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a b s t r a c t

Four types of global error for initial value problems are considered in a common frame-
work. They include classical forward error analysis and shadowing error analysis together
with extensions of both to include rescaling of time. To determine the amplification of the
local error that bounds the global error we present a linear analysis similar in spirit to con-
dition number estimation for linear systems of equations. We combine these ideas with
techniques for dimension reduction of differential equations via a boundary value formu-
lation of numerical inertial manifold reduction. These global error concepts are exercised
to illustrate their utility on the Lorenz equations and inertial manifold reductions of the
Kuramoto–Sivashinsky equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many complex systems modeled using differential equations the slow dynamics drive the system. There is a vast
literature on inertial manifold techniques to determine the mapping between the slow dynamics and the fast dynamics.
This decouples the system and focuses attention on the (often) low dimensional slow dynamics that drive the system. Once
such a low dimensional reduction is achieved, then one would like to infer the behavior of the system from simulations of
the reduced equations. An often overlooked problem is in assessing whether the global error on the inertial manifold can be
controlled and inwhat sense. The standard approach to global error analysis is classical forward error analysis for initial value
differential equations inwhich the initial condition is the same for both the exact solution and the numerical approximation.
Shadowing error analysis generalizes this in a significantway by allowing for slightly different initial conditions for the exact
and approximate solutions. This expands the class of problems for which long time error statements are possible, from
contractive problems to those with a splitting between expansive and contractive modes. A further refinement that has
been investigated in the shadowing literature involves the rescaling of time when differential equations have a non-trivial
attractor.

Our contribution in this paper is to develop a unified approach to global error analysis for initial value problems that
can be used to determine when there is uncertainty in the numerical approximation of solutions of differential equations;
we also show that the technique is applicable in the context of inertial manifold dimension reduction. We report on initial
numerical experiments for a new inertial manifold reduction technique combined with an assessment of the global error in
approximating the reduced equations. The inertial manifold technique which we outline here and describe in more detail
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in [1] involves first performing a time dependent linear decoupling transformation and then determining the mapping
between the slow and fast dynamics implicitly by solving a boundary value problem. Information obtained during the
solution of the boundary value problem is then employed to assess the relationship between the local error and if possible
the global error as characterized by forward or shadowing error analysis and with or without rescaling of time. In this paper
we highlight four different types of long time global error analysis. We will also exercise recently developed techniques for
dimension reduction in differential equations in the context of these types of global error analysis.

Shadowing based techniques for global error analysis involve relaxing the requirement that the initial conditions for the
exact solution and the numerical solution agree. This has the effect that the linearized error equation need not be solved
forward in time. This allows for positive global error statements for a larger class of problems over long time intervals,
i.e., for problems that are not contractive such as in the case of a systemwith positive Lyapunov exponents. Shadowing also
provides a framework to allow for rescaling of time, i.e., allowing for perturbations in the time step, (see thework of Coomes,
Kocak, and Palmer [2,3], and Van Vleck [4,5]). Rescaling of time is especially important when there is a periodic orbit ormore
general non-trivial attractor [6]. Work on numerical shadowing includes the ground breaking work of Hammel, Yorke, and
Grebogi [7,8], the work of Chow, Lin, and Palmer (e.g. [9,10]), the numerical work of Sauer and Yorke [11], and the initial
work on breakdown of shadowing of Dawson, Grebogi, Sauer, and Yorke [12].

Inertial manifolds, first introduced by Foias, Sell, and Temam [13] for dissipative dynamical systems, are finite
dimensional, exponentially attracting, positively invariant Lipschitz manifolds. Similar concepts are slow manifolds in
slow–fast system introduced inmeteorology andwidely used inweather forecasting [14–17], and center-unstablemanifolds
in the classic sense. In fact, [18] shows that a slow manifold is a special type of inertial manifold, and as mentioned in the
original work [13], it can be described as a global center-unstable manifold. The main application is the inertial manifold
reduction, meaning the restriction of the dynamical system to the inertial manifold where the long-term dynamics coincide
with those of the original system without introducing errors. In particular, since the manifold is finite dimensional, the
reduced system is also finite dimensional, whereas the original system may arise from an infinite dimensional system.
Because of its importance, there has been tremendous work in regard to its theory and computation, see e.g. [19–25] and
[19–24,26,25], respectively. Recently, the theory of inertial manifolds has been generalized to non-autonomous dynamical
systems [27–30], and recently, to random dynamical systems [31], and [32] (and the references therein).

We take the approach here of decoupling the time-dependent linear part of the equation using techniques that have
proven useful in the approximation of Lyapunov exponents. We first employ an orthogonal change of variables Q (t) that
brings the time dependent coefficient matrix for the linear part of the equation to upper triangular. Subsequently, we will
compute a change of variables that decouples the linear part. This then gives us equations of the form considered by Aulbach
and Wanner in [33]. A similar change of variables has been employed to justify that Lyapunov exponents and Sacker–Sell
spectrum may be obtained from the diagonal of an upper triangular coefficient matrix (see section 5 of [34] and sections
4 and 5 of [35]). The Refs. [36,37] (see also the references therein) provide a summary and overview of recent work on
approximation of Lyapunov exponents and in obtaining the orthogonal change of variables Q (t).

