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Coupling quantum Monte Carlo and independent-particle calculations:

self-consistent constraint for the sign problem based on density or density matrix

Mingpu Qin, Hao Shi, and Shiwei Zhang
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187

Quantum Monte Carlo (QMC) methods are one of the most important tools for studying inter-
acting quantum many-body systems. The vast majority of QMC calculations in interacting fermion
systems require a constraint to control the sign problem. The constraint involves an input trial wave
function which restricts the random walks. We introduce a systematically improvable constraint
which relies on the fundamental role of the density or one-body density matrix. An independent-
particle calculation is coupled to an auxiliary-field QMC calculation. The independent-particle
solution is used as the constraint in QMC, which then produces the input density or density matrix
for the next iteration. The constraint is optimized by the self-consistency between the many-body
and independent-particle calculations. The approach is demonstrated in the two-dimensional Hub-
bard model by accurately determining the ground state when collective modes separated by tiny
energy scales are present in the magnetic and charge correlations. Our approach also provides an
ab initio way to predict effective interaction parameters for independent-particle calculations.

PACS numbers: 71.10.Fd, 02.70.Ss, 05.30.Fk

I. INTRODUCTION

The study of interacting quantum many-body systems
presents a major challenge in modern physics. Quantum
Monte Carlo (QMC) methods1–4 are a key numerical ap-
proach for solving such systems. The dimension of the
Hilbert space involved in a quantum many-body system
grows exponentially with the system size. QMC methods
can in principle provide stochastic evaluations of expec-
tation values in such systems with computer times that
scale polynomially with system size. However, with a
few exceptions5,6, direct QMC calculations in fermion
systems suffer from the minus sign problem7,8, which
breaks this scaling. The most effective approach for deal-
ing with the sign problem in general has been by a bias-
variance trade-off. A constraint is applied in some space
to restrict the Monte Carlo sampling, which introduces
a systematic bias but in turn removes the exponential
growth in variance and restores the algebraic complex-
ity of the algorithm. The majority of QMC calculations
have employed this approach, including many on spin
and fermion models9,10, and almost all on realistic sys-
tems in condensed matter physics11–13, nuclear physics14,
and quantum chemistry15–17.

A missing link in such an approach is that it has been
difficult to make the constrained QMC calculations sys-
tematically improvable without drastically changing its
computational scaling or complexity18. Although the
calculations are often among the most accurate possi-
ble for many-fermion systems10, the accuracy cannot be
assessed internally, and there has not been a conceptual
framework which allows one to build on the outcome of
the calculation in a practical way to further reduce the
systematic error from the constraint. The constraint typ-
ically relies on a trial wave function which is provided by
an external source (e.g., an independent-electron calcu-
lation or a variational Monte Carlo optimization19), and

a “one-shot” answer is obtained from the QMC.

In this paper we introduce a self-consistent constraint
in QMC using the auxiliary-field QMC (AFQMC) frame-
work. The approach couples the AFQMC calculation to
an independent-electron calculation which provides the
trial wave function for the constraint. The spin den-
sities (or density matrix) obtained from the QMC are
then fed back into the independent-electron calculation,
whose effective interaction strength (or more generally,
exchange-correlation functional) is tuned to best match
the QMC densities. The output wave function is then
used for a new AFQMC calculation, and the process is
iterated to convergence. We show that this procedure
allows the calculations to systematically improve. The
QMC can recover from an initial constraint in a wrong
state, i.e., one with an incorrect magnetic order, and pro-
vides the correct prediction at convergence even when a
small residual constraint error is still present.

In an alternative, complementary view, the self-
consistent approach is motivated by the fundamental role
of the electron density or density matrix in many-fermion
systems20. The constraining wave function in AFQMC is
usually taken as a solution from the Hartree-Fock (HF)
or a density-functional theory (DFT) calculation based
on the same many-body Hamiltonian. What is the opti-
mal independent-electron wave function? Our approach
defines a procedure for determining the answer. We will
show that, by varying the strength of the Coulomb repul-
sion, the HF calculation can give better order parameters
(spin densities here). The self-consistency procedure with
QMC thus provides an optimal effective “U” parameter.
This can potentially be used to derive effective Hamilto-
nians to be used by less computing-intensive methods in
larger system sizes. Similarly, in the context of DFT, the
procedure would define a way to find an optimal func-
tional (in the spirit of hybrid functionals, for example).

