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1. Introduction

Let G be an undirected graph without loops, and denote by H(G) the set of all 
Hermitian matrices whose graph is G. No restriction other than reality is placed upon 
the diagonal entries of A ∈ H(G). Among the matrices in H(G) are various spectra, and 
each of these corresponds naturally to a multiplicity list, which we usually consider to 
be an unordered collection. For example, a classical result is that when G is a path, only 
the list of all 1’s occurs.

Let L(G) denote the collection of all multiplicity lists among matrices in H(G). It is 
a large and combinatorially intriguing problem to predict L(G) from the structure of G. 
When G is a tree T , there are several striking relationships between the characteristics 
of T and the attainable lists in L(T ), that convey more structure than for general graphs 
(see references), though there is, by no means, a complete answer. In the study of this 
problem, a number of conjectures and questions have emerged.

Our purpose here is two-fold: (1) to popularize these questions and conjectures, many 
of which have not previously appeared in print, and (2) to announce the existence of an 
electronic database currently containing all multiplicity lists for all trees on fewer than 
12 vertices. Each question/conjecture is stated and discussed in the following sections, 
along with prior relevant results and new results, either theoretical or gleaned from the 
database. The questions/conjectures are organized loosely into 3 sections by whether 
they give necessary, sufficient or other conditions on lists. The database is searchable, 
and the lists represent a combination of prior published results along with the 11-vertex 
trees, which were determined based on some recent results about linear trees [10] as 
well as some calculations and proofs that we carried out. First, in Section 2, we mention 
important background. Then we introduce and discuss the database in Section 3, followed 
by several questions/conjectures grouped into three sections. Appendix A includes a 
complete inventory of the multiplicity lists of 11-vertex trees.

2. Background and notation

We will use the standard submatrix notation. For an index set α ⊆ {1, . . . , n}, we 
denote the principal submatrix of A lying in rows and columns {1, . . . , n}\α by A(α), or 
rows and columns α by A[α]. Additionally, we abbreviate A({i}) by A(i). If A is a matrix 
with graph G, we may use a subgraph of G to specify an index set. For example, A[G]
is simply the matrix A. For any real number λ, we use mA(λ) to denote the multiplicity 
of λ as an eigenvalue of the matrix A.

A fundamental fact for our work is the interlacing theorem for Hermitian eigenval-
ues [2]. An immediate consequence is that for any n-by-n Hermitian matrix A, any real λ, 
and any i ∈ {1, . . . , n},
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mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1.

One of our most useful tools in the case of trees is a theorem from previous work in [14]
and [17]. We state it in the most general form developed in [7].

Theorem 1. Let T be a tree and let A ∈ H(T ). Suppose there exists a vertex v of T and 
a real number λ such that λ is an eigenvalue of both A and A(v). Then

1. there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
2. if mA(λ) ≥ 2, then v′ may be chosen so that deg v′ ≥ 3 and so that there are at least 

three components T1, T2, and T3 of T − v′ such that mA[Ti](λ) ≥ 1, i = 1, 2, 3;
3. if mA(λ) = 1, then v′ may be chosen so that deg v′ ≥ 2 and so that there are two 

components T1 and T2 of T − v′ such that mA[Ti](λ) = 1, i = 1, 2.

We will refer to the vertex denoted by v′ as a Parter vertex.
For any tree T , we define the path cover number of T to be the minimum number 

of disjoint, induced paths of T that cover all vertices of T . We also define the diameter
of T , denoted d(T ), to be the number of vertices in a maximum-length induced path 
of T . (Note that in pure graph theoretical literature, diameter is usually defined as the 
number of edges in such a path.) The following two theorems from [4] and [5], respectively, 
demonstrate two relationships between the structure of a tree and its multiplicity lists.

Theorem 2. For a tree T , the maximum multiplicity occurring among the lists in L(T )
is equal to the path cover number of T .

Theorem 3. For a tree T , the minimum number of distinct eigenvalues among the Her-
mitian matrices whose graph is T is at least d(T ).

For a tree T , we define U(T ) to be the minimum number of 1’s occurring among the 
lists in L(T ). We know from [7] that U(T ) ≥ 2 for any tree T on at least 2 vertices, that 
is, every list in L(T ) has at least two 1’s. We will discuss U(T ) further in Section 5.2.

The multiplicity lists of an n-vertex tree may be viewed as partitions of n, and we will 
need two concepts regarding integer partitions. Let l = (l1, . . . , la) be a partition of some 
positive integer N . First, we denote the conjugate partition of l by l∗ = (l∗1, . . . , l∗l1), so l∗j
is the number of li’s such that li ≥ j. Note that l∗ is a partition of N with l∗1 ≥ · · · ≥ l∗l1 . 
Also, l∗ can be obtained from l by transposing the Young diagram of l.

The second concept is majorization. Let u = (u1, . . . , uc), u1 ≥ · · · ≥ uc, and 
w = (w1, . . . , wd), w1 ≥ · · · ≥ wd, be ordered partitions of M and N , respectively. 
Suppose u1 + · · · + us ≤ w1 + · · · + ws for all s, where us = 0 or ws = 0 when s > c or 
s > d, respectively. If the last inequality involving a nonzero ui is an equality, then w is 
said to majorize u, which we write as u � w. If it is a strict inequality, the majorization 
is said to be weak.