This paper is outlined as follows. We first present a framework for global error analysis in Section 2. Techniques to be
employed for non-autonomous inertial manifold reduction are in Section 3. In Section 4we outline of methods to determine
the amplification of the local error that determines the global error. This is followed by details of our dimension reduction
implementation based upon time dependent linear decoupling transformation and subsequent solution of the inertial
manifold equations using a boundary value differential equation solver. Section 5 contains the results of the technique
applied to the three dimensional Lorenz 1963 model and to an inertial manifold reduction of a Galerkin approximation of
the Kuramoto–Sivashinsky equation.

2. Framework for global error analysis

In this section we present a framework for global error analysis of initial value differential equations. We will focus
our attention on four specific characterizations of global error analysis. The differences among the characterizations is
determined by which variables are allowed to differ between the numerically computed solution and an exact solution.
This follows the framework developed for shadowing based error analysis in [4].

To make these ideas concrete consider a smooth initial value ODE of the form

u̇ = f (u, t), u(t0) = u0. (2.1)

If we let ϕ(un, hn; tn) denote the solution operator that advances the state variable un, hn time units from tn, then the exact
solution satisfies (for tn+1 = tn + hn),

u(tn+1) = ϕ(u(tn), hn; tn).

A general approach to global error analysis can be obtained using the setup employed in numerical shadowing. Outlined
below are four measures of the computational error in approximating the solution to an initial value differential equations.
Subsequently, we will apply these ideas to the reduction obtained on the inertial manifold to assess to the computational
error in approximating solutions to these reduced set of equations.

The idea behind shadowing type global error analysis is to use a numerical approximation of the solution as an initial
guess for a functional Newton-type iteration and show that this converges to a nearby exact solution. If we let x = {xn}Nn=0



206 Y.-M. Chung et al. / Journal of Computational and Applied Mathematics 307 (2016) 204–215

and h = {hn}
N−1
n=0 and define

(G(x, h))n = xn+1 − ϕ(xn, hn; tn), n = 0, 1, . . . ,N − 1,

then the linear theory for global error analysis in our framework can be reduced to obtaining bounds on a right inverse of
an appropriate derivative of G. We consider four possibilities based upon different sets of variables from the xn and hn

1. Case 1 (Variables are {xn}Nn=1): This is a standard forward error analysis and requires that the exact and approximate
solutions have the same initial conditions.

2. Case 2 (Variables are {xn}Nn=0): This is a standard shadowing error analysis and allows that the exact and approximate
solutions have different initial conditions.

3. Case 3 (Variables are {xn}Nn=1 and {hn}
N−1
n=0 ): This is a forward error analysis with rescaling of time.

4. Case 4 (Variables are {xn}Nn=0 and {hn}
N−1
n=0 ): This is a shadowing error analysis with rescaling of time.

If we linearize with respect to the variables in each of these four cases, then we obtain for Xn :=
∂
∂xn
ϕ(xn, hn; tn),

fn :=
∂
∂hn
ϕ(xn, hn; tn), and θ > 0 a scaling factor:

1. Case 1: (L1x)n = 1xn+1 − Xn1xn, n = 1, . . . ,N − 1 and (L1x)0 = 1x1.
2. Case 2: (L1x)n = 1xn+1 − Xn1xn, n = 0, . . . ,N − 1.
3. Case 3: (L(1x,1h))n = 1xn+1 − Xn1xn − θ fn1hn, n = 1, . . . ,N − 1 and (L(1x,1h))0 = 1x1 − θ f01h0.
4. Case 4: (L(1x,1h))n = 1xn+1 − Xn1xn − θ fn1hn, n = 0, . . . ,N − 1.

Note that Cases 3 and 4 simplify to Cases 1 and 2, respectively, when θ = 0. In Case 1 the operator L is a square, invertible
matrix, while in the other cases if L is full rank, then L has a right or pseudo inverse of the form LĎ = LT (LLT )−1. Using the
nonlinear shadowing type global error analysis, a uniform bound on the global error ϵ as an amplification of the local error δ
may be obtained via the following fixed point result (Theorem 3.2 of [5]), essentially proving convergence of a Newton type
method with a frozen Jacobian to find a zero of G near the numerically computed approximate solution.

Theorem 2.1. Suppose that X,Y are Banach spaces, G : X → Y is C1, and that there exists a positive constant ϵ0, a point
z ∈ X, and a linear operator L : X → Y with right inverse LĎ such that

∥LĎ(DG(w)− L)∥ ≤
1
2

for ∥w − z∥ ≤ ϵ0. (2.2)

If, for 0 < ϵ ≤ ϵ0,

∥LĎG(z)∥ ≤
1
2
ϵ, (2.3)

then the equation G(w) = 0 has a solution with

∥w − z∥ ≤ ϵ. (2.4)

If this theorem holds (for a proof, see the proof of Proposition 4.1 in [9]), then we have a global error analysis with global
error given by ϵ := 2∥LĎG(z)∥ ≤ 2∥LĎ∥·∥G(z)∥. If we employ the infinity norm in sequence space, then ϵ ≤ 2∥LĎ∥∞δwhere
δ is a uniform bound on the local error. Thus, 2∥LĎ∥∞ represents the amplification of the local error that gives a bound on
the global error. In particular, the change in the state variables ∥1xn∥ ≤ 2∥LĎ∥∞δ and in Cases 3 and 4 the change in the
time step |1hn| ≤ 2θ∥LĎ∥∞δ.

