
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

12-2-2016 

Toward Sensor-Based Random Number Generation for Mobile Toward Sensor-Based Random Number Generation for Mobile 

and IoT Devices and IoT Devices 

Kyle Wallace 
College of William and Mary, kmwall@cs.wm.edu 

Kevin Moran 
College of William and Mary, kpmoran@cs.wm.edu 

Ed Novak 
College of William and Mary, ejnovak@cs.wm.edu 

Gang Zhou 
College of William and Mary, gzhou@cs.wm.edu 

Kun Sun 
College of William and Mary, ksun@cs.wm.edu 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Wallace, Kyle; Moran, Kevin; Novak, Ed; Zhou, Gang; and Sun, Kun, Toward Sensor-Based Random Number 
Generation for Mobile and IoT Devices (2016). 
10.1109/JIOT.2016.2572638 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235401814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016 1189

Toward Sensor-Based Random Number Generation
for Mobile and IoT Devices

Kyle Wallace, Kevin Moran, Ed Novak, Gang Zhou, Senior Member, IEEE, and Kun Sun

Abstract—The importance of random number genera-
tors (RNGs) to various computing applications is well understood.
To ensure a quality level of output, high-entropy sources should
be utilized as input. However, the algorithms used have not
yet fully evolved to utilize newer technology. Even the Android
pseudo RNG (APRNG) merely builds atop the Linux RNG to
produce random numbers. This paper presents an exploratory
study into methods of generating random numbers on sensor-
equipped mobile and Internet of Things devices. We first perform
a data collection study across 37 Android devices to deter-
mine two things—how much random data is consumed by
modern devices, and which sensors are capable of producing
sufficiently random data. We use the results of our analysis
to create an experimental framework called SensoRNG, which
serves as a prototype to test the efficacy of a sensor-based
RNG. SensoRNG employs collection of data from on-board sen-
sors and combines them via a lightweight mixing algorithm
to produce random numbers. We evaluate SensoRNG with
the National Institute of Standards and Technology statistical
testing suite and demonstrate that a sensor-based RNG can pro-
vide high quality random numbers with only little additional
overhead.

Index Terms—Mobile computing, random number genera-
tion (RNG), sensors.

I. INTRODUCTION

RANDOM numbers and the generators thereof are
an essential part of the mainstream computing land-

scape [1], [2]. The values produced by an RNG are uti-
lized in a wide variety of applications, from OS-level func-
tionality (stack pointer randomization), facilitating games
and gaming content (AI decision making, lotteries, pro-
cedural generation), scientific computing (Monte Carlo,
Markov models), and computer security (cryptographic key
generation) [2]–[4].

While random number generation (RNG) is a topic that
has been well studied in the context of traditional comput-
ing environments, the rapidly growing mobile and Internet
of Things (IoT) landscape has created a new space for
research and exploration [5]. Mobile devices have prolifer-
ated and evolved into all-encompassing personal computers

Manuscript received March 31, 2016; revised May 13, 2016; accepted
May 20, 2016. Date of publication May 24, 2016; date of current version
January 10, 2017. This work was supported by the U.S. National Science
Foundation under Grant 1253506 (CAREER).

The authors are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA 23185 USA (e-mail:
kmwall@cs.wm.edu; kpmoran@cs.wm.edu; ejnovak@cs.wm.edu;
gzhou@cs.wm.edu; ksun@cs.wm.edu).

Digital Object Identifier 10.1109/JIOT.2016.2572638

that not only perform familiar tasks, but also enable new
functionality that standard computing environments are not
equipped to address, such mobile payment and banking,
or two-factor authentication. Meanwhile IoT-ready devices
serve to extend the sensing capabilities of other devices,
enabling previously “dumb” technologies, such as the car
or home, to become aware of their surroundings. This
growing list of nontrivial use cases only adds to the
demand for quality random numbers in a various con-
texts.

Many current RNG implementations either directly use—
or are built on top of—the Linux PRNG (LPRNG), which
draws its randomness from system level events and user
input [6], [7]. However, the LPRNG has difficulty extract-
ing large amounts of entropy from these events, and instead
relies on a large amount of mathematical mixing to pro-
duce random numbers [8]. To address this, there has been
growing support for integrating hardware-based RNGs or alter-
native entropy sources in recent devices, such as with Intel
RDRAND [9], [10]. However, it is impossible for legacy
devices to take advantage of newer hardware. Furthermore,
hardware is susceptible to problems such as bias, degradation,
or backdoors—all of which are typically more difficult to fix
should they arise.

As a compromise between these two approaches, previous
work has looked into extracting randomness from differ-
ent sensors, such as the accelerometer or camera [11], [12].
However, these works are limited in their approach. Some
are simply limited in the number of sensors they exam-
ine [11]–[13], in the scope of their analysis, or have anal-
ysis methods not suited for implementation in a mobile
or IoT context. Others have not considered the impact
of changing environmental contexts or hardware [11]–[14].
Furthermore, very few works consider the overhead of using
sensors as an input source in terms of power use and CPU
overhead [11], [15].

Based on the limitations of previous work, we chose the
following research questions to address with our exploratory
study.

RQ1: Which sensors in modern mobile or IoT devices are
capable of providing randomness, and how much?

RQ2: What is the demand for randomness in the context
of a mobile system?

RQ3: How does sensor hardware diversity impact the
effectiveness of a sensor-based RNG?

RQ4: What kind of overhead does a sensor-based RNG
impose on a mobile or IoT system?

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1190 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

In summary, the major contributions of this paper are as
follows.

1) We conduct a data collection study surveying 37
Android devices of varying hardware capabilities. Our
analysis of the data reveals two things: a) which sensors
are suitable sources of random noise and b) the demand
for random data in mobile devices. Specifically, we show
that random data use tends to occur in short bursts, but
never overwhelming to the RNG.

2) We implement SensoRNG, a proof-of-concept RNG
which draws randomness from hardware sensors. Our
framework leverages opportunistic collection of data
to efficiently gather the necessary sensor samples with
reduced overhead. SensoRNG is implemented both as an
Android system service, as well as an Android library
for the sake of evaluation.

3) We provide an evaluation of SensoRNG on multiple
aspects, demonstrating the viability of a sensor-based
RNG as well as evaluating its overhead.

4) We discuss and provide insight into our findings, includ-
ing the strengths and drawbacks of utilizing a sensor-
based RNG.

II. BACKGROUND

An RNG is effectively a black box that takes input and
produces unpredictable numbers within some defined range.
RNGs can be classified into two main categories: 1) pseudo-
RNGs (PRNGs) and 2) true RNGs (TRNGs). A PRNG is a
complicated mathematical function that simulates randomness
and is designed to be exceptionally difficult to reverse engineer
based on output alone. The randomness of a PRNG stems from
some random source, often referred to as a seed. A TRNG
relies on an input source that is shown to exhibit random ten-
dencies, such as radioactive decay or atmospheric noise, to
produce values. Mathematically proving that a stream of bits
produced by an RNG is truly random is effectively impossi-
ble. However, it can be strongly suggested through rigorous
statistical testing that a stream exhibits properties similar to
what would be expected from a probability distribution [16].

A. Entropy

Entropy is a standard metric in information theory that mea-
sures the uncertainty of events in a probability space [17]. In
the context of RNGs, we utilize entropy (in part) to describe
how random a given stream of values is. To take an explicit
measurement, we utilize the standard Shannon entropy formula

H(P) = −
n∑

i=1

pi ∗ log2(pi)

where pi is the probability of a given event in P occurring. In
the case of a random bit stream, the events in the probability
space are all length k binary strings, and the probability of
an individual event is equal to the number of instances that
a particular string appears as a subsequence of the original
bit stream. Shannon entropy is calculated against a uniform
distribution and is reported in a unit of bits.

