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Article

Fast Motions of Key Methyl Groups in Amyloid-b
Fibrils

Liliya Vugmeyster,1,* Dmitry Ostrovsky,2Matthew A. Clark,3 Isaac B. Falconer,1Gina L. Hoatson,4 andWei Qiang5
1Department of Chemistry and 2Department of Mathematics, University of Colorado at Denver, Denver, Colorado; 3Department of Chemistry,
University of Alaska Anchorage, Anchorage, Alaska; 4Department of Physics, College of William and Mary, Williamsburg, Virginia; and
5Department of Chemistry, Binghamton University, Binghamton, New York

ABSTRACT Amyloid-b (Ab) peptide is the major component of plaques found in Alzheimer’s disease patients. Using solid-
state 2H NMR relaxation performed on selectively deuterated methyl groups, we probed the dynamics in the threefold symmetric
and twofold symmetric polymorphs of native Ab as well as the protofibrils of the D23N mutant. Specifically, we investigated the
methyl groups of two leucine residues that belong to the hydrophobic core (L17 and L34) as well as M35 residues belonging
to the hydrophobic interface between the cross-b subunits, which has been previously found to be water-accessible. Relaxation
measurements performed over 310–140 K and two magnetic field strengths provide insights into conformational variability
within and between polymorphs. Core packing variations within a single polymorph are similar to what is observed for globular
proteins for the core residues, whereas M35 exhibits a larger degree of variability. M35 site is also shown to undergo a solvent-
dependent dynamical transition in which slower amplitude motions of methyl axes are activated at high temperature. The
motions, modeled as a diffusion of methyl axis, have activation energy by a factor of 2.7 larger in the twofold compared
with the threefold polymorph, whereas D23N protofibrils display a value similar to the threefold polymorph. This suggests
enhanced flexibility of the hydrophobic interface in the threefold polymorph. This difference is only observed in the hydrated state
and is absent in the dry fibrils, highlighting the role of solvent at the cavity. In contrast, the dynamic behavior of the core is
hydration-independent.

INTRODUCTION

Amyloid-b (Ab) peptide is the major component of plaques
found in Alzheimer’s disease patients. The most abundant
form of this peptide, Ab1-40, has been a subject of multiple
studies and has been shown to exist in multiple polymorphs
that differ in their levels of cytotoxicity (1–13). In particular,
structural models are available for the twofold and threefold
polymorphs that can be grown under different conditions,
which differ principally in whether or not the fibrils get
agitated during growth (10). The cytotoxicity of the three-
fold polymorph was found to be significantly higher than
that of the twofold (10). In addition to native polymorphs
of Ab, several mutants have been found in plaques of pa-
tients. Of particular interest to this work is the D23N
‘‘Iowa’’ mutation, implicated in an early onset of the disease
(5). From the structural standpoint it is different from the
native Ab in that it can form thermodynamically metastable
protofibrils (14). Whereas the native Ab can form only

parallel b-sheet structures, the protofibrils of D23N consist
of antiparallel b sheets (12,15).

Although multiple studies have been devoted to structural
investigations (7,10–12,15–23), investigations of dynamics
of Ab remain relatively sparse (24), partially because of
the difficulties of obtaining site-specific resolution in these
noncrystalline samples. However, the knowledge of the
conformational ensemble and its difference between various
polymorphs, protofibrils, and oligomers is expected to play
an important role in understanding the molecular basis of
cytotoxic behavior of Ab (25). We have previously em-
ployed 2H static line shape measurements in combination
with single-site labeling to probe motions in the ms-to-ms
timescale range in the hydrophobic core of Ab as well
as the hydrophobic interface defined by M35 contacts
(Fig. 1). Based on the structural models, the relative
orientation of M35 contacts in different polymorphs can
play an important role in defining the water-accessible
hydrophobic core cavity, implicated by x-ray, cryo-EM,
solid-state NMR, and molecular dynamics (MD) simula-
tions (17,23,26–29). According to the structural models
(15), M35 is right at the edge of the b-sheet core region in

Submitted August 3, 2016, and accepted for publication October 5, 2016.

*Correspondence: liliya.vugmeyster@ucdenver.edu

Editor: Jane Dyson

Biophysical Journal 111, 2135–2148, November 15, 2016 2135

http://dx.doi.org/10.1016/j.bpj.2016.10.001

� 2016 Biophysical Society.

mailto:liliya.vugmeyster@ucdenver.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2016.10.001&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2016.10.001


the protofibrils, whereas the core extends to the C-terminal
residues in the wild-type Ab.

We have previously shown that the hydrophobic core is
highly dynamic with motions of methyl axes persisting
down to at least 200 K (30). Based on molecular modeling
and comparison with results for globular proteins, we have
argued that low activation energies for rotameric jumps
are the primary source that drives the persistence of the dy-
namics of methyl axes on the ms-ms timescale. Further, we
have seen that the dynamics of the hydrophobic core on this
timescale is independent of solvation, in sharp contrast to
what has been observed for globular proteins (31). However,
the M35 site defining the hydrophobic cavity exhibited
strong hydration dependence, implying water accessibility.
This was seen for both the twofold and the threefold poly-
morphs. Further, we have observed morphology dependence
for the hydrophobic core residues, but not for the hydropho-
bic water-accessible cavity. The later result is somewhat sur-
prising as, based on the structures, the environment around
M35 methyl groups is clearly different in the two poly-
morphs. Thus, it is possible that the differences in environ-
ment manifest themselves over a different timescale range.

