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Introduction

Following the spirit of the new curriculum, it was decided to convert the Modern Physics
course, Physics 201, into a course with a COLL200 attribute. The course covered the
basics of relativity and quantum mechanics, and typically has 50-60 students. It was
desired to include a substantial discussion of the historical and social significance of the
material.

Jamie Leach is a history major who took the course in the Fall of 2014, and he wrote
these files with the support of the Physics Department and the Center for the Liberal Arts
during the summer of 2015. Students were assigned, every week, to read these
documents and write a half-page response on the material. Every Friday, the instructor
would also discuss the material.

The reaction was extremely positive, and students were much more interested in the
course material as a result. There was one additional lecture on the “nature of physical
reality” that is not included here. The materials will be used in future semesters of the
course.

Marc Sher
Physics Dept.
December, 2015
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The Michelson-Morley Experiment(s)

Early Experimentation:

By the 1870s, the luminiferous ether was an accepted feature of contemporary
physics. Double slit experiments early in the 1800s had demonstrated that light is wave-
like, suggesting that it must propagate through some medium. Physicists disagreed on the
exact nature of the ether: some thought of it as a fluid, while others thought it behaved
like an elastic solid, for example. The consensus was that the ether was necessary to
explain the propagation of light and would provide a rest frame for the universe. Newton
himself had argued that a single correct coordinate system for space and time existed, and
the idea was taken for granted by many physicists. The most significant disagreement
among physicists was whether the ether was entirely stationary (the ether drift
hypothesis) or was dragged along with the Earth, either partially or completely (the ether
drag hypothesis). By the 1880s, the ether drift model was more widely accepted.

Michelson’s original experiment of 1881 was designed to measure the velocity of
the Earth against the stationary ether’s rest frame. Testing the existence of the ether did
not make much sense in his context, as there was little reason to doubt its existence. All
earlier tests had found no relationship to the first order of v/c. A relationship
corresponding to v?/c? was possible, but this required incredibly precise measurement.
Michelson accomplished this with his new invention, the interferometer, which was
probably his largest source of fame during his lifetime. The 1881 experiment found no
change in light’s velocity, which Michelson attributed to ether drag.

Few other physicists paid attention to this first experiment. Those who did
focused on the ingenuity of the interferometer rather than the actual results. One person
who did pay attention was Hendrik Lorentz, who pointed out that Michelson had
miscalculated one of the light beams’ paths. This, along with a desire for still greater
precision, convinced Michelson to repeat his experiment. Around this time he began
collaborating with Edward Morley, whose chemistry lab provided him with high quality
equipment. In 1886, the two repeated the famous Fizeau Experiment, comparing the
velocity of light passing through water running in opposite directions. They found that
light moves at the same velocity regardless of the water’s motion, suggesting that the
ether is not affected by moving matter. This contradicted the ether drag hypothesis and
Michelson’s 1881 results, which provided another reason to redo the experiment.

The Famous Experiment:

The Michelson-Morley Experiment of 1887 was specifically intended to resolve
the ether drag question. The pair intended to perform several tests at different points in
the year, to incorporate the effects of the Earth’s rotation, but they never completed these
later trials. This may have been due to their disappointment at early negative results or
Michelson’s excitement to move on to other projects to test his interferometer. The same
year, Heinrich Hertz demonstrated the existence of electromagnetic waves, confirming
Maxwell’s electromagnetic theory and seeming to confirm the need for a medium for the
waves. Michelson was concerned with interferometry’s applications, while the broader
community was more impressed with Hertz’s results than with Michelson’s; as a result,
the Michelson-Morley Experiment did not immediately lead to the death or even the
questioning of the ether model.



Once again, Lorentz was one of the few who noticed the experiment. He first
identified the negative results as one of the major unsolved problems of contemporary
physics and derived the length contraction formula and Lorentz transformation in order to
explain it. Lord Kelvin also directly referred to the experiment in a speech in 1900 (the
source of his famous “two dark clouds” quote), further spreading awareness. By this
point, experiments had contradicted both the ether drift and ether drift theories.
Michelson, Morley, and a new collaborator, Dayton C. Miller, continued experimenting
in different situations and with greater and greater precision, while theorists formulated
alternate ideas. Lorentz contraction was one example of this; unlike Einstein, he
attributed contraction to changes in molecular-scale forces due to motion through a
stationary ether and continued to believe in absolute measurements of time and space (the
Lorentz transformation of t being only a mathematical formality). Conversely, Henri
Poincaré argued against absolute space and time, questioned the necessity of the ether,
and theorized the equivalence of all inertial reference frames (even referring to this as
“the Principle of Relativity”). Poincaré came very close to Einsteinian relativity, but did
not develop it fully.

From Ether to Relativity:

Despite these early contributions from Lorentz and Poincaré, Albert Einstein is
correctly identified as the founder of special relativity. His 1905 paper was not
immediately noticed, as he was only 26 years old and had no prior reputation. Two early
supporters were Max Planck, who developed relativistic dynamics, and Hermann
Minkowski, who formulated relativity in terms of four-dimensional spacetime and thus
made Einstein’s theory more comprehensible (Einstein was initially hostile to this
mathematical modeling, but later accepted it as essential to general relativity). Although
Einstein did not draw a direct connection to the Michelson-Morley Experiment in 1905,
others soon did, and relativity’s supporters quickly realized its importance in explaining
the ether’s contradictions. Not everyone was enthusiastic about relativity: William F.
Magie was indignant that relativity had succeeded in explaining a single result while the
ether could explain everything except that one result. Others mixed different components
of the ether and relativity models, leading to confusion over which interpretation meant
what.

Among the opponents of relativity were Michelson, Morley, and Miller, who
continued interferometry experiments up through the 1920s. They applied various
conditions to test the velocity of light, such as magnetic fields, high-altitude trials
(guessing that ether drag may be weaker higher up), and vertical beams of light (designed
to test the Earth’s rotational rather than translational motion). All tests returned negative
results. The most significant tipping point in favor of relativity came in 1919, when a
solar eclipse provided strong evidence of general relativity. Rather than accepting
Einstein’s ideas, these results encouraged Michelson and Miller to continue
experimentation at even higher altitudes. That said, they were not blindly dogmatic or
reactionary: they were honest about their many negative results and their work was taken
seriously by contemporaries. The final blow to the ether probably came in 1930, when an
automated interferometer capable of incredible precision found no effect of ether wind.
Michelson died the next year, having still not fully embraced relativity.



Key Ideas:

e The shift from the ether to special relativity did not simply happen as a
result of the passage of time. Throughout the narrative above, specific individuals
consciously made efforts to spread awareness of what they considered important
to their colleagues. The advance of science was pushed along by the likes of
Lorentz, Kelvin, and Minkowski. This is not to suggest that changes in scientific
thought are simply the result of elites telling their peers what to think. It simply
demonstrates that individuals have an active role in forging a scientific consensus.

e Almost 20 years passed between the famous 1887 experiment and the
publication of special relativity, and it was even longer before that theory was
widely accepted. The Michelson-Morley Experiment is sometimes characterized
as beginning a “crisis” in physics, but this does not capture how long it took for
its results to be resolved. The physicists who knew about the experiment
recognized it as a problem, but its results did not immediately plunge physics into
chaos. The ether theory was able to continue basically unchallenged for many
years afterward.

e 19" century physics was characterized by the consolidation of different
fields: electricity and magnetism were combined, then electromagnetism and
optics; the kinetic theory of gases and modern thermodynamics connected
different phenomena to classical mechanics. Eventually it was hoped that all of
physics would be subsumed into a single field, based either in mechanics or
electromagnetism. The ether seemed to be the final step in this realization, and
therefore its formulation was a crowning feature of 19" century physics.
Abandoning the ether, for many, intuitively seemed like a step backward away
from the resolution of the field. It is easy to call physicists who refused to shift to
relativity “stubborn” or even “stupid,” but it is important to understand how
important the ether was to their worldview.

e In 1907, Michelson became the first American to win the Nobel Prize in
physics. The prize was awarded for the spectrometer’s advances in precision
measurement rather than his actual experiment. In the 19" century, America was
mostly peripheral to the physics world, which was concentrated in Western
Europe. In the 1920s, America’s influence began to grow, to the point where the
country dominated physics in the 1950s and 1960s. Michelson’s Nobel Prize can
be considered an early step in this decades-long process.

e Historians have debated whether Einstein knew about or was influenced
by the Michelson-Morley Experiment, closely analyzing his writings and
searching out new or obscure sources. This may seem like a minor detail to obsess
over, but it carries heavy implications about the relationship between experiment
and theory. If Einstein based special relativity on the experiment, it is easy to
draw a clear line of cause and effect and claim that this is how science works—
new experiments inspire new theories. However, if Einstein did not know about
the Michelson-Morley Experiment, this entire narrative must be reevaluated.
Today, it seems fair to say that Einstein probably knew about the experiment and
was affected by it, but that it was not the single determining influence on
relativity. Trying to reduce Einstein’s formulation of special relativity as a simple



reaction to one event misses out on the rich complexity of his theoretical
influences.
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Time Travel

Relativity and Culture:

It is difficult to choose a single event as beginning popular interest in time travel,
but the best candidate is probably H. G. Wells’ publication of The Time Machine in 1895.
In this story, a time traveler explains that time is simply a fourth dimension that can be
traversed just like any spatial dimension. Of course, this is not correct, but it firmly
established the idea of the fourth dimension in popular culture. Earlier mathematicians
had explored the possibility of a hypothetical fourth dimension being either spatial or
temporal, and philosophers had speculated as to why humans experience exactly three
spatial dimensions, but these discussions did not enter public consciousness. Wells’ story,
by contrast, was immediately popular, even receiving a positive review in Nature. It
continues to serve as a basis for most time travel stories today.

In 1908, Hermann Minkowski formulated the four-dimensional model of
spacetime to explain Einstein’s special relativity. It is important to remember that, in this
model, space and time are not mathematically equivalent (spatial and temporal
dimensions have different signs in the spacetime interval, for example). That said, Wells’
novel 13 years earlier proved to be surprisingly close to later scientific developments. It
is unknown whether Minkowski or Einstein had read The Time Machine before
publishing their theories.

However, for some, Wells’ work seemed to have unfortunate philosophical
implications. If time was simply another dimension that one could travel along forward
and backward, then it would appear that the past and the future exist in the same sense as
the present does, right now. This echoes Parmenides’ concept of the block universe, in
which all events in the universe--past, present, and future--exist simultaneously and
unendingly. There is no possibility for free will, since everything is already determined.
As mentioned above, Minkowski’s actual conception of time has been misunderstood in
popular thought. His formulation of a useful mathematical model does not immediately
imply a block universe. However, questions of free will have appeared in many time

travel stories throughout the 20™" century.



Key Ideas:

Fiction both responds to developments in physics and shapes popular perception
of science. It can make a theory easier to understand or put it in a more engaging
context, but also, knowingly or unknowingly, distort the theory’s intended

meaning.

Topics for Illustrating Time Travel and Relativity:

Wells’ time machine would not work because it remains stationary. As soon as it
begins to move backwards through time, it would collide with itself from a
moment ago.
If the Klingons fire a missile that travels faster than light, it will hit its target
before it was launched.
Dirac’s formulation of electrons as extended bodies resulted in a third-order
differential equation that suggested the possibility of pre-acceleration: an electron
subject to external forces will begin accelerating a tiny fraction of a billionth of a
second before the pulse reaches it, seeming to violate causality. This also suggests
the possibility of using the electron’s radiation to send signals faster than light.
Feynman observed that positrons moving forward in time are equivalent to
electrons moving backward in time.
Gadel theorized that, in a rigid, uniformly rotating universe, there is a certain
critical distance from the axis of rotation where the future light cone at one point
tips over into the past light cone at an adjacent point. Traveling at this critical
distance in the opposite direction of rotation would allow the traveler to move
backwards in time without ever exceeding the speed of light. This is impossible in
our universe, as it is not rotating as Godel described.

o A similar effect can be achieved by Tipler’s infinitely-long rotating

cylinder, which also tips over light cones until past and future overlap.

