the total coverage of SAV was dense (class 4), 10.8% was moderate (class 3), 14.0% was sparse (class 2), and 4.6% was very sparse (class 1) (Table 7; Figure 3).

19. York River

There were 830 hectares of SAV observed in the York River section in 1992 (Tables 4-7; Figure 26; Appendix C, Maps 131, 132, 139, and 140) compared to 804 hectares reported in 1991. In this section 82.8% of the total coverage is classified as dense (class 4), while 3.0% was moderately dense (class 3), 10.7% was sparse (class 2), and 3.5% was very sparse (class 1) (Table 7; Figure 3). Ground survey information was available for Maps 131, 132, 139, and 140 from VIMS surveys. Dense SAV beds, consisting of both *Z. marina* and *R. maritima* were located principally along the north shore from Gloucester Point to the mouth of the river. SAV beds were absent upstream of Gloucester Point along the north shore except for one small bed of *Z. marina* near Gloucester Point, a result of a VIMS transplanting project using seeds in 1989, 1990, and 1991.

Zostera marina was transplanted using whole plants to Mumfort Island, Catlett Island and Clay Bank along the north shore and Yorktown along the south shore in the fall of 1991 by VIMS staff and was present through the spring and summer, 1992. Plants did not survive at Catlett Island and Clay Bank by late summer 1992 but survived at Mumfort Island and Yorktown. The south shore from Yorktown to Goodwin Island remained unvegetated except for one bed adjacent to the Coast Guard Station consisting of *R. maritima* and a second bed east of the refinery pier. Dense beds were present adjacent to Goodwin Island.

20. Lower Western Shore

There were 2,029 hectares of SAV mapped in the Lower Western Shore section in 1992 (Tables 4-7; Figure 27; Appendix C, Maps 140, 141, 147, and 152) compared to 2,006 hectares reported in 1991. Ground surveys by citizens and VIMS (Maps 140, 141, 147, and 152) reported both *Z. marina* and *R. maritima*. In this section 45.1% of the total coverage was mapped as dense (class 4), 24.9% as moderate (class 3), 15.9% as sparse (class 2), and 14.1% as very sparse (class 1) (Table 7; Figure 3). SAV was mapped in Broad Bay; Back River; the mouth of the Poquoson River off Pasture and Hunts Neck; Drum Island Flats; Poquoson Flats; adjacent to Crab Neck just south of Goodwin Island; and on the south side of Goodwin Island. No SAV was present in the southwest and northwest branches of Back River, or in the Poquoson River, Chisman Creek, and Back Creek.

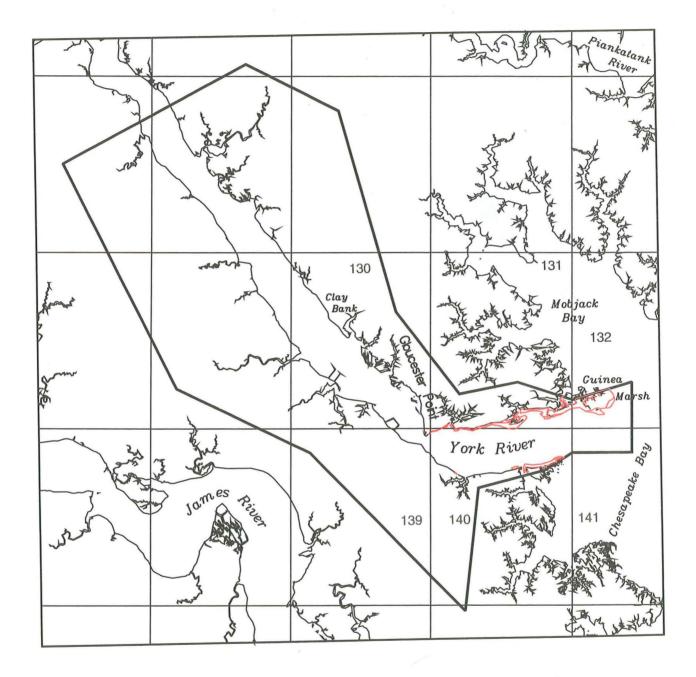
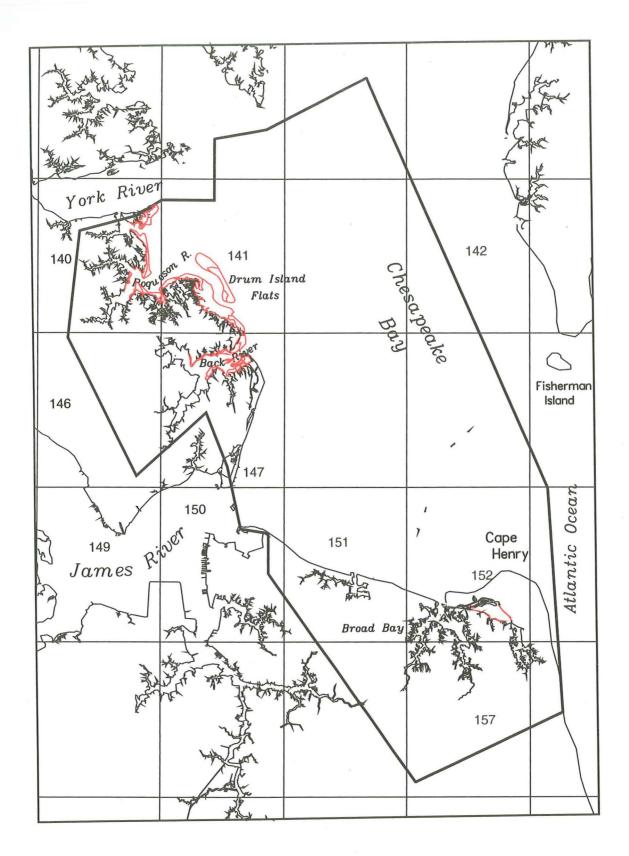



Figure 26. Distribution of SAV in the York River in 1992 (Section 19).

21. James River

There were 3.50 hectares of SAV in the mainstem of the James River in 1992 (Tables 4-7; Figure 28; Appendix C, Map 147), compared to 2.74 hectares in 1991. This single, moderately dense bed, (class 3) (Table 7; Figure 3) located at the mouth of Hampton Creek adjacent to the Veteran's Hospital, consists of *Z. marina*, the species reported in previous ground surveys.

Chincoteague Bay

There were 3,324 hectares of SAV identified in Chincoteague and Sinepuxent bays in 1992 with a small amount present in Isle of Wight and Assawoman bays (Tables 4-7; Figure 29; Appendix C, Maps 166, 167, 168, 170, 172, 173, 174, and 175) compared to 2,746 hectares reported in 1991. In this section 58.1% of the total coverage was mapped as dense (class 4), 34.7% as moderate (class 3), 5.4% as sparse (class 2), and 1.8% as very sparse (class 1) (Table 7; Figure 3). The Citizens' survey found both Z. marina and R. maritima throughout Chincoteague and Sinepuxent bays (Maps 168, 170, 172, 173 and 175) but only reported R. maritima in Isle of Wight and Assawoman bays (Maps 166 and 168). All of the SAV in Chincoteague Bay continues to be present on the eastern side of the bay adjacent to Assateague Island. The vegetation remains concentrated in four relatively distinct areas identical to that reported in the earlier surveys from 1986 through 1991. They were located west of the northern end of Chincoteague Island, and west of West Bay, Green Run Bay, and the Tingles Island area. The bed west of Chincoteague Island, the largest in this area, has expanded and is now almost continuous from the island to the offshore areas. SAV in Isle of Wight and Assawoman bays is also present on the eastern side adjacent to Ocean City.

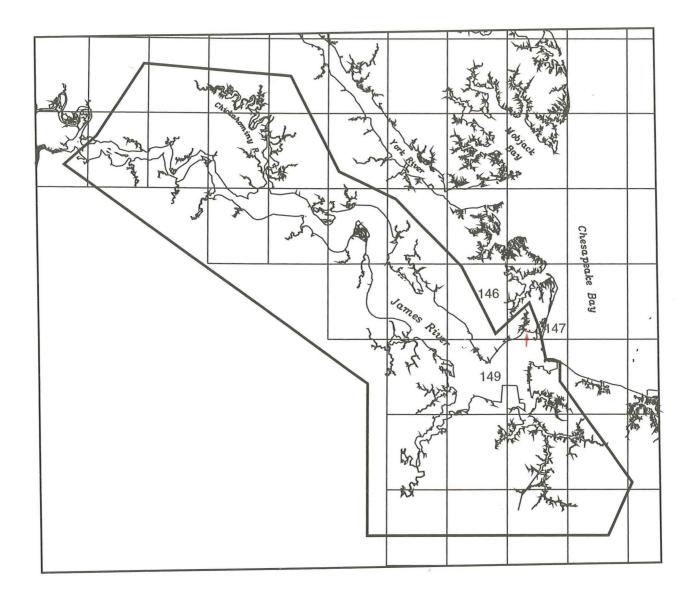


Figure 28. Distribution of SAV in the James River in 1992 (Section 21).

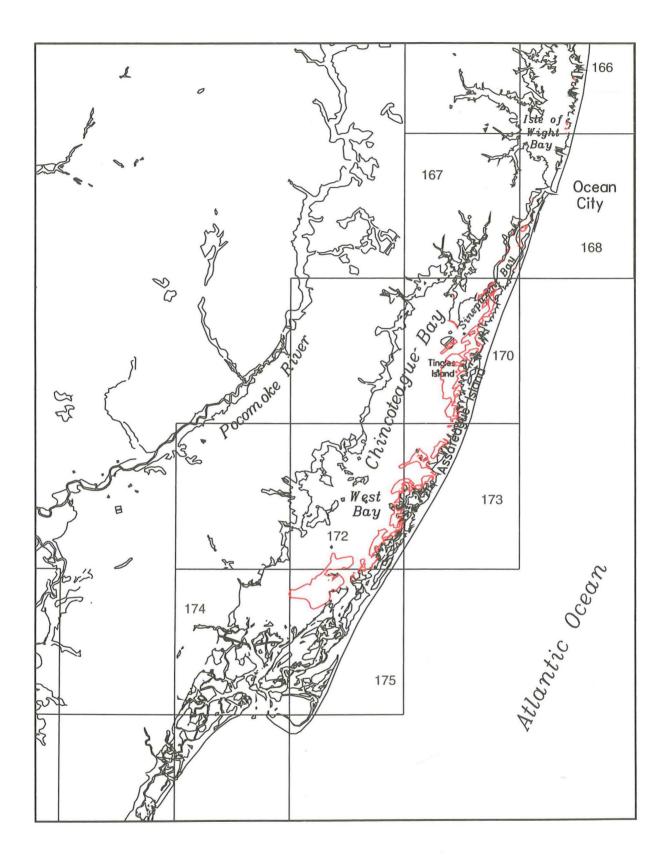


Figure 29. Distribution of SAV in the Chincoteague Bay in 1992.

LITERATURE CITED

- Anderson, R. R. and R. T. Macomber. 1980. Distribution of submersed vascular plants, Chesapeake Bay, Maryland. Final Report to U.S. EPA, Chesapeake Bay Program. Grant No. R805970. 126 pp.
- Chesapeake Executive Council. 1989. Submerged Aquatic Vegetation Policy for the Chesapeake Bay and Tidal Tributaries. Annapolis, MD. July.
- Chesapeake Executive Council. 1990. Implementation Plan for the Submerged Aquatic Vegetation Policy. Annapolis, MD. July.
- Environmental Systems Research Institute, Inc. 1989. Volume I & II, User Guide. ESRI, Redlands, CA.
- Godfrey, R. K. and J. W. Wooten. 1981. Aquatic and Wetland Plants of Southeastern United States: Dicotyledons. The University of Georgia Press, Athens. 933 pp.
- Godfrey, R. K. and J. W. Wooten. 1979. Aquatic and Wetland Plants of Southeastern United States: Monocotyledons. The University of Georgia Press, Athens. 712 pp.
- Harvill, A. M. Jr., C. E. Stevens and D. M. E. Ware. 1977. Atlas of the Virginia Flora: Part I, Pteridophytes through Monocotyledons. Virginia Botanical Associates, Farmville. 59 pp.
- Harvill, A. M. Jr., T. R. Bradley and C. E. Stevens. 1981. Atlas of the Virginia Flora: Part II, Dicotyledons. Virginia Botanical Associates, Farmville. 148 pp.
- Humm, Harold J. 1979. The Marine Algae of Virginia. Special Papers in Marine Science, Number 3, Virginia Institute of Marine Science. The University Press of Virginia, Charlottesville. 263 pp.
- Kartesz, J. T. and R. Kartesz. 1980. A Synonymized Checklist of the Vascular Flora of the United States, Canada and Greenland: Volume II, The Biota of North America. The University of North Carolina Press, Chapel Hill. 498 pp.
- Orth, R. J. and K. A. Moore. 1981. Submerged aquatic vegetation in the Chesapeake Bay: past, present and future. pp. 271-283. In: Proc. 46th North American Wildlife and Natural Resources Conf., Wildlife Manage. Inst., Wash., D.C.
- Orth, R. J. and K. A. Moore. 1982. The biology and propagation of *Zostera marina*, eelgrass, in the Chesapeake Bay, Virginia. Final Report to U.S. EPA, Chesapeake Bay Program. Grant No. R805953. 187 pp.
- Orth, R. J. and K. A. Moore. 1983. Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Sci. 222:51-53.
- Orth, R. J. and K. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: an historical perspective. Est. 7:531-540.
- Orth, R. J. and K. A. Moore. 1988. Submerged aquatic vegetation in the Chesapeake Bay: A barometer of Bay health. pp. 619-629. In: M. Lynch (Ed.), Understanding the Estuary: Advances in Chesapeake Bay Res. Chesapeake Res. Consort. Pub. No. 129. CBP/TRS/24/88.

- Orth, R. J., K. A. Moore and H. H. Gordon. 1979. Distribution and abundance of submerged aquatic vegetation in the lower Chesapeake Bay, Virginia. Final Report to U.S. EPA, Chesapeake Bay Program. EPA-600/8-79-029/SAV1.
- Orth, R. J. and J. F. Nowak. 1990. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay - 1989. Final Report to U.S. EPA. 247pp.
- Orth, R. J., J. F. Nowak, A. A. Frisch, K. P. Kiley, and J. R. Whiting. 1991. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay 1990. Final Report to U.S. EPA. 261pp.
- Orth, R. J., J. F. Nowak, G. F. Anderson, K. P. Kiley, and J. R. Whiting. 1992. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay - 1991. Final Report to U.S. EPA. 268pp.
- Orth, R. J., J. Simons, R. Allaire, V. Carter, L. Hindman, K. Moore and N. Rybicki. 1985. Distribution of submerged aquatic vegetation in the Cheapeake Bay and tributaries -1984. Final Report to U.S. EPA, Coop. Agreement X-003301-01. 155 pp.
- Orth, R. J., J. Simons, J. Capelli, V. Carter, L. Hindman, S. Hodges, K. Moore and N. Rybicki. 1986. Distribution of submerged vegetation in the Chesapeake Bay and tributaries -1985. Final Report to U.S. EPA. 296 pp.
- Orth, R. J., J. Simons, J. Capelli, V. Carter, A. Frisch, L. Hindman, S. Hodges, K. Moore and N. Rybicki. 1987. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay 1986. Final Report to U.S. EPA. 180 pp.
- Orth, R. J., A. A. Frisch, and J. F. Nowak. 1988. Quality assurance project plan for the 1987 submerged aquatic vegetation distribution and abundance survey of the Chesapeake and Chincoteague Bays. Plan submitted to U.S. EPA, Chesapeake Bay Liason Office, Annapolis, MD. 47 pp.
- Orth, R. J., A. A. Frisch, J. F. Nowak, and K. A. Moore. 1989. Distribution of submerged aquatic vegetation in the Chesapeake Bay and tributaries and Chincoteague Bay - 1987. Final Report to U.S. EPA. 247pp.
- Radford, A. E., H. E. Ahles and C. R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill. 1183 pp.
- Stevenson, J. C. and N. Confer. 1978. Summary of Available Information on Chesapeake Bay Submerged Vegetation. U.S. Dept. of Interior, Fish and Wildlife Serv. FWS/0BS-78/66. 335 p.
- Wood, R. D. and K. Imahori. 1965. A Revision of the Characeae: Volume I, Monograph of the Characeae. Verlag Von J. Cramer, Weinheim. 904 pp.
- Wood, R. D. and K. Imarhori. 1964. A Revision of the Characeae: Volume II, Iconograph of the Characeae. Verlag Von J. Cramer, Weinheim. 395 icones with Index.

APPENDIX A

Species of Submerged Aquatic Plants Found in the Chesapeake Bay and Tributaries Exclusive of the Marine Algae (Classification and Nomenclature Derived from: Godfrey and Wooten, 1979, 1981; Harvill et al., 1977, 1981; Kartesz and Kartesz, 1980; Radford et al., 1968; Wood and Imahori, 1965, 1965)

4

Family	Species	Common name
Characeae (muskgrass)	<i>Chara braunii</i> Gm. <i>Chara zeylanica</i> Klein. ex Willd., em.	Muskgrass
	Nitella flexilis (L). Ag., em.	Stonewort
Potamogetonaceae (pondweed)	Potamogeton perfoliatus L. var. bupleuroides (Fernald) Farwell Potamogeton epihydrus Potamogeton pectinatus L. Potamogeton crispus L. Potamogeton pusillus L.	Redhead grass Leafy pondweed Sago pondweed Curly pondweed Slender pondweed
Ruppiaceae	Ruppia maritima L.	Widgeon grass
Zannichelliaceae	Zannichellia palustris L.	Horned pondweed
Najadaceae	Najas guadalupensis (Sprengel) Magnus Najas gracillima (A. Braun)	Southern naiad
	Magnus Najas minor Allioni	Naiad
Hydrocharitaceae (frogbit)	Vallisneria americana Michaux Elodea canadensis (Michaux) Egeria densa Planchon Hydrilla verticillata (L.f.) Boyle	Wild celery, tapegrass Common elodea Water-weed Hydrilla
Pontedariaceae (pickerelweed)	Heteranthera dubia (Jacquin) MacMillian	Water stargrass
Ceratophyllaceae (coontail)	Ceratophyllum demersum L.	Coontail
Trapaceae	Trapa natans L.	Water chestnut
Haloragaceae (watermilfoil)	Myriophyllum spicatum L.	Eurasian watermilfoil
Zosteraceae	Zostera marina (L.)	Eelgrass

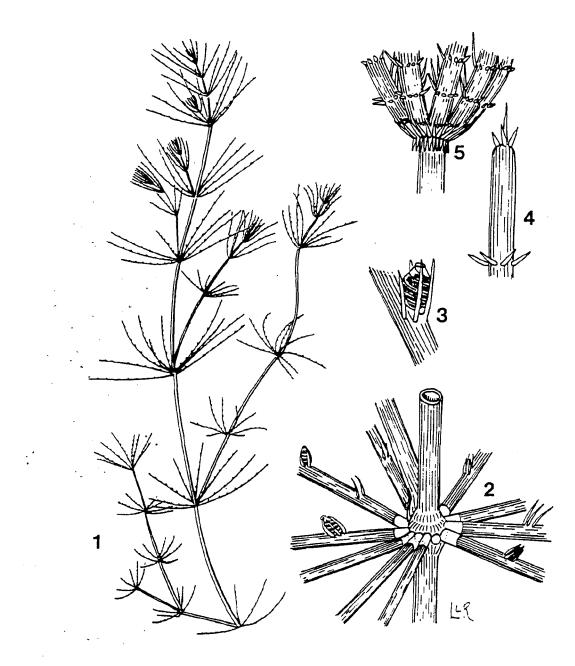
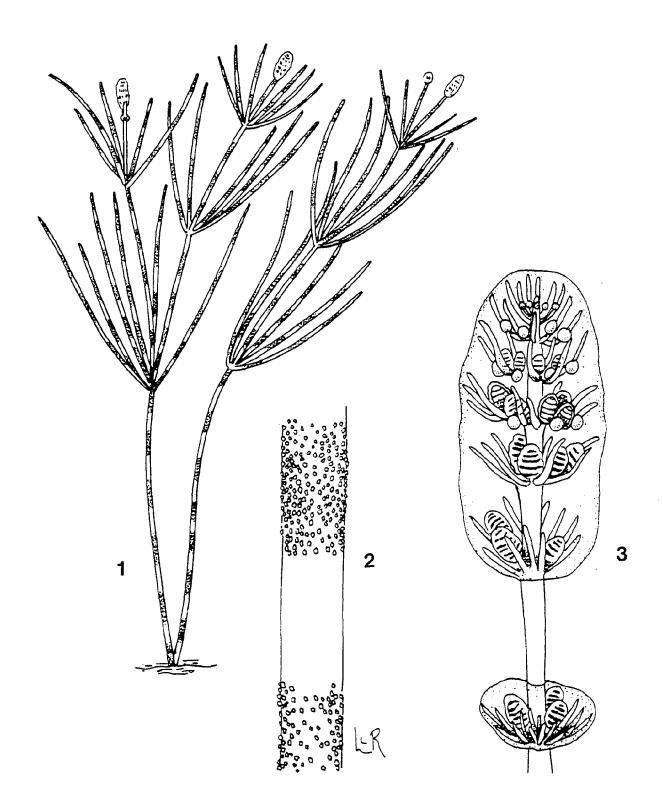



Figure 30. Illustration of *Chara* spp. (Muskgrass): 1. habit, upper portion of plant with branchlet whorls; 2. axial node and fertile branchlets with oogonia; 3. oogonium; 4. branchlet end segment; 5. axial node with 2 tier stipulodes.

ŧ

Figure 31. Illustration of *Nitella* spp. (Stonewort): 1. habit, entire plant; 2. portion of ecorticate branchlet; 3. mucus cloud surrounding compacted upper whorls with gametangia.

Figure 32. Illustration of Najas guadalupensis (Southern naiad): 1. habit, portion of plant; 2. branches; 3. leaf; 4. female flower; 5. male flower.

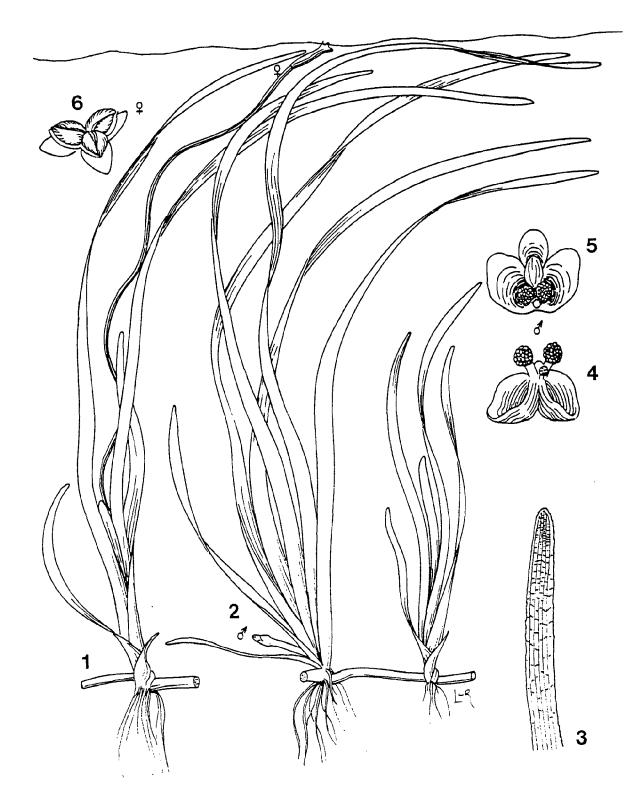


Figure 33. Illustration of Vallisneria americana (Tapegrass): 1. female plant; 2. male plant; 3. leaf tip with longitudinal air channels; 4-5. male flower (two views); 6. female flower.

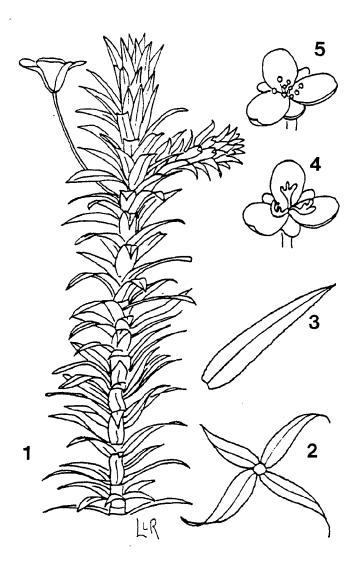


Figure 34. Illustration of *Egeria* spp. (Water-weed): 1. habit, end of branched stem with flower; 2. leaf whorl; 3. leaf; 4. female flower; 5. male flower.

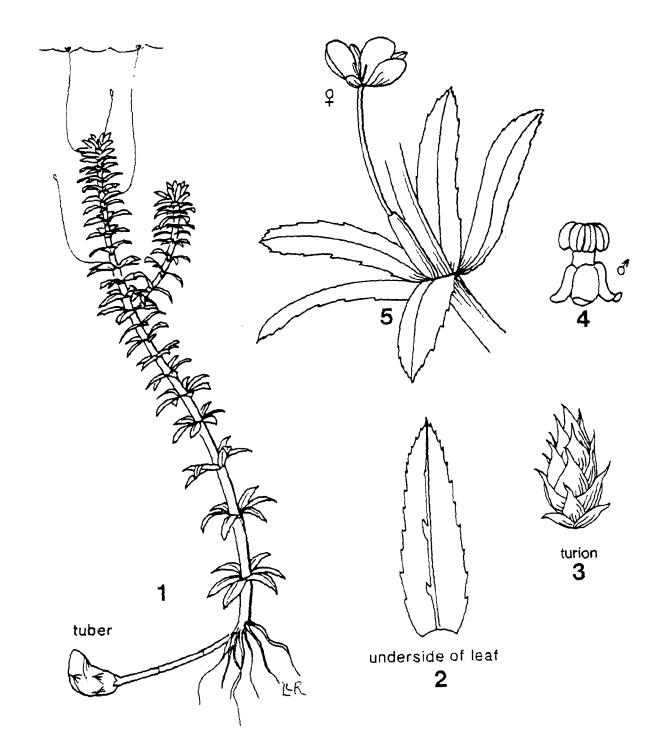
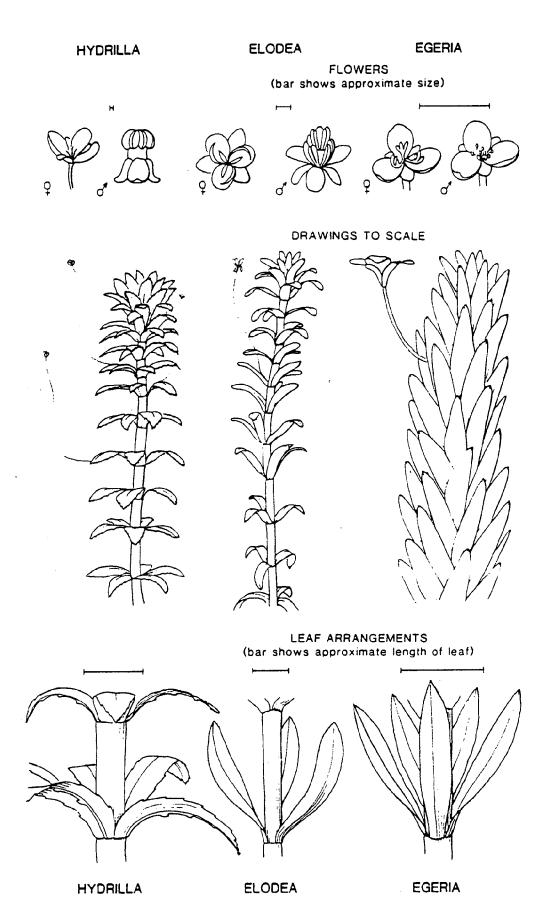



Figure 35. Illustration of *Hydrilla verticillata* (Hydrilla): 1. habit, entire plant; 2. leaf; 3. turion; 4. male flower; 5. female flower and leaf whorl.

ţ

Figure 36. A comparison: illustrations of Hydrilla verticillata, Elodea canadensis, and Egeria spp.

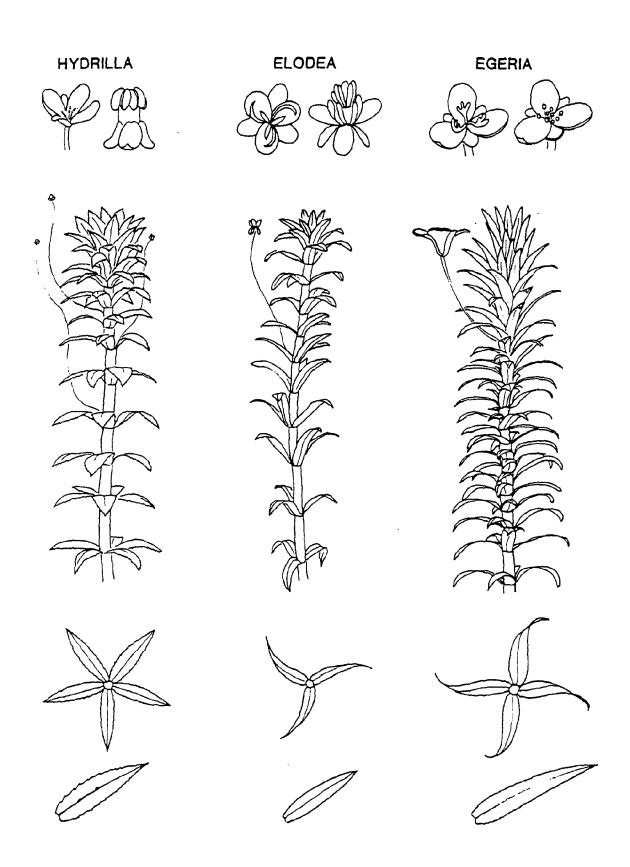


Figure 37. A comparison: illustrations of *Hydrilla verticillata*, *Elodea canadensis*, and *Egeria* spp. showing ends of stems with flowers; leaf whorls; single leaves.

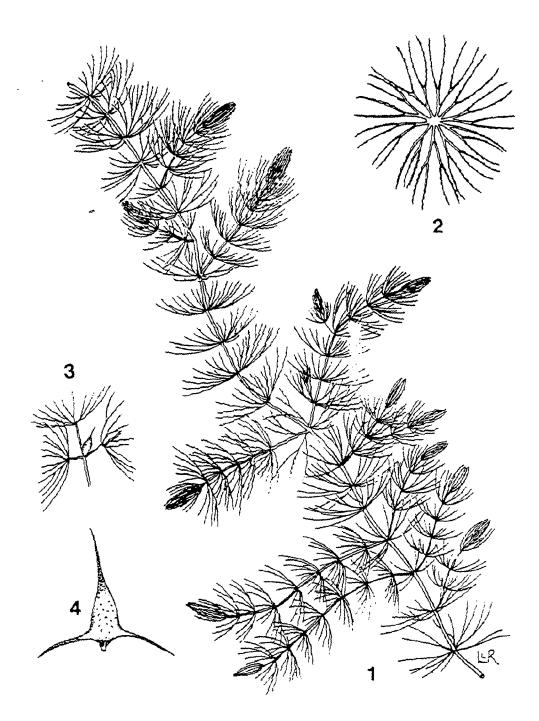


Figure 38. Illustration of *Ceratophyllum demersum* (Coontail): 1. habit, portion of plant; 2. leaf whorl; 3. flower in axil of whorl with branches; 4. fruit.

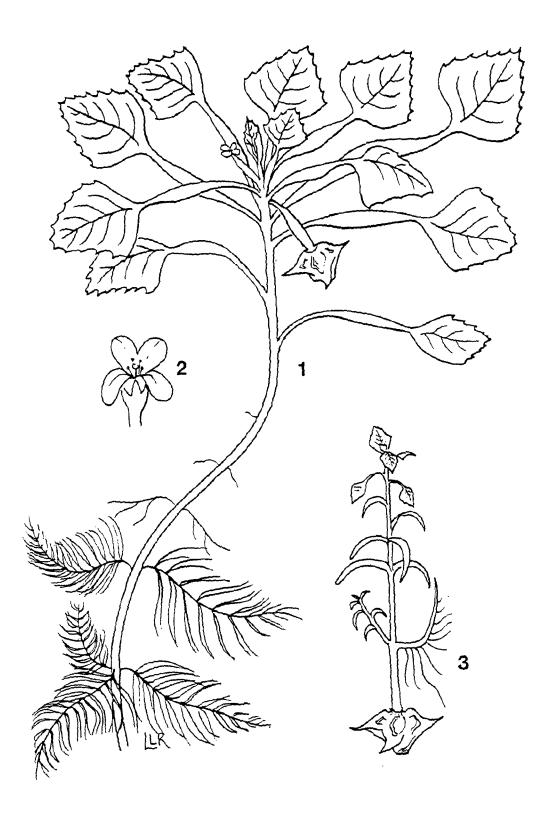


Figure 39. Illustration of *Trapa natans* (Water chestnut): 1. habit, portion of mature plant; 2. flower; 3. seedling.

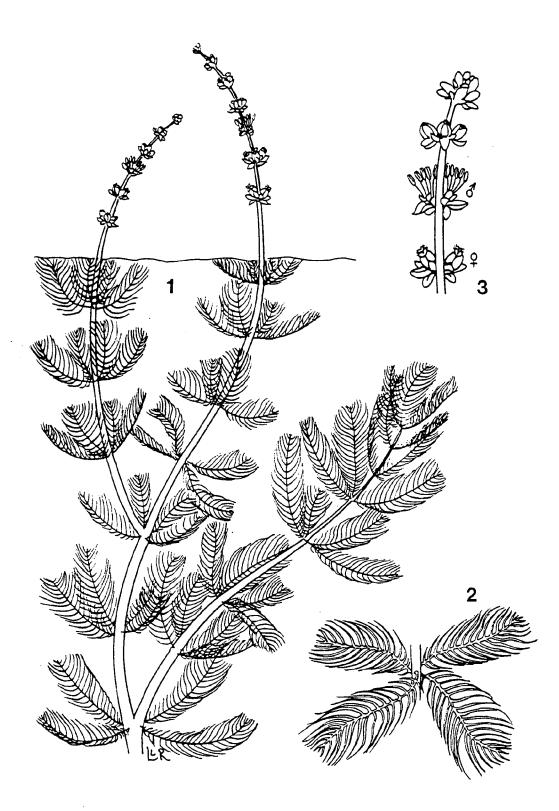


Figure 40. Illustration of *Myriophyllum spicatum* (Eurasian watermilfoil): 1. habit, upper portion of plant with flower spike borne above water; 2. leaf whorl; 3. female and male flowers on spike.

APPENDIX B

Latitude and Longitude Coordinate Points Defining the 21 Chesapeake Bay Sections and Chincoteague Bay. (For Section Locations and Descriptions See Fig. 7 and Table 3.)

	Latitude Deg Min	Longitude Deg Min		Latitude Deg Min	Longitude Deg Min
SEC. 1.	Susquehan	na Flats	SEC. 5.	Central We	stern Shore
	20. 27.00	76 10.00		28 42 00	76 25 00
	39 27.00 39 20 15	76 10.00		38 42.90	76 35.00
	39 39.15	76 10.00		38 55.00	76 37.50
	39 39.15	75 51.00		39 12.40	76 49.00
	39 27.50	76 00.00		39 11.15	76 40.00
	39 26.50	76 01.31		39 06.82	76 35.40
				39 03.50	76 32.30
SEC. 2.	Upper East	ern Shore		39 00.00	76 20.00
				38 55.00	76 25.00
	39 10.00	76 20.00		38 45.00	76 25.00
	39 20.00	76 12.50			
	39 26.50	76 01.31	SEC. 6.	Eastern Bay	7
	39 27.50	76 00.00			
	39 39.15	75 51.00		38 45.00	76 25.00
	39 39 .15	75 45.00		38 55.00	76 25.00
	39 19.50	75 45.00		39 00.00	76 20.00
	39 20.00	76 00.00		39 00.00	76 19.10
	39 12.55	76 10.40		38 57.10	76 11.85
	39 09.25	76 16.00		39 05.00	76 00.00
				38 50.00	76 01.65
SEC. 3.	Upper We	stern Shore		38 44.10	76 10.50
				38 50.00	76 16.50
	39 12.40	76 49.00		38 45.00	76 20.00
	39 30.00	76 20.00		38 42.50	76 20.50
	39 27.00	76 10.00			
	39 26.50	76 01.31	SEC. 7.	Choptank I	River
	39 20.00	76 12.50			
	39 10.00	76 20.00		38 23.50	76 20.00
	39 00.00	76 20.00		38 45.00	76 25.00
	39 03.50	76 32.30		38 42.50	76 20.50
	39 06.82	76 35.40		38 45.00	76 20.00
	39 11.15	76 40.00		38 50.00	76 16.50
				38 44.10	76 10.50
SEC. 4.	Chester Ri	ver		38 50.00	76 01.65
				39 05.00	76 00.00
	39 00.00	76 20.00		39 05.00	75 45.00
	39 10.00	76 20.00		38 45.00	75 45.00
	39 09.25	76 16.00		38 45.00	75 50.00
	39 12.55	76 10.40		38 21.93	75 55.00
	39 20.00	76 00.00		38 25.00	76 06.80
	39 19.50	75 45.00			
	39 05.00	75 45.00			
	39 05.00	76 00.00			
	38 57.10	76 11.85			

39 00.00

76 19.10

<u></u>	Latitude Deg Min	Longitude Deg Min		Latitude Deg Min	Longitude Deg Min
SEC. 8	. Patuxent R	iver	SEC. 11.	Upper Poto	mac River
	38 15.00	76 25.45		38 15.00	77 06.40
	38 35.00	77 00.00		38 20.00	77 24.80
	38 58.00	76 45.00		38 27.65	77 25.00
	38 55.00	76 37.50		39 01.80	77 17.10
	38 42.90	76 35.00		38 58.00	76 45.00
	38 30.00	76 32.30		38 35.00	77 00.00
	38 21.66	76 23.50		38 24.20	77 14.08
	38 18.00	76 22.83		38 20.00	77 09.40
SEC. 9	. Middle We	stern Shore	SEC. 12.	Middle Eas	tern Shore
	38 02.85	76 19.40		38 11.10	76 13.30
	38 05.00	76 21.54		38 23.50	76 20.00
	38 15.00	76 25.45		38 25.00	76 06.80
	38 18.00	76 22.83		38 21.93	75 55.00
	38 21.66	76 23.50		38 45.00	75 50.00
	38 30.00	76 32.30		38 40.00	75 37.00
	38 42.90	76 35.00		38 00.00	75 38.00
	38 45.00	76 25.00		38 00.73	75 49.50
	38 23.50	76 20.00		37 57.10	75 50.30
	38 05.00	76 10.00		37 55.00	75 55.10
				38 11.70	75 59.00
SEC. 1	0. Lower Pote	omac River		38 13.60	76 05.83
	37 53.40	76 14.45	SEC. 13.	Mid-Bay Isl	and Complex
	37 55.50	76 18.15			•
	37 53.85	76 28.00		37 45.00	75 58.30
	38 06.15	76 53.00		37 50.00	76 10.00
	38 15.00	77 06.40		38 05.00	76 10.00
	38 20.00	77 09.40		38 11.10	76 13.30
	38 24.20	77 14.08		38 13.60	76 05.83
	38 35.00	77 00.00		38 11.70	75 59.00
	38 15.00	76 25.45		37 55.00	75 55.10
	38 05.00 38 02.85	76 21.54 76 19.40	SEC 14	Lower Easte	ern Shore
	38 05.00	76 10.00	020.11.		
	37 50.00	76 10.00		37 00.00	75 58.95
				37 20.00	76 10.00
				37 38.75	76 10.00
				37 50.00	76 10.00
				37 45.00	75 58.30
				37 55.00	75 55.10
				37 57.10	75 50.30
				38 00.73	75 49.50
				38 00.00	75 38.00
				38 00.00	75 30.00
				37 46.45	75 39.30
				37 20.00	75 55.50

SEC. 15. Reedville SEC. 18. Mobjack Bay	Complex
37 38.75 76 10.00 37 17.00	76 19.33
37 37.40 76 21.40 37 16.25	76 22.50
37 38.05 76 23.50 37 17.00	76 25.42
37 44.35 76 23.00 37 16.50	76 28.50
37 48.00 76 28.00 37 20.00	76 31.88
37 53.85 76 28.00 37 25.75	76 31.00
37 55.50 76 18.15 37 29.00	76 25.00
37 53.40 76 14.45 37 28.00	76 20.00
37 50.00 76 10.00 37 25.00	76 18.00
37 22.25	76 19.50
SEC. 16. Rappahannock River Complex 37 21.00	76 17.40
37 20.00	76 17.40
37 26.50 76 10.00 37 19.30	76 16.62
37 25.00 76 18.08 37 17.45	76 16.16
37 28.00 76 20.00	
37 29.00 76 25.00 SEC. 19. York River	
37 32.00 76 35.00	
37 49.15 76 48.00 37 14.00	76 22.50
37 53.73 76 49.65 37 13.25	76 24.00
37 58.00 76 45.45 37 12.50	76 27.50
37 48.00 76 28.00 37 07.30	76 28.20
37 44.35 76 23.00 37 14.00	76 36.50
37 38.05 76 23.50 37 16.72	76 43.65
37 37.40 76 21.40 37 26.29	76 49.77
37 38.75 76 10.00 37 30.55	76 40.00
37 28.56	76 35.00
SEC. 17. New Point Comfort Region 37 20.00	76 31.88
37 16.50	76 28.50
37 17.45 76 16.16 37 17.00	76 25.42
37 19.45 76 16.62 37 16.25	76 22.50
37 20.00 76 17.40 37 17.00	76 19.33
37 21.00 76 17.40 37 14.00	76 19.33
37 22.25 76 19.50	
37 25.00 76 18.00	
37 26.50 76 10.00	
37 20.00 76 10.00	

Latitude	Longitude	Latitude	Longitude	
Deg Min	Deg Min	Deg Min	Deg Min	

SEC. 20. Lower Western Shore

36 49.11	75 58.05
36 45.75	76 07.00
36 55.85	76 16.00
36 57.79	76 16.00
36 58.00	76 17.70
37 01.05	76 18.52
37 03.68	76 19.80
37 00.60	76 24.00
37 07.30	76 28.20
37 12.50	76 27.50
37 13.25	76 24.00
37 14.00	76 22.50
37 14.00	76 19.33
37 17.00	76 19.33
37 17.45	76 16.16
37 20.00	76 10.00
37 00.00	75 58.95

Chincoteague	Bay
--------------	-----

37	52.50	75	30.00
38	00.00	75	30.00
38	07.50	75	22.50
38	15.00	75	17.50
38	15.00	75	15.00
38	22.50	75	15.00
38	30.00	75	10.00
38	30.00	75	02.50
38	22.50	75	02.50
38	15.00	75	07.50
38	07.50	75	10.00
38	00.00	75	15.00
37	52.50	75	20.00
37	51.00	75	22.30
37	51.00	75	30.00

SEC. 21. James River

36 45.75	76 07.00
36 40.00	76 10.00
36 40.00	76 30.00
36 40.00	76 40.00
36 55.63	76 40.00
37 17.30	77 18.00
37 20.15	77 14.00
37 27.45	77 08.10
37 26.29	76 49.77
37 16.72	76 43.65
37 14.00	76 36.50
37 07.30	76 28.20
37 00.60	76 24.00
37 03.68	76 19.80
37 01.05	76 18.52
36 58.00	76 17.70
36 57.79	76 16.00
36 55.85	76 16.00

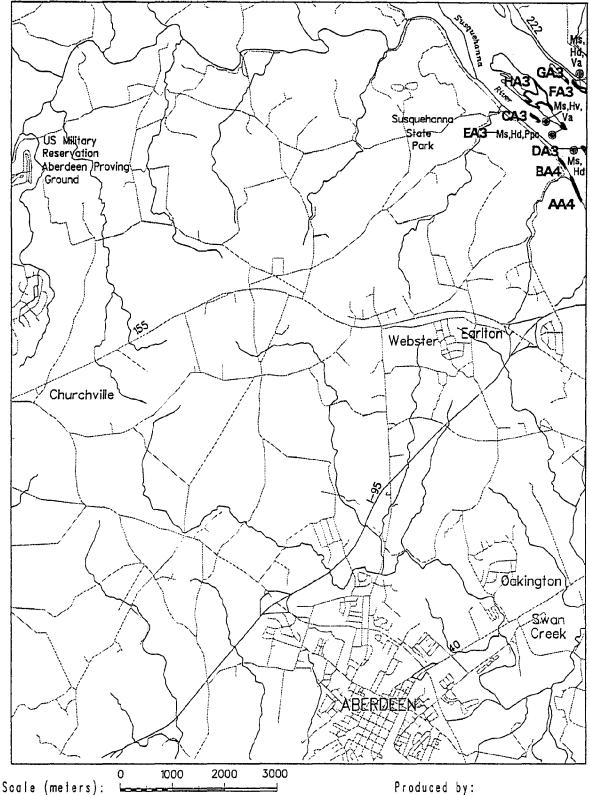
APPENDIX C

USCS 7.5 Minute Quadrangles for Chesapeake Bay and Chincoteague Bay Showing Distribution, Abundance, and Ground Truthing of SAV in 1992. [Boundaries of Individual SAV Beds Are Delineated by Solid Lines. Each Bed Is Identified with an Unique Two Letter (AA-ZA, AB-ZB, etc.) and One Number (1-4) Designation. These Numbers Represent the Density Classification Discussed in the Text and Fig. 6, i.e. 1 =<10%; 2 = 10-40%; 3 = 40-70%; 4 = 70-100%. Ground Truthing is Represented by Symbols and Species Codes which Are Explained in the Legend.]