The goal of this work is to probe faster timescale
motions, in the ps-to-ns range to obtain a more global
overview ofmethyl group dynamics in Ab. Methyl group dy-
namics at these timescales are a sensitive probe of
overall core packing (32–39) and its variations both within
a chosen polymorph and between different polymorphs.
An ability to characterize packing variations provides a
unique opportunity to assess the degree of variability of the

conformational ensemble in the fibrils and compare with
what is observed for globular proteins. Further, hydrated
globular proteins are known to undergo dynamical
transitions upon heating from cryogenic temperatures to
physiological range (34,40–45). The transition at ~250–200
K is generally described as activation of large amplitude mo-
tions coupled to the solvent (40,46–50). The occurrence of
the dynamical transition is generally related to the onset of
biological functions (34,51,52). An important question
arises: Do fibrils undergo a similar dynamic transition?

By investigating methyl groups at key locations, we
obtain insights into these questions. The chosen hydropho-
bic core sites L17 and L34 as well as M35 has been shown
to be essential in defining not only intramolecular, but also
intermolecular contacts (10,12,15,53–55). M35 residue is
also the focus of many experimental and computational
studies because of its role in defining the hydrophobic cavity
(17,27–29). We probe the twofold and threefold native
polymorphs and the D23N protofibrils using deuterium
relaxation measurements (T1Z, Zeeman order, and T1Q,
quadrupolar order) on selectively labeled samples. A wide
temperature range between 310–140 K is the key for obtain-
ing quantitative information on core packing and dynamical
transitions. Interestingly, the dynamics on ps-ns timescale
reveals differences between the twofold and threefold poly-
morphs not only at the hydrophobic core sites, but also at the
M35 site, which was not seen through the line shape exper-
iments, thus underscoring the role of local environment in
different timescale ranges.

MATERIALS AND METHODS

Preparation of Ab1-40 peptide and D23N mutant

The native and D23N mutant proteins were prepared using solid-state

peptide synthesis (performed by Thermofisher Scientific, Rockford, IL). Flu-

orenylmethyloxycarbonyl (FMOC)-leucine-5,5,5-d3 was purchased from

Cambridge Isotopes Laboratories (Andover, MA) and FMOC-Metionine-d3
from CDN Isotopes (Pointe-Claire, Quebec, Canada). The native sequence

is DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV. The

peptides were purified by reversed-phase HPLC and their identity and purity

was confirmed by mass spectrometry and reversed-phase HPLC. The result-

ing peptides had isotopic labels in only one chosen residue.

Preparation of the fibrils

The fibrils of the wild-type Ab were prepared as described in detail in (30)

and based on protocols established in (10,56). The main difference in prep-

aration between the twofold and threefold symmetric polymorphs is in the

agitation/sonication patterns of the seeds: for the twofold polymorph, son-

ication was performed every 3 to 4 h and the growth occurred under agitated

conditions. For the threefold variant, sonication was performed at 24 h with

the growth occurring under quiescent conditions. The bulk fibrils were pel-

leted by centrifuging at 300,000 g for 3 h, followed by resuspending the pel-

lets in the buffer and a second round of centrifugation. The washing

procedure was done to suppress the signal due to the natural abundance

of 2H in the DMSO solvent (used for dissolving the peptide) to the level un-

der 0.1%. Fibril pellets were resuspended in deionized water, rapidly frozen

with liquid nitrogen, and lyophilized. Preparation of the D23Nprotofibrils

FIGURE 1 (A) Ribbon diagram corresponding to monomeric units of the

wild-type Ab1�40 (PDB: 2LMN, twofold polymorph) and D23N mutant

(PDB: 2LNQ), with the side chains investigated in this work in red. (B)

Quaternary structures of the twofold (PDB: 2LMN) and threefold symmet-

ric polymorph (PDB: 2LMP) with the side chain of M35 in red are shown.

To see this figure in color, go online.
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with antiparallel b-sheet structure utilized a two-step seeding/filtration cy-

cle that takes advantage of the differences in fibril formation rate between

the parallel and antiparallel structures (12). The resulting morphologies

were confirmed with transmission electron microscopy imaging (Fig. S1

in the Supporting Material).

Hydration and preparation of NMR sample

A hydrated state with water content of 200% by weight was achieved by

either one of the following twoways, and we have confirmed that the results

do not depend on the chosen strategy. The first strategy involved exposing

lyophilized powder to water vapor in a sealed chamber at 25�C until the wa-

ter content reached saturating levels corresponding to ~40% by weight

(~12–16 h was sufficient to achieve this), followed by pipetting the remain-

ing water using deuterium depleted H2O. The second strategy involved pi-

petting in all water as deuterium depleted H2O and allowing the sample to

equilibrate for 12–36 h. The samples were packed in 5 mm NMR tubes (cut

to 21 mm length) using teflon tape to center the sample volume in the coil of

the NMR probe. The amount of material packed varied from 9–15 mg for

leucine-labeled peptides to 22–32 mg for methionine-labeled ones.