We consider four forms for L and hence LĎ that all have the potential to provide long time global error statements de-
pending upon the dynamics of the problem being considered. For example, classical forward error results can be obtained
for contractive problems (all Lyapunov exponents negative) such as spatially discretized diffusion equations. Classical shad-
owing results are obtained for problems with a mixture of positive and negative Lyapunov exponents but no zero Lyapunov
exponents. An example where positive shadowing results have been obtained is for the forced damped pendulum equation.
Forward error analysis with rescaling of time provides long-time global error statements for problems with a single zero
Lyapunov exponent with the remaining Lyapunov exponents negative. An example of such as problem occurs when ap-
proximating a stable periodic orbit. Shadowing with rescaling of time can provide long-time global error statements when
approximating nonlinear autonomous differential equations with a bounded solution and a single zero Lyapunov exponent.
A specific example is the classical Lorenz 1963 model.

3. Non-autonomous inertial manifold reduction

The dimension of the matrix L is of the order of the number of time steps times the number of dependent variables. We
consider inertial manifold techniques to reduce the dimension of this matrix. We follow the framework in [33]. Consider
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the nonautonomous dynamical system
ẋ = A(t)x + F(t, x, y), x(t0) = x0,
ẏ = B(t)y + G(t, x, y), y(t0) = y0,

(3.1)

where x and y are elements of some Banach spaces X and Y , respectively, and A : R → L(X), B : R → L(Y ),
F : R × X × Y → X , and G : R × X × Y → Y are mappings satisfying the following assumptions.

(H1) The mappings A and B are locally integrable and there exists K ≥ 1 and α < β such that the evolution operators ΛA
andΛB of the homogeneous linear equations ẋ = A(t)x and ẏ = B(t)y, respectively, satisfy the estimates

∥ΛA(t, s)∥ ≤ Keα(t−s) for all t ≥ s,

∥ΛB(t, s)∥ ≤ Keβ(t−s) for all t ≤ s.

(H2) F(t, 0, 0) = 0 and G(t, 0, 0) = 0 for all t ∈ R. H := (F ,G) is a Lipschitz function that satisfies the estimate

∥H(t, z1)− H(t, z2)∥ ≤ M∥z1 − z2∥, ∀z1, z2 ∈ Z .

(H3) Weneed the relation between the linear and nonlinear terms,which is given in the formof the following gap condition:

β − α > 2KM. (3.2)

Under (H1), (H2), and (H3), the result in [33] shows that there existsΦ : R × X → Y and Ψ : R × Y → X such that
ẋ = A(t)x + F(t, x,Φ(t, x))
ẏ = B(t)y + G(t,Ψ (t, y), y). (3.3)

Under this framework, the family of inertial manifolds is Nt = graph(Ψ (t, y)) and the inertial manifold reduction is

ẏ = B(t)y + G(t,Ψ (t, y), y). (3.4)

Proof and further rigorous properties can be found in [33,30]. In this article, since we are interested in the computational
aspect, we sketch the way that we use to find Ψ , and for more details, we refer readers to our follow-up work [1,38]. In [33]
it is shown that

T (ψ, y0, t0)(t) = ΛB(t, t0)y0 +

 t0

t
ΛB(t, s)G(ψ(s)) ds −

 t

−∞

ΛA(t, s) F(ψ(s)) ds, ∀t ≤ t0, (3.5)

and it can be shown that for given y0 ∈ Y and t0 ∈ R, T has a fixed point in a proper Banach space, denoted byψ , which then
definesΨ . Therefore, findingψ is essential in this computation.Moreover, from (3.5) one can show thatψ(t) =: (x(t), y(t))
is the unique solution of the following boundary value problem (BVP)

ẋ = A(t)x + F(t, x, y), x(−∞) = 0,
ẏ = B(t)y + G(t, x, y), y(t0) = y0.

(3.6)

The main advantage of (3.6) over (3.5) numerically is that existing BVP solvers can be used.
In the numerical approximation of inertial manifolds the predominant approach has been to start from a linearly

decoupled equation. This is often accomplished using an eigen-decomposition of the linear operator in the problem. The
approach we will adopt follows that taken in [1], which involves the use of a possibly time dependent solution that we
linearize about and then decoupling the time-dependent linear operator obtained from the linearization. In particular, if we
write

u̇ = f (t, u) = Df (t, u)u + (f (t, u)− Df (t, u)u) ≡ C(t)u + N(t, u)

where Df (t, u) denotes the derivative of f (t, u) with respect to the u variables, then we decouple the linear operator C(t)
using techniques employed in finding stability spectra such as Lyapunov exponents and Sacker–Sell spectrum (see [1] for
complete details).

Start with a given ODE initial value problem
u̇ = f (t, u)
u(t0) = u0

(3.7)

where u ∈ Rd and t > t0. Let u(t; u0) be the solution of (3.7). We can decompose f (u, t) as f (u, t) = Df (u(t; u0), t)u +

N(u, t) ≡ C(t)u + N(t, u). The initial value problem (3.7) can then be expressed as
u̇ = C(t)u + N(t, u)
u(0) = u0.