S.P. Buckley et al. / Linear Algebra and its Applications 511 (2016) 72–109 75

We say that a vertex v of a tree T is a high-degree vertex (HDV) if deg v ≥ 3. 
A generalized star (g-star) is a tree with at most one HDV. Every g-star has exactly one 
central vertex, which is the HDV, if it exists; otherwise, we may choose any vertex to 
be central. A double g-star consists of two g-stars with an edge connecting their central 
vertices. The multiplicity lists for g-stars and double g-stars were characterized in [8]; 
the latter were given via a superposition principle.

A linear tree is a tree in which all HDVs lie on a single induced path of the tree. 
Linear trees were introduced and discussed in [10], where a superposition principle is 
proposed that specifies necessary conditions for multiplicity lists for a linear tree. The 
conditions given by this Linear Superposition Principle (LSP) are also conjectured to be 
sufficient for a multiplicity list of a linear tree [10]. Sufficiency is proven in the two cases 
that (1) T has fewer than 3 HDVs, or (2) T is depth 1, that is, all vertices of T lie on 
or are adjacent to a particular induced path of T [10] (such trees are sometimes called 
caterpillars).

As described in the following section, the LSP was our primary tool for finding the 
multiplicity lists for trees on 11 vertices.

3. The database

We’ve assembled a Microsoft Access database containing all the multiplicity lists for 
the 436 trees on fewer than 12 vertices. The lists for the 201 trees on fewer than 11 
vertices were obtained from previous work and collected in [9]. (This data, for the trees 
on fewer than 8 vertices appeared in [5], for the 23 trees on 8 vertices appeared in [6], for 
the 47 trees on 9 vertices appeared in [15], and for the 106 trees on 10 vertices appeared 
in [16].) We take this opportunity to correct some small errors in the tables presented 
in [5]. The second multiplicity list for the left and for the middle graph on the bottom 
of page 178 should be (2, 2, 1, 1, 1) and the first multiplicity list for the middle graph on 
the top of page 179 should be (4, 1, 1, 1). Also, in [6], for the left graph on the bottom of 
page 19 the list (2, 2, 1, 1, 1, 1) is missing, for the right graph of the 5th row of trees of 
page 20 the multiplicity list (2, 1, 1, 1, 1, 1) should be (2, 1, 1, 1, 1, 1, 1) and, for the right 
graph of the 6th row of trees of page 20, the multiplicity list (2, 2, 2, 2, 1, 1) should be 
(2, 2, 2, 1, 1).

To generate the lists for the 235 trees on 11 vertices, we wrote a MATLAB program 
that automated the LSP process [10] for the 231 linear trees on 11 vertices. For each linear 
tree, the program generates a diversified subset of all possible LSP constructions, bal-
ancing thoroughness with computation time. We validated the algorithm by re-deriving 
the known multiplicity lists for the 10-vertex trees. We then determined the multiplicity 
lists for the 4 nonlinear 11-vertex trees by other exhaustive means. After using the as-
signment method to construct all conceivable multiplicity lists, we constructed explicit 
matrices to verify non-obvious lists.

The database also includes other data regarding the structure of the trees, and it 
contains an instruction page for ease of use. The database has two main components:
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(1) A main data table with a row of data for each of the 436 trees on fewer than 12 
vertices. The data for each tree include a drawing of the tree; its multiplicity lists 
(with implied 1’s removed for brevity); the diameter; the path cover number; the 
number of vertices of each degree from 1 to 10; and U(T ).

(2) A search form. This form allows the user to search for all trees that have certain 
properties as stored in the data table. For example, one could search for all trees 
that have the multiplicity list (3, 2, 1, . . . , 1), path cover number 4, and exactly 5 
pendent vertices. This search returns the data for the 46 trees that satisfy all three 
criteria.

The database is a powerful tool for investigating questions and conjectures. Some 
results of examining the database will appear in the following sections.

4. Sufficient conditions

In this section, we discuss some questions and conjectures that give multiplicity lists 
for a tree.

4.1. The Degree Conjecture

The first conjecture specifies a multiplicity list that occurs for any tree that has HDVs.

Conjecture 4 (Degree Conjecture). Any tree with exactly k HDVs with degrees d1, . . . , dk
has the multiplicity list

(d1 − 1, . . . , dk − 1, 1, . . . , 1).

We note that more concentrated lists can certainly occur, especially when the min-
imum number of distinct eigenvalues equals the diameter. The Degree Conjecture list 
seldom achieves the maximum multiplicity. The idea behind the conjecture is that each 
HDV is Parter for a different eigenvalue of appropriate multiplicity, perhaps because the 
eigenvalue associated with that HDV appears exactly once in each branch, but this is 
not easy to prove for large trees.

For more on the Degree Conjecture, see [11] where it is proven for “diametric trees” 
(a linear tree in which the path that includes all the HDVs happens to be a diameter). 
Additionally, it was shown in [10] that the Degree Conjecture holds for linear trees 
satisfying the sufficiency of the LSP (by which we mean L(T ) is the set of multiplicity 
lists generated by the LSP). Using the database, the conjecture has also been verified 
for all trees on fewer than 12 vertices.

4.2. Partitioning of multiplicities

The multiplicity list consisting of all 1’s occurs for every graph G, so we will refer to 
it as the trivial multiplicity list. Hence we call a multiplicity list nontrivial if it has some 
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multiplicity greater than 1. Given a tree T and a nontrivial q ∈ L(T ), the next question 
addresses whether T has certain multiplicity lists that are less dense than q.

Question 5. Suppose an integer m ≥ 2 belongs to a nontrivial multiplicity list of a tree T . 
For what integer partitions l of m does replacing m by l in the multiplicity list yield 
another multiplicity list of T?