NMR spectroscopy

Data were collected on 17.6 and 9.4 T spectrometers equipped with static

deuteron probes. T1Z (Zeeman order) measurements under static conditions

were performed by the inversion recovery sequence for relaxation

times above 90 ms and saturation recovery sequence for shorter times.

T1Q (quadrupolar order) measurements were performed using Broadband

Jeener-Broekaert pulse sequence (57,58). All measurements on the 9.4 T

spectrometer were performed using quadrupolar echo detection scheme,

whereas for the measurements on the 17.6 T spectrometer the multiple

echo acquisition detection scheme (QCPMG) was utilized (59). Briefly,

QCPMG detection breaks the powder pattern spectrum into a series of

spikes that roughly follow the shape of the powder pattern. Unlike magic

angle spinning, QCPMG detection does not suppress relaxation anisotropy

(60). The durations of 90� pulses were between 2.0–3.0 ms. Ten to fifteen

QCPMG echoes were collected with either 104 or 52 ms pulse spacing,

corresponding to QCPMG spikelets (sidebands) spaced at 10 or 20 kHz in-

tervals, respectively. The number of scans ranged from 128 to 2048 depend-

ing on the signal-to-noise ratio in each sample, as well as the precision of

the data needed to define nonexponential decays. Seven to nine relaxation

delays were collected. Relaxation data are reported for the spikelets corre-

sponding to major singularities. Spectra were processed using 1 kHz

exponential line broadening.

Temperature calibration was performed by recording static lead nitrate

line shapes (61) and using the freezing point of D2O, 3.8
�C, as the fixed

point for the calibration.

Theoretical background

Zeeman T1Z and quadrupolar order T1Q relaxation rates are given by the

following (36,62):

1

T1Z

¼ 3p2

2
C2

qðJ1ðu0Þ þ 4J2ð2u0ÞÞ; (1)

1

T1Q

¼ 9p2

2
C2

qJ1ðu0Þ;

where u0 is the Larmor frequency, J1 and J2 are spectral density functions,

and Cq refers to the quadrupole coupling constant in the absence of motion.

J1 and J2 are dependent on timescales and type of underlying motional pro-

cesses, as well as on crystallite orientations. Spectral density functions

can be obtained analytically for several simple models of motion (63).

However, motional models with multiple modes usually require computer

simulations.

Three-site jumps of methyl deuterons are usually the main mechanism of

relaxation, however other motions of methyl axes can have appreciable con-

tributions as well. Further, the presence of the conformational ensemble in

biological molecules and polymers can give rise to distribution of con-

formers with different rate constants.

We have previously developed a model for protein methyl groups that

takes into account the presence of conformers with different rate constants

for methyl three-site jumps. Three-site jump motions are usually assumed

to follow the Arrhenius behavior for individual conformers. To describe

relaxation in a global fashion at all temperatures, we shifted the description

to the activation energy space, in which the conformers are distinguished by

their unique values of activation energy barrier for three-site jumps Ea.

For a continuous distribution of conformers, the overall observed magne-

tization M(t) is defined by the following:

MðtÞ ¼
Z

mðEa; tÞdEa; (2)

where mðEa; tÞ is the magnetization density in the activation energy space.

At equilibrium meqðEaÞ ¼ Meqf ðEaÞ, where f(Ea) is the probability density

for the system to be in the state with the activation energy Ea. The distribu-

tion of the activation energies is assumed to have a Gaussian form

f ðEaÞ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Þexpð�ððEa � hEaiÞ2=2s2ÞÞ. The relaxation rate de-

pends on the activation energy through the three-site jump rate constant

k3: k3ðEa;TÞ ¼ k0e
�Ea=T . Note, that for a system that follows this model

magnetization build-up curves are nonexponential. Nonexponential relaxa-

tion decay for 2H nuclei has been observed in multiple polymer systems

(64–68), and one of the approaches to parametrize this behavior is to fit

the magnetization curve to the stretched-exponential function of the

following form:

MðtÞ �MðNÞ ¼ ðMð0Þ �MðNÞÞe�ðt=Teff1 Þb ; (3)

in whichM(t) is the signal intensity, Teff
1 is the effective relaxation time, and

b is the parameter that reflects the degree of nonexponentiality, 0< b%1. b

less than 1 corresponds to a nonexponential behavior. Note that for satura-

tion recovery measurements Mð0Þ ¼ 0.

Up to this point we have summarized the behavior under the assumption

of the absence of conformational exchange between the substates of the

conformational ensemble and we refer to this situation as the ‘‘static

case.’’ However, when the conformational exchange is occurring on the

timescale of relaxation time, it has an effect both on the effective relaxation

rate and, to a larger extent, on the observed extent of nonexponentiality b.

Specifically, we have shown that it slightly lowers the value of Teff
1 and

significantly raises the value of b. The decay of the longitudinal magnetiza-

tion in the presence of conformational exchange can be described by Bloch-

McConnell equations (69), adapted for the presence of the distribution of

conformational states. We have also assumed that short-range stochastic

jumps in the activation energy space are the most appropriate description.