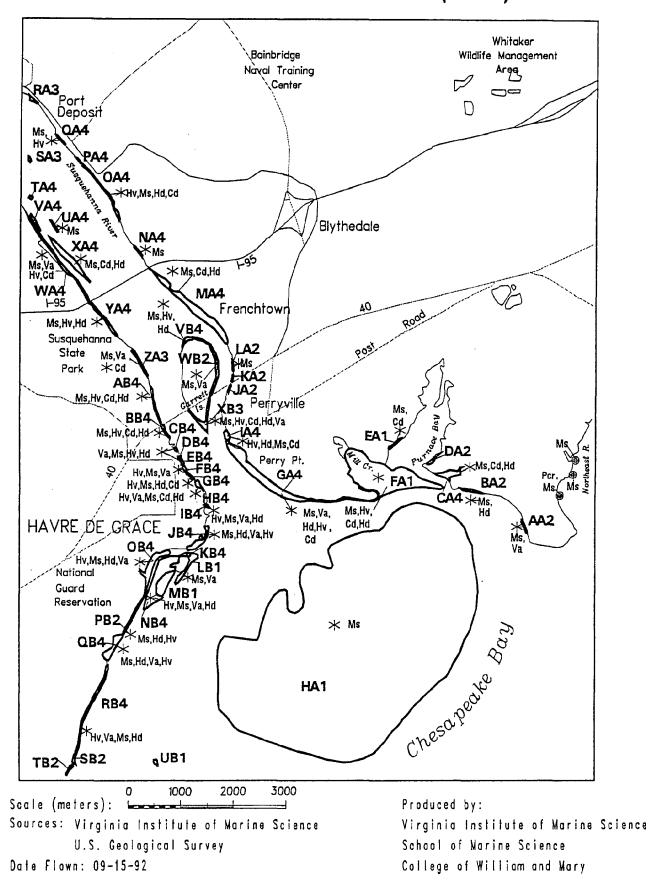
KEY FOR 1992 SAV MAPS

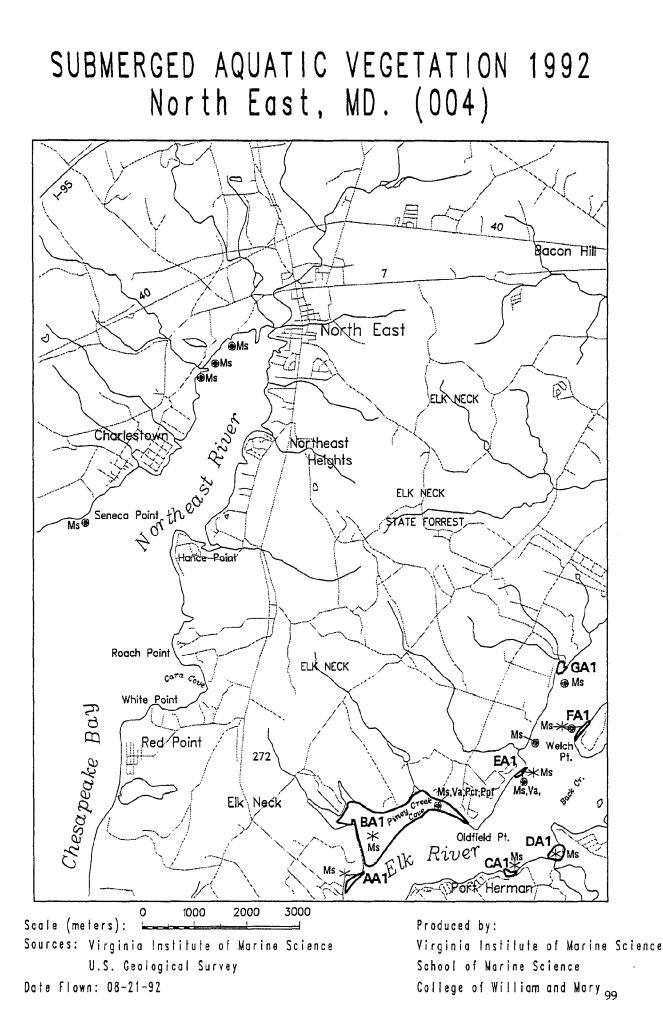
SPECIES

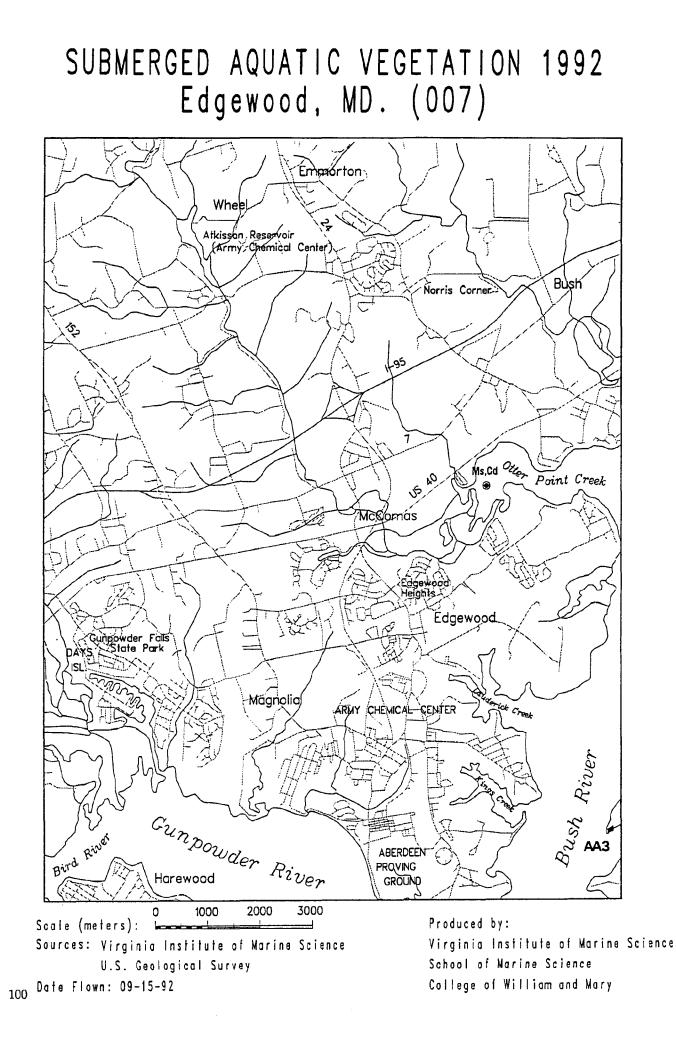
- Zm Zostera marina (eelgrass)
- Rm Ruppia maritima (widgeon grass)
- MS Myriophyllum spicatum (Eurasian watermilfoil)
- Ppf Potamogeton perfoliatus (redhead-grass)
- Ppc Potamogeton pectinatus (sago pondweed)
- Zp Zannichellia palustris (horned pondweed)
- N Najas spp. (naiad)
- Ec Eledea canadensis (common elodea)
- Va Vallisneria americana (wild celery)
- Tn Trapa natans (water chestnut)
- Pe Polamogeton epihydrus (leafy pondweed)
- Hv Hydrilla verticillala (hydrilla)
- Hd Heteranthera dubia (water stargrass)
- Pcr Polamogeton crispus (curly pondweed)
- Cd Ceratophyllum demersum (coontail)
- Ppu Potamogeton pusillus (slender pondweed)
- Ngu Najas guadalupensis (southern naiad)
- Ngr Najas gracillima (naiad)
- C Chara sp. (muskgrass)
- Nm Najas minor (slender naiad)
- U Unknown species composition


SURVEY STATIONS

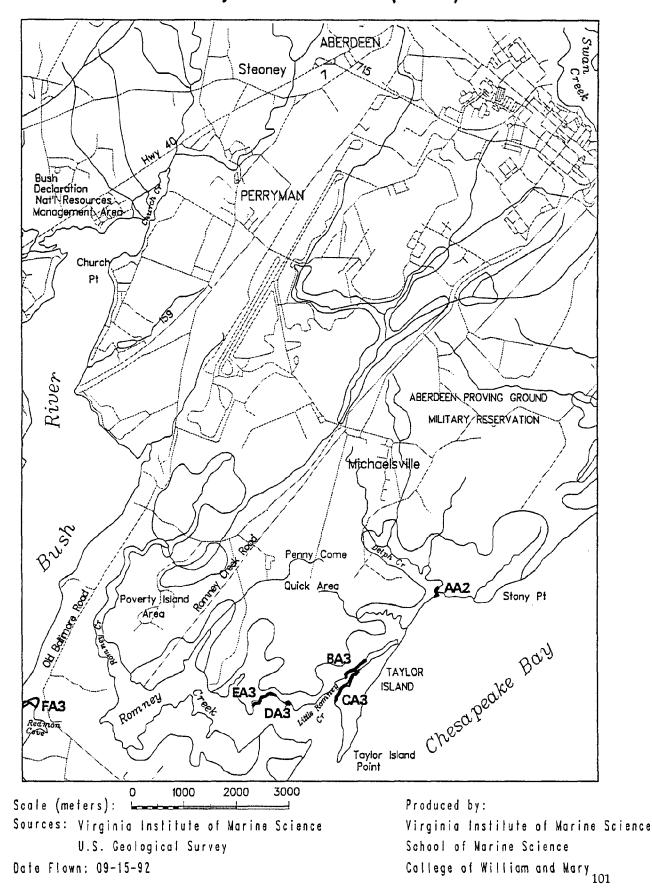
- ▲ VIMS Field Survey
- $_{st}$ Harlord Community College
- ▼ University MD-HPEL
- , Citizens Field Observation
- 🖂 Essex Community College

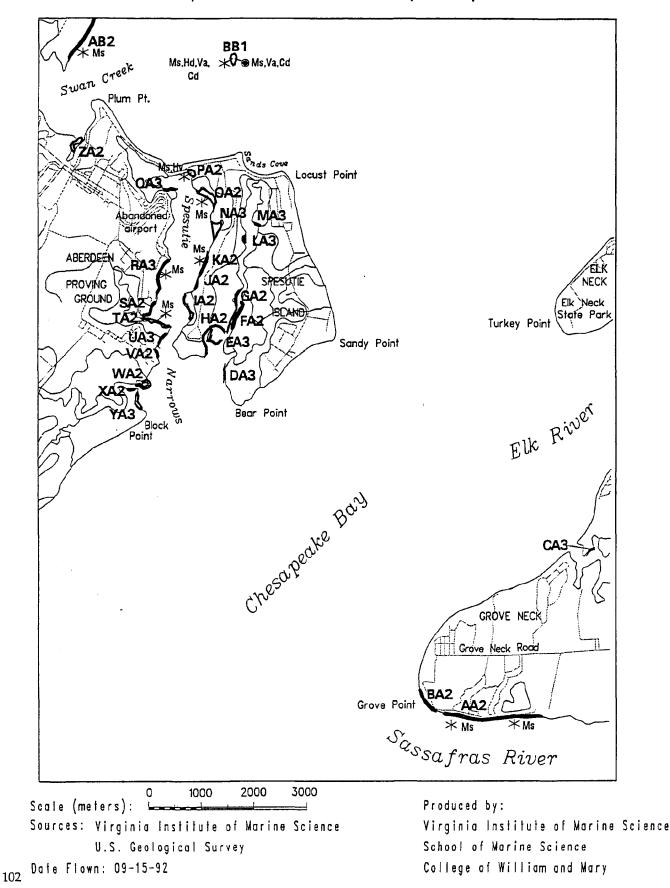

Indicates 'NO SAV' polygon

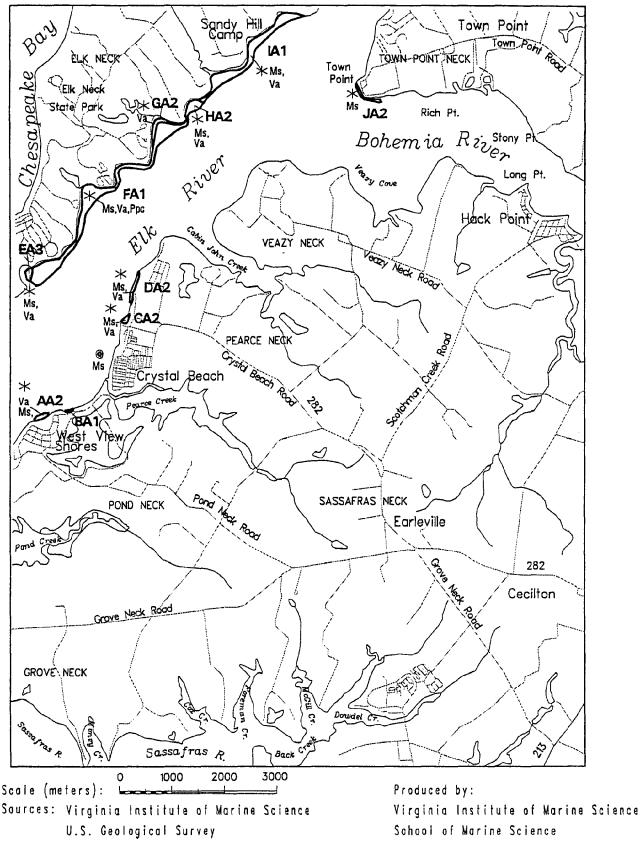

SUBMERGED AQUATIC VEGETATION 1992 Aberdeen, MD. (002)



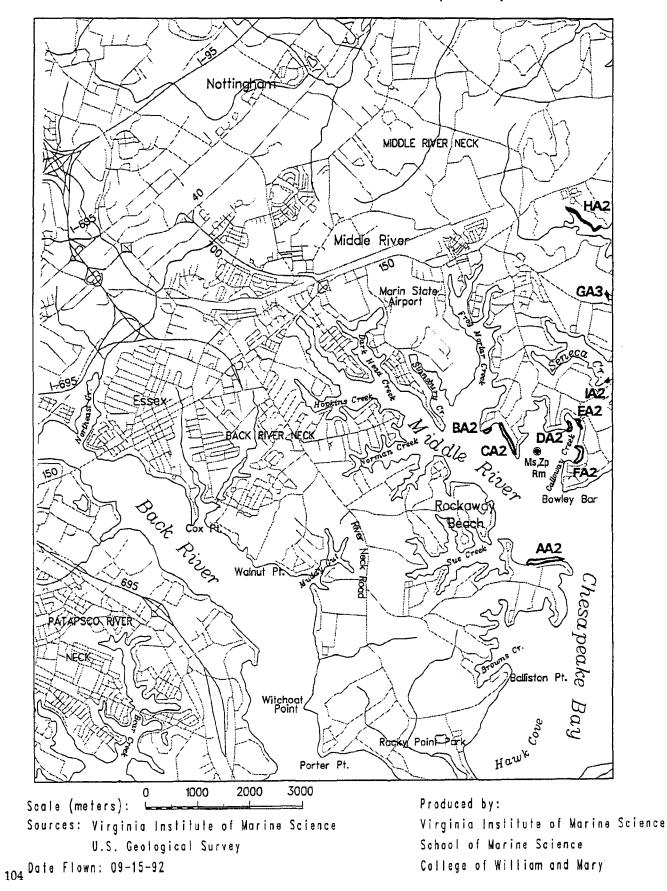
Sources: Virginia Institute of Marine Science U.S. Geological Survey Date Flown: 08-21-92 Virginia Institute of Marine Science School of Marine Science College of William and Mary 97

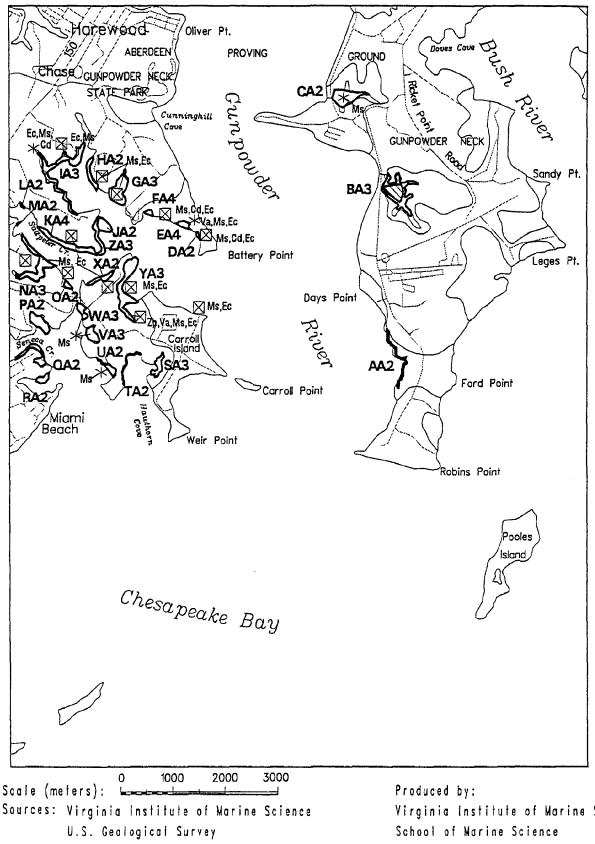

SUBMERGED AQUATIC VEGETATION 1992 Havre de Grace, MD. (003)




SUBMERGED AQUATIC VEGETATION 1992 Perryman, MD. (008)

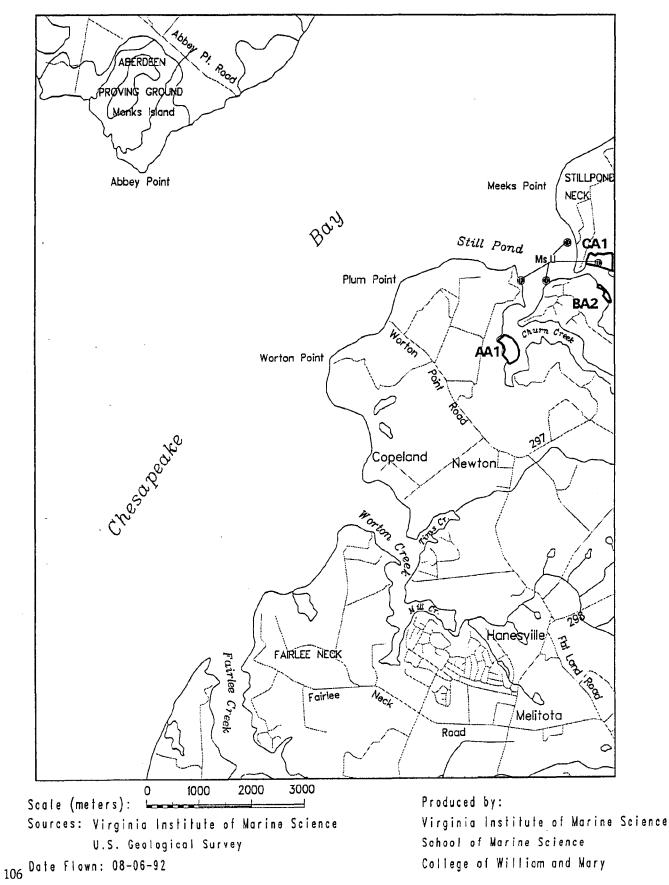
SUBMERGED AQUATIC VEGETATION 1992 Spesutie, MD. (009)

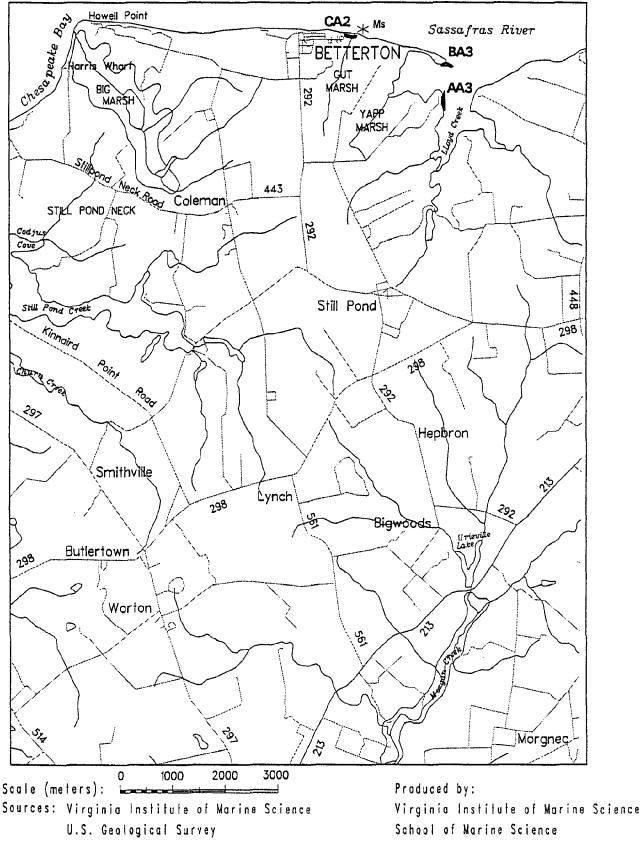

SUBMERGED AQUATIC VEGETATION 1992 Earleville, MD. (010)


Date Flown: 09-15-92

College of William and Mary 103

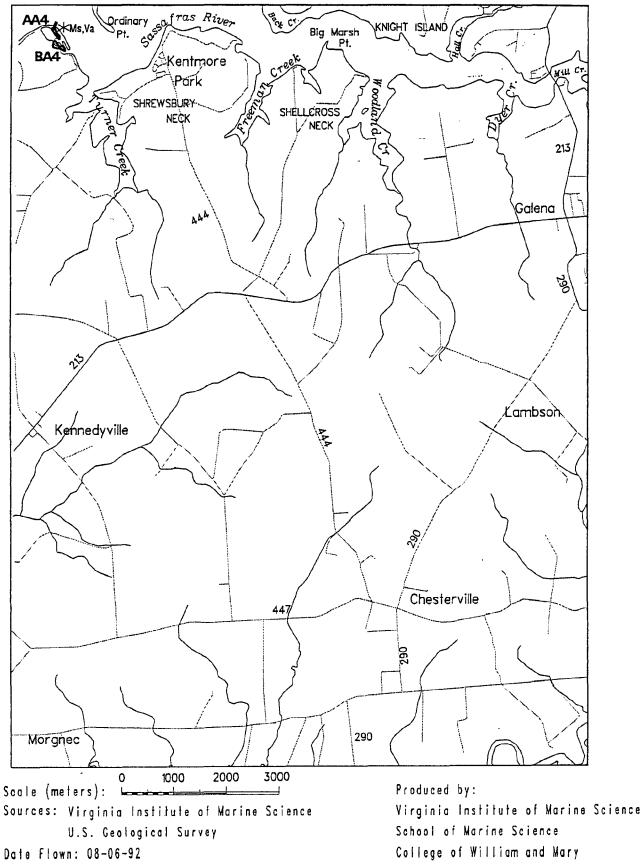
SUBMERGED AQUATIC VEGETATION 1992 Middle River, MD. (013)


SUBMERGED AQUATIC VEGETATION 1992 Gunpowder Neck, MD. (014)

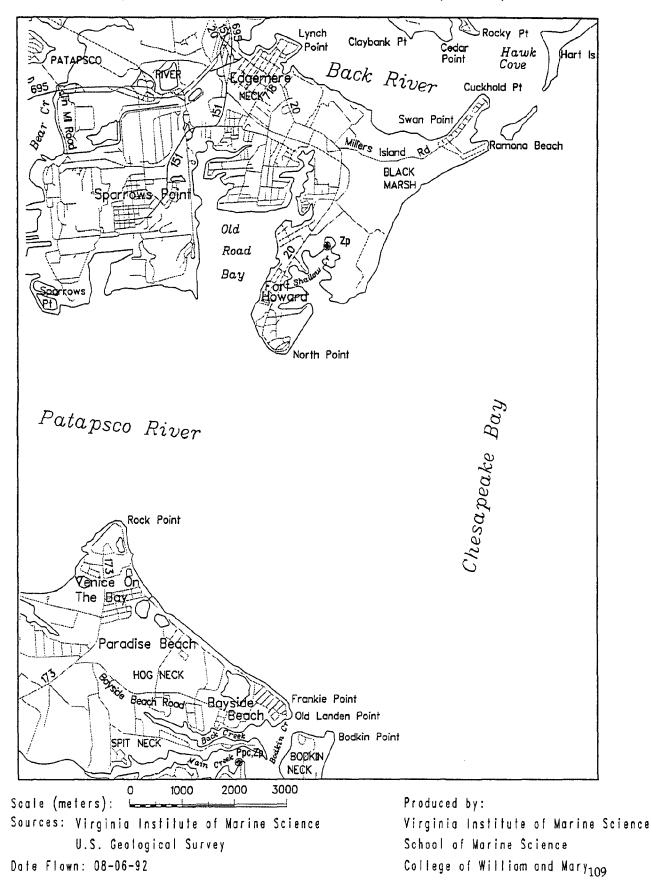

Date Flown: 08-07-92

Virginia Institute of Marine Science College of William and Mary 105

SUBMERGED AQUATIC VEGETATION 1992 Hanesville, MD. (015)

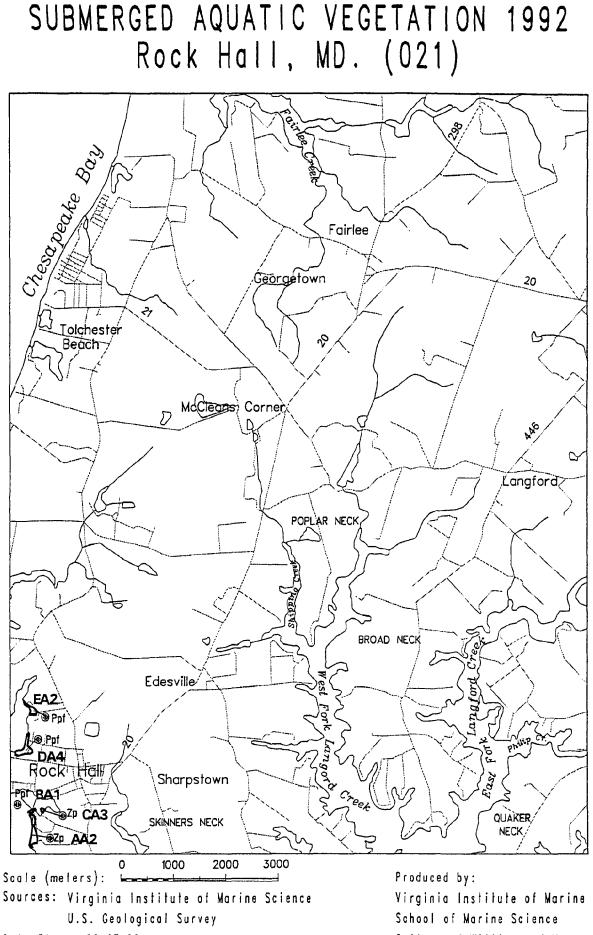

SUBMERGED AQUATIC VEGETATION 1992 Betterton, MD. (016)

Date Flown: 08-06-92

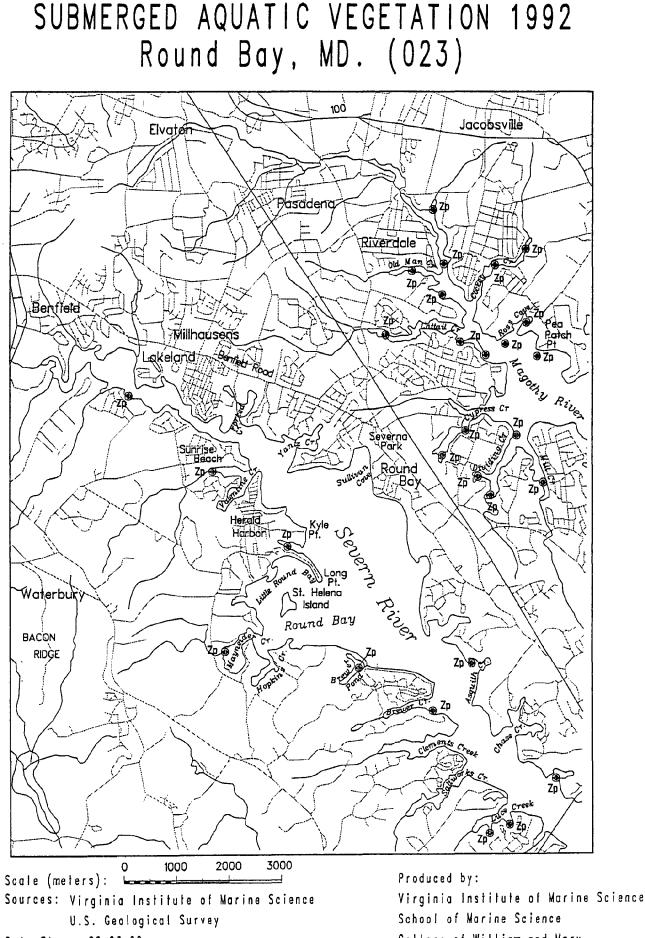

College of William and Mary₁₀₇

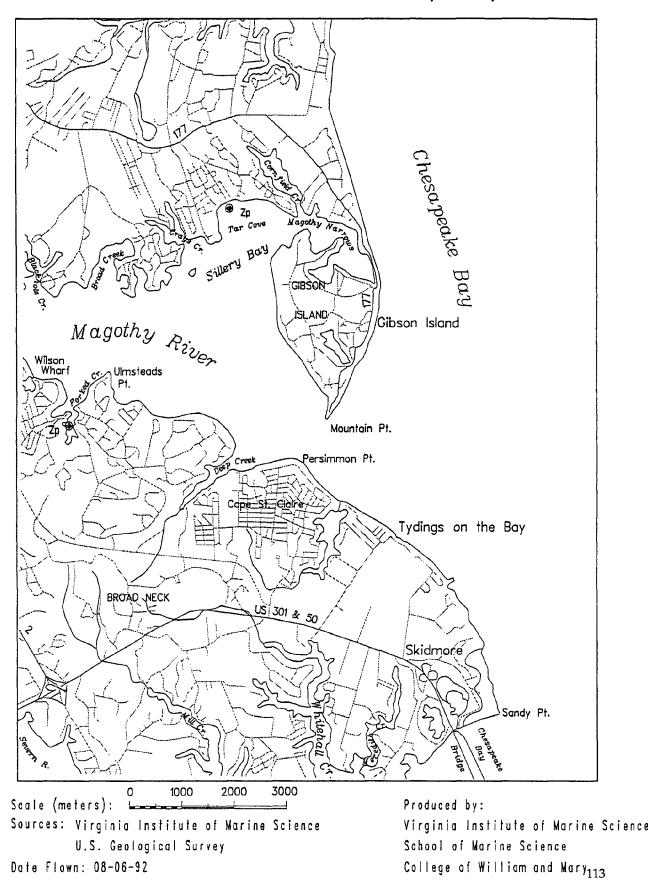
SUBMERGED AQUATIC VEGETATION 1992 Galena, MD. (017)



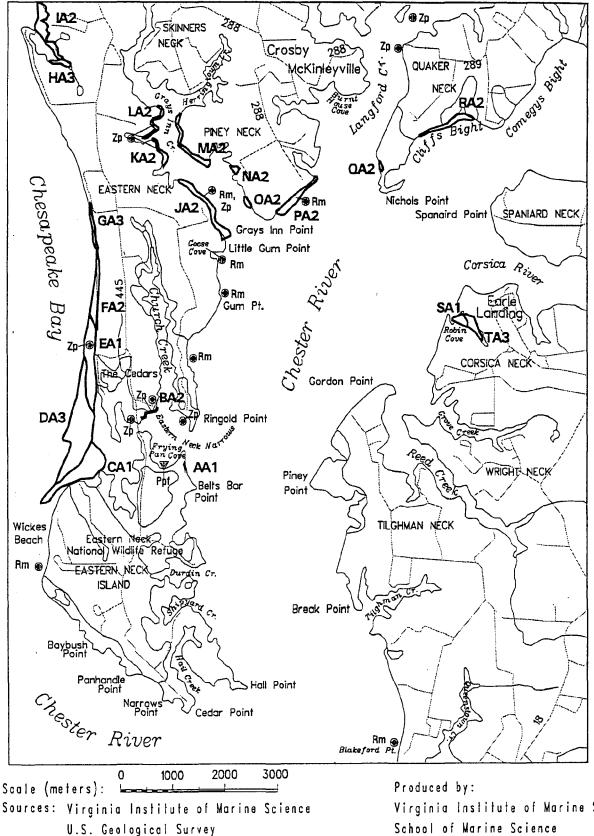

108

SUBMERGED AQUATIC VEGETATION 1992 Sparrows Point, MD. (019)


SUBMERGED AQUATIC VEGETATION 1992 Swan Point, MD. (020)

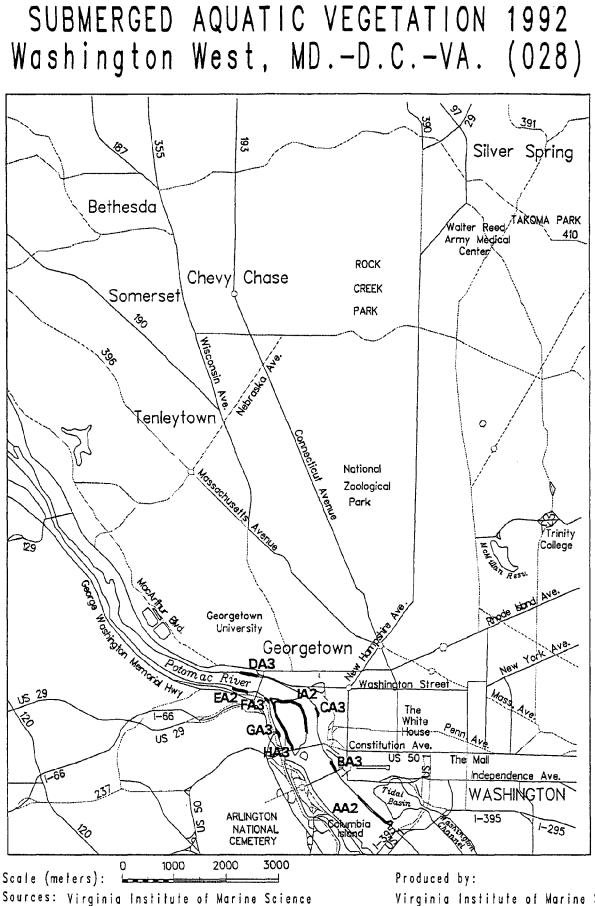

Date Flown: 08-07-92

Virginia Institute of Marine Science College of William and Mary₁₁₁

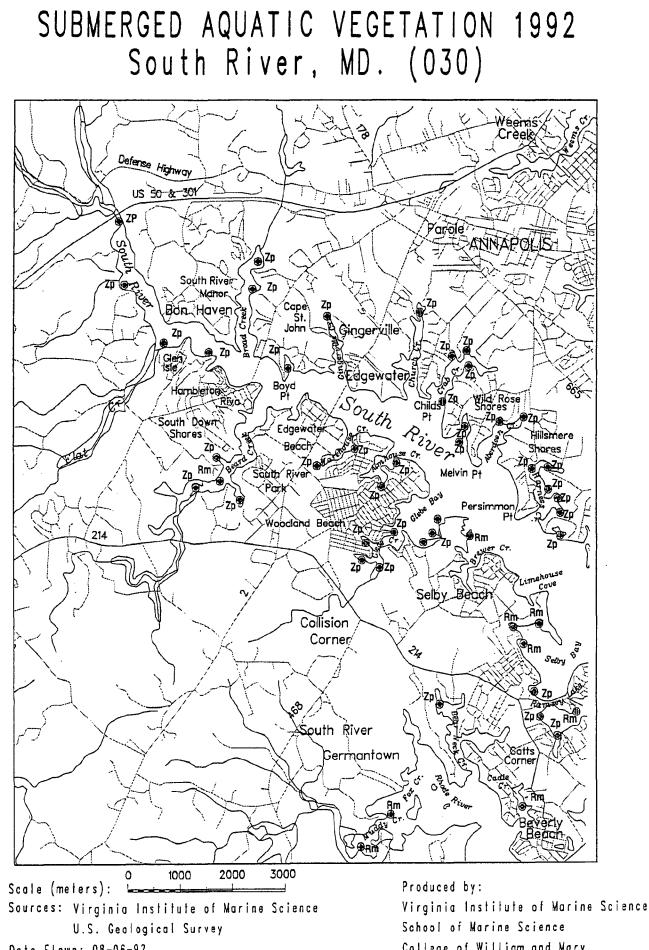


College of William and Mary

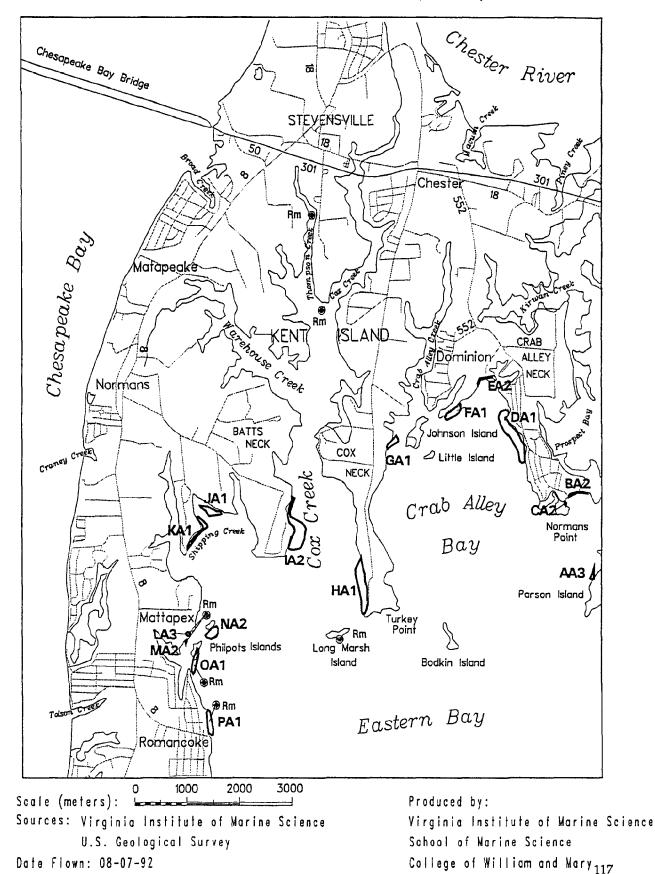
SUBMERGED AQUATIC VEGETATION 1992 Gibson Island, MD. (024)

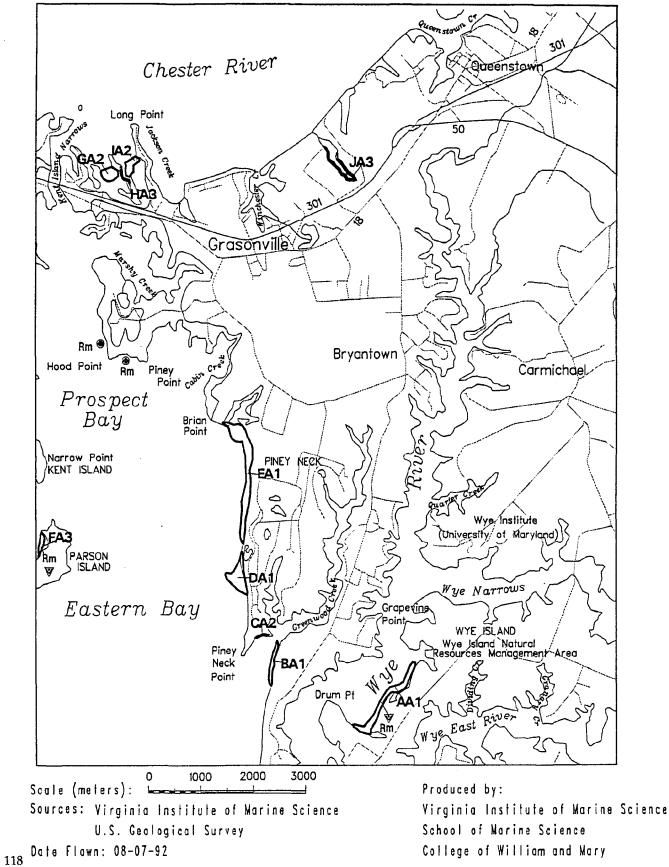


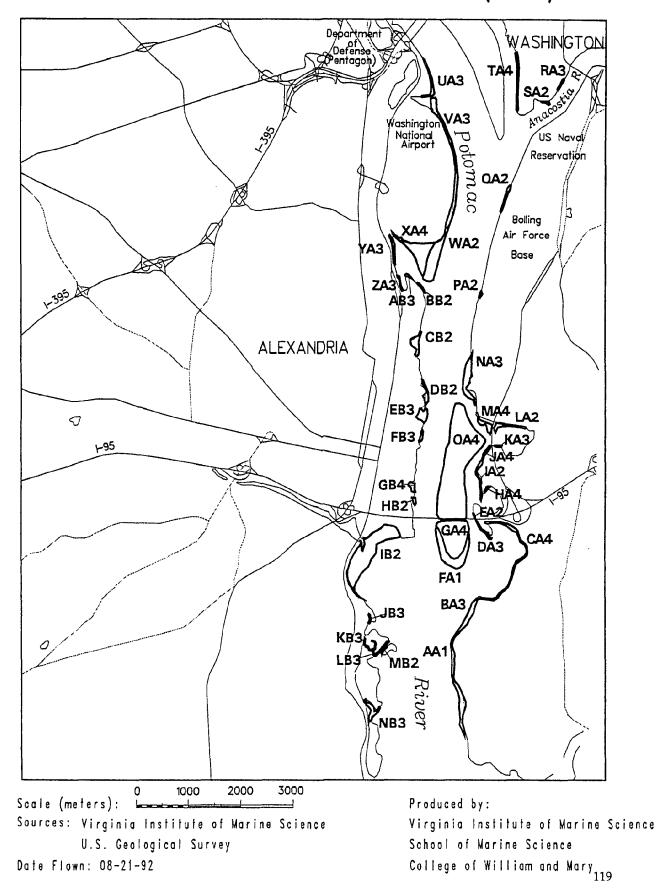
SUBMERGED AQUATIC VEGETATION 1992 Langford Creek, MD. (026)

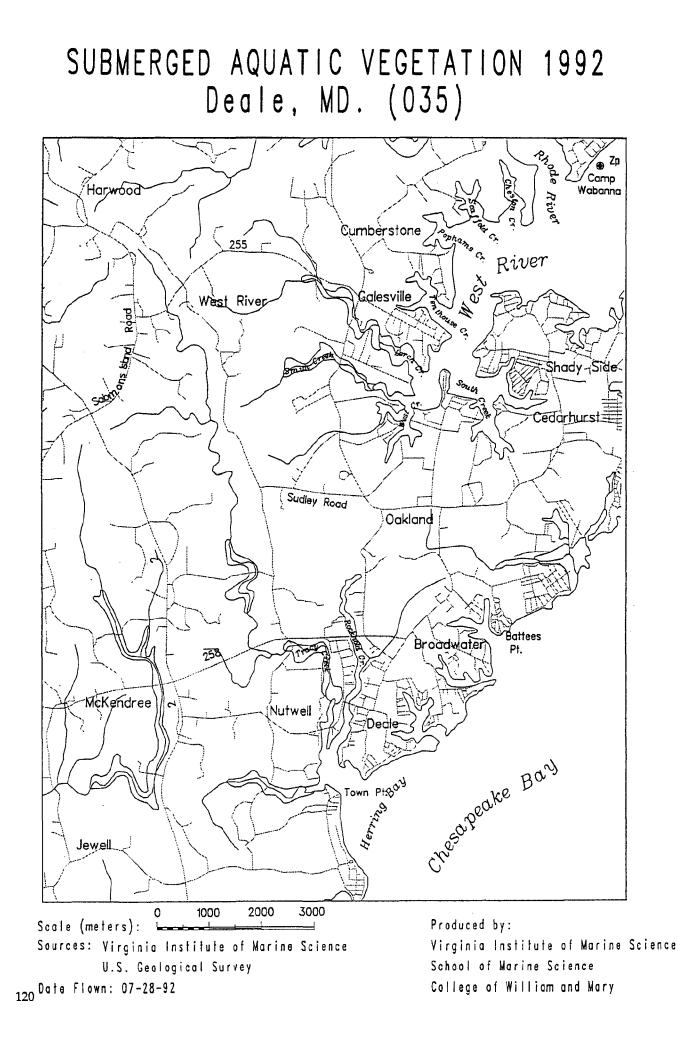


114 Date Flown: 08-07-92

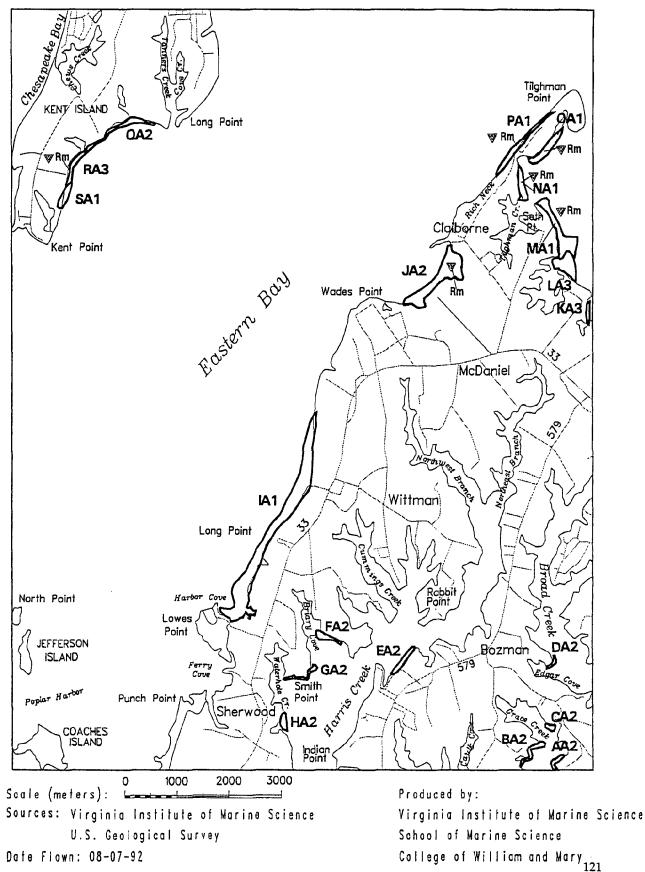

Virginia Institute of Marine Science School of Marine Science College of William and Mary


U.S. Geological Survey Date Flown: 08-21-92 Produced by: Virginia Institute of Marine Science School of Marine Science College of William and Mary₁₁₅

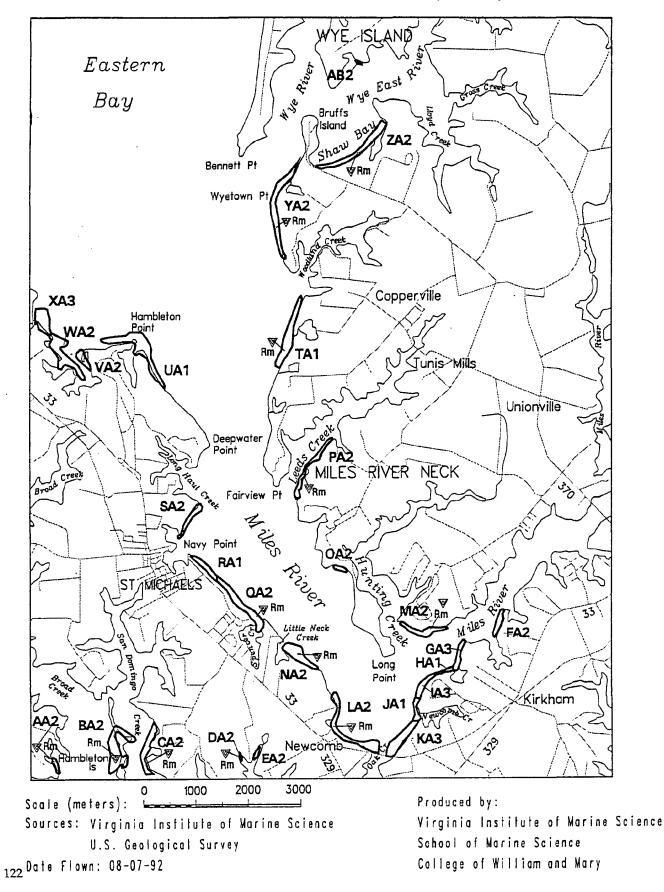

SUBMERGED AQUATIC VEGETATION 1992 Kent Island, MD. (032)

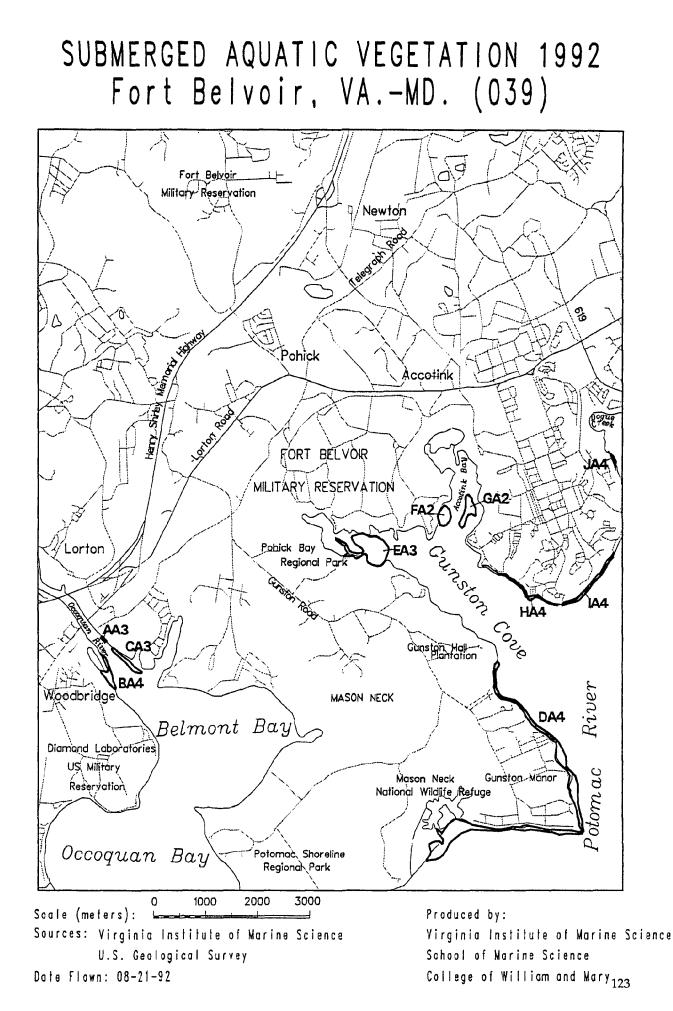


SUBMERGED AQUATIC VEGETATION 1992 Queenstown, MD. (033)

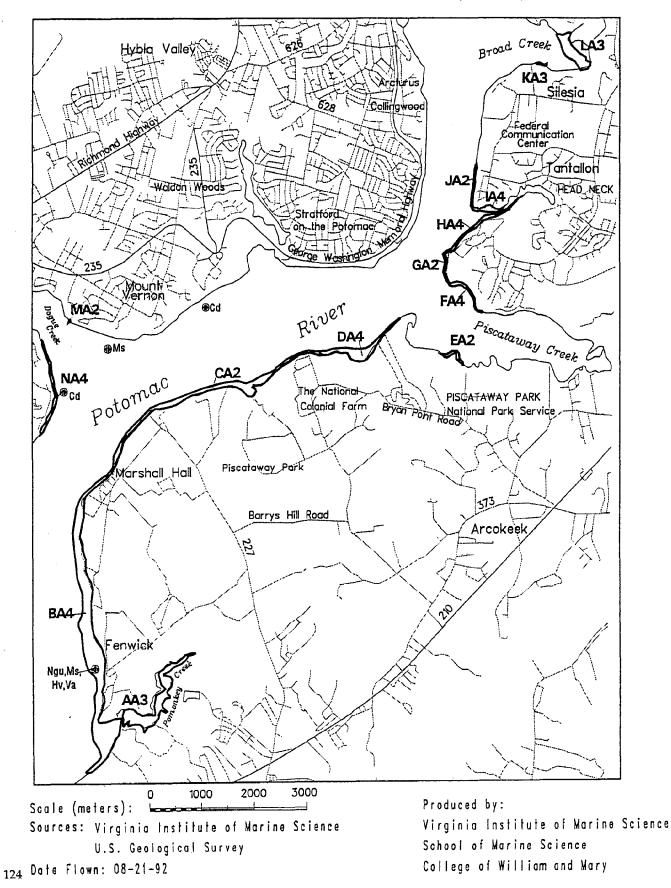


SUBMERGED AQUATIC VEGETATION 1992 Alexandria, VA.-D.C.-MD. (034)

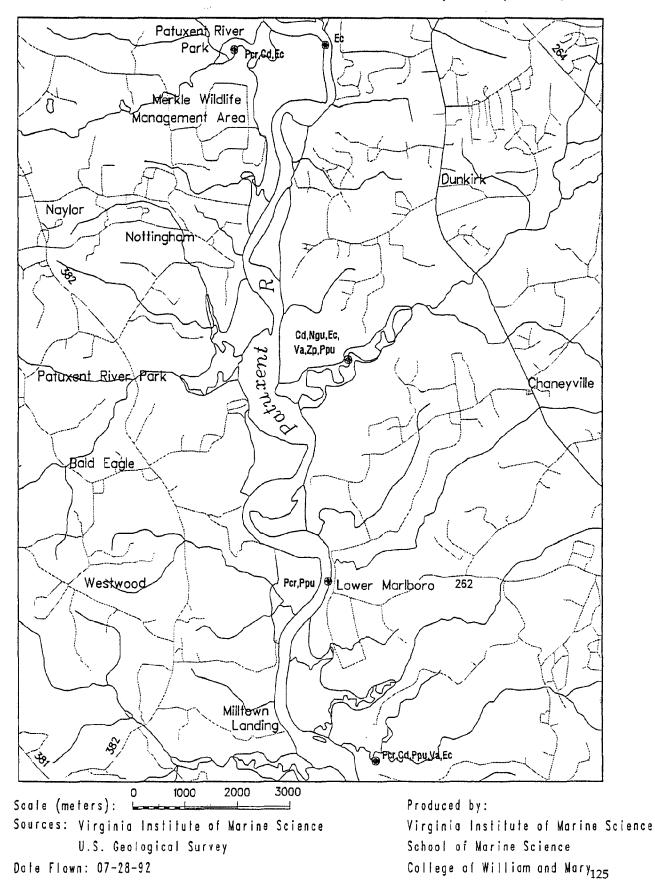


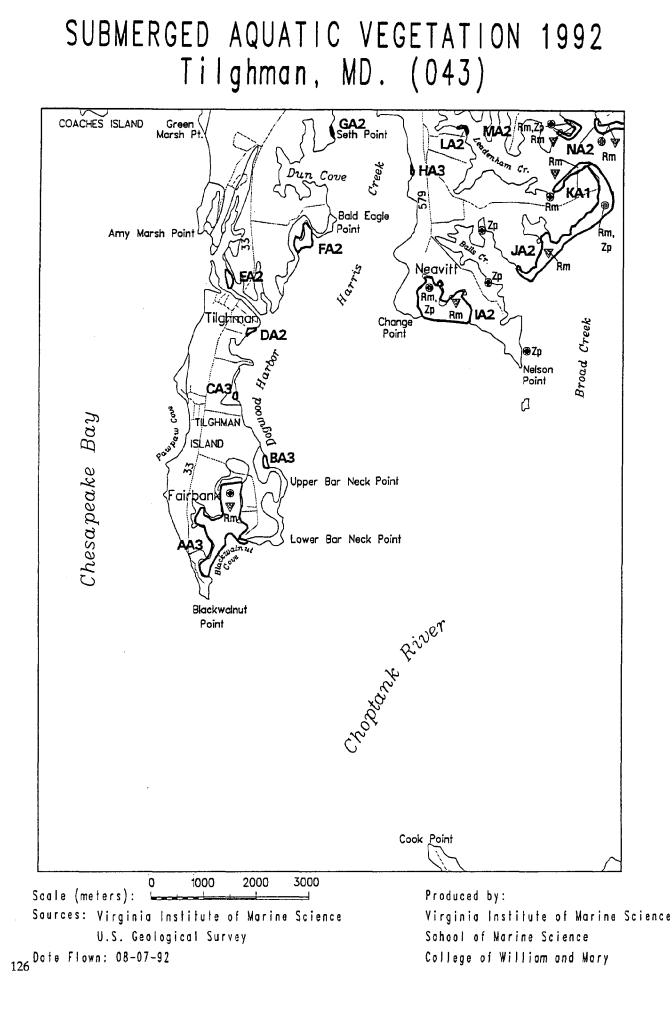

SUBMERGED AQUATIC VEGETATION 1992 Claiborne, MD. (036)

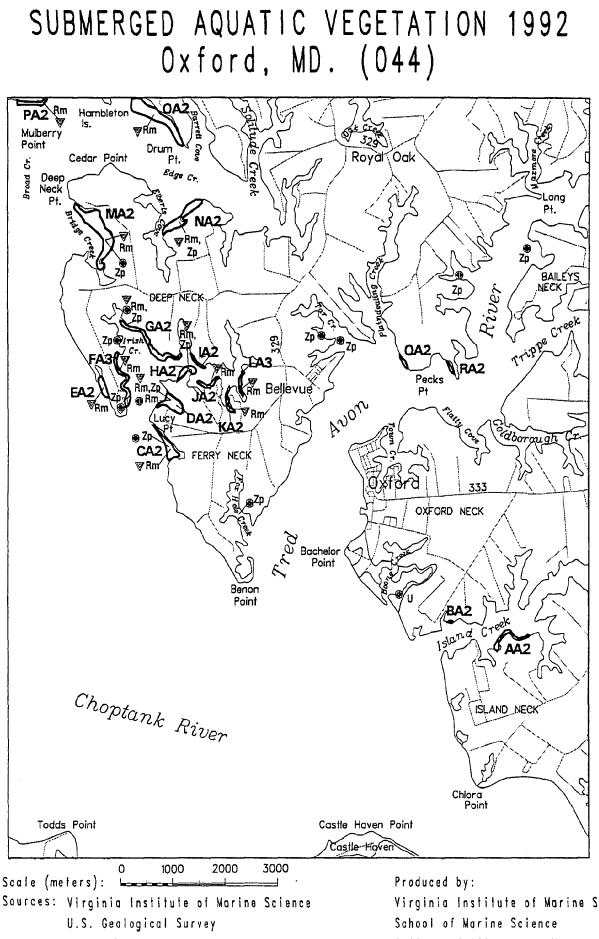
SUBMERGED AQUATIC VEGETATION 1992 St. Michaels, MD. (037)



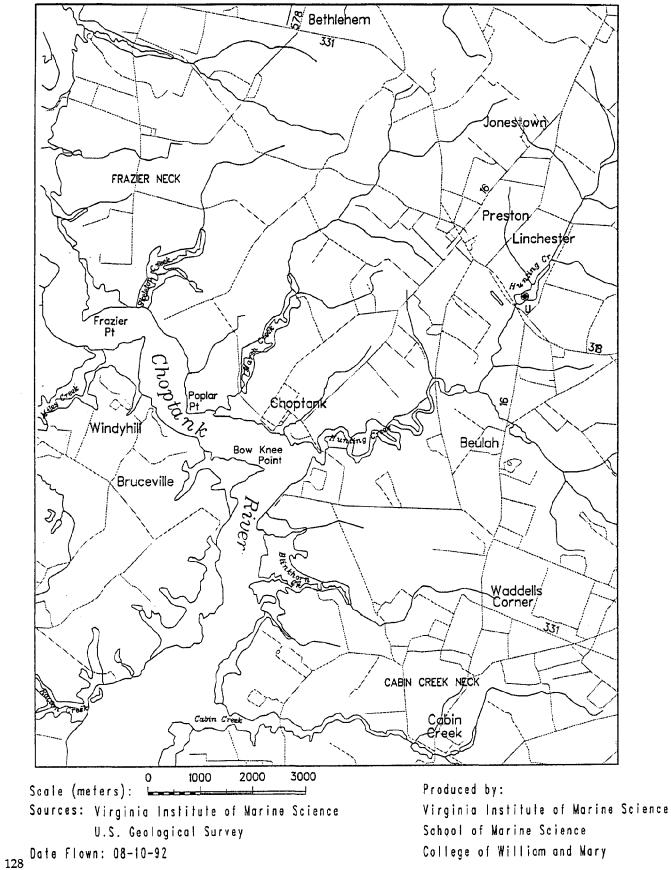
.