Roughly speaking, when does a tree have multiplicity lists lying “between” a given 
nontrivial list and the trivial list? Arbitrary partitions are not always permissible: the 
7-star has the list (5, 1, 1), but not the list (3, 2, 1, 1). (See [8] or use the fact that only 
the center vertex of the star could be Parter.)

Progress has been made on the special case in which we replace m by m − 1 and 1 in 
the multiplicity list.

Conjecture 6. For a tree T , let (m1, m2, . . . , mk) ∈ L(T ). Then, for any j such that 
mj ≥ 2, 1 ≤ j ≤ k,

(m1, . . . ,mj − 1, . . . ,mk, 1) ∈ L(T ).

Using the database, this conjecture has been verified for all trees on fewer than 12 
vertices. More generally, we give a proof for the case of linear trees that satisfy the 
sufficiency of the LSP.

First we define some terminology. For a tree T , we say that q ∈ L(T ) is ordered if the 
entries of q are listed in the same order as their underlying eigenvalues. The set of all 
ordered multiplicity lists for T is denoted by Lo(T ).

Let A ∈ H(T ), and let v be a designated vertex of T . We say that λ is an upward 
eigenvalue of A at v if mA(v)(λ) = mA(λ) + 1, and the multiplicity of λ is called an 

upward multiplicity of A at v, written m̂A(λ). We also consider eigenvalues of A(v) that 
are not eigenvalues of A; these eigenvalues have zero upward multiplicity. By a complete 
list of upward multiplicities for T at v, we mean an ordered list of multiplicities for an 
A ∈ H(T ) with upward designation for each eigenvalue whose multiplicity increases with 
the removal of v, including upward zeros. The set of complete upward multiplicity lists 
of T is denoted L̂c(T ). We will only consider L̂c(T ) for generalized stars, in which case 
we always assume that the designated central vertex is the removed vertex. Of course, 
an upward multiplicity list for a graph corresponds to an upward multiplicity list for 
some matrix with that graph.

Example 7. For the star

T = � �

�

�
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we have

Lo(T ) = {(1, 2, 1), (1, 1, 1, 1)}

and

L̂c(T ) =
{
(1, 2̂, 1), (1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1)

}
.

Using this notation and terminology, we refer to Theorem 9 in [10] for the Lemma.

Lemma 8. Let T be a g-star on n vertices with central vertex of degree k and arm lengths 
l1 ≥ · · · ≥ lk (

∑k
i=1 li = n − 1).

Suppose q̂ = ( ̂q1, . . . , qr) ∈ L̂c(T ). Then the list obtained by subtracting 1 from any 
nonzero upward multiplicity q2j in q̂ and appending (0̂, 1) to the end of q̂ is an element 
of L̂c(T ). In symbols, for any 1 ≤ j ≤ r−1

2 such that q2j ≥ 1, we have

q̂′ = ( ̂q1, . . . , q2j − 1, . . . , qr, 0̂, 1) ∈ L̂c(T ).

Proof. Denote q̂′ as

q̂′ = ( ̂q1, . . . , q2j − 1, . . . , qr, 0̂, 1) ≡ ( ̂s1, . . . , sw).

We show that q̂′ satisfies the conditions given by Theorem 9 in [10].

(2)
w−1

2∑
j=1

(s2j + 1) =

⎛
⎝w−1

2∑
j=1

(q2j + 1)

⎞
⎠− 1 + 1 = n − 1

because q̂ ∈ L̂c(T ). Condition (1) follows from condition (2).
(3) The first r entries of q̂′ have the same upward designation pattern as q̂. The appended 

0̂ has an even index; the trailing non-upward 1 has an odd index.
(4) We have (si1 + 1, . . . , siw−1

2
+ 1) � (qi1 + 1, . . . , qi r−1

2
+ 1) � (l1, . . . , lk)∗, where 

si1 ≥ · · · ≥ siw−1
2

are the upward multiplicities of q̂′, and qi1 ≥ · · · ≥ qi r−1
2

are the 

upward multiplicities of q̂.

By Theorem 9 in [10], q̂′ ∈ L̂c(T ). �
For the theorem, we use the LSP in Definition 10 from [10].

Theorem 9. Suppose a linear tree T satisfies the sufficiency of the LSP. Let (m1, m2, . . . ,
mk) ∈ L(T ). Then, for any j such that mj ≥ 2, 1 ≤ j ≤ k,

(m1, . . . ,mj − 1, . . . ,mk, 1) ∈ L(T ).
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Proof. Take any j such that mj ≥ 2, 1 ≤ j ≤ k, and set

M = (m1,m2, . . . ,mk), M ′ = (m1, . . . ,mj − 1, . . . ,mk, 1).

Because T is a linear tree, M can be obtained by an LSP construction satisfying the 
conditions in [10] Definition 10. Consider the jth column of this LSP construction; this 
column sums to mj .

Suppose all of the nonzero column entries are 1’s. Insert a column of nonupward zeros 
in the j + 1 column position. If there is a nonupward 1 in the jth column, choose it; 
otherwise, choose any upward 1 in the column. Then swap the positions of the chosen 1 
and the zero on its right. Now we have a valid LSP construction that yields M ′. By the 
sufficiency of the LSP conditions for T , M ′ ∈ L(T ).