Fig. 1. LPRNG framework. User input events correspond to keyboard and
mouse input, or user touch events for mobile devices.

B. Applications

Random numbers have a wide range of application scenar-
ios, from high-level user level applications to low-level system
functions. High level applications fields such as scientific com-
puting use random numbers when performing simulations. For
example, an RNG could be used to initialize the parameters at
the beginning of an experiment, or perform a sampling from
potential items during. At the OS level, various constructs
such as address space layout randomization, stack canaries,
establishing network connections, and much more.

While the concept of applying random numbers is relatively
straightforward, the consequences of a poor RNG varies from
application to application. For something as simple as a game
of chance, it can lead to simply poor user experience. In a
scientific simulation, this can lead to lost time, or even false
trends within the data. But for security algorithms, a poor RNG
can result in vulnerability to attacks or data breaches.

C. Linux PRNG

Fig. 1 details the architecture of the LPRNG. The LPRNG
draws randomness from three main sources: 1) user input
(mouse and keyboard for desktops, touchscreen events for
phones); 2) interrupt request (IRQ) timings; and 3) disk
read/write timings. These events are collected by two pools,
and then are fed into two output pools as needed. When
the nonblocking pool /dev/urandom is read from, it will
attempt to provide randomness from either the nonblocking
pool or pull in fresh randomness from the input pool. If there
is none available, it will use stale data from the nonblocking
pool in order to produce randomness on demand.

At its core, the Android PRNG (APRNG) is an extension
of the LPRNG, utilizing random data from /dev/urandom
and hashing it to produce random values. The APRNG
consists of two main parts: 1) the EntropyMixer
and 2) the SecureRandom front end. The purpose of
the EntropyMixer is to preserve the current state of



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1191

/dev/urandom on shutdown and restore it on boot.
Additionally, it occasionally writes device-specific data to
/dev/urandom such as the current time and the serial
number. The other component, SecureRandom, acts as a
front-end to the current PRNG algorithm SHA1PRNG, and
is the current provider of cryptographically-secure random
numbers for Android OS.

III. RELATED WORK

We categorize related work as follows: exploratory studies
into sensor randomness, methods of generating randomness in
devices, and studies into the APRNG/LPRNG.

A. Sensor Randomness

The study carried out by Krhovjak et al. [11] investigated
the microphone and camera in smart phones as promising
sources of randomness. Similarly, Suciu et al. [12] studied four
sensors—the gyroscope, accelerometer, magnetometer, and
GPS—to determine the level of randomness that each might
provide. While Krhovjak et al. [11] relied on Shannon entropy
to quantify the nondeterministic nature of the sensors, we per-
formed a deeper analysis to determine the significance of each
bit per sensor sample. For the work by Suciu et al. [12],
very little insight or information is provided about the uti-
lized analysis methodology. The authors also only give a brief
overview of how they combined incoming sensor streams. By
comparison, we offer a detailed examination of a breadth of
sensors examined in previous works. We also explicitly out-
line the architecture of our prototype, SensoRNG, and provide
a detailed analysis of performance and power in comparison
with the APRNG.

B. New Methods for Randomness Generation

Randomness generation in IoT devices has typically relied
on the LPRNG. However, several authors have proposed
alternative methods for harvesting entropy or producing ran-
domness. Kelsey et al. [18] proposed the Yarrow RNG as a
general purpose solution, and is currently used in iOS and
OSX. McEvoy et al. [19] proposed the Fortuna PRNG as a
cryptographically secure solution for generating random num-
bers. It has recently been adopted by FreeBSD [19]. Both of
these algorithms could potentially be utilized in an IoT set-
ting, but there has been no investigation into the potential of
overhead.

More recently, Intel has begin adding support for hard-
ware entropy gathering within the CPU with their RDRAND
instruction [10]. Other work has suggested that CPU jitter
could serve as a suitable entropy source for generating ran-
dom numbers [20], [21]. However, the former is limited to x86
processors while the latter has not received extensive testing
on low-power devices.

With regards to sensors, Francillon and Castelluccia [22]
proposed a method for using received bit errors as a source
of randomness in wireless sensor nodes. Re et al. [23] pro-
posed a method of using the physical measurements collected
by large scale wireless sensor nodes as an input to a TRNG.

Our primarily concern in this paper is with randomness
extracted from commodity sensors available in mobile and IoT
devices. We use these approaches as motivation for choosing
which sensors to consider for analysis in our data collection
study.

C. Studies on the Linux PRNG

The APRNG utilizes the LPRNG as part of its current
implementation. There has been recent work done outlining the
architecture of the LPRNG by Gutterman and Pinkas [8] and
Lacharme et al. [7]. There are three major sources that Android
uses to feed the random pool of the LPRNG—disk timings,
interrupt timings, and user touch events. However, in the study
conducted by Ding et al. [14] it was noted that Android tends
to rely heavily on disk events, especially directly after sys-
tem boot. Furthermore, the amount of random bits that can be
extracted from a single sample of one source is small, corre-
sponding to 3 bits for disk events and 4 bits for interrupts [7].
This paper finds that a single sensor sample can provide much
more.

Another important feature of the LPRNG is the entropy
estimation counter associated with each pool. When data
is added to a particular pool, the counter is incremented
accordingly, and vice versa. These counters are kept for both
random and urandom pools. A recent analysis performed by
Dodis et al. [24] suggested that an attacker can take advantage
of the manner in which these counters are implemented and
potentially compromise the integrity of the output. While this
paper does not explicitly investigate the security of the PRNG,
we use works such as these as motivation for our exploratory
study.

IV. DATA COLLECTION STUDY

This section outlines the details of our data collection study,
in which we gather data traces from the entropy counter and
various sensors. We target Android for ease of collection from
a variety of sensors and devices, all of which run on top of
the Linux kernel.

A. Study Overview

Modern Android devices come equipped with hardware sen-
sors that are available for a variety of tasks. For example, many
devices come with a microphone to enable the user to make
calls and record audio, or an accelerometer to detect device
orientation. With respect to a sensor-based RNG, we are inter-
ested in three sensor properties: the sample size (how many
bits are needed to represent the sample data), the sensor reso-
lution (the smallest change in value that a sensor can detect),
and the sampling rate (how fast a sensor can report samples).
Ideally, we want all of these attributes to be as large as pos-
sible. Because Android devices are produced by a number of
manufacturers and span a wide range of capabilities, they are
an ideal platform to explore the potential impacts of hardware
diversity.

1) Sensor Data: For our data collection study, we chose
to include seven sensors commonly found in Android devices.
Table I summarizes the sample size and rates for each sensor.



1192 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

TABLE I
SUMMARY OF THE SENSORS CHOSEN FOR STUDY. GPS SAMPLE

RATE DEPENDS ON MOVEMENT, WHILE CAMERA

SAMPLE RATE DEPENDS ON HARDWARE

TABLE II
SUMMARY OF SENSOR DATA FROM SENSORPASS

The number in parentheses represents the number of axes
the sensor reports on. These sensors were selected based on
availability and the accessibility from an Android application.
Documentation for interfacing with Android sensors can be
found at the Android developer website [25].

2) Entropy Counter Data: The LPRNG tracks
the amount of random data available for the sys-
tem to use when generating a value. This amount
is stored in the file /proc/sys/kernel/
random/entropy_avail, referred to as the entropy
counter. The entropy counter is an estimate of the number
of bits of randomness currently available in the input pool,
and will increment and decrement accordingly when entropy
is added or removed. The maximum amount of random data
that can be stored at any time is 4096 bits. We sample the
entropy counter every 0.25 s.