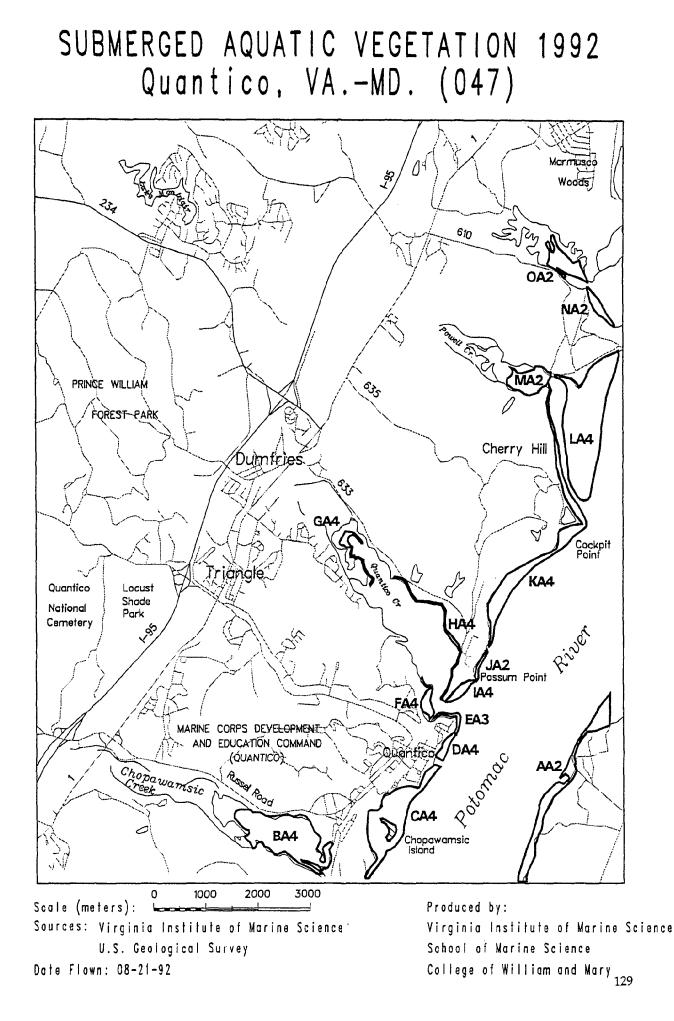



.

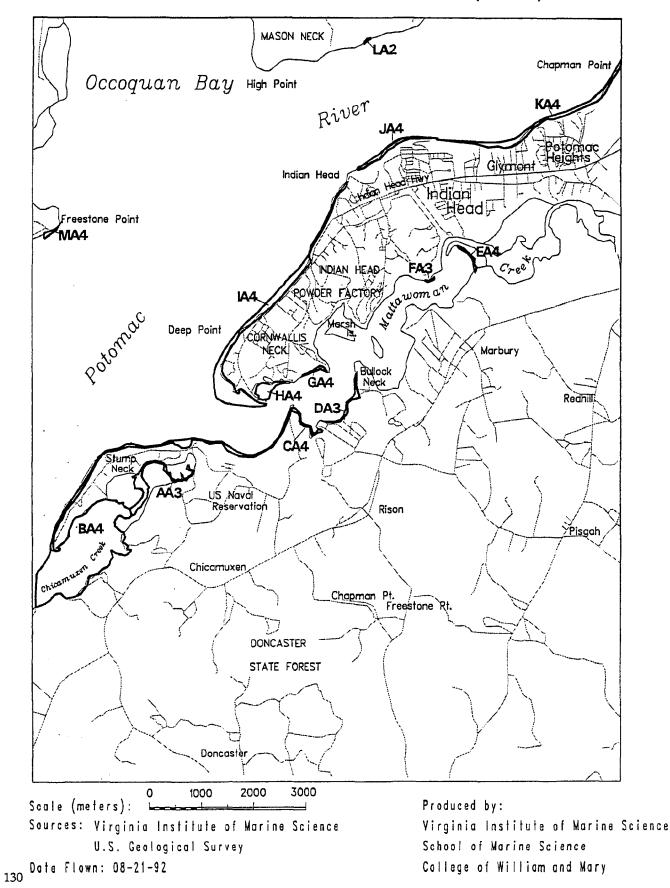

SUBMERGED AQUATIC VEGETATION 1992 Mt. Vernon, VA.-MD. (040)

SUBMERGED AQUATIC VEGETATION 1992 Lower Marlboro, MD. (041)

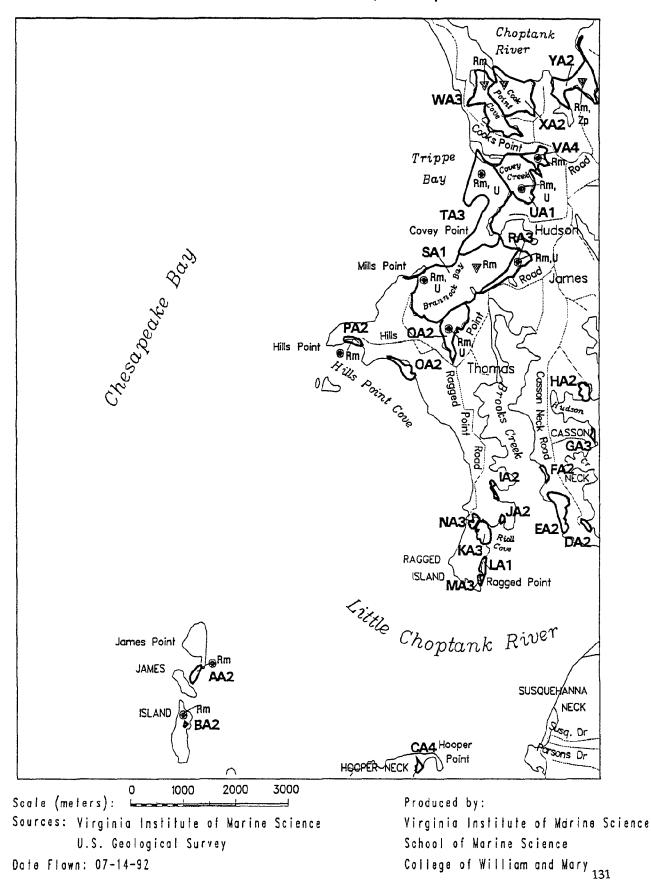


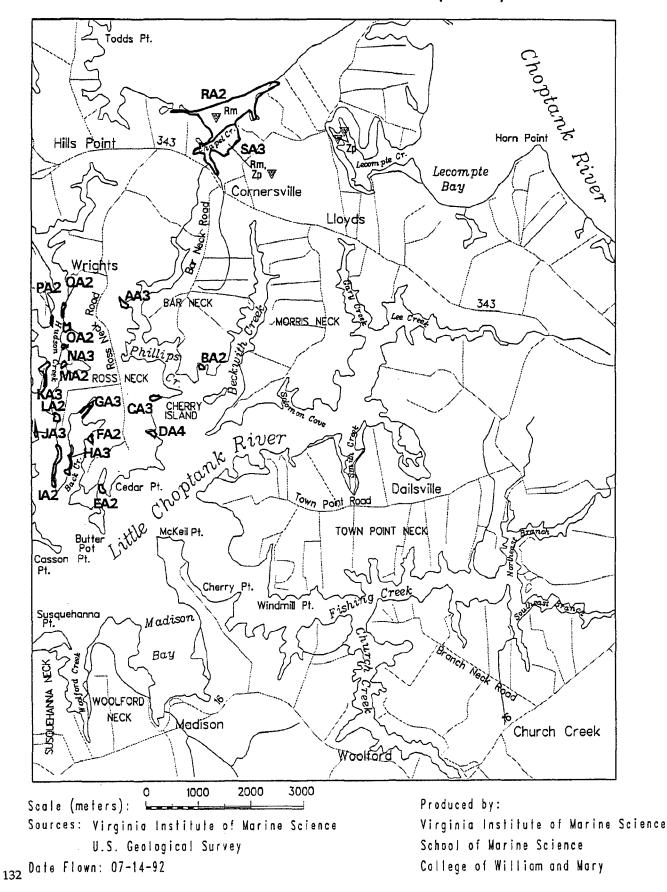


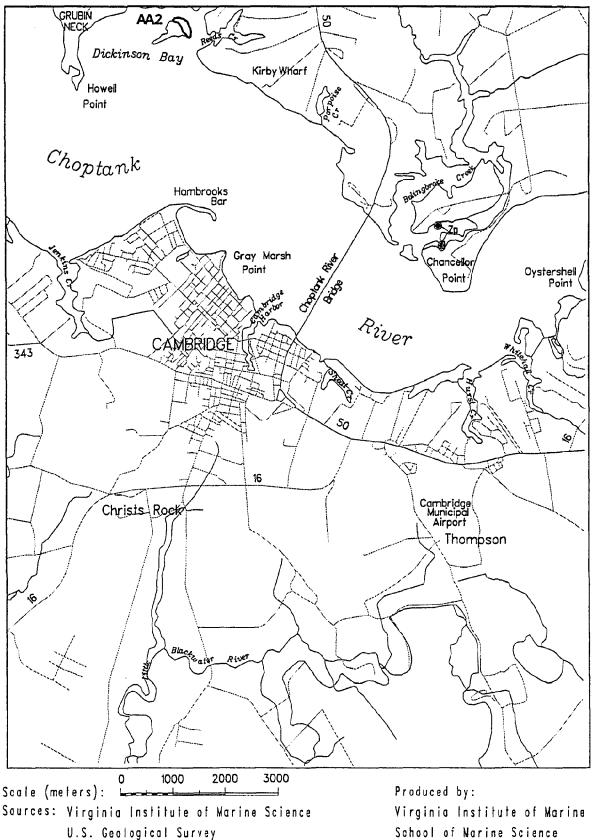
Date Flawn: 08-07-92


Virginia Institute of Marine Science College of William and Mary₁₂₇

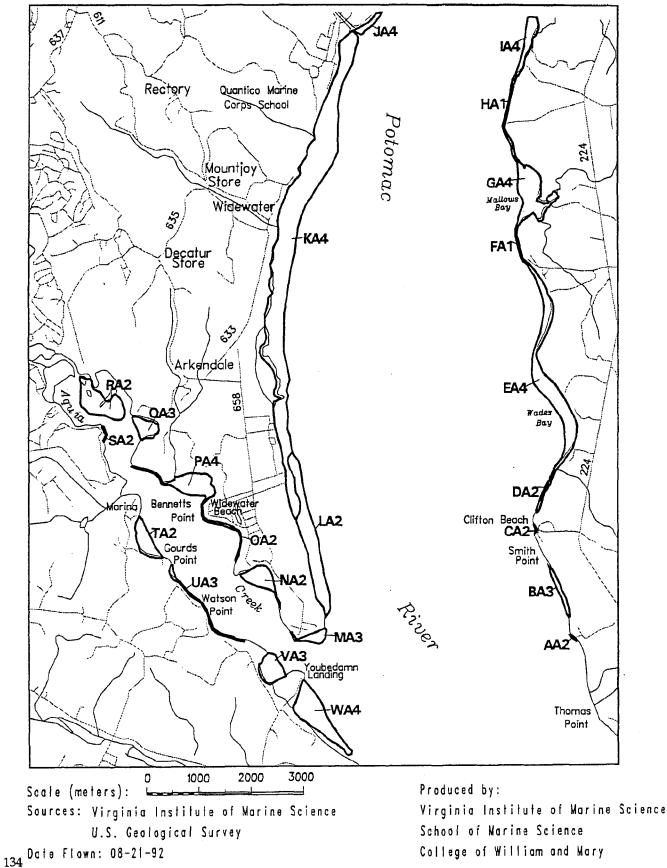
SUBMERGED AQUATIC VEGETATION 1992 Preston, MD. (046)



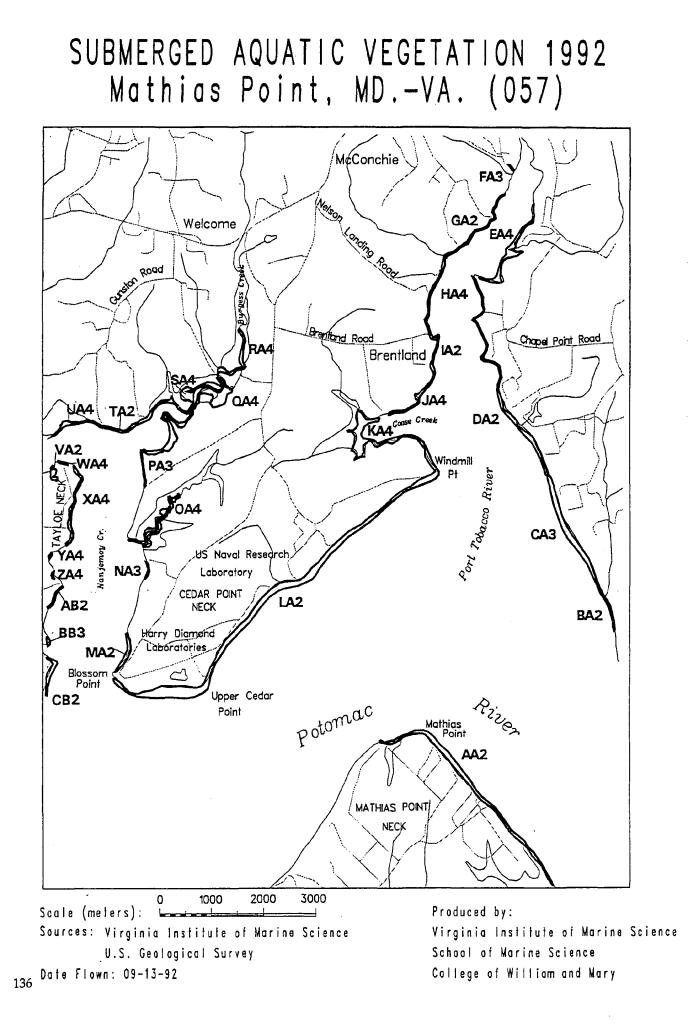

SUBMERGED AQUATIC VEGETATION 1992 Indian Head, MD.- VA. (048)


SUBMERGED AQUATIC VEGETATION 1992 Hudson, MD. (051)

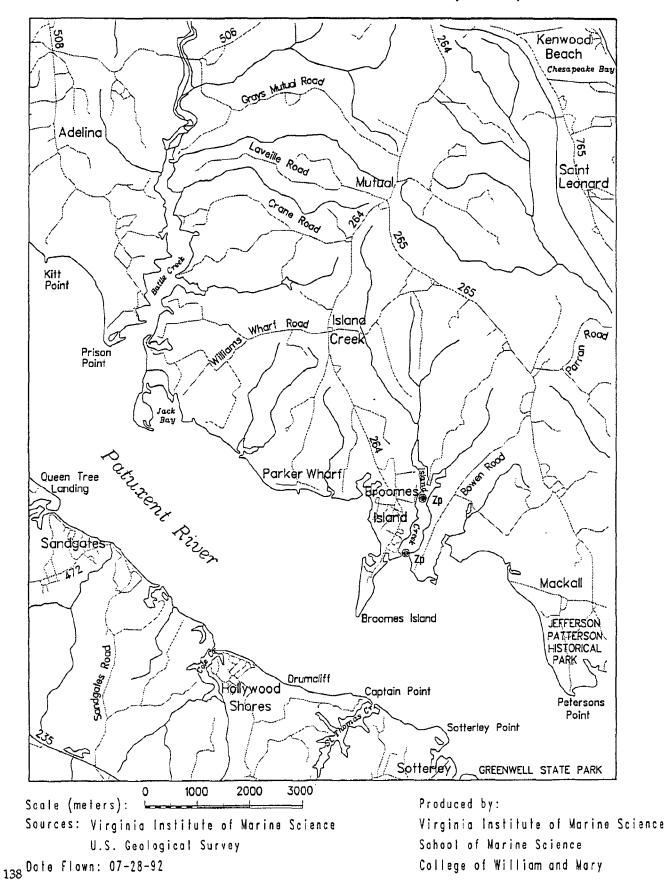
SUBMERGED AQUATIC VEGETATION 1992 Church Creek, MD. (052)


SUBMERGED AQUATIC VEGETATION 1992 Cambridge, MD. (053)

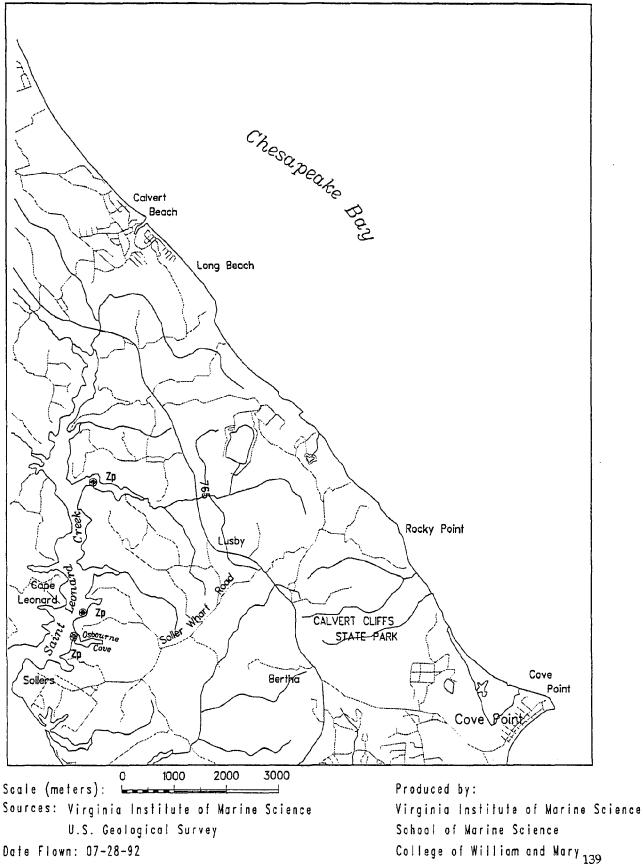
Date Flown: 07-14-92


Virginia Institute of Marine Science School of Narine Science College of William and Mary 133

SUBMERGED AQUATIC VEGETATION 1992 Widewater, VA.-MD. (055)



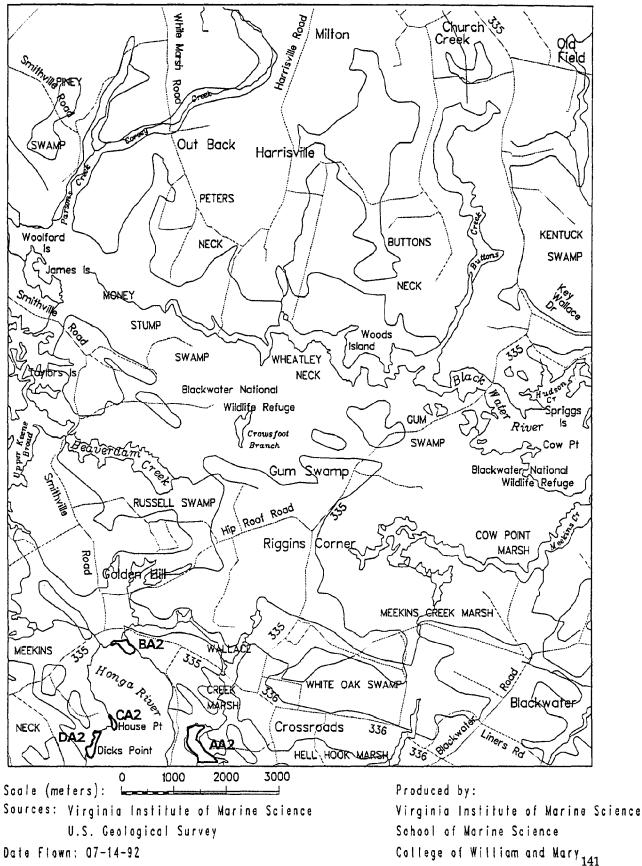
College of William and Mary 135

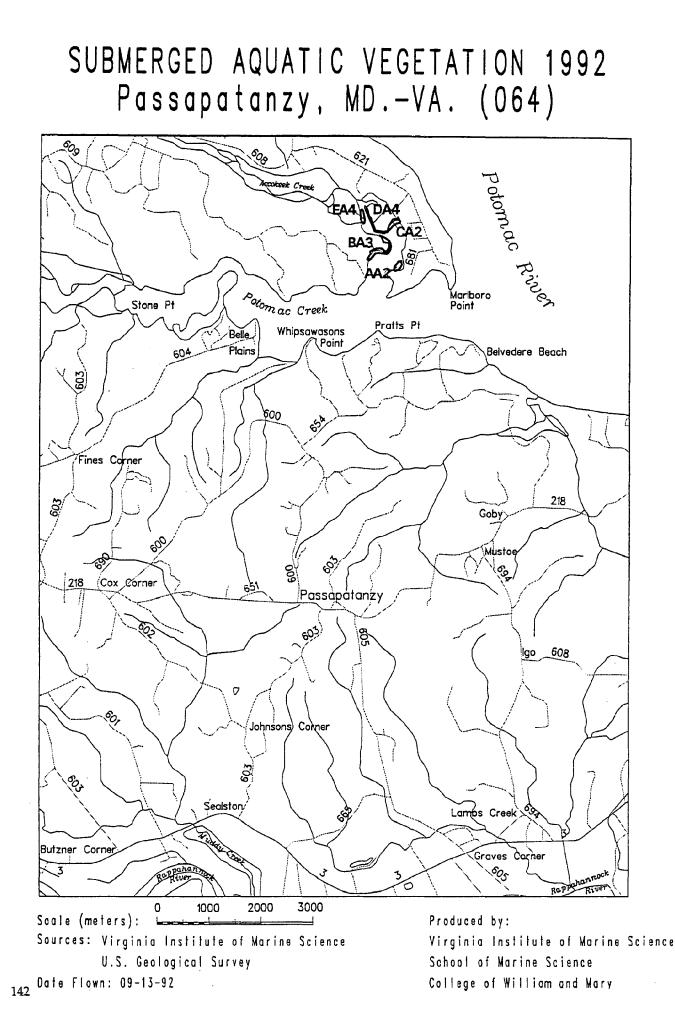


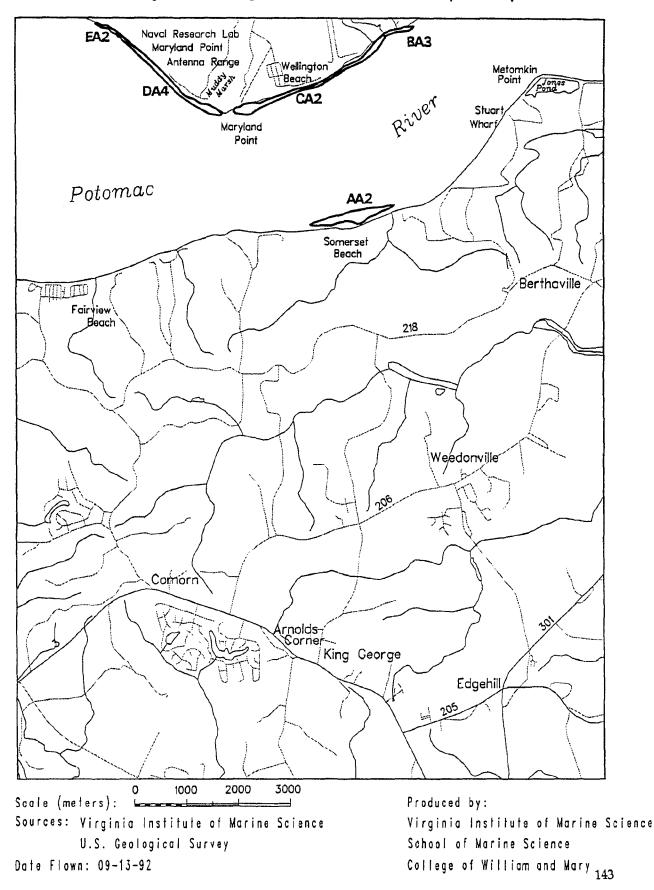
SUBMERGED AQUATIC VEGETATION 1992 Popes Creek, MD. (058) Newton Dentsville 6 etian Swan Faulkner Newport 234 Huckleberry Wicomico COBB NECK Illens Popes Creek BA3 Fres Potomac AA2 Revens Crest River 301 Cooksey Pt W_{icom ico} River McDonald Point 1000 2000 3000 0 Soale (meters): Produced by: ----Sources: Virginia Institute of Marine Science Virginia Institute of Marine Science U.S. Geological Survey School of Marine Science College of William and Mary 137 Date Flown: 07-01-92

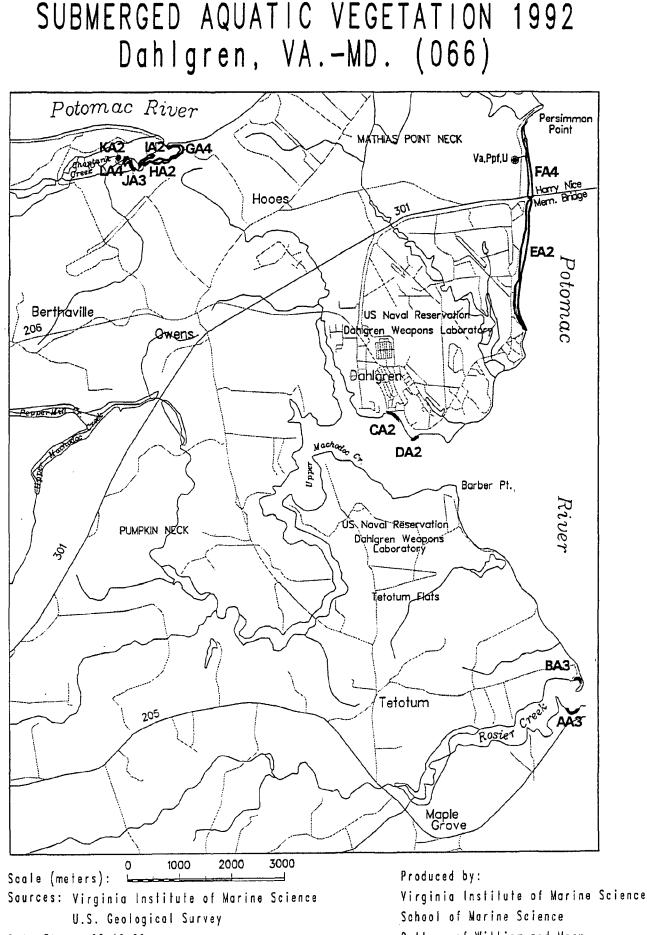
SUBMERGED AQUATIC VEGETATION 1992 Broomes Island, MD. (060)

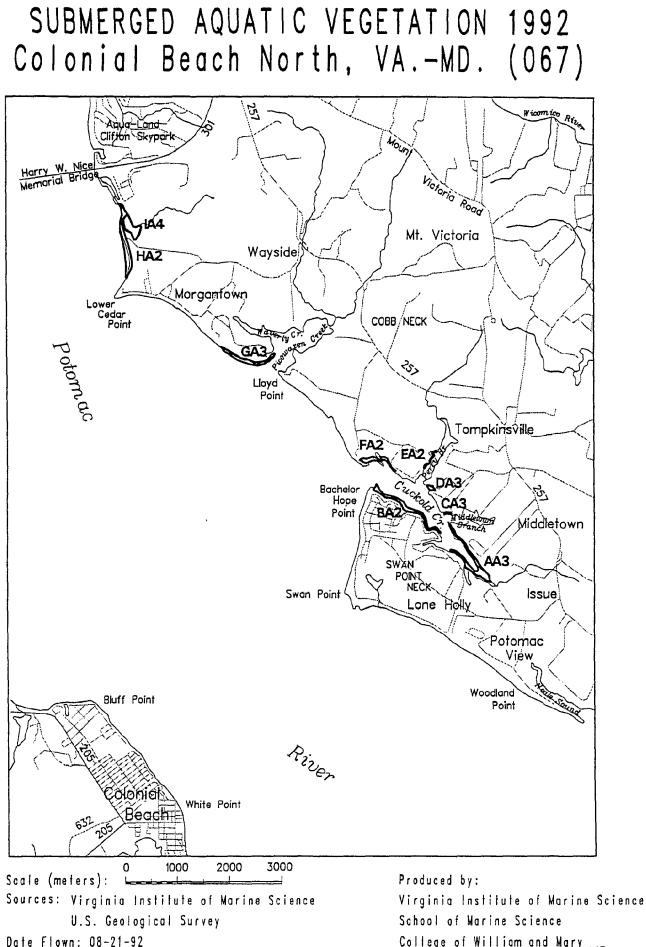
SUBMERGED AQUATIC VEGETATION 1992 Cove Point, MD. (061)

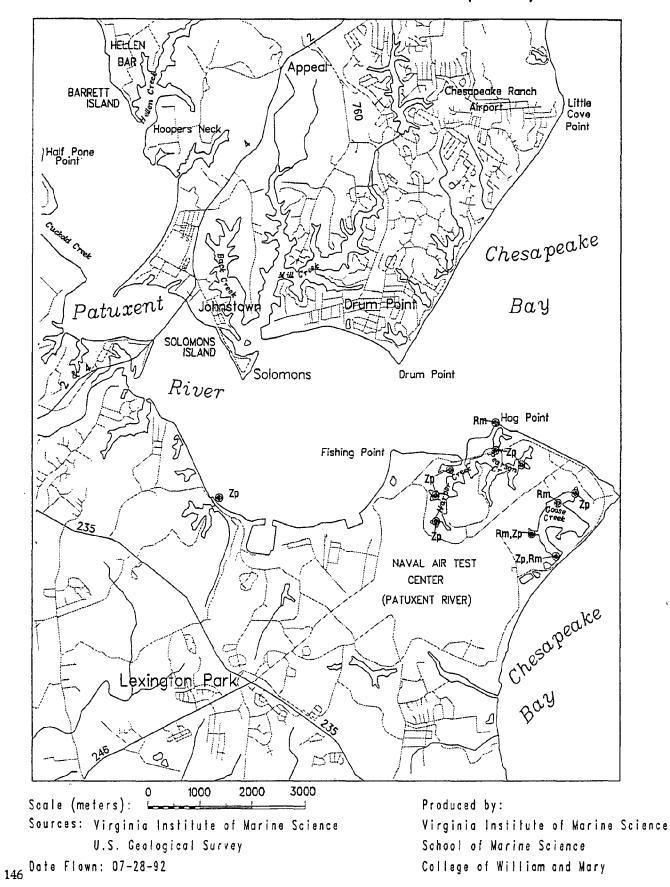



SUBMERGED AQUATIC VEGETATION 1992 Taylors Island, MD. (062)

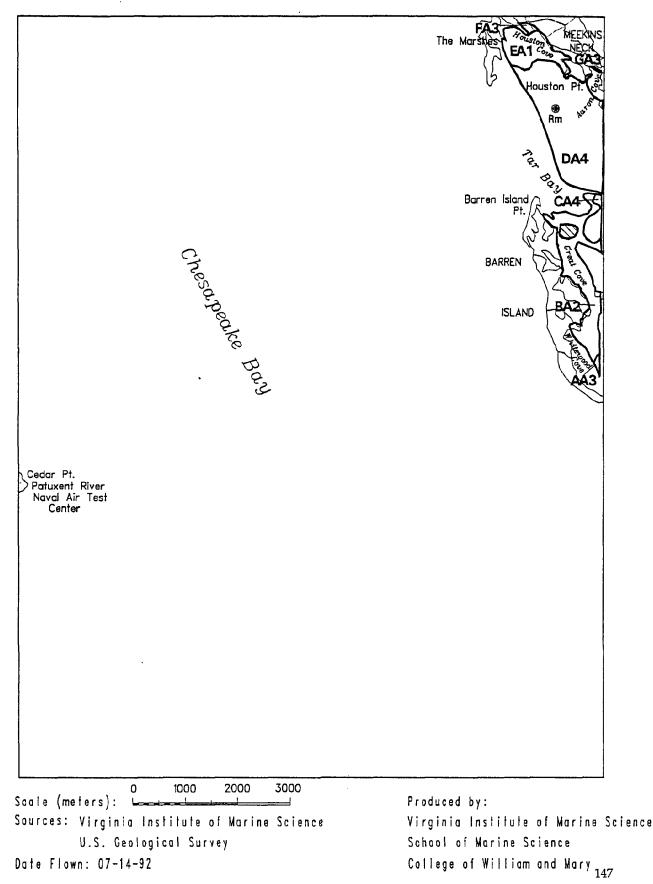

SUBMERGED AQUATIC VEGETATION 1992 Golden Hill, MD. (063)


:

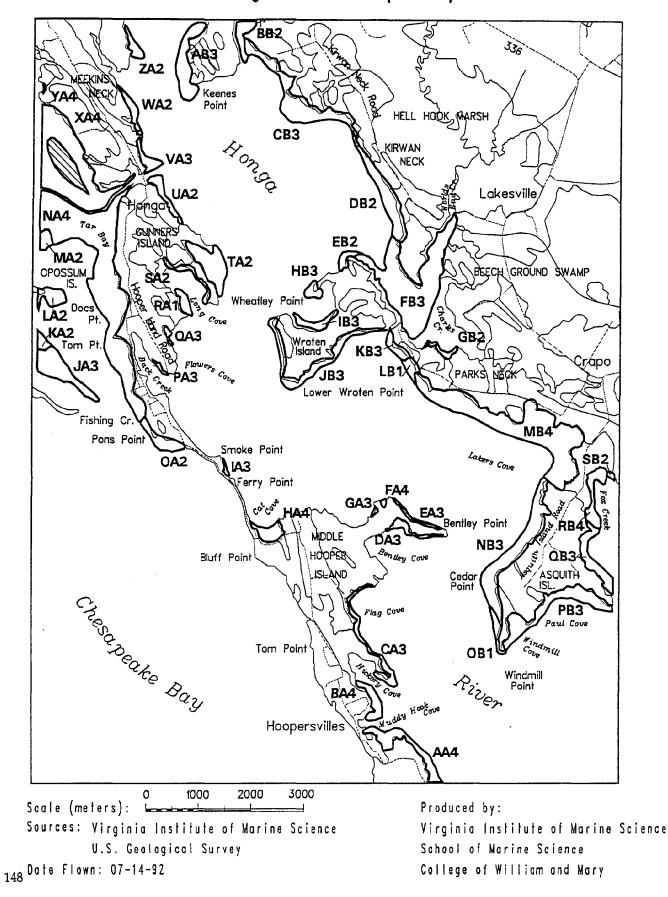

SUBMERGED AQUATIC VEGETATION 1992 King George, VA.-MD. (065)


144 Date Flown: 08-10-92

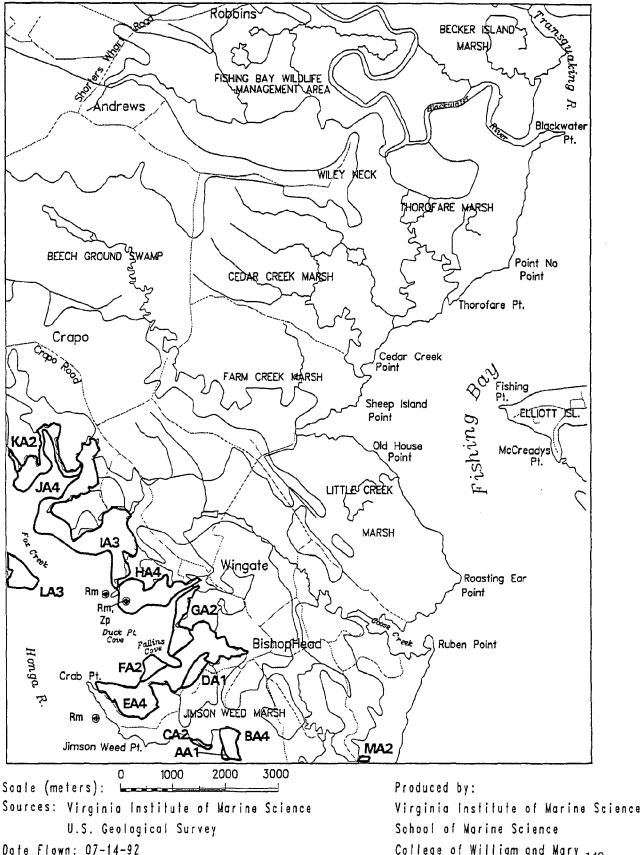
College of William and Mary



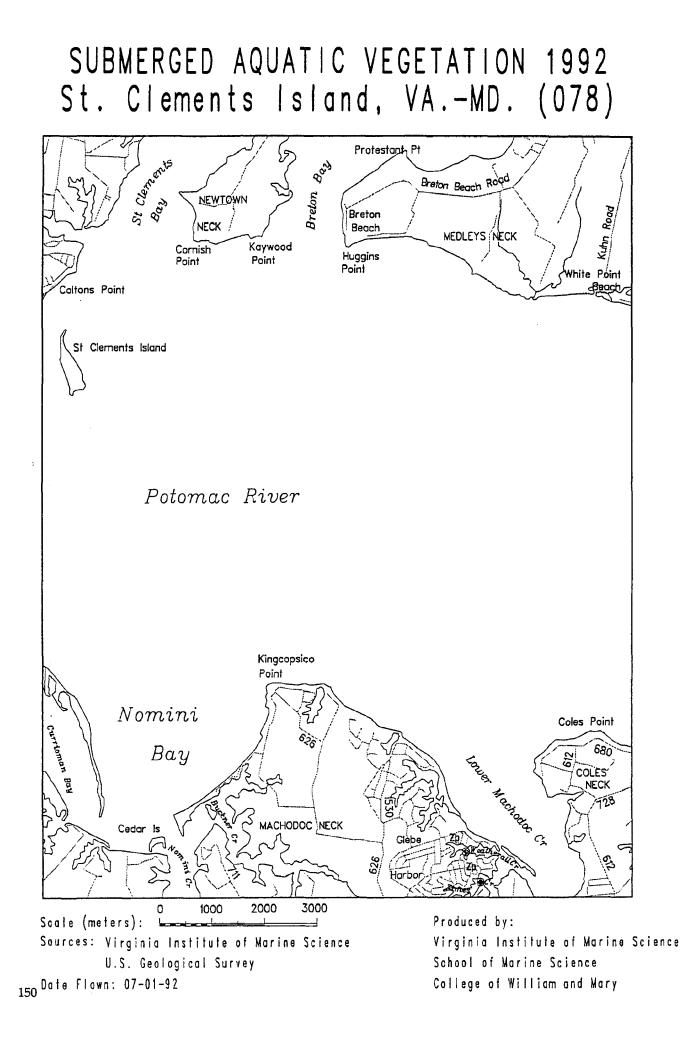
College of William and Mary 145


SUBMERGED AQUATIC VEGETATION 1992 Solomons Island, MD. (071)

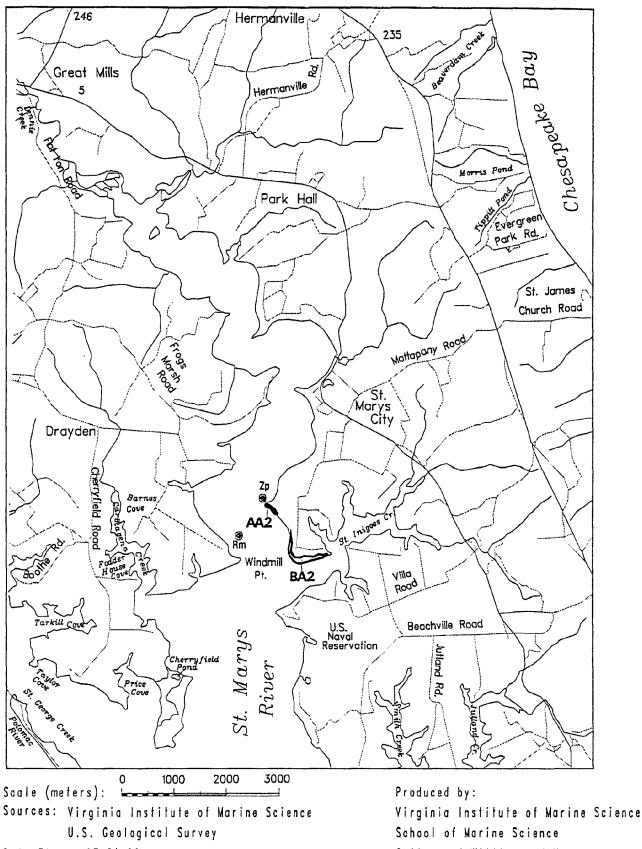
SUBMERGED AQUATIC VEGETATION 1992 Barren Island, MD. (072)



SUBMERGED AQUATIC VEGETATION 1992 Honga, MD. (073)



SUBMERGED AQUATIC VEGETATION 1992 Wingate, MD. (074)

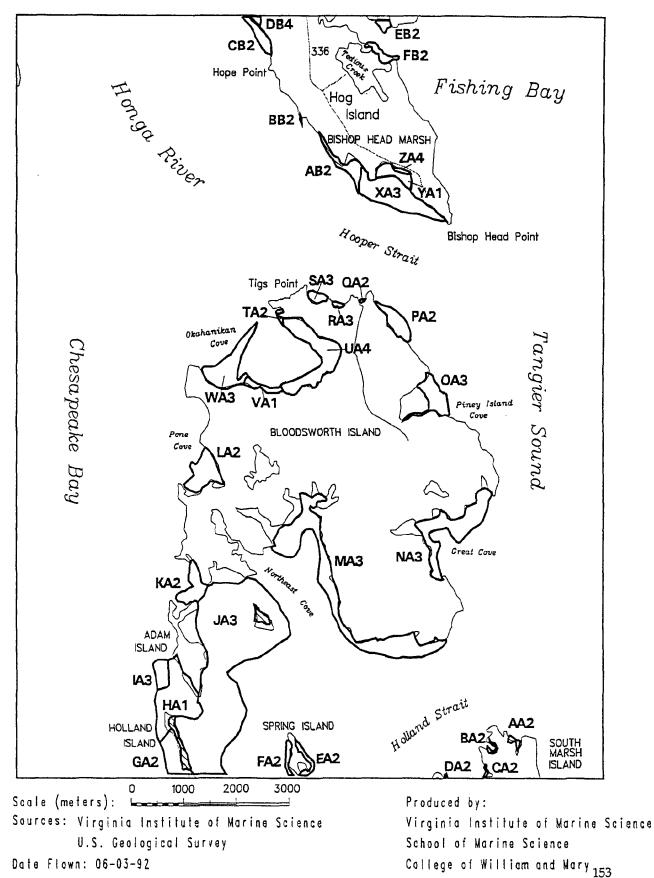

â

College of William and Mary 149

SUBMERGED AQUATIC VEGETATION 1992 St. Mary's City, MD. (080)

1

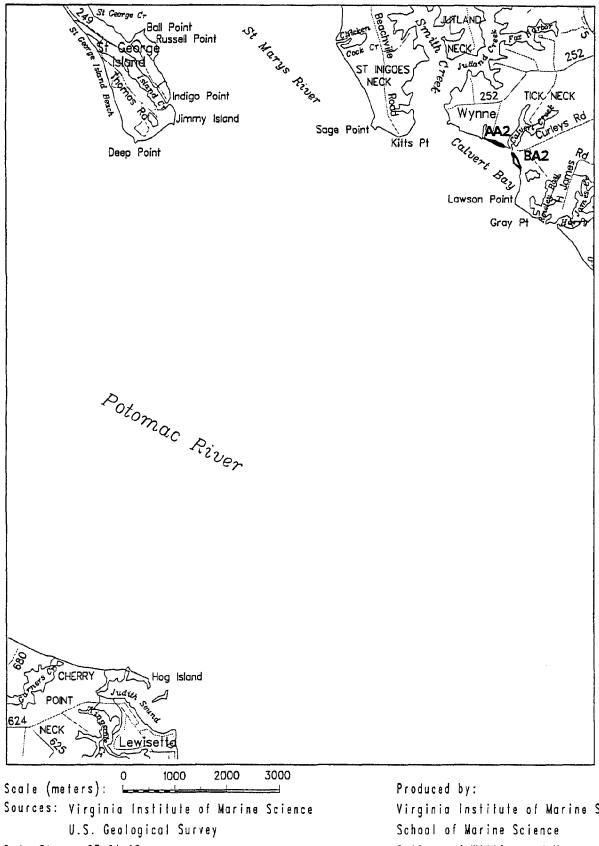
College of William and Mary 151


SUBMERGED AQUATIC VEGETATION 1992 Richland Point, MD. (082)

ĸ

Chrester Bay					
		ेंद	A. C. J.	·	

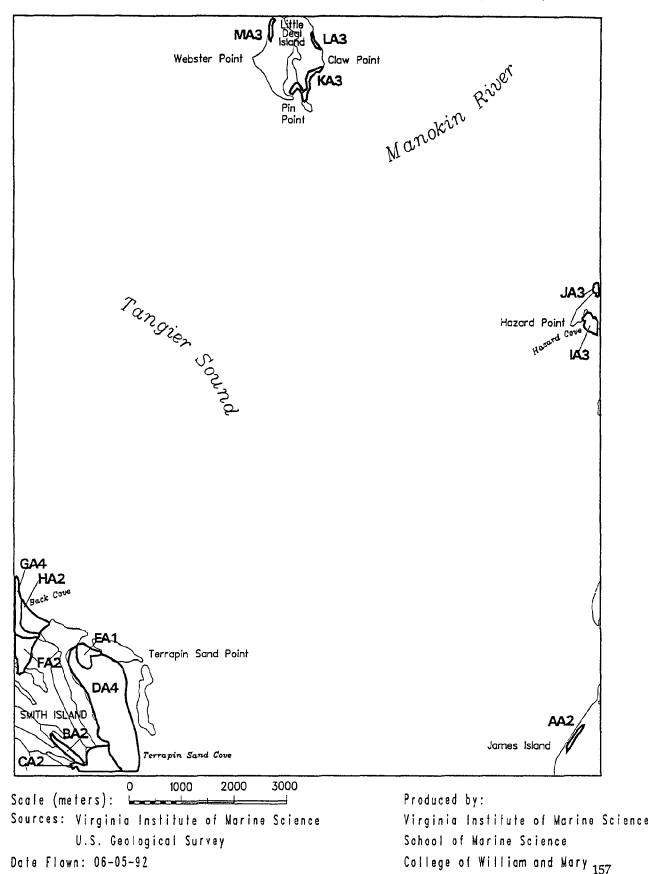
SUBMERGED AQUATIC VEGETATION 1992 Bloodsworth Island, MD. (083)


ł

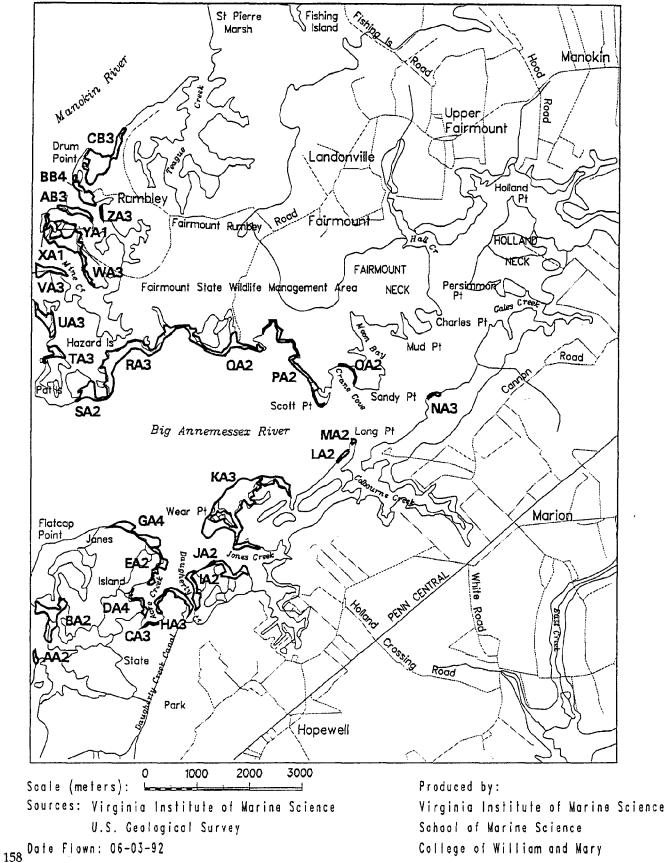
SUBMERGED AQUATIC VEGETATION 1992 Deal Island, MD. (084) W Cole River Waterview SANDY ISLAND Fishing Ellis Frog Pt Bay STUMP Bay LAY ISLANE POINT MARSH Nanticoke Pt Wicomico Rives Long P Tangier Sound Cames puarte Dames Hail Pt Quarter 363 DAMES QUARTER MARSH Haines Point Thoro Deal Pt. Deal Island FQ.7 State Wildlife Deal stand JEAL ISLAND Rm BA2 CA2 DA: ∲Rm Rm rishing Cr. Rm 💩 Wenona Twiggs Point (AA2 DEAL ISLAND MARSH West Pt Manokin River Lower Thorofare LITTLE DEAL ISLAND 0 1000 2000 3000 Scale (meters): Less Produced by: Sources: Virginia Institute of Marine Science Virginia Institute of Marine Science U.S. Geological Survey School of Marine Science 154 Date Flown: 06-03-92 College of William and Mary

٤

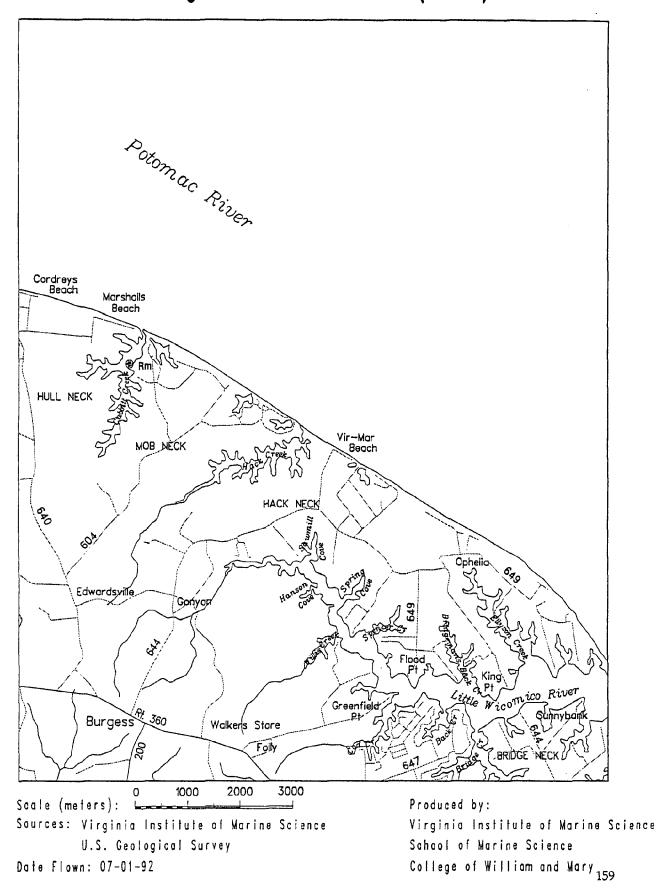
SUBMERGED AQUATIC VEGETATION 1992 St. George Island, MD.-VA. (089)