Otherwise, suppose the jth column contains some nonzero entry x ≥ 2. Then x
must be upward, and therefore a member of some complete list of upward multiplicities. 
Replace this multiplicity list with the list given in Lemma 8, subtracting 1 from x. Then 
repeat the exact same LSP construction as the one that yields M , except with x replaced 
by x − 1, and with two new columns on the far right containing, respectively, only the 
new 0̂ and 1 from the Lemma 8’s multiplicity list. This construction yields M ′ by the 
LSP.

By the sufficiency of the LSP conditions for T , M ′ ∈ L(T ). �
4.3. Specifying off-diagonal entries

The following conjecture was made by D. Sher, who also participated in constructing 
an earlier inventory of the 11-vertex tree multiplicity lists. Thus far, no counterexample 
has been found.

Conjecture 10. For any tree T , let q ∈ L(T ). Then there exists a matrix A ∈ H(T ) with 
all nonzero off-diagonal entries equal to 1 and with multiplicity list q.

We have tested this conjecture for many trees on fewer than 12 vertices. The motiva-
tion is natural. There are n free diagonal entries with which we want to target some n
eigenvalues that achieve the given multiplicities. Of course, n arbitrary eigenvalues with 
those multiplicities cannot be expected because of classical results that relate separation 
of eigenvalues to magnitudes of off-diagonal entries.

4.4. Adding vertices to trees

Suppose that a tree T on n vertices, with known L(T ) and Lo(T ), is given. There are 
two natural ways to obtain a tree T ′ on n + 1 vertices from T : (i) add a pendent vertex 
v′ to an identified vertex v of T ; and (ii) subdivide an identified edge e of T by placing 
a new vertex u between the two vertices of e. In each case, it is natural to ask what the 
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resulting multiplicity lists L(T ′) (or Lo(T ′)) are. Since it is known that all trees may be 
generated from an edge via process (i), the first question is the entire multiplicity list 
problem (recursively), and it is surely subtle. However, there are natural subquestions 
and conjectures that should be raised.

Let L1(T ) (L1
o(T )) be the collection of lists obtained by appending a 1 to each list in 

L(T ) (Lo(T )), and let L+(T ) (L+
o (T )) be the collection of lists obtained by adding 1 to 

an individual multiplicity in a list from L(T ) (Lo(T )) in all possible ways (including 1’s 
that are not one of the two necessary 1’s and including appending a 1).

Conjecture 11. L1(T ) ⊆ L(T ′) ⊆ L+(T ), and L1
o(T ) ⊆ Lo(T ′) ⊆ L+

o (T ).

Both conjectures seem likely. Further questions in this area should be considered. In 
either case, (i) or (ii), if the path cover number is not increased, lists with the maximum 
multiplicity cannot see it increased. What other elements of L+(T ) (L+

o (T )) are excluded 
from L(T ′) (Lo(T ′)), and under what circumstances? Is ∪T ′L(T ′) = L+(T )? When does 
(ii) increase U(T ′) relative to U(T )? (Is it always so, when the diameter increases?) Of 
course, more such questions may be raised here.

We mention a further question, which could prove a fruitful direction. We say that a 
collection of lists La is dominated by a collection Lb, written La ≤ Lb, if every list in 
La is component-wise less than or equal to some list in Lb. Now, let T be an induced 
subtree of a tree T ′.

Conjecture 12. L(T ) ≤ L(T ′).

5. Necessary conditions

In this section, we discuss questions and conjectures addressing conditions that all 
multiplicity lists of a tree must satisfy.

5.1. The minimum number of distinct eigenvalues

As mentioned earlier, it was shown in [5] that the minimum number of distinct eigen-
values among matrices in H(T ) is at least d(T ). This is a measure of how “concentrated” 
of a list may occur. The question of equality in this relationship was addressed most re-
cently in [13], where it was proven that equality is always attained whenever the diameter 
is less than 7. This was shown using the powerful tool of branch duplication [12]. This 
tool also shows that the minimum number of distinct eigenvalues is often the diameter, 
for large diameters. For diameter 7, some trees require 8 distinct eigenvalues, but no 
more [5,13]. It was conjectured in [13] that the difference between the minimum number 
of distinct eigenvalues and the diameter grows slowly. We also believe

Conjecture 13. For any linear tree T , the minimum number of distinct eigenvalues among 
multiplicity lists in L(T ) equals d(T ).
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By consulting the database, we verified that equality is attained for all trees on fewer 
than 12 vertices, including some trees with diameter 7 or greater, including the 5 nonlin-
ear trees. This is consistent with the fact that the smallest known tree for which there is 
a difference is a nonlinear tree on 16 vertices [13]. There seems to be no simple relation 
between maximum multiplicity, minimum number distinct, and U(T ).

5.2. The minimum number of 1’s

For any tree T on n vertices, T always has the multiplicity list consisting of n 1’s. So 
the maximum number of 1’s among the lists in L(T ) is always n. By contrast, determining 
the minimum number of 1’s in any list from L(T ) is a more difficult question. Recall that 
for a tree T , U(T ) is the minimum number of 1’s occurring among the lists in L(T ).

Question 14. Determine U(T ) from the structure of T .

We note that determining U(T ) is equivalent to finding the highest total multiplicity 
of the multiple eigenvalues among lists in L(T ). We start by presenting a general lower 
bound for U(T ) for any tree T and then we give an answer to this question when T is a 
g-star.

For an n-by-n symmetric matrix A, define the following spectral characteristics: U(A)
is the number of eigenvalues of A of multiplicity 1; b(A) is the number of distinct multiple 
eigenvalues of A and dist(A) = b(A) + U(A) is the number of distinct eigenvalues of A. 
From Theorem 3, when A ∈ H(T ), T a tree, dist(A) ≥ d(T ).