Time travel via stable wormholes would require large Casimir plates to create a
region of negative energy density around a rotating black hole.
Time travel paradoxes: there are many possible examples (many variations on the

grandfather paradox), but one of the most interesting is Heinlein’s “All You



Zombies,” in which a single individual is both father and mother to

himself/herself.
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Einstein as a Celebrity

The Eclipse Expedition:

Einstein’s primary paper on general relativity was published in 1915, but did not
become accepted among physicists for several years, as direct experimental confirmation
was not available. An eclipse in May of 1919 would present the opportunity to test the
theory, by measuring the angular displacement of stars close to the sun compared with
non-eclipse photographs, but it seemed unlikely at first that any tests would be carried
out. During World War I, deep resentment between Britain and Germany obstructed
scientific cooperation between the two countries. This resentment was widespread among
intellectuals and scientists in addition to the population at large: the British elite saw the
German “Huns” as inhumane and opposed to culture, while Germans were upset by these
attacks on their nation. With a few exceptions, such as Einstein himself, most of the
leading German and English scientists of the 1910s participated in public campaigns
condemning the other side, even going so far as to suggest excluding Germany from the
international scientific community. In this climate, it seemed impossible that Britain
would bother using its resources to test the ideas of a German theoretician. Another
chance at testing general relativity would not come about for several more years.

The eventual British-led eclipse expedition was the work of Arthur Stanley
Eddington, an astronomer well-known for his work determining stellar structure.
Eddington was a Quaker who objected to the violence of the war and the dehumanization
of Germans. During and after the war, English Quakers had travelled to Germany to
provide material aid to the suffering country and reaffirm the common brotherhood of
humanity. Eddington, who identified with Einstein’s pacifism and antimilitarism, saw the
eclipse test as a Quaker mission within the scientific community, creating new bonds
between Britain and Germany and restoring the international spirit of astronomy. He
argued continually for relativity’s importance among fellow astronomers. Many objected
that gravitational deflection and optical refraction would be indistinguishable and that the
expedition to the eclipse’s path (which crossed Africa and South America) would be an

expensive waste of time. However, Einstein’s explanation of Mercury’s precession



intrigued enough astronomers that Eddington was able to win support and carry out the
plan.

The expedition consisted of two observational teams: Eddington lead a group to
Principe off the coast of West Africa, while another went to Sobral, Brazil. Despite some
bad weather, the Principe group was able to get enough plates to confirm a deflection.
The Sobral group showed a smaller deflection, but their photographs were of much worse
quality. A last-minute auxiliary camera in Sobral ended up getting the best results out of
the entire expedition. After analysis, Eddington decided on a mean deflection of 1.64”, in
comparison with the prediction of 1.75”. A rumor has persisted that Eddington discarded
or ignored the worse results in his excitement to confirm general relativity, but this is not
substantiated. He was honest about the poor quality of some of the photos and described
the expedition as a tentative initial test. In the November 6, 1919 presentation of the
results by the Royal Astronomical Society, Eddington claimed that he had confirmed
Einstein’s prediction (though not necessarily his theory) and called for further testing.
The astronomers present generally agreed that Einstein’s quantitative predictions held but
that his explanation was still open to questioning.

The public reaction was much stronger. The Times issue of November 7 famously
proclaimed a “revolution in science,” and other newspapers made similar claims over the
next days and weeks. The press portrayed relativity as one of the greatest achievements in
human thought and claimed that Einstein had knocked Euclid and Newton off their
pedestals. This popular obsession with relativity was partly the result of the dramatic
eclipse test, but also of the nature of the theory. Unlike quantum theory, which never
became such a fixture in popular thought, relativity took simple, everyday concepts and
rearranged them in seemingly paradoxical ways. Although non-scientists could not
understand the mathematics behind general relativity, they latched onto ideas such as
length contraction, extra dimensions, a finite universe, and the curvature of space (if not
the curvature of spacetime) that seemed to belong in Alice in Wonderland rather than the
usually inaccessible world of physics. This degree of public engagement is rare in the
history of science; similar examples include Darwinian evolution or Freudian

psychoanalysis.



Einstein’s Fame:

A distinction should be drawn between the fame of relativity, which was well-
established by the 1919 headlines, and the fame of Einstein, which developed more
slowly. This was especially important in America, where the concept of the individual
celebrity was strongest. Before Einstein’s first visit to the U.S., in 1921, public feelings
toward relativity were more fearful and distrustful than elsewhere. This was a time when
Americans were more interested in stability and continuity than new ideas of the
universe: in the aftermath of the Russian Revolution and among widespread labor unrest
at home, Americans were not willing to accept another “revolution” that would upset the
established order. The New York Times went so far as to proclaim that Bolshevism was
invading science. Furthermore, Americans were struck by the difficulty in understanding
general relativity: a common claim was that “only twelve people in the world understood
it.” The idea of obscure science that only an elite few could understand seemed to
undermine the American ideal of common-sense democracy. The general sense was that
an elite few (probably all foreigners) had the power to rearrange space and time or even
destroy gravity.

These feelings quickly passed once Einstein arrived in America. His first trip in
April 1921 was actually part of a campaign to raise support for Zionism. His party,
consisting of several prominent Jewish intellectuals (including Chaim Weizmann, a
biochemist who later became the first President of Israel), received a warm welcome
from New York’s Jewish community. While this excitement was directed toward the
group as a whole, the mainstream press interpreted it as a “hero’s welcome” for Einstein.
This initial reception helped to remove much of the fear surrounding the mysterious
physicist, as anyone receiving a hero’s welcome had to be worth welcoming. In addition,
Einstein’s personality was well-received in America. The press expected a pompous,
aloof European intellectual who looked down on America’s lack of culture. Instead,
Einstein was modest, witty, and informal. America first saw Einstein in pictures revealing
his ill-fitting clothes, charming smile, and habit of smoking pipes. Unexpectedly,
Einstein’s reception and personality resonated with Americans and paved the way for his

celebrity status.



Later Legacy:

Instead of fading out as a fad, Einstein has remained a fixture in the public
consciousness since the initial media storm of 1921. He has acquired an almost religious
connotation as a secular saint embodying the abstract concepts of genius and reason. The
press exaggerated his distance from common people, emphasizing that his theories were
incomprehensible to the average person and creating a mythology around the physicist.
He happened to become famous at the moment when the mass media was coming into
being, giving the world easy access to pictures and quotes revealing his unconventional
personality. Although Einstein never particularly enjoyed his media attention, he
accepted it and maintained friendly relations with the public. Public opposition to
Einstein has been scarce, mostly coming from anti-Semites who rejected him on principle
rather than because of his theories or personality. This anti-Semitism was most famous in
Nazi Germany, although undercurrents of it persisted in America and elsewhere.

One important shift in Einstein’s legacy came in the aftermath of World War 11,
which reinforced the connection between science and destructive weaponry in popular
thought. In particular, nuclear weapons, as the symbol of science-gone-too-far, became
connected with Einstein and his mass-energy equivalence formula (see Time cover in
bibliography under Baker). Einstein himself was largely unconnected with the bomb’s
development and did not realize the possibility of nuclear weapons when he first
published his 1905 papers. Nevertheless, the misconception of Einstein as the creator of
the nuclear bomb transformed his image into that of a tragic figure, pushing for
international peace while unintentionally paving the way for horrible destruction. During
the Cold War and after, the public perception of science changed: instead of representing
humanity’s progress and betterment, science was now a double-edged sword that, if not

controlled, could bring disaster to a society unprepared for its consequences.

Influence on the Arts:

Over the first several decades of the twentieth century, contemporaneously with
the development of modern physics, widespread experimentation flourished in art,
literature, and poetry. It is possible to draw a connection with these modernist artists and

Einstein, although this should not be overstated. It would not be fair to claim that



relativity was the cause of this experimental mood, as it had already begun before 1919
and Einstein’s widespread fame. However, direct references to both Einstein and modern
physics makes it tempting to find parallels between contemporary shifts in art and
science.

Some modernists drew connections between their work and Einstein’s. One
prominent example is William Carlos Williams’ 1921 poem “St. Francis Einstein of the
Daffodils” portrays the physicist as a rebellious liberator bringing new life to a dead
world of old-fashioned knowledge. The poem reflects a general mood that advances in
physics had opened up new possibilities for intellectual exploration in other areas. A
similar mood is found in Archibald MacLeish’s “Einstein,” published in 1926, which
follows the physicist’s efforts to break free from conventional modes of thought and
obtain a truer understanding of the universe. In a sense, Einstein provided validation and
inspiration to these poets: they were following in his footsteps by breaking down
conventional barriers in order to reveal deeper truths. In a world transformed by modern
physics, modern artists felt compelled to keep up and adapt.

Other modernists incorporated relativistic concepts into the form of their works.
The Cubist painter Pablo Picasso, who spent time with scientifically-educated peers and
thus may have been exposed to relativity early on, broke with the tradition of linear
perspective that had long been central to Western Art. He instead portrayed the same
subject from multiple perspectives simultaneously or overlapped drawings of the same
subject at different points in time. This does not directly imply an influence from
Einstein, his confusion of the separation between space and time reflects relativistic
ideas. Similarly, authors experimented in telling the same story from multiple
perspectives (such as Virginia Woolf’s The Waves or James Joyce’s Ulysses) or out of
chronological order (such as William Faulkner’s The Sound and the Fury). These
techniques were not new to the modernists, but they became more prominent and
disjointed in this period. Instead of different perspectives being used to reinforce a single
master narrative, writers in this period emphasized the lack of a complete picture—there
was no preferred frame of reference. Some of these authors followed scientific
developments and directly referred to relativity, but it is unlikely that most understood the

mathematical details of the theories.



Relativity’s relationship with philosophy and morality was often misunderstood in
the 1920s. Many mistook the theory as implying moral relativism or suggesting that all
viewpoints and opinions are equally valid. The philosopher José Ortega y Gasset
enthusiastically incorporated relativity into his own philosophical system, perspectivism,
arguing that non-Western perspectives are just as correct as Western ones and that other
cultures should not be dismissed as barbaric or uncivilized. Regardless of how
sympathetic we might be to this view, it has nothing to do with the actual theory of
relativity. Others saw the moral ambiguity supposedly implied by Einstein less favorably:
poets such as E. E. Cummings lamented the new direction of science, seeing it as
dehumanizing, amoral, and undermining the mystery of religion. A more moderate
position was that advances in physics were alright as wrong as they were not
misunderstood and applied to ethics.

