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ABSTRACT 

The York River drainage basin is rural, with an 

economy based on farming, logging, fishing and recreation. 

Water quality conditions are generally good, with low 

chlorophyll and nutrients and low fecal coliform counts. 

Dissolved oxygen concentrations are high except for peri­

odic deoxygenation of the water deeper than 8 m in the 

reach extending 10 km upstream of the mouth. 

A quasi-three dimensional tidal average model was 

constructed and calibrated using intensive field data 

collected in June and July, 1976 and verified using slack 

water run data from September, 1976. The model components 

are: salinity, fecal coliform, chlorophyll, CBOD, dissolved 

oxygen, organic nitrogen, ammonia, nitrate plus nitrite, 

organic phosphorus and inorganic. phosphorus. 

Model runs revealed that the deep-water deoxygenation 

is a natural condition little influenced by human activity 

and that the York is insensitive to point source loadings, 

owing to its enormous volume. 

vii 



I. SUMMARY AND CONCLUSIONS 

1. This report concerns the calibration and verification of 

an ecosystem model for the York River between the mouth and 

Terrapin Point, about 30 miles (4-8 km) upstream, and the 

underlying theory and approximations. 

2. The York drainage basin is relatively unpopulated and 

agricultural in nature. Industries include pulp and paper 

processing, oil refining and fossil-fuel power generation. 

Recreational water uses are important. The region is char­

acterized by a hot summer, relatively dry fall and mild, wet 

winter. 

3. A hydrographic survey was conducted in June and July, 

1976 at eight transects in the York plus the mouths of the 

Mattaponi and Pamunkey. Time series data on salinity, temp­

erature, dissolved oxygen, CBOD, chlorophyll, organic nitrogen, 

ammonia, nitrate, nitrite, total phosphorus and soluble reactive 

phosphorus were collected. There were three stations per 

transect in the York and one station each at the mouths of 

the Mattaponi and Pamunkey. 

4. The midstream stations were sampled for the same variables 

in slack water runs in September, 1976. 
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5. In the vicinity of West Point, individual dissolved oxygen 

measurements were found to be as low as 4.5 mg/2, but the 

daily average was found to be above 5.0 mg/2. 

6. Between Gloucester Point and the mouth of the York, the 

river is quite deep, approaching 20 m in places. Data from 

the summer of 1976 and other data reveal an oxygen depletion 

zone in the deeper layers. Daily average dissolved oxygen 

in this region was below three mg/2, with some individual 

measurements below one mg/2. 

7. Chlorophyll concentration was below ten micrograms per 

liter in almost all cases. Chlorophyll growth appears to be 

primarily light-inhibited, i.e. turbidity limited. Nitrogen 

availability a~pears to be a second inhibiting factor. 

8. Nutrient concentrations are insufficient to support a 

bloom condition. 

9 . 

10. 

ppt. 

Fecal coliform counts rarely exceed 3.6 MPN/100 m2. 

Salinity at the downstream boundary ranged from 20 to 23 

0 
Temperature throughout the estuary ranged from 24 C to 

26°C, marking this period of time as less than critical from 

the standpoint of water quality. 
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11. The low dissolved oxygen in the deeper layers off Yorktown 

seems to be a naturally occurring condition little influenced 

by human activities. 

12. The enormous water volume of the York makes it insensitive 

to the magnitude of point discharges typically present. 
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II. INTRODUCTION 

The first substantial water quality investigation of 

the York River was known as ''Operation York River", carried 

out in October, 1969. This project concentrated on the Matta­

poni and Pamunkey Rivers, but included a portion of the York 

near west Point. The product was a tidal-time model of 

salinity, dissolved oxygen and biochemical oxygen demand 

(hereafter abbreviated BOD) (Hyer, et al., 1971). This model 

was used by the Division of Water Resources for a study of 

point source waste discharges in the vicinity of West Point. 

In 1969 there was also another oxygen balance and dye tracer 

study of the confluence of the Mattaponi and Pamunkey Rivers 

(Harrison & Fang, 1971). 

Tidal currents and bathymetry were measured in 1970 

for VEPCO as part of a study to determine the environmental 

effects of a proposed expansion of the fossil-fueled power 

plant at Yorktown. This same construction project became the 

occasion for an ecological study from 1972 to 1974 (Jordan, 

et al., 1975). Frequent slack water runs were made in the 

summer of 1972 to study the aftermath of Hurricane Agnes 

(Hyer & Ruzecki, 1974). 

In 1973, the entire York estuary was studied intensively. 

Measurements included both water quality and tidal current from 

the mouth to the confluence of the Mattaponi and Pamunkey. The 

data collected were used for a tidal-time water quality model 

of salinity, dissolved oxygen and BOD (Hyer, et al., 1975). 

This model was also successfully applied. This model was 

-l 
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one-dimensional, i.e., averaged over cross-section. However, 

the lower part of the York River is deeper than ten meters 

for most of its length and in places approaches thirty meters. 

Thus, in the summer when water temperatures exceed 20°C, 

dissolved oxygen stratification occurs even though tidal 

current amplitude is greater than l ft/sec (0.3 m/sec). Data 

reported by Jordan (1975) show the normally occurring summertime 

dissolved oxygen difference between surface and twenty meters to 

be five mg/1 to seven mg/1 or greater. Hence, the deeper waters 

frequently fell below three mg/1 of dissolved oxygen. This 

dissolved oxygen stratification has been observed with varying 

degrees of salinity stratification from two parts per thousand 

to six parts per thousand. 

In view of this dissolved oxygen stratification, a 

two-layer model was needed for the York River. Furthermore, 

the width of this estuary (up to two nautical miles or 3.7 km) 

indicated the use of lateral segmentation. The model to 

be used has three lateral compartments in each of two layers, 

or six compartments per longitudinal reach. Hence, it is 

called a quasi-three-dimensional model. 

This model only deals with tidal average conditions of 

observed quantities and with mean flows. The biochemical 

interaction processes are identical to those used for the 

Small Coastal Basin models (Hyer, et al., 1977). 
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III. DESCRIPTION OF STUDY AREA 

The tidal portion of the York River watershea has 

.:::-enained relatively rural, with a heavy de?encience en f 2...:::-::.~ :.:· 

~chiefly corn and soybeans) _and logging. Commercial fi.:;:::::.::::g 

of oysters, crabs and pelagic fish is also important . 

. ~ndustry is concentrated at both ends of the York. Upstream, 

at West Point, (see Figure 1) is a pulp and kraft paper mill. 

Downstream, near the mouth, are an oil refinery and a fossil-

fueled electric power plant. 

The climate is humid-subtropical. There are ap~roxi-

mately 45 inches of rain, of which approximately 12 inches is 

runoff. Precipitation is lowest between September and 

Jar.u~ry and highest in July and August. Owing to evc?O-

transpiration, however, the heavy thunderstorms of S\.lrr .. :ner have 

mu=h less effect on fluvial flow than do the rains of S?ri::::: . 

Air temperature in January varies from a low of approxi~ately 

30°F (-l°C) to a high of so°F (lo0 c). In July the mean daily 

rna:<-:.mum temperature is approximately 88°F (30°C) and the 

minimum is 68°F (20°C). 

The most representative stream gauging stations in 
!, 2 

the drainage basin are at Hanover (drainage area 1081 rn~ or 

2800 krn2 ), on the Parnunkey and Beulahville (drainage area 

601 rni 2 or 1557 krn2 ) on the Mattaponi. The average discharges. 

at these stations are 963 cfs (27.3 rn 3sec-1 ) and 580 cfs (16.4 

3 -1 k rn sec ) respectively. The total drainage area of the Yor 

River Basin is 2540 rni 2 or 6580 krn2 . River discharge tends to 



/ 

t\. fAll liNE .) 

~'-r-~---*n 
--.1 

Figure 1. Downstream sub-basin of York drainage basin, 
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be greater than average in the period January - April and much 

less than average in July - September. The gauging station 

at Hanover has recorded historical extremes of 40,300 cfs 

(1140 m3sec-l) and 12 cfs (0.3 m3sec-1 ) with extremes at 

Beulahville of 16,900 cfs (479 m3sec-l) and 5.9 cfs (0.17 m3 

sec-1 ). 