(3.8)

Take a fundamental matrix solution X(t) of u̇ = C(t)u. We can factor X(t) as X(t) = Q (t)R(t) where Q (t) ∈ Rd×d is
orthogonal and R(t) ∈ Rd×d is upper triangular. Let u(t) = Q (t)z(t) and write z(t) = (x(t), y(t))T with x(t) ∈ Rd−pand
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y(t) ∈ Rp. Then x(t) and y(t) satisfies the following initial value problemẋ = A(t)x + F(t, x, y)
ẏ = B(t)y + G(t, x, y)
z(0) = Q (0)Tu0 = (x0, y0)

(3.9)

where A(t) ∈ Rp×p and B(t) ∈ Rq×q are both upper triangular. Notice that the x variables are linear decoupled from the y
variables: the differential equation for x(t) contains no linear terms in y. The inertial manifold of the system (3.9) consists
of solutions of the boundary value problemẋ = A(t)x + F(t, x, y)

ẏ = B(t)y + G(t, x, y)
x(−∞) = 0, y(0) = y0.

(3.10)

See [1] for more details. The boundary value problem (3.10) forms the basis for our dimension reduction techniques.

3.1. Differentials of manifolds

The differential DΨ can be found as the fixed point of the following operator as shown in [39]

T1(∆, y0, t0)(t) = ΛB(t, t0)+

 t0

t
ΛB(t, s)DG(ψ) ·1 ds −

 t

−∞

ΛA(t, s) DF(ψ) ·1 ds, ∀t ≤ t0, (3.11)

and similar to (3.10) for (3.5), we can show that the fixed point of (3.11) satisfies the following BVP
∆̇1 = A(t)∆1 + DF(ψ) ·∆, ∆1(−∞) = 0
∆̇2 = B(t)∆2 + DG(ψ) ·∆, ∆2(0) = IY ,

(3.12)

where ψ is the solution of (3.10), and ∆(t) = (∆1(t),∆2(t)) is a linear operator from Y to Z . The differential of unstable
manifolds is DΨ = ∆1(0).

To implement it, one could couple (3.12) with (3.10):
ẋ = A(t)x + F(t, x, y), x(−∞) = 0
ẏ = B(t)y + G(t, x, y), y(0) = y0
∆̇1 = A(t)∆1 + DF(t, x, y) ·∆, ∆1(−∞) = 0
∆̇2 = B(t)∆2 + DG(t, x, y) ·∆, ∆2(0) = IY .

(3.13)

Note that ∆1 is of dimension dim(X) × dim(Y ) and ∆2 is of dimension dim(Y ) × dim(Y ). Our focus in this work is using
the differential to obtain an estimate of ∥LĎ∥∞ in these four cases when applied to the differential equations obtained by
restricting to the inertial manifold. Therefore, we will focus on the linear operator generated by the linearization around the
solution on the lower dimensional decoupled equation

ẏ = B(t)y + G(t,Ψ (y, t), y) ≡ G1(t, y)

with flow denoted by ϕ(t, y). Then the linearized equation becomes

Ẏ = B(t)Y + Gy(t,Ψ (y, t), y)Y + Gx(t,Ψ (y, t), y)Ψy(y, t)Y . (3.14)

Therefore we can determine the Xn and fn as Xn := Xn(tn+1) where Xn(t) satisfies (3.14) for tn ≤ t ≤ tn+1 with Xn(tn) = I
and fn = G1(tn, y(tn)). We want to avoid solving a large system of equations to form Xn. To do so, we approximate the
derivative of G1(t, y) with respect to y directly with the flow ϕ, which we may approximate by time-stepping along the
inertial manifold. We have, for1x > 0 and1t > 0 small, the approximations

∂

∂y
G1(t, y)ej ≈

1
1x
(G1(t, y + (1x)ej)− G1(t, y)), G1(t, y) = ẏ(t) ≈

1
1t
(ϕ(1t; y)− ϕ(0; y)), 1, . . . , p

where ej is the jth standard basis vector of Rp, where p = dim(Y ). We make use of this approximation in the next section
where we discuss the implementation.

4. Implementation

In this section we describe the techniques we employ to approximate ∥LĎ∥∞ (for Cases 2–4) and recall Hager’s algorithm
for estimating the 1-norm of the inverse of a matrix (for Case 1). Subsequently, we describe our implementation based upon
a boundary value problem formulation for the nonautonomous inertial manifold reduction. Further details are available
in [1]. In addition, we describe a method for obtaining local solutions to the fundamental matrix solution that does not
require explicit formulas for the differential equation of the linear variational equation on the inertial manifold.
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4.1. Conditioning of IVP

We recall Hager’s algorithm to determine lower bounds on the L1 condition number of a square matrix (see [40,41]). For
our purposes here we wish to estimate ∥L−1

∥ for classical forward error analysis (Case 1) in which L is a square matrix. The
pseudo code for the code we employ is Algorithm 4.1.

Algorithm 1 Hager’s algorithm to approximate ∥L−1
∥∞ in Case 1.