Key Ideas:

e Based on the modern myth of Einstein, many aspects of his life and personality
seem to contradict each other: he was approachable, yet his theories are beyond
comprehension; he fought for peace while inadvertently aiding the war effort; he
represents the triumph of reason, yet was often shown expressing himself on the
violin. These contradictions are, in many cases, the result of misinterpretations of
his theories or distortions by the popular media. They often reveal more about
society’s contradictory attitude toward science than the reality of Einstein’s life.

e No other physicist in history, even Newton or Galileo, comes close to Einstein in
terms of popular recognition. Part of Einstein’s fame comes from the genuine
importance of relativity to modern science, but he was helped by coincidences
and lucky happenings such as the timing of the 1919 eclipse and his reception in
America’s Jewish community. Had events turned out differently, Einstein would
certainly have remained a highly-respected physicist, but it is interesting to
speculate whether he would have achieved legendary status without help from
luck.

e Einstein entered the popular culture at the moment when the modern celebrity

ideal was taking shape. In this sense he might be compared to figures such as



Charles Lindbergh or Charlie Chaplin. Earlier scientists such as Charles Darwin
or Louis Pasteur had become well-known to laypeople, but did so without the
mass exposure made possible by modern media. Later in the 20" century,
scientists such as Carl Sagan or Stephen Hawking achieved celebrity status
through the use of popular media, often acting as popularizers of science or
explaining theories to a general audience. Einstein does not exactly belong to
either group, marking a transition point in how physicists were viewed by society
at large.

e The relationship between scientific advance and artistic experimentation is not a
simple case of cause and effect. It is fair to say that the two existed in the same
intellectual atmosphere of the early 20" century and that experimental artists were
aware of relativity, even if they did not understand it. However, given how
tempting it is to draw interesting connections between art and science, it is

important to be cautious when direct evidence of a relationship is not available.
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Cosmology

The Great Debate:

While astronomy is one of the oldest of the physical sciences, cosmology (here
referring to the scientific study of the universe’s structure as a whole) developed mostly
during the 20" century. The discipline was formed through the interactions of
astronomers, astrophysicists, and nuclear physicists.

Astronomers in the 19" century struggled to explain the size and distance of
nebulae, as well as their physical makeup. While there was no clear consensus in the
early 20" century, the most popular theory was that each nebula was itself an “island
universe” of comparable size to the Milky Way. This view was supported by evidence
such as stars being visible in some nebulae using precise telescopes and the similarities
between solar and nebular spectra. Evidence against the theory included rapid changes in
the behavior of some nebulae, which seemed impossible for clusters of stars of the Milky
Way’s size. (Today we understand that some of the objects being observed were nebulae
and others were galaxies, but astronomers at the time seemed to believe that they all must
have been one or the other.)

In 1918, the astronomer Harlow Shapley introduced an alternate model of the
universe. He calculated the diameter of the galaxy at 300,000 light years (about ten times
as large as contemporary estimates and about 50% larger than the modern value), placed
the Earth far from the center of the galaxy, and concluded that there were no
significantly-sized objects outside the Milky Way. Based on his calculated size and
contemporary data on the apparent rotational speed of another galaxy, the outer edges of
this galaxy would move faster than the speed of light, rendering the island universe
theory absurd. The island universes were either star clusters within our own galaxy or a
nebulous cloud outside it. While Shapley was wrong about this, his estimate of the
galaxy’s size and the Earth’s position within it were the most accurate of his time.

In 1920, the National Academy of Sciences chose “The Scale of the Universe” as
its next lecture topic and decided to structure it as a debate between two opposing views.

Shapley was one obvious choice, but he also agreed in the hope that the event’s publicity



would help him win the directorship of the Harvard Observatory. Heber Curtis
represented the island universe theory. The lecture has since become known as the Great
Debate, or the Shapley-Curtis Debate, and it helped undermine confidence in the island
universe theory. While both parties were correct on some points and wrong on others,
Curtis was a much more experienced public speaker and was generally regarded as the
“winner” of the debate.

A resolution to the debate came in 1923, when Edwin Hubble discovered a
Cepheid (a star that varies periodically in brightness) in the Andromeda nebula and used
it to calculate its distance at over 900,000 light years. Even using Shapley’s large galaxy,
it was clear that Andromeda was incredibly far from the Milky Way. Most astronomers
quickly agreed that the new discovery supported the island universe hypothesis, which

became the new consensus.

Expansion of the Universe:

In 1917, Einstein attempted to use general relativity to model the structure of the
universe as a whole. He assumed a bounded universe of static size and introduced the
cosmological constant (4) that served to counteract gravity and keep the universe in a
state of equilibrium. Another solution to the general relativity field equations was found
by Dutch astronomer Willem de Sitter the same year, again assuming a static universe.
De Sitter’s model predicted a redshift of distant galaxies proportionate to their distance—
not because the galaxies were receding, but as an intrinsic feature of spacetime. These
were the only two solutions possible if one assumed a static, bounded universe, and
neither was sufficient to explain astronomical observations: Einstein’s solution did not
account for the observed redshifts in other galaxies, while de Sitter’s only seemed to
work for a low-density universe.

In 1929, Hubble discovered a linear relationship between a galaxy’s distance and
its spectral redshift. While he was cautious about interpreting this as evidence for actual
movement away from the Earth (he referred to other galaxies’ “apparent velocities™),
given the difficulties with static models, astronomers quickly accepted this as evidence
for an expanding universe. This was theoretically grounded in a paper by Georges

Lemaitre, which proposed that the curvature of the universe increased with time.



The Big Bang and Steady-State Models:

By the early 1930s, astronomers agreed that the universe was indeed expanding.
However, this does not necessarily mean that the universe has a finite age or began from
a single source. Lemaitre’s original paper suggested a static universe as described by
Einstein that somehow was thrown out of equilibrium and began expansion. This was a
popular view for many years, as it avoided problems of causality associated with the
beginning of the universe. However, in 1931 Lemaitre changed his view and speculated
that the universe began with a single quantum of energy, a “primeval atom” that split
apart and began expansion. While this was more speculation than theorizing, Lemaitre is
sometimes considered the originator of the Big Bang theory.

The Big Bang in its modern form was developed by the Russian-American
physicist George Gamow. Gamow was involved in the new field of nuclear physics and
wanted to explain the presence of heavy elements in the universe. In his 1948
collaborative paper with Ralph Alpher, Gamow formulated the early universe, created in
a nuclear explosion, as a hot neutron gas where the conditions were extreme enough to
allow the fusion of all heavy elements. The paper also predicted the existence of
detectable cosmic radio waves from this Big Bang. Although the heavy elements are now
explained by stellar synthesis, Gamow’s work was important in establishing the
connection between nuclear physics and cosmology.

1948 also the publication of a rival cosmological theory proposed by Fred Hoyle,
Hermann Bondi, and Thomas Gold, known as the Steady-State universe. In this theory,
the universe does not have a finite age and its structure does not change with time. Matter
is spontaneously created throughout the universe at a rate that keeps the total density of
the universe constant. This avoids questions of the beginning or end of the universe (the
heat death implied by the second law of thermodynamics). One way to summarize the
differences between the two ideas is that the Big Bang conserves the content of the
universe but allows its structure to vary with time, while the Steady-State universe has a
constant structure but variable content.

Between 1948 and 1965, there was no consensus as to which of the two theories

was correct. Without observational data, physicists chose between the two on



philosophical or aesthetic grounds. Some preferred the Steady-State theory for its
simplicity and testable predictions, while others objected to its disregard for energy
conservation and lack of any explanation for matter creation. These considerations are
important for the philosophical dimension of cosmology discussed below. However, in
the early 1960s, advances in radio cosmology began providing evidence in favor of the
Big Bang. Penzias and Wilson’s 1965 discovery of the cosmic microwave background
(CMB) radiation, predicted by Gamow in 1948, finally shifted consensus away from the
Steady-State.

Cosmology and Philosophy:

The Steady-State/Big Bang disagreement of the 1950s provided a background for
discussions on the nature of science and the philosophical position of the new cosmology.
Put simply, the lack of observable evidence for either theory before the discovery of
CMB convinced many that cosmology was more philosophical speculation than physical
science. It occupied a vague middle ground between the two, unwilling to commit to
either physics or metaphysics. William McCrea argued that, given the expansion of the
universe and the limit of the speed of light, it was impossible to gather enough data to
make meaningful statements about the universe as a whole. One could use known
physical laws to make predictions, but he argued it that was absurd to claim that locally-
proved laws can be transferred to the entire universe. In response, William Davidson
admitted that these observations were difficulties, but claimed they were not
insurmountable. Finding evidence for cosmological theories would be difficult, but that
was no reason to throw out the entire subject and declare it unscientific. Davidson was
vindicated by the discovery of the CMB, an event which prompted McCrea to take back
his earlier criticism.

The debate between Big Bang and Steady-State theories evolved alongside
changes in general attitudes toward the philosophy of science. From the 1920s through
the 1950s, the philosophy of science was dominated by the school of logical positivism,
which claimed that all knowledge should be built on a base of verified experimental fact.
Speculation, intuition, and appeals to aesthetics had no place in science; all theories

should be based solely on the observable facts available. Many critics of cosmology,



especially astronomers used to relying primarily on observational data, drew on positivist
thought when they criticized it as philosophical speculation. However, as the century
continued, logical positivism came under increasing attack. Critics claimed that it was
naive to accept all observations without reservation and that it science must ultimately
rest on metaphysical assumptions.

One of the leading philosophers in the new school of thought was Karl Popper,
who formulated a new way to demarcate the line between science and non-science. In
Popper’s view, the ultimate measure of a theory was whether it allowed for falsifiable
tests of its validity. The distinction between positivistic verificationism and Popperian
falsificationism is subtle but important: no theory can be proven beyond doubt by
experiment (as the positivists seemed to claim), but they can certainly be proven wrong;
therefore, the strongest scientific theories present many opportunities to be proven wrong
but pass them all. For example, Popper considered Freudian psychoanalysis to be
pseudoscience because none of Freud’s claims can be decisively falsified by experiment.
Popper’s focus on falsifiability was appealing to Steady-State theorists, as their model
presented more opportunities to be falsified. Ironically, the tests that were performed

ultimately favored the Big Bang theory.

Cosmology, Religion, and Ideology:

Unsurprisingly, questions about the beginning of the universe risk blurring the
lines between physics and theology. One early example of this came in the 19" century,
after the formulation of thermodynamics. Some physicists argued that, if the second law
of thermodynamics applies to the entire universe, eventually entropy would reach a
maximum and the universe would end in a heat death of thermal equilibrium. Going
further, they argued that the universe must have a finite age, since maximum entropy had
not yet been reached; if the universe was infinitely old, it would have already achieved
heat death (as above, critics objected that it was unwise to try applying physical laws to
the entire universe). Although these 19" century physicists were careful about letting
religion affect their ideas, generally the more religious thinkers accepted the entropic

argument while materialists (such as Marx and Engels) and atheists believed in an infinite



or regenerating universe. By the early 20'" century, physicists generally accepted that this
argument was more metaphysical than scientific and ignored it.

Interactions between theology and physical cosmology continued into the 20™
century, however. Most physicists were careful to separate science and religion
completely (Lemaitre, despite being a priest, disliked literal readings of the Bible and did
not believe his finite universe suggested a Creator), but connections still emerged. Fred
Hoyle, one of the most vocal Steady-State advocates, ran a BBC radio program on
astronomy and wrote a book promoting popular understanding of science. In addition to
presenting the Steady-State model is a positive light, Hoyle used these platforms to attack
both Christianity and Marxist materialism. He immediately became a controversial
figure, criticized by other astronomers for going beyond science into his own personal
opinion and feared by the Christian establishment. Although the connection was tenuous,
the Steady-State theory became known as the more atheistic of the two models.