For concreteness, we will use the Hubbard model to
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describe the self-consistent AFQMC procedure:

Ĥ = −
∑

i,j;σ

tijc
†
iσcjσ +

∑

i

Un̂i↑n̂i↓ +
∑

i

vi,σn̂iσ , (1)

where c†iσ(ciσ) is the creation (annihilation) operator
on lattice site i, σ =↑, ↓ is the spin of the electron,

n̂i,σ = c†iσciσ is the number operator. The hopping
matrix elements tij , on-site interaction strength U , and
spin-dependent external potential vi,σ are parameters.
The overall electron density is given by the parameter
n ≡ (N↑ + N↓)/N , with N being the total number of
lattice sites, and the hole density is then h = 1− n.

II. SELF-CONSISTENT METHOD COUPLING

WITH INDEPENDENT-ELECTRON

CALCULATIONS

The corresponding independent-particle (IP) calcula-
tion treats a Hamiltonian of the form:

Ĥσ
IP = −

∑

i,j

tijc
†
iσcjσ +

∑

i

Ueff〈n̂iσ̄〉n̂iσ +
∑

i

viσn̂iσ ,

(2)
where σ̄ denotes the opposite of σ. In the standard un-
restricted HF (UHF) calculation, Ueff takes the “bare”
value of U , and the input mean-field is a set of expec-
tation values, 〈n̂iσ̄〉, computed with respect to the so-
lution from the previous IP step. In DFT with a local
spin-density type of approach, Ueff〈n̂iσ̄〉 in Eq. (2) is re-
placed by an exchange-correlation functional, Vxc[〈n̂iσ〉].
The wave function from the IP solution is a single
Slater determinant, |ψ〉 = |ψ↑〉 ⊗ |ψ↓〉, with |ψσ〉 =

φ†1φ
†
2 · · ·φ

†
Nσ

|0〉 where φ†i =
∑

j φ
σ
jic

†
j creates a σ-spin

electron in the single-particle orbital given by the vec-
tor {φσji, j = 1, · · · , N}.
The AFQMC method projects the many-body ground

state of Ĥ in Eq. (1) by an iterative process:

limm→∞(e−τĤ)m |ψT 〉 ∝ |Ψ0〉, where τ > 0 is a small
parameter. For convenience, we take the initial state,
which must be non-orthogonal to |Ψ0〉, to be a single
Slater determinant trial wave function, |ψT 〉. The many-

body propagator is written as e−τĤ .
=

∫

p(x) eĥ(x) dx

where ĥ(x) is a general IP “Hamiltonian” dependent on
the multi-dimensional vector x, and p(x) is a probability
density function21. The interacting many-body system
is thus mapped into a linear combination of many IP
systems in fluctuating auxiliary fields, x. The AFQMC
method represents the many-body wave function as an
ensemble of Slater determinants, i.e., |Ψ0〉 =

∑

k ωk|ψk〉.
The iterative projection is realized by a random walk in
Slater determinant space, in which for each walker |ψk〉,
an auxiliary field x is sampled from p(x), and the walker

is propagated: eĥ(x)|ψk〉 → |ψ′
k〉. Computationally this

is similar to a step in the IP calculation.