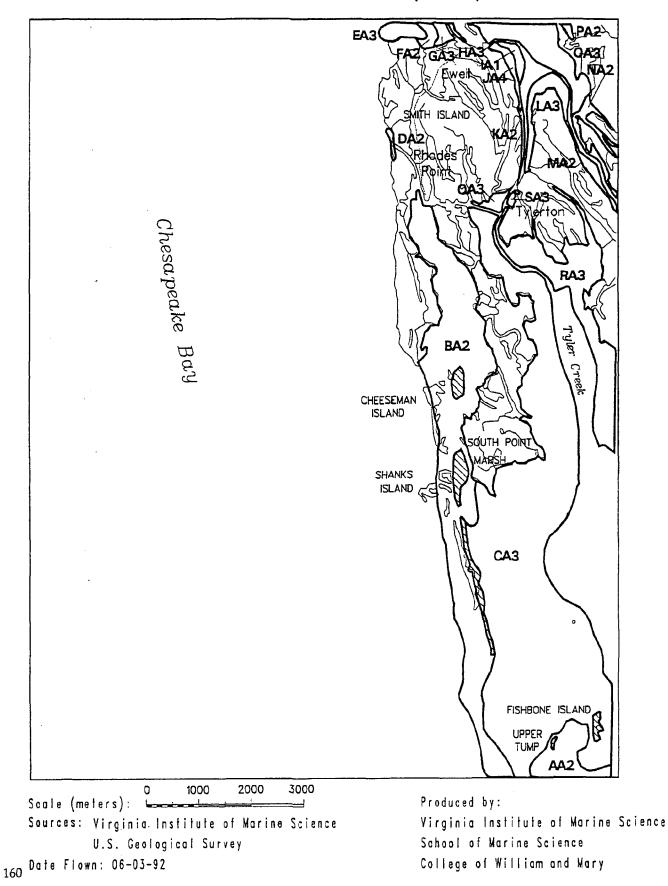

Date Flown: 07-01-92

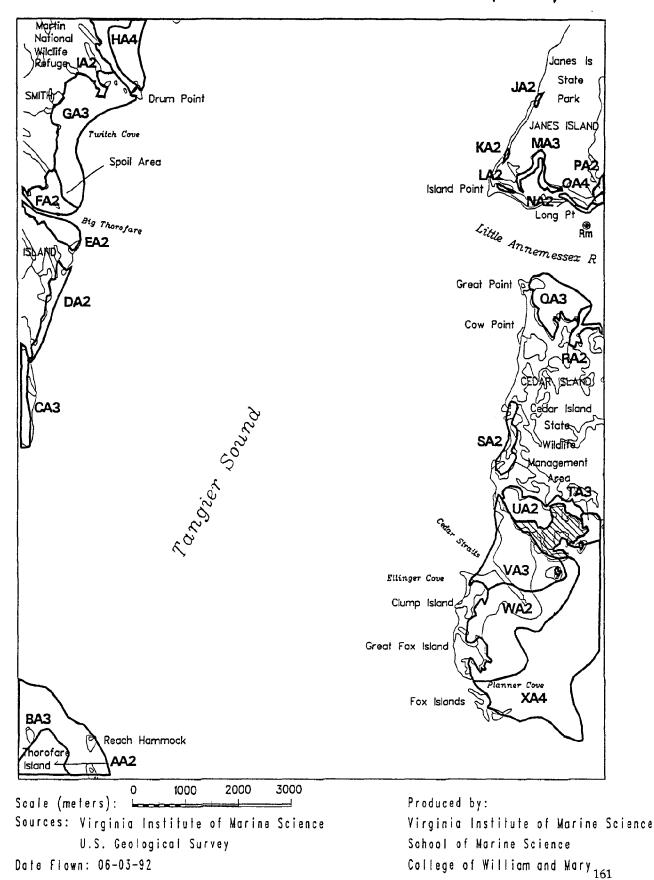
Virginia Institute of Marine Science College of William and Mary 155

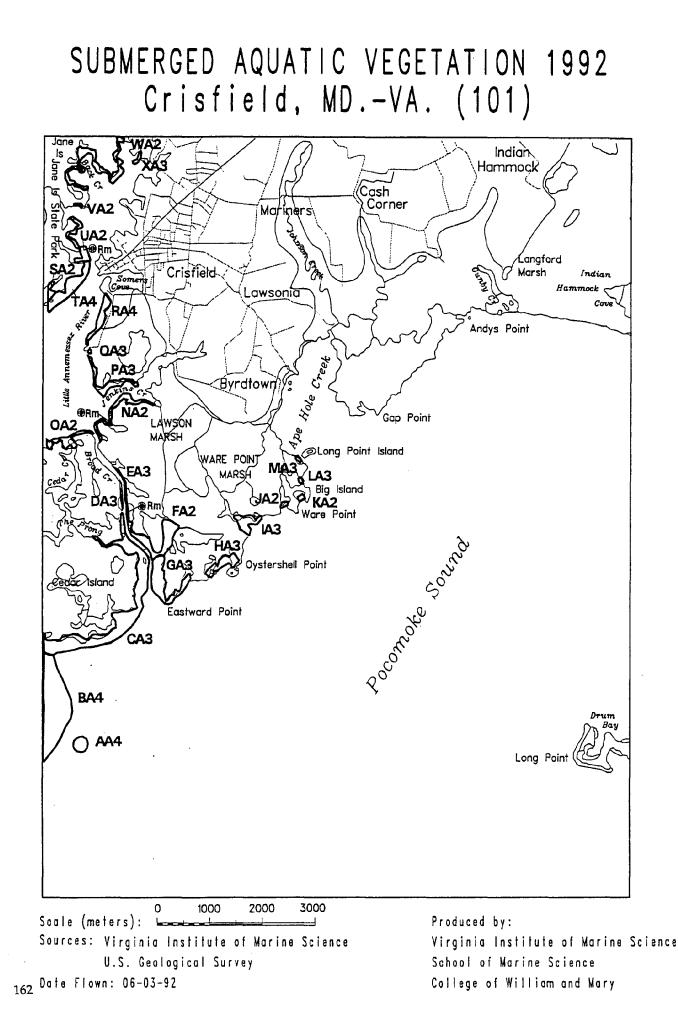

Kedges Straits, MD. (091) ZA2 Ŭ YA4 WA2 ^{Tangier} ÕA2 Hollend Straits XA2 PA4 Hotland Joh Island Cove Johnson Pl ₹¥. Soun 04 ry Cove NA2 South Chesapeake Mars Sedgy PT Island MA LA3 JA2 Sheepshead Pt Baij Kedges Straits Fog Pi Back Smith Island HA Martin IA2 Nat'l Wildlife Refuge Cove EA FA3 DA 3 Big AB3 Troy Is. AA3 2000 3000 0 1000 Scale (meters): Produced by: _ Sources: Virginia Institute of Marine Science Virginia Institute of Marine Science U.S. Geological Survey School of Marine Science 156 Date Flown: 06-03-92 College of William and Mary

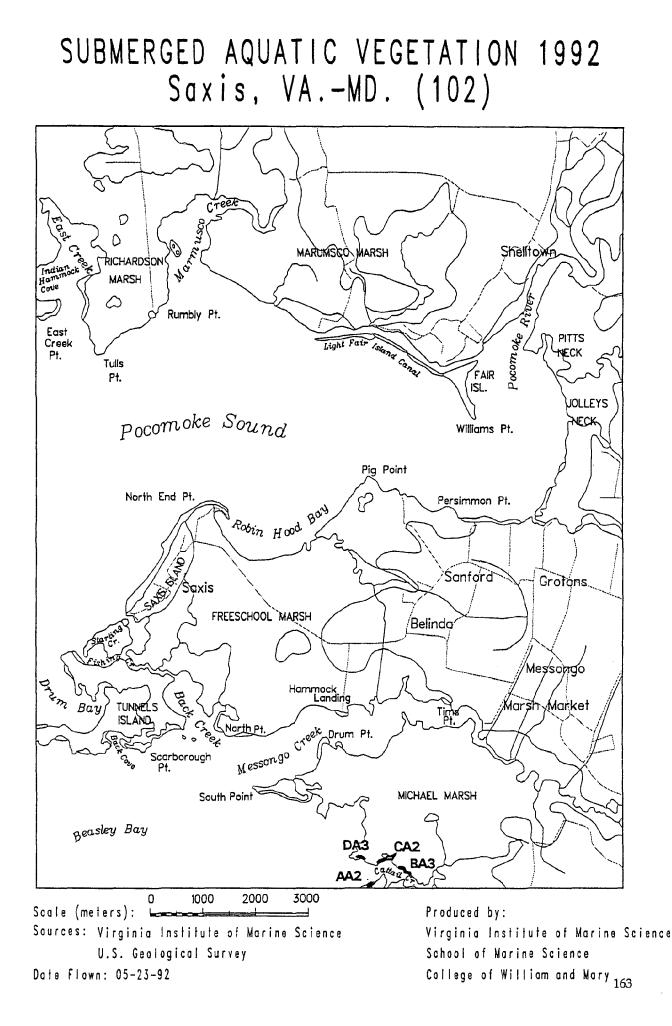
SUBMERGED AQUATIC VEGETATION 1992

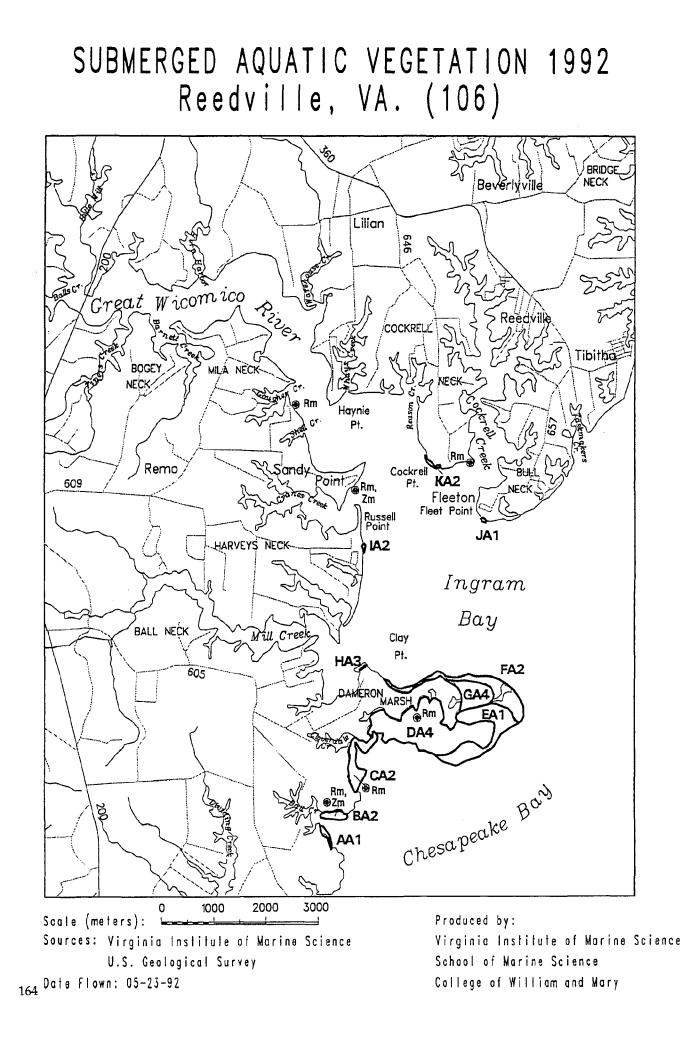

SUBMERGED AQUATIC VEGETATION 1992 Terrapin Sand Point, MD. (092)


SUBMERGED AQUATIC VEGETATION 1992 Marion, MD. (093)

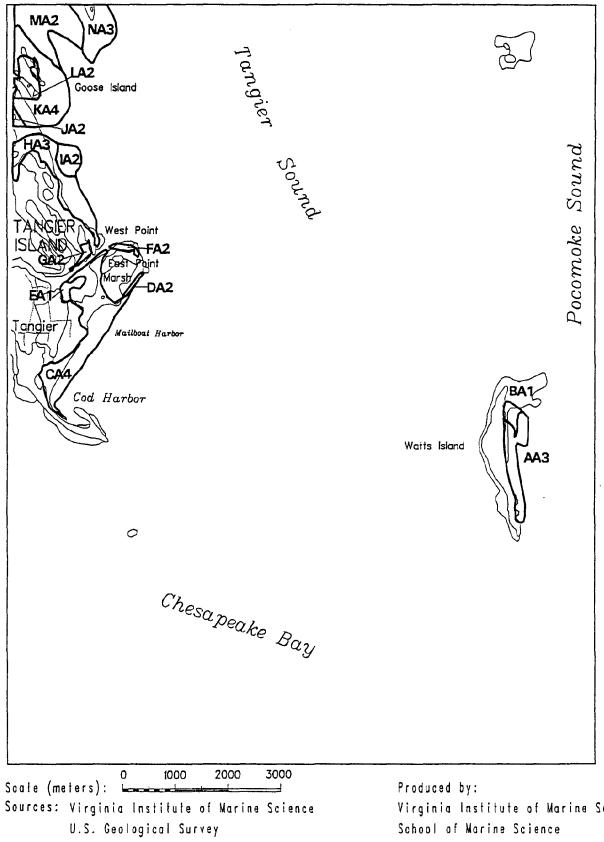

SUBMERGED AQUATIC VEGETATION 1992 Burgess, VA.-MD. (098)

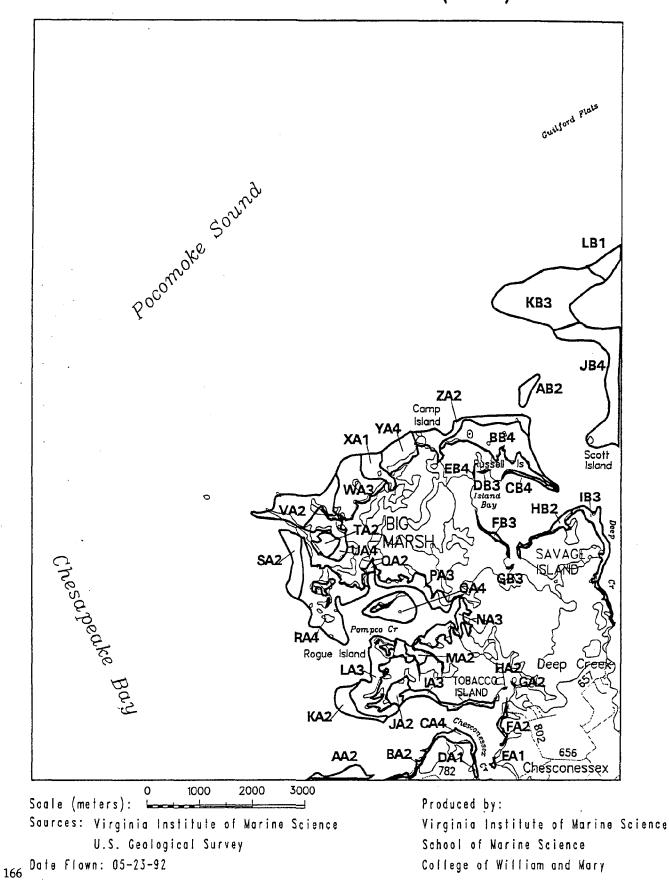


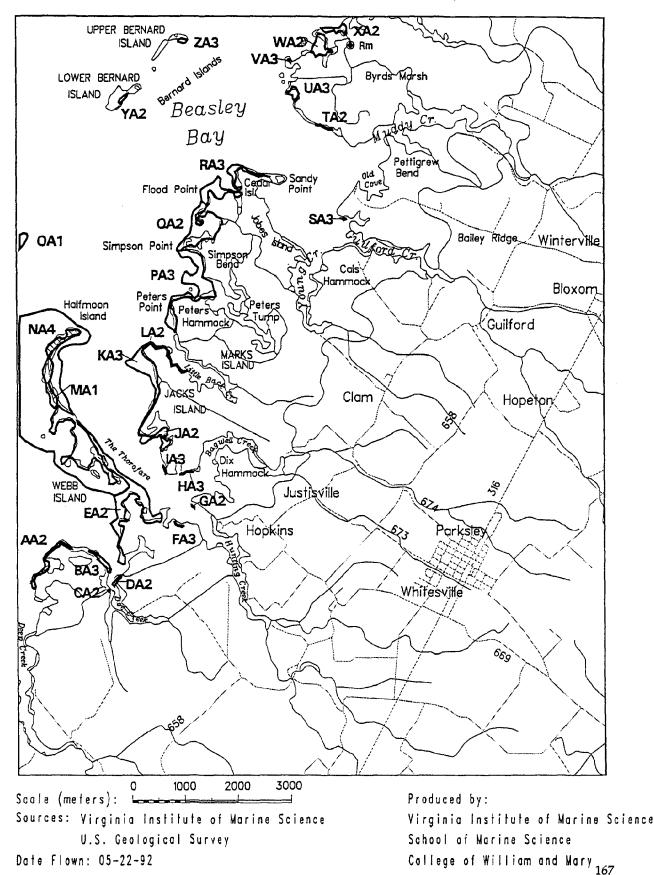

SUBMERGED AQUATIC VEGETATION 1992 Ewell, MD.-VA. (099)



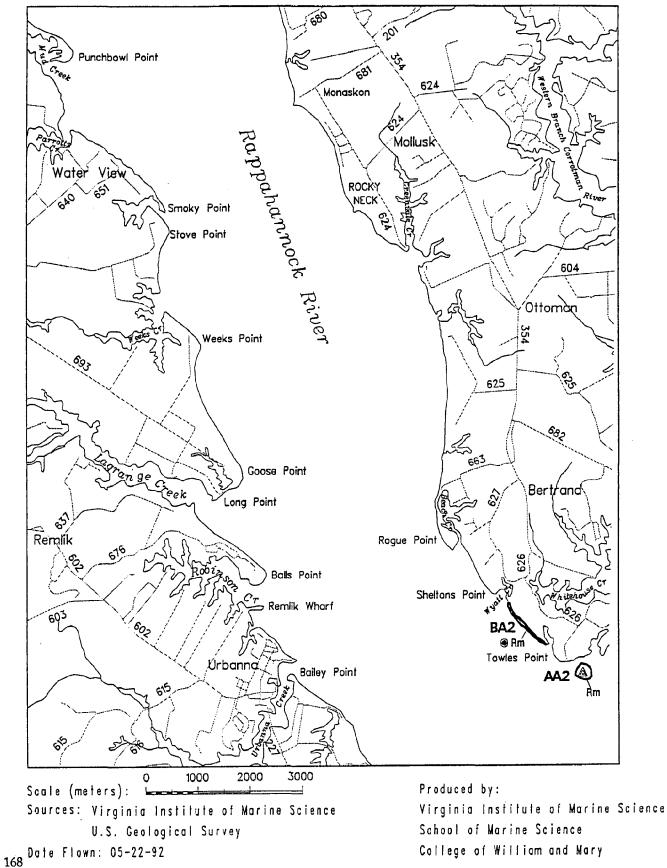
SUBMERGED AQUATIC VEGETATION 1992 Great Fox Island, MD.-VA. (100)

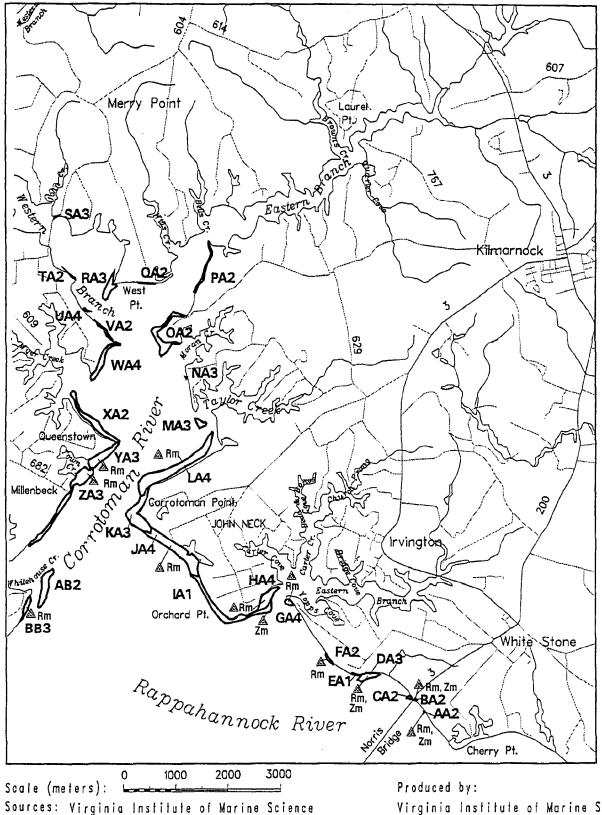



SUBMERGED AQUATIC VEGETATION 1992 Tangier Island, VA. (107)

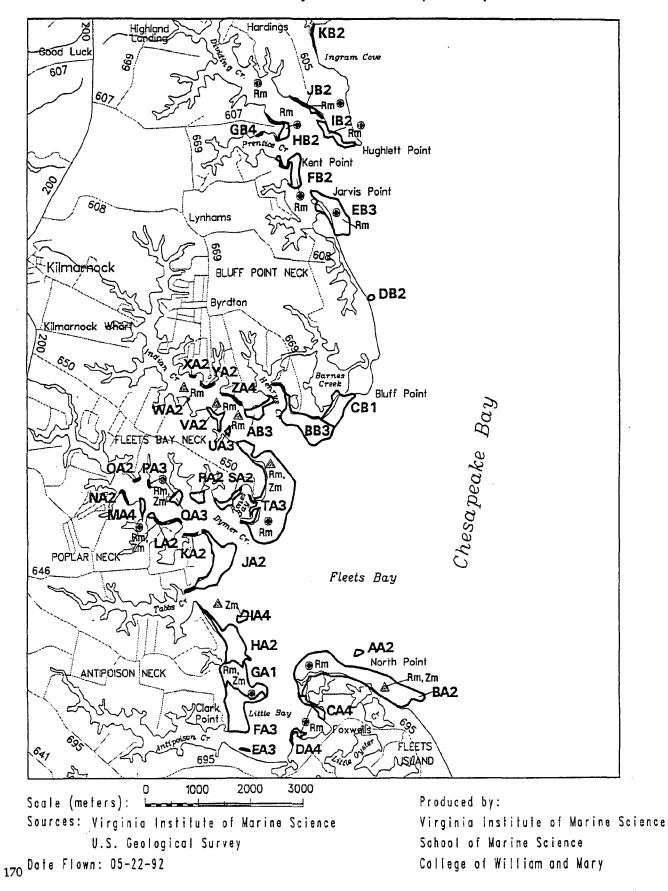

Date Flown: 06-03-92

Virginia Institute of Marine Science College of William and Mary 165

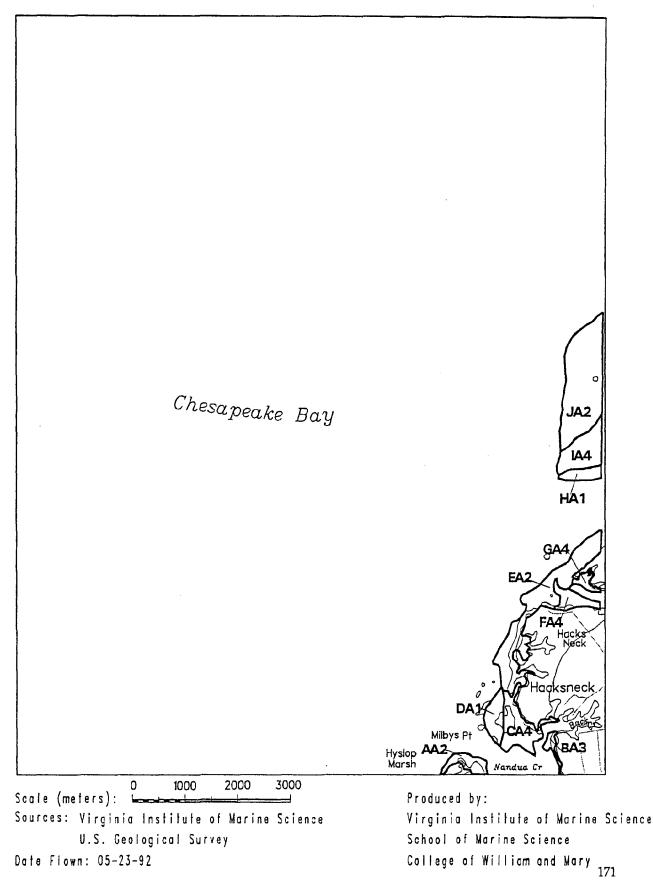

SUBMERGED AQUATIC VEGETATION 1992 Chesconessex, VA. (108)


SUBMERGED AQUATIC VEGETATION 1992 Parksley, VA. (109)

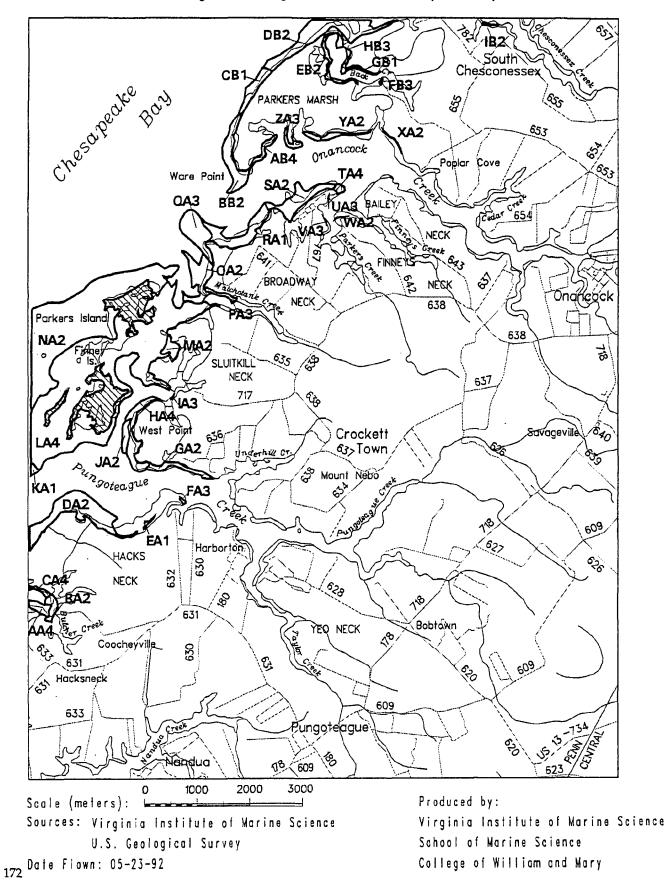
SUBMERGED AQUATIC VEGETATION 1992 Urbanna, VA. (110)

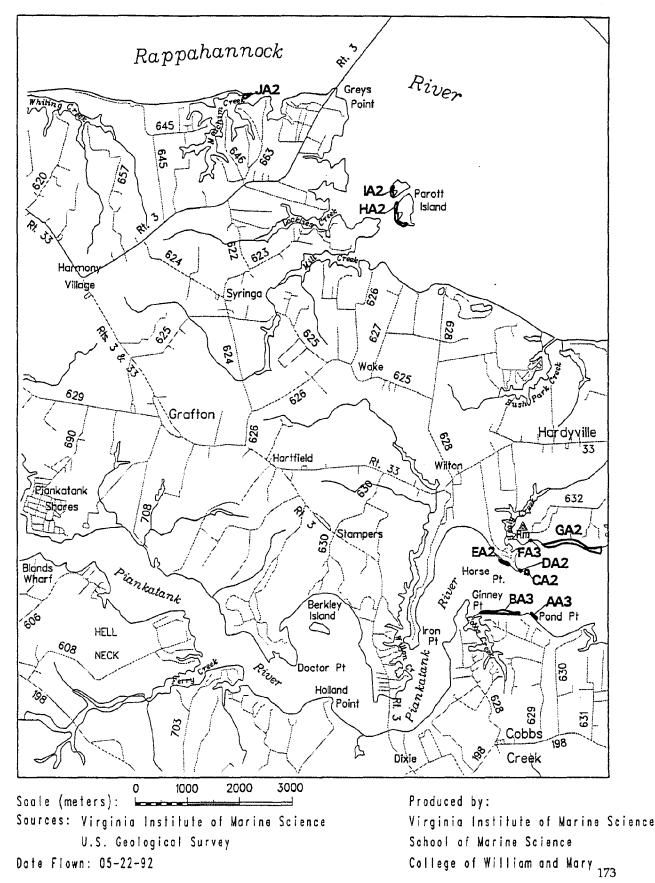


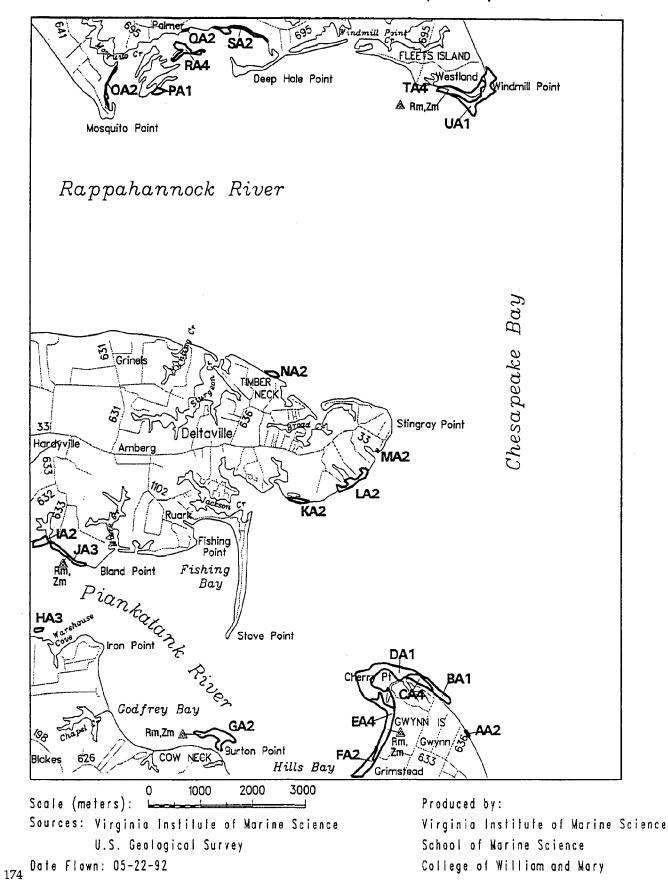
SUBMERGED AQUATIC VEGETATION 1992 Irvington, VA. (111)

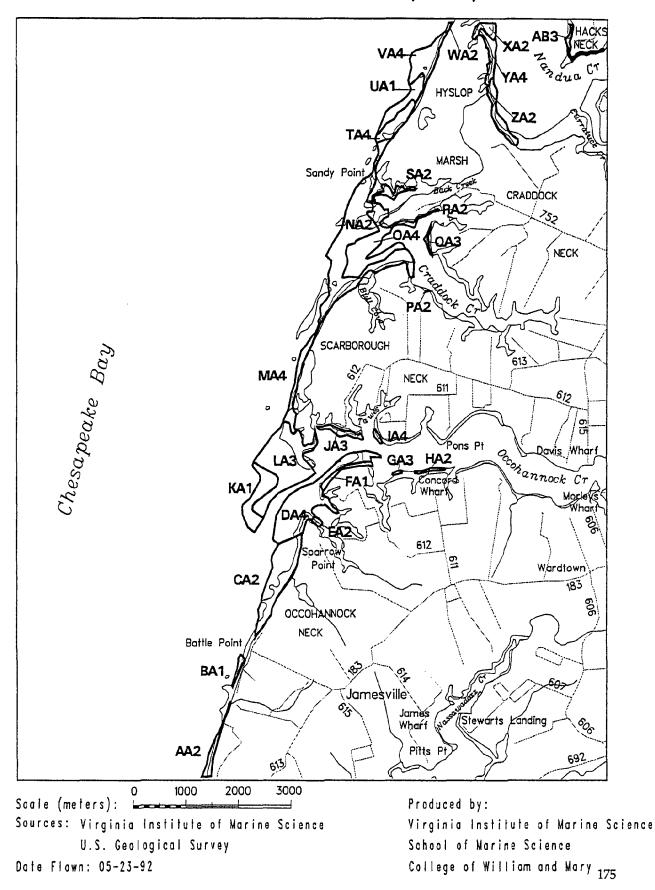


U.S. Geological Survey Date Flown: 05-22-92 Produced by: Virginia Institute of Marine Science School of Marine Science College of William and Mary 169


SUBMERGED AQUATIC VEGETATION 1992 Fleets Bay, VA. (112)

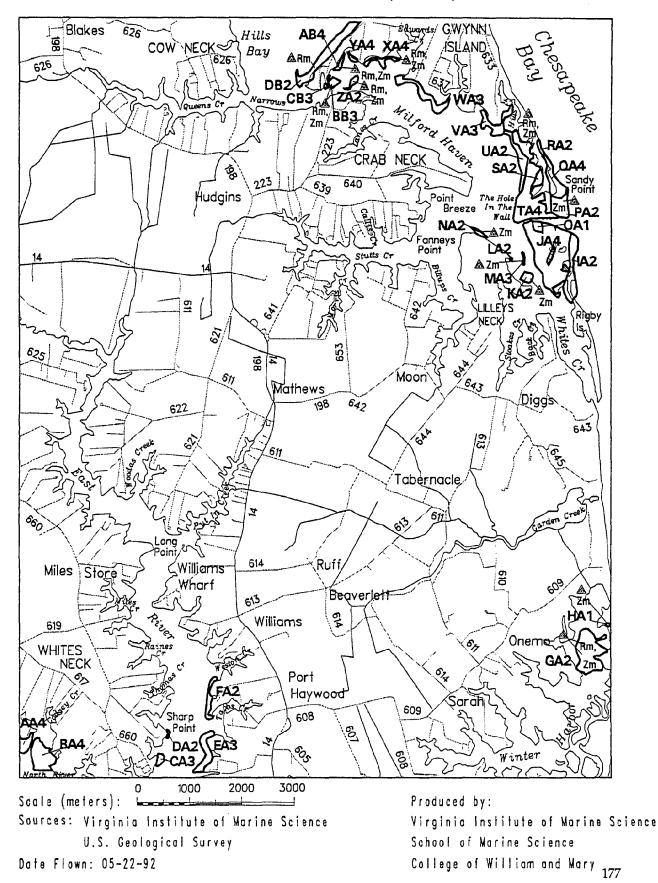

SUBMERGED AQUATIC VEGETATION 1992 Nandua Creek, VA. (113)


SUBMERGED AQUATIC VEGETATION 1992 Pungoteague, VA. (114)

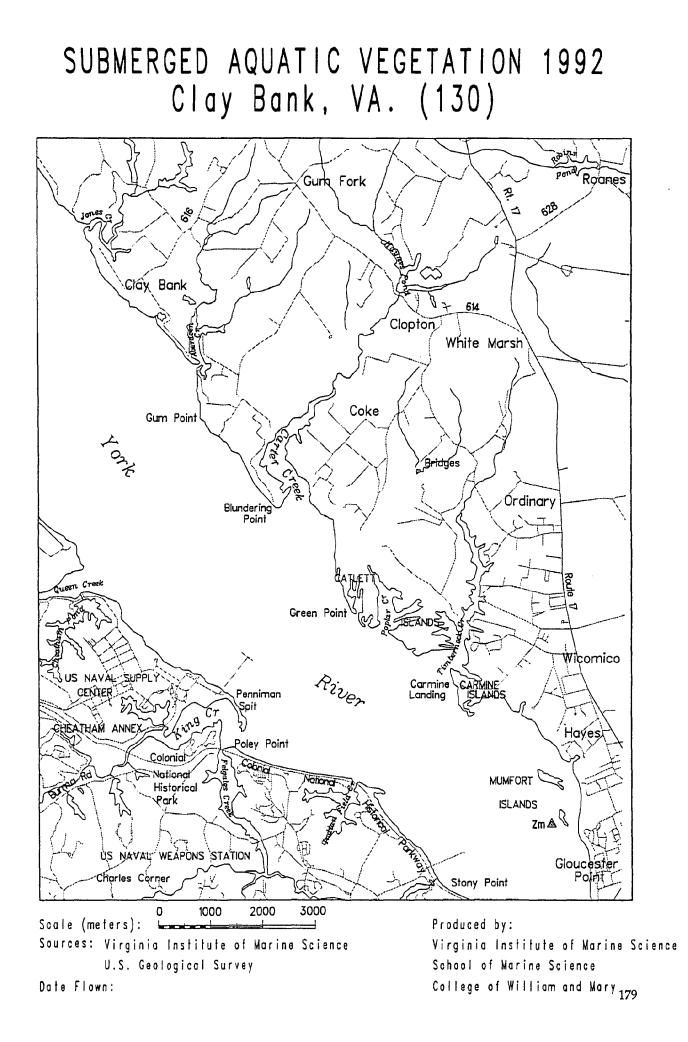

SUBMERGED AQUATIC VEGETATION 1992 Wilton, VA. (117)

SUBMERGED AQUATIC VEGETATION 1992 Deltaville, VA. (118)

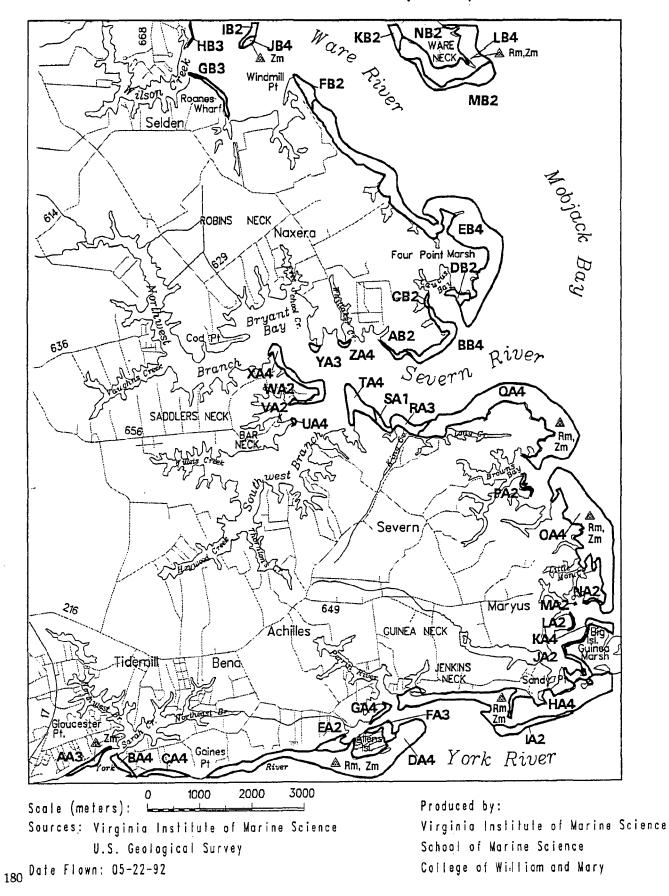
SUBMERGED AQUATIC VEGETATION 1992 Jamesville, VA. (119)

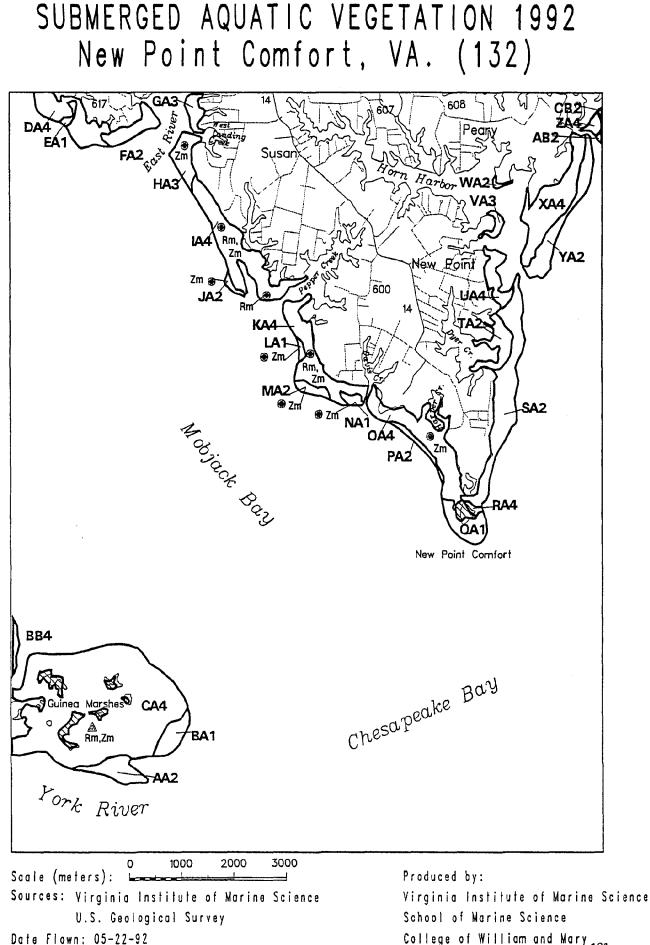


SUBMERGED AQUATIC VEGETATION 1992 Ware Neck, VA. (122) Dutton 198 602 Bruko James_Store) Fort Nonsense ૾ૢૢૢ 14 65⁸ oster 694 en 20 North 622 CHAPEL NECH 60 Com Creek D 2 Nuttail Ž Blackwater Elmington 676 "th River JA4 Auburn J Wharin Cardinal Roys Pt KÁ2 ళ్ళ WHITE NECK Lone Pt. 101 MA3 617 હુ Ware Neck 5/ NA3 WARE NECK the Rive 625 НАЗ Pribble Horse Pt. GA1 044 Zanoni Baileys ૾ૢૢૢૢૢ FA3 Beulah PA2 EA2 AA2 Jarvi -DA4 BA2 0Å3 2000 3000 0 1000 Produced by: Scale (meters): Sources: Virginia Institute of Marine Science School of Marine Science U.S. Geological Survey

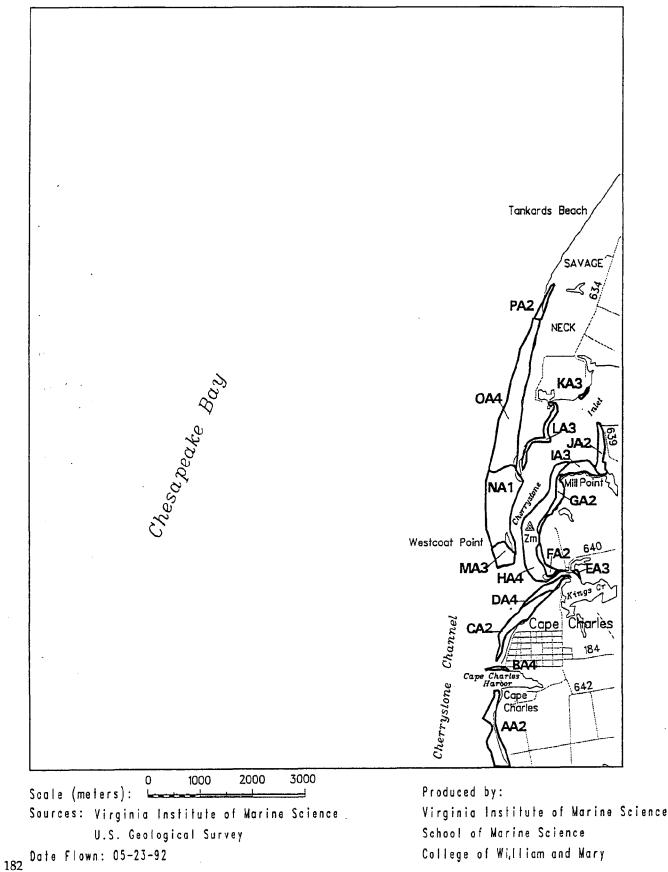

176 Date Flown: 05-22-92

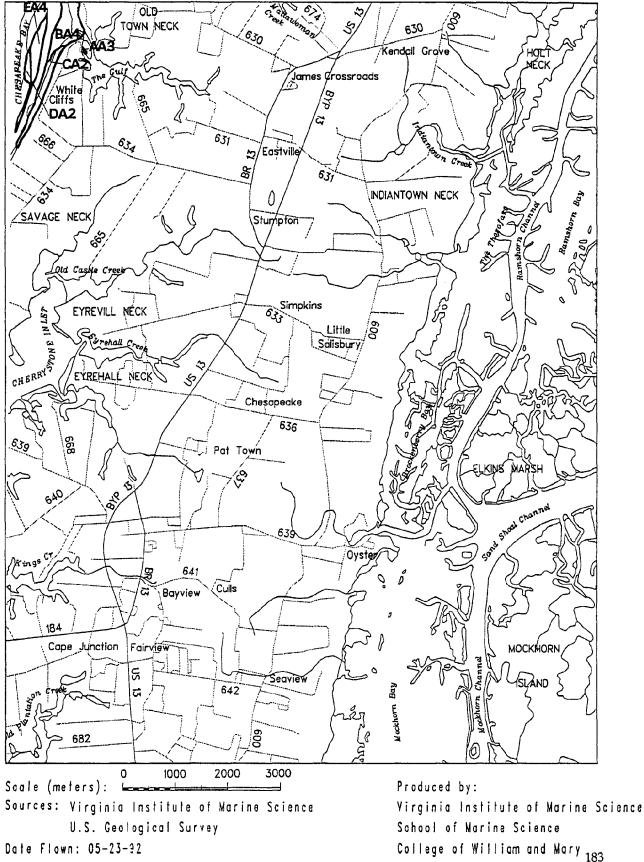
Virginia Institute of Marine Science College of William and Mary

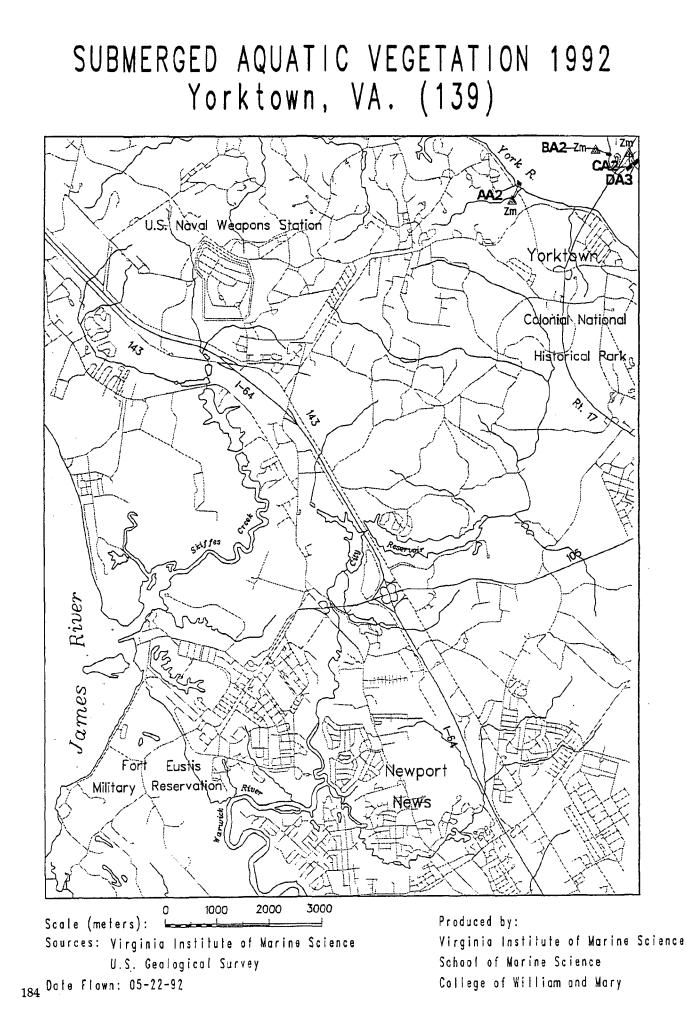

SUBMERGED AQUATIC VEGETATION 1992 Mathews, VA. (123)



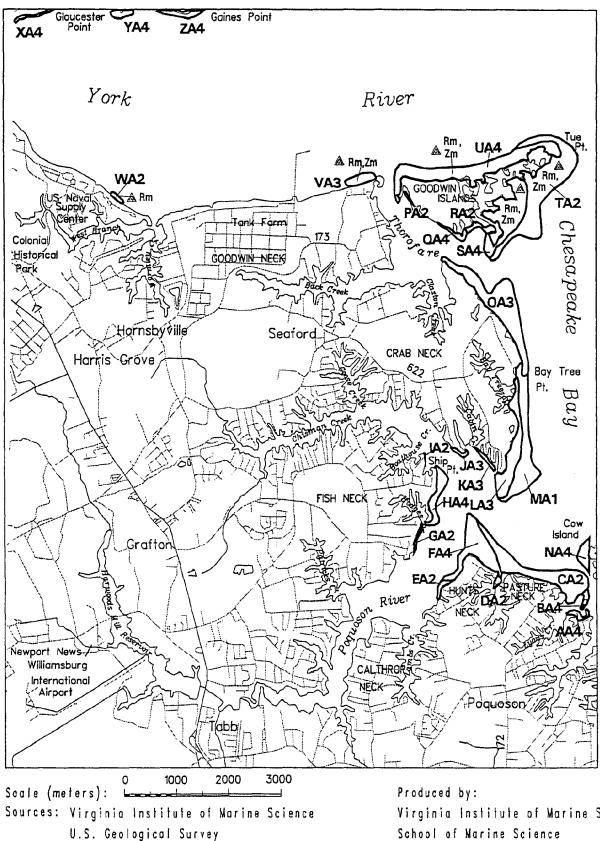
SUBMERGED AQUATIC VEGETATION 1992 Franktown, VA. (124) 8 OB2 Downings Beach 609 OCCOHANNOCK NEC 6₀₆ WELLINGTON NECK 613 Revapeake Bay Silver Beach NB2 KB3 ßm Franktown FB2 Am-NB3 LB3 Bayford DB zm 1B2 _রঞ্চ Nassaw PL ELLIOTTS NECK HB3 BB2 EB2 GB3 617 AB2 Zm Ŕm. 9% ZA4 Zm 8 YA1 619 Bridgetown 619 52 620 KA3 (⁶2) s,® Birdsnest CHURCH NECK NA1_ହ 623 622 JA3 Johnsontown Treherneville 625 g £A3 VA4 RA KA3 WILSONIA NECK S. Machipongo 627 62R Taylor Wharf <u>ک</u>رک DA SS. Martins Siding PENK CA Reedtown OLD TOWN NECK HOLT \$ NEQK 630 2000 3000 1000 0 Produced by: Scale (meters): Sources: Virginia Institute of Marine Science Virginia Institute of Marine Science School of Marine Science U.S. Geological Survey College of William and Mary


SUBMERGED AQUATIC VEGETATION 1992 Achilles, VA. (131)

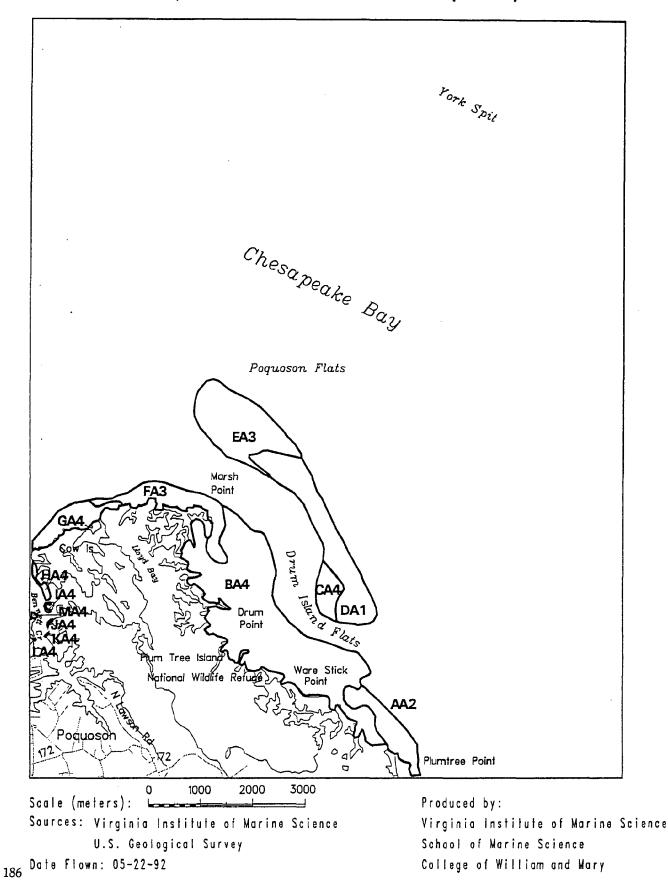


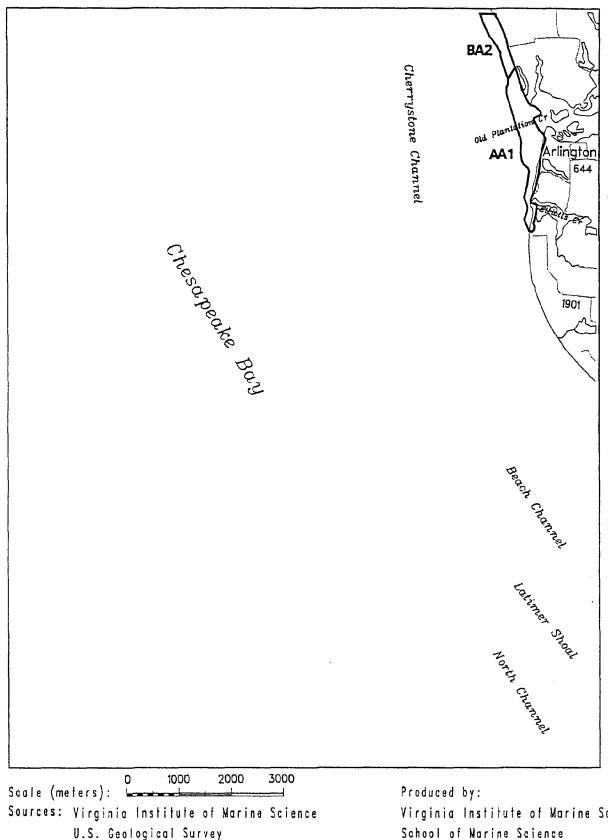

College of William and Mary 181

SUBMERGED AQUATIC VEGETATION 1992 Cape Charles, VA. (133)