Tidal waves propagate upstream at approximately fourteen 

miles per hour although tidal patterns near the mouth are ~~=~ 

more complicated (see Figure 2). As the tidal wave pr~gres~es, 

its amplitude increases. The mean tidal range is 2.2 :eet 

(0.7 m) at Tue Marshes Light and 3.0 feet (0.9 m) at West 

Point. The tide range continues to increase in the tributaries, 

reaching 3.9 feet (1.2 m) at Walkerton in the Mattaponi and 

3.3 feet (1.0 m) at Northbury in the Pamunkey. Tidal action 

ceases at th~ fall line, which is approximately three miles 

upstream of the Route 360 bridge in both the Mattaponi and 

Pamunkey Rivers. The tidal wave also undergoes a cha~ge __ _ 

phase relationship. At Tue Marsh, low water occurs only 

about an hour after maximum ebb current, indicating an almost 

pure traveling wave. At West Point, this time difference is 

about two hours, indicating a shift toward standing wave 

characteristics. Average tidal current increases fro~ 1.0 !eet 

2er second (30 em/sec) near the mouth to 1.8 feet per second 

(54 em/sec) near West Point but then decreases to 1.5 feet per 

second (46 em/sec) at Walkerton and 0.8 feet per second (24 em/ 

sec) at Northbury. 
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Net tidal prism has been calculated from the intertidal 

volumes of Cronin (1971). Figure 3 shows net tidal pris~ 

versus distance upstream for the York. Although monotonic 

by de=inition, the tidal prism curves are not linear, but 

reflect the changes in tidal amplitude a~d stream geometry as 

the observer proceeds upstream. 



0\ 
0 ........ 
r-1 

<') 

10: X .... 
of'1 
r-1 +l 
X lH 

1"'1 ~ 
00 . 

10: N 
II U) 

·rl ., 
+l H 
4-1 

(:4 

"' r-1 
0 cU 
.--1 '{j 

·rl 
8 

5 ------------------------------------------~-------, 

4 

3 

2 

1 

York River 

'"" 

I 

0 

""' 

10 20 30 40 

Distance Upstream (statute miles) 
1 statute mi=l.609 km) 

Figure 3. York River calculated tidal prism. 

I 

50 60 

I-' 
1-' 



12 

IV. DESCRIPTION OF THE WATER QUALITY MODEL 

A. Biochemical Interactions 

The model has ten components, i.e. ten dependent 

variables predicted as functions of space and time. Eight of 

these components interact (see Figure 4), with chlorophyll 

being the kingpin of the model. There are two closed nutrient 

cycles which begin and end at chlorophyll (here used as an 

index of phytoplankton biomass). In addition, the carbonaceous 

BOD-dissolved oxygen submodel interacts with chlorophyll through 

photosynthesis and respiration terms and with the nitrogen 

cycle through an ixidation term. Salinity is independent of 

the other components (apart from a weak influence on saturation 

concentration of dissolved oxygen) and bacteria is totally 

independent of the other components. For a discussion of 

parameters, see a description of the ecosystem model used for 

the Back and Poquoson Rivers (Hyer et al., 1977). 

B. Hydraulic Processes 

The model includes the following transport processes: 

longitudinal mean advection and gravitational circulation; 

longitudinal dispersion; lateral dispersion; vertical mixing 

and advection resulting from the gravitational circulation. 

The theories are given below. 

1. Longitudinal 

The freshwater discharge into the first reach 

is specified, as is the drainage area upstream of the 

first transect. This flow is partitioned among the 
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six compartments according to partial cross-section 

areas in the farthest upstream transect. The dr.J.i::-.ass 

area of each reach is specified. Lateral inflo1~ i~:o 

each reach is calculated based on the as surnptio:: ::-: 

equal runoff for equal area (hydrologic ho~ogene-~~. 

One-half of the lateral inflow is assigned t::) e~· r: 

side lateral division. 

The gravitational circulation is dr i '.'C1 ;y: 

haline structure and the equations usej in t~e ~~~2~ 

are based on the theory of Hansen and Rattray (lSCS) 

They have derived the longitudinal transport in a 

stratified estuary as a function of depth. In t.:'1e 

absence of wind stress, this transport is 

¢ ( n ) = 1 ( 2 - 3 n + n 3 ) + v Ra ( n - 3 n 3 + 2 n 4 ) 
2 48 

where n is the dimensionless depth and vRa is a 

dimensionless parameter describing the intensity of 

estuarine gravitational circulation. Inspection of t~a 

velocity profile curves reveals that the dimensionless 

level of no motion is very nearly 0.5. However for real 

(non-rectangular) channels, the transport in the upper 

layer is: 

where Q is the fresh water inflow and f(n) is a function 

of the dimensionless depth, to be described under 

Method of Solution. The trans?ort in the lower layer 

is then: 

Q - Q 
u 
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The quantity vRa can be calculated ~~om 

data. Hansen and Rattray (1966) give the followi~g 

relation: 

-3/4 
vRa = 16F m , where 

, a densimetric 

Froude number. The parameter Fm is calculated 

empirically for conditions at the mouth of the river. 

To allow for the streamwise variation of mean flow, 

the following equation is used: 

vR a (~)) for x < L 
+ 19 2 g L 

for x > L 

g (8) is derived empirically and L is the intrusion 

length. 

g(O) = 1, and 

g(l) = o. 

To extrapolate intrusion length from one co~dition 

to the general case, a scaling argument is used. 

According to Hansen and Rattray (1965): 

\vhere M is a tidal mixing paraneter, Q is fresh wa ::~::::-

flow, D is depth and B is width and Kv is the ~ertical 

turbulent mixing coefficient. From Hansen a~d Rattray 

(1966): 
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M -7/ 5 so that a Q ' -v 

L 
-2/5 a Q . 

The functional form of g (~) was chosen in the 

process of model calibration to be: 

g(r) = /1 - r ; x<L 

Since gravitational circulation has been included 

explicitly, the corresponding dispersion coefficient (shear 

effect) should not be included, as it would have to be in 

a one-dimensional model. However, since tidal advection 

does not appear explicitly in the model, the so-called "phase 

effect" dispersion coefficient (Kuo & Fang, 1972) must 

be included. This mode of transport arises out of the 

combined ·effect of lateral variation in tidal current 

strength and lateral mixing. Salt, for example, is carried 

farther upstream in the center channel than along the 

shoals, during flood tide. Lateral mixing tends to spread 

this salt outward, toward the banks, where tidal current 

is weaker. On the subsequent ebb tide, this salt is not 

carried back as far as its origin. The net effect is a 

displacement upstream. This effect is approximated by a 

dispersion coefficient (Kuo & Fang, 1972). 
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Ut is the magnitude of the tidal current, A is the time­

average cross-section area and 8 is an empirical constant 

of order unity. 

2. Vertical 

Vertical volume transport from the lower layer 

into the upper is calculated directly from the convergence 

of the mean flow in the lower layer. The vertical mixing 

coefficient is estimated by successive trial. Values tend 

to lie in the range 10-4 ft 2/sec - 10- 3 ft 2/sec (0.09 -

0.9 cm2/sec). 

3. Lateral 

No lateral advection between compartments occurs 

in the model. However, lateral mixing is provided for. 

Holley, et al. (1970) have summarized the results of several 

previous investigations who have found the lateral dispersion 

coefficient C to be approximately y 

Cy = 0.067 RU, where 

R is the hydraulic radius and U is the shear velocity. 

Using typical values for the York River estuary, the 

numerical result is of the order of 5 ft 2/sec (4500 cm2/sec). 

C. Method of Solution 

The basic equation given in the previous sections 

must be put in a form suitable for digital computation. This 

means expressing the equations in finite-difference form, 
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so that they may be time-integrated using a digital computer. 

The water body must be conceptually broken down into control 

volumes, in each of which the water quality components are 

spatially averaged. Thus, the set of equations to be 

solved per time step is the number of control volumes 

(model compartments) multiplied by the number of components 

being modeled. 

Each compartment exchanges material with the 

one above it or below it, with the one or two components 

beside it and with the compartments upstream and downstream 

from it. In generating the equations, each of these ex-

change rates must be expressed in terms of compartmental 

averages, a process necessarily involving approximations. 

Let a component C in the ith reach, jth position laterally 

and the ~th layer be represented by 

C • • n 
~ ,J > .:V 

The numbering scheme for compartments is shown 

in Figure 5. 

1 < i < (i = 1 at upstream end) -
j = 1 for south and west side 

j = 2 for center 

j = 3 for north and east side 

~ = 1 for upper layer 

9, = 2 for lower layer 
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The lateral flux into the i, j, ~ compartment from 

the i, j-1, ~ compartment is 

C •. 1 n - C .. n 
~WJ- 'N ~.J 'N L.H .. 

1
E .. l where 

• • 1 n ~ ~.J- ~,J- ' 
~ ,J- 'N 

L. is the length of the ith segment, H .. 1 is the depth of 
~ ~I]-

the interface between the i, j-1, ~ compartment and the i, 

j, ~ compartment and W. . 
1 

n is the center-to-center 
~,J- fN 

distance. E .. 1 is the mixing coefficient between these 
~I]-

tWO compartments. Naturally the mass balance for the i,j-1, 

~ compartment has a corresponding efflux. 