Conversely, the Big Bang theory of the 1950s developed connections with
Christianity. Gamow sent a copy of his 1948 paper to Pope Pius XII, who publicly
endorsed the theory as empirical proof of a higher Creator: if the universe began, then
something (God) must have caused the beginning to take place. Pius was unusually well-
educated in science for a pope, aiming to reconcile Christianity with the empirical
sciences using logical reasoning. Some physicists, such as Lemaitre, were unhappy with
his intervention, arguing that evidence-based science could have no influence on
theological conclusions and vice versa. Even so, some believed, like their 19" century
counterparts, that a universe of finite age supported the existence of God.

A third opinion dominated in the communist world, which rejected cosmology
altogether. As mentioned above, Engels had opposed the entropic argument for the
universe’s age: similarly to Pius XII, he believed that a finite universe needed a Creator,
which contradicted his dialectical materialism and atheism. This opinion persisted among
Marxists up through the 1950s. The pope’s public support of the Big Bang certainly did
not make any communists more willing to accept it. Theorists in the Soviet Union and
China went farther and rejected both the Big Bang and Steady-State models as

metaphysical dreaming, similar to the idealism that Marx himself had originally rejected.



This position began to change once the CMB shifted cosmology away from philosophical

speculation and solidly into the empirical sciences.

Key ldeas:

e Physical cosmology was created through the interactions of different scientific
fields. What originally seemed like the domain of pure astronomy incorporated
elements of theoretical relativity and new developments in nuclear physics to
provide a more accurate description of the universe. These different disciplines, in
addition to studying different subjects, employed different methodologies:
astronomy is highly observational, whereas nuclear physics employs a mix of
theory and experimentation. These methodological differences can be seen in
different fields’ attitudes toward proposed theories. While the older astronomy
establishment tended to dislike the highly theoretical models that emerged after
World War I, physicists such as Gamow or Bondi favored a mix of observational
evidence and theoretical elegance.

e The historical narrative above is dominated by two disagreements in cosmology:
the Great Debate of the 1920s and the Big Bang/Steady-State debate of the 1950s.
The presence of these large-scale disagreements in the cosmological community
are evidence that physical cosmology was, at the time, still a new field of science.
However, differences between the debates are worth highlighting. The Great
Debate was mostly contained within the astronomical community and concerned
how to interpret the data already available. The cosmological debate of the 1950s
involved several different parties and discussed how to form a theoretical model
in the absence of sufficient data. Based on these differences, it is unsurprising that
the later disagreement witnessed more interaction with religious and political
schools outside of physics.

e Although philosophers in the mid-20" century became more open to
reconsidering the relationship between evidence and theory, it is worth
emphasizing that experimentation and empiricism continued to have a central role
in cosmology. The discovery of the cosmic microwave background is a good

example of this: while physicists were comfortable discussing a theory’s



simplicity or aesthetic appeal, the CMB provided direct evidence for the Big Bang
and ended the discussion quickly. In any discussion on the philosophy of science,

the bottom line is that observations should agree with theory.
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Quantum Theory before World War |

Fin de Siécle Physics:

It is sometimes casually claimed that physicists at the end of the 19" century
believed they were approaching the end of their discipline and that there was nothing left
for them to discover. While there may be a few who believed this (as a student, Max
Planck was discouraged from pursuing physics because its basic structure was already in
place), the 1890s in particular were an important period of discovery that foreshadowed
the advances of 20" century physics.

The most famous event of the decade was Wilhelm Rontgen’s discovery of x-rays
in 1895. Both physicists and the general public were fascinated by the unexplained rays,
which seemed to behave differently from both visible light and cathode rays. Rontgen
himself suggested that they might be longitudinal ether vibrations (as opposed to the
transverse vibrations of regular electromagnetic waves). The matter was not settled until
the early 1910s, when evidence such as crystal diffraction showed that x-rays are simply
high frequency EM waves. Inspired by Rontgen, Henri Becquerel began investigating
other sources of rays and discovered what he called “uranium rays.” Later, Marie Curie
showed that these rays emit from compounds other than uranium and renamed the
phenomenon “radioactivity.” These discoveries inspired others to seek out new varieties
of rays, most of which do not actually exist. Black light, N-rays, and magnetic rays were
all considered as possibilities. The existence of cosmic rays was also doubted until they
were observed in the 1910s.

The 1890s also saw important progress in knowledge of the electron. Early
electron theories, such as proposed by Hendrik Lorentz and Joseph, thought of the
electron as the physical manifestation of the ether and the fundamental constituent of
matter. Such a worldview would unite all known areas of physics under the common
basis of electromagnetism and the ether. Pieter Zeeman’s 1896 discovery of the influence
of a magnetic field on light (the Zeeman Effect) established more definite physical
characteristics of the theoretical electron, such as its negative charge and high ratio of
charge to mass. The next year, J. J. Thomson demonstrated that cathode rays are
composed of negatively charged particles with a constant charge/mass ratio. These two
lines of research, theoretical and experimental, were pursued separately, but by 1900 they
established the electron as a negative particle of small mass that was either the sole
fundamental particle or one of several.

Planck and Quantum Theory:

During the 19" century, Max Planck’s main interest was in thermodynamics. In
particular, he saw the second law of thermodynamics as a fundamental feature of nature
rather than a statistical trend. In contrast to Ludwig Boltzmann, whose statistical
mechanics predicted that the entropy of a system could occasionally decrease, Planck
took as a first principle the fact that entropy increase was a strictly unidirectional process.
In 1899, he derived Wilhelm Wien’s blackbody radiation distribution from this
assumption, which seemed to agree with experiment. When it was discovered that the
Wien distribution was incorrect for long wavelengths, Planck slightly modified his
derivation and came up with the famous Planck distribution in 1900. While the new
results matched observations very closely, he saw this derivation as unsatisfactory, as it



was more mathematical guessing to fit the facts rather than an explanatory theory. Later
that year, he announced that his distribution only made sense if the total energy of the
blackbody was divided into several finite portions of energy e=hf.

Historians have debated exactly what Planck thought of his work in 1900. Some
have argued that he did not think his equation had any definite physical meaning and that
it was only a temporary mathematical construction. Others believe that he recognized that
his work implied energy discontinuity but was unwilling to accept this result fully. In any
case, it is clear that Planck took a conservative, cautious approach to physics and that he
did not see his distribution as particularly revolutionary. He did not move forward
exploring the implications of energy discontinuity or the new constant h; instead, he spent
much of the next decade fleshing out the dynamics of special relativity.

It is also worth noting that the so-called “ultraviolet catastrophe” played little role
in Planck’s theorizing. Using the classical equipartition theorem (which states that the
energy of a system will spread evenly across all degrees of freedom) results in the
Rayleigh-Jeans distribution of blackbody radiation. Unlike the Wien distribution, this law
broke down at short (ultraviolet) wavelengths, where it gave infinite energy. Eventually,
Lorentz proved that his ether-based electromagnetic theory necessarily led to the
incorrect Rayleigh-Jeans distribution. This was the context of the ultraviolet catastrophe:
there was no way to explain the blackbody distribution if physical reality reduced to a
fundamentally electromagnetic basis. For Planck, with his worldview instead based in
thermodynamics, the Rayleigh-Jeans distribution was less important.

Einstein and Quantum Theory:

The first of Einstein’s 1905 papers is usually referred to as “the photoelectric
effect paper,” but this does not convey its extent or how thoroughly it departed from
contemporary ideas. Einstein began his paper by noticing the inelegant contrast between
discrete matter and the continuous electromagnetic field, and aimed to resolve it by
suggesting that light is composed of corpuscles rather than waves. This contradicted
years of evidence in favor of wavelike light, but Einstein pointed out that the wave theory
inevitably led to incorrect results for the blackbody problem. He derived an expression
for the entropy of blackbody radiation and noted that it had the same mathematical form
as the entropy of an ideal gas. By analogy, Einstein reasoned that, as gases are composed
of discrete molecules, blackbody radiation is quantized in packets of energy E=hf. He
then suggested using the photoelectric effect to test the implications of this new model of
light, predicting the effects of varying the light’s frequency. These predictions were
confirmed by Robert Millikan in 1914 (although Millikan refused to accept the
theoretical basis of Einstein’s work).

Although Einstein mentioned Planck’s distribution formula, he made few direct
references to Planck in the 1905 paper. In fact, Einstein probably believed in 1905 that he
and Planck were working from different theoretical bases that contradicted each other. In
a 1906 paper, Einstein reconsidered his and Planck’s ideas and concluded that Planck’s
assumptions in creating his distribution also imply the existence of light quanta.

Early Growth of the Quantum Theory:
In the early 1900s, blackbody radiation was a specialized branch of physics that
concerned few physicists. Because of this, quantum theory made little impact until it was



applied to other subjects. In 1907, Einstein extended his ideas into solid-state physics by
using quantized energy to explain irregularities in the specific heats of different elements.
This was a much more mainstream field and introduced new physicists to quanta, while
also suggesting quantum theory’s eventual use in atomic structure and chemistry.
Another important step came in 1908, when a lecture by Lorentz demonstrated that
classical electromagnetism would only lead to the incorrect Rayleigh-Jeans distribution
(as mentioned above), convincing his followers that Planck’s distribution was the only
way forward.

The specific heat problem introduced quantum theory to German physicist
Walther Nernst, who became convinced of its importance and played an important part in
its general acceptance. Nernst convinced the philanthropist Ernest Solvay to hold a
conference on the new quantum theory summing up its relationship to radiation and gas
theory. The Solvay Conference, held in November 1911 in Brussels, brought together
Lorentz, Planck, Curie, Einstein, Rutherford, and other leading physicists in a discussion
on quantum theory’s progress thus far. The meeting did not lead to any new
breakthroughs or insights (a fact which annoyed Einstein), but helped focus attention on
the breadth of problems related to quantum theory. It also transformed quantum theory
into a community project recognized by the mainstream of physics and gave the sense
that it was a revolutionary departure from older physics. Many historians have argued
that the concept of “modern physics” was created at the Solvay Conference.

Key Ideas:

e A large portion of this week’s historical narrative is focused on
misconceptions and confusions about the early history of quantum theory: late
19" century physics was not stagnant, Planck did not begin a scientific revolution,
and exactly what he and Einstein thought at given times is not entirely clear. This
is understandable, as a lot of the work done before 1920 became obsolete after
fuller quantum mechanical theories took shape. It feels less pressing to understand
exactly how these theorists understood their physics. Also, many of the exciting
aspects of quantum theory (the uncertainty principle, the Bohr-Einstein debates,
nuclear fission) came later; compared to them, blackbody radiation is less
glamorous. Because of this, historical research in this area is less robust than that
of relativity or later quantum theory.

e One of the key ideas made obsolete by quantum theory was the
electromagnetic worldview (or “electron theory,” in Lorentz’s terms), which
appears occasionally in the history above. As mentioned on the first week, the late
19" century saw physicists trying to unify the entirety of nature under a single
physical framework. The electromagnetic worldview, usually associated with
Hendrik Lorentz and Joseph Larmor, aimed to explain all the different areas of
mechanics using electromagnetic waves and the ether. In this view, electrons were
discrete manifestations of the continuous ether; thus, if electrons were the only
fundamental particle, there would be no physical reality except for the
electromagnetic ether. This simple, elegant formulation of nature is tempting; it
might be compared to more recent unified theories that attempt to unite the four
fundamental interactions. As time went on, however, it became clear that natural
phenomena required quantum as well as electromagnetic explanations.