Input: {Xn}
N
n=0

Output: Estimate (lower bound) ∥L−1
∥∞

1: i1 = −1; c1 = 0; b random vector;
2: while (1) do
3: Solve LT x = b; Set x = sign(x);
4: Solve Lb = x; Set i2 = maxi |bi|;
5: if 1 ≤ i1 then
6: if i1 ≡ i2 or c2 ≤ c1 then
7: break;
8: end if
9: end if

10: i1 = i2; c1 = c2; b = 0; bi1 = 1;
11: end while

We note that for classical forward error analysis (Case 1) L is block unit lower triangular, so no factorization is necessary
when solving the linear systems in Hager’s algorithm, only block backward and forward substitution. Typically 4 linear
system solves, two with L and two with LT , are required.

In Cases 2–4 we consider two options for approximating ∥LĎ∥∞. The first option which is the most expensive essentially
involves computation of ∥LĎ∥∞ by iteratively determining the rows of LĎ by computing the columns of (LĎ)T . This is
accomplished by solving linear systems from (LLT ) · (LĎ)T = L using the tridiagonal matrix LLT . This is done in a factor/solve
framework by first performing a block tridiagonal factorization analogous to Thomas’ algorithm and then solving with
multiple right hand sides. The second option relies on using a time stepping technique such as an embedded Runge–Kutta
pair that provides an estimate of G(x)n = xn+1 − ϕ(xn, hn), for example by employing the higher order method as an
approximation of ϕ(xn, hn) with the lower order method providing xn+1. We then solve the linear system L(1x,1h) =

−G(x), which is equivalent to finding the first Newton step, and then approximating ∥LĎ∥∞ ≈ ∥LĎG(x)∥∞/∥G(x)∥∞. This
only requires a single linear system solve and provides a residual correction based upon the approximation of the local error
that is employed for step-size selection and error control.

Finally we note here the relationship between Case 3 (forward error analysis with rescaling of time) and Case 4
(shadowing error analysis with rescaling of time). If we let L3 denote the operator L in Case 3 and L4 for Case 4, then
L4LT4 = L3LT3 + UUT where UT

= (XT
0 0 · · · 0). Then by the Sherman–Morrison–Woodbury formula

(L3LT3)
−1

= (L4LT4)
−1

+ (L4LT4)
−1U(I − UT (L4LT4)

−1U)−1UT (L4LT4)
−1

provided the low dimensional matrix, the capacitancematrix, I−UT (L4LT4)
−1U is invertible. Note that UT (L4LT4)

−1 is the first
block row of LĎ4. From this relationship we see that the difference between the conditioning of Cases 3 and 4 depends on the
behavior of the capacitance matrix. Note also that this provides a means of updating from Case 3 to Case 4 (or vice versa).

Case 3 can also be related to Case 1 and solved via a forward substitution scheme. Since 1x0 = 0 we have for
n = 0, 1, . . . ,N − 1,

1xn+1 − θ fn1hn = bn − Xn1xn ≡ gn.

Then solving L3(1x,1h) = b in a minimum norm least squares sense is equivalent to solving the underdetermined low
dimensional linear systems at each step in a minimum norm sense, for example using the pseudo inverse of the matrix
[I| − θ fn].

4.2. Inertial manifold reduction

To put the original initial value problem (3.8) into the form (3.9) we must have access to the orthogonal transformation
Q (t). To find Q (t)we follow the continuous orthonormalization technique (see e.g. [42,43]) which shows that Q (t) satisfies
the differential equation

Q̇ = QS(Q , C(t)), Q (0) = Q0, S(Q , C(t))ij =

(Q
TC(t)Q )ij, i > j

0, i = j
−(Q TC(t)Q )ji, i < j.
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Thus, if we start from the original equation u̇ = C(t)u + N(t, u), then to find a point on the inertial manifold x0 := x(t0) =

Ψ (t0, y(t0)) using the BVP formulation (3.10) we use the following boundary value problem.
ẋ = A(t)x + F(t, x, y)
ẏ = B(t)y + G(t, x, y)
Q̇ = QS(Q , L(t))
x(−∞) = 0, y(t0) = y0, Q (−∞) = Q−∞

(4.1)

where x ∈ Rd−p, y ∈ Rp and Q (t) ∈ Rdtimesd is orthogonal. In addition to (4.1) we have the initial value problem which is
useful in constructing an initial guess to the solution of the boundary value problem

ẋ = A(t)x + F(t, x, y)
ẏ = B(t)y + G(t, x, y)
Q̇ = QS(Q , L(t))
x(tic) = xic, y(tic) = yic, Q (tic) = Qic

(4.2)

where tic ∈ R. This leads to the following algorithm to compute the value of x(t) = Ψ (t, y(t))

Algorithm 2 (Algorithm to approximate Ψ (t, y(t)))
Input: Q−∞ ∈ Rd×d orthogonal, y−∞ ∈ Rp, T > 0
Output: Approximate values of x(t) = Ψ (t, y(t)) for t ∈ [t0 − T , t0]
1: (Construct Initial guess for BVP) Solve (4.2) on [t0 −T , t0]with the initial conditions y(t0 −T ) = y−∞, x(t0 −T ) = 0, and

Q (t0 − T ) = Q−∞ to obtain the initial guess solution t0 = {tn}
N0
n=0, z

0
= {(xn, yn,Qn)}

N0
n=0 where xn ≈ x(tn), yn ≈ y(tn),

and Qn ≈ Q (tn), n = 0, . . . ,N0.
2: (Solve BVP) Use t0 and z0 as the initial guess to a solution of (4.1) on the interval [t0 − T , t0] with boundary conditions

x(t0 − T ) = 0, y(t0) = yN0 , and Q (t0 − T ) = Q−∞ to obtain the solution tN = {tn}Nn=0, z
N

= {(xn, yn,Qn)}
N
n=0.