There is both mixing and advection longitudinally. 

The transport into the i, j, ~ compartment from the i~l,j 

t compartment is 

C. 1 . - C. . n 
~- ,],~ ~I]IN 

X. l - X. 
A. . nE! . 
~I]IN ~,J 

where 

~- ~ 

X. is the distance, upstream from the mouth, of the center 
~ 

of the ith segment, A .. n is the 
~I J IN 

i-l,j,t compartment and the i,j,~ 

interface area between the 

compartment and E' .. is 
~,] 

the mixing coefficient between the two compartments. 

Advection transport includes the two-layer estuarine 

flow. Let the total mean freshwater flow into the i,j,l 

compartment and the i,j,2 compartment be: 

Qm .. 
~,J 

Hansen and Rattray (1965) give the transport function for 
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gravitational circulation as 

where vRa is a parameter expressing the strength of gravita-

tional circulation and n is the dimensionless depth. This 

transport function can be written 

where z. 
~ 

H. 
J 

H 

The flow into the upper (i.e. i,j,l) compartment is: 

z. vRa z. X. 
~ ~ F(..2:.) 1-P (-) + 192 P2 (H) 

Q .. 1 Qm .. ( 1 H L ) = 
~I] I ~,] H. vRa H. X. 

1-P (__]_) + 19 2 p 2 ( -rr) F ( ..2:.) 1 H L 

= depth from surface to interface between 
upper and lower layer; 

= total depth of upper and lower jth compart­
ments combined; 

= 

X < L 

X > L 

L = length scale for circulation. 

Both z. and L are determined empirically. The flow into the 
~ 

lower compartment is: 

Q · · 2 = Qm · · - Q · · 1 ~,], ~,] ~,], 

There is both advective transport and turbulent 

mixing between the upper and lower layers. The advective 

transport comes from the convergence of the flow in the 

lower layer, i.e. 
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q .. = Q .. 2 - Q. 1 . 2 l,J l,J, J.+ ,J, 

The transport rate into the upper layer due to vertical 

mixing is: 

c .. 2 -c .. 1 
l,J, l,J, L.W.EI I .. 

D. . l l l,J l,J 
where 

o. . is the vertical separation of the centers of the upper l,J 

and lower compartments, W. is the width of the interface and 
]. 

E 1 
'. • is the mixing coefficient. l,J 

The integration scheme uses an implicit method 

for the biochemical terms and the longitudinal exchanges 

while calculating the lateral and vertical exchanges ex-

plicitly at the back time step. The finite difference 

equation for time step beginning at time t can be written: 

.6.t 

1 
t t t t t =-(a c._l . n+ s c.+l . n+ rc .. n 

2 ]. ,J,..v ]. ,J,..v l,J,..v 

+ t+.6.tc t+.6.t st+Li.tct+.6.t a . 1 . .Q, + 
J.- I J I i+l,j,.Q, 

r t+ Li. tc ~+ ~ t ) + t t t 
+ s (C .. 1 .Q,- c. . ~) 

l, J 1 .Q, l,J- I J., J I 

t t t + l1 (C. '+1 .Q, - c. . ~) J., J I J., J I 

t t 
c. . ~ )+ t + v (C .. 3 .Q, - J .. ~ J., J I - ].I J I ' l,J, 

where a, S, r, s, l1 and v are (possibly time-dependent) known 

expressions and J is the source term, including both external 

loadings and transmutations from other components. The factor 
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r includes the first-order decay rate, if any. If all the 

terms containing t+D.t (i.e. the quantities yet unknown at time 

t) are isolated on one side of the equation, the result is: 

c t+D.t 
i' j' 9., 

rt+D.tD.t at+D.tD.t 
(1- 2 )-C. 1 . n 2 

~- f J f x, 

- c t+D.t 
i+l,j,Q, 

t rtD.t t atD.t 
= C. , n ( 1 + --) + C. 1 , n -2 

~,J,x, 2 ~- ,J,;v 

t ct ) ct/).t + (C. · 1 n - • • n "" 
~,J- t1v ~t]t1v 

t - c.t. Q,) vtD.t + J~ . Q, + (C. . 3 n J , J ~f]f -1v ~I I .J..I I 

The unknown on the left-hand side of the equation are inter-

connected and must be solved simultaneously. This kind of 

system of equations is called "tridiagonal" due to the pattern 

made when the equations are expressed in matrix form. The 

special fast method for solving this kind of system is found 

elsewhere (Fang, et al., 1973) · 

\; 

' ' ,, 
~-"~~ ~~ _. 
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D. Evaluation of Parameters and Rate Constants 

1. Hydraulic Inputs 

a. Freshwater Inflow. The York is formed by the 

confluence of the Mattaponi and Pamunkey Rivers. Both of 

these streams are gauged~ the Mattaponi at Beulahville and the 

Pamunkey at Hanover. The records for these gauging stations 

for the months of June through September, 1976, are shown in 

Table 1. For model operation these flows were averaged for 

the month period prior to the day on which the_survey was 

conducted and were augmented to include the lateral inflow 

occurring between the gauging station and the transect farthest 

upstream. Finally, the Mattaponi flow went into the J=3 

compartment while the Pamunkey flow was divided equally be­

tween the J=l and J=2 compartments. 

b. Longitudinal Dispersion Coefficient. The formula 

used is given in a previous section. The constant S was found 

to give the best results when set at 2. The dispersion coef­

ficient then turns out to be in the range 500-1000 ft 2;sec. 

c. Circulation Parameter. The input constant vRa 

indicates the strength of the density-induced circulation. 

This parameter and the input S were simultaneously adjusted to 

reproduce the observed salinity. The final value of vRa was 

100. 

2. Biochemical Inputs 

a. Reaeration Coefficient k 2 . O'Connor and Dobbins 

(1956) presented a theoretical derivation of the reaeration 

coefficient, in which fundamental turbulence parameters were 



Date 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

•·:in. 
:-1ean 
~lax. 
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TABLE 1. Flow Records for Beulahvi1le 
and Hanover, Virginia, 1976 

Beulahville 
(Mattaponi) 

Hanover 
(Pamunkey) 

June July Aug. Sept. June July .r..ug. 

367 
369 
401 
467 
442 
358 
297 
258 
237 
200 
179 
163 
155 
145 
142 
137 
154 
203 
216 
245 
311 
29 2 
277 
287 
29 3 
367 
473 
510 
429 
342 

137 
291 
510 

260 
190 
160 
140 
120 
120 
130 
160 
190 
190 
170 
180 
160 
150 
140 
120 
150 
240 
420 
250 
160 
130 
110 

95 
90 
80 
78 
76 
78 

110 
140 

76 
154 
420 

110 
90 
72 
60 
56 
50 
46 
47 

123 
249 
207 
131 

91 
74 

123 
188 
176 
171 
133 
100 

81 
69 
61 
55 
50 
47 
43 
49 
64 
69 
65 

43 
95.2 

249 

58 
53 
62 
67 
66 
57 
49 
45 
41 
43 
65 
61 
52 
46 
48 

385 
836 

1010 
878 
585 
371 
247 
187 
148 
123 
109 
107 
314 
340 
273 

41 
224 

1010 

860 
1020 
1080 
1010 

641 
475 
366 
349 
325 
305 
289 
259 
243 
263 
285 
277 
329 
468 
612 
581 
597 
893 

1790 
1240 

830 
820 

1470 
665 
299 
259 

248 
630 

1790 

257 
246 
237 
224 
219 
202 
210 
226 
221 
244 
256 
265 
259 
237 
224 
261 
305 
257 
223 
223 
210 
198 
182 
177 
168 
165 
177 
169 
160 
162 
159 

159 
217 
305 

151 
154 
153 
148 
137 
134 
129 
125 
246 
269 
226 
183 
159 
168 
180 
598 
501 
281 
208 
175 
160 
146 
143 
129 
124 
112 
112 
124 
154 
165 
1.71 

112 
189 
598 

137 
187 
183 
162 
150 
147 
151 
151 
150 
136 
120 
lO:? 
1::..c 
119 
521 
627 
• 1 -... _..) 

321 
267 
193 
159 
141 
140 
143 
148 
179 
830 
579 
329 

109 
2-!1 
830 
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taken into account. They derived the following for~ula: 

(D U)l/2 
c 

where Dc is the molecular diffusivity of oxygen in water, u 

and H are the cross-sectional mean velocity and depth 

respectively, and (k 2 > 20 is the reaeration coefficient at 20°c. 