A general lower bound for U(T ) for any tree T is the following. Of course, it is of 
interest only when d(T ) is sufficiently large.

Theorem 15. Let T be a tree on n vertices. Then U(T ) ≥ 2d(T ) − n.

Proof. Let A ∈ H(T ). Then

dist(A) ≥ d(T ). (1)

Of course,

2b(A) + U(A) ≤ n (2)

and

dist(A) = b(A) + U(A). (3)

Combining (1) and (3) gives

b(A) + U(A) ≥ d(T ) (4)
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and from (2) we have

b(A) ≤ n− U(A)
2

. (5)

Since

U(A) ≥ d(T ) − b(A) (6)

by (4), we have

U(A) ≥ d(T ) + U(A) − n

2 (7)

from (5). Multiplying (7) by 2 and simplifying gives

U(A) ≥ 2d(T ) − n.

Since U(T ) = min
A∈H(T )

U(A), we have

U(T ) ≥ 2d(T ) − n,

as asserted. �
Now, for g-stars, we can give a different lower bound for U(T ). The following result 

is Lemma 12 of [8] in which can also be found its converse (Theorem 17 of [8]).

Lemma 16. If v is the center vertex of a generalized star T and A ∈ H(T ), then for every 
eigenvalue λ of A(v), mA(v)(λ) = mA(λ) + 1.

This is to say that v is a Parter vertex of T for every eigenvalue of A(v), or every 
eigenvalue of A(v) is upward in A at v. From Lemma 16 and using the interlacing theorem 
for Hermitian matrices we have the following extension of Condition (b) of Theorem 16 
in [8].

Lemma 17. Let v be the center vertex of a generalized star T and A ∈ H(T ). Any upward 
eigenvalue λ of A (including those of multiplicity 0) lies between two eigenvalues α and 
β of A that do not appear in A(v). Here α and β are the eigenvalues closest to λ on each 
side. Moreover, mA(α) = mA(β) = 1.

Corollary 18. Let T be a g-star with central vertex v of degree k and arm lengths l1 ≥
· · · ≥ lk. If A ∈ H(T ), then U(A) ≥ l1 + 1, so that U(T ) ≥ l1 + 1.

Proof. Let T1 be the arm of T of l1 vertices. Since T1 is a path A[T1] has l1 distinct 
eigenvalues. Because A[T1] is a direct summand of A(v), A(v) has, at least, l1 distinct 
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eigenvalues and, by Lemma 16, each of these l1 eigenvalues is upward in A at v. By 
Lemma 17, then U(A) ≥ l1 + 1. Since U(T ) = min

A∈H(T )
U(A), we have U(T ) ≥ l1 + 1, as 

well. �
Theorem 19. Let T be a g-star on n vertices with central vertex v of degree k and arm 
lengths l1 ≥ · · · ≥ lk. Then

U(T ) = max{1 + l1, 2d(T ) − n}

and the minimum number of distinct eigenvalues among the multiplicity lists in L(T )
equals d(T ).

Proof. We consider the nontrivial case k > 2. From Theorem 15 and Corollary 18, to 
verify equality, we only need to show how to construct matrices A ∈ H(T ) with the 
claimed U(A). Note that for our g-star, d(T ) = l1 + l2 + 1 and n = l1 + l2 + · · ·+ lk + 1
so that

2d(T ) − n = l1 + l2 − (l3 + · · · + lk) + 1.

Then, 2d(T ) − n ≤ l1 + 1 if

l2 ≤ l3 + · · · + lk

and 2d(T ) − n > l1 + 1 if

l2 > l3 + · · · + lk.

In case l1 + 1 ≥ 2d(T ) − n, we may construct a matrix A realizing U(A) = l1 + 1
by assigning each eigenvalue of the second arm (length l2) to the first arm (because 
l1 ≥ l2) and to at least one of the other arms (because l2 ≤ l3 + · · ·+ lk), so that all the 
eigenvalues of arms 3 to k are the eigenvalues of the second arm. With this assignment 
the number of multiple eigenvalues of A is l2 and the total multiplicity of the multiple 
eigenvalues in A is l2 + l2 + l3 + · · ·+ lk− l2 (because the total multiplicity of the multiple 
eigenvalues in A(v) is l2 + l2 + l3 + · · · + lk and, by Lemma 16, v is Parter for each one 
of these l2 multiple eigenvalues of A), so that U(A) = n − (l2 + · · · + lk) = l1 + 1.

If 2d(T ) − n > l1 + 1, the construction is similar, but all multiple eigenvalues of A
will have multiplicity 2. Assign l3 + · · · + lk of the eigenvalues of arm 2 to both arm 1
and to exactly one of the arms 3 to k (note that l2 > l3 + · · · + lk and l1 ≥ l2). By 
Lemma 16 there will then be l3 + · · · + lk eigenvalues of multiplicity 2 (and no other 
multiple eigenvalue) in A, so that

U(A) = n− 2(l3 + · · · + lk) = l1 + l2 + 1 − (l3 + · · · + lk) = 2d(T ) − n.
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It is straightforward to verify that dist(A) = d(T ) holds in both cases verifying the 
second conclusion. �

We’ve conjectured that for any linear tree T , there exists some multiplicity list of T
whose length is d(T ). The above result suggests that we strengthen Conjecture 13.

Conjecture 20. For any tree T , there exists a minimum-length list in L(T ) with U(T ) 1’s.