B. SensorPass Application

To facilitate data collection, we implemented and distributed
an Android application called SensorPass on the Google Play
store, targeted at devices running at least Android 4.0.0.
SensorPass consists of two major components—the front-end
for the user to interact with and the back-end responsible for
automating data collection. Fig. 2 shows two screens of the
user front-end.

The back-end to SensorPass is implemented as an Android
Service, and consists of a number of auxiliary classes that
collect data from each sensor. Collection is scheduled to exe-
cute every hour, determined by when the application is first
launched. Data is collected from each sensor for 3 min, after
which the service automatically stops collection and attempts
to send data to our server. We only attempt to send over a
Wi-Fi connection to avoid unnecessary use of a user’s mobile
data plan.

Due to the way Android implements the camera API, it
is only possible to gather image data from the current active

Fig. 2. Screenshots of the SensorPass app used for data collection.

application screen. This is understandable from the standpoint
of privacy, as malicious apps could take pictures or record
video without alerting the user. Therefore, we rely on ask-
ing users to manually collect camera data for us by using a
toggle in the options menu. When the user presses the tog-
gle, we collect preview frames until exactly 1 MB of data has
accumulated, after which collection is automatically halted.

Legal Notice: This user study was approved by the
Institutional Review Board (IRB) at the College of William
and Mary with PHSC protocol number PHSC-2014-07-22-
9695-gzhou. Users were aware that data was being collected
for research purposes, and all user data was kept anonymous.

1) Collection Statistics: Table II summarizes the data col-
lected over the course of the study. In total we collected data
from 37 devices running versions of Android ranging from
4.0.0 (“Ice-Cream Sandwich”) to 4.4.4 (“Kit-Kat”). The total
amount of data collected is 6.5 GB. We note that a major-
ity of the data collected comes from the microphone. This is
because the sampling rate of the microphone is orders of mag-
nitudes higher than that of the other sensors. We also note that
the amount of data collected from the GPS is very low. This
could be due to two factors. First, users may not have turned
on their GPS during collection, resulting in no values being
reported. We also only collect data when the user’s location
has changed more than one meter, as interval polling resulted
in too many duplicate values. Under this strategy, a user not
in motion would only report one or two values.

C. Analysis Methodology and Tools

1) Sensor Data: The main objective in analyzing the sensor
data is to extract sufficient randomness from the samples for
further use. As illustrated in Fig. 4, our approach takes a bit-
wise investigation of each sensor by treating successive sam-
ples in each bit position as individual data streams. We chose
this analysis method for two reasons. First, directly examin-
ing the raw bits requires the least amount of computation,
as opposed to performing more in-depth data analysis. This



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1193

Fig. 3. Heatmap of which bits from sensor samples show sufficient randomness. A black square indicates the bit is “good,” a gray square indicates a bit is
“fair,” and an uncolored square indicates the bit is “bad.” We have excluded the magnetometer, GPS, and camera rows as they provided 0 good bits.

Fig. 4. Diagram of the bitwise method used for analysis. The left block
represents successive samples from a sensor (horizontal), while the right block
represents the k streams we form for analysis with the NIST suite (vertical).

also eases the burden of processing when extracting ran-
domness in the framework. Second, it allows us to use a
general framework for sensor analysis, rather than requiring
new methods for individual sensors. This allows for additional
sensors not covered in this paper to be easily examined in
future work.

For analyzing the randomness of a given stream, we utilize
the National Institute of Standards and Technology (NIST)
statistical test suite for random and pseudorandom number
generators for cryptographic applications.1 The NIST suite is
freely available to the public, open source, and provides a
straightforward framework for determining whether or not a
given stream of bits or numbers appears statistically random.
We refer to an RNG under test as an input source, while a
string of random data produced by the generator as an input
stream.

For a given input source, the full NIST Suite performs a
battery of 15 statistical tests, each designed to evaluate a cer-
tain property of a single input stream against how that property
would manifest in a uniform random stream. For each single
run of a test, a p-value is returned which indicates whether
or not the stream passes that particular test. A p-value greater
than 0.05 is considered passing, indicating that the stream is
not significantly distinguishable from random. Running a test
on multiple streams from the same source produces a collec-
tion of p-values which can be characterized by a distribution,
on which the final reported p-value is computed. For a source

1[Online]. Available: http://csrc.nist.gov/groups/ST/toolkit/rng/
documentation_software.html (as of November 2015).

to be considered truly random, this distribution of p-values
should tend toward completely uniform, implying that some
individual runs of a test will fail.

For the purpose of our analysis, we pick a subset of seven
tests from the full NIST suite—the frequency test, frequency
test within a block, runs test, longest run of ones within a
block, DFT test, binary matrix rank test, and approximate
entropy test. We specifically pick these tests to act as a simple
sanity check for good and bad bits. Each test addresses a differ-
ent quality of randomness—for example, the rank test makes
sure there is no periodicity in the data. Complete descriptions
of each test and how to interpret the results can be found in
the NIST suite documentation [16].

2) Entropy Data: Our main goal in analyzing the entropy
counter traces is to assess the current demand for random data
by the APRNG. We want to observe any patterns in random
data use to help guide the design for a sensor-based RNG.
The data collected takes the form of integer samples over time.
Therefore we treat each collected entropy trace as a time series
for analysis and compute general statistics such as median,
mean, and max. Furthermore, we estimate the amount of ran-
dom data used over the entire trace by summing up all the
instances of a drop.

V. DATA ANALYSIS RESULTS

This section presents the analysis and results of the data
gathered in our collection study. We first begin with analysis
of the sensors, and then cover the analysis of random data use.

A. Sensor Data

This section presents the results from analysis of the
collected sensor data. We use a three tier classification to deter-
mine which bits are the best candidates for use in SensoRNG.
For a given bit to be good, it must pass at least 3 of the NIST
tests at least 75% of the time. For a bit to be considered fair, it
must pass 1–2 tests at least 75% of the time, or at least three
tests at least 50% of the time. A bad bit is any bit that is not
good or fair. In the implementation of SensoRNG, the utiliza-
tion of good bits is preferred over the utilization of fair bits.
These numbers were chosen empirically, with the intuition that



1194 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

Fig. 5. Distributions of entropy trace statistics. The y-axis is measured in number of traces. For (a)–(d), x-axis represents how full the buffer is (in percent).
For (e) and (f), the x-axis is measured in bits.

while individual bit streams may not provide enough entropy
on their own, mixing together several streams will mask or
eliminate any individual deficiencies (i.e., it should only take
roughly 2–4 good bits or 4–8 fair bits to produce one usable
bit of entropy).

Fig. 3 illustrates the results of our analysis in a heat map.
Note that some sensors under test have been excluded due to
poor results. Some of the sensors that were cited as good can-
didates for randomness in previous work (such as the camera)
do not perform as well under our analysis [11], [13], [26]. This
is likely due to the difference in techniques, as examining bits
individually is not tailored to any particular data type. While
this does not mean the particular sensor is unusable for the
production of random numbers, it does indicate that the com-
putational effort necessary to extract randomness will likely
be greater.

1) Summary of Findings: Overall, the data suggests that the
microphone is the best candidate for extracting usable amounts
of random data, producing 8 good bits per sample at a very
high rate. Following this is the accelerometer at 31 good bits
per sample, but at a lower rate. The gyroscope follows the
accelerometer by providing 27 fair bits per sample, however, a
gyroscope is not guaranteed to be present in every device. The
radios follow, providing only 16 fair bits per sample. We find
that the magnetometer and GPS are not considerable sources
of randomness, though there is further room for investigation
into the GPS due to a small sample size. Similarly, we are
unable to extract any usable bits from the camera, likely due
to the analysis methodology.