Because the propagator eĥ(x) contains stochastically
fluctuating fields, the random walks will, except for spe-

cial cases protected by symmetry5, reach Slater deter-
minants with arbitrary sign or phase21. In representing
the ground state, only one from each pair of Slater de-
terminants {±|ψ〉} (or from the set {eiθ|ψ〉}) is needed.
When both (all) are present in the samples, the wave
function signal is lost in noise, because the Monte Carlo
weights, wk, are always positive. This is the sign (phase)

problem21. For the Hubbard Hamiltonian, ĥ(x) is real,
so “only” a sign problem appears. To control this prob-
lem, we use the trial wave-function |ψT 〉 for impor-
tance sampling, which guides the random walk and con-
strains it to only half of the Slater determinant space:
〈ψT |ψk〉 > 022. This approach has been referred to as
the constrained-path Monte Carlo (CPMC) method. For
a general Hamiltonian with two-body interactions, a gen-
eralized gauge condition allows a similar framework for
the phase problem21,23.
This framework eliminates the sign or phase problem,

at the cost of introducing a systematic bias. Previous
studies in a variety of systems have shown that the bias
tends to be small, in both models10,24–27 and realistic
materials13,17,21,23, making this one of the most accurate
many-body approaches for general interacting fermion
systems. In this work, we introduce a self-consistent
method to further reduce the bias introduced by the con-
straint from the trial wave function.
To start the self-consistent procedure, we first carry

out a CPMC calculation for the many-body Hamilto-
nian, Eq. (1), using any typical choice of |ψT 〉, for exam-
ple a non-interacting wave function or the UHF solution.
We use back-propagation22,28 to compute the expecta-
tion values of the quantities that do not commute with
Ĥ . After the CPMC calculation, we solve the IP Hamil-
tonian in Eq. (2), using the densities obtained from the
preceding QMC calculation as the input mean field, i.e.,
〈n̂iσ̄〉QMC → 〈n̂iσ̄〉. An effective interaction, Ueff , is ap-
plied instead of the “bare” U value. We vary Ueff to find
an optimal value whose solution gives densities closest to
the input from QMC, i.e., the Ueff which minimizes:

δ =
1

N

(

∑

iσ

(〈n̂iσ〉IP − 〈n̂iσ〉QMC)
2
)1/2

. (3)

The IP solution with the optimal Ueff determined from
Eq. (3) is then used as the |ψT 〉 in a new CPMC calcu-
lation. This procedure is iterated until convergence.

III. RESULTS

We use the two-dimensional Hubbard model at density
n = 0.875 as a test case. The hopping matrix element
tij is t for nearest neighbors and 0 otherwise, and we set
the interaction U = 8t. This parameter regime, mim-
icking the situation in doped cuprates29, is notoriously
challenging, and its ground state in the thermodynamic
limit remains unknown. We focus on the nature of the
magnetic and charge correlations, which is crucial for un-
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FIG. 1: Systematic improvement of the CPMC accuracy from
the self-consistent procedure. The top panel plots staggered
spin density along the y-direction vs. site label iy (ix = 1).
The bottom panel plots the corresponding hole density. The
left and right columns show two self-consistent procedures
starting from two different initial |ΨT 〉’s, the free-electron
wave function and the UHF solution at U = 8t, respectively.
In the legend, the Ueff value of the IP calculation is listed for
each iteration step. In (a) and (b), the differences at different
stages of the iteration, with respect to the reference DMRG
results, are shown in the insets. The system is 4 × 16, with
U = 8t, h = 1/8 doping, with pinning field applied to both
edges along Ly .

derstanding the properties of lightly doped antiferromag-
nets.
In our test calculations, we will consider a cylindrical

geometry, i.e., cells with periodic boundary conditions in
the x-direction and open boundary conditions in the y-
direction, for which density matrix renormalization group
(DMRG)30 calculations can give very accurate bench-
mark results for systems of significant sizes. We denote
the integer coordinates of the lattice site i by (ix, iy). Lo-
cal antiferromagnetic (AFM) correlations are expected,
and our calculations aim to probe what happens to the
AFM correlation in this regime of doping (h = 1/8) and
strong interaction (U = 8t). To break degeneracy from
translational symmetry, pinning fields31–33 are applied at
the edges: vi↑ = −vi↓ = (−1)ixν0 for iy = 1 and iy = Ly.
We set the pinning field strength ν0 = t/4 in all calcu-
lations. With pinning fields, two-body spin and charge
correlation functions in periodic systems are turned into
one-body spin and charge order parameters, which are
simpler to measure in the calculation. Thus, in addition
to the total energy, we will focus on the local spin and
charge densities

h(i) = 1− 〈n̂i↑ + n̂i↓〉; Sz(i) = 〈n̂i↑ − n̂i↓〉/2 . (4)