The database confirms this conjecture for all trees on fewer than 12 vertices. For these 
trees, the minimum length is d(T ), as we mentioned after Conjecture 13.

We now state a conjecture for a general upper bound of U(T ), made by A. Leal-Duarte 
and collaborators. Let D2(T ) be the number of degree-2 vertices of a tree T . Then

Conjecture 21. For any tree T , U(T ) ≤ 2 + D2(T ).

It was shown in [11] that this upper bound follows from the Degree Conjecture. Thus 
the inequality holds for all linear trees that satisfy the sufficiency of the LSP. Moreover, 
because we have verified the Degree Conjecture for all trees on fewer than 12 vertices, 
the upper bound holds for those trees as well. The conjectured inequality is not generally 
an equality. An example is

T = � � �

�

�

� �

in which D2(T ) = 3, but U(T ) = 3. This happens to be the smallest, which may be 
verified via the database, or by hand, or the list in [5].

5.3. Maximum number of 2’s

Since any tree T always has the multiplicity list consisting of all 1’s, the minimum 
number of 2’s appearing in any list in L(T ) always equals 0. However, determining the 
maximum number of 2’s appearing in any list in L(T ) remains an open question.

Definition 22. For any tree T and any integer m ≥ 2, let Nm(T ) be the maximum number 
of m’s appearing in any list in L(T ).

Question 23. Determine N2(T ) from the structure of T .

In the case of g-stars, we can find Nm(T ) for any m ≥ 2. We proceed once again 
from [10] Theorem 9.
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Theorem 24. Let T be a g-star on n vertices with central vertex of degree k and arm 
lengths l1 ≥ · · · ≥ lk (

∑k
i=1 li = n − 1). Let (l∗1, . . . , l∗l1) = (l1, . . . , lk)∗. Then for any 

m ≥ 2,

Nm(T ) = min
{⌊

n− 1
m + 1

⌋
,max

{
t ≥ 0 : t(m + 1) ≤

t∑
i=1

l∗i

}}
.

Proof. Let m ≥ 2. Suppose q̂ = ( ̂q1, . . . , qr) is any complete list of upward multiplicities 
containing M number of m’s, where

M > min
{⌊

n− 1
m + 1

⌋
,max

{
t ≥ 0 : t(m + 1) ≤

t∑
i=1

l∗i

}}
.

We show that q̂ /∈ L̂c(T ). First suppose that M >
⌊

n−1
m+1

⌋
. Because M is an integer, 

M > n−1
m+1 . Because there are M number of m’s, and these m’s must be upward since 

m ≥ 2, we have

r−1
2∑

j=1
(q2j + 1) ≥ M(m + 1) > n− 1.

By Theorem 9 in [10], q̂ /∈ L̂c(T ).
Otherwise, suppose that M > max

{
t ≥ 0 : t(m + 1) ≤

∑t
i=1 l

∗
i

}
. Then M ≥ 1, and 

M(m + 1) >
∑M

i=1 l
∗
i . Let qi1 ≥ · · · ≥ qi r−1

2
be the upward multiplicities of q̂. Because 

there are M number of m’s, all of qi1 , . . . , qiM must be at least m. So

M∑
j=1

(qij + 1) ≥ M(m + 1) >
M∑
i=1

l∗i .

So (qi1 + 1, . . . , qi r−1
2

+ 1) � (l1, . . . , lk)∗. By Theorem 9 in [10], q̂ /∈ L̂c(T ). �
As a brief aside, we characterize the trees that have only one nontrivial multiplicity 

list.

Observation 25. Let T be any tree on n vertices. Then L(T ) = {(1, 1, . . . , 1), (2, 1, . . . , 1)}
if and only if d(T ) = n − 1.

Proof. Suppose L(T ) = {(1, 1, . . . , 1), (2, 1, . . . , 1)}. Since the maximum multiplicity oc-
curring among lists in L(T ) is 2, the path cover number of T is 2. So T is a double 
path, and hence a double g-star. Since all double g-stars satisfy the sufficiency of the 
LSP, the Degree Conjecture holds for T [10]. Applying the Degree Conjecture, T cannot 
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have more than one HDV; otherwise, T would have a multiplicity list with more than 
one number greater than 1. So T has fewer than two HDVs, that is, T is a g-star. Also, 
because the path cover number of T is 2, T must have exactly three arms. Note that

2d(T ) − n = 2d(T ) − (d(T ) + l3) = 1 + l1 + l2 − l3 ≥ 1 + l1.

Thus, by Theorem 19,

n− 2 = U(T ) = max{1 + l1, 2d(T ) − n} = 2d(T ) − n

n− 1 = d(T ).

For the converse, assume that d(T ) = n −1. Then T consists of a path on n −1 vertices 
with an additional pendant on one of the interior vertices. So the path cover number of 
T is 2. Thus T has a list containing a 2, and no list for T has any higher multiplicities. 
Also, no list for T can contain more than one 2, because this would violate the d(T )
requirement in Theorem 3. So L(T ) = {(1, 1, . . . , 1), (2, 1, . . . , 1)}. �
5.4. Highest two multiplicities

There are a few questions related to the highest two multiplicities that we see in any 
multiplicity list of a tree. The first that we state is the most general.

Question 26. What are all the possible pairs of the highest two multiplicities in any 
multiplicity list of a tree?