B. Entropy Counter

This section presents analysis of the entropy counter traces.
Recall that the data collected for this part of the study con-
sists of an integer-valued time series with a collection rate of
four times per second. Fig. 5(a)–(d) plots histograms detailing

TABLE III
QUANTILES OF MEASURED STATISTICS ACROSS

ALL TRACES. VALUES LISTED ARE IN BITS

TABLE IV
STATISTICS OF TOTAL RANDOM DATA USE ACROSS

ALL TRACES. VALUES LISTED ARE IN BITS

the distribution of values for four metrics across all traces—
mean, median, minimum, maximum. We find that each statistic
roughly follows a negative exponential distribution, implying
that either a majority of devices are actively using random data
during the sampling period, or that the pool of random data
tends to only refill gradually. Table III further summarizes the
quartiles of each statistic.

1) Total Entropy Use: Fig. 5(e) illustrates the distribution
of total random data use across all traces, while Table IV
summarizes basic statistics about the distribution. For a 3 min
trace, we calculate approximately 10 bits of randomness per
second used on average, and less than 5.3 bits of random-
ness per second being used in 50% of scenarios. However, the
standard deviation is rather large, indicating that there may be
rare periods of heavy demand. The observed maximum rate
of random data use is approximately 53.5 bits/s. This rate is
easily sustainable with only a few sensors being turned on. We



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1195

note that there is a cluster of traces all using around 4096 bits,
which is the total size of the buffer for the APRNG. However,
we were unable to determine the cause of this phenomenon.

2) Magnitude of Use: Fig. 5(f) illustrates the average mag-
nitude of random data use. To calculate this, we summed up
all instances where the entropy counter dropped and divided
that value by the number of instances of the counter drop-
ping across the trace. We merged together contiguous drops
to count as one instance. This represents the average size of
a request for random bits. Table IV summarizes the findings.
We note that in a large majority of cases, the magnitude of
a request is less than that of eight integers (256 bits), which
indicates that random data is typically only needed in short
bursts. Only in very rare cases are larger requests made, but
no request is big enough to drain the buffer completely.

3) Summary of Findings: In our investigation, we find a
stratification of random data use patterns. On one hand, half
of the traces report very low values, indicating that the device
is idle or experiencing light use. On the other hand, random
data use falls into two main categories—constant, light use or
heavy, incidental use. While roughly the same amount is used
at the end of the sampling period, the shape of these plots
are vastly different. Overall, we find that the need for random
numbers is always present and experiences occasional spikes.

VI. SENSORNG

We now present the framework for SensoRNG, our proof-
of-concept sensor-based RNG. Fig. 6 presents the architecture
of the algorithm. Using the assumption that the data from sen-
sors provides a minimum guarantee of randomness, our design
of SensoRNG is kept intentionally simple. There are three
main components—the controller, the aggregation and folding
function, and the reduction function, which serve the roles of
collecting samples, processing and combining samples, and
mixing entropy into the buffer, respectively. We utilize two
layers of mixing via aggregation and reduction in order to
fold together randomness that is both temporally local and
temporally distant.

We implement two versions of SensoRNG for the purposes
of evaluation. The first version is a system service embedded
in Android OS. Here, we instrument the sensors directly to
enable opportunistic collection of sensor data without unnec-
essary polling overhead. Opportunistic collection has been
utilized in other works to minimize the energy overhead of
collection [27]. The second version is an Android application
library. Instead of opportunistic collection, we instead utilize
reactionary collection, manually polling only when the internal
buffer drops beneath a threshold of 25%. We instantiate two
versions to evaluate: 1) the quality of the output produced and
the overhead in terms of power and 2) the ease of adapting
our framework to existing applications, respectively.

A. Polling Controller

The controller is the component that acts as the middle-
man between the hardware sensors and the SensoRNG mixing
algorithm. The duties of the controller are threefold. First, it

Fig. 6. SensoRNG framework. Input is received from sensors via the polling
controller and then queued for processing. Processed samples are merged with
values already present in the buffer and then sent through a reduction function
to further mix together temporally separate bits.

serializes incoming sensor samples and processes them, strip-
ping them down to the most desired bits as determined in
Section V. Second, it monitors the amount of data available in
the random buffer, ensuring that it stays above the minimum
desired capacity. Should passive collection of sensor data fail
to meet the needs of the system, the controller can briefly turn
on any sensor in order to help refill the buffer to an accept-
able level. We discuss specific implementation parameters in
the evaluation section.

B. Aggregation and Folding

This routine is called by the controller in order to process
individual sensor samples. In this function, nonrandom bits
are stripped away and the remaining are compressed into a
smaller stream of information based on the results of our sen-
sor analysis. Specifically, we split each incoming sample into
two sets, G and B, where G consists of all good bits, and B
consists of all bad bits. Instead of directly using G, we take
the parity of all bits in B and reverse the order of the bits
in G if the result is 1. This serves simply as an occasional
additional step in the mixing function

The next step, the aggregation step, we store the results of
the previous step (E = G1G2 . . . Gk) in a processing queue.
Once enough samples have been collected, we create a bit-
string T of fixed length l for the folding step. The algorithm
then pops the top element E from the processing queue and
“stripes” it across T . Namely, let T have a position pointer p.
Then for each bit i in E, we perform the following operations:

T[(p + i) mod l] = T[(p + i) mod l] ⊕ E[i]

where ⊕ is bitwise xor. This process is repeated for a number
of samples E1, E2 . . . En. Once this process is complete, T is
sent to the reduction function.



1196 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

TABLE V
EXAMPLE SUBSTITUTION TABLE R(X) IN THE REDUCTION FUNCTION

WITH PARAMETERS (n, m, r) = (4, 1, 2). FOR BREVITY, INPUT IS LISTED

IN HEXADECIMAL, WHILE OUTPUT IS LISTED AS A BINARY STRING

C. Reduction Function

The reduction function takes input from both internal buffer
and folding function in order to further mix together bits
that are not temporally local. We take inspiration in our
design from asymmetric cryptography algorithms which uti-
lize a substitution table, or “s-box,” to mix in key bits [28].
We aim to make the reduction function difficult to reverse
to prevent reconstruction of input data, ensuring backwards
unpredictability. This is realized by using a “many-to-one”
mapping, where multiple inputs map to a single output.

The reduction function operates as follows. Inputs to the
function are three n bit chunks, T , H1 and H2 corresponding
to freshly processed data, and the first two n bit chunks from
the head of the buffer. We first calculate I = T ⊕ H1. I serves
as input to a substitution table in order to get output S. The
length of S in bits can vary based on the parameters used to
generate the table. We then concatenate together H2, S,¬H1
and append the result to the end of the buffer, shuffling the
order and parity of bits that were already in the buffer.

The substitution table is generated using the following pro-
cedure. There are three parameters—input length n, minimum
output length m, and output length range r. First, we generate
a random permutation of the integer values in [0, 2n). We then
form a sorted list of bit strings between length m and length
m+r−1. Starting from a random point in the permutation, we
step through both permutation of values and list of bit strings,
creating pairs and storing them in a hash table.

An example substitution function R(x) is in Table V. The
table used in the SensoRNG algorithm is generated randomly
with the first few incoming bits. Note that by this design, mul-
tiple input values can map to the same output value. Similarly,
by varying the output length, it is difficult to tell what segments
in the output map back to input segments.

D. Theoretical Complexity

The SensoRNG algorithm is designed to be computationally
lightweight with a theoretical complexity of O(n), where n is
the number of bits in a given input. Consider a single input
of length n. Determining the good and bad bits of the input is
done via a bitmask and shift, which results in two operations
per bit, or at worst 2n operations. A reversing of the good
bits due to the parity of the bad bits may result in another n
operations. The aggregation and folding function performs an
additional n bitwise xor operations to fold together successive
samples. In the reduction function, there is one bitwise xor
of two n bit strings, one negation of an n bit string, and one
substitution in a hash table for O(1). In total, this brings the
theoretical complexity to 6n + O(1), or O(n).