This formula has been shown to give a satisfactory estima~e 

of k for a reach of river with cross-sectional mean depth and 
2 

velocity more or less uniform throughout the reach. However, 

this formula must be modified when dealing with two layered 

3/2 . . h systems. The factor H appear~ng ~n t e denominator must 

be broken into two factors. 

Hv is the mean depth of the volume to which oxygen is being 

replenished. In the two layered model Hv=H 1 , i.e., the mean 

depth of the upper layer. The other depth, Hs is the character­

istic depth of the vertical shear of the horizontal flow. 

This depth will have an intermediate value between the depth 

of the upper layer and the total depth. Hence, 

i.e., the depth of the upper layer plus half the depth of t:.e 

lower layer, will be approximately correc~. 
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To adjust k 2 for temperatures other chan 20°C, El~or9 

and West's (1961) formula is used 

where T is the water temperature in centigrade degrees. 

b. CBOD Oxidation Rate, k 1 . The oxidation rate 

of CBOD (carbonaceous biochemical oxygen demand) normally 

ranges from 0.1 to 0.5 per day. The rate also depends on 

water temperature; the following formula is used for this 

temperature dependence, 

c. Saturated Oxygen Content, DO . The saturatio~ s 

concentration of dissolved oxygen depends on temperature and 

salinity. From tables of saturation concent~atio~ (Car~itt 

and Green, 1967) a polynomial equation was dete~ined by a 

least-squares method. 

DO s 
? = 14.6244- 0.367l34T + 0.0044972T-

- 0.0966S + 0.0020STS + 0.0002739S 2 

where S is salinity in parts per thousand and DOS is in mg/ 

liter. 

d. Benthic Oxygen Demand, BEN. The bottom s2di:.e~t 

of an estuary may vary from deep deposits of 3ewage or 

industrial waste origin to relatively shallow deposits of 

natural material of plant origin and finally to clean rock and 

sand. The oxygen consumption rate of the bot~o~ deposits 
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must be determined with field measurements. Field data were 

obtained in the summer of 1976 (see Table 2). Sampling 
~ 

locations are shown in Figure 6. A value of 1.0 gm/m~/day at 

20
oc is typical average for most estuaries. The t~~perature 

effect was simulated by thomann, 1972. 

BEN= (BEN)
20 

. 1.065(T-2 Q} 

where (BEN) 20 is the benthic demand at 2Q°C. 

e. Coliform Bacteria Dieoff Rate, kb. 

where (kb)
20 

is the dieoff rate at 20°C an~ Tis temperature 

in degrees centigrade. The normal range of (kb) 20 is 0.5-

4.0/day. 

f. Settling Rate of organic Nitrogen, knll" 

knll is of order of 0.1/day 

g. Organic N to NH 3 Hydrolysis Rate, kn12 . 

knl2 = aT 

where a is of order of 0.007/day/degree. 

h. NH 3 to No 3 Nitrif~cation Rate, kn23 

kn23 = aT 

where a is of order of 0.01/day/degree. 



Date 

25 June 

25 June 

2 July 

2 July 
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TABLE 2. Benthic Oxygen Demand Studies 
York River, 1976 

Station Benthic Ox~gen Demand 
(gm/m /day) 

7A 1.6 

7B 3.4 

SA 1.5 

lB 0.9 
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Figure 6. The York River showing model segments and benthic oxygen demand sampling sites. 
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i. N0 3 Escaping Rate, kn 33 

knJJ is usually negligible. 

j. Organic Phosphorus Settling Rate, kpll 

kpll is order of 0.1/day. 

k. Organic P to Inorganic P Conversion Rate, kp
12 

aT 

Where a is of order of 0.007/day/degree. 

1. Inorganic Phosphorus Settling Rate, kp 22 

kp22 is of order of 0.1/day. 

m. Nitrogen-chlorophyll Ratio, 

a is of order of 0.01 mg N/~g c. n 

a 
n 

n. Phosphorus-chlorophyll Ratio, a p 

a is of order of 0.001 mg P/wg c. 
p 

o. Carbon-chlorophyll Ratio, a c 

ac is of order of 0.05 mg carbon/~g c. 

p. Oxygen Produced Per Unit of Chlo=o9hyll Growth, a -
~ 
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= 2.67 · ac · PQ 

?Q is photosynthesis quotient, PQ = l-1.4. 

q. Oxygen Consumed Per Unit of Chlorophyll H.cs;::;:.rs:l, 
ar 

= 2.67 · a /RQ ar c 

where RQ is respiration ratio. 

r. Phytoplankton Settling Rate, kcs 

where st is settling velocity, whose normal range is 15 to 

l50 em/day (0.5 to 5 ft/day) and h is the hydraulic depth. 

s. Zooplankton Grazing, Kg. In reality, Kg sho~ld 

depend on the concentration of herbivorous zooplankton 

biomass. This effect has been included in the grazing rate. 

t. Endogenous Respiration Rate, Rs 

R = aT s 

where a is of order of 0.005/day/degree. 

u. Growth Rate, Gc. The growth rate expression 

is that developed by Di Toro, O'Connor and Thomann (1971) 

and as used in ~his model is given by 

G = k T • I (I I c gr a 
temperature 

effect 

Is, ke, C, h) 

light 
effect 

• N (N2, t::3, P2) 

nutrient 
effect 

where kgr is the opti:r.urn growth rate of the or :':.er of o. 11 day 1 

degree. The functional form, I, for the ligh~ effect incorporate~ 
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vertical extinction of solar radiation and self-shading effect. 

The form is 

I 2.718 (e -a.l -a. ) = - e o 
keh 

k = k I + 0.0088 . c + 0.054 . C0.66 
e e 

I 
-k h et.l 

a = r e e 
s 

I a 
~ = ~ 0 

k ' is the light extinction coe:ficient at zero chloro­e 

phyll concentration, k is the overall light extinction 
e 

coefficient, Ia is the incoming solar radiation and Is is 

the optimum light intensity, about 300 langleys per day. 

nutrient effect makes use of product Michaelis - Henton 

kinetics and is given by 

N N2 + N3 P2 
= N3 

. P2 K + N2 + K + mn mp 

where K is the half saturation concentration for total mn 

The 

inorganic nitrogen and K is the half saturation concentratio~ mp 

for phosphorus. K and K have been reported to ~e about mn mp 

0.3 - 0.4 and 0.03- 0.05 mg/1 res?ectively, although.Kmn has 

been reported as low as 0.008 mg/~ and K has been reported 
mp 

as low as 0.015 mg/~. 
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V. MODEL CALIBRATION AND VERIFICATION 

A. Calibration Procedure 

Before a model can be applied to future predictions, 

it must be tested and proved capable of reproducing actually 

observed conditions. Many input constants will be modified 

in this successive approximation process. These constants 

are ones that have not been measured directly, but only 

approximated from existing literature. When one set of field 

data has been predicted by the model, the model is said to 

be calibrated. The next step is to keep the same set of 

input constants and attempt to reproduce a second set of field 

data. Once this has been done successfully, the model is 

said to be verified. When verification is first attempted, 

there is normally a need to readjust some inputs in order to 

improve the verification without compromising the calibration. 

The York ecosystem model was calibrated according to 

field data collected June 15-16 and July 1-2, 1976. Since 

manpower and boats were limited and the area to be studied 

large, the river was covered in two parts. The original 

schedule for field sampling called for the second portion of the 

survey to be conducted immediately after the first half. How­

ever, 1.4" of rainfall were recorded at West Point on June 17, 

1976. There was additional rain for several days, followed 

by a several day dry period and then 1.5" of rain on June 26. 

No additional rainfall was recorded between June 26 and the 

second portion of the field survey. Model segmentation is 
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shown in Figure 6. The calibration results for the center 

channel are shown in Figures 7 to 16. The error bars in these 

figures represent standard error of the mean. Part of the 

point source data was supplied by Betz Engineers through the 

Hampton Roads Water Quality Agency. The rest came from data 

compiled by the Water Control Board and used in the calibration 

of an earlier model (Hyer, et al., 1975). Point source data 

are shown in Table 3. 

Verification data consisted of a slack water run made 

on September 13, 1976. Samples were taken at low water slack 

as it progressed upstream. The samples were taken between 

10:00 a.m. and 2:00p.m. and so the model prediction was made 

at high noon, model time. Results are shown in Figures 17 to 

25. Fecal coliform is not included since the data are inade­

quate for comparison. 

B. Model Sensitivity 

One way of judging whether a model is reliable is to 

see if it can reproduce a known set of conditions (verification). 