Modeling

Leucine residues

The model-predicted values of effective longitudinal relaxation times ðTeff
1Z Þ

and stretching exponent (b) were found through the simulation of the lon-

gitudinal relaxation experiment and fitting the stretched exponential func-

tion to the decay curves. For leucine residues the three-site jumps model

was used, which requires as its input the jump constant k3. The deuteron

quadrupole constant Cq was fixed at 160 kHz and we assumed the ideal

Fast Motions in Amyloid-b Fibrils
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tetrahedral geometry for the methyl groups. The model parameters

comprise the central value for the activation energy hEai, the width

of the distribution of activation energies s, and the Arrhenius law

prefactor k0. We discretized the distribution of activation energies

as Ea;i ¼ hEai þ ð1=N � 1Þði� ðN þ 1=2ÞÞ � 6s with i ¼ 1::N. This

creates a uniform grid covering the interval of activation energies

½hEai � 3s; hEai þ 3s� around the central value with interval between the

grid points of DEa ¼ Ea;iþ1 � Ea;i ¼ ð6s=N � 1Þ. We found it sufficient

to use 11 grid points (N ¼ 11), but checked that increasing the number of

grid points to 21 did not affect the results.

To generate partially relaxed curves for each individual conformer

we used the EXPRESS software package (70). This program explicitly

allows for simulations of the QCPMG detection scheme. For each

temperature point, the three-jump constant for the ith conformer was

k3;iðTÞ ¼ k0e
�Ea;i=RT . The overall partially relaxed spectra were obtained

as the weighted average of 11 grid points with the weights

fifexp½�ðEa;i � hEaiÞ2=2s2�. In analogy to the treatment of the experi-

mental data, resulting spikelet intensities at selected frequencies were fitted

to the stretched exponential function of Eq. 3. The model parameters were

then found by c2 minimization of the difference between experimental and

predicted values of ln Teff
1Z and b summed up over all temperatures but the

highest two.

At high temperatures deviating from the static case, the exchange be-

tween conformers was introduced. Based on the distribution of three-site

jump rates at each temperature in the static case, we calculated relaxation

times T1Z;i ¼ T1ZðEa;iÞ for each of the conformers and used them in solving

the Bloch-McConnell equation in the nearest neighbor approximation as

follows:

dmi

dt
¼ �mi � meq

i

T1Z;i

� k0miðfiþ1 þ fi�1Þ þ k0fiðmiþ1 þ mi�1Þ;
(4)

where mi ¼ mðEa;i; tÞ is the magnetization in each conformer, meq
i its equi-

librium value, fi are relative weights of the conformers, and k0 is the nearest-
neighbor jump rate. To obtain a closed system of equations, we set

f0 ¼ fNþ1 ¼ 0 and m0 ¼ mNþ1 ¼ 0. To describe the rate of the exchange

in terms independent of the discretization scheme we introduced kex
constant according to the equation kex ¼ ðk0=2 ffiffiffi

p
p ÞðDE3

a=s
3Þ(see (71) for

details). The overall magnetization MðtÞ ¼ PN
i¼1miðtÞ was then approxi-

mated by the stretched exponential function and the values of kex were fixed

by fitting experimental and model values. To determine the ranges of kex
values consistent with the experimental data, we used the range of b within

one standard deviation.

Methionine

Simulation of relaxation for methionine residues required the use of two

motional modes nested within one another. The first mode, three-site

jumps, was treated similarly to the leucine residues. Cq of 175 kHz and

ideal tetrahedral geometry around the methyl carbon was used (30). The

second mode is the diffusion of the methyl axis (S-Cε) along an arc on a

side of the cone with the axis along the Cg-S bond (Fig. S2). The two

lone pairs of electrons on the sulfur cause deviations from the tetrahedral

geometry and thus the angle of the methyl axes with respect to the Cg-S is

set to 99� (72). In general, the motion along the arc should be described

through a local potential for this degree of freedom. We have previously

found (73) that a good assumption is a constant potential on a restricted

arc. The diffusion process was simulated by discretizing the orientation

of the methyl axis along an arc of angular length a in steps of 1� along

the polar angle 4, using nearest neighbors jumps with the rate constant

kD ¼ D=ðDfÞ2, where D is the diffusion coefficient. Assuming the Arrhe-

nius temperature dependence of D, the fitting parameters of this mode

include the length of arc a and the activation energy and the prefactor

for the diffusion constant ED and D0, respectively.

The relaxation rates for both Zeeman and quadrupole order were fitted

with the EXPRESS software package, which accommodates multimode

motions routinely (70). Quadrupolar echo detection scheme was simulated

for relaxation at 9.4 T and QCPMG detection was simulated for relaxation

at 17.6 T, in accordance with the experiment.

The parameters for the three-site jump motions (hEai, s, and k0) as

well as for the diffusion constant (ED and D0) were ultimately fitted

by c2 minimization of the difference between experimental and pre-

dicted variables, summed over all temperatures and all available exper-

iments. The errors in these fitting parameters were obtained by

covariance matrix method. For the case of Zeeman relaxation both

experimental and simulated magnetization decay curves were fitted to

the stretched-exponential functions yielding Teff
1Z and b, whereas quadru-

polar order relaxation at high temperature was approximated by single-

exponential decay with the relaxation time T1Q due to small extent of

nonexponentiality.