VII. SENSORNG EVALUATION

In this section, we evaluate SensoRNG in comparison with
the current Android OS implementation of SecureRandom.

A. Experimental Setup

We pick two main targets to evaluate SensoRNG: 1) quality
of random numbers provided and 2) the power efficiency of
each implementation.

1) Quality: To evaluate the quality of the random numbers
returned by SensoRNG we once again employ the NIST suite,
utilizing a larger subset of tests in order to rigorously evaluate
produced bit streams. In addition to the seven tests used for
sensor analysis in Section V, we also include the cumulative
sum, serial, and linear complexity tests [16]. We exclude the
nonoverlapping template test, the overlapping template test,
Maurer’s “universal statistic” test, and the random excursions
test due to the large number of potential parameters.

2) Power Efficiency: To evaluate the power consumption
of each RNG, we investigate two scenarios by simulating the
statistical average and maximum random data usage found dur-
ing our analysis in Section VI. This is done by periodically
making a call to getRandomBytes() at a the appropriate
rates—10 and 55 bits/s, respectively.

To take power measurements, we utilize the Trepn power
monitor for Qualcomm Snapdragon processors [29]. For each
sensor we profiled a small test-harness application that inde-
pendently polled the microphone, accelerometer, and gyro-
scope at the frequencies used for SensoRNG. We also used the
harness to profile each device while generating random num-
bers. When profiling, we used the “Profile App” feature of the
Trepn power monitor with all overlays turned off. We collected
only the Power Measurement data point, with a sampling rate
of 100 ms. The Trepn Profiler has been utilized in related
research for accurately taking power measurements [30], [31],
and it has the ability to isolate and profile on a per application
basis.

B. SensoRNG Implementation

For our prototype implementation of SensoRNG, we utilize
the three most promising sensors discussed in this paper—
the microphone, gyroscope, and accelerometer. Based on our
analysis, these provide the most random data per sample and
have acceptable rates to cover established needs. We also note
that the accelerometer is constantly being polled at a low rate
by Android OS, likely to detect screen rotation. This was
discovered during instrumentation of Android OS.

To implement the entropy controller, we utilize a set of
simple thresholds, similar to how the LPRNG operates. The
length of the internal buffer for SensoRNG is set to 4096 bits
long, the same as the LPRNG. When the internal buffer falls
below 25% capacity, we manually begin polling the gyroscope
and accelerometer to compensate. If the internal buffer falls
below 128 bits, we begin manually polling the microphone.
Should both of these methods fail to refresh the buffer, we
choose to block the call for data in order to provide sufficient
randomness. Once the pool has refilled beyond 95% capacity,
we switch off any manual polling to save on power. For the



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1197

TABLE VI
COMPARISON OF REPORTED p-VALUES FOR SENSORNG (SRNG) AND SECURERANDOM NIST SUITE RESULTS. EACH TEST

CONSISTS OF 200 RUNS OF 40 000 BITS EACH. α = 0.01 IS SIGNIFICANT. (F) AND (R) FORWARD AND REVERSE

VERSIONS OF A TEST, RESPECTIVELY. VALUES OF p < 0.01 ARE ITALICIZED AND MARKED BY ASTERISKS

substitution table in the reduction function, we choose an input
length of 8 bits, and an output length ranging from 2–4 bits.

1) Devices: All tests are performed on a Nexus 4 and
Nexus 5 running Android OS 5.0.1 “Lollipop.” For the
SecureRandom tests, we utilize the factory images available
from Google.2 For the SensoRNG tests, we utilize a modified
version of the Android 5.0.1 source compiled for each device
where SecureRandom is instrumented to utilize SensoRNG.

To generate the streams for testing, we wrote a small
testbed application that periodically makes calls to the
getRandomBytes() method for both SecureRandom
and SensoRNG. All experiments are performed with wireless
turned off and the screen at minimum brightness to minimize
energy noise. Similarly, as the wireless radios were not used in
SensoRNG, the SIM card was removed. Collection of random
numbers takes place during two scenarios: 1) an “idle” sce-
nario where the device is sitting in a quiet office environment
and 2) a “typical” scenario where the device is in a pocket
and experiences light use during the day.

C. Evaluation Results

We now present the results of our evaluation of SensoRNG
in comparison to the APRNG’s SecureRandom.

1) Quality: Table VI summarizes the results of the NIST
suite for both SensoRNG and SecureRandom. The reported
p-value is calculated based on the distribution of the results of
all runs of a particular test. More information on the meaning
of this value is provided in the NIST suite documentation [16].

Overall, we find that SensoRNG performs favorably against
SecureRandom. Both implementations pass all but one test,
with a typical scenario passing all tests for SensoRNG. In
terms of individual tests we find the results to be split evenly,
with SensoRNG reporting higher p-values in some instances
and SecureRandom reporting higher values in others.
We note that a higher p-value in terms of the NIST suite
should be taken simply as a stronger statistical suggestion
of randomness, not a binary comparison of “better” versus
“worse.”

2[Online]. Available: https://developers.google.com/android/nexus/images

TABLE VII
POWER VALUES FOR SAMPLING SENSORS AT THE DEFAULT RATE, PER

TEST DEVICE. BASE+ IS A BASELINE MEASUREMENT WITH ALL

SENSORS ACTIVE. ALL VALUES ARE REPORTED IN MW

For some tests, SensoRNG has weaker p-values—
particularly the runs test and rank test. This is likely a
side-effect of the mixing function. The runs test checks to
see how quickly a given stream oscillates between 0 and 1.
Because one of the mixing function components is a substitu-
tion table, it is likely that large strings of 0s or 1s are being
broken up, increasing the overall “oscillation” of the bits in
the output. This would also impact the reported values of the
approximate entropy test and the rank test, which both look
for large and small blocks of similar bits.

2) Power: Table VII briefly summarizes the power draw
for polling each sensor on each test device. The numbers were
computed as follows. For each sensor we take a baseline mea-
surement with no sensors for 3 min. We then turn on the sensor
for 3 min and sample at the default rate used in our data collec-
tion study, afterward subtracting out the baseline measurement
to isolate the sensor power use. All values are in mW.

Across both test devices the accelerometer utilizes the least
power of the three chosen sensors, followed by the gyroscope
and then the microphone. For the Nexus 5, we find that turning
on all sensors uses additional 51.5 mW, for a total of 12.9%.
For the Nexus 4, all sensors together only use an additional
70.1 mW, or about 13.1% in our testing scenario. Despite the
microphone using the most power, it also provides the highest
sampling rate of the three sensors. This indicates that even
though the microphone is more expensive in terms of power,
it has a better power ratio for production of randomness.

Fig. 7(a) and (b) shows the power traces of the test devices
while they produce random numbers under two scenarios:
1) average load (10 bits/s) and 2) max load (55 bits/s).
SensoRNG at the OS level employs opportunistic collection of
sensor data whenever possible. This means that even though
extra power is being drawn due to the sensors being on,



1198 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

Fig. 7. Power traces taken while producing random numbers. Black rep-
resents SecureRandom while red represents SensoRNG. The left half of
each plot is the average (10 bits/s) scenario, while the right half is the max
(55 bits/s). (a) Nexus 4. (b) Nexus 5.

SensoRNG is not responsible for the overhead of polling. To
isolate the computational overhead, we took a measurement—
indicated as “Base+” in Table VII—that examines power
consumption with all sensors active. Against this adjusted
baseline, we see that SensoRNG only uses an additional 10
mW in the Nexus 5 for the average case, and 28 mW extra
for the Nexus 4, resulting in only a 2% and 4% increase,
respectively.

