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EXECUTIVE SUMMARY 

A three-dimensional hydrodynamic-sedimentation computer model, HYSED-3D, was used to 
evaluate the effect of bridge-tunnel infrastructure for a proposed highway crossing of Hampton 
Roads on the physical characteristics (tides, currents, circulation, salinity, and sedimentation) of the 
James River estuary in Virginia. Model-represented infrastructure included tunnel islands and 
bridges on pilings connecting the islands to interstate highways in Newport News, Hampton, 
Norfolk, and Portsmouth, Virginia. Combinations of these elements occur in each of three proposed 
crossing routes designated Alternative 1 (Hampton-Norfolk), Alternative 2 (Hampton-Norfolk, 
Norfolk-Portsmouth), and Alternative 9 (Newport News-Portsmouth-Norfolk). 

Simulation comparisons were made between the existing waterways and infrastructure in Hampton 
Roads (Base Case) and the proposed construction in a series of model test runs representing both 
normal and extreme hydrologic conditions. Variations in tidal range were simulated using a three- 
constituent tide model. Three levels of freshwater inflow into the headwaters of the James River 
were represented using historical stream gauge data. The simulation of sedimentation was designed 
based on the existence of a 'turbidity maximum' upstream from the area of concern. 

Based on the hydrodynamic characteristics and the layout of the proposed crossings, nine and seven 
stations, respectively, were selected for examination of potential changes in tidal height and current 
velocity. No changes in tidal height were observed at any of the nine stations in response to the 
three alternatives over the range of conditions tested. Small changes were observed in time histories 
of surface and bottom current at three of the seven representative locations. The three locations of 
observed change are proximal to tunnel islands associated with Alternatives 2 and 9. An 
examination of the spatial (plan-view) distribution of the instantaneous current field revealed that 
most of the changes were caused by local deviations in the direction and phase, not the magnitude, 
of the current. Further examination of instantaneous and time-averaged (residual) current data 
shows that some aspects and features of the general circulation may also be altered by Alternatives 
2 and 9. A recurring tidal front near Newport News Point showed a minor phase change in response 
to Alternative 9. A residual current 'eddy' in the Elizabeth River entrance diminished in response to 
Alternatives 2 and 9. Unlike the tidal front near Newport News Point, the existence of the eddy at 
the entrance to the Elizabeth River has not been confirmed by field observation. 

Salinity changes were observed in the vicinity of bridges on pilings, especially those for Alternative 
9. This was primarily a response to piling-induced turbulence, increased vertical mixing and the 
elimination of surface-to-bottom salinity gradients immediately downstream. No changes were 
observed in the longitudinal salinity distribution along the channel axis of the James River in 
response to any of the alternatives under any of the conditions tested. 

Sedimentation was simulated in terms of both the sedimentation potential and the simulated 
accumulation of suspended material from a designated source upstream. Similar to bottom salinity, 
a small decrease in sedimentation occurred in the vieinity of bridge pilings for Alternatives 2 and 9 
in response to turbulence-induced vertical mixing caused by these structures. A small increase in 
sedimentation potential was observed at the northeast end of Hampton Flats in response to 
structures added by Alternative 1. Conditions of high river inflow greatly increased the amount of 
fine-grained sediment reaching the lower James River from upstream. 
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I. Introduction 

a. Purpose - The purpose of this study is to conduct tests using a numerical model to determine 
whether the planned construction of highway infrastructure for the Thud Crossing of Hampton 
Roads will impact the primary physical characteristics of the lower James River, a sub-estuary of 
the lower Chesapeake Bay (Figure 1). Primary physical characteristics include the tidal and non- 
tidal circulation of water within the lower James River and one of its principal tributaries, the 
Elizabeth River. They include as well the distribution of salt (salinity) and suspended matter 
(sediment) within these waterways and the transfer of sediment from the water column to the sea 
bed through the process of sedimentation. 

The aim of model testing is to examine the changes likely to occur for a given structural design 
and weigh its effects, if any, in comparison to existing conditions. Changes in circulation, for 
example, may be indicated by an increase or decrease in current speed and/or a change in current 
direction at a particular point or region within the model domain. Infrastructure under 
consideration is limited to tunnel islands and bridge pilings, features required for the crossing 
that are designed to be in contact with the water column along a pre-determined route. Testing 
for the planned Third Crossing presently focuses on three separate engineering designs, each 
involving one or more routes crossing Hampton Roads. 

b. Test Cases - The four test cases considered in this study are as follows: 

1. Base Case - The present configuration of the lower James including the existing tunnel 
islands of Interstate Route 1-64 and 1-664 and their connecting bridges. 