The length of the arc a was selected separately as a part of the search of

the initial parameters for global minimization. First, we have found

approximate values for the parameters of the three-site jumps mode by

fitting only the lower temperature range (T < 250K) of the T1Z relaxation

data and taking into account only this mechanism. We then searched for

the values of the arc length and diffusion coefficients at high temperatures

(T > 250K) by using the full motional model in which the parameters of

the three-site jumps mode were projected from these approximate values.

For the threefold symmetric hydrated sample, for which relaxation data

were available at two values of the magnetic field strength, we found

that the value of a can be fixed with little uncertainty. However, for the

twofold symmetric and D23N mutant protofibrils in the hydrated state

the values of a and diffusion rate constant D could not be found indepen-

dently of each other and we have chosen to fix a at the value found for the

threefold symmetric polymorph. Then, using the chosen value of a, the

diffusion constants for the individual higher temperature points were

found for all of the hydrated samples (see Supporting Materials and

Methods and Fig. S2), from which the initial values of ED and D0 were

calculated.

RESULTS AND DISCUSSION

As described in detail in Materials and Methods, the sam-
ples have been synthesized with selective incorporation of
methyl deuteron labels in single residues, therefore our re-
sults obtained with static solid-state NMR are site-specific.
As demonstrated in Fig. 1, we investigate two hydrophobic
core residues L17 and L34 as well as M35, which is essen-
tial in defining hydrophobic cavities in the fibril. Further,
for each site we investigate and discuss three different var-
iants: the twofold symmetric polymorph, the threefold
symmetric polymorph, and the D23N protofibrils. For the
wild-type polymorphs, we also investigate the hydration
dependence by comparing the behavior in the dry lyophi-
lized fibrils (denoted by ‘‘dry’’) and the hydrated fibrils
with 200% incorporation of water by weight (denoted by
‘‘wet’’).

Nonexponential longitudinal relaxation profiles

For signal enhancement, most of the relaxation data have
been collected with the multiple-echo acquisition scheme
(QCPMG), which breaks the powder pattern into a series
of spikes with the distance between the spikes governed

Vugmeyster et al.
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by the echo times. Examples of spectra are shown in Fig. 2.
QCPMG detection retains anisotropy of the relaxation rates,
which, however, is difficult to quantify for low-sensitivity
samples. We report relaxation rates at major singularities,
which are 510 kHz for leucine side chains and 0 kHz for
methionine side chains.

Examples of individual relaxation build-up curves are
shown in Fig. 3. Deviations from a simple single-exponen-
tial behavior are observed for all sites probed and are signif-
icantly more pronounced at lower temperatures. The same
tendency has been observed for the hydrophobic core
methyl groups of globular villin headpiece subdomain pro-
tein (71). We have attributed the nonexponentiality in the
villin headpiece protein to the presence of multiple con-
formers, which are due to some differences in core packing.
Since the relaxation rates of methyl groups are dominated
by the three-site jump mechanisms, to get the nonexponen-
tiality of the decay curves one must have a distribution of
three-site jump rate constants. The distribution of rate con-
stants is very often seen in polymers, in which the resulting
relaxation behavior is described as ‘‘glassy’’ (74,75). Longi-
tudinal relaxation measurements over a broad-temperature
range thus permit one to probe the ‘‘glassiness’’ in proteins,
which is due to much finer differences between the con-
formers compared with polymers, because large-scale intra-
molecular motions are not present in the hydrophobic
regions of globular proteins. The very fact that the fibrils
display similar features already reports on the extent of
the conformational heterogeneity, which appears to be

similar to what has been observed in the globular villin
headpiece. Following the approach developed for polymers
(64–68), the build-up curves are fitted to the stretched-expo-
nential function, defined in Eq. 3.

Core residues: leucine-17 and leucine-34

When we fit the relaxation build-up curves at all tempera-
tures according to Eq. 3, we obtain the relaxation profiles
depicted in Fig. 4. To describe the conformational ensemble
and its effect on the relaxation rates across the entire temper-
ature range, we have developed an approach in which the
conformers of the ensemble are distinguished by their acti-
vation energy values (71), as summarized in Materials and
Methods. Such an approach naturally leads to an increase
in nonexponentiality at lower temperatures, because the
width distribution in the rate constants on the logarithmic
scale, lnðk3Þ, is related to the width of distribution of the
activation energies by s=T. The degree of nonexponentiality
depends also on the sensitivity of the function T1ZðEaÞ to the
variation of the activation energy. For example, in the vicin-
ity of the temperature where T1ZðhEaiÞ approaches its min-
imum (~195 K for leucine residues), T1ZðEaÞ has a weak
dependence on Ea and the degree of nonexponentiality of
the relaxation profiles decreases, resulting in higher values
of b, as one can see in Fig. 4. The fits according to this
model are shown by solid lines in Fig. 4. We observe that
for the first one or two highest temperatures there are consis-
tent deviations, resulting in higher than predicted values of b