We also consider the worst-case for SensoRNG by con-
sidering it responsible for all additional power overhead. For
the average load scenario, we find that the Nexus 5 uses an
additional 31 mW on average over SecureRandom, and the
Nexus 4 uses an additional 82 mW on average. This trans-
lates to a 7% increase in power consumption for the Nexus 5,
and a 15% increase for the Nexus 4. For the maximum
rate scenario we find that the power consumption increases,
with the Nexus 5 using an additional 35 mW on average
and the Nexus 4 using an additional 94 mW when compared to
the baseline. This translates to a 8% increase in power for the
Nexus 5 and a 17% increase in power for the Nexus 4. While
this is a notable increase for the worst case scenario, devices
should never be in this use state except for rare circumstances.

VIII. APPLICABILITY STUDY

To demonstrate the ability of the SensoRNG system to
immediately impact real world Android applications, we
implemented the framework in an Android Library called
SensoRNGLib and modified five free and open source (FOSS)
applications from the F-Droid marketplace [32], a well-
maintained repository for FOSS Android apps. This paper
targets two metrics to evaluate the applicability of SensoRNG
to existing apps: 1) effort involved in adopting SensoRNGLib
and 2) the computational overhead of SensoRNGLib
method calls.

A. SensoRNGLib Implementation

An important missing feature from SensoRNGLib is oppor-
tunistic collection of sensor data, which requires hooks into

TABLE VIII
DEVELOPER METRICS FOR IMPLEMENTING SENSORNGLIB. TIME

(IN MINUTES) IS MEASURED FROM THE START OF COMPILING

THE ORIGINAL SOURCE SUCCESSFULLY TO COMPILING THE

INSTRUMENTED VERSION SUCCESSFULLY

TABLE IX
AVERAGE NORMALIZED CPU USAGE FOR BOTH ORIGINAL AND

SENSORNGLIB IMPLEMENTATIONS OF KEEPASSDROID

AND RANDOMMUSIC PLAYER

the sensor data streams. Instead, we utilize reactionary collec-
tion, where every time random data is requested we check the
status of the random pool. If the request would drain the pool
below a certain threshold, we activate all sensors for 3 s and
then turn them off. We empirically determined 3 s to be suf-
ficient to both refill the buffer and facilitate thorough mixing.
While true opportunistic collection cannot be performed, the
API does provide a method for developers to pass sensor data
into the library if their application already uses said sensors.
These two features allow SensoRNGLib to operate in a simi-
lar fashion to the LPRNG, which uses simple thresholds and
allows for processes to write to /dev/(u)random.

B. Developer Effort

We extracted five from the F-Droid marketplace in order to
evaluate the programming effort required to adapt SensoRNG
to real-world apps. When choosing these applications we
aimed to fulfill several criteria including: 1) apps that are
popular or well-known (based on number of downloads or
developer activity); 2) apps of varying size and complexity
(in order to offer a broad discussion of the programming
effort required for different size apps); and 3) apps that con-
tain at least one call to the system-level implementation of
the RNG (e.g., calls to SecureRandom). Thus, as our sub-
ject applications we used: k9Mail [33], KeePassDroid [34],
RandomMusicPlayer [35], Addi [36], and Aagtl [37]. For each
of these applications we replaced the calls to the standard
Android/Linux RNG with calls to the appropriate methods
in the SensoRNGLib. To evaluate the programming effort
required to adapt each application, we recorded the total num-
ber of lines of code changed and the time required to modify
each app. Table VIII summarizes our findings. Our expe-
rience indicates that modification of applications to utilize
SensoRNGLib is very intuitive, requiring little effort on behalf
of the developer even in complicated applications.

C. Computational Overhead

In order to evaluate the computational overhead of the
SensoRNG implementation of each app to the original



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1199

TABLE X
COMPARISON TABLE FOR DIFFERENT SENSORNG IMPLEMENTATIONS

implementation, we profiled each application with the Android
activity manager profiler [38] in order to collect method traces
for general uses of each application. We selected two appli-
cations (RandomMusicPlayer, and KeePassDroid), for which
we could reliably (e.g., deterministically) construct GUI-based
execution scenarios that trigger calls to the RNG. We then
recorded the low-level GUI-event scenarios on a Google
Nexus 5 smartphone using the getevent Android shell
command [39] for each application alongside method traces
to be sure that the recorded scenarios triggered the method
calls related to the RNG. Next, we translated these low-level
event traces into high level executable scripts in the form
of adb commands (e.g., adb shell input tap 507
565) using a methodology inspired by RERAN [40]. After
the translation, we replayed these event sequences for both
versions (e.g., SensoRNG and original) of each app on the
Nexus 5 device while collecting normalized cpu-usage infor-
mation using the Trepn profiler [29]. When conducting these
tests the phone’s network connections were disabled and only
the Trepn profiler and target application were running, with
the Trpen profiler only targeting the specific app-under-test.
This methodology should produce reliable results that iso-
late the performance recordings of the application in question.
Table IX summarizes our findings. The results show no signifi-
cant deviation in cpu-usage between the two implementations,
suggesting that the SensoRNG implementation of these apps
does not impose additional computational overhead.

IX. DISCUSSION AND FUTURE WORK

This paper has demonstrated the viability of utilizing sen-
sors as a source of randomness. As the Internet of Things
grows in scope, we can expect an increase in the number of
low-profile devices dedicated to sensing and monitoring. For
these devices, it may be the case that randomness can be more
easily generated from sensor data rather than traditional meth-
ods. Future work could even target the sharing of this random
data between IoT devices in local networks.

A. Limitations

Sensor-based RNGs lack the ability to repeatedly generate a
single sequence of random numbers on demand. This capabil-
ity is central to debugging and verification as these activities
require reproducible behavior, and a PRNG can simply utilize
a test seed to easily reproduce a sequence of random values. To
implement such functionality, the user would have to exactly

recreate all sensor inputs in the same order—a feat that is
physically improbable. A potential solution is to introduce a
“test” mode which accepts input by reading from a single,
predictable source, such as a file.

One current limitation of SensoRNG is that our analysis
of samples is done on a global scale across multiple devices.
However, it may be the case that what works well for one
device configuration is not the ideal case for another. For
example, older devices may have a lower sensor resolution and
provide fewer usable bits per sample. In the future, it would
be worth designing methods to investigate devices on an indi-
vidual basis, creating a “device profile” that can characterize
randomness from each sensor.

While we show it is possible to passively harvest sufficient
entropy from sensors on mobile devices, smaller IoT devices
may struggle to collect enough randomness to meet their own
needs. This is entirely dependent on what sensors the device
comes equipped with. Furthermore, the power cost of process-
ing sensor samples may be too high for low-end devices, or
devices with batteries, to tolerate. Because of this, future test-
ing will target low-end devices to see if entropy needs can still
be met, and if not, whether potential hybrid options can take
advantage of the sensor as an entropy source while lessening
the impact on battery.

B. Implementation Considerations

For this paper, we implemented SensoRNG at two
locations—in the OS as a system service, and in the applica-
tion layer as an Android library. Table X illustrates a number
of tradeoffs we noticed during implementation and evaluation.
We summarize these points under three main categories.

1) Performance: With regards to performance and over-
head, we find that implementation at the OS level is more
efficient. This is because there is only one buffer to track
and one processing queue for samples. At the library level,
each application gets an individual buffer to store random
bits in. Similarly, each app is responsible for processing sen-
sor data to extract randomness, rather than just the system.
Consequentially, the power overhead can be slightly higher as
the app library cannot rely on opportunistic collection unless
the app itself uses the desired sensors. However, one app tax-
ing the RNG at the OS level may impact performance system
wide, whereas one app taxing its own RNG will not.