e |tis easy to pinpoint 1905 as the beginning of relativity, but finding the
exact beginning of quantum theory is not as simple. Although 1900 is the most
common date given, physicists did not realize that Planck’s work constituted a
definite break with classical theories until several years later. The shift from
classical to modern physics did not happen all at once, but was a more gradual
process as different physicists added individual components to quantum theory
and realized that their work was a complete departure from 19" century traditions.
This is one reason why the Solvay Conference is important: despite not seeing
any new scientific breakthroughs, it helps convince its participants that significant
historical changes were happening.

e A wide range of phenomena require quantum theory to understand fully,
including radioactivity, the blackbody distribution, the photoelectric effect,
specific heats, and atomic structure. Part of the difficulty in constructing a unified
quantum theory was recognizing that all these problems share underlying features.
Thus, many of the important steps in early quantum theory involved physicists
crossing between different problems and drawing connections between them. This
is most apparent in Einstein’s work with photons and in the Solvay Conference.
After this event, progress towards quantum mechanics moved much more
smoothly as physicists recognized the need for a unified approach to quantum
phenomena.

o A few weeks ago, | argued that the 1919 confirmation of general relativity
saw unprecedented media attention to a discovery in physics. This is not entirely
true, as Rontgen’s discovery of x-rays also began a media frenzy that was unusual
for the time. That said, the scale of relativity’s impact was much greater than that
of x-rays. In addition, Einstein became a worldwide celebrity along with his
theory, while Réntgen remained relatively unknown outside the world of physics.
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Bohr and the German Physics Community

The Bohr Atom:

Niels Bohr’s early work concerned the application of Lorentzian electron theory
to metals and conductance. While completing his dissertation on the subject in 1911, he
became convinced that existing theories were insufficient and that a new model, probably
based in the new quantum hypothesis, was needed. He travelled to England in order to
work with J. J. Thomson, the established authority on electrons and atomic theory.
Disappointed with Thomson’s lack of interest in his ideas, Bohr was instead inspired by
Ernest Rutherford, recently returned from the Solvay Conference. Returning to
Copenhagen, Bohr abandoned his earlier work and set out to improve Rutherford’s
atomic model by using quantum theory to stabilize electron orbits. While working on this
problem, a colleague casually asked him how it related to the Balmer formula for
hydrogen spectra. Unexpectedly, Bohr realized he could explain both atomic stability and
hydrogen’s spectral lines through the same model. His key insight was that the orbital
frequency of the election (w) was not equal to the frequency of the emitted spectral lines
(), as was commonly assumed.

Bohr’s model of 1913 was criticized for its strange theoretical assumptions (how
does the electron “know” which energy levels are stationary states?), but its incredible
agreement with observations made it difficult to argue against, and most critics chose to
accept the model. Further progress was slowed by World War I, but important
contributions were made, especially by Arnold Sommerfeld. Sommerfeld explored the
possibility of elliptical electron orbits (which seemed to be allowed by the theory),
introduced special relativity into the Bohr model, and used these to explain fine structure
splitting. While Bohr understood his model as a preliminary step before a fuller
understanding of quantum mechanics could be achieved, he and Sommerfeld were

incredibly successful at explaining various phenomena under a single framework.

Physics and International Politics:
The 1920s were a difficult time for Germany. After its defeat in 1918 and
transition from a German Empire to the new Weimar Republic, Germany faced an



economic slump, food shortages, political unrest, and massive inflation that did not
stabilize for several years. Despite many challenges, these years were incredibly
productive for German physicists and saw some of the most important advances of
modern physics.

The international situation made cooperation with non-German physicists
difficult. International organizations such as the new International Research Council
(IRC) restricted membership to Allied countries, only accepting neutral countries (such as
Denmark) in 1922 and Germany in 1925. German physicists were largely excluded from
international conferences until the late 1920s and German-language publications often
went untranslated. On top of this, Germany’s economic situation further impeded
cooperation: with rampant inflation, it was difficult for Germans to import the latest
foreign publications or travel abroad in order to keep up to date with current research
elsewhere.

This divide between German and Allied physicists was never total (Einstein was
accepted by both communities, and Bohr, as a neutral Dane, was more respected in the
West than his German colleagues), but it harmed physics as a whole. German and Danish
physicists formed a mostly self-contained community where important ideas from the
English- and French-speaking world (such as de Broglie’s matter waves) had little impact
until the international situation improved toward the middle of the 1920s. The rest of this
week will cover these self-contained advancements in the German community, which
focused on energy transitions in the hydrogen atom and produced the first version of
guantum mechanics in 1925. Next week will follow advancements outside of this
community, which tended to give more emphasis to the wave-particle duality and led to

Schrodinger’s version of quantum mechanics in 1926.

Physics and Weimar Culture:

German culture in the 1920s was hostile to the physics community. During the
war, scientists had enjoyed public status and prestige as an important component of the
militarized society. After the defeat, much of the German public saw science as the cause
of the disastrous war and subsequent crisis. There was a general feeling that German

culture had lost its soul as rational science had replaced the music and poetry of the past.



Interest in artistic icons such as Goethe and Mozart increased at the expense of interest in
physics. This zeitgeist was expressed in Oswald Spengler’s best-selling book The Decline
of the West, which claimed that science only had value relative to its particular culture
and that physics needed to abandon “outdated” concepts like strict causality and
determinism in order to keep up with the times. These anti-rational streams of thought
had long been a feature of German culture (for example, in the 19™" century Romantic
Movement), but they resurged dramatically in the atmosphere of crisis after World War I.

While a few physicists (most notably Planck and Einstein) responded to this
hostile environment by reasserting the value of classical physics and defending the
discipline from criticism, many German scientists seemed to capitulate to these views in
their public addresses. Physicists tended to highlight connections between physics and
philosophy while downplaying their association with technology. They admitted that
physics’ power to describe abstract ideas like the human spirit was limited and portrayed
physics research as being for its own sake, rather than utilitarian usage. Most
significantly, physicists began arguing that concepts like strict determinism and cause and
effect might have to be abandoned, in line with Spengler’s analysis.

Exactly why German physicists acted this way is not entirely settled. In 1971, the
historian of science Paul Forman made the controversial argument that physicists
basically capitulated to the 1920s culture and accepted the need for acausality; thus, when
the probabilistic nature of quantum mechanics was discovered, German physicists were
generally willing to accept it quickly. In other words, forces outside of science shaped the
direction that quantum physics took in a direct cause-and-effect relationship. Other
historians have challenged this view as focusing too much on external rather than internal
motivations away from causality. For example, John Hendry has argued that physicists
were already considering abandoning concepts like determinism and strict conservation
of energy before the cultural backlash; in this view, internal rather than external forces

pushed physicists toward acausality.

Heisenberg’s Quantum Mechanics:
Regardless of the degree to which Forman was correct, by the mid-1920s there

was an atmosphere of crisis both in the physics community and German culture at large.



While the Bohr model was very useful through the 1910s, its deficiencies could no longer
be ignored: it offered no explanation for the intensity or polarization of light emitted in
transitions and could not be used at all in describing atoms larger than hydrogen or
chemical bonds. The most pressing issue was fine structure splitting due to the anomalous
Zeeman effect, which would not be fully explained until the discovery of electron spin.

In early 1924, Bohr, his assistant Hans Kramers, and the American John Slater
published a paper outlining what has become known as BKS theory. Although Compton
scattering had been discovered in 1923, demonstrating that photons behave like particles,
Bohr was committed to the wave theory, and formulated BKS theory as a final effort to
explain energy transitions without light particles. The theory attributes the frequencies of
light emitted during a transition to virtual charges oscillating with the required frequency
and intensity. However, without photons to induce transitions, the theory abandoned strict
cause and effect and energy conservation in order to preserve the wave theory. BKS
theory enjoyed popularity for a few months, until experimental evidence demonstrated
that transitions strictly obey energy conservation.

At this point, when all existing theories had been shown to be imperfect,
Heisenberg arrived at the key breakthrough which led to the resolution of quantum
theory. Everything discussed so far in this history is often called the “old quantum
theory,” while Heisenberg’s advances of 1925 truly began “quantum mechanics.”
Inspired by BKS theory, Heisenberg chose to do away with any description of electron
orbits or positions and instead focus solely on observable quantities. His work, along with
additions from Max Born and Pascual Jordan, is usually called matrix mechanics to
distinguish it from Schrodinger’s wave-based quantum mechanics. The final theory
expressed the probabilities of transitions between stationary states in a matrix consisting
of the amplitudes of the terms of a Fourier series that describes an electron’s periodic
motion. This formulation was highly abstract and relied on obscure matrix calculus, but it
described hydrogen satisfactorily. With the addition of electron spin, discovered the same
year, matrix mechanics provided the most powerful description of quantum phenomena
yet. While Schrodinger’s version of quantum mechanics is the more widely-used
formulation, Heisenberg’s work is one of the key turning points in the history of quantum

theory.



Key Ideas:

e The controversy around the Forman thesis demonstrates the difference between
internalist and externalist histories of science. Forman’s argument was radically
externalist, in the sense that the entire course of quantum theory was determined
by factors outside the physics community. Hendry’s position is more moderate:
while he accepts that factors from society at large may have influenced physicists,
he argues that the primary reason physicists moved away from causality was that
physical evidence pointed in that direction. Resolving this tension between
external and internal explanations is one of the key tasks of historians of science.

e Another example of an externalist explanation comes in the influence that
international relations had on physics. The fact that German and French physics
were largely cut off during the early 1920s meant that de Broglie’s hypothesis had
a delayed reception in the mainstream physics community. Had external social
conditions been different, Bohr and Heisenberg may have realized the importance
of wave-particle duality earlier and developed their ideas differently. The
aftermath of WWI was not the only factor that shaped the course of quantum
mechanics, but | would argue that evidence indicates that it is one of several
important factors.

e Relativity, as we have seen, was almost entirely the work of a single individual,
whereas quantum mechanics was formed through the interactions of many
physicists. The advances discussed this week were facilitated by personal
correspondences and visits to other universities. The primary centers of research
were Copenhagen, where Bohr and Kramers worked, Munich, where Sommerfeld
was chair of the physics department, and Gottingen, where Born served as a
mentor for Heisenberg, Pauli, and Jordan. These physicists frequently travelled
between these universities and collaborated on papers. The dynamics of how
relativity and quantum theory spread and developed followed distinct patterns of
social interaction, with quantum developments being helped by the existing

university structure.



e Beginning in the 1920s, many of the most important advances in quantum theory
were made by very young physicists: Heisenberg, Pauli, Dirac, and Jordan were
all in their 20s during this period. Older physicists continued to play an important
role, often as facilitators of cooperation in addition to researchers. Famous
theorists of the previous generation, such as Bohr and Born, helped their students
by spreading awareness of their theories and arguing for their importance. Their
existing prestige and credibility helped establish Heisenberg and Pauli in the
physics community. Others, such as Planck, moved farther away from
involvement in research, acting as elder statesmen facilitating university research

at a higher level.
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De Broglie and Schrodinger

Waves and Particles:

Although Einstein had certainly established his reputation as a leading physicists
by the 1920s, his particle theory of light outlined in 1905 took many years to be taken
seriously. The wave description of light had been a central feature of classical physics
since the early 1800s and could be demonstrated using a simple double-slit setup. Even
when Einstein’s photoelectric predictions were confirmed with reasonable accuracy, most
experimentalists were unwilling to accept the underlying explanation of wave-particle
duality: Millikan, who performed the decisive experiments confirming the photoelectric
equation in the mid-1910s, claimed that the mathematical relationship had been
inarguably confirmed but argued just as strongly that the underlying explanation of light
quanta could not be accepted.