We first illustrate the method in a 4× 16 system. Two
different choices of the trial wave function |ψT 〉 are used
for the initial CPMC calculation. The first is the ground
state of the corresponding non-interacting Hamiltonian
(referred to as free-electron hereafter). The other is the
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FIG. 2: Convergence of CPMC results in the self-consistent
procedure. Three initial trial wave-functions are tested: free-
electron and UHF solutions at U = 4t and 8t. The system is
the same as in Fig. 1. In each panel, the pink band represents
the converged result and error bar. In (a), the relative error in
the computed ground-state energy relative to DMRG is shown
vs. self-consistency iteration. The horizontal dotted line at
zero is to aid the eye. Plotted in (b) are the mean square
error [following the definition in Eq. (3)] in the local density
computed by CPMC from the reference DMRG results.

UHF solution34 obtained with the “bare” U value, i.e.,
U = 8t. In Fig. 1, we show the staggered spin densities,
(−1)ix+iySz(i), and the hole densities h(i) computed by
the self-consistent QMC procedure, and compare them
with DMRG results, which are essentially exact for this
system. The results are, as expected, statistically invari-
ant with respect to ix, and are only shown for ix = 135.
The staggered spin densities, shown in the upper panel,
depict a modulation of the AFM order. (The magnetic
moments are the strongest at the edges because of the
pinning fields.) At a node when the curve crosses zero, a
π phase shift is created in the AFM pattern. The holes
tend to concentrate at the nodes, creating the peaks seen
in the bottom panel.

We see from Fig. 1 that, independent of which |ψT 〉 is
used in the initial CPMC calculations, the self-consistent
procedure leads to a systematic improvement of the spin
densities which approach the DMRG results. Conver-
gence from the free-electron |ψT 〉 requires only about 3
iterations between the QMC and IP calculations. The
UHF initial |ψT 〉, which predicts a wrong phase (see be-
low), gives results in the first-iteration CPMC with large
errors. The self-consistency quickly recovers and con-
verges in about 6 iterations. The difference between con-
verged CPMC spin densities and those from DMRG, as
seen in the insets, is very small. The hole density, which
shows a slightly larger residual error, clearly gives the cor-
rect charge pattern. The self-consistent CPMC method
thus accurately determines the ground state and its mag-
netic order in this system.

The convergence process of the self-consistent proce-
dure is further illustrated in Fig. 2. The left panel shows
the relative error in the CPMC ground-state energy per
site, from the reference DMRG value of −0.77127(2).
The energy is seen to converge, independent of the ini-
tial |ΨT 〉, to a value with a residual relative error about
−0.4%. We note that the mixed estimate, which is used
in CPMC to computed the energy, is not variational22,36.
The self-consistency actually leads in a slightly worse
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FIG. 3: Finding the optimal Ueff for the IP calculations dur-
ing the iterations. The staggered spin density from a UHF
calculation with Ueff is shown during each iteration of the self-
consistent procedure with CPMC. The self-consistency proce-
dure begins with the free-electron |ΨT 〉 in panel (a) and with
the U = 8t UHF solution in (b). In the lower panel, the left,
middle and right depict the spin density of the free electron
wave function, the correct ground state from the converged
CPMC result, and the UHF solution with U = 8t, respec-
tively. The system is the same as in Fig. 1.