The above question encompasses two additional specific questions. First, what is the 
largest occurring sum of any two multiplicities in any list in L(T )? This question has 
been answered in [3]. Second, when we attain the maximum multiplicity, what are the 
possibilities for the second highest multiplicity? The difference between this question and 
the previous one is illustrated by the following tree

� ���
�

���

�

���
�� �

��
�

��
�

� �

on 11 vertices.
For this tree, the highest sum of any two multiplicities in any multiplicity list is 8, 

attained by the list (5, 3, 1, 1, 1). However, the highest multiplicity is 6, and the only 
multiplicity list containing a 6 is (6, 1, 1, 1, 1, 1). So the highest two-multiplicity sum is 
not necessarily attained by a list with maximum multiplicity.
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5.5. All multiplicity lists on n vertices

We now consider the collection of all multiplicity lists among all trees with a given 
number of vertices.

Definition 27. For a positive integer n, define

Ln = {q : q ∈ L(T ) for some n-vertex tree T}.

Of course, L1 = {(1)}. We now determine Ln for every n ≥ 2. We can view any 
multiplicity list as a partition of n −2, and as we will see, every partition of n −2 appears 
as a list in Ln. For a positive integer n, let P (n) be the set of all integer partitions of n. 
By convention, P (0) = {∅}.

Theorem 28. For any integer n ≥ 2, Ln = {(q, 1, 1) : q ∈ P (n − 2)}.

Proof. For any n ≥ 2, let T be an n-vertex tree. Because every list in L(T ) has at least 
two 1’s, every list in L(T ) corresponds to a partition of n −2. This proves the left-to-right 
inclusion.

To prove the other inclusion, if n = 2, take (q, 1, 1) such that q ∈ P (n − 2). Then 
q = ∅, so (q, 1, 1) = (1, 1) ∈ L2. So suppose n ≥ 3, and again take (q, 1, 1) such that 
q ∈ P (n − 2). Then denote q as q = (p1, p2, . . . , ps), where pi ≥ 1 for all 1 ≤ i ≤ s, and 
Σpi = n − 2.

Construct a tree T as follows. Make a path of s vertices with vertices labelled 
(v1, . . . , vs). For every i, 1 ≤ i ≤ s, add pi − 1 pendants to vi. Then add one addi-
tional pendant to v1, and add another pendant to vs. Now the number of vertices in 
T is

|T | = s +
s∑

i=1
(pi − 1) + 2 = s + (n− 2) − s + 2 = n.

Also, T has the following properties by construction: T is a linear tree of depth 1, and 
deg vi = pi + 1 for all i, 1 ≤ i ≤ s.

As shown in [10], because T is depth 1, T satisfies the sufficiency of the LSP. Thus the 
Degree Conjecture holds for T . Let q∗ be the multiplicity list given for T by the Degree 
Conjecture. Because deg vi = pi + 1 ≥ 2 for all i, by the Degree Conjecture, every deg vi
appears in q∗ as pi. Thus every entry in q appears in q∗. Because q∗ sums to n, we have 
(q, 1, 1) = q∗ ∈ L(T ). Therefore, because T has n vertices, (q, 1, 1) ∈ Ln. �

Although the proof of Theorem 28 constructs a linear tree that has the given multi-
plicity list, it is actually sufficient to use simple double stars and the star on n vertices. 
The proof is similar.
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Since a path on n ≥ 2 vertices is a (degenerate) double star, the result is trivial if the 
list has n 1’s. Let (p1, . . . , ps, 1, . . . , 1) be a partition of n in which p1 ≥ · · · ≥ ps > 1. 
(We have 

∑s
i=1 pi ≤ n −2.) Suppose that s is odd (the argument for s even is similar). By 

Theorem 5 in [10], (1, p̂1 − 1, 1, p̂3 − 1, 1, . . . , p̂s − 1, 1, 1n−2−
∑s

i=1 pi) is a list of upward 
multiplicities of a (single) star T1 on 1 + p1 + p3 + · · ·+ ps + (n − 2 −

∑s
i=1 pi) vertices, 

and (1, p̂2 − 1, 1, . . . , ̂ps−1 − 1, 1) is a list of upward multiplicities of a (single) star T2 on 
1 +p2 + · · ·+ps−1 vertices. By the Original Superposition Principle (Theorem 7 in [10]),

1 p̂1 − 1 1 p̂3 − 1 . . . 1 p̂s − 1 1 1n−2−
∑s

i=1 pi

0 1 p̂2 − 1 1 . . . ̂ps−1 − 1 1 0 0 . . .
1 p1 p2 p3 . . . ps−1 ps 1n−1−

∑s
i=1 pi

is a multiplicity list of the double star resulting from connecting the central vertices of 
T1 and T2.

6. Relationship to the IEP

Given an n-vertex tree T and real numbers λ1, . . . , λn, the Inverse Eigenvalue Problem 
(IEP) is to construct, if possible, a real symmetric matrix whose graph is T and with 
eigenvalues λ1, . . . , λn. The next question addresses the relationship between lists in 
Lo(T ) and the IEP.

Question 29. Given a tree T , for which lists in Lo(T ) may the underlying eigenvalues be 
taken to be any real numbers in proper order and with the given multiplicities?

This question is answered for g-stars and double g-stars in [8,10]. It is further shown 
in [10] that the IEP is solvable for any ordered multiplicity list of a depth 1 linear tree. 
There, it is also conjectured that this property holds for all linear trees. However, the 
property does not hold in general for nonlinear trees: for the unique 10-vertex nonlinear 
tree, the list (1, 2, 4, 2, 1) does not allow arbitrary choices of the eigenvalues [10]; see [1]
for a larger example. It is not known whether the answer to Question 29 is negative for 
all lists for any nonlinear tree.
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Appendix A. Multiplicity lists on 11 vertices

This Appendix contains chosen database information for the 11-vertex trees. Each tree 
has path cover number p, diameter d and U (the minimum number of 1’s occurring among 
the multiplicity lists of the tree) in the top-right corner of its drawing. Below the drawing 
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of each tree are its multiplicity lists in abbreviated form with entries concatenated and 
all 1’s removed.