3: (Define output) Use the output of the BVP solver tN and zN to define approximations xn ≈ x(tn) = ϕ(tn, y(tn) and let
x(t) for tn−1 < t < tn be defined by piecewise cubic Hermite interpolation for n = 1, . . . ,N .

We use Algorithm 2 as the basis for an algorithm that time-steps on the inertial manifold equations or equivalently to
solve the initial value problem ẏ = B(t)y + G(t,Ψ (t, y), y) ≡ G1(t, y(t)), y(t0) = y0. To time step this problem, we must
be able to evaluate Ψ (t, y(t)) which requires the solution of a boundary value problem of the form (4.1). Since forming
Ψ (t, y(t)) requires the solution of a boundary value problem, it is natural in this context to use an explicit multistepmethod
for time-stepping since this requires only a single call to the boundary value problem solver at every time-step. With this in
mind let gn = G1(tn, y(tn)) ≈ B(tn)yn +G(tn, xn) and let yn+1 = H(1t, tn, {yn−i}

n
i=0, {gn−i}

k
i=0) be a k-step explicit multistep

method with fixed step-size 1t > 0 that approximates the initial value problem ẏ = B(t)y + G(t, ψ(t, y), y), y(t0) = y0.
We use the following algorithm to compute an approximate trajectory on the inertial manifold.

Algorithm 3 (Algorithm to approximate the solution of ẏ = B(t)y + G(t,Ψ (t, y), y))
Input: Tf ,∆t , T , t0, Q−∞ ∈ Rd×d orthogonal, y−∞ ∈ Rp

1: Set N = ceil(Tf /∆t)
2: for n=1:N do
3: For i = 1, . . . , k, use Algorithm 2 to compute the values of yn−i−1 and form xn−i−1 ≈ ϕ(tn−i−1, y(tn−i−1) where

tn−i−1 = tn−1 − i∆t
4: For i = 1, . . . , k set gn−i−1 = B(tn−i−1)yn−i−1 + G(tn−i−1, xn−i−1)
5: Set yn+1 = H(∆t, tn, {yn−i}

k
i=0, {gn−i}

k
i=0)

6: end for

A drawback of using Algorithms 2 and 3 for computations on the inertial manifold is that it requires us to specify
quantities Q−∞ and y−∞ that are not given as the initial data u(t0) = u0 in (3.7). In the standard initial value problem
frameworkwe are given the value of u(t0) = u0 which is the initial condition for the equation u̇ = f (t, u). To use Algorithms
2 and 3 we must specify the value of p = dim(Y ), T ≈ ∞, Q (t0 − T ), and y(t0 − T ). Since u(t) = Q (t)(x(t), y(t))T , we can
only determine the value of y(t0−T ) if we know the value ofQ (t0−T )which is determined from the solution of the boundary
value problem. For each chosen set of T ≈ ∞, p = dim(Y ), Q (t0 −T ), y(t0 −T ) there corresponds a different approximation
to u(t) = Q (t)(x(t), y(t))T and x(t) = Ψ (t, y(t)). In practice, we can determine the initial values by integrating (4.2) with
some random initial conditions forward in time on an interval [t0 − T − T2, t0 − T ] for some large T2 > 0. The value of p
should be chosen to correspond to the number of positive and large Lyapunov exponents and the size of T should be chosen
larger if the gap in (3.2) is small and can be chosen smaller if the gap is large. The relationship between the size of the gap
(3.2) and how large T must be taken is investigated in [1].
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We can use the output of Algorithm 3 to form Xn and fn as follows. Let {yn}Nn=0, {tn}
N
n=0 be the output of Algorithm 3 and

fix1y > 0 and1t > 0 small. As noted in Section 3.1, for i = 1, . . . , pwe have the approximation

∂

∂y
G1(t, y)ej ≈

1
1y
(G1(t, y + (1x)ej)− G1(t, y))

≈
1

(1y)(1t)
(ϕ(τ ; y + (1y)ej)− ϕ(0; y + (1x)ej)− ϕ(1t; y)+ ϕ(0; y))

=
1

(1y)(1t)


ϕ(τ ; y + (1y)ej)− ϕ(1t; y)+ (1y)ej


.

We first use the approximation yn+1 ≈ ϕ(τ , yn). For j = 1, . . . , p, we can find quantities (1y)n,j ≈ ϕ((1t)n, yn + (1y)ej)
using the Algorithm 2 with t = tn and y(tn) = yn + (1y)ej and we find xn as the output of Algorithm 2 with t = tn and
y(tn) = yn. Set δn,j =

1
(1y)(1t) ((1y)n,j − yn+1 + (1y)ej) for j = 1, . . . , p. We then form an approximation to Xn and fn as

Xn ≈ I + (1t)n∆n where∆n = [δn,1| · · · |δn,p] and fn ≈ G1(tn, xn, yn).