−60−3003060
kHz

−60−3003060
kHz

−60−3003060
kHz

−60−3003060
kHz

−60−3003060
kHz

M35 3−fold

L17 3−fold

148 K wet

148 K wet

293 K wet

310 K wet

310 K dry

FIGURE 2 Examples of QCPMG spectra corre-

sponding to the largest relaxation delay in the longi-

tudinal relaxation times measurements for L17 and

M35 sites in the threefold morphology.
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and slightly lower values of Teff
1Z . Similarly to the case of vil-

lin headpiece protein, this behavior can be attributed to the
presence of exchange between the conformers on the time-
scale of Teff

1Z , which is in tenths of milliseconds range.
Fitted parameters of the model, including the estimates of

the conformational exchange rate constants are shown in
Table 1. First, we see that the central values of activation en-
ergies are in 13–16 kJ/mol range, which is typical for glob-
ular proteins (37). The twofold morphology has a tendency
to have somewhat higher values of Ea than the threefold one,
with D23N protofibrils closer to the twofold variant. The
widths of the distributions in Ea, which are ~13% from
the central values of the activation energies, are rather
similar to each other in all polymorphs as well as to the
globular villin headpiece. Thus, the variations in packing
in the fibrils is similar to globular proteins.

The presence of conformational exchange at high temper-
atures is seen for all sites with the exception of the L17
twofold. The value of kex can only be determined quantita-
tively when it falls within the range given by the following:

1
�
5< kex � Teff

1Z < 5: (5)

For much lower values of kex the distribution appears to us
as ‘‘static,’’ i.e., no exchange. For much higher values of kex,
we can only set the lower limit of the exchange rate
constant. Our measurements show that the exchange rates
at high temperatures fall into the range defined by Eq. 5
for all samples but L17 twofold. However, relatively large

errors in the values of b allow only for determining in which
part of this range kex falls. We determined that it is in the
range between tenths of milliseconds to hundreds of milli-
seconds (Table 1). It is likely that for the L17 twofold site
the exchange is present as well but is on the timescale
outside the detection window.

Methionine-35

Relaxation behavior of methionine residues is distinct in
comparison with the core leucine residues. First, T1Z relax-
ation minima are shifted to temperature below 145 K, as has
also been seen for L-methionine (76). Most importantly, at
high temperatures there is a clear leveling of the relaxation
curves (Fig. 5) signifying the presence of an additional
motional mechanism that dominates relaxation at these
temperatures.

To further assess these motions, we have undertaken
quadrupolar order relaxation measurements at high temper-
atures, as well as obtained field-dependence for one of the
samples, M35 in the threefold polymorph in the hydrated
state. Quadrupolar order relaxation rates, unlike the Zeeman
order ones, do not have 2u0 dependence in the spectral den-
sities (Eq. 1), and thus provide another independent assess-
ment of motional mechanisms. Measurements of the T1Q
times at high field have been performed with the QCPMG
acquisition scheme, applied here for the first time, to our
knowledge, for protein samples. Examples of spectra and
decay curves for the 510 kHz spikelet are shown in
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Fig. 6. In the high-temperature range the expected nonexpo-
nentiality of the T1Q relaxation is small and the relaxation
decays were fitted with the single-exponential function
(Fig. 6) in order not to overfit the data.

Combining both T1Z and T1Q measurements imposes very
strict requirements on the choice of the motional model and
fitting parameters. Further, the fact that we observe field-
dependence for both T1Q and T1Z times indicates that the
motions are close to the slow limit with respect to the
Larmor frequency. Thus, from a structural standpoint, these
motions likely correspond to methyl axis fluctuations. Line
shape measurements indicated two types of motions of the

methyl axis: large-angle rotameric jumps and diffusion of
the methyl axis along a restricted arc of ~30�–35� length,
corresponding to motions within rotameric wells. Specif-
ically, the latter mode corresponds to the motions of the
S-Cε axis resulting in changes of the c3 dihedral angle
within the range of ~35� inside a rotameric well (Fig. S2).

Rotameric jumps have been shown to be in the ms-ms
timescale range for our samples by the line shape measure-
ments, and thus are inefficient in causing T1Z and T1Q relax-
ation as they are too slow with respect to the Larmor
frequency. The diffusion constants for the motion along
the arc could not be determined from the line shape

TABLE 1 Values of the Fitted Parameters for L17 and L34 Sites

Residue lnk0 (s
�1) <Ea> (kJ/mol) s (kJ/mol) kex (s

�1) with Ranges in Brackets

L17 twofold 28.0 5 0.2 13.1 5 0.3 1.6 5 0.4 none

L17 threefold 28.6 5 0.2 14.9 5 0.3 1.3 5 0.4 293 K: 202 (34–361)

270 K: 66 (10–165)

L17 D23N 28.4 5 0.2 13.8 5 0.3 1.7 5 0.4 293 K: 194 (81–600)

L34 twofold 28.1 5 0.1 14.0 5 0.3 1.7 5 0.4 303 K: 43(27–64)

291 K: 121 (31–510)

L34 threefold 29.4 5 0.2 15.8 5 0.4 1.6 5 0.4 293 K: 99 (38–346)

270 K: 297 (151–403)

L34 D23N 28.3 5 0.2 13.6 5 0.3 1.7 5 0.4 293 K: 71 (21–240)

Based on the models described in the text. Dry and wet samples are identical.
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measurements other than observing that the timescale
is much faster compared with the effective quadrupole
coupling constant of 58 kHz. Thus, it is likely that the diffu-
sive motion of the methyl axis within rotameric wells is the
additional mechanism that is responsible for the leveling of
the relaxation curves at high temperatures. We note that the
asymmetric diffusive motion along a restricted arc was
necessary to explain asymmetry in the line shapes, and, to
be consistent with all experimental data, we employed the
same mode to explain the relaxation behavior.