2) Flexibility: With regards to flexibility, we find that the
app library is much more flexible for the needs of an app
developer. Instrumenting a sensor-based RNG at the OS level



1200 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 6, DECEMBER 2016

requires modifying and recompiling Android OS, which is not
possible for every device. However, an Android app library
has documented support for inclusion into any app, making
the bar for adoption much lower. Similarly, as we made the
library open source, it is possible for anyone to modify the
algorithm or parameters to their needs, whereas it would be
much more difficult to modify at the OS level.

3) Feature Availability: With regards to feature availability,
the OS implementation is slightly more robust. An RNG at the
OS level can be available to all processes, while an RNG in
an app library is only available to the processes that want to
implement it. Similarly at the OS level, the buffer can be easily
stored between boots, while it is up to the developer to choose
whether or not to do so at the library level.

X. CONCLUSION

This paper presents an exploratory study into the viability
of a sensor-based RNG for mobile and IoT devices. Our find-
ings on the state of random data use in the APRNG show
that, in the average scenario, devices operate under conditions
of light, but constant use. Furthermore, we show which sen-
sors on modern hardware are capable of meeting the demand
for random data. To evaluate these claims we present a proto-
type framework SensoRNG, which exploits the noise in sensor
data for the purposes of generating random numbers. Our
evaluation on several points compares favorably against the
current APRNG, with only a small computational overhead,
suggesting the viability of a fully optimized solution.

ACKNOWLEDGMENT

The authors would like to thank the members of the LENS
Laboratory research group for their support and feedback
throughout the lifetime of this paper.

REFERENCES

[1] Wolfram. Random Number Generation. [Online].
Available: http://reference.wolfram.com/language/tutorial/
RandomNumberGeneration.html

[2] Random.org. [Online]. Available: http://www.random.org
[3] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of

Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press, 1996.
[4] W. Stallings, Cryptography and Network Security: Principles and

Practice, 6th ed. Boston, MA, USA: Prentice-Hall, 2013.
[5] A. Greenfield, Everyware: The Dawning Age of Ubiquitous Computing.

Berkeley, CA, USA: New Riders, 2010.
[6] T. Vuillemin, F. Goichon, C. Lauradoux, and G. Salagnac, “Entropy

transfers in the Linux random number generator,” Grenoble Res. Center,
Lyon, France, Tech. Rep. 1, Sep. 2012.

[7] P. Lacharme, A. Röck, V. Strubel, and M. Videau, “The Linux pseudo-
random number generator revisited,” Cryptol. ePrint Archive, vol. 2012,
no. 251, pp. 1–23, 2012.

[8] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux ran-
dom number generator,” in Proc. IEEE Symp. Security Privacy (SP),
Washington, DC, USA, Mar. 2006, pp. 371–385. [Online]. Available:
http://dx.doi.org/10.1109/SP.2006.5

[9] Apple, “iOS security,” White Paper, Apple Inc., Cupertino, CA, USA,
Feb. 2014.

[10] Intel RdRand. [Online]. Available: https://software.intel.com/en-us/
articles/intel-digital-random-number-generator-drng-software-
implementation-guide

[11] J. Krhovjak, P. Švenda, and V. Matyáš, “The sources of randomness
in mobile devices,” in Proc. 12th Nordic Workshop Secure IT Syst.,
Oct. 2007, pp. 73–84.

[12] A. Suciu, D. Lebu, and K. Marton, “Unpredictable random number gen-
erator based on mobile sensors,” in Proc. IEEE Int. Conf. Intell. Comput.
Commun. Process. (ICCP), Cluj-Napoca, Romania, 2011, pp. 445–448.

[13] B. Sanguinetti, A. Martin, H. Zbinden, and N. Gisin, “Quantum
random number generation on a mobile phone,” Phys. Rev. X,
vol. 4, no. 3, Sep. 2014, Art. no. 031056. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevX.4.031056

[14] Y. Ding, Z. Peng, Y. Zhou, and C. Zhang, “Android low entropy demysti-
fied,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, NSW, Australia,
Jun. 2014, pp. 659–664.

[15] J. Voris, N. Saxena, and T. Halevi, “Accelerometers and random-
ness: Perfect together,” in Proc. 4th ACM Conf. Wireless Netw.
Security (WiSec), Hamburg, Germany, 2011, pp. 115–126. [Online].
Available: http://doi.acm.org/10.1145/1998412.1998433

[16] A. L. Rukhin et al., “A statistical test suite for random
and pseudorandom number generators for cryptographic applica-
tions,” Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. SP 800-22 Rev. 1a., pp. 1–131, Apr. 2010.

[17] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, 1st ed.
New York, NY, USA: Springer, 1985.

[18] J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the
design and analysis of the Yarrow cryptographic pseudorandom number
generator,” in Selected Areas in Cryptography. Heidelberg, Germany:
Springer, 1999, pp. 13–33.

[19] R. McEvoy, J. Curran, P. Cotter, and C. Murphy, “Fortuna:
Cryptographically secure pseudo-random number generation in software
and hardware,” in Proc. IET Irish Signals Syst. Conf., Dublin, Ireland,
2006, pp. 457–462.

[20] S. Müller. (2013). CPU Time Jitter Based Non-Physical True Random
Number Generator. [Online]. Available: http://www.chronox.de/jent/
doc/CPU-Jitter-NPTRNG.html

[21] Haveged Entropy Gatherer. [Online]. Available:
http://www.issihosts.com/haveged/

[22] A. Francillon and C. Castelluccia, “TinyRNG: A cryptographic random
number generator for wireless sensors network nodes,” in Proc. 5th Int.
Symp. Model. Optim. Mobile Ad Hoc Wireless Netw. Workshops (WiOpt),
Limassol, Cyprus, 2007, pp. 1–7.

[23] G. L. Re, F. Milazzo, and M. Ortolani, “Secure random number gener-
ation in wireless sensor networks,” in Proc. 4th Int. Conf. Security Inf.
Netw., Sydney, NSW, Australia, Nov. 2011, pp. 175–182.

[24] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and D. Wichs,
“Security analysis of pseudo-random number generators with input:
/Dev/random is not robust,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, Hangzhou, China, 2013, pp. 1–31.

[25] Google. Android Developer Documentation. [Online]. Available:
https://developer.android.com/guide/index.html

[26] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
speech from gyroscope signals,” in Proc. 23rd USENIX Security
Symp. (USENIX Security), San Diego, CA, USA, Aug. 2014,
pp. 1053–1067. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/michalevsky

[27] N. D. Lane et al., “Piggyback crowdsensing (PCS): Energy efficient
crowdsourcing of mobile sensor data by exploiting smartphone app
opportunities,” in Proc. 11th ACM Conf. Embedded Netw. Sensor
Syst. (SenSys), Rome, Italy, 2013, pp. 7:1–7:14. [Online]. Available:
http://doi.acm.org/10.1145/2517351.2517372

[28] D. E. Eastlake, S. D. Crocker, and J. I. Schiller, “Randomness
requirements for security,” RFC doc., Dept. Comput. Sci.,
Network Working Group, Dec. 1994. [Online]. Available:
https://www.ietf.org/rfc/rfc1750.txt

[29] Qualcomm. Trepn Profiler. [Online]. Available: https://
developer.qualcomm.com/mobile-development/increase-app-
performance/trepn-profiler

[30] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “DSP.Ear:
Leveraging co-processor support for continuous audio sensing on smart-
phones,” in Proc. 12th ACM Conf. Embedded Netw. Sensor Syst.
(SenSys), Memphis, TN, USA, 2014, pp. 295–309. [Online]. Available:
http://doi.acm.org/10.1145/2668332.2668349