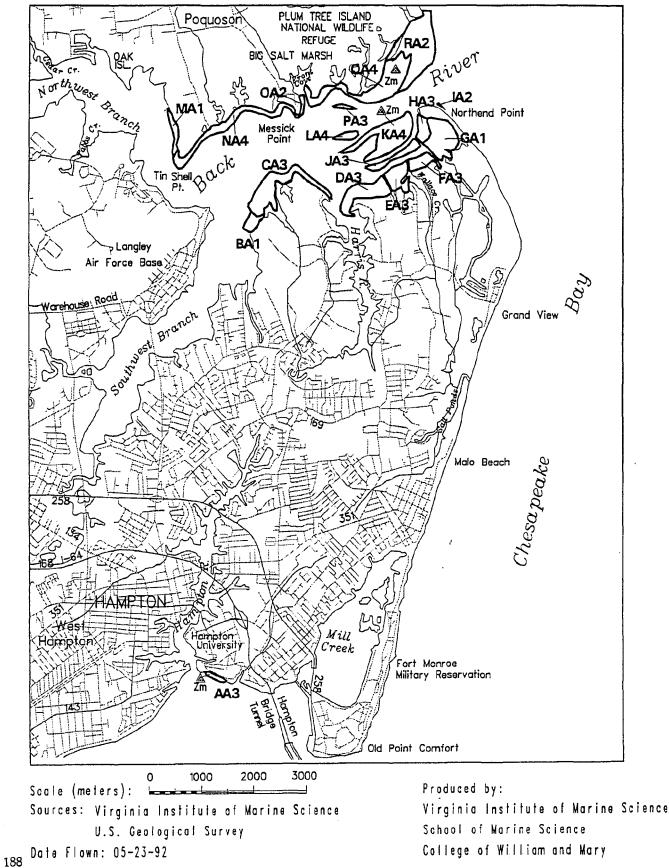
SUBMERGED AQUATIC VEGETATION 1992 Cheriton, VA. (134)

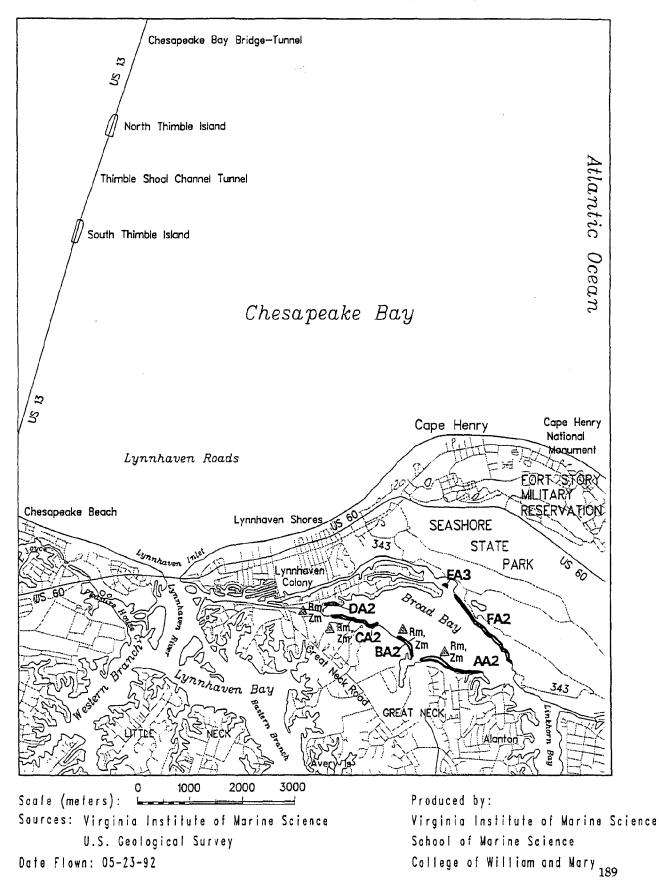

SUBMERGED AQUATIC VEGETATION 1992 Poquoson West, VA. (140)


Date Flown: 05-22-92

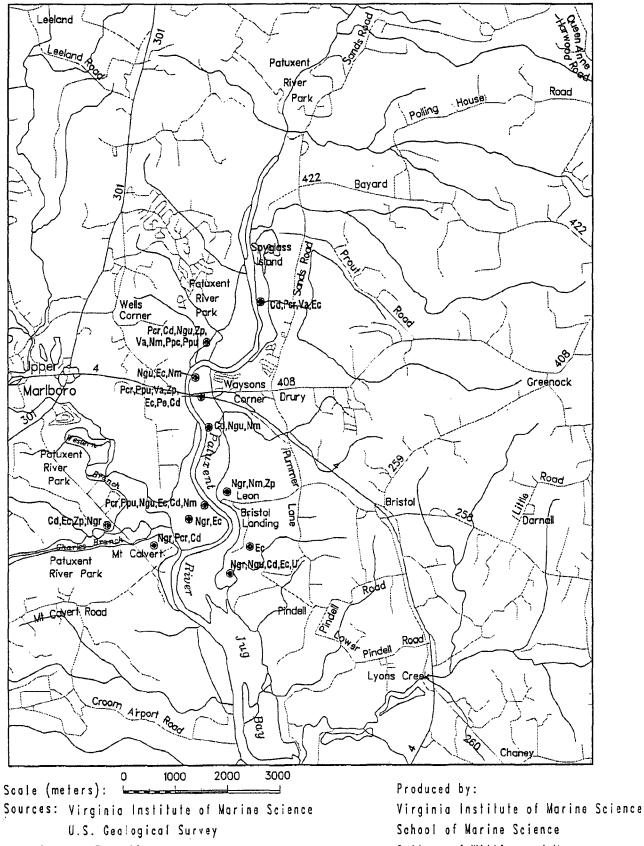
Virginia Institute of Marine Science School of Marine Science College of William and Mary 185

SUBMERGED AQUATIC VEGETATION 1992 Poquoson East, VA. (141)

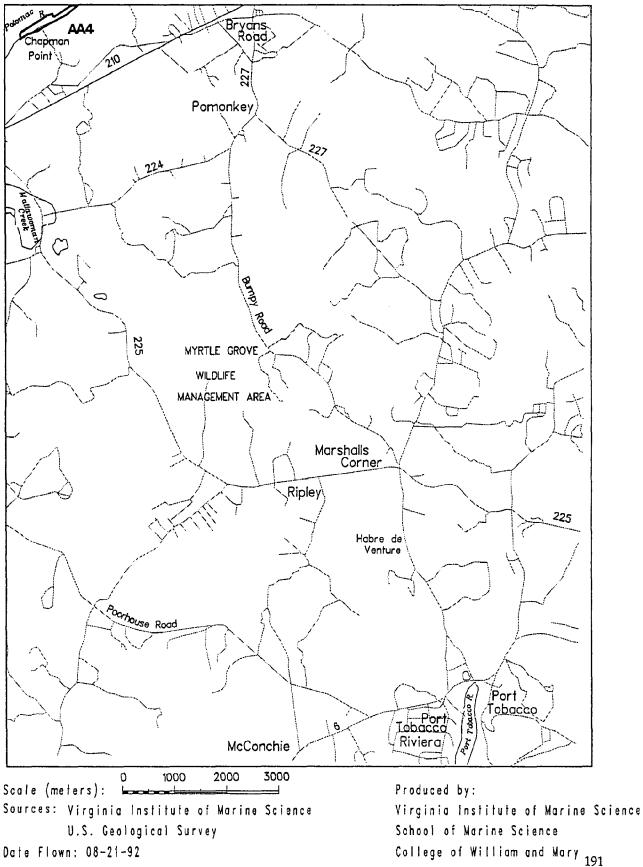

SUBMERGED AQUATIC VEGETATION 1992 Elliotts Creek, VA. (142)


Date Flown: 05-23-92

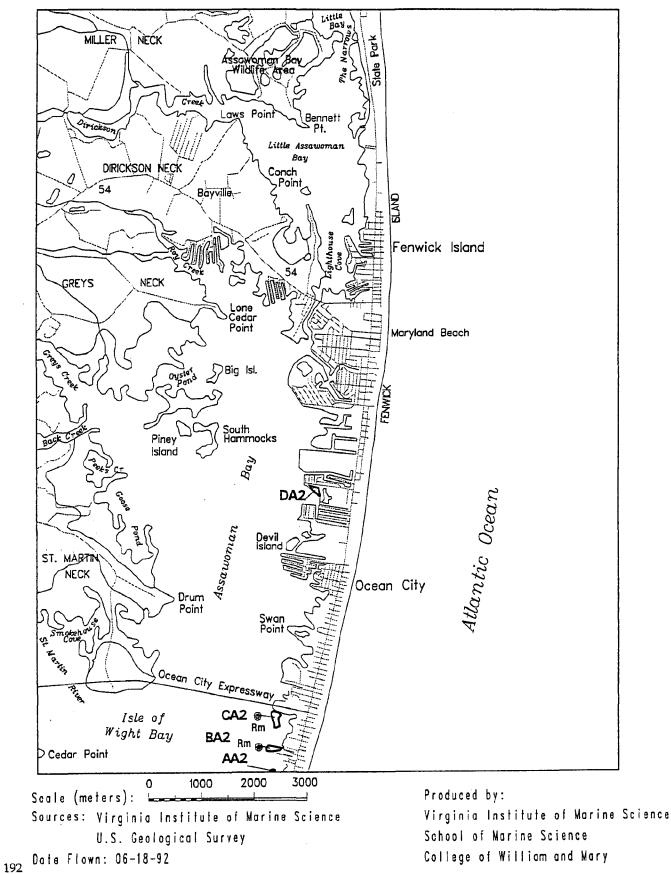
Virginia Institute of Marine Science School of Marine Science College of William and Mary ₁₈₇


SUBMERGED AQUATIC VEGETATION 1992 Hampton, VA. (147)

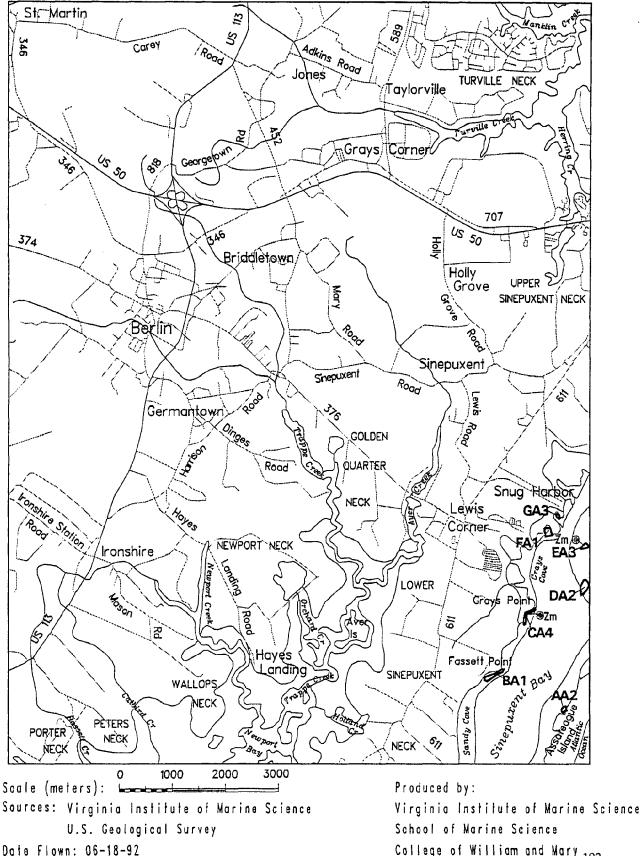
SUBMERGED AQUATIC VEGETATION 1992 Cape Henry, VA. (152)



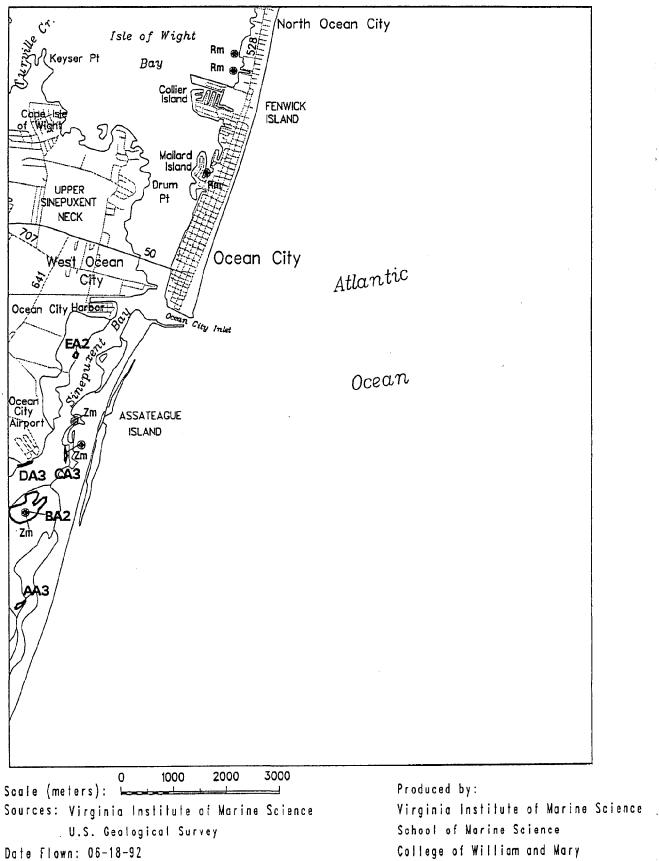
SUBMERGED AQUATIC VEGETATION 1992 Bristol, MD. (159)



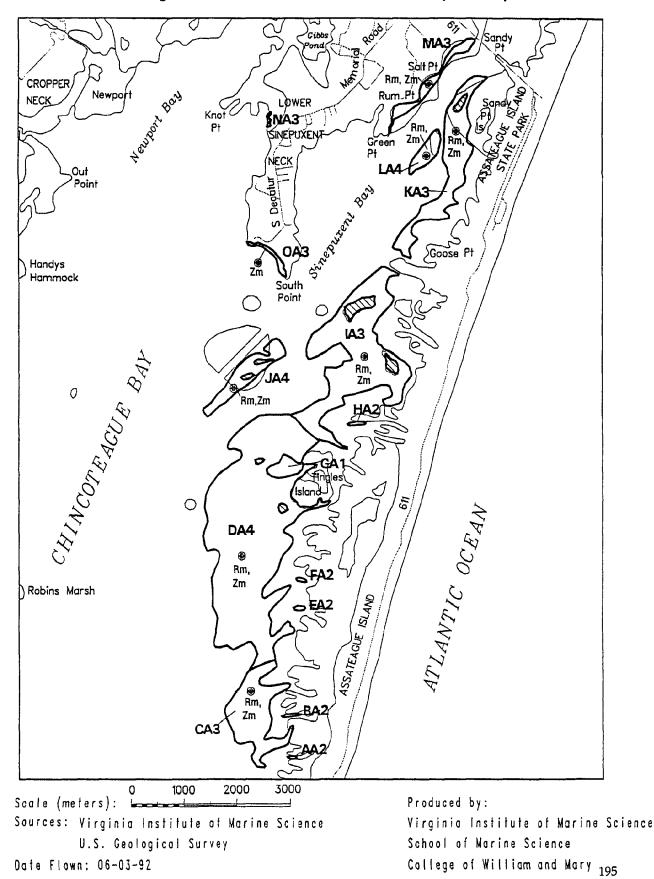
College of William and Mary


SUBMERGED AQUATIC VEGETATION 1992 Port Tobacco, MD. (161)

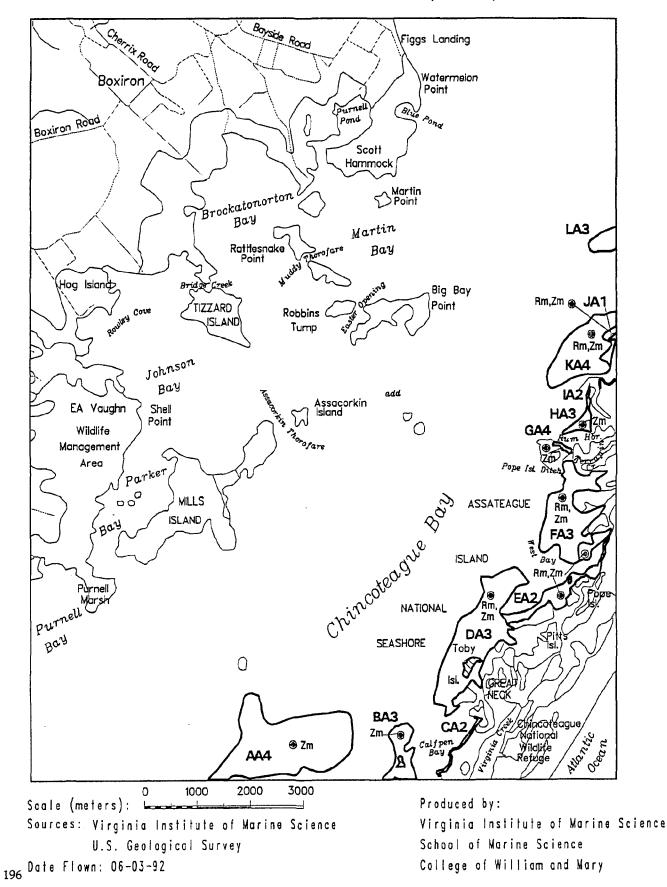
SUBMERGED AQUATIC VEGETATION 1992 Assawoman Bay, MD. (166)

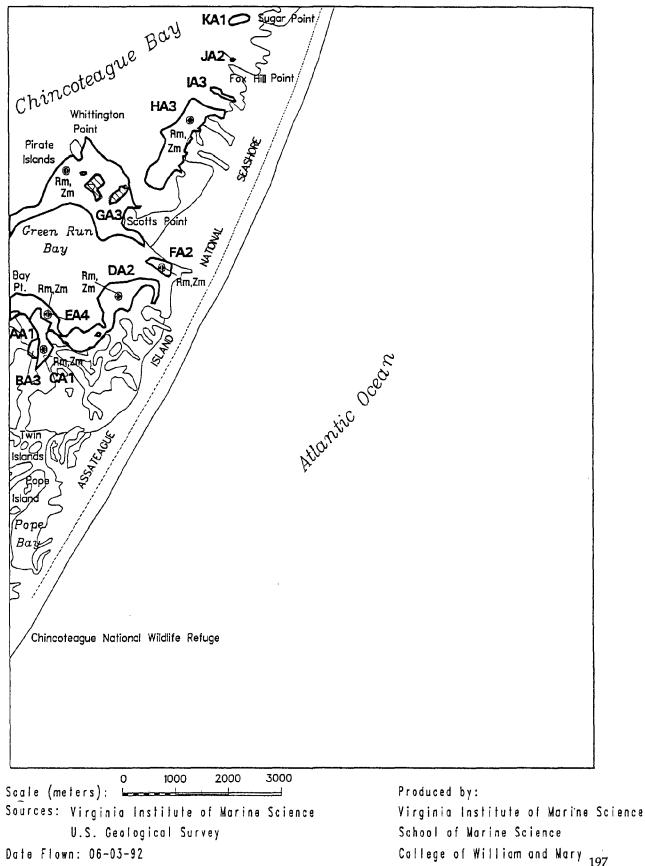


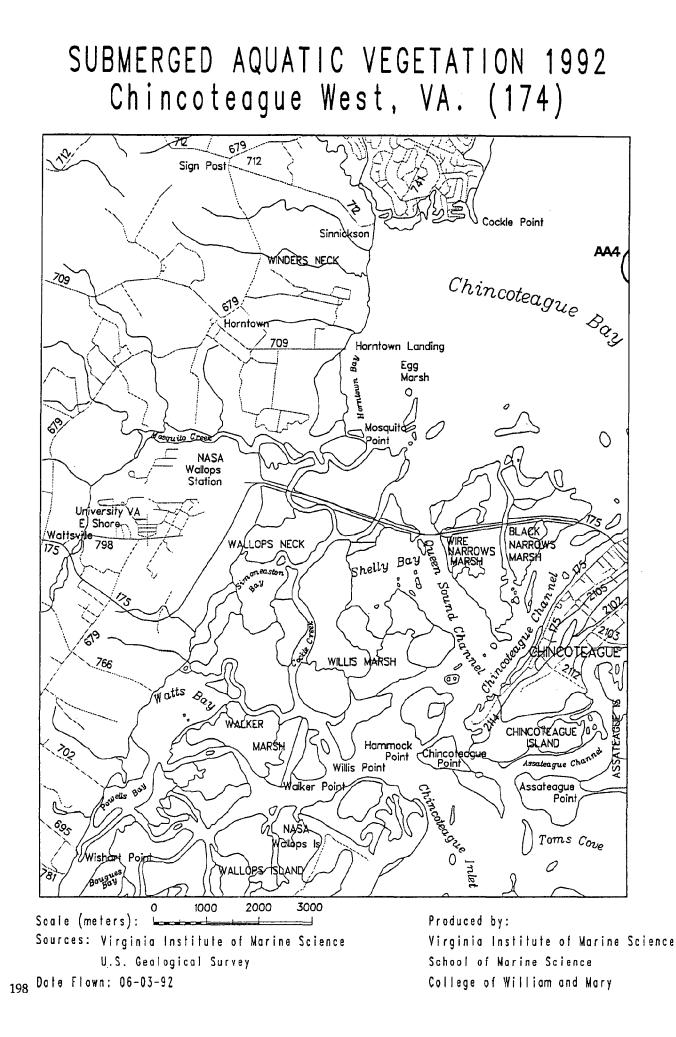
SUBMERGED AQUATIC VEGETATION 1992 Berlin, MD. (167)



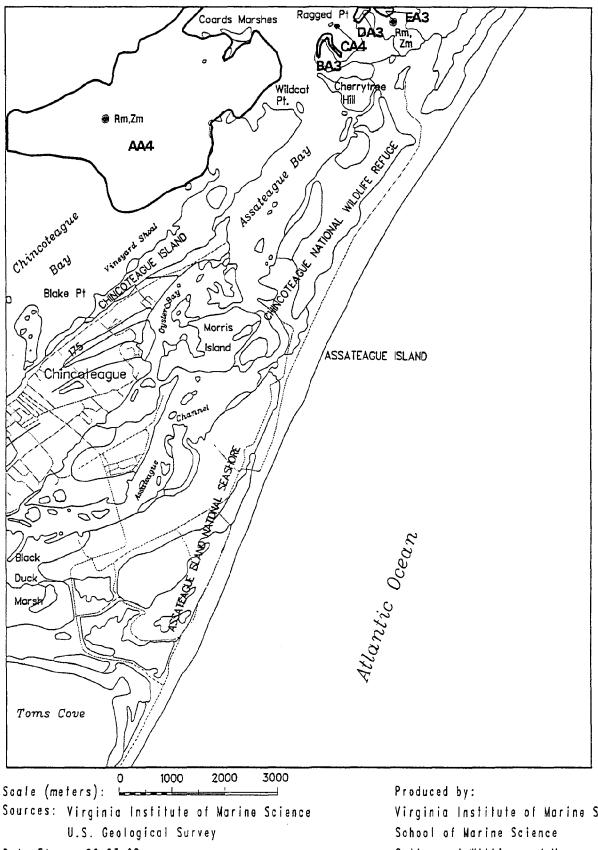
College of William and Mary 193


SUBMERGED AQUATIC VEGETATION 1992 Ocean City, MD. (168)

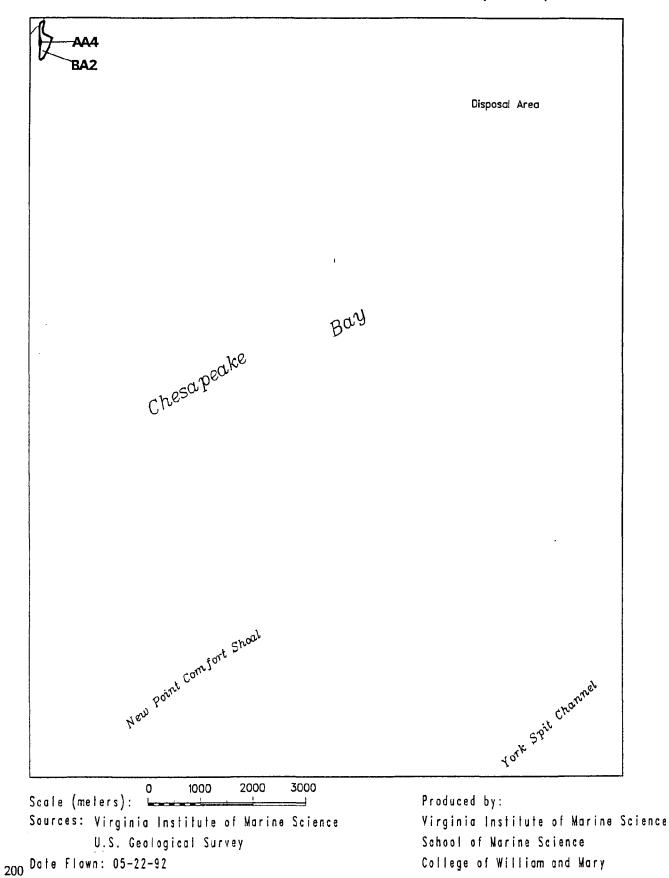

SUBMERGED AQUATIC VEGETATION 1992 Tingles Island, MD. (170)

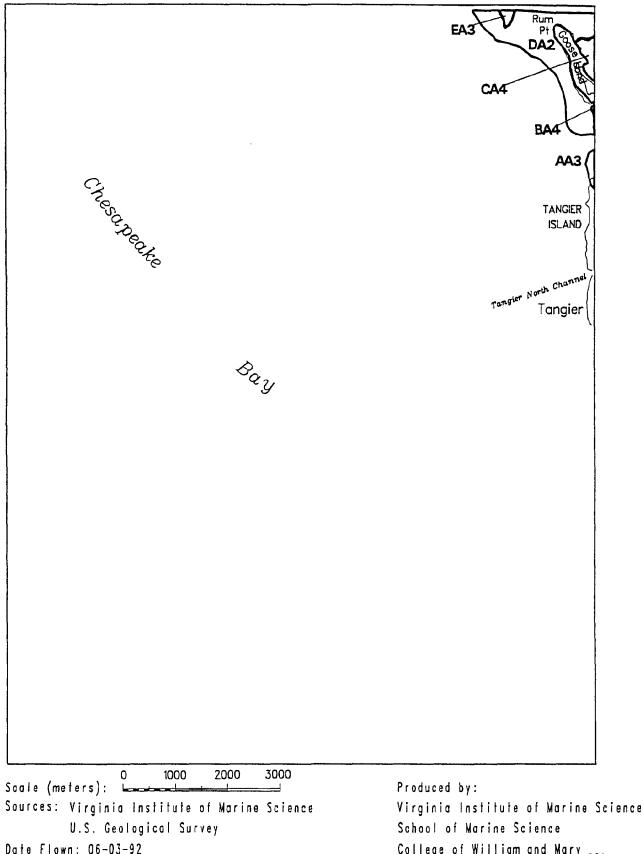


SUBMERGED AQUATIC VEGETATION 1992 Boxiron, MD.-VA. (172)



SUBMERGED AQUATIC VEGETATION 1992 Whittington Point, MD.-VA. (173)


SUBMERGED AQUATIC VEGETATION 1992 Chincoteague East, VA. (175)


Date Flown: 06-03-92

Virginia Institute of Marine Science College of William and Mary 199

SUBMERGED AQUATIC VEGETATION 1992 East of New Point, VA. (177)

SUBMERGED AQUATIC VEGETATION 1992 Goose Island, VA. (179)

College of William and Mary 201

APPENDIX D

Number of Square Meters of SAV for Individual Beds and Totals For Density

Categories For Each USGS 7.5 Minute Quadrangle in 1992.

APPENDIX D

Number of Square Meters of SAV for Individual Beds and Totals for Denisty Categories for Each USGS 7.5 Minute Quadrangle in 1992. [See Maps in Appendix C for Location of Each Bed. Quadrangles Are Listed Numerically by VIMS Map Number. Slight Differences (1 Square Meter) in Quadrangle Totals from Density Totals Are Due to Rounding.]

1

Aberdeen, MD.		WA4	60709
VIMS MAP # 002		XA4	84199
		YA4	29357
AA4	12333	ZA3	18494
BA4	4352	AB4	18938
CA3	5429	BB4	9370
DA3	4132	CB4	3664
EA3	4615	DB4	1730
FA3	14970	EB4	5536
GA3	2000	FB4	6448
HA3	102001	GB4	7109
		HB4	11726
TOTAL AREA		IB4	4955
		JB4	49701
DENSITY 1 =	0	KB4	4246
DENSITY 2 =	0	LB1	48529
DENSITY 3 =	133147	MB1	82467
DENSITY $4 =$	16685	NB4	212708
	10000	OB4	107579
TOTAL =	149831	PB2	11169
101110	11/001	QB4	58850
Havre de Grace, MD.		RB4	65639
		SB2	7648
VIMS MAP # 003		TB2	7489
		UB1	6633
AA2	7880	VB4	27436
BA2	17045	WB2	40001
CA4	51063	XB3	44190
DA2	10763		
EA1	9012	TOTAL AREA	
FA1	717134		
GA4	304457	$\overline{\text{DENSITY 1}} =$	15859919
HA1	14996144	DENSITY $2 =$	113258
IA4	15027	DENSITY 3 =	75639
JA2	3197	DENSITY 4 =	1408011
KA2	3154		
LA2	4912	TOTAL =	17456827
MA4	196934		
NA4	5851	North East, MD.	
OA4	32761	VIMS MAP # 004	
PA4	2460	V 11VIS 1VIAP # 004	
QA4	4696		00-50
RA3	8856	AA1	33573
SA3	4099	BA1	1083803
TA4	4437	CA1	18007
UA4	7610	DA1	63872
VA4	12817	EA1	13482

FA1	22350	DA3	2926
GA1	27022	EA3	8919
		FA2	21727
TOTAL AREA		GA2	13682
		HA2	15410
DENSITY $1 =$	1262109	IA2	13462
DENSITY 2 =	0	JA2	5081
DENSITY 3 =	0	KA2	11348
DENSITY 4 =	0	LA3	5342
	•	MA3	2584
TOTAL =	1262109	NA3	29290
101112 -	1202107	OA2	37445
Edgewood MD		PA2	12262
Edgewood, MD.		QA3	6266
VIMS MAP # 007		RA3	21943
		SA2	11012
AA3	4258	TA2	19601
		UA3	7079
TOTAL AREA		VA2	3754
DENSITY $1 =$	0	WA2	20333
DENSITY 2 =	0	XA2	3840
DENSITY 3 =	4258	YA3	16413
DENSITY $4 =$	0	ZA2	20066
•.		AB2	33183
TOTAL =	4258	BB1	18249
Perryman, MD.		TOTAL AREA	
VIMS MAP # 008			
V IIVIS IVIAP # 008		DENSITY $1 =$	18249
		DENSITY $2 =$	329160
AA2	5782	DENSITY 3 =	103358
BA3	15666	DENSITY $4 =$	0
CA3	22217		
DA3	3282	TOTAL =	450767
EA3	14211		
FA3	26689	Earleville, MD.	
		VIMS MAP # 010	
TOTAL AREA			
$\overline{\text{DENSITY 1}} =$	0	AA2	22261
DENSITY 2 =	5782	BA1	4427
DENSITY 3 =	82065	CA2	13501
DENSITY $4 =$	0	DA2	29444
DENSIT 14-	U	EA3	25142
TOTAL =	87846	FA1	619020
IOIAL =	07040	GA2	49688
Spacutia MD		HA2	55285
Spesutie, MD.		IA1	317588
VIMS MAP # 009		T / O	25105
		JA2	25195
AA2	69918	JA2 TOTAL AREA	25195
BA2	17036		20190
			941035
BA2	17036	TOTAL AREA	

ì

	DENSITY $3 =$	25142	XA2	37195
	DENSITY $4 =$	0	YA3	174785
			ZA3	50622
	TOTAL =	1161552	TOTAL AREA	
Middle	e River, MD.		****************	
VIMS	MAP # 013		DENSITY 1 =	0
			DENSITY $2 =$	507427
	AA2	41686	DENSITY 3 =	916021
	BA2	7770	DENSITY 4 =	135224
	CA2	35090		
	DA2	939 3	TOTAL =	1558671
	EA2	8407		
	FA2	27110	Hanesville, MD.	
	GA3	3734	VIMS MAP # 015	
	HA2	24509		
	IA2	3006	AA1	119860
			BA2	23943
	TOTAL AREA		CA1	118088
	DENSITY 1 =	0	TOTAL AREA	
	DENSITY $2 =$	156970	<u> </u>	
	DENSITY $3 =$	3734	DENSITY $1 =$	237948
	DENSITY 4 =	0	DENSITY 2 =	23943
			DENSITY 3 =	0
	TOTAL =	160705	DENSITY 4 =	0
Gunne	wder Neck, MD.		TOTAL =	261890
~	MAP # 014		101110 -	2010/0
V HVIS	$\mathbf{WIAF} \# \mathbf{U14}$		Betterton, MD.	
	AA2	35276	VIMS MAP # 016	
	BA3	131740		
	CA2	113539	AA3	10901
	DA2	5660	BA3	7849
	EA4	24764	CA2	5941
	FA4	12255		
	GA3	129306	TOTAL AREA	
	HA2	41463		
	IA3	173314	DENSITY 1 =	0
	JA2	50482	DENSITY 2 =	5941
	KA4	98204	DENSITY 3 =	18751
	LA2	3373	DENSITY $4 =$	0
	MA2	2081		
	NA3	134079	TOTAL =	24692
	OA2	14634		
	PA2	73255	Galena, MD.	
	QA2	58966	VIMS MAP # 017	
	RA2	27155		
	SA3	44467	AA4	13205
	TA2	13813	BA4	16564
	UA2	30536		20001
	VA3	47121	TOTAL AREA	
	WA3	30588		

_			FA2	121958
D	ENSITY $1 =$	0	GA3	42544
D	ENSITY 2 =	0	HA3	27823
, D	ENSITY 3 =	0	IA2	149843
D	ENSITY 4 =	29769	JA2	136226
-			KA2	34553
т	OTAL =	29769	LA2	42200
IV.	OIAL -	29709		
с л .			MA2	82430
Swan Poin			NA2	15092
VIMS MA	P # 020		OA2	17438
			PA2	99385
А	AA3	13872	QA2	8501
	BA2	17648	RA2	75731
	CA2	3932	SA1	39666
			TA3	57078
	DA2	6188		
E	EA2	12285	TOTAL AREA	
	_		iomenicii	
TC	OTAL AREA		DENSITY 1 =	672171
D	ENSITY 1 =	0	DENSITY 2 =	793195
D	ENSITY 2 =	40053	DENSITY 3 =	741276
	ENSITY 3 =	13872	DENSITY 4 =	0
	ENSITY $4 =$	0		
		0	TOTAL =	2206642
т	OTAL =	53925		
10	OTAL =	55925	Washington West, MD	D.CVA.
			Q	
Th 1 YY 11	N (IN)			
Rock Hall,			VIMS MAP # 028	
Rock Hall, VIMS MA				
•			AA2	21359
VIMS MA		48426	AA2 BA3	4295
VIMS MA	P # 021		AA2 BA3 CA3	4295 3743
VIMS MA	P # 021	5504	AA2 BA3 CA3 DA3	4295
VIMS MA	P # 021 AA2 BA1 CA3	5504 3991	AA2 BA3 CA3	4295 3743
VIMS MA A B C D	P # 021 AA2 BA1 CA3 DA4	5504 3991 46011	AA2 BA3 CA3 DA3	4295 3743 8396
VIMS MA A B C D	P # 021 AA2 BA1 CA3	5504 3991	AA2 BA3 CA3 DA3 EA2 FA3	4295 3743 8396 7644 2091
VIMS MA A B C D E	P # 021 AA2 BA1 CA3 DA4 EA2	5504 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3	4295 3743 8396 7644 2091 3685
VIMS MA A B C D E	P # 021 AA2 BA1 CA3 DA4	5504 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3	4295 3743 8396 7644 2091 3685 28131
VIMS MA	P # 021	5504 3991 46011 19446	AA2 BA3 CA3 DA3 EA2 FA3 GA3	4295 3743 8396 7644 2091 3685
VIMS MA	P # 021 AA2 BA1 CA3 DA4 EA2 OTAL AREA ENSITY 1 =	5504 3991 46011 19446 5504	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2	4295 3743 8396 7644 2091 3685 28131
VIMS MA	P # 021	5504 3991 46011 19446	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3	4295 3743 8396 7644 2091 3685 28131
VIMS MA	P # 021 AA2 BA1 CA3 DA4 EA2 OTAL AREA ENSITY 1 =	5504 3991 46011 19446 5504	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA	4295 3743 8396 7644 2091 3685 28131 19824
VIMS MA	P # 021 AA2 AA1 CA3 DA4 AA2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 =	5504 3991 46011 19446 5504 67872 3991	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 =	4295 3743 8396 7644 2091 3685 28131 19824
VIMS MA	P # 021 AA2 AA1 CA3 DA4 CA2 OTAL AREA ENSITY 1 = ENSITY 2 =	5504 3991 46011 19446 5504 67872	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 = DENSITY 2 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827
VIMS MA	P # 021 AA2 BA1 CA3 DA4 CA2 OTAL AREA $\overline{CNSITY 1} =$ ENSITY 2 = ENSITY 3 = ENSITY 4 =	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 = DENSITY 2 = DENSITY 3 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341
VIMS MA	P # 021 AA2 AA1 CA3 DA4 AA2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 =	5504 3991 46011 19446 5504 67872 3991	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 = DENSITY 2 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827
VIMS MAI	P # 021 AA2 BA1 CA3 DA4 EA2 OTAL AREA $\overline{ENSITY 1} =$ ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL =	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 = DENSITY 2 = DENSITY 3 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD.	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA DENSITY 1 = DENSITY 2 = DENSITY 3 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341
VIMS MAI	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD.	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD.	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD.	5504 3991 46011 19446 5504 67872 3991 46011	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL = Kent Island, MD.	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0
VIMS MA	P # 021 AA2 AA1 CA3 DA4 EA2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD. P # 026	5504 3991 46011 19446 5504 67872 3991 46011 123377 2893	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL =	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD. P # 026	5504 3991 46011 19446 5504 67872 3991 46011 123377 2893 9837	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL = Kent Island, MD. VIMS MAP # 032	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0 99168
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD. P # 026 A1 BA2 CA1	5504 3991 46011 19446 5504 67872 3991 46011 123377 2893 9837 340630	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL = Kent Island, MD. VIMS MAP # 032 AA3	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0 99168
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD. P # 026 A1 BA2 CA1 DA3	5504 3991 46011 19446 5504 67872 3991 46011 123377 2893 9837 340630 613832	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL = Kent Island, MD. VIMS MAP # 032	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0 99168
VIMS MA	P # 021 A2 A1 CA3 DA4 A2 OTAL AREA ENSITY 1 = ENSITY 2 = ENSITY 3 = ENSITY 4 = OTAL = Creek, MD. P # 026 A1 BA2 CA1	5504 3991 46011 19446 5504 67872 3991 46011 123377 2893 9837 340630	AA2 BA3 CA3 DA3 EA2 FA3 GA3 HA3 IA2 TOTAL AREA $\overline{DENSITY 1} =$ DENSITY 2 = DENSITY 3 = DENSITY 4 = TOTAL = Kent Island, MD. VIMS MAP # 032 AA3	4295 3743 8396 7644 2091 3685 28131 19824 0 48827 50341 0 99168

DA1	158132	EA2	2493
EA2	9051	FA1	161421
FA1	40523	GA4	306994
GA1	21143	HA4	4976
HA1	129637	IA2	16614
IA2	143927	JA4	20820
JA1	35271	KA3	2748
KA1	31695	LA2	22937
LA3	5075	MA4	32129
MA2	1893	NA3	89708
NA2	34953	OA4	1051939
OA1	2797 0	PA2	5431
PA1	36943	QA2	19234
		RA3	6582
TOTAL AREA		SA2	6323
		TA4	35967
DENSITY 1 =	481313	UA3	28665
DENSITY 2 =	200764	VA3	66600
DENSITY 3 =	13826	WA2	239038
DENSITY 4 =	0	XA4	169479
		YA3	20348
TOTAL =	695903	ZA3	8006
		AB3	5020
Queenstown, MD.		BB2	6343
VIMS MAP # 033		CB2	38587
V IIVIS IVIAP # 055		DB2	23812
	18/000	EB3	38890
AA1	176038	FB3	9548
BA1	51003	GB4	15569
CA2	6363	HB2	7547
DA1	137608	IB2	391282
EA1	309494	JB3	5231
FA3	25850	KB3	7279
GA2	63347	LB3	19032
HA3	9116	MB2	4406
IA2	54192	NB2 NB3	38296
JA3	41007	1105	30290
TOTAL AREA		TOTAL AREA	
	(= 10.10	$\overline{\text{DENSITY 1}} =$	273483
DENSITY 1 =	674143	DENSITY $2 =$	784047
DENSITY 2 =	123901	DENSITY 3 =	419264
DENSITY 3 =	75973	DENSITY 4 =	1706151
DENSITY $4 =$	0		1700151
TOTAL =	874017	TOTAL =	3182946
Alexandria, VAD.CMD		Claiborne, MD.	
VIMS MAP # 034	•	VIMS MAP # 036	
	1100/0	AA2	26115
AA1	112062	BA2	48832
BA3	58534	CA2	48808
CA4	68280	DA2	14910
DA3	14779		14910

EA2	51623	ZA2	139654
FA2	43547	AB2	5683
GA2	36764		
HA2	32718	TOTAL AREA	
IA1	888295		
JA2	339357	DENSITY 1 =	512038
KA3	22194	DENSITY 2 =	1586674
LA3	128342	DENSITY 3 =	337590
MA1	203570	DENSITY 4 =	0
NA1	68244		-
OA1	97228	TOTAL =	2436303
PA1	109434		
QA2	81464	Fort Belvoir, VAMD.	
RA3	48488	VIMS MAP # 039	
SA1	56446	V 11VIS IVIAL # 039	
			1600
TOTAL AREA		AA3	4693
		BA4	55188
$\overline{\text{DENSITY 1}} =$	1423217	CA3	46145
DENSITY 2 =	694140	DA4	655313
DENSITY 3 =	199024	EA3	301369
DENSITY 4 =	0	FA2	69195
DENOIT1 1-	0	GA2	81436
TOTAL =	2316381	HA4	55033
IOIAE -	2010001	IA4	60570
St Michaels MD		JA4	8235
St. Michaels, MD.			
VIMS MAP # 037		TOTAL AREA	
AA2	21018	DENSITY 1 =	0
BA2	203219	DENSITY $2 =$	150631
CA2	99305	DENSITY 3 =	352206
DA2	5861	DENSITY $4 =$	834340
EA2	12911		
FA2	43595	TOTAL =	1337177
GA3	49643		
HA1	16174	Mt. Vernon, VAMD.	
LA3	56934	VIMS MAP # 040	
JA1	35759		
KA3	124568	AA3	338387
LA2	164468	BA4	1508789
MA2	78222	CA2	47840
NA2	117888	DA4	175072
OA2	18111	EA2	29357
PA2	84651	FA4	36824
QA2	146419	GA2	29041
RA1	52640	HA4	67847
SA2	59417	IA4	35785
TA1	160400	JA2	34507
UA1	247066	KA3	5653
VA2	45005	LA3	159691
WA2	164888	MA2	199091
XA3	106446		74953
YA2	176360	NA4	/4700

TOTAL AREA		OA2	209785
	0	PA2	38771
DENSITY $1 =$	0	QA2	12633
DENSITY 2 = DENSITY 3 =	142659	RA2	11410
DENSITY 4 =	503732 1899270	TOTAL AREA	
DENSIT I 4 =	10792/0	IOTAL AREA	
TOTAL =	2545660	DENSITY 1 =	0
	2040000	DENSITY 2 =	1069897
Tilghman, MD.		DENSITY 3 =	87982
•		DENSITY 4 =	0,702
VIMS MAP # 043			Ū
AA3	688145	TOTAL =	1157879
BA3	17898		
CA3	10404	Quantico, VAMD.	
DA2	14639	VIMS MAP # 047	
EA2	32530		
FA2	106565	AA2	573619
GA2	8655	BA4	1136416
HA3	7149	CA4	811036
IA2	533726	DA4	69788
JA2	596762	EA3	43279
KA1	69281	FA4	90183
LA2	12593	GA4	80449
MA2	54301	HA4	85381
NA2	72027	IA4	80155
		JA2	29813
TOTAL AREA		KA4	723756
	(0707	LA4	1594392
DENSITY $1 =$	69281	MA2	290605
DENSITY $2 =$	1431799	NA2	94429
DENSITY 3 = DENSITY 4 =	723595	OA2	245941
$DENSIT14 \equiv$	0	TOTAL AREA	
TOTAL =	2224675	IOTAL AREA	
IOIAE -	2227075	DENSITY 1 =	0
Oxford, MD.		DENSITY $2 =$	1234406
VIMS MAP # 044		DENSITY $3 =$	43279
V IIVIS IVIAP # 044		DENSITY 4 =	4671556
AA2	46495		
BA2	4628	TOTAL =	5949241
CA2	66103		
DA2	85006	Indian Head, MD VA.	
EA2	38203	VIMS MAP # 048	
FA3	68721		
GA2	99354	AA3	153606
HA2	41083	BA4	2046012
IA2	13220	CA4	30474
JA2	26587	DA3	45824
KA2	23412	EA4	18582
LA3	19261	FA3	4927
MA2	240167	GA4	19419
NA2	113039	HA4	9422 1

IA4	596943	Church Creek, MD.	
JA4	75292	VIMS MAP # 052	
KA4	254700		
LA2	4130	AA3	14442
MA4	16314	BA2	6747
	•	CA3	13259
TOTAL AREA	A	DA4	12026
	0	EA2	12634
DENSITY 1 =		FA2	10180
DENSITY 2 = DENSITY 3 =		GA3	15245
		HA3	19603
DENSITY 4 =	3151957	IA2	44665
	2260444	JA3	7774
TOTAL =	3360444	KA3	30206
		LA2	15045
Hudson, MD.		MA2	8979
VIMS MAP # 051		NA3	6452
		OA2	14804
AA2	36322	PA2	6680
BA2	4360	QA2	12384
CA4	18403	RA2	534218
DA2	21286	SA3	272558
EA2	140441		
FA2	20526	TOTAL AREA	
GA3	12146		
HA2	50516	DENSITY 1 =	0
IA2	18698	DENSITY 2 =	666335
JA2	10784	DENSITY 3 =	379538
KA3	91098	DENSITY 4 =	12026
LA1	37995		
MA3	9811	TOTAL =	1057899
NA3	29818		
OA2	68848	Cambridge, MD.	
PA2	35227	VIMS MAP # 053	
QA2	268202		
• RA3	169371	AA2	56571
_ SA1	1492836		
TA3	836308	TOTAL AREA	
UA1	447482		
VA4	111824	$\overline{\text{DENSITY 1}} =$	0
WA3	388404	DENSITY 2 =	56571
XA2	486823	DENSITY $3 =$	0
YA2	352060	DENSITY $4 =$	0
TOTAL AREA	Ą	TOTAL =	56571
$\overline{\text{DENSITY 1}} =$	1978313	Midowato- VA MD	
DENSITY 2 =		Widewater, VAMD.	
DENSITY 3 =		VIMS MAP # 055	
DENSITY $4 =$	130227		
		AA2	6143
TOTAL =	5159590	BA3	72444
		CA2	4424

,

DA2	31561		
EA4	706076	DENSITY 1 =	0
FA1	21830	DENSITY 2 =	439216
GA4	447715	DENSITY 3 =	137826
HA1	69161	DENSITY 4 =	1106140
IA4	157657	DENSIT 14 -	1100140
JA4	58144	TOTAL =	1683182
KA4	2961664	IOIAL =	1003102
LA2	660518	Mathias Daint MD XA	
MA3	91481	Mathias Point, MDVA.	
NA2	198561	VIMS MAP # 057	
OA2	14239		
PA4	346819	AA2	272601
QA3	137320	BA2	27259
RA2	362041	CA3	194194
SA2	9386	DA2	166815
TA2	187159	EA4	118071
UA3	74578	FA3	3660
VA3	201126	GA2	49757
WA4	489430	HA4	60847
WAI	107-00	IA2	29175
TOTAL AREA		JA4	47100
IUTALAKEA		KA4	221643
DENSITY 1 =	90991	LA2	812012
DENSITY $2 =$	1474032	MA2	44413
DENSITY $3 =$	576948	NA3	10046
DENSITY 4 =	5167505	OA4	117047
DENSIT 14-	510/505	PA3	17206
TOTAL =	7309477	QA4	254845
IOTAL -	7509477	RA4	65079
Naniamar MD		SA4	163941
Nanjemoy, MD.		TA2	30034
VIMS MAP # 056		UA4	34959
		VA2	6350
AA3	83392	WA4	23766
BA2	335753	XA4	69813
CA3	13066	YA4	4406
DA3	15821	ZA4	5288
EA4	4354	AB2	19344
FA4	91518	BB3	7579
GA4	638452	CB2	43247
HA2	103463		
IA4	2248	TOTAL AREA	
JA4	88106		
KA4	12551	DENSITY 1 =	0
LA4	54490	DENSITY 2 =	1501007
MA4	71164	DENSITY 3 =	232684
NA4	68883	DENSITY 4 =	1186805
OA3	25546	TOTAL	8082121
PA4	8557	TOTAL =	2920496
QA4 BA4	22481		
RA4	9764		
SA4 TOTAL AREA	33572		
IOTAL AKEA			

Popes Creek, MD. VIMS MAP # 058		Passapatanzy, MDVA. VIMS MAP # 064	
AA2	8520	AA2	1693 1
BA3	4440	BA3	49741
		CA2	21408
TOTAL AREA		DA4	18901
		EA4	15408
$\overline{\text{DENSITY 1}} =$	0		10100
DENSITY 2 =	8520	TOTAL AREA	
DENSITY 3 =	4440		
DENSITY $4 =$	0	$\overline{\text{DENSITY 1}} =$	0
DENOTITIE	Ŭ	DENSITY 2 =	38339
TOTAL =	12960	DENSITY 3 =	49741
	12/00	DENSITY 4 =	34309
Taylors Island, MD.			04507
		TOTAL =	122389
VIMS MAP # 062		IOTAL -	122309
		King George, VAMD.	
AA3	42191	U	
BA2	182617	VIMS MAP # 065	
CA3	53485		
DA2	323964	AA2	220898
EA2	21602	BA3	35225
		CA2	262030
TOTAL AREA		DA4	202011
		EA2	24366
DENSITY 1 =	0		
DENSITY 2 =	528183	TOTAL AREA	
DENSITY 3 =	95676		
DENSITY 4 =	0	DENSITY 1 =	0
•		DENSITY 2 =	507294
TOTAL =	623859	DENSITY 3 =	35225
		DENSITY 4 =	202011
Golden Hill, MD.			
VIMS MAP # 063		TOTAL =	744531
AA2	165069	Dahlgren, VAMD.	
BA2	56851	VIMS MAP # 066	
CA2	18451		
DA2	51966	AA3	7421
		BA3	4574
TOTAL AREA		CA2	6622
		DA2	3412
$\overline{\text{DENSITY 1}} =$	0	EA2	167409
DENSITY 2 =	292337	FA4	70159
DENSITY 3 =	0	GA4	22326
DENSITY 4 =	Ő	HA2	25252
	v	IA2	16179
TOTAL =	292337	JA3	9907
ioint -		KA2	3000
		LA4	3554
		LAT	5554