As such, overall relaxation behavior is due to an interplay
between two motional mechanisms, the three-site jumps
dominating at low temperatures and the diffusion of the
methyl axes dominating at high temperatures. Each of these
mechanism has its own temperature dependence governed
by the values of the activation energies ED and Ea for the
diffusion and the three-site jump motions, respectively.

The length of the arc a is best constrained by the field-
dependent data (Fig. 7). When the diffusive motion is close
to slow motional regime, the absence of the field-dependent
data leads to large ambiguities in the value of a, in the sense
that there exists a strong correlation between the values of
the arc length and the diffusion rate constants. Thus, to facil-
itate the comparison between the three polymorphs, we

fixed a at 34� obtained from the field-dependent data for
the M35 hydrated samples in the threefold polymorph,
and kept the length the same for the twofold and the
D23N hydrated samples.

Quadrupolar order relaxation appears to be more sensitive
to the diffusive motion compared with the Zeeman order,
thus T1Q measurements were instrumental in detecting dif-
ferences between the twofold and threefold polymorphs at
high temperatures (Figs. 5 and S4). All available rates
were fitted together at all temperatures to the two-mode
motional model and revealed that whereas the activation en-
ergies for the three-site jump motions Ea are similar in all of
the methionine-labeled samples, the activation energies ED

for the diffusion motion are very different between the
wild-type twofold and threefold polymorphs: 32 5 4 and
125 3 kJ/mol, respectively. This is an important new result,
to our knowledge, distinguishing the dynamics at the M35-
site between the twofold and the threefold polymorphs.
Although the structural models have shown significant dif-
ferences at this site, 2H line shape measurements indicated
identical dynamics at the ms-ms timescale range, which is
dominated by the rotameric jumps. The relaxation measure-
ments point to the fact that local environment at the M35 site
creates differences in faster smaller-angle diffusive motions
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of the methyl axis. The relative differences in the activation
energies by a factor of 2.7 provide a measure of the plas-
ticity of the environment at the hydrophobic cavity in the
threefold polymorph compared with the twofold one. Inter-
estingly, the value of ED for the diffusion motions in the
D23N protofibrils (9 5 2 kJ/mol) is similar to the threefold
polymorph. Thus, the environment in the threefold poly-
morph at the cavity is as flexible as in the monomeric pro-
tofibrils, which could be important in designing strategies
for drug penetration into the cavity.

The central values of Ea for the three-site jumps are be-
tween 7–7.5 kJ/mol (Table 2) for all samples, similar to
what has been found for methionine side chains in amino
acids (76). The width of the distributions is in the range of
28% to 36%, compared with 13% for the core leucine
groups. Thus, the hydrophobic interface has a much larger
variability in packing compared with the core regions.

The leveling of the relaxation curves was also observed
for L-methionine and one of the methionine residues in

methionine-labeled sperm-whale myoglobin, whereas a
L-methionine in the D,L lattice as well as another methio-
nine residue in myoglobin did not display this behavior
(76). Thus, the fact that the onset of the second motional
mode is seen for all M35-labeled samples in Ab indicates
that the local environment around the side chain is flexible
enough to accommodate these motions.

Hydration dependence

We have investigated the dependence of relaxation on solva-
tion for the wild-type polymorphs of Ab. Line shape mea-
surements indicated that L17 and L34 dynamics on the
ms-ms timescale is independent of solvation, whereas the
M35 site has a strong hydration dependence (30). The
following data extend this conclusion to the ps-ns timescale
motions.

Relaxation data for the dry and wet samples of the core
residues L17 and L34 are indistinguishable (Fig. 8). Unlike
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the core residues, M35 displays significant hydration depen-
dence for both the twofold and the threefold polymorphs in
the high-temperature range in which the diffusive motions
of the methyl axes predominates (Fig. 9). At low tempera-
tures at which the three-site methyl jumps predominate
there are no differences between the dry and the wet sam-
ples. Interestingly, the dry wild-type fibrils are identical in
the twofold and threefold polymorphs (Fig. 9 B), indicating
that the differences in the dynamics of the two polymorphs
are induced by solvation.

Unlike the wet samples, the relaxation data for the dry
samples at the M35 site does not require temperature depen-
dence in the diffusion coefficient to fit the high temperature
range. Within experimental precision, a constant diffusion
coefficient D of ~1.0 � 106 s�1 to 1.2 � 106 s�1 can fit
all relaxation data in this range, with the length of the arc
kept the same at 34�. In comparison, for the wet threefold
sample the diffusion coefficient is 6.2 � 106 s�1 at 310 K
and is decreased to 2.6 � 106 s�1 at 265 K. For the twofold
sample, the diffusion coefficient at the physiological tem-
perature is 1.4 � 107 s�1. Thus, the main effect of hydration
is faster diffusion, with the value of D larger by a factor of 5
to 10 at the physiological temperature.