5. Numerical results

In this section we present numerical results that show the amplification factors given by ∥LĎ∥ for the four cases global
error types considered here for two example problems. The first is the classical Lorenz equations, a three dimensional system
of ODEs. The second is the Kuramoto–Sivashinsky equation which is known to have a low dimensional inertial manifold.

5.1. Lorenz ’63

Our first example is the classical Lorenz equationẋ
ẏ
ż


=


σ(y − x)
ρx − xz − y
xy − βz


.

We consider the parameter values σ = 10, β = 8/3 and ρ = 28 and the initial condition (x(0), y(0), z(0)) = (0, 1, 0).
We employ Runge–Kutta (4, 5) to solve the nonlinear differential equation with local error control and adaptive step-

size selection. Using the time mesh determined in this way the local solutions of the linear variational equation (the Xn) are
determined using the forward Euler method.

In Tables 1 and 2 we report on values of ∥LĎ∥∞ for the four different cases for final times T = 1, 10, 100 and absolute
local error tolerances tol = 10−4, 10−6, 10−8. As a check we also compared the values obtained by forming LĎ using block
tridiagonal linear system solves with the matlab command norm(pinv(L),Inf) and found agreement in all cases to high
precision.

The value of θ used in Cases 3 and 4 controls the degree to which there is rescaling of time. In general, the smallest
possible value of θ > 0 is desired since the difference between the computed time step and the time step of the exact
solution, that is close to the computed solution, is bounded by 2θ∥LĎ∥∞ ·tolwhen the nonlinear analysis holds. In the limit
as θ → 0 Cases 3 and 4 revert to Cases 1 and 2, respectively, so we expect ∥LĎ∥∞ to increase as θ → 0. We determined
‘‘optimal’’ values of θ using final time T = 103, tol = 10−4 and found θopt ≈ 60 for Case 3 and θopt ≈ 0.05 for Case 4.
We obtained similar values of ∥LĎ∥ for larger values of θ so these optimal values provide the tightest bound on the time
steps without significantly increasing ∥LĎ∥. The results in Table 2 and in Figs. 1 and 2 are obtained using these approximate
optimal values for θ . We note that the optimal value of the θ found in Case 4 agrees with the value obtained in [4] using a
different time stepping technique.

In Fig. 1 we plot the tolerance tol versus the computed value of ∥LĎG∥∞ for Cases 2–4 for T = 1000 and in Fig. 2 we plot
the final time T versus the computed value of ∥LĎG∥∞ for Cases 2–4 for tol = 10−6. These plots reveal the good behavior of
Case 3 (nearly as good as Case 4) and justify making good long time global error claims in the sense of forward error analysis
with rescaling of time.

5.2. KSE equation

As a second example consider the Kuramoto–Sivashinsky equation in the form

∂ ũ
∂τ

+ 4
∂4ũ
∂y4

+ ϑ
∂2ũ
∂y2

+ ũ
∂ ũ
∂y


= 0, (5.1)

with ũ(y, t) = ũ(y + 2π, t), and ũ(y, t) = −ũ(−y, t). With the change of variables

−2w(s, y) = ũ(ξ s/4, y), ξ =
4
ϑ
.
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Table 1
Comparison of values of ∥LĎ∥∞ with approximations of ∥LĎ∥∞

for Cases 1 and 2.

icase tol T ∥LĎ∥∞ ∥LĎG∥∞/∥G∥∞ Hager

1 1E−4 1 2.7E2 1.6E2 2.7E2
1 1E−6 1 5.5E2 5.2E2 5.5E2
1 1E−8 1 1.3E3 1.3E3 1.3E3

1 1E−4 10 2.4E11 7.5E10 2.4E11
1 1E−6 10 5.3E6 1.2E6 5.3E6
1 1E−8 10 1.4E5 3.8E4 1.4E5

1 1E−4 100 1.2E76 1.0E75 1.2E76
1 1E−6 100 2.1E50 5.5E48 2.1E50
1 1E−8 100 2.5E44 4.1E42 2.5E44

2 1E−4 1 5.0E1 5.2E0 –
2 1E−6 1 9.3E1 8.2E0 –
2 1E−8 1 2.1E2 2.2E1 –

2 1E−4 10 2.1E3 1.4E2 –
2 1E−6 10 4.7E3 7.7E2 –
2 1E−8 10 1.2E4 3.5E3 –

2 1E−4 100 2.1E3 1.2E2 –
2 1E−6 100 1.0E4 6.4E2 –
2 1E−8 100 1.3E4 3.8E3 –

Table 2
Comparison of values of ∥LĎ∥∞ with approximation of ∥LĎ∥∞

for Cases 3 and 4.

icase tol T ∥LĎ∥∞ ∥LĎG∥∞/∥G∥∞

3 1E−4 1 5.1E0 3.0E1
3 1E−6 1 1.1E1 9.2E1
3 1E−8 1 1.8E1 2.6E2

3 1E−4 10 3.7E1 4.7E0
3 1E−6 10 3.0E2 1.0E1
3 1E−8 10 2.9E3 1.0E2

3 1E−4 100 3.8E1 4.3E0
3 1E−6 100 3.0E2 1.0E0
3 1E−8 100 3.3E3 1.0E2

4 1E−4 1 2.1E1 3.3E0
4 1E−6 1 8.4E1 8.9E0
4 1E−8 1 2.1E2 1.5E1

4 1E−4 10 2.5E1 3.4E0
4 1E−6 10 1.8E2 1.0E1
4 1E−8 10 9.5E2 3.4E1

4 1E−4 100 2.5E1 3.8E0
4 1E−6 100 1.8E2 9.9E0
4 1E−8 100 9.6E2 3.4E1

(5.1) can be written as

ws = (w2)y − wyy − ξwyyyy. (5.2)