The early 1920s saw renewed interest in light quanta. First, Einstein received the
1921 Nobel Prize specifically for his work on the photoelectric effect, lending some extra
prestige to the wave-particle theory. Also important was Arthur Compton’s 1923
discovery of Compton scattering, attributing definite momentum to light. Even with this
demonstration of particle behavior, some theorists held out for several years. The German
community discussed previously was especially hostile to any wave-particle model of
light, leading to the BKS theory’s sacrifice of strict energy conservation in favor of
wavelike light. By 1924, the community as a whole had yet to reach agreement on the

wave-particle problem.

De Broglie’s Thesis:

Louis de Broglie began his research career by assisting his older brother Maurice
with data analysis. In 1921, the older de Broglie presented his work on X-ray diffusion
and concluded that radiation must be absorbed or emitted from atoms in finite quanta.
Although this did not resolve the issue to the community as a whole, it convinced Louis
of the importance of the wave-particle model. Revisiting Einstein’s 1905 paper, de
Broglie’s early publications claimed that light quanta have mass and thus travel at

slightly less than c. He theorized “light molecules” or agglomerations whose interactions



would explain interference. However, his most important step, made in his dissertation in
late 1924, was an attempt to link special relativity with quantum theory and produced the
equation mc?=hfo. This suggests that all massive particles (including light, in this model)
have a characteristic frequency fo in their rest frame. Although he was vague as to the
specific meaning of this frequency, he was confident that matter waves had physical
significance: they could explain the energy levels of the Bohr atom and predicted electron
interference as a falsifiable test. The dissertation extended wave-particle duality beyond
disagreements on the nature of light and first suggested a more fundamental unity
between light and matter.

Einstein was the first to argue for de Broglie’s significance. In 1924, Einstein was
collaborating with the equally-unknown Satyendra Nath Bose on quantum gas theory and
establishing Bose-Einstein statistics. Working out the specifics of Bose’s new method of
counting particles, Einstein found that the number of particles within a partial volume
would fluctuate according to similar laws of radiation fluctuation. This suggested
interference between particles and thus a wave-particle duality. At this point, Einstein
received an advance copy of de Broglie’s thesis from Paul Langevin, one of the thesis’
judges. Einstein realized its importance to his statistical methods and began arguing its
significance to his colleagues. Schrédinger, Born, and most other physicists heard about
de Broglie through Einstein.

However, even with Einstein’s help, matter waves had little influence in
Copenhagen and Gottingen. This was partly due to continuing poor relations between
France and Germany and the difficulty of translating discoveries in physics across the
gap. Also important was the influential Bohr’s aversion to any theory on wave-particle
duality. De Broglie’s poor understanding of spectroscopy (the most significant problem
for German physicists) and some condescending remarks about Sommerfeld and
Heisenberg certainly did not help his reputation. Although Heisenberg was likely at least
aware of de Broglie’s thesis when he first formulated quantum mechanics, it is unlikely

that he was influenced by the idea.

Schrédinger’s Equation:



Schrodinger, however, was an outsider to the mainstream German physics
community. An Austrian working in Switzerland, he was known as a loner and did not
align himself with any school of thought within quantum theory, working on a variety of
problems over time. Like Einstein, he was working on gas theory in 1925 and thus came
to appreciate de Broglie’s significance. In particular, de Broglie’s use of matter waves to
model hydrogen’s energy levels shared a mathematical similarity to an earlier theory of
Schrodinger’s from 1922: using Hermann Weyl’s work on general relativity, Schrodinger
concluded that, if an electron carries an associated four-vector (derived from Weyl’s
theory) as it orbits an atom, the value of this vector will be multiplied by an integer value
every time it completes a revolution. With some modifications, this bears similarity to de
Broglie’s condition of electrons as standing waves. By 1925, Schrdodinger had abandoned
this work on atomic modeling; after Einstein introduced him to de Broglie’s ideas, he
returned to the hydrogen atom to describe it using matter waves.

After failing to construct a working relativistic wave equation (now known as the
Klein-Gordon equation), Schrodinger published his work in several papers that appeared
early in 1926. These provided several derivations of his equation (the most famous being
an extension of Hamilton’s analogy between mechanical and optical motion to quantum
theory) and demonstrated its power at solving existing quantum problems. In his original
interpretation, Schrddinger considered the square of the wave function to be a measure of
charge density distributed over space. At this point, there was nothing probabilistic about
the Schrddinger equation.

Almost as important as the equation itself was Schrodinger’s rigorous proof that
his and Heisenberg’s versions of quantum mechanics are mathematically equivalent
(Schrodinger later claimed that he had been aware of Heisenberg’s work while
developing his equation but was unaffected by it). Immediately after Schrodinger’s
publication, the physics community was split over whether to accept matrix or wave
mechanics—both gave the correct answers, but their forms were so different that
establishing a connection between them was difficult. With the demonstration that both
were equally legitimate, the community was free to choose the version it preferred.
Schrodinger’s equation quickly became the more popular: it relied on a well-known

mathematical basis (rather than the obscure matrix calculus), making calculations



simpler, and it was easier to visualize electrons as waves rather than as abstract matrices.
Despite some animosity between Schrédinger and the Copenhagen/Gottingen physicists,
the community as a whole accepted wave-particle duality and moved on. With a
mathematical basis established, the next step in developing quantum mechanics was
interpreting exactly what the wavefunction meant and what it implied. This led to the

construction of the Copenhagen interpretation beginning around 1927.

Key ldeas:

e As was the case with matrix mechanics (see last week’s summary), Schrodinger’s
wave mechanics was the product of communication and collaboration between
physicists. However, collaboration took a different form in the two theories: in the
matrix mechanics case, cooperation took place within the existing structure of the
universities and was facilitated by formal research groups and semesters abroad.
The key physicists who developed wave mechanics were more spread out (as far
as India, in Bose’s case), and communicated through unofficial channels such as
private letters. In both cases, sharing ideas was necessary to the development of
guantum mechanics.

e Between these two communities developing quantum mechanics, we can see both
hostility and cooperation. Heisenberg was initially upset that Schrodinger’s
method had become the standard despite being published later. Both thought that
other was emphasizing the wrong fundamental principle in their derivation
(Heisenberg focused on observable quantities; Schrodinger focused on created a
visualizable model). However, both groups made important contributions to the
fully realized quantum mechanics. While Schrodinger’s mathematical notation
became accepted, the former developers of matrix mechanics provided the
theoretical interpretations used today (Born’s probability density, Heisenberg’s
uncertainty principle, and Bohr’s complementarity). In this sense, quantum
mechanics was the product of a single, unified community of physicists.

e De Broglie was an exception among physicists in many ways: he was French at a
time when Germany (and to a lesser extent England) dominated the sciences, he

was originally trained as a historian, and he was an aristocrat. Louis and several of



his siblings expressed interest in science in their youth: Maurice, as mentioned,
worked on x-ray experimentation, while their sister Pauline became interested in
geology and archaeology. This went against the wishes of their relatives, who
wanted the youths to take more traditional aristocratic professions such as
diplomacy or banking. This unusual status between social classes meant that
Louis’ place within the scientific community was uncertain; when he, like
Einstein, objected to the Copenhagen interpretation and indeterminism, de
Broglie’s criticisms carried less weight and were easier to ignore.

e Since its publication, de Broglie’s 1924 thesis has been celebrated to the point of
developing a mythology around it. Calling it “the most important thesis of the
20th century” is certainly appropriate, but the anecdotes surrounding it can be
questioned. | have found no evidence that it really was the shortest physics thesis
ever written; at roughly 70 pages, it does not seem likely. The story of Langevin
giving the thesis to Einstein for judgment is probably true, but many sources leave
it out entirely as if it never happened. These anecdotes surrounding the thesis

should at least be taken with a grain of salt.
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The Manhattan Project

Physics in America:

Although Germany, England, and Denmark were the biggest centers of physics
research for the first three decades of the 20" century, the United States’ physics program
expanded rapidly beginning in the 1920s. As industry grew and demand for technically-
educated professionals increased, more and more young people received undergraduate
and graduate degrees. Philanthropic organizations (especially the Rockefeller and
Guggenheim Foundations), a uniquely American phenomenon, funded young students’
research and allowed them to visit the famous laboratories of Europe. On the other hand,
European physicists increasingly visited the United States on lecture tours, to see the
products of American research, or to take positions at one of the country’s many
universities (European universities typically had small physics departments and few
opportunities for new professors). These Europeans were struck by the vitality of the
young American program and the cultural differences between the continents: American
physicists tended to be more focused on industry and applied science, and were
comfortable interacting with the media or commercializing their work; on the other hand,
American research teams were less hierarchical and tended to ignore conventional
boundaries between disciplines. The philosophical questions introduced by quantum
mechanics did not interest Americans, who were willing to accept the new theory’s utility
and move on.

A key change in the relationship between American and European physics came
in early 1933, when Adolf Hitler took power in Germany. Soon afterwards, he expelled
Jewish academics from German universities, immediately affecting roughly a quarter of
the German theoretical physics community. Over the next several years, many others in
Germany and its neighbors resigned their posts, either out of fear or in protest. The
British and American communities quickly condemned Hitler’s actions and organized to
provide the displaced physicists with new university positions in safe countries. Although
many (such as Schrodinger and Born) chose to relocate to Great Britain, the majority
moved to the United States. Ultimately, Einstein, Fermi, Bethe, Paul Debye, James
Franck, Alfred Landé, Emilio Segre, Eugene Wigner, Otto Frisch, Otto Stern, Leo



Szilard, Edward Teller, and many others ended up at American universities. Those who
chose to stay within the Nazi Reich out of loyalty to their country included Planck,
Heisenberg, and Max von Laue. Although the German physics program was not crippled
by the migration, the country lost its preeminent position in theoretical physics.

Production of the Bomb:

The story of the American project to develop nuclear weapons in the broader
context of World War I1 is probably well-known to many students, so this summary will
give a very general overview of some key details.

Early on, the primary motivation for the program was to develop a bomb before
the Nazis could (ironically, serious espionage into the progress of German nuclear
research did not begin until 1945, by which time their bomb research had been
abandoned). Fearing the danger of a German bomb, the Hungarian-born physicist Leo
Szilard drafted a letter to President Roosevelt urging the U.S. to invest its resources into
nuclear research. Einstein signed the letter, hoping his fame would lend credibility to the
proposal; an earlier meeting between the lesser-known Enrico Fermi and the Navy had
come to nothing. Roosevelt approved, but the project stalled until the 1941 attack on
Pearl Harbor. The Manhattan Project was put under Army command, with General Leslie
Groves directing the project and drawing on the military’s massive financial resources.
The project eventually consisted of sites in Oak Ridge, Tennessee, where raw uranium
was separated into depleted 238U and enriched 2*°U, which could be used in a fission
bomb; Hanford, Washington, where the depleted uranium was converted to plutonium by
inducing beta decay inside a nuclear reactor; and Los Alamos, New Mexico, where
leading physicists worked on the uranium and plutonium bombs’ designs under J. Robert
Oppenheimer.

By the early 1940s, the theoretical possibility of a nuclear bomb was well-known
among physicists in many countries. Physicists in the Manhattan Project had to deal with
technical problems, such as the design of the bomb’s triggering mechanism or whether an
airplane could handle the bomb’s weight. The key issue, which proved insurmountable
for the non-American nuclear programs, was separating the uranium isotopes. The three

methods eventually used were diffusion (in which uranium hexafluoride gas is pumped



through a series of hundreds of mesh barriers which the lighter 235 isotope crosses more
quickly), thermal diffusion (consisting of a heated tube placed inside a cooled tube; the
uranium gas is placed in the space between, where the lighter isotope diffuses toward the
hot pipe and then rises to the top of the chamber), and the calutron (in which uranium is
magnetically accelerated in a semicircle, with the 235 isotope moving in a slightly tighter
radius and then captured separately). None of these processes were particularly efficient,
and they acted as the bottleneck of the project until sufficient enriched uranium was
produced by mid-1945.