These new results (to our knowledge) on the hydration
dependence combined with the previous line shape mea-
surements are consistent with the existence of the water-
accessible cavity around M35 residues, predicted by MD

simulations (27). Solvation has an effect of enhancing mo-
tions on a wide range of timescales at the M35 site.

The hydration-induced dynamical changes at the M35
site can be interpreted within the framework of the dynam-
ical transitions. As mentioned in the introduction, onset of
larger amplitude solvent-dependent modes upon heating
from the cryogenic temperatures have been extensively
studied for globular proteins, by means of incoherent
neutron-scattering, Mössbauer absorption, dielectric spec-
troscopy, and NMR methods (34,40–43,45,77–83). The
crossover temperature between the dominance of smaller-
scale faster motional modes at low temperatures and
larger-scale slower amplitude modes at high temperatures
is usually taken phenomenologically as the change in the
slope of a measurable spectroscopic quantity, in our case
the relaxation time. The crossover temperature is also often
referred to as the ‘‘dynamical transition temperature.’’ As
can be most clearly seen from Fig. 9 A, the threefold
hydrated sample experiences the crossover behavior around
250–240 K, at which the diffusive motion becomes domi-
nant. Interestingly, for the twofold sample the transition
temperature is in the same range (Fig. 5 B, T1Z panel), sug-
gesting perhaps that unfreezing of solvent-related modes is
the main driving force in the onset of the diffusion motion.
However, the values of the activation energies of these
motions are governed by methyl axes environments, which
are different in the twofold and threefold fibrils. The dry

TABLE 2 Values of the Fitted Parameters for the M35 Sites in the Hydrated State

Polymorph lnk0 (s
�1) <Ea> (kJ/mol) s (kJ/mol) D0 (s

�1) ED (kJ/mol)

Twofold 28.0 5 0.2 7.5 5 0.6 2.3 5 0.4 (3.0 5 0.4) � 1012 32 5 4

Threefold 28.0 5 0.2 7.3 5 0.6 2.6 5 0.4 (6.5 5 0.5) � 108 12 5 3

D23N 27.4 5 0.1 7.0 5 0.5 1.9 5 0.3 (6.0 5 0.5) � 107 9 5 2

Based on the models described in the text. The value of the arc length was taken as 34� for all polymorphs.
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samples do not display any significant changes in the
apparent slopes of the T1Z relaxation curve, indicating that
methyl rotations dominate over a relatively weak diffusive
motion even at high temperatures.

CONCLUSIONS

This study has provided several new insights (to our knowl-
edge) into the conformational ensemble of amyloid fibrils
and comparison with globular proteins. Fibrils are distinctly
different from globular proteins in terms of intra and inter-
molecular interactions, and thus it is not obvious a priori
that features of the conformational ensemble are similar
between the two systems.

First, we have seen that hydrophobic core packing and
their variations, reflected in the values of the activation en-
ergies for methyl rotations and the width of distributions,
are similar to packing in globular proteins. Methyl rotations
at the core L17 and L34 sites are hydration-independent,
again in agreement to what has been observed for the glob-
ular proteins (71,84–86). However, the variations in pack-
ing at the M35 site, which is outside the core and pointed
toward a hydrophobic cavity, is a lot more pronounced,
with the width of distribution increased by a factor of
two to three. Second, we have observed for the first time,
to our knowledge, the features of the dynamical transition
in the fibrils. This transition is manifested at the M35 site
as an onset of dominance of slower diffusive motions of
methyl axis at ~250–240 K, in addition to methyl rotations
that dominate at lower temperatures. The diffusive motions

are clearly hydration-dependent. It is suppressed in the dry
samples, in which methyl rotations remain dominant across
the entire range. The results suggest that fibrils may un-
dergo dynamical transitions with activation of not only
local, but also more extended large-amplitude modes
potentially related to the onset of biological function, in
similarity with globular proteins. However, it remains to
be seen whether other sites, in particular aromatic residues,
solvent-exposed charged side chains, and residues in the
unstructured N-terminal also undergo similar dynamical
transitions, i.e., that the observed transition is global for
the entire fibril.

The diffusive motion of methyl axis at M35 drives the
differences between the twofold and threefold symmetric
polymorphs. The difference is not observed either at low
temperatures (at which methyl rotations predominate) or
in the dry states of the two polymorphs. At the physiological
temperature, the diffusion coefficient is by a factor of at
least five larger for the hydrated samples compared with
the dry ones. Combined with the fact that the value of the
activation energy for the diffusive motions is almost three
time smaller in the threefold polymorph and is comparable
with the one detected for the monomeric D23N protofibrils,
the results indicate a relatively high degree of flexibility at
the hydrophobic cavity. This may be potentially important
in the design of drugs targeting the cavity in the more cyto-
toxic threefold polymorph. The fact that the differences be-
tween the two polymorphs at the M35 site are seen only
through the motional mode associated with the onset of
the dynamical transition, underlies a potential role of the
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dynamical transition in the onset of motions distinguishing
key features of the two polymorphs.

Our results complement MD studies of the conforma-
tional ensemble in amyloid fibrils and open an avenue for
the refinement of MD techniques geared toward investiga-
tions of the ensemble of various polymorphs across a wide
temperature range.
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