Another check of a model is to see if variations in input cause 

any difference in output. This quality of a model is called 

sensitivity. A model which gives essentially the same result 

no matter what the input is clearly of little use in projections, 

unless there is good reason to believe that the real estuary 

("prototype") is just as insensitive as the model indicates. 

The model inputs of most concern are: 

' point source loadings (since this is chiefly what 

projections are about); 
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Name 

1 
AHOCO 

1 
VEPCO 

Yorkto\m ? 
Nat'l Park~ 

Naval 
\Jeapons2 
Station 

2 
Camp Peary 

Town of 2 
Toano 

Lateral 
Segment 
Number 

1 

1 

1 

1 

1 

1 

Longi­
tudinal 
Segment 
Number 

20 

19 

17 

14 

13 

5 

TABLE 3. Point Sources of L0ading Used in 
Calibration and Verification 

Flow 
(cfs) 

2.7 

3.7 

0.1 

0.6 

0 .I 

<0.1 

BOD 
(lb/~ay) 

1169. 

37. 

108. 

132. 

18. 

17. 

Organic 
N 

(lb/day) 

182. 

42. 

3 

3 

3 

3 

Ammonia 
(lb/day) 

525 

42. 

3 

3 

3 

3 

N02 
ana 
NO 

(lb/Jay) 

12.9 

3.0 

3 

3 

3 

·3 

~ Data supplied by Betz Environmental Engineers. 
Data from Hyer, et al., 1975. 

3 Nutrient and bacterial data not available. 

Organic 
p 

(lb/day) 

12.9 

1.2 

3 

3 

3 

3 

Inorganic 
p 

(lb/day) 

38.7 

0.3 

3 

3 

3 

3 

Coliform 
(billions 
per day 

3.8 

2.9 

3 

*"" 
0'1 

3 

3 

3 



201-

--.. 
-I.J 

g: 1-
...._, 

t'wt-
·rl 
~ 

•rl 

'-;;1 1-
Cf.l 

--.. 
-I.J 
p. 
p. 

20 

t'w 
·rl 
~ 
·rl 
r-i 
co 

(/) 

0 

I 

--.- • 

• 

York River Salinity Verification-U~S September 13, 1976 

I 

• • • 

--- Observed 

• Model 

• 

10 

I 

• • • 

Statute Miles 

I 

20 

I 

Upper Layer 

• 

Lmver Layer 

• 

.-

• • 

I 

30 

-• 

• 

0 10 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 17. York River salinity verification. 

,t::. 
-..) 



,....,. 
c.< -(){) s 
'-" 

() 

-rl 
~ 
('j 
00 
1-< 

0 

,....,. 
c.< -(){) 

s 
'-" 

z 
u•4 

•r-1 
~ 
('j 
00 
1-< 

0 

0 • 

Q 
Q 0 0 0 • 

0 

York River Organic Nitrogen - LWS Sept. 13, 1976 

Upper Layer 

0 0 0 
• • • 

Lower Layer 

9 ~ ~ ~ 

10 Statute Niles 

0 • 

20 

---Observed 
• Hodel 
o Model with reduced turbidity 

0 • 
0 • ~ 

0 
0 
• 

30 

0 10 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 18. York River organic nitrogen verification. 

.t> 
co 



-:;- • 4 1--bO 
s .._, I 

:z; ] .l ! t> 

......... 4 
c< -bO 
s .._, 

:z; 

-~ .2 
c 
0 

j 

0 

I 

--Observed 
• Model 

York River Ammonia Nitrogen - LWS Sept. 13, 1976 
I - -- --..---------,---------.-

Upper Layer 

o Model with reduced turbidity 

~ e o e e I'L _f'l ~ t> ~ 
() 

i) 

Lower Layer 

I 

ji) "' i) 

--- <el il ~ <el 

1 Statute Miles 0 3 

0 10 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 19. York River ammonia nitrogen verification. 

•"'-
1.0 



York River Nitrate plus Nitrite - LWS Sept. 13, 1976 

Upper Layer 

I • 
• • • • 

• • • • • • • 
0 () 

• ~ • 0 -bJ) 
0 0 0 0 s 0 ......, 0 0 

0 0 
:z; -Observed 
(!) 

• No del +J 
·n 0 Hodel with reduced turbidity H 
+J 
·n 
:z; 

(JJ U1 
;:! 0 

r--i 
p. Lmver Layer 
(!) 

• • • +J • • • • 
<ll • • • H • • 
+J 0.2 • 0 
·n • 0 0 :z; - - 0 

0 0 
0 0 

Q • 1 ' 20 I 3 
0 Statute Niles 

0 10 20 K"l 30 40 50 
1 ometers 

Distance Upstream 

Figure 20. York River nitrate plus nitrite verification. 



York River Organic Phosphorus - LHS Sept. 13, 1976 
0.3r-----------.-----------.------------r----------~----------~----------~-----------, 

f--

0. 2 1-

1-

~ 0.1 1-
--­~ s 

Upper Layer 

0 Q 0 0 .._, 

m 
~ 
H 
0 

t----_ " • • 

~ 
~ 
m 

0 0 
• • 

Observed 
• Model 
0 Model with reduced turbidity 

9 9 0 
• 0 ~ 0 

• 
0 
• 0 

• 
0 
• 

~ 0.3.-----------------------------------------------------------------------------------------------------~ 
~ 

u 
~ 

§ 
~ 
H 

0 0.2 

0.1 

Lower Layer 

<i Q CJ 0 • 
0 
• 

0 
• 

0 
• 

0 
• 

0 • ~ Q 9 • 

0 10 20 30 Statute Hiles 

0 10 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 21. York River organic phosphorus verification. 

Ul 
I-' 



York River Inorganic Phosphorus - UlS Sept. 13, 1976 

Upper Layer 
--Observed 

0. 04 t- • Hodel 
0 Model with reduced turbidity 

• 
• 

,...-.,_ 

~ 0.02 • 
co • 
~ • '-' 

Cll 

I 0 ;:1 0 0 0 H 0 0 0 0 0 0 0 0 0 0 0 0 ..c 
p.. 
Cll 
0 
..c 

I ~ 0.04 L / ~ Ul 

A. N 

• • • co 
co 
H 
0 
~ 

H 

0.02 ~ ~ 0 0 0 0 0 • 
0 • 

0 • 

Lm11er Layer 0 
0 

0 0 0 0 0 0 

0 10 20 30 
Statute Hiles 

0 10 20 
Kilometers 

30 40 50 

Distance Upstream 

Figure 22. York River inorganic phosphorus verification. 



,-.... 
8 c.( -bD 

;:::1. 
"-" 

r-i 
r-i 
:;... 

'&4 
0 
H 
0 

r-i 
..c 
u 

0 

,-.... 
8 c.( -bD 

;:::1. 
"-" 

r-i 
,...; 

E4 
p.. 
0 
H 
0 

r-i 
..c u 

0 

Lower Layer 
I 

t ~ 0 • 
• • • • 

0 

York River Chlorophyll - LHS Sept. 13, 1976 

0 0 0 0 0 

• • • • • 

0 

• • 

• 

10 Statute Miles 20 

--- Observed 
• Hodel 
o Hodel with reduced turbidity 

<t 0 
• 

~ ." Q 0 
• 0 

• 

30 

0 10 20 30 40 so 
Kilometers 

Distance Upstream 

Figure 23. York River chlorophyll •a• verification. 

Ul 
w 



,-... 
~ 

'"004 
E ........ 

A 

2 I 

Ql 
+l 2 
(lj 

E 
·rl 
+l 
..-I 
~ 

0 

,-... 
~ 

'"004 
E ........ 

A 
0 
p::j 

2 2 
(lj 

E 
·rl 
+l 
..-I 
~ 

0 

Upper Layer 

(i 

0 
Q 

Q Q 

Lmver Layer 

r 0 

~ 

0 
0 Q 

Q 

0 

York River Ultimate BOD - LHS Sept. 13, 1976 

Q 9 9 

0 Q ~ q q • 

20 lO Statute Hiles 

9 Q 

--Observed 
• Hodel 

~ 

0 Q 

o Model with reduced turbidity 

Q 

Q 0 Q ~ 

30 

0 lO 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 24. York River carbonaceous BOD verification. 

Vl 
.10> 



York River Dissolved Oxygen - LHS Sept. 13, 1976 

I 

8 Upper Layer 

.......... 
~ 0 0 

,. - 0 
00 0 0 0 • • • l':l • • • • .......-

Q 4 
0 
·ri --Observed +-J 
ell • Hodel H 
+-J 0 Hodel with reduced turbidity Q 
(!) 
() 

Q 
0 
u 
Q [ I 

Ul 
(!) Ul 
00 

~ 8 Lower Layer 
0 

--o 
(!) 