Community and Secrecy:

Physicists were used to the open, collaborative, largely apolitical atmosphere of
the research universities and had trouble adjusting to work at Los Alamos. Beginning in
the late 1930s, nuclear physicists had to compromise between sharing their advancements
and keeping German competitors in the dark. Szilard and Fermi continued submitting
papers to journals in order to establish precedence, but asked that they not be published.
Conversely, McMillan and Abelson publically announced their discovery of neptunium,
drawing heavy criticism from James Chadwick for potentially compromising the war
effort. By the time Groves and the military took control of the Manhattan project, these
questions were out of the scientists hands and secrecy was strictly enforced.

Working secretly was especially difficult for Leo Szilard. In addition to the
scientists’ isolation from the outside world, individual departments within Los Alamos
were often cut off from one another. For Szilard, this was a serious impediment to
scientific work, which requires cross-pollination between different ideas and thought
processes. He tried bringing up his patents on the fission reactor as leverage for greater
freedom; Groves, interpreting this as insubordination or espionage, ordered him put under
surveillance (these fears of spying, of course, were groundless; Szilard had fled Europe to
escape the Nazis). Other Europeans, unused to the American focus on utility and the
current need for secrecy, were made uncomfortable by the guarded fence surrounding
their workplace. Most were able to get by, reasoning that their restricted freedom was a

necessary sacrifice for the war effort.



The community at Los Alamos found ways to adapt to its new environment. A
social life of weekend dormitory parties, hiking trips, sports, and theater performances
developed as physicists found ways to use their leisure time under security restrictions.
The project involved, in some capacity, most of the famous physicists of the day outside
Germany, but the great majority were young up-and-coming physicists (probably most
famously Richard Feynman). The average age at Los Alamos was 25. Although
Oppenheimer was greatly respected as the project’s leader who had gathered such a large
and diverse community together, even he struggled with the intense and restrictive
conditions: he dealt with moral and religious questions which would later become

famous, while his wife Kitty turned to heavy drinking.

Physics and Ethics:

There was no universal opinion on the morality of the bomb shared by all
physicists. Early in the project, the threat of Germany was sufficient motivation for most
to turn to weapons research. After the war ended in Europe in the spring of 1945, many
theoreticians began to question the value of their work. Szilard, who had earlier been
enthusiastic about the bomb, began arguing during the summer that it should remain
secret instead of being used. Ernest Lawrence, born an American citizen, saw no problem
with providing his country with tools to support it. Edward Teller, who went on to lay the
groundwork for thermonuclear weapons, avoided questions of ethics altogether, arguing
that scientists had no business trying to make policy decisions. Oppenheimer’s reflections
on the destruction made possible by the bomb are famous, and he dealt with guilt for the
rest of his life.

One of the most fully-formed positions on the bomb was that of Niels Bohr, who
was only marginally involved in the project itself. He foresaw that, inevitably, other
countries would develop their own nuclear weapons, leading to the possibility of an arms
race. Instead, Bohr urged a cosmopolitan policy of willingly sharing the bomb among
different countries. This, he argued, would end war by making war impossible. Nations
would be forced to work together in order to avoid mutual destruction, possibly even

leading to the end of the nation-state as an entity and the beginning of world government.



To the government representatives who heard this plan, the idea of handing over military
secrets to enemies was absurd.

Of course, the ultimate decision to use the bomb was made not by scientists but
by politicians. By July, 1945, Japan’s industrial capacity had been destroyed and the
country was considering surrender. However, the U.S. demanded no less than
unconditional surrender, which the Japanese refused to accept. This insistence on total
surrender has been criticized, but it was motivated by the legacy of World War I: the
confusing, conditional surrender of Germany had allowed the country to rearm and begin
World War 1l. President Truman also had to deal with Stalin, who was preparing to
declare war on Japan and extend Soviet influence into East Asia as he had in Eastern
Europe. The dilemma was thus between ending the war quickly with an invasion at the
cost of human lives, or waiting until the Soviets entered the war and gained more
bargaining power. Nuclear weapons provided a way out of this problem by shocking
Japan into surrender before the Soviet Union could intervene. Soon after the bombing of
Hiroshima and Nagasaki, the emperor sidestepped Japan’s military leadership and agreed
to surrender as long as he kept his imperial sovereignty. As a compromise, the office of
emperor was allowed to remain in a purely ceremonial role as Japan transitioned to
democracy.

Ultimately, nuclear weapons were not decisive for the war effort: had there been
no Manhattan Project, the Allies still would have won. The question of whether Truman’s
decision was morally justifiable is more philosophical than historical, but there are a few
considerations we can raise. Given the requirements of unconditional surrender,
excluding the Soviets, and minimizing the loss of life (especially of American lives),
using the bomb may have been Truman’s only option. It is easy to think of what-if
scenarios in which the U.S. negotiated a surrender or cooperated with the Soviet Union
against Japan, but determining what would really have happened in those cases is
impossible. Finally, it is important to remember that Truman’s perspective in 1945 is
different from ours today and that considerations or ideas that seem obvious to us may

not have seemed possible to him.

Other Nuclear Projects:



The United States was not the only nation to pursue nuclear research during
World War 1. Great Britain collaborated with many future Los Alamos workers on early
research, but was pushed out of development as the military took over and secrecy
became essential. Russian physicists were very successful at developing thermonuclear
weapons in the early 1950s, but they made little progress during the war. Japan was also
far from completing a functional bomb, and whatever progress it achieved was destroyed
in American bombing missions.

The most famous non-American nuclear program was that of Nazi Germany, in
which Heisenberg served as lead theoretician. For the first two years of the war, the
German and American programs made roughly equal progress in nuclear fission. Hitler’s
many victories throughout Europe convinced German physicists that the war would be
quick and that there was no pressure to finish a bomb quickly before the war’s end. By
early 1942 the situation changed: The U.S. officially entered the war and decided to fully
commit its resources to the Manhattan Project. Conversely, the Germans, after failing to
decisively defeat the Soviet Union and realizing how difficult the war would become,
decided not to waste resources on a project that probably would not see results in time for
use during the war; instead, these resources were given to the German rocket program.
Fission research continued, but without the necessary funds for large-scale uranium
enrichment. Allied bombing also served as an impediment for German scientists that Los
Alamos did not have to deal with. Although the threat of Germany motivated much of the
Manhattan Project, that threat had largely disappeared before any physicists had arrived

at Los Alamos.

Thermonuclear Weapons:

Edward Teller probably was not the first physicist to realize the possibility of
building a thermonuclear bomb (also called the Super or the hydrogen bomb), but he is
often called the father of the hydrogen bomb. As the Los Alamos lab was being organized
in 1943, Hans Bethe was made head of the lab’s Theoretical Division rather than Teller.
Teller was upset by this, both because he found Bethe’s leadership style difficult and
because of personal disappointment, leading to longstanding hostility between the two.

Oppenheimer resolved that Teller should work on a separate project in order to avoid



conflict. While most physicists spent the war working on the uranium and plutonium
designs, Teller developed an early model of a hydrogen fusion bomb ignited by a fission
explosion. The general consensus during the war was that developing a theoretical Super
would be useful, although there were no plans to actually build it.

Work continued after the war, but without the sense of urgency that guided the
Manhattan Project. This changed in September, 1949, when the Soviet Union tested its
first nuclear bomb. The U.S. was initially unsure how to respond to this. The General
Advisory Committee to the Atomic Energy Commission, which included Oppenheimer,
Fermi, and several other leading physicists, suggested increasing plutonium production
but not pursuing the Super, viewing it as a massively destructive weapon with no
practical military use. President Truman ignored this and authorized the bomb’s
development in early 1950. The largest technical problem this time was the huge amount
of mathematical simulation needed to understand the hydrodynamics of the explosion;
the first computer, the ENIAC, was designed to run these tests. Teller’s original design
was recognized as unfeasible and revised by the mathematician Stanislaw Ulam, leading
to the successful Teller-Ulam design (the original used the concentric sphere model of the
plutonium bomb and exploded too quickly; Ulam’s revision allowed the thermonuclear
reaction time to develop). Physicists at Los Alamos again designed the Super, which was
first successfully tested in November of 1952, with a yield a thousand times that of the
original Hiroshima bomb. Within a few years, the Soviet program had developed its own

thermonuclear bomb.

Key Ildeas:
e Internationalism has appeared before as an important scientific value, inspiring
Arthur Eddington to lead the 1919 eclipse expedition in the aftermath of World
War I. Similarly, many Manhattan Project scientists justified their work as
allowing an eventual state of permanent peace and cooperation between nations.
Major wars force scientists to confront these issues and consider their allegiance
to their home country. | do not think it is fair either to say that scientists always

stick to a belief in internationalism or that they are willing to jettison this virtue as



soon as a war starts; rather, scientific values are dynamic entities whose meanings
change over time and are interpreted differently by individual scientists.
Government funding was a key factor to developments in physics before, during,
and (as we shall see) after World War I1. | think this observation is a strong
argument in favor of externalist explanations for the history of science. Exactly
why governments or philanthropes chose to give or withhold resources to specific
scientific projects can be influenced by a wide range of political, social,
economic, or cultural factors. To understand which physicists succeeded in
advancing their field, it is necessary to consider the resources available to them; to
understand their available resources it is necessary to look beyond science entirely
into a wider historical context.

The negative implications of nuclear weapons are obvious and are frequently
discussed in relation to the Manhattan Project. However, the bomb’s creators
were aware of possible positive effects their work could bring beyond ending the
war. Bohr’s vision of world governance may seem naive, but his predictions of
mutually assured destruction were remarkably far-sighted. Nuclear deterrence is
an accepted concept in international relations theory, helping to explain why the
U.S. never went to war against the Soviet Union or India against Pakistan.

The story of European scientists fleeing persecution and joining the American war
effort is deservedly famous and was an important factor in the Manhattan
Project’s success. However, it is worth remembering why these physicists chose
to go to the United States. Years before World War |1, and with only a little
involvement by Europeans, American physics had grown tremendously and
rivaled the leading communities in England and Germany. The migration of
physicists to America was not only a cause of America’s eventual dominance in
the sciences, but also a result of it.

Frequently, the course of nuclear research was controlled not by physicists but by
the American or German militaries. This does not mean that scientists were
powerless, however: Oppenheimer succeeded in negotiating with Groves for
lower military presence at Los Alamos, and, as we have seen, Szilard found ways

to resist the military’s authority. After the war, the Los Alamos scientists enjoyed



new levels of public fame and prestige, which they used to argue for the
importance of responsible nuclear energy usage and which gained them advisory
positions in government agencies such as the Atomic Energy Commission. If we
think of nuclear policy as a conflict between physicists and the government, both
sides had tools they could use to influence the outcome in their favor.

e Like anything involving Nazis, a mythology has developed around the German
nuclear project. Questions of the morality of the leading scientists are difficult to
answer: for the most part, their motivations were the same as Allied scientists
(patriotism and a desire to finish a bomb before the other side). However, the
question of whether Heisenberg sabotaged the project through miscalculation is
misplaced. Whatever Heisenberg’s actions or motivations were, the fate of the
German bomb was decided by a lack of government support rather than

physicists’ decisions.
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Big Science

The Roots of Big Science:

“Big Science” is a term used to describe trends toward larger-scale research in the
natural sciences since the 1940s. During this period, budgets, research teams, machinery,
and facilities grew to unprecedented sizes, often requiring cooperation between different
institutions or nations. The most visible symbols of Big Science are particle accelerators,
some of which are among the most expensive machines ever built, but all areas of physics
(as well as space travel, astronomy, biology, etc.) experienced growth. Beyond the
changes in scale, Big Science qualitatively transformed physics in important ways. The
need for massive funding changed the relationship between physicists, the government,
and the military, while the growing size of research teams and administrative structures
changed what it meant to do physics on a day-to-day basis.