2. Alternative 1 - The Base Case with the addition of a third tunnel, two tunnel islands, 
and two bridges on pilings connecting Hampton to Norfolk across the entrance to the 
James River. Basically, this is an expansion of the 1-64 crossing. 

3. Alternative 2 - The Base Case and Alternative 1 with the hrther addition of a new 
tunnel at the entrance to the Elizabeth River, a single tunnel island west of the river 
channel, and a single bridge on pilings leading south to a roadway along the eastern edge 
of Craney Island continuing to Portsmouth. 

4. Alternative 9 -The Base Case with the addition of a second tunnel along 1-664 
leading south from the city of Newport News, and a new east-west bridge connecting I- 
664 with the Elizabeth River tunnel island and bridge described for Alternative 2. None 
of the structure for Alternative 1 is included in Alternative 9. 

The location of the highway routes incorporated in the Base Case and alternative crossings is 
shown in plan view in Figures 2,3,4 and 5, respectively. Figure 6 shows the HYSED3D model 
grid with 370 m x 370 m grid spacing as it appearsk the lower James River. 



Figure 1. Map showing location of Hampton Roads. 

Figure 2. Base Case, Harnpton Roads, Virginia. 



Figure 3. Alternative 1, Hampton Roads, Vuginia. 

Figure 4. Alternative 2, Hampton Roads, V i a .  



Figure 5. Alternative 9, Hampt~n Roads, Virginia 

Figure 6. HYSED-3D Model Grid in Hampton Roads (grid interval: 370 m) 
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11. VIMS Hydrodynamic-Sedimentation Model (HYSED3D) 

a. General Description - The three-dimensional Hydrodynamic-Sedimentation Model (HYSED- 
3D) used in this study is one of a family of special purpose numerical models developed at the 
Virginia Institute of Marine Science (VIMS) from an innovative parent program, the 
Environmental Fluid Dynamics Computer Code (EFDC).The reader is referred to Hamrick 
(1996) for a detailed description of the EFDC. The hydrodynamic equations and the 
computational scheme used in this finite difference model are similar to the Blumberg-Mellor 
model (Blumberg and Mellor, 1987) and the U.S. Army Corps of Engineers ~ h e s a ~ e a k e  Bay 
model (Johnson et al., 1993). In basic form, these models simulate the hydrodynamic behavior of 
the estuary by predicting change in surfaceelevation (including tides), horizontal and vertical 
water movement (including both tidal and non-tidal currents), and the three-dimensional 
distribution of conservative wa ta  properties such as the salt content (salinity). In addition, the 
HYSED3D model incorporates a sedimentation component that allows the user to examine the 
deposition sites of "tagged" sediment particles with a specified settling velocity and known point 
of release. The sedimentation component is described in more detail in Section 1I.c. 

The domain of the HYSED-3D model includes the entire length of the James River from its - 
entrance in lower Chesapeake Bay to the fall line near Richmond, Virginia. It includes most of 
the Elizabeth River, a tributary to the James, with the exception of the Eastern and Southern 
Branches just beyond the city-of~orfolk waterfront area. The entire model grid consists of 4608 
active "cells", a portion of which covers the Hampton Roads area as shown in Figure 6 .  

As implemented in Chesapeake Bay, the EFDC and its derivative programs differ from the Corps 
of Engineers Chesapeake Bay model in that EFDC uses stretched (sigma) coordinates in place of 
fixed coordinates to locate points in the vertical dimension. Either rectangular or orthogonal 
curvi-linear coordinates may be used for the horizontal dimensions. The HYSED3D model for 
the James River uses State Plane Coordinates in meters and the 1983 North American Datum 
(NAD83) to reference all geographic positions, including intersections of the model grid with 
370 meter spacing in both the east-west and north-south directions (Figure 6). Each cell formed 
by the intersecting grid lines is broken vertically into six layers of equal thickness, the thickness 
varying locally as a function of tide and water depth. 

b. Model Initialization, Boundary Conditions -To develop the salinity field in the James 
River, each separate model run requires a "start-up" period simulating the equivalent of 35 days 
in real time. During this interval, each grid cell is assigned an initial salinity and computation of 
new salinity values proceeds until all of the active cells reach equilibrium. The start-up is then 
followed by an additional 33-day simulation period in which various forms of model output are 
recorded. Concomitant with initialization, boundary conditions are imposed at the upstream and 
downstream ends of the model domain. For the doivnstream boundary, these include bay salinity 
and tide; for the upstream boundary, freshwater (river) inflow is specified. 