[31] G. Metri, W. Shi, and M. Brockmeyer, “Energy-efficiency compari-
son of mobile platforms and applications: A quantitative approach,”
in Proc. 16th Int. Workshop Mobile Comput. Syst. Appl. (HotMobile),
Santa Fe, NM, USA, 2015, pp. 39–44. [Online]. Available:
http://doi.acm.org/10.1145/2699343.2699358

[32] F-Droid. [Online]. Available: https://f-droid.org/
[33] K9Mail Application. [Online]. Available: https://github.com/k9mail/k-9
[34] KeePassDroid Application. [Online]. Available: https://github.com/

bpellin/keepassdroid



WALLACE et al.: TOWARD SENSOR-BASED RNG FOR MOBILE AND IoT DEVICES 1201

[35] Randommusicplayer. [Online]. Available: https://github.com/android/
platform_development/tree/master/samples/RandomMusicPlayer/src/
com/example/android/musicplayer

[36] ADDI Application. [Online]. Available: https://code.google.com/p/addi/
[37] Aagtl Application. [Online]. Available: http://aagtl.work.zoff.cc
[38] Android Activity Manger Profiler Shell Commands. [Online]. Available:

http://developer.android.com/tools/help/shell.html
[39] Android Getevent Shell Command. [Online]. Available:

https://source.android.com/devices/input/getevent.html
[40] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-

and touch-sensitive record and replay for Android,” in Proc. Int. Conf.
Softw. Eng. (ICSE), San Francisco, CA, USA, 2013, pp. 72–81.

[41] L. Torvalds. Random C Linux File. [Online]. Available:
https://github.com/torvalds/linux/blob/master/drivers/char/random.c

[42] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “AccelPrint:
Imperfections of accelerometers make smartphones trackable,” in Proc.
NDSS, San Diego, CA, USA, Feb. 2014.

[43] S. H. Kim, D. Han, and D. H. Lee, “Predictability of Android OpenSSL’s
psuedo random number generator,” in Proc. ACM Conf. Comput.
Commun. Security, Berlin, Germany, Nov. 2013, pp. 659–668.

[44] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empiri-
cal study of cryptographic misuse in Android applications,” in Proc.
ACM Conf. Comput. Commun. Security, Berlin, Germany, Nov. 2013,
pp. 73–84.

[45] H. Corrigan-Gibbs, W. Mu, D. Boneh, and B. Ford, “Ensuring high-
quality randomness in cryptographic key generation,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security (CCS), Berlin, Germany,
2013, pp. 685–696. [Online]. Available: http://doi.acm.org/10.1145/
2508859.2516680

[46] E. Barkan, E. Biham, and N. Keller, “Instant ciphertext-only
cryptanalysis of GSM encrypted communication,” J. Cryptol.,
vol. 21, no. 3, pp. 392–429, Mar. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00145-007-9001-y

[47] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true
random number generator with built-in tolerance to active attacks,”
IEEE Trans. Comput., vol. 56, no. 1, pp. 109–119, Jan. 2007. [Online].
Available: http://dx.doi.org/10.1109/TC.2007.4

[48] A. Chefranov, S. M. A. Abhari, H. Alavizadeh, and M. F. Zanjani,
“Secure true random number generator in WLAN/LAN,” in Proc. 6th
Int. Conf. Security Inf. Netw. (SIN), Aksaray, Turkey, 2013, pp. 331–335.
[Online]. Available: http://doi.acm.org/10.1145/2523514.2527098

[49] C. Hennebert, H. Hossayni, and C. Lauradoux, “Entropy harvesting from
physical sensors,” in Proc. 6th ACM Conf. Security Privacy Wireless
Mobile Netw., Budapest, Hungary, 2013, pp. 149–154.

[50] K. Michaelis, C. Meyer, and J. Schwenk, “Randomly failed! The state
of randomness in current Java implementations,” in Proc. 13th Int. Conf.
Topics Cryptol. (CT-RSA), San Francisco, CA, USA, 2013, pp. 129–144.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36095-4_9

[51] V. Gaglio, A. De Paola, M. Ortolani, and G. Lo Re, “A TRNG exploiting
multi-source physical data,” in Proc. 6th ACM Workshop QoS Security
Wireless Mobile Netw. (Q2SWinet), 2010, pp. 82–89. [Online]. Available:
http://doi.acm.org/10.1145/1868630.1868646

Kyle Wallace received the B.S. degrees in computer
science and applied discrete mathematics from the
Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA, in 2012, and the M.S. degree
in computer science from the College of William
and Mary, Williamsburg, VA, USA, in 2015, where
he is currently pursuing the Ph.D. degree.

His current research interests include mobile com-
puting, mobile security, entropy generation, sensor
data analysis, and algorithm design.

Kevin Moran received the B.S. degree in physics
and computer science from the College of the
Holy Cross, Worcester, MA, USA, in 2013, and the
M.S. degree in computer science from the College of
William and Mary, Williamsburg, VA, USA, in 2015,
where he is currently pursuing the Ph.D. degree.

He is currently a member of the SEMERU
Research Group. His current research interests
include software engineering, maintenance, and evo-
lution with a focus on mobile devices.

Mr. Moran was a recipient of the Second Place
Winner among Graduate Students in the ACM Student Research Competition
at ESEC/FSE’15.

Ed Novak received the B.A. degree in computer sci-
ence from Monmouth College, Monmouth, IL, USA,
in 2010, and the M.S. degree in computer science
from the College of William and Mary, in 2012,
where he is currently pursuing the Ph.D. degree.

He will join the faculty at Franklin and Marshall
College, Lancaster, PA, USA. His current research
interests include cybersecurity and privacy on smart
mobile devices.

Mr. Novak was a recipient of the Honorable
Mention for Best Paper Award for his submission

at Ubicomp 2016.

Gang Zhou (GSM’06–M’07–SM’13) received the
Ph.D. degree from the University of Virginia,
Charlottesville, VA, USA, in 2007.

He is an Associate Professor and a Graduate
Director of the Computer Science Department,
College of William and Mary, Williamsburg, VA,
USA. He has authored or coauthored over 70 aca-
demic papers in the areas of sensors and ubiquitous
computing, mobile computing, body sensor net-
works, Internet of Things, and wireless networks.
The total citations of his papers are over 5000

according to Google Scholar, among which five of them have been trans-
ferred into patents. His MobiSys 2004 paper has been cited over 800 times.

Prof. Zhou was a recipient of the Award for his Outstanding Service to
the IEEE Instrumentation and Measurement Society in 2008, the Best Paper
Award of the IEEE ICNP 2010, the NSF CAREER Award in 2013, and the
2015 Plumeri Award for Faculty Excellence. He is currently serving on the
Editorial Board of the IEEE INTERNET OF THINGS JOURNAL as well as
Computer Networks (Elsevier). He is a Senior Member of the ACM.

Kun Sun received the Ph.D. degree in computer sci-
ence from North Carolina State University, Raleigh,
NC, USA, in 2006.

He was a Research Professor with George Mason
University, Fairfax, VA, USA. He was a Senior
Research Scientist with Intelligent Automation
Inc., Rockville, MD, USA. He was a Technical
Staff Member of Bell Laboratories, Madison,
WI, USA, and Lucent Technology, Boulogne-
Billancourt, France, in 2000. He is an Assistant
Professor with the Department of Computer Science,

College of William and Mary, Williamsburg, VA, USA. He possesses over
ten years working experience in both industry and academia. His current
research interests include systems and network security, trustworthy comput-
ing environment, moving target defense, smart phone security, and password
management.


	Toward Sensor-Based Random Number Generation for Mobile and IoT Devices
	Recommended Citation

	tmp.1537455934.pdf.xsI3_