0 :> (i <t t> .--i 
0 8 
Ul 
Ul 4 ·ri 0 q 

0 0 ~ 
0 • 

• • • 

0 10 Statute Miles 20 30 

0 10 20 30 40 50 
Kilometers 

Distance Upstream 

Figure 25. York River dissolved oxygen verification. 



56 

~ dispersion coefficient and the constants associated 

with two-layer circulation, in order to clarify the role of 

these numbers; 

~ freshwater inflow and boundary conditions, since 

these are perforce changed between calibration and verifica­

tion, so that there is a need to see just how important they are; 

o certain decay constants, such as those for BOD and 

coliform bacteria. 

Sensitivity tests were made to show the response of the 

model to the ~oregoing changes in inputs. 

Figure 26 shows the carbonaceous BOD distributions that 

result when the point sources were either doubled or eliminated. 

There is little difference between the curves. This insensi­

tivity is due to the great volume of the York River; a single 

reach can contain as much as 3.5 x 10 9 ft 3 . If one were to put 

a contaminant into this volume at a rate of 10 4 lb/day, it would 

take about three weeks to reach a level of one ppm, even ignoring 

decay and flushing. 

Figure 27 shows the effect of variations in dispersion 

coefficient on the salinity distribution. The formula for 

dispersion coefficient has only one adjustable factor, B. 

Calibration was achieved with 8=2. Figure 27 shows the salinity 

distribution with 8 = 0.2, 8 = 2 and 8 = 20. As can be seen, 

the salinity results are somewhat sensitive to this constant. 

The sensitivity of salinity to estuarine circulation vRa is 

shown in Figure 28. Decreasing this parameter below the cali­

bration value had no appreciable effect, but increases in the 
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values used did have an effect. The sensitivity of the salinity 

distribution to changes in the freshwater inflow is shown in 

Figure 29. Again the calibration value is the central number. 

The sensitivity of salinity to changes in the boundary con­

ditions downstream is shown in Figure 30. 

Tests were made to determine the response of the BOD 

distribution to changes in the BOD decay rate. These are 

shown in Figure 31. The same is true for the oxidation of 

ammonia, as shown in Figures 32 and 33. The response of 

fecal coliform distribution to variations in dieoff rate is 

shown in Figure 34. 

c. Discussion 

Water quality in the York River generally was quite 

good, with the exception of dissolved oxygen in the deep waters 

opposite Yorktown. In the upper layers, the daily average DO 

stayed above 5 mg/1 except for Transect Y-2, located about five 

nautical miles (8 km) from the river mouth. This transect is 

quite close to the constriction at Gloucester Point where the 

channel is narrow (one kilometer or less) and very deep (about 

30 meters). It is possible that water quality in this region 

is influenced by local dynamic effects not included in the 

model, such as upwelling or other secondary circulation. 

Dissolved oxygen in the deep area between Gloucester 

Point and the river mouth was low (values as low as 2 mg/1 were. 

recorded) at the time of the intensive survey. This appears 

to be a naturally occurring phenomenon and not the result of 
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human activities. It appears that the sill (depth around 10 

meters) at the mouth of the river restricts tidal exchange and 

thus reduces the supply of oxygen received from Chesapeake Bay 

during flood tide. This relatively stagnant pool of water 

persists unless or until overturning takes place. Jordan's 

data (1975) show this condition alternately appearing and 

disappearing during the summer months, possibly in response 

to meteorological events such as extreme high tides or strong 

winds. The correlation between dissolved oxygen stratification 

and salinity stratification is not strong, suggesting that 

oxygen levels, once replenished, subside gradually. 

The model calibration for dissolved oxygen shows very 

good fit but the agreement was less good for the verification 

run. During the slack water survey of September 13, 1976, 

the observed DO never went below 4 mg/1 even in the deeper 

layer, but the model predicted DO levels below 3 mg/1. ·A 

likely cause for this discrepancy is the use of the calibration 

turbidity for verification in lieu of any measured value. As 

can be seen from the verification plots, agreement is improved 

considerably with a reduced turbidity. Nonetheless, the model 

can be considered to give reasonable, if conservative, results 

and to be useful for waste load allocation studies. 

Observed chlorophyll "a" levels are below ten micrograms 

per liter and far below bloom conditions. As with dissolved 

oxygen, the agreement between field observations and predictions 

was better for the calibration than for the verification. Again 

the turbidity level is a major cause of this discrepancy. 
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Biologists also contend that the phytoplankton population will 

be changed in composition and identity between the beginning of 

July and the middle of September. Therefore, it is believed 

that more importance should be given to reproducing the June­

July case, since these are closer to the maximum stress 

conditions. 

Conditions observed for nutrients are consistent with 

those observed for chlorophyll, namely that nutrients generally 

are too low to support an algal bloom even if the constraint of 

light limitation were removed. As mentioned previously in 

this report, the error bars represent the standard error of 

the mean of the observations. Given the wide scatter of ob­

served values, the agreement is satisfactory. Where no error 

bars are shown, data were insufficient to draw these. The 

only exceptions to this rule were fecal coliform and inorganic 

phosphorus. In the case of inorganic phosphorus, observed 

values are given only to the nearest hundredth of a milligram 

per liter, based on the ultimate accuracy of the laboratory 

method. The verification predictions show nitrite plus 

nitrate-nitrogen and inorganic phosphorus concentrations at 

higher levels than those observed in the river. This is 

concomittant with the low chlorophyll levels predicted .and 

the same remarks apply. Additionally, it should be noted 

that the inorganic phosphorus concentrations are close to 

the detection limit, so that the error is small in absolute 

terms, even though it may appear to be large in terms of 

percentages. 
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The standard error of the mean of CBOD was large in 

relation to the observed mean. Agreement of the calibration 

was fairly good considering the uncertainties naturally 

inherent in this type of determination. As with nutrients, 

the absence of error bars indicates that the data base was 

too small for meaningful calculation of them. The model 

reproduced the general level of CBOD in both the calibration 

and verification runs. 

The mean fecal coliform concentrations were quite close 

to the detection limit of 3.0 MPN/100 ml. Consequently, the 

observed means are biased slightly upwards by discarding 

observations "less than 3.0 MPN/100 ml". Furthermore, the 

statistical method employed in this determination introduces 

implicit uncertainty by giving only discrete values; there 

simply aren't reported values between 3.0 and 3.6, or between 

3.6 and 7.3, and so forth. Error bars would therefore have 

little meaning even where warranted by the data base. Agree­

ment is therefore fairly good. High coliform counts do not 

appear to be a problem in the York River, either now or in the 

future, since observed counts generally were low and there is 

an enormous volume of water available to dilute influent wastes. 

The calibration data were collected in two field 

efforts separated by a period of over two weeks in which 

significant rainfall occurred. Since a steady load model was 

required it was necessary to overlook this shortcoming of the 

data and treat all measurements as being simultaneous. The 
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rate constants used were compromise values intended to achieve 

the best overall fit. Further field data are needed to fine­

tune the model and achieve better correspondence between the 

model and observation. 

In summary, the water quality of the York River is good, 

with adequate oxygen levels, low concentrations of chlorophyll 

'a' and nutrients, and extremely low fecal coliform counts. 

The single problem was the occurrence of low dissolved oxygen 

concentrations in the deep waters lying between Gloucester 

Point and the river mouth. The water quality model has demon­

strated its ability to reproduce the most critical aspects of 

water quality and to be useful for wasteload allocation studies. 



71 

REFERENCES 

Carritt, D. E. and E. J. Green. 
Saturation of Seawater." 

1967. "New Tables for Oxygen 
Jo. Mar. Res., Vol. 25, No. 2. 

Cronin, W. B. 1971. "Volumetric, Areal and Tidal Statistics 
of the Chesapeake Bay Estuary and its Tributaries", 
CBI Special Report 20, Ref. 71-2, March. 

Di Tore, D. M., D. J. O'Connor and R. V. Thomann. 1971. "A 
Dynamic Model of the Phytoplankton Population in the 
Sacramento-San Joaquin Delta." Adventures in Chemistry 
Series, No. 106, American Chemical Society, pp. 131-180. 

Elmore, H. L. and W. F. West. 1961. "Effect of \'later 
Temperature on Stream Reaeration." Proc. ASCE, 87(SA6). 

Fang, C. S., et al. 1973. "Hydrography and Hydrodynamics 
of Virginia Estuaries. IV. Mathematical Model 
Studies of Water Quality in the James Estuary". 
Virginia Institute of Marine Science, SRAMSOE No. 
41, September. 