TOTAL AREA		Honga, MD. VIMS MAP # 073	
DENSITY 1 =	0	V 11VIS IVIAL # 075	
DENSITY 2 =	221874	AA4	202557
DENSITY 3 =	21902		292557
DENSITY 4 =	96039	BA4	145036
		CA3	213356
TOTAL =	339815	DA3	92416
	-	EA3	58272
Colonial Beach North, V		FA4	12974
VIMS MAP # 067		GA3	12350
V 11VIS 1VIAF # 007		HA4	132725
	4.4488.0	IA3	18521
AA3	104330	JA3	348528
BA2	72274	KA2	54776
CA3	3407	LA2	135452
DA3	8924	MA2	70246
EA2	9302	NA4	2226441
FA2	35898	OA2	171437
GA3	61680	PA3	19619
HA2	109574	QA3	24300
IA4	72190	RA1	78530
		SA2	99581
TOTAL AREA		TA2	348189
		UA2	120364
DENSITY 1 =	0	VA3	96786
DENSITY 2 =	227048	WA2	100527
DENSITY 3 =	178341	XA4	1119071
DENSITY 4 =	72190	YA4	6271
		ZA2	85413
TOTAL =	477580	AB3	350663
		BB2	134970
Barren Island, MD.		CB3	625099
VIMS MAP # 072		DB2	407778
		EB2	65965
	050/5	FB3	1391668
AA3	25965	GB2	53092
BA2	1104600	HB3	76253
CA4	190620	IB3	109076
DA4	2371533	JB3	389996
EA1	599595	KB3	97472
FA3	36307	LB1	79472
GA3	7439	MB4	1630431
		NB3	722342
TOTAL AREA		OB1	82373
		PB3	506413
DENSITY 1 =	599595	QB3	242537
DENSITY 2 =	1104600	RB4	202684
DENSITY 3 =	69711	SB2	16740
DENSITY $4 =$	2562153	502	10740
TOTAL =	4336059		

TOTAL AREA $\overline{DENSITY 1} =$	240375	Richland Point, MD. VIMS MAP # 082	
DENSITY 2 =	1864528		
DENSITY 3 =	5395666	AA4	65313
DENSITY 4 =	5768190	BA3	85694
	5700170	CA2	307957
TOTAL =	13268759	TOTAL AREA	
Wingate, MD.		$\overline{\text{DENSITY 1}} =$	0
VIMS MAP # 074		DENSITY 2 =	307957
· //		DENSITY 3 =	85694
AA1	16746	DENSITY 4 =	65313
BA4	161234		00010
CA2	29239	TOTAL =	458963
DA1	132526	101112 -	100700
EA4	1253515	Bloodsworth Island, MD.	
FA2	125540	•	
GA2	284380	VIMS MAP # 083	
HA4	560053		
IA3	1514516	AA2	24881
JA4	456736	BA2	17622
KA2	32880	CA2	10650
LA3	224909	DA2	2711
MA2	15778	EA2	63282
	15770	FA2	48786
TOTAL AREA		GA2	252065
10111L HEA		HA1	713531
$\overline{\text{DENSITY 1}} =$	149272	IA3	134186
DENSITY 2 =	487816	JA3	3694685
DENSITY 3 =	1739425	KA2	215896
DENSITY 4 =	2431538	LA2	308329
22101111	-101000	MA3	1312589
TOTAL =	4808052	NA3	642271
101112 -	1000002	OA3	259702
St Marrie City MD		PA2	190752
St. Mary's City, MD.		QA2	4823
VIMS MAP # 080		RA3	18788
		SA3	58769
AA2	13309	TA2	19502
BA2	74759	UA4	598515
		VA1	72455
TOTAL AREA		WA3	410167
		XA3	613941
DENSITY 1 =	0	YA1	133461
DENSITY 2 =	88068	ZA4	21529
DENSITY 3 =	0	AB2	156428
DENSITY 4 =	0	BB2	4153
		CB2	2235
TOTAL =	88068	DB4	114505
		EB2	42081
		FB2	77721

	TOTAL AREA		FA3	289751
			GA3	450745
	DENSITY 1 =	919447	HA4	1447430
	DENSITY 2 =	1441915	IA2	9964
	DENSITY 3 =	7145098	JA2	58553
	DENSITY 4 =	734550	KA3	432565
			LA3	14542
	TOTAL =	10241010	MA4	458883
			NA2	3750
Deal Isl	and, MD.		OA4	800460
	/AP # 084		PA4	247528
V 11VI O IV	AAI # 004		QA2	26367
	A A 2	22//25	RA3	14062
	AA2	336635	SA2	4372
	BA2	14999	TA2	146921
	CA2	45424	UA4	589229
	DA2	268915	VA2	177957
	EA2	21490	WA2	38584
			XA2	513932
	TOTAL AREA		YA4	226021
		2	ZA2	185154
	DENSITY 1 =	0	AB3	9715
	DENSITY $2 =$	687463	1100	7715
	DENSITY 3 =	0	TOTAL AREA	
	DENSITY $4 =$	0	IOTAL ANLA	
	TOTAL	(0)	$\overline{\text{DENSITY 1}} =$	109314
	TOTAL =	687463	DENSITY 2 =	1247497
A A			DENSITY 3 =	4585695
	rge Island, MD	·VA.	DENSITY 4 =	3769550
VIMS N	/IAP # 089			0707020
			TOTAL =	9712057
	AA2	12274		
	BA2	18569	Terrapin Sand Point, MD.	
			VIMS MAP # 092	
	TOTAL AREA		V IIVIS WIAT # 092	
			AA2	31997
	DENSITY 1 =	0	BA2	79340
	DENSITY $2 =$	30843	CA2	261233
	DENSITY 3 =	0	DA4	1460607
	DENSITY $4 =$	0	EA1	127101
			FA2	180254
	TOTAL =	30843	GA4	147219
T/ 1	0		HA2	165743
•	Straits, MD.		IA3	78973
VIMS N	AAP # 091		JA3	21214
			KA3	84888
	AA3	77439	LA3	15873
	BA2	81944	MAS	22620

AA3	77439
BA2	81944
CA3	153415
DA3	3143462
EA1	109314

•

15873 23620

MA3

Ewell, MD.-VA. VIMS MAP # 099

		VIMS MAP # 099	
DENSITY 1 =	127101		
DENSITY 2 =	718567		0.40000
DENSITY 3 =	224568	AA2	843883
DENSITY 4 =	1607826	BA2	6261809
	100,020	CA3	13056196
TOTAL =	2678062	DA2	45475
IOIAL -	2070002	EA3	233688
Marian MD		FA2	120756
Marion, MD.		GA3	99568
VIMS MAP # 093		HA3	29757
		IA1	127218
AA2	13201	JA4	154719
BA2	147407	KA2	58043
CA3	7561	LA3	397122
DA4	29247	MA2	161807
EA2	59711	NA2	315253
GA4	110678	OA3	1071919
HA3	80481	PA2	33236
IA2	66756	QA3	123768
JA2	79882	RA3	2261405
KA3	610489	SA3	35968
LA2	16725	343	55908
MA2	5768	TOTAL AREA	
		IOTAL AREA	
NA3	11259		105010
OA2	14672	DENSITY $1 =$	127218
PA2	119961	DENSITY $2 =$	7840263
QA2	156866	DENSITY 3 =	17309390
RA3	304462	DENSITY 4 =	154719
SA2	85720		
TA3	48189	TOTAL =	25431590
UA3	89400		
VA3	63263	Great Fox Island, MDV	/A.
WA3	189911	VIMS MAP # 100	
XA1	14130		
YA1	76793	AA2	562376
ZA3	8641	BA3	1446070
AB3	58150	CA3	254369
BB4	77693	DA2	306091
CB3	237269	EA2	306280
		FA2	404043
TOTAL AREA		GA3	1572043
		HA4	
DENSITY 1 =	90924		554826
DENSITY 2 =	766668	IA2	331720
DENSITY $3 =$	1709074	JA2	17436
DENSITY $4 =$	217618	KA2	13033
	•-•	LA2	19897
TOTAL =	2784284	MA3	154656
		NA2	60585
		OA4	32604
		PA2	44283

QA3	692731	TOTAL AREA	
RA2	136421		
SA2	254964	DENSITY 1 =	0
TA3	187095	DENSITY $2 =$	782091
UA2	538218	DENSITY 3 =	1419762
VA3	1425150	DENSITY 4 =	1015073
WA2	2116077		
XA4	3618464	TOTAL =	3216925
TOTAL AREA		Saxis, VAMD.	
		VIMS MAP # 102	
DENSITY $1 =$	0		
DENSITY $2 =$	5111424	AA2	3312
DENSITY 3 =	5732114	BA3	7208
DENSITY $4 =$	4205895	CA2	14153
		DA3	
TOTAL =	15049433	DAJ	3963
Crisfield, MDVA.		TOTAL AREA	
VIMS MAP # 101		$\overline{\text{DENSITY 1}} =$	0
		DENSITY 2 =	
AA4	59205	DENSITY 3 =	17465
BA4	671625		11172
CA3		DENSITY 4 =	0
	809103		
DA3	9898	TOTAL =	28637
EA3	27870		
FA2	211827	Reedville, VA.	
GA3	239681	VIMS MAP # 106	
HA3	98994		
IA3	96023	AA1	33193
JA2	12462	BA2	70316
KA2	11343	CA2	232104
LA3	8711	DA4	1318324
MA3	8137	EA1	598593
NA2	104368	FA2	446777
OA2	88010	GA4	290280
PA3	102786	HA3	
QA3	3771	IAS IA2	4159
RA4	96976		7108
SA2	26005	JA1 KA2	6423
TA4	187267	NA2	17865
UA2	97770		
VA2	6444	TOTAL AREA	
WA2	223862		/ - • •
XA3	14788	DENSITY 1 =	638208
	- 1/ 00	DENSITY 2 =	774170
		DENSITY 3 =	4159
		DENSITY 4 =	1608604
		TOTAL =	3025141

		24.4.4	
Tangier Island, VA.		XA1	235826
VIMS MAP # 107		YA4	326134
		ZA2	432473
AA3	491984	AB2	108397
BA1	111836	BB4	807984
CA4	1375142	CB4	55539
DA2	35700	DB3	2884
EA1	103674	EB4	2541
FA2	57165	FB3	41027
GA2	56730	GB3	3402
HA3	815740	HB2	115419
LA2	221311	IB3	247236
JA2	44441	JB4	863519
KA4	1009035	KB3	1401026
LA2	283047	LB1	186824
MA2	854961		
NA3	556546	TOTAL AREA	
		$\overline{\text{DENSITY 1}} =$	448484
TOTAL AREA		DENSITY 2 =	2440186
		DENSITY 3 =	3739372
DENSITY $1 =$	215510	$\frac{DENSITY}{4} =$	3799950
DENSITY 2 =	1553355	DENSIT 14-	3733330
DENSITY 3 =	1864269	TOTAL =	10427992
DENSITY $4 =$	2384177	IOIAL =	10427 772
TOTAL =	6017311	Parksley, VA.	
IOIAL =	001/511	VIMS MAP # 109	
Chesconessex VA			
Chesconessex, VA.			63667
Chesconessex, VA. VIMS MAP # 108		AA2	63667 32022
VIMS MAP # 108	107440	AA2 BA3	32022
VIMS MAP # 108 AA2	137440	AA2 BA3 CA2	32022 752
VIMS MAP # 108 AA2 BA2	48920	AA2 BA3 CA2 DA2	32022
VIMS MAP # 108 AA2 BA2 CA4	48920 132358	AA2 BA3 CA2 DA2 EA2	32022 752 10892 454005
VIMS MAP # 108 AA2 BA2 CA4 DA1	48920 132358 17094	AA2 BA3 CA2 DA2 EA2 FA3	32022 752 10892 454005 4633
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1	48920 132358 17094 8741	AA2 BA3 CA2 DA2 EA2	32022 752 10892 454005 4633 1458
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2	48920 132358 17094 8741 38601	AA2 BA3 CA2 DA2 EA2 FA3 GA2	32022 752 10892 454005 4633
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2	48920 132358 17094 8741 38601 2214	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3	32022 752 10892 454005 4633 1458 5601
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2	48920 132358 17094 8741 38601 2214 1156	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3	32022 752 10892 454005 4633 1458 5601 3695
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3	48920 132358 17094 8741 38601 2214 1156 166859	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ \end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2	48920 132358 17094 8741 38601 2214 1156 166859 139019	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3	48920 132358 17094 8741 38601 2214 1156 166859 139019 213613 657056	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\\ 106328 \end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213613 657056 89781	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\\ 106328\\ 2528515\end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4 OA1	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\\ 106328\\ 2528515\\ 27052\end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4 OA1 PA3	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\\ 106328\\ 2528515\\ 27052\\ 349437\end{array}$
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407 309001	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196 2471
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407 309001 50553	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2 RA4	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407 309001 50553 952478	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196 2471
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2 RA4 SA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213613 657056 89781 273477 363407 309001 50553 952478 301871	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3 TA2	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196 2471 9432
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2 RA4 SA2 TA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407 309001 50553 952478 301871 149166	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3 SA3 TA2 UA3	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196 2471 9432 31076
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2 RA4 SA2 TA2 UA4	$\begin{array}{c} 48920\\ 132358\\ 17094\\ 8741\\ 38601\\ 2214\\ 1156\\ 166859\\ 139019\\ 213618\\ 657056\\ 89781\\ 273477\\ 363407\\ 309001\\ 50553\\ 952478\\ 301871\\ 149166\\ 295990 \end{array}$	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3 TA2 UA3 VA3	32022 752 10892 454005 4633 1458 5601 3695 56962 227122 37272 106328 2528515 27052 349437 310029 204196 2471 9432 31076 1586
VIMS MAP # 108 AA2 BA2 CA4 DA1 EA1 FA2 GA2 HA2 IA3 JA2 KA2 LA3 MA2 NA3 OA4 PA3 QA2 RA4 SA2 TA2	48920 132358 17094 8741 38601 2214 1156 166859 139019 213618 657056 89781 273477 363407 309001 50553 952478 301871 149166	AA2 BA3 CA2 DA2 EA2 FA3 GA2 HA3 IA3 JA2 KA3 LA2 MA1 NA4 OA1 PA3 QA2 RA3 SA3 TA2 UA3 VA3 WA2	$\begin{array}{r} 32022\\ 752\\ 10892\\ 454005\\ 4633\\ 1458\\ 5601\\ 3695\\ 56962\\ 227122\\ 37272\\ 106328\\ 2528515\\ 27052\\ 349437\\ 310029\\ 204196\\ 2471\\ 9432\\ 31076\\ 1586\\ 88517\end{array}$

ZA3	10794	YA3	82711
•		ZA3	154661
TOTAL AREA		AB2	81224
		BB3	22595
DENSITY $1 =$	133380		
DENSITY $2 =$	1085405	TOTAL AREA	
DENSITY $3 =$	872633		
DENSITY $4 =$	2528515	DENSITY 1 =	153089
		DENSITY 2 =	351488
TOTAL =	4619932	DENSITY 3 =	530971
		DENSITY 4 =	620436
Urbanna, VA.			
VIMS MAP # 110		TOTAL =	1655983
AA2	66618	Fleets Bay, VA.	
BA2	45890	VIMS MAP # 112	

AAZ	00010	riceto Dug, vin	
BA2	45890	VIMS MAP # 112	
TOTAL A	REA	AA2	13212
	_	BA2	866308
DENSITY	1 = 0	CA4	52322
DENSITY	2 = 112509	DA4	26173
DENSITY	3 = 0	EA3	5888
DENSITY	4 = 0	FA3	334631
		GA1	312038
TOTAL =	112509	HA2	269877
		IA4	29263
Irvington, VA.		JA2	331084
VIMS MAP # 111		KA2	7314
		LA2	29645
AA2	819	MA4	21764
BA2	1249	NA2	9411
CA2	4020	OA2	4555
DA3	39288	PA3	3935
EA1	5079	QA3	37581
FA2	8982	RA2	41949
GA4	13051	SA2	50750
HA4	68852	TA3	991626
IA1	148010	UA3	10687
JA4	205519	VA2	41229
KA3	160117	WA2	876
LA4	268596	XA2	3257
MA3	21381	YA2	10336
NA3	632	ZA4	14887
OA2	99600	AB3	83636
PA2	31302	BB3	363058
QA2	4766	CB1	188696
RA3	48937	DB2	9582
SA3	649	EB3	294195
TA2	2953	FB2	11 7177
UA4	2074	GB4	2919
VA2	13870	HB2	54973
WA4	62343	IB2	85195
XA2	102702	JB2	29605

•

	KB2	9272	PA3	39481
_			QA3	293050
	IOTAL AREA		RA1	306982
-			SA2	270774
	DENSITY 1 =	500734	TA4	27877
	DENSITY 2 =	1985605	UA3	1123
	DENSITY 3 =	2125237	VA3	627
I	DENSITY 4 =	147329	WA2	1082
			XA2	4826
	TOTAL =	4758905	YA2	77630
			ZA3	42747
Nandua C	Creek, VA.		AB4	58165
VIMS MA	AP # 113		BB2	268659
			CB1	136655
	AA2	199291	DB2	534470
	BA3	82176	EB2	102114
	CA4	529578	FB3	3715
	DA1	277969	GB1	22087
	EA2	1249366	HB3	30819
	FA4	210786	IB2	6952
	GA4	94277		
	HA1	164734	TOTAL AREA	
	IA1 IA4	498518		
	JA2	1432447	DENSITY 1 =	499156
	JA2	1452447	DENSITY 2 =	4637506
-	IOTAL AREA		DENSITY 3 =	421463
	IOTAL AREA		DENSITY 4 =	3934573
T. T	DENSITY 1 =	442703		
	DENSITY $2 =$	2881104	TOTAL =	9492698
	DENSITY $3 =$	82176		
	DENSITY $4 =$	1333159	Wilton, VA.	
			VIMS MAP # 117	
٦	TOTAL =	4739142		
			AA3	5726
Pungotea	one VA		BA3	35942
VIMS MA			CA2	6951
V IIVIS IVIA	AF # 114		DA2	2499
		50.400	EA2	8817
	AA4	70408	FA3	855
	BA2	66896	GA2	78478
	CA4	25285	HA2	25317
	DA2	575632	IA2	9499
	EA1	10016	JA2	7754
	FA3	7860). <u> </u>	
	GA2	104209	TOTAL AREA	
	HA4	233921		
	IA3	2041	$\overline{\text{DENSITY 1}} =$	0
	JA2	67569	DENSITY 2 =	139316
	KA1	23418	DENSITY 3 =	42523
	LA4	3518917	DENSITY 4 =	42525
	MA2	80349		Ū
	NA2	2211837	TOTAL =	181838
	OA2	264507	IOTAL -	101000

Delterrille MA		042	22420
Deltaville, VA.		QA3 RA2	22429 11 7 36
VIMS MAP # 118		SA2	78158
		TA4	191984
AA2	5235	UA1	203214
BA1	61919	VA4	203214
CA4	55892	WA2	10012
DA1	346561	XA2	
EA4	146683	YA4	84129
FA2	70586	ZA2	138342
GA2	107505	AB3	175396 52405
HA3	9373	Abb	52405
IA2	33118	TOTAL AREA	
JA3	49164	IOTAL AREA	
KA2	23279	DENSITY 1 =	(2(250
LA2	66253		626358
MA2	937	DENSITY 2 =	2367938
NA2	17575	DENSITY 3 =	1091786
OA2	17444	DENSITY 4 =	2254160
PA1	18691	TOTAL	(240242
QA2	2427	TOTAL =	6340243
RA4	62327	TAT NT 1 37A	
SA2	49102	Ware Neck, VA.	
TA4	126460	VIMS MAP # 122	
UA1	158021		
		AA2	12565
TOTAL AREA		BA2	499416
		CA2	71783
DENSITY 1 =	585192	DA4	162579
DENSITY $2 =$	393461	EA2	79321
DENSITY 3 =	58537	FA3	261096
DENSITY $4 =$	391361	GA1	220951
	4 400550	HA3	245672
TOTAL =	1428552	IA1	52704
		JA4	78831
Jamesville, VA.		KA2	107268
VIMS MAP # 119		LA3	98262
		MA3	169129
AA2	95191	NA3	154237
BA1	37153	OA4	485956
CA2	594276	PA2	287567
DA4	829103	QA3	196329
EA2	23102		
FA1	72249	TOTAL AREA	
GA3	10202	DENSITY 1 =	050(54
HA2	25499	DENSITY 2 =	273654
IA4	21392	DENSITY 3 =	1057921
JA3	76223		1124726
KA1	313743	DENSITY $4 =$	727366
LA3	930528	TOTAL =	2102447
MA4	183573	IOIAL =	3183667
NA2	1269513		
OA4	590029		
PA2	927		

.

223

Mathews,	VA.		HA2	48832
VIMS MA			IA2	110305
• • • • • • • • • • • • • • • • • • • •			JA4	602511
	AA4	57298	KA3	130301
	BA4	186523	LA3	18791
	CA3	24558	MA2	13067
	DA2	6607	NA4	207498
	EA3	117843	OA2	5750
	FA2	58923	PA2	179763
	GA2	321031	QA2	439244
	HA1	4698	RA1	46427
	A2	181735	SA4	1538410
	A4	686108	TA2	53755
	KA2	33381	UA3	38628
	LA2	1997	VA2	274467
	MA3	7777	WA1	13395 1
		17875	XA3	160553
	NA2		YA1	291346
	DA1	32889	ZA4	329651
	PA2	122076	AB2	139017
	QA4	137931	BB2	27746
	RA2	16903	CB2	11920
	SA2	41902	DB4	132075
	ГА4	476520	EB2	. 63768
	JA2	110503	FB2	6936
	VA3	113879	GB3	142354
	WA3	138404	HB3	26592
	XA4	47176	IB2	92254
	YA4	12524	JB2	56994
	ZA2	22231	KB3	13385
	AB4	18897	LB3	165740
	3B3	31444	MB3	12789
	CB3	5301	NB2	121460
1	OB2	232069	OB2	223186
Т	OTAL AREA		TOTAL AREA	
Ē	DENSITY 1 =	37587		
_	DENSITY $2 =$	1167232	DENSITY 1 =	1269897
	DENSITY $3 =$	439208	DENSITY 2 =	1933486
	DENSITY $4 =$	1622976	DENSITY 3 =	743711
-		1022770	DENSITY 4 =	3239649
Т	TOTAL =	3267003	TOTAL =	7186744
Franktown	n, VA.		Achilles, VA.	
VIMS MA	P # 124		•	
			VIMS MAP # 131	
	AA4	110676	AA3	63899
	BA4	6866	BA4	59695
	CA3	34579	CA4	78160
	DA1	798173	DA4	1165569
	EA4	311962	EA2	103569
	FA2	51957	FA3	91966
(GA2	13065	rA2	21200

÷

GA4	38662	GA3	166143
HA4	1389140	HA3	311063
IA2	161798	IA4	1119065
JA2	145997	JA2	53264
KA4	65862	KA4	811409
LA2	10490	LA1	40085
MA2	1065	MA2	115894
NA2	18851	NA1	70846
OA4	1250514	OA4	998996
PA2	28556	PA2	114545
QA4	1449878	QA1	355619
RA3	124092	RA4	46658
SA1	48617	SA2	1215995
TA4	186040	TA2	351010
UA4	7859	UA4	299303
VA2	551	VA3	95231
WA2	16739	WA2	28186
XA4	217595	XA4	988976
YA3	21077	YA2	573868
ZA4	17396	ZA4	79342
AB2	39631	AB2	12542
BB4	232318	BB4	
CB2	14018	CB2	74077
DB2	60809	Cb2	9400
EB4	1964468		
FB2		TOTAL AREA	
GB3	108624		00/11/
HB3	68736	DENSITY 1 =	806446
IB2	10088	DENSITY 2 =	3148103
	47247	DENSITY 3 =	572437
JB4 KB2	29338	DENSITY $4 =$	10333033
LB4	67971 711284	TOT A L	1 40 40010
MB2	711384	TOTAL =	14860018
NB2 NB2	271628		
IN DZ	13561	Cape Charles, VA.	
TOTAL AREA		VIMS MAP # 133	
		AA2	269528
DENSITY 1 =	48617	BA4	19530
DENSITY $2 =$	1112249	CA2	219816
DENSITY 3 =	379858	DA4	92716
DENSITY $4 =$	8863878	EA3	7315
		FA2	
TOTAL =	10404602	GA2	67071
		HA4	107358
New Point Comfort, VA.			576576
VIMS MAP # 132		IA3	134583
		JA2 KA3	121884
AA2	362513		11645
BA1		LA3	118062
CA4	288695 5252727	MA3	142359
	5253737	NA1	757281
DA4 EA1	661471	OA4	909997
EA1 FA2	51201	PA2	54617
FA2	310887		

TOTAL AREA		DA2	19104
		EA2	35760
DENSITY 1 =	757281	FA4	438815
DENSITY 2 $=$	840274	GA2	20729
DENSITY 3 =	413963	HA4	161532
DENSITY 4 =	1598819	IA2	1249
		JA3	23857
TOTAL =	3610337	KA3	30382
101111 -	0010007	LA3	384626
Charitan MA		MA1	552693
Cheriton, VA.		NA4	87886
VIMS MAP # 134		OA3	710900
AA3	3901	PA2	8671
BA4	371309	QA4	43032
CA2	229394	RA2	56898
DA2	87067	SA4	547042
EA4	180845	TA2	973872
		UA4	784049
TOTAL AREA		VA3	90488
TOTAL / ddf		WA2	21255
DENSITY 1 =	0	XA4	34334
DENSITY $2 =$	•	YA4	51324
	316460	ZA4	74660
DENSITY 3 =	3901		
DENSITY 4 =	552154	TOTAL AREA	
		••••	
TOTAL =	872516	$\overline{\text{DENSITY 1}} =$	552693
		DENSITY 2 =	1742809
Yorktown, VA.		DENSITY 3 =	1240252
VIMS MAP # 139		DENSITY 4 =	2293647
			22/001/
AA2	1264	TOTAL =	5829401
BA2	1670	IOIME -	502/401
CA2	3939	Dennese Feet VA	
DA3	4686	Poquoson East, VA.	
Dito	1000	VIMS MAP # 141	
TOTAL AREA			
IOTAL MALA		AA2	725482
DENSITY 1 =	0	BA4	5346424
DENSITY $2 =$	6872	CA4	369382
DENSITY $3 =$	4686	DA1	1826745
		EA3	1735555
DENSITY 4 =	0	FA3	948901
	11550	GA4	564417
TOTAL =	11558	HA4	63408
		IA4	11196
Poquoson West, VA.		JA4	5591
VIMS MAP # 140		KA4	2440
		LA4	1936
AA4	39703	MA4	9143
BA4	31270	14124	/145
CA2	605271		

TOTAL AREA		TOTAL AREA	
DENSITY 1 =	1826745	DENSITY 1 =	486671
DENSITY $2 =$	725482	DENSITY $2 =$	686823
DENSITY 3 =	2684456	DENSITY 3 =	1242526
DENSITY 4 =	6373937	DENSITY 4 =	1390280
TOTAL =	11610619	TOTAL =	3806300
Elliotts Creek, VA.		Cape Henry, VA.	
VIMS MAP # 142		VIMS MAP # 152	
AA1	847727	AA2	52769
BA2	271879	BA2	20695
DAL	2/10//	CA2	35342
TOTAL AREA		DA2	9741
Tomernen		EA3	3210
DENSITY 1 =	847727	FA2	73765
DENSITY $2 =$	271879		
DENSITY $3 =$	0	TOTAL AREA	
DENSITY $4 =$	Ő	TO THE TIME T	
	v	DENSITY 1 =	0
TOTAL =	1119606	DENSITY 2 =	192312
TOTTL	112/000	DENSITY 3 =	3210
Hampton, VA.		DENSITY $4 =$	0
VIMS MAP # 147			. 0
V 11VIS IVIAL # 14/		TOTAL =	195521
AA3	34956	Port Tohacco MD	
BA1	75324	Port Tobacco, MD.	
CA3	404601	VIMS MAP # 161	
DA3	285787		
EA3	171888	AA4	125953
FA3	109949		
GA1	340244	TOTAL AREA	
HA3	94931		0
IA2	2116	DENSITY $1 =$	0
JA3	118402	DENSITY 2 = DENS	0
KA4	458540	DENSITY 3 = DENSITY 4 =	125052
LA4	50430	DENSITI 4 =	125953
MA1 NA4	71103 311416	TOTAL =	125953
OA2	25734	IOIAL =	125955
PA3	22012		
	569894	Assawoman Bay, MD.	
QA4 RA2	658973	VIMS MAP # 166	
NA2	000773		
		AA2	3852
		BA2	22472
		CA2	35578
		DA2	17463

_				
]	IOTAL AREA		CA3	1137218
-		2	DA4	5669005
	DENSITY 1 =	0	EA2	16672
	DENSITY $2 =$	79365	FA2	12225
	DENSITY $3 =$	0	GA1	178308
L	DENSITY 4 =	0	HA2	17323
-			IA3	2542425
.]	TOTAL =	79365	JA4	491446
	-		KA3	1158333
Berlin, M			LA4	208486
VIMS MA	AP # 167		MA3	269154
			NA3	12974
	AA2	7360	OA3	65927
	BA1	22785		
(CA4	15955	TOTAL AREA	
1	DA2	29086		4 20000
]	EA3	9460	DENSITY 1 =	178308
]	FA1	17989	DENSITY $2 =$	69684
(GA3	4255	DENSITY 3 =	5186031
			DENSITY 4 =	6368937
· T	TOTAL AREA		TOTAL =	11907050
-			IOIAL =	11802959
	DENSITY $1 =$	40774	Boxiron, MDVA.	
	DENSITY $2 =$	36446	•	
	DENSITY $3 =$	13715	VIMS MAP # 172	
I	DENSITY $4 =$	15955		
_			AA4	2482180
1	TOTAL =	106891	BA3	361786
			CA2	62290
Ocean Cit			DA3	1718714
VIMS MA	AP # 168		EA2	528802
			FA3	1165602
	AA3	9147	GA4	27750
]	BA2	203958	HA3	127572
(CA3	7774	IA2	11572
]	DA3	8191	JA1	90542
]	EA2	6654	KA4	968320
			LA3	170969
1	TOTAL AREA		TOTAL AREA	
Ī	DENSITY 1 =	0		
	DENSITY 2 =	210612	DENSITY 1 =	90542
	DENSITY 3 =	25111	DENSITY 2 =	602665
Ι	DENSITY 4 =	0	DENSITY 3 =	3544643
			DENSITY $4 =$	3478250
1	TOTAL =	235723	TOTAL =	7716100
Tingles Is	land, MD.			
VIMS MA			Whittington Point, MD.	-VA.
4 11410 1417	x. # 17U		VIMS MAP # 173	
	AA2	8726		
	BA2	14739	AA1	17179
			BA3	54023

CA1 DA2 EA4	210650 706358 286518	East of New Point Comfo VIMS MAP # 177	ort, VA.
FA2	87634	AA4	4447
GA3	1744579	BA2	82259
HA3	795089		0
IA3	36299	TOTAL AREA	
JA2	2542		
KA1	50176	$\overline{\text{DENSITY 1}} = $ $\overline{\text{DENSITY 2}} = $	0 82259
TOTAL AREA		DENSITY 3 =	0
DENSITY 1 =	278005	DENSITY 4 =	4447
DENSITY 2 =			
	796535	TOTAL =	86706
DENSITY 3 =	2629990		
DENSITY $4 =$	286518	Goose Island, VA.	
TOTAL =	3991048	VIMS MAP # 179	
Chincoteague West, VA.		AA3	74600
		BA4	7304
VIMS MAP # 174		CA4	164490
		DA2	1851487
AA4	62689	EA3	50035
TOTAL AREA		TOTAL AREA	
$\overline{\text{DENSITY 1}} =$	0		<u> </u>
DENSITY 2 =	0	DENSITY 1 =	0
DENSITY 3 =	Ō	DENSITY $2 =$	1851487
DENSITY 4 =	62689	DENSITY 3 = DENSITY 4 =	124635 171794
TOTAL =	62689	TOTAL =	2147916
Chincoteague East, VA. VIMS MAP # 175			
AA4	9093466		
BA3	57949		
CA4	2793		
DA3	51088		
EA3	41691		
TOTAL AREA			
DENSITY 1 =	0		
DENSITY 2 =	0		
DENSITY $3 =$	150729		
DENSITY $4 =$	9096259		
TOTAL =	9246987		

APPENDIX E

1992 Submerged Aquatic Vegetation Ground Survey Data Listed by USGS 7.5 Minute

Quadrangle and By 1992 SAV Bed.

KEY TO APPENDIX E

Abbreviations under column "Species" are as follows:

- C Chara sp. (muskgrass)
- Cd Ceratophyllum demersum (coontail)
- Ec Elodea canadensis (common elodea)
- Hd Heteranthera dubia (water stargrass)
- Hv Hydrilla verticillata (hydrilla)
- Ms Myriophyllum spicatum (Eurasian watermilfoil)
- N Najas spp. (naiad)
- Ngr Najas gracillima (naiad)
- Ngu Najas guadalupensis (southern naiad)
- Nm Najas minor (slender naiad)
- Pcr Potamogeton crispus (curly pondweed)
- Pe Potamogeton epihydrus (leafy pondweed)
- Ppc Potamogeton pectinatus (sago pondweed)
- Ppf Potamogeton perfoliatus (redhead-grass)
- Ppu Potamogeton pusillus (slender pondweed)
- Rm Ruppia maritima (widgeon grass)
- Tn Trapa natans (water chestnut)
- Va Vallisneria americana (wild celery)
- Zm Zostera marina (eelgrass)
- Zp Zannichellia palustris (horned pondweed)
- U Unknown species composition

Abbreviations under column "Surveyor" are as follows:

- Cit. Citizens' Survey
- Essex Essex Community College SAV Research Group
- HPEL University of Maryland Horn Point Environmental Laboratory
- Harford Harford Community College
- PRP Maryland-National Capitol Parks and Planning Commission,
 - Patuxent River Park
- VIMS Virginia Institute of Marine Science

Slash mark separates species data of independent survey sources and independent survey dates.

No SAV bed mapped from 1991 or 1992 aerial photography but SAV bed presence was verified by 1991 groundtruth survey at this location.

APPENDIX E

1992 Submerged Aquatic Vegetation Ground Survey D	ata Listed by USGS 7.5
Minute Quadrangle and by 1992 SAV Bed.	

÷

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
				0.45
002	FA3	Ms,Hd,Va	Cit.	9-15
	EA3	Ms,Hd,Ppc	Cit.	9-15
	DA3	Ms,Hd	Cit.	9-15
	E. Spencer Is. #	Ms,Hd,Va	Cit.	9-15
003	AA2	Va,Ms	Harford	9-16
	BA2	Ms,Hd	Harford	9-16
	CA4	Ms,Cd,Hd	Harford	9-16
	EA1	Ms,Cd	Harford	9-9
	FA1	Ms,Hd,Hv,Cd	Harford	9-9
	GA4	Hv,Ms,Va,Hd	Harford	9-9
	GA4	Hv,Ms,Cd	Harford	9-19
	IA4	Hv,Hd,Ms,Cd	Harford	9-19
	LA2	Ms	Harford	9-19
	MA4	Ms,Hd,Cd	Harford	9-19
	NA4	Ms	Harford	9-19
	OA4	Ms,Hd,Cd,Hv	Harford	9-19
	QA4	Ms,Hv	Harford	9- 19
	ŪA4	Ms	Harford	9-16
	WA4	Ms,Va,Hv,Cd	Harford	9-16
	XA4	Cd,Hd	Harford	9-16
	YA4	Ms,Hv,Hd	Harford	· 9 - 16
	ZA3	Ms,Va,Cd	Harford	9-16
	AB4	Ms,Hv,Cd,Hd	Harford	9-16
	BB4	Ms,Hv,Cd,Hd	Harford	9-16
	CB4	Ms,Hv,Va,Hd	Harford	9-16
	EB4	Hv,Va,Ms,Hd	Harford	9-16
	FB4	Hv,Ms,Va	Harford	9-16
	GB4	Hv,Va,Hd,Cd	Harford	9-16
	HB4	Hv,Va,Ms,Cd,Hd	Harford	9-16
	IB4	Hv,Ms,Va,Hd	Harford	9-16
	KB4	Va	Harford	9-16
	LB1	Ms	Harford	9-19
	NB4	Hv,Ms,Va,Hd	Harford	9-19
	OB4	Hv,Ms,Hd,Va	Harford	9-19
	QB4	Ms,Hv,Hd,Va	Harford	9-19
	RB4	Hv,Va,Ms,Hd	Harford	9-19
	VB4	Ms,Hv,Hd	Harford	9-19
	WB2	Ms,Hv	Harford	9-19
	XB3	Ms,Hv,Cd,Hd,Va	Harford	9-19
	HA1	Ms	Harford	9-9
	Northeast R. #	Ms	Cit.	7-12
	Northeast R. #	Ms	Cit.	7-12 7-12
	Northeast R. #	Ms,Pcr	Cit.	9-9

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
004	BA1	Va,Ms,Pcr,Ppf	Cit.	7-13
004	BA1	Ms	Harford	9-21
	EA1	Ms,Va\Ms	Cit.\Harford	9-15\9-21
	FA1	Ms	Cit.\Harford	9-15\9-21
	GA1	Ms	Cit.	9-15
	AA1	Ms,Va,Pcr,Ppf	Cit.	7-13
	AA1 AA1	Ms	Harford	9-21
	DA1	Ms	Harford	9-21
	CA1	Ms	Harford	9-21
	Seneca Pt. #	Ms	Cit.	9-9
	Northeast R. #	Ms	Cit.	7-12
	Northeast R. #	Ms	Cit.	7-12
	Northeast R. #	Ms	Cit.	7-12
	Northeast R. #	Ms	Cit.	7-12
	Elk River #	Ms	Cit.	9-12
	EIK NIVEI #	IVIS	CII.	2-12
007	Otter Pt. Cr. #	Ms,Cd	Cit.	9-30
009	BB1	Ms,Va,Cd	Cit.	8-1
	BB1	Ms,Hd,Va,Cd	Harford	10-7
	AA2	Ms	Harford	9-4
	KA2	Ms	Harford	10-7
	OA2	Ms	Harford	10-7
	PA2	Ms,Hv	Harford	10-7
	RA3	Ms	Harford	10-7
	TA2	Ms	Harford	10-7
	AB2	Ms	Harford	10-7
010	AA2	Va,Ms	Harford	9-21
	CA2	Ms,Va	Harford	9-21
	. DA2	Ms,Va	Harford	9-21
	EA3	Va,Ms	Harford	9-21
	FA1	Ms,Va,Ppc	Harford	9-21
	GA2	Va	Harford	9-21
	HA2	Ms,Va	Harford	9-2 1
	IA1	Ms,Va	Harford	9-2 1
	JA2	Ms	Harford	9-21
	Crystal Beach #	Ms	Cit.	June-Sept
013	Galloway Cr. #	Rm,Ms,Zp	Cit.	Summer
014	KA4	Ms	Essex	6-12
_	KA4	Ms,Ec	Essex	10-16, 9-18
	KA4	Ms,Ec	Essex	7-28
	NA3	Ms	Essex	6-12
	NA3	Ms,Ec	Essex	10-16,9-18
	NA3	Ms,Ec	Essex	7-28
	YA3	Ms,Ec	Essex	6-12,9-18
	YA3	Ms,Ec	Essex	7-28
	YA3	Zp,Va	Essex	6-12

i ¥

į.

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
014	GA3	Ms,Ec	Essex	7-18,9-18
011	HA2	Ms,Ec	Essex	7-18,9-18
	IA2 IA3	Ms,Ec	Essex	6-11
	IA3	Ec,Cd,Ms	Harford	10-7
	XA2	Ms,Ec	Essex	
				7-28,9-18
	XA2	Ms,Ec	Essex Harford	6-12
	XA2	Ms		10-7
	DA2	Ms,Ec,Cd	Essex	7-28
	EA4	Ms,Ec,Cd	Essex	7-28
	EA4	Ms,Va,Ec	Harford	10-7
	CA1	Ms	Harford	10-7
	CA1	Pcr,Ms	Essex	6-28
	UA2	Ms	Harford	10-7
	VA3	Ms	Harford	10-7
	Saltpeter Cr. #	Ms	Essex	6-12
	Saltpeter Cr. #	Ms,Ec	Essex	6-3,10-16
	Saltpeter Cr. #	Ms,Ec	Essex	9-18,7-28
	Saltpeter Cr. #	Ms,Cd,Ec	Essex	7-28
	S. Bengies Pt. #	Ms,Ec	Essex	6-12,9-18
	S. Bengies Pt. #	Ms,Ec	Essex	7-28
	White Oak Pt. #	Ms,Ec	Essex	7-28
	NW. Battery Pt. #	Ms,Ec,Cd	Essex	7-28
	Rocky Pt. #	Pcr,Ms	Essex	6-28
	Kinnaird Pt. #	Pcr,Ms	Essex	6-28
	Meeks Pt. #	Pcr,Ms	Essex	6-28
	Dundee Cr. #	Ms,Ec	Essex	10-26
015	CA1	Ms,U	Cit.	6-28
	Still Pond #	Ms,U	Cit.	6-28
	Still Pond #	Ms,U	Cit.	6-28
	Still Pond #	Ms,U	Cit.	6-28
016	CA2	Ms	Harford	9-4
017	AA4	Ms,Va	Harford	9-4
019	Shallow Cr. #	Zp	Cit.	7-18
	Bodkin Main Cr. #	Zp,Ppc	Cit.	5-15
020	AA3	Ppf	Cit.	6-17
	CA2	Ppf	Cit.	6-17
	BA2	Zp	Cit.	6-17
	EA2	Ppf	Cit.	6-17
	Swan Cr. #	Zp	Cit.	6-17
021	EA2	Ppf	Cit.	6-17
	DA4	Ppf	Cit.	6-17
	BA1	Ppf	Cit.	6-17
	CA3	Źp	Cit.	6-17
	AA2	Zp	Cit.	6-17

!

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
023	Luce Cr. #	7-	Cit	E 1
025	Luce Cr. #	Zp	Cit.	5-1
		Zp	Cit.	5-1
	Cool Spring Cr. #	Zp	Cit.	5-1
	Brewer Cr. #	Zp	Cit.	5-1
	Asquith Cr. #	Zp	Cit.	5-1
	Asquith Cr. #	Zp	Cit.	5-1
	Sunrise Beach #	Zp	Cit.	5-1
	Brewer Pond #	Zp	Cit.	6-24
	Maynedier Cr. #	Zp	Cit.	6-24
	Gumbottom Br. #	Zp	Cit.	6-24
	Herald Harbor #	Zp	Cit.	6-24
	Herald Harbor #	Zp	Cit.	6-12
	Old Man Cr. #	Zp	Cit.	5-22
	Beachwood #	Zp	Cit.	5-22
	Riverdale #	Zp	Cit.	5-22
	Magothy Beach #	Zp	Cit.	5-22
	Cockey Cr. #	Zp	Cit.	5-22
	Cockey Cr. #	Zp	Cit.	5 - 22
	Chelsea Beach #	Zp	Cit.	5-22
	Focal Pt. #	Zp	Cit.	5-22
	Cattail Cr. #	Zp	Cit.	5-22
	Cattail Cr. #	Zp	Cit.	5-22
	Cattail Cr. #	Zp	Cit.	5-22
	Steedmans Pt. #	Zp	Cit.	5-22
	Steedmans Pt. #	Zp	Cit.	5-22
	Steedmans Pt. #	Zp	Cit.	5-22
	 Steedmans Pt. # 	Źp	Cit.	5-22
	, Ross Cove #	Zp	Cit.	5-22
	Pea Patch Pt. #	Zp	Cit.	5-22
	Cypress Cr. #	Zp	Cit.	5-22
	Cypress Cr. #	Zp	Cit.	5-22
	Dividing Cr. #	Zp	Cit.	5-22
	Dividing Cr. #	Zp	Cit.	5-22
	Dividing Cr. #	Zp	Cit.	5-22
	Dividing Cr. #	Zp	Cit.	5-22
	Mill Cr. #		Cit.	5-22
	Breezy Pt. #	Zp Zp	Cit.	5-22
	Mago Vista Éch. #	Zp	Cit.	5-22
024	Hunters Harbor #	Zp	Cit.	6-8
	Forked Cr. #	Zp	Cit.	5-23
026	EA1	Zp	Cit.	7-11
	BA2	Zp Zp Zp	Cit.	6-25
	LA2	Zp	Cit.	6-25
	KA2	Zp	Cit.	6-25
	JA2	Zp	Cit.	6-25
	JA2	Zp	Cit.	6-25
	JA2	Rm	Cit.	6-25
	PA2	Rm	Cit.	6-25
	Goose Cove #	Rm	Cit.	6-25

ţ

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
076	Course Dt. #	D.		<pre>/ 05</pre>
026	Gum Pt. #	Rm	Cit.	6-25
	S. Gum Pt. #	Rm	Cit.	6-25
	Frying Pan Cv. #	Ppf	HPEL	8-27
	East Fork #	Zp	Cit.	6-25
	Blakeford Pt. #	Ppc	Cit.	6-25
	Langford Cr. #	Zp	Cit.	6-25
	Langford Cr. #	Zp	Cit.	6-25
	Short Cove #	Zp	Cit.	6-25
	Ringgold Pt. #	Zp	Cit.	6-25
	Wickes Beach #	Rm	Cit.	6-25
030	Ramsey Lake #	Zp	Cit.	4-30
	Ramsey Lake #	Zp	Cit.	4-30
	Ramsey Lake #	Rm	Cit.	4-30
	Cadle Cr. #	Rm	Cit.	4-30
	Muddy Cr. #	Rm	Cit.	4-30
	Fox Cr. #	Rm	Cit.	4-30
	Selby Bay #	Zp	Cit.	4-30
	Bear Neck Cr. #	Zp	Cit.	4-30
	Brewer Cr. #	Rm	Cit.	4-30
	Glebe Bay #	Zp	Cit.	4-30
	Glebe Bay #		Cit.	
	Glebe Bay #	Zp		4-30 4-20
	Glebe Cr. #	Zp	Cit.	4-30
	Glebe Cr. #	Zp	Cit.	4-30
		Zp	Cit.	4- 30
	Glebe Cr. #	Zp	Cit.	4-30
	Glebe Cr. # Almhouse Cr. #	Zp	Cit.	4-30
	Almhouse Cr. #	Zp	Cit.	4-30
		Zp	Cit.	4-30
	Warehouse Cr. #	Zp	Cit.	4-30
	Warehouse Cr. #	Zp	Cit.	4-30
	Beards Cr. #	Zp	Cit.	4-30
	Beards Cr. #	Zp	Cit.	4-30
	Beards Cr. #	Rm	Cit.	4-30
	Hardestys Cv. #	Zp	Cit.	4-30
	S. Down Shores #	Zp	Cit.	4-30
	Beards Cr. #	Rm	Cit.	4-30
	Hambleton #	Zp	Cit.	4-30
	Glen Isle #	Zp	Cit.	4-30
	Upper South R. #	Zp	Cit.	4-30
	Upper South R. #	Zp	Cit.	4-30
	Broad Cr. #	Zp	Cit.	4-30
	Broad Cr. #	Zp	Cit.	4-30
	Boyd Pt. #	Zp	Cit.	4-30
	Gingerville Cr. #	Zp	Cit.	4-30
	Wild Rose Shor. #	Zp	Cit.	4-30
	Wild Rose Shor. #	Zp	Cit.	4-30
	Aberdeen Cr. #	Zp	Cit.	4-30
	Aberdeen Cr. #	Zp	Cit.	4-30
		Zp	Cit.	
	Harness Cr. #	20	CII.	4-30

•

_Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
030	Harness Cr. #	Zp	Cit.	4-30
	Harness Cr. #	Zp	Cit.	4-30
	Hillsmere #	Zp	Cit.	4-30
	Hillsmere #	Zp	Cit.	4-30
	Selby Bay #	Rm	Cit.	5-20
	Selby Bay #	Rm	Cit.	5-20
	Selby Bay #	Rm	Cit.	5-20
	Church Cr. #	Zp	Cit.	6-13
	Crab Cr. #	Zp	Cit.	6-13
	Crab Cr. #	Zp	Cit.	6-13
	Crab Cr. #	Zp	Cit.	6-13
	Crab Cr. #	Zp Zp	Cit.	6-13
	Ciub Ci. #	- <u>-</u> P	Cit.	0 10
032	LA3	Rm	Cit.	8-30
	MA2	Rm	Cit.	8-30
	OA1	Rm	Cit.	8-30
	PA1	Rm	Cit.	8-30
	Thompson Cr. #	Rm	Cit.	8-30
	Cox Cr. #	Rm	Cit.	8-30
	Long Marsh #	Rm	Cit.	8-30
		_		
033	FA3	Rm	HPEL	8-21
	AA1	Rm	HPEL	8-21
	Hood Pt. #	Rm	Cit.	6-20
	Prospect Bay #	Rm	Cit.	6-20
035	.Camp Wabanna #	Zp	Cit.	9-7
036	JA2	Rm	HPEL	8-20
000	PA1	Rm	HPEL	8-20
	OA1	Rm	HPEL	8-20
	NA1	Rm	HPEL	8-20
	MA1	Rm	HPEL	8-20
	RA3	Rm	HPEL	8-26
. –				F 0 0
037	AA2	Rm	HPEL	7-30
	BA2	Rm	HPEL	7-30
	CA2	Rm	HPEL	7-30
	DA2	Rm ·	HPEL	7-30
	UA2	Rm	HPEL	7-30
	NA2	Rm	HPEL	7-30
	QA2	Rm	HPEL	8-20
	PA2	Rm	HPEL	8-21
	TA1	Rm	HPEL	8-21
	YA2	Rm	HPEL	8-21
	ZA2	Rm	HPEL	8-21
040			Cit	7-30
040	NA4	Cd	Cit.	
	BA4	Va,Hv,Ms,Ngu	Cit.	7-5 7-20
	Dogue Cr. #	Ms	Cit.	7-30
	Potomac R. #	Cd	Cit.	7-30

Qua	d 1992 Bed	Species*	Surveyor**	1992 Survey Date
041	Mataponi Cr. #	Pcr,Cd,Ec	PRP	7-8
041	Lyons Cr. #	Ec	PRP	7-8
	Hall Cr. #	Cd,Ngu,Ec,Va,Zp,Ppu	PRP	7-8 7-8
	Cocktown Cr. #	Pcr,Cd,Ppu,Va,Ec	PRP	7-8
042	N. Lower Marlboro #		PRP	7-8 7-8
042	IN. LOWEI Maribolo #	Pcr,Ppu	r Kr	/-0
043	NA2	Rm\Rm	Cit.\HPEL	6-26\8-12
	IA2	Rm,Zp\Rm	Cit.\HPEL	6-26\8-25
	MA2	Rm,Zp\Rm	Cit.\HPEL	6-26\8-12
	JA2	Rm,Zp\Rm	Cit.\HPEL	6-26\8-12
	KA1	Rm	HPEL	8-12
	AA3	Rm\Rm	Cit.\HPEL	6-26\8-25
	Nelson Pt. #	Zp	Cit.	10-17
	Balls Cr. #	Zp	Cit.	6-26
	Balls Cr. #	Źp	Cit.	6-26
	Leadenham Cr. #	Rm	Cit.	6-26
044	FA3	Zp\Rm	Cit.\HPEL	6-26\7-29
••	MA2	Zp\Rm	Cit.\HPEL	6-26\7-30
	GA2	Zp,Rm\Rm,Zp	Cit.\HPEL	6-26\7-29
	DA2	Rm\Rm,Zp	Cit.\HPEL	6-26\7-29
	CA2	Zp\Rm	Cit.\HPEL	6-26\7-29
	EA2	Zp (Rm Rm	HPEL	7-29
	HA2		HPEL	7-29
	JA2	Rm,Zp Rm	HPEL	7-29
	KA2	Rm	HPEL	7-29
	LA3	Rm	HPEL	7-29
	NA2	Rm,Zp	HPEL	7-30
	PA2	Rm	HPEL	7-30
	Tar Cr. #	Zp	Cit.	6-30
	Tar Cr. #	Zp	Cit.	6-30
	Tred Avon R. #	Zp	Cit.	6-30
	Fox Hole Cr. #	Zp	Cit.	7-7
	Boone Cr. #	U	Cit.	7-6
	Bailey's Neck #	Zp	Cit.	6-1
	Irish Cr. #	Zp	Cit.	6-26
046	Hunting Cr. #	U	Cit.	11-24
051	AA2	Rm	Cit.	7- 15
	BA2	Rm	Cit.	7-15
	WA3	Rm	HPEL	7-21
	XA2	Rm	HPEL	7-21
	YA2	Rm,Zp	HPEL	7-21
	PA2	Rm	Cit.	6-17
	SA1	Rm,U\Rm	Cit.\HPEL	Summer\8-25
	QA2	Rm,U	Cit.	Summer
	RA3	Rm,U	Cit.	Summer
	TA3	Rm,U	Cit.	Summer
	UA1	Rm,U	Cit.	Summer
	VA4	Rm,U	Cit.	Summer