� � � � � � � � � � �
U = 11
d = 11
p = 1

� �

�

� � � � � � � �
U = 9
d = 10
p = 2

2

� � �

�

� � � � � � �
U = 9
d = 10
p = 2

2

� � � �

�

� � � � � �
U = 9
d = 10
p = 2

2

� � � � �

�

� � � � �
U = 9
d = 10
p = 2

2

� �

�

�

� � � � � � �
U = 8
d = 9
p = 3

3; 2

� �

�

�

�

� � � � � �
U = 7
d = 9
p = 2

2 2; 2

� �

�

� �

�

� � � � �
U = 7
d = 9
p = 3

3; 2 2; 2

� �

�

� � �

�

� � � �
U = 7
d = 9
p = 3

3; 2 2; 2

� �

�

� � � �

�

� � �
U = 7
d = 9
p = 3

3; 2 2; 2

� �

�

� � � � �

�

� �
U = 7
d = 9
p = 3

3; 2 2; 2

� �

�

� � � � � �

�

�
U = 7
d = 9
p = 3

3; 2 2; 2

� � �

�

�

� � � � � �
U = 7
d = 9
p = 3

3; 2 2; 2

� � �

�

�

�

� � � � �
U = 7
d = 9
p = 2

2 2; 2

� � �

�

� �

�

� � � �
U = 7
d = 9
p = 3

3; 2 2; 2
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� � �

�

� � �

�

� � �
U = 7
d = 9
p = 3

3; 2 2; 2

� � �

�

� � � �

�

� �
U = 7
d = 9
p = 3

3; 2 2; 2

� � � �

�

�

� � � � �
U = 7
d = 9
p = 3

3; 2 2; 2

� � � �

�

�

�

� � � �
U = 7
d = 9
p = 2

2 2; 2

� � � �

�

� �

�

� � �
U = 7
d = 9
p = 3

3; 2 2; 2

� � � � �

�

�

� � � �
U = 7
d = 9
p = 3

3; 2 2; 2

� � �

�

�

� � � � � �
U = 7
d = 9
p = 2

2 2; 2

� � � �

�

�

� � � � �
U = 7
d = 9
p = 2

2 2; 2

� � � � �

�

�

� � � �
U = 7
d = 9
p = 2

2 2; 2

� �

�

���
�� �

� � � � � �
U = 7
d = 8
p = 4

4; 3; 2 2; 2

� �

�

�

�

�

� � � � �
U = 6
d = 8
p = 3

3 2; 3; 2 2; 2

� �

�

�

� �

�

� � � �
U = 6
d = 8
p = 4

4; 3 2; 3; 2 2; 2

� �

�

�

� � �

�

� � �
U = 6
d = 8
p = 4

4; 3 2; 3; 2 2; 2

� �

�

�

� � � �

�

� �
U = 6
d = 8
p = 4

4; 3 2; 3; 2 2; 2

� �

�

�

� � � � �

�

�
U = 6
d = 8
p = 4

4; 3 2; 3; 2 2; 2



S.P. Buckley et al. / Linear Algebra and its Applications 511 (2016) 72–109 91

� �

�

�

�

�

� � � � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

� �

�

�

� � � �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� �

�

� � �

�

�

� � �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� �

�

� � � �

�

�

� �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� �

�

�

�

�

�

� � � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

�

�

� �

�

� � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

�

�

� � �

�

� �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

�

�

� � � �

�

�
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

� �

�

�

�

� � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

� �

�

� �

�

� �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� �

�

� �

�

� � �

�

�
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� �

�

� � �

�

�

�

� �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

�

�

�

� � � � �
U = 5
d = 8
p = 2

2 2 2; 2 2; 2

� �

�

� �

�

�

� � � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

� � �

�

�

� � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� �

�

� � � �

�

�

� �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� � �

�

���
�� �

� � � � �
U = 6
d = 8
p = 4

4; 3 2; 3; 2 2; 2

� � �

�

�

�

�

� � � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2
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� � �

�

�

� �

�

� � �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� � �

�

�

� � �

�

� �
U = 5
d = 8
p = 4

4; 3 2; 3; 2 2 2; 2 2; 2

� � �

�

�

�

� � � � �
U = 6
d = 8
p = 3

3 2; 3; 2 2; 2

� � �

�

�

�

�

� � � �
U = 5
d = 8
p = 2

2 2 2; 2 2; 2

� � �

�

�

� �

�

� � �
U = 5
d = 8
p = 3

3 2; 3; 2 2 2; 2 2; 2

� � �

�

�

� � �

�

� �
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Appendix B. Supplementary material

We have assembled a Microsoft Access database containing all the multiplicity lists 
for the 436 trees on fewer than 12 vertices. The data for each tree T include a drawing 
of the tree, its multiplicity lists (with implied 1’s removed for brevity), the diameter, the 
path cover number, the number of vertices of each degree from 1 to 10, and U(T ).

The database is searchable and contains an instruction page for ease of use.
Supplementary material related to this article can be found online at http://

dx.doi.org/10.1016/j.laa.2016.08.002.
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