Hansen, D. v. and M. Rattray, Jr. 1965. "Gravitational 
Circulation in Straits and Estuaries." Jo. ~lar. Res. 
23(2). 

Hansen, D. V. and M. Rattray, Jr. 1966. "New Dimensions in 
Estuary Classification." Limnology and Oceanography, 
Vol. XI ( 3) . 

Harrison, W., et al. 1971. "Investigation of the Water Table 
in a Tidal Beach", Virginia Institute of Marine Science 
Special Scientific Report No. 60, October. 

Holley, E. R., et al. 1970. "Dispersion in Homogeneous 
Estuary Flow." Jo. ASCE, Vol. 96, No. HY8, 
pp. 1691-1709, August. 

Hyer, P. V., et al. 1971. "Hydrography and Hydrodynamics of 
Virginia Estuaries. II. Studies of the Distribution 
of Salinity and Dissolved Oxygen in the Upper York 
System". Virginia Institute of Marine Science, 
SRAMSOE No. 13, August. 

/ 

Hyer, P. V. & E. P. Ruzecki. 1974. "Changes in Salinity 
Structure of the James, York and Rappahannock 
Estuaries Resulting from the Effects of Tropical 
Storm Agnes". Proc. Symp. on Effects of Tropical 
Storm Agnes. College Park, Md., June. 



72 

Hyer, P. V., et al. 1975. "Hydrography and Hydrodynamics of 
Virginia Estuaries. V. Mathematical Model Studies of 
Water Quality of the York River System". Virginia 
Institute of Harine Science SRAMSOE No. 104, October. 

Hyer, P. V., et al. 1977. "Water Quality Models of Back 
and Poquoson Rivers, Virginia." VIMS SRAMSOE No. 
144, June. 

Jordan, R. A., et al., 1975. "Yorktown Power Station 
Ecological Studies, Phase II: Final Technical Report." 
VIMS Special Scientific Report No. 76, May. 

Kuo, A. Y. and C. S. Fang. 1972. "A Mathematical Model for 
Salinity Intrusion." Proc. 13th Coastal Engineering 
Conference, July, pp. 2275-2289. 

Thomman, R. V. 1972. Systems Analysis and Water Quality 
Management." Environmental Research and Applications, 
Inc., New York, N. Y. 



73 

APPENDIX A 

User's Manual for 
Quasi Three-Dimensional Ecosystem Model 



74 

A. Inputs to Main Program 

la. ML - number of farthest upstream transect 

lb. HU - number of farthest downstream transect 

lc. DRAIN - drainage area upstream of transect ML 

FORMAT (2Il0, FlO.O) 

2a. T~~X - upper limit of time integration by the model, 

in days 

2b. DTT - time steps to be used in the model, in days 

2c. NTPRIN - number of times for which printout will be 

required 

FOID1AT (2Fl0.2, IS) 

3a. TBD - number of hours from start of integration to 0600 

3b. TU - time of sunrise, in hours 

3c. TD - time of sunset, in hours 

FORMAT (3Fl0.5) 

4. TT(I) I=l, NTPRIN - times at which computer prediction 

printed out, in days 

FORMAT (2Fl0.5) 

5. FC - friction coefficient 

FORHAT (FlO. 5) 

6. SBG - salinity concentration in lateral inflow, in parts 

per thousand 

7a. NIBG - organic N concentration in lateral inflow, in 

milligrams per liter 
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7b. N2BG - ammonia N concentration in lateral inflow, 

in milligrams per liter 

7c. N3BG - nitrate plus nitrite N concentration in lateral 

inflow, in milligrams per liter 

FOID<IAT ( 3Fl0. 5) 

8a. PIBG - organic P concentration in lateral inflow, in 

milligrams per liter 

8b. P2BG - inorganic P concentration in lateral inflow, in 

milligrams per liter 

FORMAT (2Fl0.5) 

9. CBG - chlorophyll concentration in lateral inflow, in 

micrograms per liter 

FORMAT (FlO. 5) 

lOa. CBODBG - carbonaceous 30D concentration in lateral 

inflow, in milligrams per liter 

lOb. DOBG - dissolved oxygen concentration in lateral 

inflow, in milligrams per liter 

FORMAT (2Fl0.5) 

11. BACBG - bacteria concentration in lateral inflow, in 

number per 100 ml 

12. SU - upstream salinity boundary condition array, in 

parts per thousand, three lateral compartments by two 

layers 

FORHAT ( 6Fl0. 5) 

13. SD - downstream salinity boundary condition array, in 

parts per thousand, three lateral compartments by two 

layers 

FOR11AT ( 6F 10. 5) 
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14. NIU- upstream organic N boundary condition array, in 

milligrams per liter. Three lateral compartments by 

tv10 layers 

FOill<"..AT ( 6F 10 . 5) 

15. NID - downstream organic N boundary condition array, 

in milligrams per liter. Three lateral compartments 

by two layers 

FOR11AT ( 6F 10. 5) 

16. N2U - upstream ammonia N boundary condition array, 

in milligrams per liter. Three lateral compartments 

by two layers 

FORHAT (6Fl0.5) 

17. N2D - downstream ammonia N boundary condition array, 

in milligrams per liter. Three lateral compartments by 

two layers 

FORMAT (6Fl0.5) 

18. N3U - upstream nitrate plus nitrite N boundary condition 

array, in milligrams per liter. Three lateral compart­

ments by two layers 

FORr1AT (6Fl0.5) 

19. N3D - dovmstream nitrate plus nitrite N boundary condition 

array, in milligrams per liter. Three lateral compart­

ments by two layers 

FORMAT (6Fl0.5) 

20. PIU - upstream organic P boundary condition array, in 

milligrams per liter. Three lateral compartments by two 

layers 

FORHAT (6Fl0.5) 
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21. PID - downstream organic P boundary condition array, in 

milligrams per liter. Three lateral compartments by 

two layers 

FORMAT (6Fl0.5) 

22. P2U - upstream inorganic P boundary condition array, in 

milligrams per liter. Three lateral compartments by 

two layers 

FOR!1AT (6Fl0.5) 

23. P2D - downstream inorganic P boundary condition array, 

in milligrams per liter. Three lateral compartments 

by two layers 

FORMAT (6Fl0.5) 

24. CU - upstream chlorophyll boundary condition array, in 

micrograms per liter. Three lateral compartments by 

two layers 

FOru·1AT ( 6F 10. 5) 

25. CU- downstream chlorophyll boundary condition array, 

in micrograms per liter. Three lateral comuartments by 

two layers 

FORJ.'v!AT ( 6Fl0. 5) 

26. CBODU - upstream carbonaceous BOD boundary condition 

array, in milligrams per liter. Three lateral compartments 

by two layers 

FOffi.1AT ( 6F 10. 5) 
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27. CBODD - downstream carbonaceous BOD boundary condition 

array, in milligrams per liter. Three lateral com­

partments by two layers. 

FORMAT (6Fl0.5) 

28. DOU - upstream dissolved oxygen boundary condition 

array, in milligrams per liter. Three lateral com­

partments by two layers 

FORMAT (6Fl0.5) 

29. DOD - downstream dissolved oxygen boundary condition 

array, in milligrams per liter. Three lateral compart­

ments by two layers 

FORHAT (6Fl0.5) 

30. BACU - upstream bacteria boundary condition array, in 

number per 100 ml. Three lateral compartments by two 

layers 

FORMAT (6Fl0.5) 

31. BACD - dmvnstream bacteria boundary condition array, in 

number per 100 ml. Three lateral compartments by two 

layers 

FOID'IAT (6Fl0.5) 

32. TEMP - array of water temperature for reach 1 to reach 

NU-l. One card per reach, containing inputs for the six 

compartments (3x2) in the reach. 

F 0 PJJ".tA T ( 6 F 1 0 • 5 ) 

33. KNll, KN33, KPll, KP22 - deposition rates, in day-l for 

organic N, nitrate plus nitrite N, organic P and inorganic 

P respectively. 

FORMAT (4Fl0.5) 
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34. NS - number of reaches (starting with 1) for which 

KN12 is to be specified. Setting NS=l causes 

longitudinally homogeneous input. 

FOR..\1AT (IS) 

3S. KN12 - array of reaction coefficients for organic N 

-1 0 -1 
to ammonia, in units day C . One card per reach, 

containing the inputs for the six (3x2) compartments in 

the reach. 