Quad_	1992 Bed	Species*	Surveyor**	1992 Survey Date
052	RA2	Rm	HPEL	8-26
002	SA3	Rm\Zp	HPEL	8-26\7-21
			HPEL	7-20
	Lecompte Cr. #	Zp		
	Lecompte Cr. #	Zp	HPEL	7-20
053	AA2	Zp	HPEL	6-30
	Choptank Inlet #	Zp	Cit.	5-28
	Choptank Inlet #	Zp	Cit.	5-28
060	Island Cr. #	Zp	Cit.	5-22
	Island Cr. #	Zp	Cit.	5-22
		-	_	
061	Osbourne Cove #	Zp	Cit.	6-12
	St. Leonard Cr. #	Zp	Cit.	6-5
	St. Leonard Cr. #	Zp	Cit.	6-5
066	FA4	Va,Ppf,U	Cit.	8-27
071	Harper Cr. #	Zp	Cit.	6-2
071	Harper Cr. #	Zp	Cit.	6-2
			Cit.	6-2
	Harper Cr. #	Zp		6-2
	Harper Cr. #	Zp	Cit.	
	Pearson Cr. #	Zp	Cit.	6-2
	Pearson Cr. #	Zp	Cit.	6-2
	Pearson Cr. #	Zp	Cit.	6-2
	· Goose Cr. #	Zp	Cit.	No Date
	Goose Cr. #	Rm,Zp	Cit.	No Date
	. Goose Cr. #	Rm,Zp	Cit.	No Date
	Harper Cr. #	Zp	Cit.	6-2
	Ĥog Pt. #	Rm	Cit.	6-2
	Patuxent R. #	Zp	Cit.	6-6
	Goose Cr. #	Rm	Cit.	No Date
072	DA4	Rm	Cit.	6-13
074	HA4	Rm,Zp	Cit.	5-23
	Honga R. #	Rm	Cit.	8-9
	S. Crab Pt. #	Rm	Cit.	8-9
078	Weatherall Cr. #	Zp	Cit.	6-6
070	Aimes Cr. #	Zp	Cit.	6-6
000	A A O	7-	Cit.	7-3
080	AA2	Zp		9-1
	Windmill Pt. #	Rm	Cit.	7-1
082	AA4	Rm	Cit.	9-12
	CA2	Rm	Cit.	9-12
		Rm	Cit.	9-26
084	. AA2	IUII		
084	BA2	Rm	Cit.	9-26

ł

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
004		P		0.04
084	DA2	Rm	Cit.	9-26
	EA2	Rm	Cit.	9-26
	Laws Gut #	Rm	Cit.	9-26
	Deal Isl. Marsh #	Rm	Cit.	9-26
098	Cubbitt Cr. #	Rm	Cit.	7-29
100	Crisfield #	Rm	Cit.	6-30
101	NA2	Rm	Cit.	6-30
	EA3	Rm	Cit.	6-30
	UA2	Rm	Cit.	6-30
106	CA2	Rm	Cit.	7-28
100	DA4	Rm	Cit.	7-28
	BA2	Zm,Rm	Cit.	7-28
	Cockrell Pt. #	Rm	Cit.	7-15
		Rm,Zm	Cit.	8-30
	Sandy Pt. #		Cit.	
	Gougher Cr. #	Rm	Cit.	7-28
109	XA2	Rm	Cit.	6-29
110	AA2	Rm	VIMS	7-29\6-10
	BA2	Rm	Cit.	7-29
111	AA2	Zm,Rm	VIMS	6-10
111	BA2	Zm,Rm	VIMS	6-10
	DA3	Zm,Rm	VIMS	6-10
	FA2	Rm	VIMS	6-10
	GA4	Rm	VIMS	6-10
	HA4	Rm	VIMS	6-10 6-10
	IA1	Zm	VIMS	6-10 6-10
	JA4	Rm	VIMS	6-9
	LA4	Rm	VIMS	6-9
	YA3	Rm	VIMS	6-9
	ZA3	Rm	VIMS	6-10
	BB3	Rm	VIMS	6-10
112	TA3	Rm\Rm,Zm	Cit.\VIMS	6-30\6-23
	CA4	Rm	Cit.	6-30
	DA4	Rm	Cit.	6-30
	BA2	Rm\Rm,Zm	Cit.\VIMS	6-30\6-23
	GA1	Rm	Cit.	6-30
	LA2	Rm,Zm	Cit.	6-30
	QA3	Rm,Zm	Cit.	6-30
	PA3	Rm,Zm	Cit.	6-30
	EB3	Rm	Cit.	6-26
	FB2	Rm	Cit.	6-26
	HB2	Rm	Cit.	6-26
	JB2	Rm	Cit.	6-26
	IB2	Rm	Cit.	6-26

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
110	T 1 4	_		
112	IA4	Zm	VIMS	6-23
	UA3	Rm	VIMS	6-23
	VA2	Rm	VIMS	6-23
	WA2	Rm	VIMS	6-23
	Dividing Cr. #	Rm	Cit.	6-26
117	FA3	Rm	VIMS	6-8
118	EA4	Zm,Rm	VIMS	6-8
	GA2	Rm,Zm	VIMS	6-11
	JA3	Rm,Zm	VIMS	6-11
	TA4	Rm,Zm	VIMS	6-23
123	GA2	Zm,Rm	VIMS	6-11
	HA1	Zm	VIMS	6-1 1
	KA2	Zm	VIMS	6-11
	MA3	Zm	VIMS	6-11
	NA2	Zm	VIMS	6-11
	PA2	Zm	VIMS	6-11
	TA4	Rm,Zm	VIMS	6-8
	XA4	Rm,Zm	VIMS	6-11
	YA4	Rm,Zm	VIMS	6-11
	ZA2	Rm,Zm	VIMS	6-11
	AB4	Rm,Zm	VIMS	6-11
	BB3	Rm,Zm	VIMS	6-11
	DB2	Rm	VIMS	6-8
124	ZA4	Zm	Cit.	8-12
	CB2	Zm	Cit.	8-12
	DB4	Zm	Cit.	8-12
	FB2	Zm	Cit.	8-12
	GB3	Rm	Cit.	8-12
	HB3	Rm	Cit.	8-12
	IB2	Zm	Cit.	8-12
	KB3	Rm	Cit.	8-12
	JB2	Rm	Cit.	8-12
	LB3	Rm	Cit.	8-12
	MB3	Rm	Cit.	8-12
	NB2	Rm	Cit.	8-12
	NB2	Rm	Cit.	8-12
	EB2	Rm,Zm	Cit.	8-12
	Nassawadox Cr. #	Zm	Cit.	6-27
	Nassawadox Cr. #	Rm	Cit.	8-12
	E. Long Pt. #	Rm	Cit.	8-12
	E. Shooting Pt. #	Zm	Cit.	8-12
130	Mumfort Island #	Zm	VIMS	Summer
131	AA3	Zm	VIMS	10-19
-	DA4	Zm,Rm	VIMS	10-19
	HA4	Zm,Rm	VIMS	10-19

Quad	d 1992 Bed	Species*	Surveyor**	1992 Survey Date
101	OA4	7 D	VIMS	E 10
131		Zm,Rm Zm, Rm		5-18 5-18
	QA4	Zm,Rm	VIMS	5-18 Iumo
	JB4	Zm Zm Bm	VIMS	June
	LB4	Zm,Rm	VIMS	June
132	IA4	Rm	Cit.	8-10
	IA4	Rm,Zm	Cit.	8-10
	IA4	Zm	Cit.	8-10
	JA2	Zm	Cit.	8-10
	HA3	Zm	Cit.	8-10
	IA4	Zm,Rm	Cit.	8-10
	KA4	Zm,Rm	Cit.	8-10
	KA4	Zm	Cit.	8-10
	LA1	Zm	Cit.	8-10
	MA2	Zm	Cit.	8-10
	NA1	Zm	Cit.	8-10
	OA4	Zm	Cit.	8-10
	CA4	Zm,Rm	VIMS	5-27
133	HA4	Zm	VIMS	July
139	AA2	Zm	VIMS	June
107	BA2	Zm	VIMS	June
	CA2	Zm	VIMS	June
	DA3	Zm	VIMS	June
140	TA2	Rm,Zm	VIMS	7-8
140	SA4	Rm,Zm	VIMS	7-8
	UA4		VIMS	7-8
	VA3	Rm,Zm Rm,Zm	VIMS	7-8
	WA2	Rm,Zm Rm	VIMS	7-8
	VVA2	NIII	V 11/12	7-0
147	AA3	Zm	VIMS	8-19
	KA4	Zm	VIMS	8-19
	QA4	Zm	VIMS	8-19
152	DA2	Rm,Zm	VIMS	9-29
	CA2	Rm,Zm	VIMS	9-29
	BA2	Rm,Zm	VIMS	9-29
	AA2	Rm,Zm	VIMS	9-29
159	S. Bristol Landing #	Ec	PRP	7-21
107	Tavo Run #	Ec,Cd,Ngu,Ngr,U	PRP	7-21
	W. Bristol Landing #	Ppu,Pcr,Ec,Cd,Ngu,Nm	PRP	7-2
	W. Waysons Corner #	Va,Ec,Pe,Ppu,Cd,Zp	PRP	7-2 7-2
	N. Hills Bridge #	Ec,Ngu,Nm	PRP	7-2
	Back Channel #	Pcr,Cd,Ngu,Zp,Va	PRP	7-2
	Back Channel #	Nm,Ppc,Ppu	PRP	7-2
	S. Spyglass Is.#	Cd,Pcr,Va,Ec	PRP	7-2
	5. Spyglass IS.# Mill Creek #	Cd,Ngu,Nm	PRP	7-2
	Galloway Gut #	Ngr,Nm,Zp	PRP	7-2 7-2
	Galloway Gut #	ingr,init, LP	r Nr	1-2

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
159	Railroad Cr. #	. Ngr,Ec	PRP	. 7-2
139	Western Br. #	Cd,Pcr,Ngr	PRP	7-2
	Charles Br. #	Ec,Zp,Cd,Ngr	PRP	7-2
166	CA2	Rm	Cit.	8-25
100	BA2	Rm	Cit.	8-25
	DITZ	i i i i i i i i i i i i i i i i i i i	Ch.	0-25
167	EA3	Zm	Cit.	6-25
	CA4	Zm	Cit.	6-25
168	CA3	Zm	Cit.	6-25
	BA2	Zm	Cit.	6-25
	Isle of Wight Bay #	Rm	Cit.	8-25
	Isle of Wight Bay #	Rm	Cit.	8-25
	Mallard Island #	Rm	Cit.	8-25
	Sinepuxent Bay #	Zm	Cit.	6-25
170	MA3	Zm	Cit.	7-28
	MA3	Zm	Cit.	7-28
	MA3	Zm	Cit.	7-28
	MA3	Zm	Cit.	7-28
	MA3	Zm,Rm	Cit.	7-28
	KA3	Zm,Rm	Cit.	7-28
	LA4	Zm,Rm	Cit.	7-28
	LA4	Zm,Rm	Cit.	7-28
	JA4	Zm,Rm	Cit.	7-23
	JA4	Zm	Cit.	6-25
	ÓA3	Zm	Cit.	9-29
	OA3	Zm	Cit.	9-29
	IA3	Zm,Rm	Cit.	7-23
	DA4	Rm,Zm	Cit.	6-25
	CA3	Rm,Zm	Cit.	6-25
172	KA4	Zm,Rm	Cit.	7-1
	JA1	Zm,Rm	Cit.	7-1
	HA3	Zm	Cit.	7-1
	GA4	Zm,Rm	Cit.	7-1
	FA3	Zm,Rm	Cit.	7-1
	EA2	Zm,Rm	Cit.	7-1
	EA2	Rm,Zm	Cit.	7-1
	DA3	Rm,Zm	Cit.	7-1
	DA3	Zm,Rm	Cit.	7-1
	BA3	Zm	Cit.	7-1
	AA4	Zm	Cit.	7-1
	AA4	Zm	Cit.	7-1
173	HA3	Rm,Zm	Cit.	6-25
	HA3	Rm,Zm	Cit.	6-25
	HA3	Rm,Zm	Cit.	6-25
	GA3	Rm,Zm	Cit.	6-25
	FA2	Rm,Zm	Cit.	6-25
	DA2	Rm,Zm	Cit.	6-25

Quad	1992 Bed	Species*	Surveyor**	1992 Survey Date
173	DA2	Zm,Rm	Cit.	6-25
1.0	EA4 CA1	Zm,Rm Zm,Rm	Cit. Cit.	6-25 6-25
	DA2	Zm,Rm	Cit.	6-25
175	AA4	Rm,Zm	Cit.	9-16
	EA3	Rm,Zm	Cit.	9-16

APPENDIX F

1992 Horn Point Environmental Laboratory SAV Ground Survey of the Choptank River and Eastern Bay with Listings by Approximate Latitude and Longitude as Determined by a LORAN C Navigation System.

APPENDIX F

Coordinates of Sample Points

26 JUNE HPEL West Bolingbrook Creek

Deg Min Deg Min 38 35.76 76 07.82 0 6/26/92 38 35.70 76 07.82 0 6/26/92 38 35.49 76 07.52 0 6/26/92 38 35.49 76 07.52 0 6/26/92 38 35.09 76 06.86 0 6/26/92 38 35.09 76 06.81 Zp 6/26/92 38 34.41 76 06.85 0 6/26/92 38 34.47 76 06.84 0 6/26/92 38 35.50 76 05.82 0 6/26/92 38 35.50 76 05.82 0 6/26/92 38 34.17 76 03.68 0 6/26/92 38 34.77 76 03.68 0 6/26/92 38 34.17 76 03.68 0 6/26/92	LATITUDE	LONGITUDE	SPECIES	DATE
38 35.70 76 07.82 0 $6/26/92$ 38 35.63 76 07.71 0 $6/26/92$ 38 35.49 76 07.52 0 $6/26/92$ 38 35.09 76 06.86 0 $6/26/92$ 38 35.01 76 06.80 Zp,U $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 35.00 76 06.46 0 $6/26/92$ 38 35.56 76 04.98 0 $6/26/92$ 38 35.58 76 04.98 0 $6/26/92$ 38 35.58 76 01.98 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 35.31 76 02.24 0 $6/26/92$ 38 35.28 76 01.99 Zp $Begin Bolingbrook Cr.6/26/923835.407601.59Zp835.407601.59Zp6/26/923835.407601.59Zp6/26/923835.487601.61$	Deg Min	Deg Min		
38 35.70 76 07.82 0 $6/26/92$ 38 35.63 76 07.71 0 $6/26/92$ 38 35.49 76 07.52 0 $6/26/92$ 38 35.09 76 06.86 0 $6/26/92$ 38 35.01 76 06.80 Zp,U $6/26/92$ 38 35.01 76 06.81 Zp $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 35.00 76 06.46 0 $6/26/92$ 38 35.56 76 04.98 0 $6/26/92$ 38 35.58 76 04.98 0 $6/26/92$ 38 35.58 76 01.498 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.84 76 01.82 0 $6/26/92$ 38 35.35 76 02.24 0 $6/26/92$ 38 35.35 76 02.24 0 $6/26/92$ 38 35.30 76 01.99 Zp $Begin Bolingbrook Cr.6/26/923835.487601.61Zp6/26/923835.487601.61Zp6/26/923835.4876$		•		
3835.637607.710 $6/26/92$ 3835.497607.520 $6/26/92$ 3835.097606.860 $6/26/92$ 3835.017606.80Zp,U $6/26/92$ 3839.967606.81ZpSp3834.947606.850 $6/26/92$ 3834.777606.840 $6/26/92$ 3834.617607.740 $6/26/92$ 3835.507605.820 $6/26/92$ 3835.587604.980 $6/26/92$ 3834.177603.680 $6/26/92$ 3834.177603.470 $6/26/92$ 3834.807601.820 $6/26/92$ 3834.807601.820 $6/26/92$ 3835.137602.240 $6/26/92$ 3835.287601.99ZpBegin Bolingbrook Cr.3835.307601.900 $6/26/92$ 3835.307601.900 $6/26/92$ 3835.437601.71Zp $6/26/92$ 3835.447601.71Zp $6/26/92$ 3835.397601.71Zp $6/26/92$ 3835.397601.71Zp $6/26/92$ 3835.397601.61Zp $6/26/92$ 3835			Zp	6/26/92
38 35.49 76 07.52 0 $6/26/92$ 38 35.09 76 06.86 0 $6/26/92$ 38 35.01 76 06.80 Zp,U $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 34.61 76 07.74 0 $6/26/92$ 38 35.50 76 05.82 0 $6/26/92$ 38 35.58 76 04.98 0 $6/26/92$ 38 34.27 76 03.68 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.80 76 01.73 0 $6/26/92$ 38 34.80 76 01.73 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.30 76 01.99 ZpBegin Bolingbrook Cr. $6/26/92$ 35.30 76 01.99 Zp $6/26/92$ 38 35.40 76 01.99 Zp $6/26/92$ 38 35.43 76 01.90 0 $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.43 76 02.23 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ <td< td=""><td></td><td></td><td>0</td><td>6/26/92</td></td<>			0	6/26/92
38 35.09 76 06.86 0 $6/26/92$ 38 35.01 76 06.80 $Zp_{1}U$ $6/26/92$ 38 34.94 76 06.81 Zp 0 38 34.77 76 06.84 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 34.61 76 07.74 0 $6/26/92$ 38 35.00 76 06.46 0 $6/26/92$ 38 35.58 76 04.98 0 $6/26/92$ 38 34.27 76 03.68 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.87 76 01.73 0 $6/26/92$ 38 34.87 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.31 76 02.24 0 $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.39 76 01.90 0 $6/26/92$ 38 35.39 76 01.90 0 $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 3	38 35.63	76 07.71		6/26/92
38 35.01 76 66.80 Zp,U $6/26/92$ 38 39.96 76 06.81 Zp $6/26/92$ 38 34.94 76 06.85 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 34.77 76 06.84 0 $6/26/92$ 38 35.30 76 06.46 0 $6/26/92$ 38 35.50 76 05.82 0 $6/26/92$ 38 34.27 76 03.68 0 $6/26/92$ 38 34.27 76 03.47 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 35.13 76 02.21 0 $6/26/92$ 38 35.31 76 02.21 0 $6/26/92$ 38 35.30 76 01.99 Zp $Begin Bolingbrook Cr.6/26/923835.397601.71Zp6/26/923835.487601.61Zp6/26/923835.397601.2306/26/923835.437602.2306/26/923835.437601.61Zp6/26/923835.43$			0	6/26/92
3839.967606.81 Zp $6/26/92$ 3834.947606.850 $6/26/92$ 3834.777606.840 $6/26/92$ 3835.307606.460 $6/26/92$ 3835.307606.460 $6/26/92$ 3835.587605.820 $6/26/92$ 3835.587604.980 $6/26/92$ 3834.177603.470 $6/26/92$ 3834.177603.470 $6/26/92$ 3834.847602.700 $6/26/92$ 3834.807601.820 $6/26/92$ 3835.137602.050 $6/26/92$ 3835.137602.050 $6/26/92$ 3835.307601.99ZpBegin Bolingbrook Cr.3835.307601.900 $6/26/92$ 3835.407601.71Zp $6/26/92$ 3835.397601.71Zp $6/26/92$ 3835.437602.10Zp,UU $6/26/92$ 3835.437602.10Zp,UU $6/26/92$ 3835.437602.10Zp,UU $6/26/92$ 3835.437602.10Zp,UU $6/26/92$ 3835.437602.10Zp,UU $6/26/92$ 3835.937602.10Zp,UU $6/26/92$ <td></td> <td></td> <td>0</td> <td>6/26/92</td>			0	6/26/92
38 34.94 7606.850 $6/26/92$ 38 34.77 7606.840 $6/26/92$ 38 35.30 7606.460 $6/26/92$ 38 35.50 7605.820 $6/26/92$ 38 35.56 7605.820 $6/26/92$ 38 34.27 7603.680 $6/26/92$ 38 34.17 7603.470 $6/26/92$ 38 34.80 7601.730 $6/26/92$ 38 34.80 7601.730 $6/26/92$ 38 34.80 7601.820 $6/26/92$ 38 35.13 7602.050 $6/26/92$ 38 35.31 7602.050 $6/26/92$ 38 35.30 7601.99ZpBegin Bolingbrook Cr. $6/26/92$ 35.31 7602.00ZpBegin Bolingbrook Cr. $6/26/92$ 35.30 7601.900 $6/26/92$ 38 35.30 7601.900 $6/26/92$ 38 35.30 7601.900 $6/26/92$ 38 35.47 7602.10ZpZp 38 35.50 7601.99Zp $6/26/92$ 38 35.39 7602.230 $6/26/92$ 38 35.39 7602.230 $6/26/92$ 38 35.50 7602.330 $6/26/92$ 38 35.57 <td< td=""><td></td><td></td><td>Zp,U</td><td>6/26/92</td></td<>			Zp,U	6/26/92
38 34.77 7606.8406/26/9238 34.61 7607.7406/26/9238 35.30 7606.4606/26/9238 35.58 7604.9806/26/9238 34.27 7603.6806/26/9238 34.27 7603.6806/26/9238 34.17 7603.4706/26/9238 34.84 7601.7306/26/9238 34.80 7601.8206/26/9238 34.94 7602.0506/26/9238 35.13 7602.2406/26/9238 35.31 7602.2406/26/9238 35.33 7601.99ZpBegin Bolingbrook Cr.6/26/9238 35.30 7601.99Zp6/26/9238 35.30 7601.9006/26/9238 35.48 7601.61Zp6/26/9238 35.48 7601.61Zp6/26/9238 35.39 7602.2306/26/9238 35.77 7602.3306/26/9238 35.90 7602.3906/26/9238 35.90 7602.3906/26/9238 35.81 7601.8906/26/9238 35.81 7601.8906/26/92 <t< td=""><td></td><td></td><td>Zp</td><td>6/26/92</td></t<>			Zp	6/26/92
38 34.61 7607.740 $6/26/92$ 38 35.30 7606.460 $6/26/92$ 38 35.50 7605.820 $6/26/92$ 38 34.27 7603.680 $6/26/92$ 38 34.27 7603.470 $6/26/92$ 38 34.17 7603.470 $6/26/92$ 38 34.17 7603.470 $6/26/92$ 38 34.78 7601.730 $6/26/92$ 38 34.80 7601.820 $6/26/92$ 38 35.13 7602.240 $6/26/92$ 38 35.28 7602.210 $6/26/92$ 38 35.30 7601.99ZpBegin Bolingbrook Cr.38 35.30 7601.99Zp $6/26/92$ 38 35.30 7601.99Zp $6/26/92$ 38 35.30 7601.99Zp $6/26/92$ 38 35.40 7601.900 $6/26/92$ 38 35.45 7601.61Zp $6/26/92$ 38 35.50 7601.59Zp $6/26/92$ 38 35.50 7601.59Zp $6/26/92$ 38 35.57 7602.330 $6/26/92$ 38 35.50 7601.280 $6/26/92$ 38 35.50 7602.330 $6/26/92$ 38 35.50 7602.33				6/26/92
3835.307606.460 $6/26/92$ 3835.607605.8206/26/923835.587604.9806/26/923834.277603.6806/26/923834.177603.4706/26/923834.177601.7306/26/923834.847601.7306/26/923834.807601.8206/26/923835.137602.2406/26/923835.287602.2106/26/923835.307601.99ZpBegin Bolingbrook Cr.6/26/923835.307601.99Zp6/26/923835.307601.9006/26/923835.397601.71Zp6/26/923835.487601.61Zp6/26/923835.507601.59Zp6/26/923835.397602.10Zp,U6/26/923835.707602.3306/26/923835.707602.3306/26/923835.817601.8906/26/923835.817601.2806/26/923835.817601.8906/26/923835.817601.2806/26/923835.8176 <t< td=""><td></td><td></td><td>0</td><td>6/26/92</td></t<>			0	6/26/92
38 35.60 76 05.82 0 $6/26/92$ 38 35.58 76 04.98 0 $6/26/92$ 38 34.27 76 03.68 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 33.84 76 02.70 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 35.13 76 02.05 0 $6/26/92$ 38 35.31 76 02.24 0 $6/26/92$ 38 35.30 76 01.99 ZpBegin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp 8 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.43 76 01.61 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.57 76 02.33 0 $6/26/92$ 38 35.50 76 01.28 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ <td></td> <td>76 07.74</td> <td></td> <td>6/26/92</td>		76 07.74		6/26/92
3835.587604.980 $6/26/92$ 3834.277603.680 $6/26/92$ 3834.177603.470 $6/26/92$ 3833.847602.700 $6/26/92$ 3834.807601.730 $6/26/92$ 3834.807601.820 $6/26/92$ 3834.947602.050 $6/26/92$ 3835.137602.240 $6/26/92$ 3835.317602.00ZpBegin Bolingbrook Cr. $6/26/92$ 3835.307601.99Zp $6/26/92$ 3835.307601.99Zp $6/26/92$ 3835.307601.900 $6/26/92$ 3835.407601.900 $6/26/92$ 3835.437601.61Zp $6/26/92$ 3835.487601.61Zp $6/26/92$ 3835.487601.59Zp $6/26/92$ 3835.437602.400 $6/26/92$ 3835.437602.400 $6/26/92$ 3835.507602.330 $6/26/92$ 3835.437602.400 $6/26/92$ 3835.437602.080 $6/26/92$ 3835.817602.330 $6/26/92$ 3835.817601.890 $6/26/92$	38 35.30	76 06.46	0	6/26/92
38 35.58 76 04.98 0 $6/26/92$ 38 34.27 76 03.68 0 $6/26/92$ 38 34.17 76 03.47 0 $6/26/92$ 38 33.84 76 02.70 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 34.94 76 02.05 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.28 76 02.21 0 $6/26/92$ 38 35.30 76 01.99 ZpBegin Bolingbrook Cr. $6/26/92$ 38 35.28 76 01.90 0 $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.57 76 02.33 0 $6/26/92$ 38 35.57 76 02.33 0 $6/26/92$ 38 35.81 76 01.79 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ <		76 05.82	0	6/26/92
38 34.17 76 03.47 0 $6/26/92$ 38 33.84 76 02.70 0 $6/26/92$ 38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 34.94 76 02.05 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 ZpBegin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp 8 35.28 76 01.96 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.30 76 01.90 0 $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.45 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.70 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$	38 35.58	76 04.98	0	
3833.847602.700 $6/26/92$ 3834.787601.730 $6/26/92$ 3834.807601.820 $6/26/92$ 3834.947602.050 $6/26/92$ 3835.137602.240 $6/26/92$ 3835.287602.210 $6/26/92$ 3835.317602.00ZpBegin Bolingbrook Cr. $6/26/92$ 3835.307601.99Zp $6/26/92$ 3835.307601.900 $6/26/92$ 3835.407601.900 $6/26/92$ 3835.407601.61Zp $6/26/92$ 3835.507601.59Zp $6/26/92$ 3835.507601.59Zp $6/26/92$ 3835.397602.10Zp,U $6/26/92$ 3835.397602.230 $6/26/92$ 3835.507602.330 $6/26/92$ 3835.707602.330 $6/26/92$ 3835.817601.890 $6/26/92$ 3835.817601.890 $6/26/92$ 3835.817601.890 $6/26/92$ 3835.827601.890 $6/26/92$ 3836.127601.280 $6/26/92$ 3836.127601.890 $6/26/92$ <td>38 34.27</td> <td>76 03.68</td> <td>0</td> <td>6/26/92</td>	38 34.27	76 03.68	0	6/26/92
38 34.78 76 01.73 0 $6/26/92$ 38 34.80 76 01.82 0 $6/26/92$ 38 34.94 76 02.05 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 Zp Begin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.30 76 01.90 0 $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.50 76 01.71 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 02.10 Zp,U $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.81 76 01.79 0 $6/26/92$ 38 35.81 76 01.79 0 $6/26/92$ 38 35.88 76 <t< td=""><td>38 34.17</td><td>76 03.47</td><td>0</td><td>6/26/92</td></t<>	38 34.17	76 03.47	0	6/26/92
38 34.80 76 01.82 0 $6/26/92$ 38 34.94 76 02.05 0 $6/26/92$ 38 35.13 76 02.24 0 $6/26/92$ 38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 Zp Begin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.39 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.90 76 02.39 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 35.88 76 01.28 0 $6/26/92$ 38 35.88 76 01.28 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.16 76	38 33.84	76 02.70	0	6/26/92
3834.807601.820 $6/26/92$ 3834.947602.050 $6/26/92$ 3835.137602.240 $6/26/92$ 3835.287602.210 $6/26/92$ 3835.317602.00ZpBegin Bolingbrook Cr. $6/26/92$ 3835.307601.99Zp $6/26/92$ 3835.287601.96Zp $6/26/92$ 3835.287601.96Zp $6/26/92$ 3835.407601.900 $6/26/92$ 3835.397601.71Zp $6/26/92$ 3835.507601.61Zp $6/26/92$ 3835.507601.59Zp $6/26/92$ 3835.477602.10Zp,U $6/26/92$ 3835.397602.230 $6/26/92$ 3835.507602.330 $6/26/92$ 3835.707602.390 $6/26/92$ 3835.707602.390 $6/26/92$ 3835.817601.890 $6/26/92$ 3835.817601.280 $6/26/92$ 3835.887601.790 $6/26/92$ 3836.127601.280 $6/26/92$ 3836.127601.280 $6/26/92$ 3836.167602.30Zp $6/26/92$	38 34.78	76 01.73	0	6/26/92
38 35.13 76 02.24 0 $6/26/92$ 38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 Zp Begin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.43 76 02.23 0 $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.16 76 02.3	38 34.80	76 01.82	0	
38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 Zp Begin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.23 0 $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.570 76 02.39 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 $02.$	38 34.94	76 02.05	0	6/26/92
38 35.28 76 02.21 0 $6/26/92$ 38 35.31 76 02.00 Zp Begin Bolingbrook Cr. $6/26/92$ 38 35.30 76 01.99 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.40 76 01.71 Zp $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.23 0 $6/26/92$ 38 35.50 76 02.33 0 $6/26/92$ 38 35.70 76 02.33 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 $02.$	38 35.13	76 02.24	0	
38 35.30 76 01.99 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp ,U $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 36.12 76 01.89 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$	38 35.28	76 02.21		6/26/92
38 35.30 76 01.99 Zp $6/26/92$ 38 35.28 76 01.96 Zp $6/26/92$ 38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp ,U $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 35.81 76 01.28 0 $6/26/92$ 38 36.12 76 01.89 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$	38 35.31	76 02.00	Zp Begin Bolingbrook Cr.	6/26/92
38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.48 76 01.59 Zp $6/26/92$ 38 35.50 76 01.59 Zp , U $6/26/92$ 38 35.47 76 02.10 Zp , U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.90 76 02.08 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$	38 35.30	76 01.99		6/26/92
38 35.40 76 01.90 0 $6/26/92$ 38 35.39 76 01.71 Zp $6/26/92$ 38 35.48 76 01.61 Zp $6/26/92$ 38 35.50 76 01.59 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 35.43 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.90 76 02.08 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.82 76 01.79 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$	38 35.28	76 01.96		6/26/92
38 35.39 76 01.71 Zp 6/26/92 38 35.48 76 01.61 Zp 6/26/92 38 35.50 76 01.59 Zp 6/26/92 38 35.47 76 02.10 Zp,U 6/26/92 38 35.39 76 02.23 0 6/26/92 38 35.43 76 02.23 0 6/26/92 38 35.43 76 02.23 0 6/26/92 38 35.43 76 02.40 0 6/26/92 38 35.43 76 02.33 0 6/26/92 38 35.50 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.82 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.12 76 01.89 0	38 35.40	76 01.90	0	6/26/92
38 35.48 76 01.61 Zp 6/26/92 38 35.50 76 01.59 Zp 6/26/92 38 35.47 76 02.10 Zp,U 6/26/92 38 35.39 76 02.23 0 6/26/92 38 35.43 76 02.23 0 6/26/92 38 35.43 76 02.23 0 6/26/92 38 35.43 76 02.33 0 6/26/92 38 35.56 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.12 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp	38 35.39	76 01.71	Zp	
38 35.50 76 01.59 Zp $6/26/92$ 38 35.47 76 02.10 Zp,U $6/26/92$ 38 35.39 76 02.23 0 $6/26/92$ 38 35.43 76 02.23 0 $6/26/92$ 38 35.43 76 02.40 0 $6/26/92$ 38 33.56 76 02.33 0 $6/26/92$ 38 35.70 76 02.39 0 $6/26/92$ 38 35.90 76 02.08 0 $6/26/92$ 38 35.81 76 01.89 0 $6/26/92$ 38 35.88 76 01.79 0 $6/26/92$ 38 36.12 76 01.28 0 $6/26/92$ 38 36.28 76 01.89 0 $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.16 76 02.30 Zp $6/26/92$ 38 36.25 76 02.25 Zp $6/26/92$	38 35.48	76 01.61		
38 35.47 76 02.10 Zp,U 6/26/92 38 35.39 76 02.23 0 6/26/92 38 35.43 76 02.40 0 6/26/92 38 35.43 76 02.40 0 6/26/92 38 35.56 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp	38 35.50	76 01.59		
38 35.39 76 02.23 0 6/26/92 38 35.43 76 02.40 0 6/26/92 38 33.56 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.47	76 02.10	-	• •
38 35.43 76 02.40 0 6/26/92 38 33.56 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.39	76 02.23		
38 33.56 76 02.33 0 6/26/92 38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.43	76 02.40	0	
38 35.70 76 02.39 0 6/26/92 38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.12 76 01.89 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 33.56	76 02.33	0	
38 35.90 76 02.08 0 6/26/92 38 35.81 76 01.89 0 6/26/92 38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.70	76 02.39	0	
38 35.88 76 01.79 0 6/26/92 38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.90	76 02.08	0	6/26/92
38 36.12 76 01.28 0 6/26/92 38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.81	76 01.89	0	6/26/92
38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 35.88	76 01.79	0	6/26/92
38 36.28 76 01.89 0 6/26/92 38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 36.12	76 01.28	0	
38 36.16 76 02.30 Zp 6/26/92 38 36.25 76 02.25 Zp 6/26/92	38 36.28	76 01.89		
38 36.25 76 02.25 Zp 6/26/92			Zp	6/26/92
	38 36.25	76 02.25	Zp	
	38 36.18	76 02.24	0	6/26/92

29 JUNE North Shore Choptank, Bolingbrook to Reeds Creek

	LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
	38 36.32	76 01.75	0 Top Bolingbrook Cr.	6/29/92
	38 36.40	76 01.71	0	6/29/92
	38 36.47	76 01.65 76 01 61	0	6/29/92
	38 36.50	76 01.61	0	6/29/92
	38 36.53 38 36.56	76 01.59 76 01 50	0	6/29/92
		76 01.59 76 01 60	0	6/29/92
	38 36.59	76 01.60 76 01 50	0	6/29/92
	38 36.64 38 36.75	76 01.59 76 01.63	0 0	6/29/92
	38 36.73 38 36.77	76 01.60	0	6/29/92
	38 36.78	76 01.65		6/29/92
	38 36.82	76 01.68	0 0	6/29/92 6/29/92
	38 36.88	76 01.00	0	6/29/92
	38 36.94	76 01.72	0	6/29/92
	38 36.98	76 01.72	0	6/29/92
	38 37.05	76 01.81	0	6/29/92
	38 37.12	76 01.86	0	6/29/92
	38 36.99	76 01.80	0	6/29/92
	38 36.93	76 01.74	0	6/29/92
•	38 36.84	76 01.73	0	6/29/92
	38 36.78	76 01.72	0	6/29/92
	38 36.70	76 01.68	0	6/29/92
	38 36.63	76 01.64	0	6/29/92
	38 36.53	76 01.67	0	6/29/92
	38 36.45	76 01.80	0 End of Bolingbrook Cr.	6/29/92
	38 35.96	76 02.26	Zp Where left off 28 JUNE	6/29/92
	38 35.97	76 02.26	Zp	6/29/92
	38 35.98	76 02.31	U	6/29/92
	38 35.98	76 02.35	Zp,U	6/29/92
	38 35.98	76 02.39	Zp	6/29/92
	38 35.97	76 02.43	0	6/29/92
	38 35.97	76 02.49	0	6/29/92
	38 35.98	76 02.53	0	6/29/92
	38 35.95	76 02.32	0	6/29/92
	38 35.93	76 02.37	0	6/29/92
	38 35.92	76 02.42	U	6/29/92
	38 35.93	76 02.52	Zp,U	6/29/92
	38 35.92	76 02.53	U 0	6/29/92 6/29/92
	38 35.88	76 02.56		6/29/92
	38 35.78 38 35.73	76 02.59 76 02.59	Zp,U U	6/29/92
,	38 35.67	76 02.55	0	6/29/92
	38 35.62	76 02.58	0	6/29/92
	38 35.48	76 02.63	Zp,U	6/29/92
	38 35.46	76 02.67	Zp	6/29/92
	38 35.41	76 02.69	$\overline{0}^{r}$	6/29/92
	38 35.13	76 02.36	0	6/29/92
	38 35.16	76 02.51	0	6/29/92

.

-

•

۰۰ م رو

,

.

.

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIE	2S	DATE
38 35.30	76 02.60	0		6/29/92
38 35.34	76 02.71	0		6/29/92
38 35.46	76 02.83	, O		6/29/92
38 35.72	76 03.21		Choptank Bridge	6/29/92
38 35.98	76 03.29	0	1 8	6/29/92
38 36.01	76 03.33	0		6/29/92
38 36.06	76 03.37	0		6/29/92
38 36.09	76 03.35	0		6/29/92
38 36.17	76 03.32	0		6/29/92
38 36.25	76 03.30	0		6/29/92
38 36.35	76 03.37	0		6/29/92
38 36.40	76 03.53	0		6/29/92
38 36.47	76 03.64	0		6/29/92
38 36.57	76 03.93	0		6/29/92
38 36.64	76 04.14	0		6/29/92
38 37.79	76 04.41	0		6/29/92
38 36.85	76 04.52	0		6/29/92
38 36.90	76 04.68	0		6/29/92
38 36.96	76 04.99	0		6/29/92
38 37.06	76 05.18	0		6/29/92
38 37.21	76 05.20	0		6/29/92
38 37.26	76 04.96	0		6/29/92
38 37.33	76 04.88	0 E	legin Reeds Cr.	6/29/92
38 37.32	76 04.74	0	0	6/29/92
38 37.29	76 04.64	0		6/29/92
38 37.32	76 04.44	0		6/29/92
38 37.33	76 04.66	0		6/29/92
38 37.38	76 04.75	0		6/29/92
38 37.45	76 04.73	0		6/29/92
38 37.54	76 04.66	0		6/29/92
38 37.45	76 04.78	0 1	End Reeds Cr.	6/29/92

30 JUNE North Shore Choptank West of HPEL

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 37.57 38 37.47 38 37.44 38 37.42 38 37.38 38 37.38 38 37.38 38 37.31 38 37.31 38 37.33 38 37.33 38 37.37 38 37.37	76 05.39 76 03.32 76 05.34 76 05.33 76 05.33 76 05.29 76 05.29 76 05.22 76 05.13 76 05.14 76 05.17	Zp 0 Zp(D) Zp(D) 0 Zp(D) 2 p(D) 0 0 0 0	6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92 6/30/92
38 37.42 38 37.45	76 05.20 76 05.24	Zp edge Zp	6/30/92 6/30/92

	LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
	38 37.49	76 05.26	Z p	6/30/92
•	38 37.54	76 05.25	Zp	6/30/92
	38 37.58	76 05.20	Zp 0	
	38 37.58	76 05.34		6/30/92
	38 37.62	76 05.47	Zp(D)	6/30/92
	38 37.57	76 05.57	Zp(D)	6/30/92
	38 37.53	76 05.62	Zp(D Zr(D	6/30/92
	38 37.53 38 37.52	76 05.65	Zp(D	6/30/92
	38 37.32 38 37.48	76 05.72	Zp(D)	6/30/92
	38 37.48 38 37.67	76 05.85	0	6/30/92
	38 37.87	76 05.85	0 0	6/30/92
	38 37.53 38 37.53	76 06.15	0	6/30/92
т .	38 37.59	76 06.11	0	6/30/92
	38 37.68	76 06.13	0 sand	6/30/92
	38 37.67	76 06.15	Zp	6/30/92
	38 37.67	76 06.20		6/30/92 6/30/92
	38 37.71	76 06.13	Zp 0	6/30/92
	38 37.74	76 06.08	0	
	38 37.79	76 06.04	Rm	6/30/92
	38 37.89	76 05.95	Zp	6/30/92 6/30/92
	38 37.92	76 05.84	Zp	6/30/92
	38 37.94	76 05.22	0 End Dickinson Bay	6/30/92
	38 37.89	76 05.90	0 Along Howell Pt.	6/30/92
	38 37.56	76 06.25	0	6/30/92
	38 37.55	76 06.28	0	6/30/92
	38 37.53	76 06.35	Ő	6/30/92
	38 38.49	76 06.44	õ	6/30/92
	38 37.41	76 06.58	0	6/30/92
	38 37.27	76 06.71	0	6/30/92
	38 37.17	76 06.72	0	6/30/92
•	38 36.98	76 06.66	0	6/30/92
	38 36.83	76 06.90	0 Start West side Howell Pt.	6/30/92
• 5	38 36.95	76 06.98	0 Howell Pt. & La Trappe Cr.	6/30/92
	38 37.19	76 07.00	0	6/30/92
	38 37.38	76 06.99	0	6/30/92
	38 37.48	76 07.07	0	6/30/92
	38 37.60	76 07.19	0	6/30/92
	38 37.75	76 07.15	0	6/30/92
	38 37.92	76 07.02	0 La Trappe Cr.	6/30/92
•	38 37.98	76 07.04	0	6/30/92
•	38 38.03	76 07.05	0	6/30/92
	38 38.09	76 07.01	Zp	6/30/92
	38 38.14	76 06.87	0	6/30/92
	38 38.14	76 06.79	0	6/30/92
	38 38.23	76 06.68	0	6/30/92
	38 38.28	76 06.57	0	6/30/92
	38 38.25	76 06.53	Zp	6/30/92
	38 38.35	76 06.62	Zp	6/30/92
	38 38.39 38 38 42	76 06.65 76 06.65	Zp	6/30/92
	38 38.42	76 06.65	Zp	6/30/92

252

-_/

· .

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 38.66	76 06.62	0	6/30/92
38 38.50	76 06.48	0	6/30/92
38 38.55	76 06.51	·· 0	6/30/92
38 38.61	76 06.67	0	6/30/92
38 38.72	76 06.65	0	6/30/92
38 38.73	76 06.56	0	6/30/92
38 38.35	76 06.41	0	6/30/92
38 38.82	76 06.34	Zp sparse	6/30/92
38 38.86	76 06.29	0	6/30/92
38 38.89	76 06.24	0	6/30/92
38 38.96	76 06.09	Zp sparse	6/30/92
38 39.03	76 06.09	0	6/30/92
38 39.09	76 06.10	0	6/30/92
38 39.09	76 05.97	0	6/30/92
38 39.08	76 05.90	0	6/30/92
38 39.04	76 05.81	0	6/30/92
38 38.95	76 05.70	0	6/30/92
38 38.89	76 05.57	Zp very sparse	6/30/92
38 38.89	76 05.46	0	6/30/92
38 38.85	76 05.32	0 End of Trappe Cr., East side	6/30/92

,

,

7 JULY Top Trappe Creek & down West side

i

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
	-	0 Into Lowry Cove 0 0 0 0 0 0 0 0 0 0 0	7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92
38 39.09 38 39.15 38 39.11 38 39.02 38 39.25 38 39.40 38 39.32 38 39.33 38 39.49 38 39.07 38 38.96 38 38.47 38 39.07 38 39.07 38 39.07 38 39.07 38 39.07 38 39.11	76 04.31 76 04.34 76 04.86 76 05.06 76 05.09 76 05.01 76 05.16 76 05.22 76 05.20 76 05.18 76 05.18 76 05.44 76 05.47 76 05.51 76 05.57 76 05.64	0 Top of Lowry Cove 0 Left fork of Lowry 0 0 0 0 0 0 2 p 2 p 2 p 0 0 0 2 p 2 p	7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92 7/7/92

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 39.13	76 05.67	Zp	7/7/92
38 39.09	76 05.63	Zp	7/7/92
38 38.85	76 05.67	$\overline{Z_p}^r$	7/7/92
38 38.83	76 05.71	$\frac{1}{0}$	7/7/92
38 38.66	76 05.91	Zp	7/7/92
38 38.61	76 06.08	0^{-r}	7/7/92
38 38.60	76 06.26	0	7/7/92
38 38.74	76 06.26	Zp Tip of cove	7/7/92
38 38.69	76 06.29	0 1	7/7/92
38 38.72	76 06.43	Zp,Rm	7/7/92
38 38.83	76 06.48	0	7/7/92
38 38.77	76 06.53	0	7/7/92
38 38.58	76 06.67	Zp	7/7/92
38 38.57	76 06.54	0	7/7/92
38 38.58	76 06.34	0	7/7/92
38 38.45	76 06.35	Zp	7/7/92
38 38.40	76 06.40	Zp	7/7/92
38 38.40	76 06.38	0	7/7/92
38 38.28	76 06.29	0	7/7/92
38 38.19	76 06.24	0	7/7/92
38 38.17	76 06.33	Zp	7/7/92
38 38.19	76 06.34	Zp	7/7/92
38 38.19	76 06.37	Zp West Shore La Trappe Creek	7/7/92
38 38.06	76 06.46	0	7/7/92
38 38.09	76 06.56	0	7/7/92
38 37.99	76 06.59	Zp	7/7/92
38 37.90	76 06.67	Zp	7/7/92
38 37.90	76 06.71	Zp	7/7/92
38 37.90	76 06.73	0	7/7/92
38 37.90	76 06.80	0	7/7/92
38 37.94	76 06.76	0	7/7/92
38 38.01	76 06.76	0	7/7/92
38 38.08	76 06.76	Zp	7/7/92
38 38.12	76 06.87	Zp	7/7/92
38 38.12	76 06.97	Zp	7/7/92
38 38.16	76 07.01	Zp	7/7/92
38 38.17	76 07.06	Zp	7/7/92 7/7/92
38 38.19	76 07.08 76 07.03	Zp	7/7/92
38 38.08 38 38.02	76 06.90	Zp Zp	7/7/92
38 37.96	76 06.86	0	7/7/92
38 37.95	76 06.94	Zp	7/7/92
38 37.77	76 06.86	0	7/7/92
38 37.71	76 06.81	. 0	7/7/92
38 37.72	76 06.76	0 Leaving Trappe Cr.	7/7/92
38 37.64	76 07.06	0 Martin Pt .	7/7/92
38 37.94	76 07.22	0	7/7/92
38 38.16	76 08.15	0	7/7/92
38 38.13	76 08.30	0 Chlora Pt.	7/7/92
38 38.12	76 08.49	0 Chlora Pt.	7/7/92

;

.

.

.

.

٠

.

٠

.

.