While Big Science is often associated with post-World War 11 trends in American
government and military policy, traces of it can be seen in the 1930s, especially at Ernest
Lawrence’s laboratory at Berkeley. Lawrence was an aggressive and charismatic leader
who ran a thriving research center in spite of the Great Depression. In order to create
increasingly large cyclotrons, Lawrence had to mobilize large sums of money and
workers to operate the machinery. He convinced the president and financial supporters of
the University of California of the importance of his work, giving him access to state
funding and private philanthropy (almost none of his money came from the federal
government). Students, postdocs, and Works Progress Administration workers (displaced
workers receiving aid under Roosevelt’s New Deal) provided a practically unpaid labor
pool. Lawrence’s use of these resources allowed him to achieve projects on a much larger
scale than his contemporaries and gave Berkeley a head start in particle accelerator
research.

Lawrence is not just a useful archetype to think about early Big Science; his
influence is concrete and traceable. Those who worked in his lab learned his successful
leadership style and were able to bring it to other laboratories. Almost all early particle
accelerators were constructed under the leadership of physicists from Berkeley. Many of

the most important laboratories’ directors, such as Wolfgang Panofsky at Stanford or



Robert Wilson at Fermilab, worked under Lawrence. In the mid-1980s, the new Jefferson
Laboratory struggled to navigate politics and funding until a new director (and Lawrence
Lab alum), Hermann Grunder, took over. One of the necessary ingredients of Big

Science, mobilization of resources that physicists normally do not have to deal with, was

provided in the style of Ernest Lawrence’s leadership.

The Post-War Boom:

After World War I, federal funding for physics increased by a factor of twenty
over fifteen years. The great majority of this was military funding from the Department
of Defense or the Atomic Energy Commission (technically a civilian organization but
practically oriented toward the military). The success of radar and nuclear weapons
during the war convinced the American government that scientific research, even into
seemingly theoretical or esoteric subjects, was key for national defense, and that
investments today would pay off tomorrow. The Korean War beginning in 1950 led to
another spending boom. In 1957, just when a recession seemed to threaten funding, the
Soviet Union launched Sputnik; the U.S. responded by creating NASA and continued
support for particle accelerators. The 1950s and early 1960s were a time of seemingly-
unlimited funding and optimism among physicists, who enjoyed popular support and
prestige. The U.S. spent about six times as much money per physicist as it did per
chemist.

The early important sites of particle accelerator research were Brookhaven in
Long Island, which built the 3 GeV Cosmotron in 1953 and the 30 GeV Alternating
Gradient Synchrotron in 1960, and Berkeley, which dominated early cyclotron research
and completed the 6.2 GeV Bevatron in 1954. Helped by the Sputnik boom, the Stanford
Linear Accelerator Center (SLAC) was operational by 1966 and is still the world’s
largest linear accelerator. Despite its success, SLAC faced opposition from Congressional
representatives who questioned its practical use, foreshadowing later trends in funding.
The United States was unquestionably the leader in particle accelerators for two decades
after World War 11, but progress was made elsewhere. CERN (Conseil Européen pour la
Recherche Nucléaire) was founded in 1954 as part of a broader movement toward

European cooperation, particularly in order to rehabilitate German physicists back into



the community after their long separation. Japan had made important progress in the
1930s, building the first non-American cyclotron, but the war’s aftermath prevented the
country from undertaking large-scale research for many years. The Soviet Union built
successful accelerators, but generally did not match American progress.

Although physicists benefitted from this military spending, the source of their
money understandably made many uncomfortable. Some objected to the politics of
military support, while others simply wanted their independence back. Whether the
military influenced the direction of physics research in this period is controversial and not
entirely clear, but it is worth mentioning that important innovations such as atomic clocks
and the laser have military applications and were funded in part by the military.
Beginning in the mid-1960s, opposition to the Vietnam War increased criticism of the
physics-military connection both within and outside of the scientific community. The
connection effectively ended in 1969, when Congress passed the Mansfield Amendment
restricting military funding to projects that are directly related to military applications.
From then on, funding was no longer limitless and physicists’ reputations were called

into question by anti-war and anti-science movements.

Physics since the 1970s:

In this new environment, proposals had to compete for a limited pool of federal
money. Although the National Science Foundation (NSF) had existed since 1950, it only
took an important role in funding research beginning in the 1970s. Rather than university-
controlled laboratories, which restricted access to outsiders, the government shifted
toward more economical independent national laboratories. Planning for a “truly national
laboratory” in the late 1960s resulted in the creation of Fermilab outside of Chicago,
which in 1985 first produced a 1 TeV beam. Illinois was chosen as a location among
many competitors due to its central location and, supposedly, in return for its Senator’s
support of President Johnson’s civil rights legislation (although this rumor is
unsubstantiated). This process of locations competing for federal funding was repeated
with JLab and the planned Superconducting Super Collider (SSC).

The 1980s saw a brief increase in funding under the Reagan administration, which

supported high-tech military applications such as the Strategic Defense Initiative (also



called Star Wars). Reagan approved a plan to build the largest accelerator in the world, at
20 TeV and roughly $6 billion, and reclaim America’s place as leader in high-energy
physics from CERN. The SSC, planned to be built outside Dallas, was one of the most
controversial physics projects in recent history. Criticism came from physicists, who
resented the preferential treatment of high-energy physics in federal funding or viewed
the massively expensive project as an abuse of taxpayers’ trust. Criticism from Congress
increased in the early 1990s, as costs increased and mismanagement was revealed; after
the Cold War ended in 1991, physics research seemed less important to national defense.
The project was finally cancelled in 1993.

This period also saw an increasing role for non-American particle accelerators.
Japan established its own national laboratory, KEK (Ko Energy Butsurigaku Kenkyusho),
in 1971, and has become an important center in high-energy research. By some
measurements, CERN overtook the U.S. in particle accelerator research in the 1980s,
publishing the majority of experimental high-energy papers and receiving more citations
per paper. In 2008, CERN’s Large Hadron Collider overtook Fermilab’s Tevatron as the
most powerful accelerator in the world, at an initial energy of 4 TeV and upgrades
planned. Other major accelerators have been built in Vancouver, Novosibirsk, and

Beijing.

Challenges of Big Science:

Historically, not all physicists have been satisfied with these new directions in
scale and organization after World War Il. Some from the older generation missed the
days of small projects and thought that younger physicists lacked opportunities to show
creativity or personal initiative when working among dozens of other researchers; loyalty
and cooperation may become personality traits favored above individualism or
intellectual freedom. Public attention typically focuses on the newest and biggest
machines, rather than the physicists running them, calling into question whether
physicists actually play the central role in physics anymore. Especially during the period
of military support, Big Science has been criticized for compromising the independence
of physics; on the other hand, given the huge scale and cost of modern accelerators, it can

be difficult to imagine how particle physics could continue without government funding.



Regardless of how they feel about it, Big Science has presented new challenges
and forced physicists to do their work differently. With only a handful of powerful
accelerators, deciding which experiments should have access to valuable beam time is
contentious; in addition to the merit of a proposal, laboratories have to weigh their cost,
duration, and perhaps the established reputation of the researcher. With only limited
opportunities to perform experiments, physicists have made efforts to get as much data as
possible out of a single experimental trial; it is not unusual for analysis to continue for
years after the data were obtained. The long time spans of experimentation and analysis
can conflict with the established rhythm of the academic world: it is difficult to write a
thesis on a tight schedule based on an experiment that lasts for years. As negotiating with
governments and administrators for funding has become more important, physicists have
had to split time between actually doing science and more mundane tasks. In large teams,
attributing authorship for individual contributions is difficult. This problem only becomes
more pronounced as accelerators and team sizes get bigger. In May 2015, a combined
paper from the CMS and ATLAS teams at CERN set the record with over 5,000 authors;
their names and institutions filled 24 out of the paper’s 33 pages.

Key Ideas:

e Dissatisfaction with Big Science raises the question of whether it is possible, at
this point, to change the system and remove constraints on the physics
community. The argument against change is that Big Science is inevitable: it is
impossible to return to a small-scale model of experimentation because new
advances in particle physics require such large concentrations of energy. This is
true, but it is important to be precise here: even if the scaling up of high-energy
physics was inevitable, the specific configuration of the field that we call “Big
Science” was not. The particular relationships between science, government, and
military, as well as the relationships between individual physicists, have changed
over time and will likely continue to change in the future. Focusing on
inevitability shifts our attention away from this fluidity and locks us into a

particular understanding of how physics is done.



e After World War 11, the laboratory director emerged as an important position with
specific responsibilities. The director must act as a mediator between the physics
community and sources of funding. As time went on and this mediation became
more demanding, their job became more specialized and further removed from
actual lab work. Ernest Lawrence spent considerable time actually working with
his cyclotrons, but lab directors in the 1970s or 1980s had a more administrative
rather than experimental role.

e International values and national pride continue to be important conflicting
themes throughout the 20" century. Since World War |1, physicists from different
countries (with the exception of the Soviet Union) have been happy to work
together and share results. The animosity between former enemies in the
aftermath of World War | has not been repeated. However, many physicists bring
up national or local pride in justifying their projects, as each laboratory wants to
be the first to make important discoveries. Funding for the SSC was justified as
being necessary to keep the U.S. at the forefront of particle physics research. It
seems unlikely that excessive nationalism will hinder research any time in the
near future, but an undercurrent of competition between countries can be seen.

e Discussions of Big Science often focus on the largest and most expensive
facilities that break records or discover new particles, but (maybe paradoxically)
small- and medium-scale projects have also played an important role. An
interesting example of this occurred at Berkeley in the late 1960s. Many
physicists there were disappointed in the decision to build the new national lab in
Ilinois rather than California, as the famous Bevatron would now become
obsolete. Instead of that happening, the Bevatron was physically connected to
another machine, SuperHILAC (a heavy ion accelerator), and renamed Bevalac.
This combination paved the way for a new area of research, relativistic heavy ion
acceleration, at only a moderate price. The same sort of research is done today at
Brookhaven’s Relativistic Heavy Ion Collider (RHIC), completed in 2000. Even
into the 1970s, it was possible to make advances in particle physics without

spending billions of dollars.



e Funding for a new facility or experiment can be refused for many reasons. The
decision not to provide funding may come from other physicists, who may judge
the project to be scientifically unimportant or simply too expensive, or from non-
scientists, who may or may not be educated about the physics they are judging.
Being able to understand these reasons and play off them is an important skill for
physicists seeking support. An example of the bargaining that accompanies
government funding can be found in SLAC’s planning in the early 1960s.
Stanford’s Professor Panofsky wanted the facility to be under the university’s
control, giving him greater freedom and control over research. The AEC
threatened to cut off funding unless SLAC was made a national laboratory with
access to non-Stanford physicists and control given to a national committee. As
an eventual compromise, SLAC was made a national laboratory operated by

Stanford, with Panofsky as its first director.
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