FORI1AT (6FlO.S) 

36. NS - number of reaches (starting with 1) for which Im23 

is to be specified. Setting ~S=l causes longitudinally 

homogeneous input 

FORMAT (IS) 

37. KN23 - array of reaction coefficients for ammonia to 

nitrate plus nitrite, in units day-l 0 c-1 . One card 

per reach, containing the inputs for the six (3x2) 

compartments in the reach. 

FOR.."1AT ( 6Fl0. 5) 

38. NS - number of reaches (starting with 1) for which KP12 

is to be specified. Setting NS=l causes longitudinally 

homogeneous input. 

FORHAT (I 5) 

39. KP12 - array of reaction coefficients for organic P to 

inorganic P, in units day-l 0 c-l One card per reach, 

containing the inputs for the six (3x2) comparL~ents in 

the reach 

FORMAT (6Fl0.5) 
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40a. AC - carbon to chlorophyll ratio, in milligrams per 

microgram 

40b. AN - nitrogen to chlorophyll ratio, in milligrams per 

microgram 

40c. AP - phosphorus to chlorophyll ratio, in milligrams 

per microgram 

40d. AD - oxygen to chlorophyll ratio, in milligrams per 

microgram 

40e. Y~~ - half-saturation concentration of nitrogen for 

phytoplankton growth rate, in milligrams per liter 

40f. ~IP - half-saturation concentration of phosphorus for 

phytoplankton growth rate, in milligrams per liter 
_, 

40g. KCG - optimum growth rate of phytoplankton, in day • 

FORHAT ( 7Fl0. 5) 

4la. RIS - saturation ligh_ level, in units of power per 

4lb. 

4lc. 

4ld. 

4le. 

unit area 

RIA - average light level, in same units as RIS 

0 -1 -1 
RRESP - phytoplankton death rate, in C day 

KCS - phytoplankton settling rate in day-l 

NPREF - integer specifying which form of nitrogen is 

preferred as food source. If NPREF = 2, ammonia is 

preferred; otherwise nitrate plus nitrite is preferred 

FORMAT (4Fl0.5, IlO) 

RA . . d -1 42. KG Z - graz~ng rate, ~n ay 

43. 

FORMAT (Fl0.5) 
-1 

KBAC - bacteria die-off rate, in day 

FOID-1AT (FlO. 5) 
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B. Inputs to subroutine HYDRAL 

1. TITLE - alphanumeric information concerning the input to 
follow FORMAT(lX,35A2) 

2a. NDG - the number of the data group (description of contents 
of individual data groups will be given below) . 

2b. NS - the number of inputs .to the NDG data group. 

2c. NAME - alphanumeric information concerning the contents 
of the NDG data group. 

FORMAT (2I5, 30A2) 
This card must be repeated at the beginning of each data 
group. 

a. Data Group No. 1 - geometry. In this case, NS is the 
total number of transects to be input. NS > MU (see 
main program) . For each transect five cards will be 
input, in the following order: 

al. distance, drainage area and conveyancy area. 

a. DIST(I) - distance from the mouth, in statute 
miles, of the I transect. 

b. ARD(I) - drainage area between the I transect and 
the I+l transect. 

FORMAT (6Fl0.5) 

a2. (ART(I,J,L),J=l,3) ,L=l,2- total cross section area 
for the six compartments on the I transect. The three 
inputs for the upper layer are listed first, then the 
three for the lower layer 

FORMAT (6Fl0.5) 

a3. (Hl(I,J,L), J=l,3), L=l,2 ..:. average transect depth for 
the six compartments on the I transect. Sequence of 
inputs as above. 

FOR!1AT ( 6Fl0. 5) 
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c. Inputs to subroutine INPUT 

1. TITLE - alphanumeric information concerning the input to 
follow. 

FORMAT (lX, 35A2) 

2a. NDG - the number of the data groups (description of the 
contents of individual data groups will be given below) . 

2b. NS - the number of inputs to the NDG data group. 

2c. NAME - alphanumeric information concerning the contents 
of the NDG data group. 

FORMAT (2I5, 30A2) 

a. Data Group No. 1 - initial conditions. If not specified, 
default values are provided one value is specified for 
all six compartments in the same reach. If NS = 1, all 
reaches will be set at the specified value. 

al. Nl - initial values of organic nitrogen as N, in 
mg/1. 

a2. N2 initial values of ammonia as N, in mg/1. 

a3. N3 - initial values of nitrate plus nitrite as N, in 
mg/1. 

a4. Pl - initial values of organic phosphorus as p' in 
mg/1. 

aS. P2 - initial value of inorganic phsophorus as N, 
in mg/1. 

a6. c - initial values of chlorophyll, in micrograms per 
liter. 

a7. BAC - initial values of bacteria, in number per 100 
ml. 

a8. CBOD - initial values of ultimate carbonaceous bio­
chemical oxygen demand (CBOD) in mg/1. 

a9. DO - initial values of dissolved oxygen, in mg/1. 

FORMAT (14FS.O) 
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b. Data Group No. 2 - waste loads input. For each reach 
for which a point source of waste is to be specified, 
two cards are required. 

bla. K - reach number 

blb. J - compartment number. setting J=l locates 
point source on right side facing downstream, 
setting J=3 locates point source on left side 
and setting J=2 locates point source in center. 

blc. QWAST - waste-water flow rate, in cfs. 

bld. WS - salinity concentration in wastewater, in 
parts per thousand. 

ble. WNl - organic nitrogen loading, in pounds per 

blf. WN2 - anunonia nitrogen loading, in pounds per 

blg. WN3 - nitrate plus nitrite loading, in pounds 
per day. 

blh. WPl - organic phosphorus loading, in pounds 
per day. 

FORMAT (2I5, 6Fl0.2) 

b2a. liP2 - inorganic phosphorus loading, in pounds 
per day. 

b2b. WBOD - CBOD loading, in pounds per day. 

b2c. DOWAST - dissolved oxygen concentration in 
wastewater, in mg/1. 

b2d. WBAC - bacteria loading, in billions per day. 

FORMAT (4Fl0.2) 

day. 

day. 

c. Data Group No. 3 - nonpoint sources. Nonpoint source 
loadings specified by reach and partitioned between right 
side and left side by volume. Default value is zero. 

cl. WNlNP(I) ,I=l,NS - nonpoint source loading of organic 
nitrogen, in pounds per day. 

FORHAT (7Fl0.2) 

c2. WN2NP(I) ,I=l,NS- nonpoint source loading of ammonia 
nitrogen, in pounds per day. 

FORl•lAT (7Fl0.2) 
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c3. vffi3NP(I) ,I=l,NS - nonpoint source loading of nitrate 
plus nitrite nitrogen, in pounds per day. 

FORMAT ( 7Fl0. 2) 

c4. WPlNP(I) ,I=l,NS - nonpoint source loading of organic 
phosphorus, in pounds per day. 

FORHAT (7Fl0.2) 

c5. WP2NP(I) ,I=l,NS - nonooint source loading of inorganic 
phosphorus, in pounds~per day. 

FOID1AT (7Fl0.2) 

c6. WBODNP(I) ,I=l,NS - nonpoint source loading of CBOD, 
in pounds per day. 

FORMAT (7Fl0.2) 

c7. WBACNP(I) ,I=l,NS - nonpoint source loading of bacteria, 
in billions per day. 

FOR!1AT ( 7Fl0. 2) 

d. Data Group No. 4 - carbonaceous decay rate. Total of 
NS cards. Each card corresponds to one reach and has 
six inputs for the six compartments (upper layer first, 
then lower layer) . Setting NS=l causes all reaches to 
be specified the same. 

dl. (CKC(I,J,L) ,J=l,3) ,L=l,2 - carbonaceous decay rate, 
in day-1. 

FOR.VlAT (6Fl0.2) 

d2. TCCKC - temperature correction coefficient for CBOD 
decay. 

e. 

el. 

FORMAT (6Fl0.2) 

Data Group No. 5 - turbidity. One card of input for 
each of the NS reaches specified. Default value zero. 
Setting NS=l causes all reaches to be specified the same. 

TURB(I,J) ,J=l, 3 - turbiditv, in m-l for the three 
compartments in the upper layer of the I reach. 

FOEMAT ( 3Fl0. 2) 
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f. Data Group No. 6 - benthic oxygen demand. One card 
of input for each of the NS reaches specified. Default 
value zero. Setting NS=l causes all reaches to be 
specified the same. 

fl. BEN(I,J) ,J=l,3 - benthic oxygen demand in gm/m2/day 
for the three compartments in the lo~!er layer of the 
I reach. 

FORMAT (3Fl0.2) 

f2. TCBEN - temperature correction coefficient for benthic 
demand. 

FORMAT (Fl0.2) 

g. Data Group No. 99 - end of inout. Causes exit from 
subroutine. 
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