ground-state energy than the initial CPMC results com-
puted with the free-electron or UHF solution with Ueff =
4t as |ΨT 〉. On the other hand, the U = 8t UHF solu-
tion gives an incorrect state with wrong AFM order34.
Using it as |ΨT 〉 in a one-shot CPMC calculation, the
relative error of ground state energy is ∼ 11%. Clearly
the self-consistent process leads to a large improvement.
We next examine the IP solutions during the self-

consistent process. In Fig. 3 we plot the staggered spin
density from UHF, using the Ueff values which emerge
during the iteration with CPMC calculations. (Each IP
result is from the fully self-consistent UHF solution34 at
the indicated Ueff .) The spin densities in the two initial
trial wave-functions are very different, and neither gives
the correct magnetic order, as shown by the patterns in
the bottom row. With the iteration, the spin densities
from the IP solutions become better. At convergence,
with a Ueff value of 2.7t for this system, the densities
from the UHF solution are in fact quite close to the ex-
act results. The reduction from the “bare” U of 8t is
substantial, because of the tendency in UHF to severely
over-estimate order. The self-consistent procedure allows
an ab initio determination of an optimum effective U .
Much larger system sizes must be treated in order to

determine the nature of the magnetic order in the ther-
modynamic limit. The effect of the pinning fields must
be minimized, Lx needs to be sufficiently large to move
from ladders to two-dimensions, and Ly must be suffi-
ciently large to accommodate the wavelength of possible
collective modes. This can now be achieved by the QMC
self-consistent procedure. In Fig. 4 we show the results
for a 16 × 32 lattice, with the same physical parame-
ters. The converged CPMC staggered spin and charge
densities are plotted in the upper panel. The result con-
firms the tendencies of the spin and charge orders seen
in the smaller system sizes. A ”bulk” region is present in
the middle which gives a characteristic wavelength. The
lower panel illustrates the spin-density wave structure,

FIG. 4: Converged CPMC results after self-consistent proce-
dure for a large system, of 16 × 32. In the upper panel, the
staggered spin and hole densities are plotted. The red and
blue horizontal lines represent zero spin-density and the av-
erage hole density, respectively. In the lower pane, the spin
density for the cell is shown with a colormap. As in the earlier
systems, U = 8t, h = 1/8, and pinning field is applied to both
edges along Ly .

with the four nodal lines of modulation clearly visible
(where the holes are more concentrated). This is consis-
tent with a wavelength of 1/h seen at lower interaction
strengths37.

IV. DISCUSSION

We have also tested a different but related approach
for constructing the trial wave function self-consistently
from QMC. To encode the information on the one-body
density matrix from CPMC, ρCPMC, in the next stage
|ΨT 〉, we seek a Slater determinant which gives a one
body density matrix closest to ρCPMC. This is done using
natural orbitals, i.e., by diagonalizing:

ρCPMC = V ΛV † . (5)

The eigenvectors (natural orbitals) in V corresponding to
the Nσ largest eigenvalues in Λ are chosen to construct
a Slater determinant. This procedure is implemented for
each spin specie σ separately, leading to a UHF-like |ΨT 〉.
We found that this procedure gave results similar to the
self-consistent approach in the systems tested above.
Although we have used the Hubbard model as an il-

lustration, the self-consistent procedure we have pro-
posed can be generalized to AFQMC calculations in real
materials38, and opens new directions to further improve
the predictive power of calculations in correlated electron
systems. In real materials, the self-consistent iteration
with IP calculations can be used to improve an exchange-
correlation functional, for example to tune the optimal
mixing parameter in a hybrid functional39,40. The pro-
cedure could also be used to find a correct “U” param-
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eter in the context of LDA+U41. The idea of introduc-
ing an effective “U” can also be connected to embedding
theories42,43, although here the feedback of Ueff to the
real system (cluster) is less direct.

V. SUMMARY

In summary, we have developed a self-consistent
constrained-path AFQMC method which allows the
QMC calculation to systematically improve its accuracy,
while fully controlling the fermion sign or phase problem.
The paradigm coupling QMC with an IP calculation al-
lows a feedback from the fomer into the latter. This
provides not only a way to improve the constraining trial
wave functions for the (next iteration) QMC, but also
an independent-particle framework which in itself gives
a drastically improved description of the physical sys-

tem. The approach can be applied to strongly correlated
models in condensed matter, ultra-cold atoms and op-
tical lattices, nuclear shell models, as well as ab initio

calculations in molecules and solids.
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