8 JULY Chlora Point & West (Up Island Creek)

ł

•

51

3838.147608.530 $7/8/92$ 3838.177608.490 $7/8/92$ 3838.417608.600 $7/8/92$ 3838.447608.800 $7/8/92$ 3839.427608.850 $7/8/92$ 3839.427608.850 $7/8/92$ 3839.507608.780 $7/8/92$ 3839.507608.77Zp20 feet from shore $7/8/92$ 3839.507608.47Zp20 feet from shore $7/8/92$ 3839.507608.440 $7/8/92$ 3839.447608.45Zp(D),Rm $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.417608.290 $7/8/92$ 3839.427608.250 $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.507608.12Zp(D),Rm $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 383	LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 38.17 76 0.8.49 0 7/8/92 38 38.6.0 76 0.8.72 0 7/8/92 38 38.0 76 0.8.72 0 7/8/92 38 39.40 76 0.8.80 0 7/8/92 38 39.42 76 0.8.82 0 7/8/92 38 39.50 76 0.8.78 0 7/8/92 38 39.50 76 0.8.78 0 7/8/92 38 39.50 76 0.8.47 Zp 20 feet from shore 7/8/92 38 39.50 76 0.8.43 Zp(D).Rm 7/8/92 38 39.47 76 0.8.43 Zp(D).Rm 7/8/92 38 39.42 76 0.8.44 0 7/8/92 38 39.42 76 0.8.45 0 7/8/92 38 39.42 76 0.8.45 0 7/8/92 38 39.49 7/8/92 38 39.41 76 0.8.25 0 7/8/92 39.50 76 0.8.2	38.38.14	76 08 53	0	7/8/92
3838.41760.8.6007/8/923838.607608.7207/8/923839.427608.8007/8/923839.427608.8207/8/923839.607608.5607/8/923839.607608.5607/8/923839.507608.47Zp20 feet from shore7/8/923839.507608.4407/8/923839.507608.4407/8/923839.477608.4407/8/923839.427608.4607/8/923839.427608.4607/8/923839.427608.4607/8/923839.427608.4607/8/923839.427608.4607/8/923839.427608.2507/8/923839.437608.2507/8/923839.507608.22Rm7/8/923839.507608.12Zp(D),Rm7/8/923839.507608.12Zp(D),Rm7/8/923839.65760.07/8/923839.65760.12Zp(D),Rm7/8/923839.65760.12Zp(D),Rm7/8/923839.65760.07/8/9				
3838.607608.720 $7/8/92$ 3839.417608.800 $7/8/92$ 3839.427608.950 $7/8/92$ 3839.427608.820 $7/8/92$ 3839.507608.780 $7/8/92$ 3839.507608.47Zp20 feet from shore $7/8/92$ 3839.537608.47Zp20 feet from shore $7/8/92$ 3839.507608.43Zp(D),Rm $7/8/92$ 3839.44760.84.40 $7/8/92$ 3839.427608.43Zp(D),Rm $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.37Zp $7/8/92$ 3839.427608.37Zp $7/8/92$ 3839.417608.27Zp,D $7/8/92$ 3839.507608.37Zp $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.12Zp,Rm $7/8/92$ 3839.507608.12Zp,D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.12Zp(D),Rm $7/8/92$ 3839.65760.12Zp(D),Rm $7/8/92$ 3839.65760.0 </td <td></td> <td></td> <td></td> <td></td>				
3838.947608.800 $7/8/92$ 3839.267608.950 $7/8/92$ 3839.247608.820 $7/8/92$ 3839.507608.780 $7/8/92$ 3839.507608.47Zp20 feet from shore $7/8/92$ 3839.507608.48Zp20 feet from shore $7/8/92$ 3839.507608.440 $7/8/92$ 3839.477608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.417608.290 $7/8/92$ 3839.437608.250 $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.507608.12Zp(D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.65760.812Zp,Rm $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65 <td></td> <td></td> <td></td> <td></td>				
3839.26760.8.950 $7/8/92$ 3839.427608.820 $7/8/92$ 3839.507608.780 $7/8/92$ 3839.517608.560 $7/8/92$ 3839.527608.47Zp20 feet from shore $7/8/92$ 3839.537608.460 $7/8/92$ 3839.477608.43Zp(D),Rm $7/8/92$ 3839.44760.840 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.40Zp,U $7/8/92$ 3839.427608.40Zp,U $7/8/92$ 3839.427608.40Zp,U $7/8/92$ 3839.427608.290 $7/8/92$ 3839.427608.290 $7/8/92$ 3839.447608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.507608.12Zp(D),Rm $7/8/92$ 3839.65760.812Zp(D),Rm $7/8/92$ 3839.65760.812Zp(D),Rm $7/8/92$ 3839.65760.812Zp(D),Rm $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 38 <td< td=""><td></td><td></td><td></td><td></td></td<>				
38 39.42 7608.8207/8/9238 39.50 7608.7807/8/9238 39.50 7608.77Zp20 feet from shore7/8/9238 39.53 7608.47Zp20 feet from shore7/8/9238 39.53 7608.48Zp20 feet from shore7/8/9238 39.50 7608.4407/8/9238 39.47 7608.4407/8/9238 39.42 7608.4407/8/9238 39.42 7608.4407/8/9238 39.42 7608.40Zp,U7/8/9238 39.42 7608.67Zp7/8/9238 39.42 7608.2907/8/9238 39.41 7608.2907/8/9238 39.47 7608.22Rm7/8/9238 39.50 7608.22Rm7/8/9238 39.50 7608.12Zp(D),Rm7/8/9238 39.65 760.12Zp(D),Rm7/8/9238 39.65 760.812Zp(D),Rm7/8/9238 39.65 760.812Zp(D),Rm7/8/9238 39.65 760.07/8/9238 39.65 760.07/8/9238 39.65 760.07/8/9238 39.65 760.07/8/92				
3839.507608.780 $7/8/92$ 3839.607608.560 $7/8/92$ 3839.527608.47Zp20 feet from shore $7/8/92$ 3839.537608.48Zp20 feet from shore $7/8/92$ 3839.477608.440 $7/8/92$ 3839.477608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.40Zp,U $7/8/92$ 3839.427608.40Zp,U $7/8/92$ 3839.427608.37Zp $7/8/92$ 3839.427608.290 $7/8/92$ 3839.597608.260 $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.507608.12Zp(D),Rm $7/8/92$ 3839.687608.12Zp(D),Rm $7/8/92$ 3839.687608.12Zp(D),Rm $7/8/92$ 3839.627607.91Zp,Rm $7/8/92$ 3839.65760 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65760.0 $7/8/92$ 3839.65 <td></td> <td></td> <td></td> <td></td>				
38 39.60 76 08.56 0 $7/8/92$ 38 39.52 76 08.47 Zp 20 feet from shore $7/8/92$ 38 39.53 76 08.48 Zp 20 feet from shore $7/8/92$ 38 39.50 76 08.46 0 $7/8/92$ 38 39.47 76 08.44 0 $7/8/92$ 38 39.42 76 08.44 0 $7/8/92$ 38 39.42 76 08.44 0 $7/8/92$ 38 39.42 76 08.40 Zp,U $7/8/92$ 38 39.42 76 08.40 Zp,U $7/8/92$ 38 39.42 76 08.37 Zp $7/8/92$ 38 39.42 76 08.29 0 $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.12 Zp/D),Rm $7/8/92$ 38 39.65 76 08.12 Zp/D),Rm $7/8/92$ 38 39.62 76 07.77 0 $7/8/92$ 38 39.62 76 07.77 0 $7/8/92$ 38 39.62 76 07.77 0 $7/8/92$ 38 39.62 76				
3839.527608.47Zp20 feet from shore $7/8/92$ 3839.537608.460 $7/8/92$ 3839.507608.460 $7/8/92$ 3839.477608.43Zp(D),Rm $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.47Zp,U $7/8/92$ 3839.427608.37Zp $7/8/92$ 3839.417608.290 $7/8/92$ 3839.437608.250 $7/8/92$ 3839.527608.22Rm $7/8/92$ 3839.507608.220 $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.657608.05Zp(D),Rm $7/8/92$ 3839.657608.05Zp(D),Rm $7/8/92$ 3839.657608.000 $7/8/92$ 3839.657607.91Zp,Rm $7/8/92$ 3839.657607.710 $7/8/92$ 3839.657607.610 $7/8/92$ 3839.657607.610				
3839.537608.48Zp20 feet from shore $7/8/92$ 3839.507608.440 $7/8/92$ 3839.477608.43 $Zp(D),Rm$ $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.37Zp $7/8/92$ 3839.427608.290 $7/8/92$ 3839.417608.290 $7/8/92$ 3839.397608.260 $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.507608.12Zp(D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.66760 $7/8/92$ 39.65 39.657608.05Zp(D),Rm $7/8/92$ 3839.627607.970 $7/8/92$ 3839.637607.970 $7/8/92$ 3839.647607.91Zp,Rm $7/8/92$ 3839.657607.710 $7/8/92$ 3839.657607.710 $7/8/92$ 3839.657607.610 $7/8/92$ <td></td> <td></td> <td></td> <td></td>				
3839.507608.460 $7/8/92$ 3839.477608.43 $Zp(D),Rm$ $7/8/92$ 3839.427608.440 $7/8/92$ 3839.427608.460 $7/8/92$ 3839.427608.46 $2p,U$ $7/8/92$ 3839.427608.37 Zp $7/8/92$ 3839.427608.37 Zp $7/8/92$ 3839.427608.290 $7/8/92$ 3839.397608.260 $7/8/92$ 3839.527608.22Rm $7/8/92$ 3839.507608.22Q $7/8/92$ 3839.507608.12 $Zp(D),Rm$ $7/8/92$ 3839.557608.12 $Zp(D),Rm$ $7/8/92$ 3839.657608.12 $Zp(D),Rm$ $7/8/92$ 3839.657608.12 $Zp(D),Rm$ $7/8/92$ 3839.65760 $7/8/92$ 39.65 39.657600 $7/8/92$ 3839.627607.970 $7/8/92$ 3839.627607.970 $7/8/92$ 3839.657607.670 $7/8/92$ 3839.657607.710 $7/8/92$ 3839.657607.670 $7/8/92$ 3839.507607.610 $7/8/92$ 38			-	
3839.477608.43 $Zp(D),Rm$ 7/8/923839.467608.4407/8/923839.427608.40 Zp,U 7/8/923839.427608.37 Zp ,U7/8/923839.427608.37 Zp 7/8/923839.417608.2907/8/923839.397608.2607/8/923839.527608.2507/8/923839.507608.22Rm7/8/923839.507608.2207/8/923839.507608.12Zp(D),Rm7/8/923839.657608.12Zp(D),Rm7/8/923839.657608.12Zp(D),Rm7/8/923839.687608.12Zp(D),Rm7/8/923839.657608.0007/8/923839.627607.9707/8/923839.627607.91Zp,Rm7/8/923839.627607.7107/8/923839.637607.7107/8/923839.647607.6107/8/923839.657607.7107/8/923839.647607.6107/8/923839.657607.6107/8/923839.657607.61<				
38 39.46 76 08.44 0 $7/8/92$ 38 39.42 76 08.46 0 $7/8/92$ 38 39.42 76 08.40 Zp,U $7/8/92$ 38 39.42 76 08.37 Zp $7/8/92$ 38 39.42 76 08.37 Zp $7/8/92$ 38 39.41 76 08.29 0 $7/8/92$ 38 39.41 76 08.26 0 $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 0 $7/8/92$ 38 39.50 76 08.22 0 $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.66 76 07.67 0 $7/8/92$ 38 39.50 76 07.51 $2p$			-	
38 39.42 76 08.46 0 $7/8/92$ 38 39.42 76 08.40 Zp,U $7/8/92$ 38 39.42 76 08.37 Zp $7/8/92$ 38 39.41 76 08.29 0 $7/8/92$ 38 39.41 76 08.29 0 $7/8/92$ 38 39.48 76 08.38 0 $7/8/92$ 38 39.59 76 08.22 Rm $7/8/92$ 38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.50 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.65 76 07.97 0 $7/8/92$ 38 39.65 76 07.97 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.57 0 $7/8/9$				
38 39.42 76 08.40 Zp,U $7/8/92$ 38 39.42 76 08.37 Zp $7/8/92$ 38 39.41 76 08.29 0 $7/8/92$ 38 39.43 76 08.26 0 $7/8/92$ 38 39.48 76 08.38 0 $7/8/92$ 38 39.48 76 08.25 0 $7/8/92$ 38 39.52 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 Q $7/8/92$ 38 39.50 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/$				
38 39.42 76 08.37 Zp $7/8/92$ 38 39.41 76 08.29 0 $7/8/92$ 38 39.39 76 08.26 0 $7/8/92$ 38 39.48 76 08.25 0 $7/8/92$ 38 39.52 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.50 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.59 0 $7/8/92$ 38 39.66 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.55 0 <				
38 39.41 76 08.29 0 $7/8/92$ 38 39.39 76 08.26 0 $7/8/92$ 38 39.48 76 08.25 0 $7/8/92$ 38 39.52 76 08.25 0 $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.22 0 $7/8/92$ 38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.64 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 <t< td=""><td></td><td></td><td></td><td></td></t<>				
38 39.39 76 08.26 0 $7/8/92$ 38 39.48 76 08.38 0 $7/8/92$ 38 39.52 76 08.25 0 $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.59 76 08.17 Zp,Rm $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.64 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.48 76 07.67 0 $7/8/92$ 38 39.48 76 07.57 0 $7/8/92$ 38 39.44 76 07.57 0 $7/8/92$ 38 39.33 76 07.41 0 7				
3839.487608.380 $7/8/92$ 3839.527608.250 $7/8/92$ 3839.507608.22Rm $7/8/92$ 3839.507608.17Zp,Rm $7/8/92$ 3839.557608.12Zp(D),Rm $7/8/92$ 3839.657608.12Zp(D),Rm $7/8/92$ 3839.677608.12Zp(D),Rm $7/8/92$ 3839.677608.12Zp(D),Rm $7/8/92$ 3839.677608.05Zp(D),Rm $7/8/92$ 3839.657608.000 $7/8/92$ 3839.627607.970 $7/8/92$ 3839.627607.91Zp,Rm $7/8/92$ 3839.627607.790 $7/8/92$ 3839.657607.790 $7/8/92$ 3839.657607.790 $7/8/92$ 3839.657607.710 $7/8/92$ 3839.627607.610 $7/8/92$ 3839.547607.590 $7/8/92$ 3839.557607.51Zp $7/8/92$ 3839.337607.51Zp $7/8/92$ 3839.337607.51Zp $7/8/92$ 3839.337607.520 $7/8/92$ 3839.467607.590 $7/8/92$ 38 </td <td></td> <td></td> <td></td> <td></td>				
38 39.52 76 08.25 0 $7/8/92$ 38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.17 Zp_rRm $7/8/92$ 38 39.59 76 08.12 $Zp_r(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.77 0 $7/8/92$ 38 39.65 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.54 76 07.67 0 $7/8/92$ 38 39.54 76 07.62 0 $7/8/92$ 38 39.44 76 07.57 0 $7/8/92$ 38 39.33 76 07.51 <td></td> <td></td> <td></td> <td></td>				
38 39.50 76 08.22 Rm $7/8/92$ 38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.59 76 08.12 Zp,Rm $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.79 0 $7/8/92$ 38 39.63 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.50 76 07.61 0 $7/8/92$ 38 39.50 76 07.65 0 $7/8/92$ 38 39.44 76 07.55 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.37 76 07.52 0				
38 39.50 76 08.17 Zp,Rm $7/8/92$ 38 39.59 76 08.22 0 $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.71 0 $7/8/92$ 38 39.65 76 07.77 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.50 76 07.61 0 $7/8/92$ 38 39.50 76 07.62 0 $7/8/92$ 38 39.44 76 07.55 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.35 76 07.55 0 <td< td=""><td></td><td></td><td></td><td></td></td<>				
38 39.59 76 08.22 0 $7/8/92$ 38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.65 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.54 76 07.67 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.55 0 $7/8/92$ 38 39.33 76 07.41 0 $7/8/92$ 38 39.35 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$				
38 39.65 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.54 76 07.62 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.52 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 <td< td=""><td></td><td></td><td></td><td></td></td<>				
3839.687608.12 $Zp(D),Rm$ $7/8/92$ 3839.677608.12 $Zp(D),Rm$ $7/8/92$ 3839.687608.05 $Zp(D),Rm$ $7/8/92$ 3839.657608.000 $7/8/92$ 3839.627607.970 $7/8/92$ 3839.627607.91 Zp,Rm $7/8/92$ 3839.637607.83U $7/8/92$ 3839.657607.790 $7/8/92$ 3839.657607.710 $7/8/92$ 3839.697607.710 $7/8/92$ 3839.627607.670 $7/8/92$ 3839.627607.670 $7/8/92$ 3839.547607.590 $7/8/92$ 3839.507607.600 $7/8/92$ 3839.447607.650 $7/8/92$ 3839.447607.550 $7/8/92$ 3839.357607.51 Zp $7/8/92$ 3839.337607.410 $7/8/92$ 3839.377607.520 $7/8/92$ 3839.467607.590 $7/8/92$ 3839.467607.570 $7/8/92$ 3839.607607.42 Zp,Rm $7/8/92$ 3839.607607.570 $7/8/92$			Zp(D),Rm	
38 39.67 76 08.12 $Zp(D),Rm$ $7/8/92$ 38 39.68 76 08.05 $Zp(D),Rm$ $7/8/92$ 38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.63 76 07.83 U $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.64 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.54 76 07.62 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.41 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.57 0 $7/8/92$ 38 39.46 76 07.57 0 $7/8/92$ 38 39.60 <td></td> <td></td> <td></td> <td></td>				
3839.687608.05 $Zp(D),Rm$ $7/8/92$ 3839.657608.0007/8/923839.627607.970 $7/8/92$ 3839.627607.91 Zp,Rm $7/8/92$ 3839.637607.83U $7/8/92$ 3839.657607.790 $7/8/92$ 3839.657607.710 $7/8/92$ 3839.697607.710 $7/8/92$ 3839.627607.670 $7/8/92$ 3839.627607.670 $7/8/92$ 3839.547607.590 $7/8/92$ 3839.507607.620 $7/8/92$ 3839.447607.590 $7/8/92$ 3839.357607.51 Zp $7/8/92$ 3839.337607.410 $7/8/92$ 3839.337607.520 $7/8/92$ 3839.377607.520 $7/8/92$ 3839.467607.590 $7/8/92$ 3839.377607.520 $7/8/92$ 3839.467607.590 $7/8/92$ 3839.467607.590 $7/8/92$ 3839.467607.570 $7/8/92$ 3839.607607.42 Zp,Rm $7/8/92$ 3839.6076 </td <td></td> <td></td> <td></td> <td></td>				
38 39.65 76 08.00 0 $7/8/92$ 38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.63 76 07.83 U $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.41 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.57 0 $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$				
38 39.62 76 07.97 0 $7/8/92$ 38 39.62 76 07.91 Zp,Rm $7/8/92$ 38 39.63 76 07.83 U $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.65 76 07.71 0 $7/8/92$ 38 39.69 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.51 Zp $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.42 Zp,Rm $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$				
3839.627607.91Zp,Rm7/8/923839.637607.83U7/8/923839.657607.7907/8/923839.697607.7107/8/923839.687607.6707/8/923839.627607.6107/8/923839.547607.5907/8/923839.507607.6007/8/923839.447607.6207/8/923839.447607.6507/8/923839.357607.6107/8/923839.357607.6507/8/923839.357607.51Zp7/8/923839.377607.5207/8/923839.377607.5207/8/923839.467607.5907/8/923839.377607.5207/8/923839.607607.42Zp,Rm7/8/923839.677607.5707/8/92	38 39.62	76 07.97	0	
38 39.63 76 07.83 U $7/8/92$ 38 39.65 76 07.79 0 $7/8/92$ 38 39.69 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.55 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.42 Zp,Rm $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$	38 39.62	76 07.91	Zp,Rm	
38 39.65 76 07.79 0 $7/8/92$ 38 39.69 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.42 Zp,Rm $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$		76 07.83		
38 39.69 76 07.71 0 $7/8/92$ 38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.41 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.42 Zp,Rm $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$	38 39.65	76 07.79	0	
38 39.68 76 07.67 0 $7/8/92$ 38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.51 Zp $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.57 0 $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$		76 07.71	0	
38 39.62 76 07.61 0 $7/8/92$ 38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.51 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.57 0 $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$	38 39.68	76 07.67	0	
38 39.54 76 07.59 0 $7/8/92$ 38 39.50 76 07.60 0 $7/8/92$ 38 39.48 76 07.62 0 $7/8/92$ 38 39.44 76 07.59 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.44 76 07.65 0 $7/8/92$ 38 39.35 76 07.51 Zp $7/8/92$ 38 39.33 76 07.51 0 $7/8/92$ 38 39.37 76 07.52 0 $7/8/92$ 38 39.46 76 07.59 0 $7/8/92$ 38 39.60 76 07.42 Zp,Rm $7/8/92$ 38 39.67 76 07.57 0 $7/8/92$	38 39.62	76 07.61	0	
38 39.50 76 07.60 0 7/8/92 38 39.48 76 07.62 0 7/8/92 38 39.44 76 07.59 0 7/8/92 38 39.44 76 07.65 0 7/8/92 38 39.44 76 07.65 0 7/8/92 38 39.35 76 07.51 Zp 7/8/92 38 39.33 76 07.41 0 7/8/92 38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92			0	
38 39.44 76 07.59 0 7/8/92 38 39.44 76 07.65 0 7/8/92 38 39.35 76 07.51 Zp 7/8/92 38 39.33 76 07.41 0 7/8/92 38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92	38 39.50	76 07.60	0	
38 39.44 76 07.59 0 7/8/92 38 39.44 76 07.65 0 7/8/92 38 39.35 76 07.51 Zp 7/8/92 38 39.33 76 07.41 0 7/8/92 38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92	38 39.48	76 07.62	0	7/8/92
38 39.35 76 07.51 Zp 7/8/92 38 39.33 76 07.41 0 7/8/92 38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92	38 39.44	76 07.59	0	7/8/92
38 39.33 76 07.41 0 7/8/92 38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92	38 39.44	76 07.65	0	7/8/92
38 39.37 76 07.52 0 7/8/92 38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92			Zp	
38 39.46 76 07.59 0 7/8/92 38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92				
38 39.60 76 07.42 Zp,Rm 7/8/92 38 39.67 76 07.57 0 7/8/92				
38 39.67 76 07.57 0 7/8/92				
			-	
38 39.76 76 07.66 Zp 7/8/92			-	
	38 39.76	76 07.66	Zp	7/8/92

		LONGITUDE Deg Min	SPECIES	DATE
:	38 39.81	76 07.75	Zp	7/8/92
2	38 39.85	76 07.73	Źp	7/8/92
3	38 39.89	76 07.70	Zp	7/8/92
Ś	38 39.92	76 07.67	0	7/8/92
3	38 39.99	76 07.66	0	7/8/92
	38 40.08	76 07.56	0	7/8/92
	38 40.09	76 07.44	0	7/8/92
3	38 40.08	76 07.40	0	7/8/92
3	38 40.07	76 07.38	0	7/8/92
3	38 40.13	76 07.33	0	7/8/92
3	38 40.20	76 07.33	0	7/8/92
3	38 40.25	76 07.24	0	7/8/92
3	38 40.18	76 07.14	0	7/8/92
3	38 40.12	76 07.07	0	7/8/92
	38 40.05	76 06.97	0	7/8/92
. 3	38 40.03	76 06.94	0	7/8/92
	38 39.98	76 06.82	0	7/8/92
3	38 40.01	76 06.87	0	7/8/92
	38 40.11	76 06.98	0	7/8/92
. 3	38 40.21	76 07.04	0	7/8/92
	38 40.17	76 06.78	0	7/8/92
3	38 40.05	76 06.58	0	7/8/92
	38 39.98	76 06.55	0	7/8/92
	38 40.13	76 06.45	0	7/8/92
	38 40.14	76 06.34	0	7/8/92
. 3	38 40.15	76 06.34	0	7/8/92
3	38 40.37	76 06.48	0	7/8/92
. 3	38 40.51	76 06.35	0	7/8/92
3	38 40.29	76 06.06	0	7/8/92
	38 40.24	76 05.78	0	7/8/92
	38 40.24	76 05.42	0	7/8/92
* 3	38 40.47	76 05.43	0	7/8/92

ł

13 JULY Island Creek

• .

. .

 LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
			7/13/92
38 40.47	76 06.21	0	7/13/92
38 40.60	76 05.85	0	7/13/92
38 40.69	76 05.78	0	7/13/92
38 40.71	76 05.70	0	7/13/92
38 40.86	76 05.56	0	7/13/92
 38 40.98	76 05.59	0	7/13/92
38 41.09	76 05.51	0	7/13/92
38 41.10	76 05.41	0	7/13/92
38 41.12	76 05.48	0	7/13/92
38 41.11	76 05.53	0	7/13/92
38 41.00	76 05.62	0	7/13/92

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 41.93	76 05.69	0	7/13/92
38 41.81	76 05.76	0	7/13/92
38 40.67	76 05.88	i; 0	7/13/92
38 40.67	76 06.01	0	7/13/92
38 40.54	76 06.14	0	7/13/92
38 40.60	76 06.30	Zp(D),Rm	7/13/92
38 40.62	76 06.32	Zp,Rm(D)	7/13/92
38 40.62	76 06.39	Zp,Rm	7/13/92
38 40.69	76 06.42	0	7/13/92
38 40.70	76 06.45	Zp,Rm	7/13/92
38 40.75	76 06.42	Zp	7/13/92
38 40.69	76 06.48	Zp	7/13/92
38 40.66	76 06.54	Źp	7/13/92
38 40.71	76 06.61	0	7/13/92
38 40.65	76 06.77	Zp,Rm	7/13/92
38 40.67	76 06.75	Zp	7/13/92
38 40.65	76 06.58	U	7/13/92
38 40.57	76 06.56	0	7/13/92
38 40.54	76 06.60	0	7/13/92
38 40.54	76 06.66	0	7/13/92
38 40.42	76 06.63	0	7/13/92
38 40.33	76 06.57	0	7/13/92
38 40.25	76 06.69	0	7/13/92
38 40.33	76 06.76	U	7/13/92
38 40.39	76 06.84	U	7/13/92
38 40.34	76 07.02	0	7/13/92
38 40.37	76 07.26	0	7/13/92
38 40.36	76 07.40	0	7/13/92
38 40.26	76 07.41	0	7/13/92
38 40.19 38 40.11	76 07.61	0	7/13/92
38 40.01	76 07.72 76 07.76	0	7/13/92
38 39.89	76 07.91	U 0	7/13/92
38 39.95	76 07.91	0	7/13/92
38 40.10	76 07.88	Zp Bottom of Island Creek	7/13/92 7/13/92
38 40.17	76 07.85	Zp Zp	7/13/92
38 40.18	76 07.91	Zp Zp	7/13/92
38 40.29	76 07.91	0	7/13/92
38 40.38	76 07.89	0	7/13/92
38 40.47	76 07.83	Zp	7/13/92
38 40.44	76 07.92	$\frac{-r}{0}$	7/13/92
38 40.42	76 07.99	Zp	7/13/92
38 40.37	76 07.88	Zp	7/13/92
38 40.34	76 08.07	0	7/13/92
38 40.30	76 08.04	Zp	7/13/92
38 40.22	76 08.01	0	7/13/92
38 40.12	76 06.97	0	7/13/92
38 40.11	76 08.06	0	7/13/92
38 40.13	76 08.09	0	7/13/92
38 40.03	76 08.03	Zp	7/13/92

ł

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 39.89	76 08.11	0	7/13/92
38 39.86	76 08.24	Zp .	7/13/92
38 39.88	76 08.28	Zp	7/13/92
38 39.95	76 08.24	Zp	7/13/92
38 39.96	76 08.31	0	7/13/92
38 39.99	76 08.37	0	7/13/92
38 39.98	76 08.40	Zp	7/13/92
38 39.90	76 08.34	Zp	7/13/92
38 39.78	76 08.74	0	7/13/92

١

20 JULY Choptank River: From HPEL East

	LATITUDE	LONGITUDE	SPECIES		DATE
	Deg Min	Deg Min			
	38 35.54	76 07.37	0		7/20/92
	38 35.61	76 07.51	0		7/20/92
	38 35.75	76 07.67	0		7/20/92
	38 35.83	76 07.75	0		7/20/92
•	38 35.96	76 07.88	0		7/20/92
	38 36.09	76 07.93	0		7/20/92
	38 36.21	76 07.98	0	Horn Pt.	7/20/92
•	38 36.15	76 08.22	0		7/20/92
	38 36.07	76 08.33	0	х.	7/20/92
	38 35.97	76 08.44	0		7/20/92
	38 35.85	76 08.57	0		7/20/92
	38 35.65	76 08.86	0		7/20/92
•	38 35.62	76 09.09	0		7/20/92
	38 35.65	76 09.36	0		7/20/92
	38 35.78	76 09.50	0		7/20/92
	38 35.89	76 09.63	0		7/20/92
	38 36.00	76 09.66	0		7/20/92
	38 36.07	76 09.72	0		7/20/92
	38 36.04	76 09.78	0		7/20/92
	38 36.02	76 09.94	0		7/20/92
·.	38 35.98	76 10.06	0		7/20/92
	38 35.96	76 10.18	0		7/20/92
	38 35.90	76 10.30	0		7/20/92
	38 35.85	76 10.27	0		7/20/92
	38 35.80	76 10.36	0		7/20/92
	38 35.85	76 10.44	0		7/20/92
	38 35.97	76 10.48	U		7/20/92
	38 36.10	76 10.57	0		7/20/92
	38 36.18	76 10.60	0		7/20/92
	38 36.29	76 10.71	Zp,Rm	Lecompte Cove	7/20/92
	38 36.34	76 10.76	Zp,Rm	Lecompte Cove	7/20/92
	38 36.30	76 10.70	0	Lecompte Cove	7/20/92
•	38 36.37	76 10.66	0	Lecompte Cove	7/20/92
	38 36.42	76 10.67	0	Lecompte Cove	7/20/92
	38 36.39	76 10.61	Zp	Lecompte Cove	7/20/92

۲.

•

• •

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES		DATE
38 36.31	76 10.58	Zp	Lecompte Cove	7/20/92
38 36.26	76 10.53	0	Lecompte Cove	7/20/92
38 36.15	76 10.43	0	Lecompte Cove	7/20/92
38 36.08	76 10.38	0	Lecompte Cove	7/20/92
38 36.05	76 10.29	Zp	Lecompte Cove	7/20/92
38 36.07	76 10.23	Zp	Lecompte Cove	7/20/92
38 36.10	76 10.20	0	r	7/20/92
38 36.14	76 10.17	0		7/20/92
38 36.21	76 10.15	0		7/20/92
38 36.34	76 10.20	0		7/20/92
38 36.38	76 10.10	0		7/20/92
38 36.28	76 10.09	0		7/20/92
38 36.25	76 10.02	0		7/20/92
38 36.19	76 10.01	0	Leaving Lecompte Creek	
38 36.16	76 09.81	0	Ç İ	7/20/92
38 36.19	76 09.71	0		7/20/92
38 36.45	76 09.56	0		7/20/92
38 36.60	76 09.47	0		7/20/92
38 36.89	76 09.49	0		7/20/92
38 37.09	76 09.44	0		7/20/92
38 37.20	76 09.48	0		7/20/92
38 37.20	76 09.72	0		7/20/92
38 37.29	76 09.85	0	Castle Haven Inlet	7/20/92
38 37.28	76 09.98	0		7/20/92
38 37.31	76 10.06	0		7/20/92
38 37.29	76 10.20	0		7/20/92
38 37.27	76 10.31	0		7/20/92
38 37.32	76 10.30	0		7/20/92
38 37.38	76 10.27	0		7/20/92
38 37.41	76 10.17	U		7/20/92
38 37.38	76 10.11	0		7/20/92
38 37.38	76 10.91	0		7/20/92
38 37.39	76 10.76	0	Castle Haven Pt.	7/20/92
38 37.41	76 10.52	0		7/20/92
38 37.48	76 10.54	0		7/20/92
38 37.65	76 10.81	0		7/20/92
38 37.63	76 11.15	0		7/20/92
38 37.11	76 11.20	0		7/20/92
38 37.17	76 11.82	0	0	7/20/92
38 37.67	76 11.86	Rm	Cornersville, patchy	7/20/92

21 JULY Choptank River: From Todd's Cove & East

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES		DATE
38 36.70	76 11.85	Rm		7/21/92
38 36.74	76 11.90	Rm North e	dge	7/21/92
38 36.67	76 11.91	Rm North e	dge	7/21/92
38 36.67	76 11.97	0	•	7/21/92

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 36.64 38 36.60	76 12.07 76 12.24	Rm North edge Rm North edge	7/21/92 7/21/92
38 36.53	76 12.43	Rm North edge	7/21/92
38 36.23	76 12.36	Zp,Rm(D)	7/21/92
38 36.17	76 12.45	Zp(D),Rm	7/21/92
38 36.21	76 12.48	Zp	7/21/92
38 36.12	76 12.57	Zp Cornersville	7/21/92
38 36.19	76 12.10	Rm Southeast edge	7/21/92
38 36.53	76 12.58	Rm	7/21/92
38 36.52	76 12.63	Rm	7/21/92
38 36.55	76 12.72	Rm	7/21/92
38 36.54	76 12.91	0	7/21/92
38 36.53	76 12.97	Rm	7/21/92
38 36.62	76 13.00	0	7/21/92
38 36.68	76 13.19	0	7/21/92
38 36.75	76 13.44	0	7/21/92
38 36.70	76 13.59	0	7/21/92
38 36.66	76 13.56	0	7/21/92
38 36.56	76 13.59	0	7/21/92
38 36.46	76 13.60	Zp Hills Pt.	7/21/92
38 36.37	76 13.47	Zp	7/21/92
38 36.45	76 13.65	U	7/21/92
38 36.52	76 13.74	0	7/21/92
38 36.48	76 13.79	Zp dying	· 7/21/92
38 36.45	76 13.83	0	7/21/92
38 36.57	76 13.73	0	7/21/92
· 38 36.69	76 13.83	0	7/21/92
· 38 36.65	76 13.95	0	7/21/92
38 36.69	76 13.99	0	7/21/92
38 36.88	76 13.83	0	7/21/92
38 36.93	76 13.92	0	7/21/92
38 37.03	76 13.84	0	7/21/92
38 37.17	76 13.73	0	7/21/92
38 37.20	76 13.78	0	7/21/92
38 37.52	76 13.67	0	7/21/92
38 37.40	76 14.86	0	7/21/92
38 37.25	76 14.92	0	7/21/92
38 37.06	76 14.79	Rm Cooks Cove, patchy	7/21/92
38 37.05	76 14.84	Rm West edge	7/21/92
38 36.99	76 14.95	Rm West edge	7/21/92
38 36.99	76 15.15	Rm Southwest edge	7/21/92
38 36.88	76 15.18	Rm patchy	7/21/92
38 36.89	76 15.50	Rm North Cooks Pt. Cov	
38 37.02	76 15.82	0 edge	7/21/92
38 37.19	76 15.97	0 along Cooks Pt.	7/21/92
38 37.31	76 15.14	0	7/21/92
38 36.45	76 15.39	0	7/21/92
, 38 36.58	76 16.75	0	7/21/92
38 39.58	76 09.41	0 North shore	7/21/92
38 39.79	76 09.55	0	7/21/92

.

,

s ...

٠

LATITUDE Deg Min	LONGITUDE Deg Min		SPECIES		DATE
38 38.06 38 38.16 38 38.38 38 41.30	76 09.94 76 09.71 76 09.88 76 12.71	r, L	0 0 0 0	Irish Cursh	7/21/92 7/21/92 7/21/92
38 41.39 38 41.50	76 12.58 76 12.63		Rm Rm	Irish Creek	7/21/92 7/21/92 7/21/92
38 41.60 38 41.72 38 41.87	76 12.72 76 12.88 76 12.78		Rm 0 Rm	sparse dying	7/21/92 7/21/92 7/21/92
38 41.92 38 42.02 38 42.15	76 12.68 76 12.67 76 12.67		Zp,Rm 0 Zp	sparse	7/21/92 7/21/92 7/21/92
38 42.16 38 42.26 38 42.38	76 12.63 76 12.40 76 12.36		Zp,Rm Rm 0	patchy	7/21/92 7/21/92 7/21/92
38 42.39 38 42.56 38 42.66	76 12.34 76 12.38 76 12.46		Rm 0 0		7/21/92 7/21/92 7/21/92
38 42.65 38 42.54 38 42.33	76 12.49 76 12.48		0 0		7/21/92 7/21/92
38 42.35 38 42.36	76 12.54 76 12.64 76 12.72		0 Rm,Zp Rm,Zp		7/21/92 7/21/92 7/21/92
38 42.46 38 42.62 38 42.68	76 12.90 76 13.02 76 13.25		0 Zp Rm	patchy	7/21/92 7/21/92 7/21/92
38 42.71 38 42.63 38 42.53	76 13.36 76 13.26 76 13.23		0 0 Zp,Rm		7/21/92 7/21/92 7/21/92
38 42.50 38 42.47 38 42.47	76 13.23 76 13.24 76 13.22		0 0 Rm	patchy	7/21/92 7/21/92 7/21/92
38 42.36 38 42.24 38 42.15	76 13.23 76 13.26 76 13.16		Rm Rm Zp,Rm	patchy patchy patchy patchy	7/21/92 7/21/92 7/21/92 7/21/92
				-	

29 JULY Tred Avon/Broad Cr

ţ

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 40.70 38 40.77 38 40.83 38 41.03 38 41.15 38 40.99	76 11.47 76 11.51 76 11.61 76 11.68 76 11.65 76 11.76	0 Cove at Benoni Pt. Zp,Rm,U 0 0 0 0	7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92
38 40.82 38 40.76 38 40.63	76 11.76 76 11.61 76 11.57	0 Zp Zp	7/29/92 7/29/92 7/29/92 7/29/92

	LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES		DATE
	38 40.53	76 11.53	Zp		7/29/92
	38 40.46	76 11.55	Zp,U	small patches	7/29/92
	38 40.44	76 11.56	Zp		7/29/92
	38 42.61	76 13.98	0	Start Broad Cr.	7/29/92
	38 42.88	76 14.13	Rm	sparse	7/29/92
•	38 43.04	76 14.13	0		7/29/92
	38 43.36	76 14.06	0		7/29/92
	38 43.45	76 13.70	0	Bridge Cr.	7/29/92
	38 43.43	76 13.64	Rm	patchy	7/29/92
	38 43.32	76 13.60	Rm	patchy	7/29/92
	38 43.81	76 13.91	Rm	patchy	7/29/92
•	38 43.98	76 14.02	0	Edge Cr.	7/29/92
	38 44.20	76 13.80	0		7/29/92
	38 44.31	76 13.24	.0		7/29/92
	38 44.13	76 12.93	0		7/29/92
	38 43.93	76 12.82	Zp		7/29/92
	38 43.85	76 12.64	0	Elbert Cove	7/29/92
	38 43.58	76 12.28	0		7/29/92
	38 43.43	76 12.78	Rm	clumpy	7/29/92
	38 43.29	76 12.74	0		7/29/92
	38 43.23	76 12.70	0		7/29/92
	38 43.41	76 12.67	Rm	sparse	7/29/92
	38 43.52	76 12.74	0		7/29/92
	38 43.66	76 12.64	Zp,Rm	Leaving Elbert Cove	7/29/92
	38 43.90	76 12.04	0	Edge Cr.	7/29/92
	38 43.81	76 11.85	0	· · · ·	7/29/92
	38 43.48	76 11.89	0		7/29/92
	38 43.41	76 11.87	0		7/29/92
	38 43.70	76 11.69	0		7/29/92
	38 43.64	76 11.67	0		7/29/92
	38 43.72	76 11.38	0		7/29/92
	38 43.64	76 11.33	0		7/29/92
	38 43.58	76 11.32	0		7/29/92
	38 43.61	76 11.25	0		7/29/92
	38 43.57	76 10.99	0		7/29/92
	38 43.35	76 10.93	0		7/29/92
	38 43.46	76 10.86	0		7/29/92
	38 43.55	76 10.78	0		7/29/92
	38 43.67	76 10.78	0		7/29/92
	38 43.73	76 10.72	0		. 7/29/92
	38 43.76	76 10.71	Rm		7/29/92
	38 43.67	76 10.80	0		7/29/92
	38 43.68	76 10.97	0		7/29/92
	38 43.83	76 11.03	0		7/29/92
	38 44.11	76 10.98	0		7/29/92
	38 44.17	76 10.81	Rm		7/29/92
	38 44.27	76 10.71	Rm	•	7/29/92
	38 44.16	76 10.93	0		7/29/92
	38 44.02	76 11.13	0		7/29/92
	38 44.08	76 11.15	0		7/29/92

•

.

Ξ

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92 7/29/92
3844.863844.803844.453844.27	76 11.88 76 11.68 76 11.62 76 11.62	0 0 0 0	7/29/92 7/29/92 7/29/92 7/29/92 7/29/92

30 JULY Broad Creek

1

ł

{

4

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 44.08 38 44.15	76 11.68 76 11.91	0 From Solitude Cr. Pt.	7/30/92
		Rm patchy, muddy	7/30/92
38 44.24	76 12.00	Rm epiphytes	7/30/92
38 44.28	76 12.14	Rm	7/30/92
38 44.27	76 12.18	Rm	7/30/92
38 44.36	76 12.26	Rm	7/30/92
38 44.37	76 12.28	Rm	7/30/92
38 44.39	76 12.33	0	7/30/92
38 44.43	76 12.22	Rm	7/30/92
38 44.51	76 12.16	0	7/30/92
38 44.61	76 12.19	0	7/30/92
38 44.76	76 12.26	Rm patchy along shore	7/30/92
38 44.77	76 12.27	Rm	7/30/92
38 44.88	76 12.38	0	7/30/92
38 44.97	76 12.43	Rm Dense bed	7/30/92
38 45.08	76 12.49	Rm Dense bed	7/30/92
38 45.05	76 12.52	0	7/30/92
38 44.96	76 12.49	0	7/30/92
38 44.88	76 12.45	0	7/30/92
38 44.78	76 12.42	ů 0	
38 44.60	76 12.35	Rm	7/30/92
38 44.39			7/30/92
30 44.39	76 12.51	0	7/30/92

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	DATE
38 44.46 38 44.48	76 12.50 76 12.53	Rm Rm	7/30/92 7/30/92
38 44.52	76 12.59	Rm	7/30/92
38 44.61	76 12.67	Rm	7/30/92
38 44.72	76 12.79	Rm	7/30/92
38 44.77	76 12.91	Rm	7/30/92
38 44.81	76 12.96	Rm	7/30/92
38 44.89	76 13.14	0	7/30/92
38 45.17	76 13.20	Rm short, patchy	7/30/92
38 45.30	76 13.17	Rm	7/30/92
38 45.58	76 13.36	Rm	7/30/92
38 45.64	76 13.45	0	7/30/92
38 45.87	76 13.27	0	7/30/92
38 46.03	76 13.15	0	7/30/92
38 45.90	76 12.94	0	7/30/92
38 45.79	76 12.90	0	7/30/92
38 45.76	76 12.87	Rm	7/30/92
38 45.82	76 12.85	0	7/30/92
38 45.89	76 12.86	Rm short with epiphyte	
38 45.89	76 12.98	0	7/30/92
38 46.08	76 12.92	0	7/30/92
38 46.20	76 12.79	0	7/30/92
38 46.19	76 12.76	0	7/30/92
38 46.13	76 12.69	Rm short	7/30/92
38 46.16	76 12.88	0	7/30/92
38 46.28	76 12.01	0	7/30/92
38 46.28	76 13.01	0	7/30/92
38 46.36	76 13.00	0	7/30/92
38 46.43	76 13.03	0	7/30/92
38 46.30	76 13.26	0	7/30/92
38 46.12	76 13.37	Rm	7/30/92
38 46.20	76 13.44	0	7/30/92
38 46.27	76 13.52	0	7/30/92
38 46.39	76 13.56	0	7/30/92
38 46.56	76 13.44	0	7/30/92
38 46.61	76 13.27	0	7/30/92
38 46.68	76 13.31	0	7/30/92
38 46.69	76 13.45	0	7/30/92
38 46.64	76 13.63	0	7/30/92
38 46.60	76 13.74	0	7/30/92
38 46.70	76 13.73	0	7/30/92
38 46.69	76 13.65	Rm sparse	7/30/92
38 46.54	76 13.59	0	7/30/92 7/30/92
38 46.38	76 13.64 76 13.81	0 0	7/30/92
38 46.26 38 46.25	76 13.81 76 13.95	0	7/30/92
38 46.23 38 46.23	76 14.08	Rm dense	7/30/92
38 46.19	76 13.86	0	7/30/92
38 46.21	76 13.68	0	7/30/92
38 46.18	76 13.51	0	7/30/92
00 10.10	··· •	Ť	

ı

ļ

i I

٠

.

.

LATITUE Deg Min		SPECIES		DATE
505 mm	Deg min			
38 45.97	76 13.50	0		7/30/92
38 45.82	76 13.50	0		7/30/92
38 45.74	76 13.63	n Rm	patchy	7/30/92
38 45.65	76 13.58	Rm	all around island	7/30/92
38 45.64	76 13.81	0		7/30/92
38 45.66	76 13.83	0		7/30/92
38 45.69	76 13.91	Rm	Abundantly patchy	7/30/92
38 45.73	76 13.99	Rm	Abundantly patchy	7/30/92
38 45.79		Rm		7/30/92
38 45.86		0		7/30/92
38 45.97		0		7/30/92
38 46.02		0		7/30/92
38 46.01		Rm		7/30/92
38 46.00		Rm		7/30/92
38 45.95		0		7/30/92
38 46.17		0		7/30/92
38 46.25		0		7/30/92
38 46.24		0		7/30/92
38 46.40		0		7/30/92
38 46.59		Rm	small amount	7/30/92
38 46.75		0		7/30/92
38 46.83		0		7/30/92
38 46.98		0		7/30/92
38 46.87	76 14.83	0		7/30/92

. .

.

÷.,

12 AUGUST Broad Creek

.

ſ

,

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIES	5	DATE
38 46.87	76 14.83	0		8/12/92
38 45.05	76 14.17	0		8/12/92
38 45.12	76 14.34	0		8/12/92
38 45.20	76 14.40	0		8/12/92
38 45.05	76 14.35	Rm	flowers, epiphytes,	
			thick bed off Mulberry Pt.	8/12/92
38 45.06	76 14.32	Rm	edge	8/12/92
38 45.85	76 14.31	Rm	edge	8/12/92
38 44.99	76 14.29	Rm	edge	8/12/92
38 44.95	76 14.25	Rm	edge	8/12/92
38 44.82	76 14.39	Rm	patchy	8/12/92
38 44.83	76 14.51	0		8/12/92
38 44.80	76 14.62	Rm	patchy, flowers	8/12/92
38 44.81	76 14.71	Rm		8/12/92
38 44.83	76 14.76	Rm	flowers	8/12/92
38 44.82	76 14.79	Rm	edge	8/12/92
38 44.78	76 14.92	Rm	edge	8/12/92
38 44.79	76 15.01	Rm	edge	8/12/92
38 44.84	76 15.05	Rm	edge	8/12/92

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIE	S	DATE
38 44.94	76 15.08	Rm	1 acre patch, flowers,	8 /12 /02
28 45 03	76 15 02	D	epiphytes	8/12/92
38 45.02	76 15.03	Rm		8/12/92
38 45.03 38 46.80	76 14.95 76 15 10	0		8/12/92
38 46.95	76 15.10 76 15 16	0		8/12/92
38 46.12	76 15.16 76 15.08	0 0		8/12/92 8/12/92
38 46.26	76 15.02	0		8/12/92
38 46.38	76 14.88	0		8/12/92
38 47.48	76 14.88	0		8/12/92
38 47.58	76 14.73	0		8/12/92
38 47.58	76 14.49	· 0		8/12/92
38 47.71	76 14.34	0		8/12/92
38 47.84	76 14.30	0		8/12/92
38 47.89	76 14.30	0		8/12/92
38 47.98	76 14.16	0		8/12/92
38 48.09	76 14.28	0		8/12/92
38 48.22	76 14.25	0	tip top of Broad Creek	8/12/92
38 48.20	76 14.25	0	tip top of broad Creek	8/12/92
38 48.07	76 14.32	0		8/12/92
38 47.91	76 14.34	0		8/12/92
38 47.91 38 47.78				8/12/92
38 47.78 38 47.79	76 14.53 76 14.53	0 0		8/12/92
38 47.79 38 47.72	76 14.55	0		8/12/92
38 47.72 38 47.55	76 15.87	0		8/12/92
38 47.55	76 15.00	0		8/12/92
38 47.87	76 15.11	0		8/12/92
38 47.81	76 15.16	0		8/12/92
38 47.61	76 14.16	Ő		8/12/92
38 47.45	76 14.05	õ		8/12/92
38 47.33	76 14.15	Õ		8/12/92
38 47.22	76 15.14	Ő		8/12/92
38 47.17	76 15.38	0		8/12/92
38 47.12	76 15.40	0		8/12/92
38 46.78	76 15.32	0		8/12/92
38 46.47	76 15.26	0		8/12/92
38 46.31	76 15.35	0		8/12/92
38 46.24	76 15.31	0		8/12/92
38 45.94	76 15.14	0		8/12/92
38 45.97	76 15.30	0		8/12/92
38 45.72	76 15.75	Rm	patchy	8/12/92
38 45.73	76 15.77	Rm	patchy	8/12/92
38 45.75	76 14.76	0		8/12/92
38 45.72	76 14.54	0		8/12/92
38 45.60	76 14.59	0		8/12/92
38 45.56	76 14.28	Rm		8/12/92
38 45.36	76 14.27	Rm		8/12/92
38 45.35	76 14.29	Rm		8/12/92
38 45.32	76 14.32	Rm	edge	8/12/92
			-	

18 AUGUST Broad Creek, Started Marked Spots on Photos Only

.

LATITUDE Deg Min	LONGITUDE Deg Min	SPECIE	S	DATE
38 43.57	76 13.52	· Rm	Photo 25-3 7AUG North Pt. of Balls Cr.	8/18/92
38 45.21	76 15.15	Rm	lots epiphytes	8/18/92
38 45.23	76 15.20	Rm	edge	8/18/92
38 45.23	76 15.21	Rm	edge	8/18/92
38 45.16	76 15.20	0	0	8/18/92
38 45.17	76 15.20	Rm	edge	8/18/92
38 45.18	76 15.23	Rm	flowers, epiphytes	8/18/92
38 45.15	76 15.27	Rm	edge	8/18/92
38 45.14	76 15.31	Rm	edge,patchy	8/18/92
38 45.10	76 15.37	Rm	edge	8/18/92
38 45.06	76 15.33	0	•	8/18/92
38 44.46	76 15.23	Rm	epiphytes,patchy	8/18/92
38 44.45	76 15.31	Rm	edge	8/18/92
38 44.51	76 15.09	0	South Pt. Leadenham Cr.	8/18/92
38 44.74	76 15.44	0	North Pt. Leadenham Cr.	8/18/92
38 44.73	76 15.41	0		8/18/92
38 44.74	76 15.31	Rm	patchy,epiphytes	8/18/92
38 44.79	76 15.27	Rm	flowers, dense	8/18/92
38 44.83	76 15.23	Rm	edge	8/18/92
38 44.89	76 15.31	Rm	edge	8/18/92
38 44.37	76 15.94	Rm	flowers,epiphytes,dense	8/18/92
38 44.05	76 14.72	Rm	edge	8/18/92
38 44.96	76 14.90	Rm	no epiphtes	8/18/92
38 44.87	76 14.94	Rm	edge	8/18/92
38 43.67	76 15.46	Rm	C C	8/18/92
38 43.42	76 15.65	Rm		8/18/92
38 43.32	76 15.80	Rm	North Pt. Balla Cr.	8/18/92
38 43.37	76 15.99	Rm	flowers, few epiphytes	8/18/92
38 49.76	76 16.83	Rm	epiphytes, Wades Pt.	8/18/92
20 AUGUST Ea	stern Bay			
LATITUDE	LONGITUDE	SPECIE	ES	DATE
Deg Min	Deg Min			
38 50.80	76 28.20	Rm	Photo 25-8, Clairborne	8/20/92
38 50.98	76 15.42	Rm	boat ramp, patchy complete cover of filamentou	IS
38 50.07	76 14.92	Rm	algae, flowers complete cover of filamentou	
			algae, flowers	8/20/92
38 49.48	76 14.53	0	nothing since last pt.	8/20/92
38 49.33	76 14.42	0		8/20/92
38 46.29	76 11.25	0	Photo 23-7	8/20/92
38 46.22	76 11.17	Rm	filamentous algae, no flower	
38 46.04	76 10.92	0		8/20/92
38 46.02	76 10.86	0		8/20/92

LATITUDE Deg Min	LONGITUDE Deg Min	
 38 45.94 38 45.87 36 45.72 38 45.56 38 45.36 38 45.25 	76 10.66 76 10.60	
38 45.23 38 45.34	76 09.93 76 09.83	
38 45.71 38 45.74 38 45.85	76 09.63 76 09.60	
38 46.15 38 46.39	76 09.06 76 09.24	

SPECIES

DATE

,

0		9 /00 /00
0		8/20/92
0		8/20/92
0		8/20/92
Rm	filamentous algae, no flowers	8/20/92
Rm	other epiphytes, flowers	8/20/92
0		8/20/92
Rm	Long, dense, filamentous	
	algae, epiphytes	8/20/92
Rm	edge North East Side	
	of bridge #2	8/20/92
0	-	8/20/92
0		8/20/92
Rm	total cover of flowers	
•	and epiphytes	8/20/92
Rm	filamentous algae, epiphytes	8/20/92
Rm	epiphytes	8/20/92

21 AUGUST Eastern Bay

LATITUDE	LONGITUDE	SPECIES	
Deg Min	Deg Min		
C	-		
38 47.71	76 11.23	Rm Ph	
		fil	. 6
38 47.78	76 11.24	0 Le	ea
		al	ga
38 47.77	76 11.23	Rm Be	
38 47.90	76 11.19	Rm de	
38 48.02	76 11.15	Rm de	
38 48.14	76 10.99	Rm N	
38 48.20	76 10.91	Rm de	2a
38 48.24	76 10.85	Rm ne	
38 48.44	76 11.62	0 #7	,
38 48.55	76 11.67	0	
38 48.78	76 11.59	Rm sp)a
38 49.04	76 11.49	Rm ne	٩v
38 49.53	76 11.31	Rm ne	٩v
		pa	ita
38 49.68	76 11.32	Rm ne	3M
38 50.18	76 11.52	Rm m	0
38 50.37	76 11.55	Rm m	0
38 50.56	76 11.63	Rm Pl	nc
		Ea	
		al	ga
38 50.73	76 11.56	0	
38 51.01	76 10.80	Rm de	en
38 51.05	76 10.72	Cl m	al
38 51.15	76 10.51		
38 51.44	76 10.29	0	
38 52.81	76 10.30	Rm de	
38 52.82	76 10.31	Rm Pl	nc
		al	ga
38 52.18	76 10.20	0 er	ıd

Rm	Photo 23-10, dead w/ br. &	gr.
	fil. algae	8/21/92
0	Leads Cr. cladophora, fil.	
	algae	8/21/92
Rm	Begin Leads Cr. dead	8/21/92
Rm	dead, Cl, fil. algae	8/21/92
Rm	dead	8/21/92
Rm	New shoots, Cl	8/21/92
Rm	dead, Cl	8/21/92
Rm	new shoots, end Leads Cr	8/21/92
0	#7	8/21/92
0		8/21/92
Rm	sparse, Cl	8/21/92
Rm	new shoots, fil. algae, Cl	8/21/92
Rm	new shoots, fil. algae,	
	patchy	8/21/92
Rm	new shoots, fil. algae	8/21/92
Rm	mostly algae	8/21/92
Rm	mostly algae	8/21/92
Rm	Photo 23-12 Shaw Bay,	
	East Wye R., sparse, fil.	
	algae	8/21/92
0		8/21/92
Rm	dense, flowers, lots Cl	8/21/92
Cl	mats of Cl	8/21/92
		8/21/92
0		8/21/92
Rm	dead	8/21/92
Rm	Photo 23-14, dead, Cl, fil.	
	algae	8/21/92
0	end photo	8/21/92