All computations were performed on a spatial discretization using a standard Galerkin truncation with 16 modes (see [39]
for more details) with the parameter values ξ = 0.02991, ϑ = 133.73454, which is one of the parameter values considered
in [39,37].We present results in Table 4 for an approximate trajectory on the inertialmanifold of (5.1) found using Algorithm
3 and as a comparison in Table 3 we present results where the system (5.1) is solved directly as in the case of the Lorenz ’63
system.

For the direct solution of (5.1) we employ a Runge–Kutta (4, 5)methodwith local error control and adaptive step-size se-
lection. For computations on the inertial manifoldwe employ the three-step Adams–Bashforth formulawith fixed time-step
size given and use the four-step Adams–Bashforth formula to monitor the local error. To determine the values of u(t0) and
Q (t0)we fix t0 = 10 and integrate the Galerkin approximation forwards in time starting with u(0) = uic, where jth compo-
nent of uic to be (−1)j/16, and Q (0) = I , where I is the 16 × 16 identity matrix. The local solutions of the linear variational
equation (the Xn) are determined using the forward Euler method for both the direct and inertial manifold computations.
In Table 3 we present results for the value of ∥LĎ∥∞ for the direct solution of (5.1). In Table 4 we present results for the
value of ∥LĎ∥∞ for the flow computed from Algorithm 3 for p = 8, T = 0.001, and 1t = 1E−4. Since (5.1) has large gaps
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Fig. 1. Plot of tol vs. 2∥LĎG∥ for Cases 2,3,4 with T = 1000.

Fig. 2. Plot of T vs. 2∥LĎG∥ for Cases 2,3,4 with tol = 10−6 .

between its Lyapunov exponents we are able to use small value of T = 0.001 which is justified by the theory developed in
our follow-up to this work [1]. For both experiments we use final times of T = 0.1 and T = 1.0 and use 1y = 1E−8 and
1t = 1E−4 for the approximation of the differential.

It is evident from Tables 3 and 4 that the global error asmeasured by ∥LĎ∥∞ for the computations on the inertial manifold
is much less than for the direct simulation in Cases 1–4. This is at least partially explained by the way we compute the
inertial manifold reduction. Algorithm 3 allows us to reduce the dimension of (5.1) from 16 modes to p modes by running
time-stepping on an equation of the form ẏ = B(t)y+G(t,Ψ (t, y), y)wherewe forman approximation Ψ̃ (t, y) to the inertial
manifold equations x = Ψ (t, y) using the Algorithm 4.2. In essence, our inertial manifold time-stepping algorithm allows us
to ignore the stiffest 16−pmodes and avoid the large errors associatedwith the stiffest components. The disadvantage of our
time-stepping algorithm is that at each time-step we must solve a boundary value problem to compute Ψ̃ (t, y). However,
this disadvantage may be partially offset since we may be able to use a larger step-size since the reduced problem is less
stiff than the full problem.

6. Discussion

In this paperwe consider four types of global error analysis for initial value differential equations. These can be thought of
as different types of condition numbers for initial value differential equations and correspond to the magnification factor of
the local error that determines the global error. These condition numbers, although computationally expensive to compute,
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Table 3
Comparison of values of ∥LĎ∥∞ for direct solution of a 16
dimensional Galerkin approximation to (5.1) for Cases 1–4.
The local error tolerance used was 1E−4.

icase T ∥LĎ∥∞

1 0.1 1.8E18
1 1 1.9E186

2 0.1 4.1E1
2 1 2.5E1

3 0.1 3.2E21
3 1 3.2E33

4 0.1 2.0E1
4 1 2.5E1

Table 4
Comparison of values of ∥LĎ∥∞ for Cases 1–4 for the approx-
imate flow on the inertial manifold of the 16 dimensional
Galerkin approximation of (5.1) using dim(Y ) = p = 8, time
step-size1t = 1E−3 and T∞ = 0.0005.

icase T ∥LĎ∥∞

1 0.1 1.0E2
1 1 1.0E3

2 0.1 5.0E1
2 1 5.0E2

3 0.1 1.2E2
3 1 1.2E3

4 0.1 8.8E1
4 1 8.1E2

can be used as a measure of confidence or lack of confidence in a numerical simulation. The techniques are applied to the
classical Lorenz ’63model and are exercised for a recently developed inertial manifold dimension reductionmethod applied
in the Kuramoto–Sivashinsky equation. Interestingly, forward error analysis with rescaling of time (Case 3) is quite effective
for the Lorenzmodel but not for the (full) KSEmodel. This appears to be stabilization that occurs due to the low dimension of
the Lorenz model with a single positive Lyapunov exponent. Additionally, the size of the condition numbers for the inertial
form reduction of the KSE model seems to grow at a much slower rate than for the full unreduced model.
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