As part of the testing design for the model cases discussed in section I, three sets of boundary 
conditions were devised to represent characteristic variations in tidal range and freshwater 



inflow. The required variations in tidal range were appropriately simulated within each standard 
model run through the use of a three-constituent tide model as discussed below. Three separate 
runs were required, however, to simulate the characteristic variations in freshwater inflow. 

1. Fresh Water M o w  - Historical data from the U.S. Geological Survey stream gauge station at 
Richmond, Virginia, indicate that freshwater intlow may be characterized by low inflow at 20.4 
m3/s, mean inflow at 226 m3/s, and high inflow at 650 m3/s. The data have not been analyzed to 
determine the percentage of total time that each condition prevails on average. However, the low 
inflow condition is indicative of drought periods that'show considerable inter-annual variability 
while the high inflow condition is consistent with storm-generated runoff that occurs once a year 
on average with only a few days duration. Corresponding surface and bottom salinity values used 
for the downstream boundary, based on VIMS field measurement data, are presented in Table 1. 

Table 1. Salinity values in parts per thousand (ppt) used for the downstream boundary 
condition, James River Entrance. 

2. Tidal Forcing - Tidal forcing for the HYSED-3D model is provided at the downstream 
boundary by a three-constituent model of the astronomic tide. The objective sought with this 
model is to simulate tides with the expected variation in tidal range observed during a typical 
year in Hampton Roads. Tidal range is defined as the difference in elevation between two 
successive tidal extremes, i.e., a high water and a low water, on any given day. It varies fiom day 
to day and from month to month in accordance with lunar and solar orbital motion. In a 
semidiurnal tide regime such as that of Hampton Roads, the majority of the monthly and 
semimonthly variation in tidal range is contributed by Mz, the principal lunar semidiurnal 
constituent, SZ, the principal solar semidiurnal constituent, and Nz, the larger lunar elliptic 
semidiurnal constituent. Numerically, the tide model is represented by the following equation: 

where 

High Inflow 
15.9 ppt 
24.0 ppt 

- 
Salinity at: 
Surface 
Bottom 

t =time (hours) 
Mz, Sz, Nz = constituent amplitudes (meters) 
I$,,,, &, 4n = constituent phase angles (radians) 
T,, T,, T, = constituent periods (hours) 

Low Inflow 
28.5 ppt 
29.5 ppt 

Amplitudes for these constituents at Hampton Roads (Sewells Point) were obtained from the 
National Ocean Service and are shown with the corresponding constituent periods in Table 2. 
For the cases being evaluated, there is no requirement to model the tide for a specific date and 
time; hence, a specific phase angle is not required for any of the constituents. In order to simulate 
tides of maximum range for our tide model, we computed initial phase angles that would place 

Mean Inflow 
19.8 ppt 
25.7 ppt 



all three tidal constituents exactly in phase at the end of the model startup period (beginning of 
data recording period). Note that when MZ and Sz are in phase or nearly so, their amplitudes add 
together and the resulting condition is referred to as a spring tide. Similarly, when MZ and NZ 
are in phase or nearly so, their amplitudes add together and the resulting condition is referred to 
as a perigean tide. The combination of the two conditions yields perigean-spring tides of near 
maximum range for a given locality. Later in their respective cycles, neap tide results when M2 
and SZ are completely out of phase or nearly so, and apogean tide results when Mz and NZ are 
completely out of phase or nearly so. The combination of these two conditions yields apogean- 
neap tides of near minimum range for a given locality. Mean range of tide for the three- 
constituent model is equal to twice the M2 amplitude. 

Table 2. Tide model constituent period and amplitude, Hampton Roads, VA 

The semimonthly progression between the extremes in tidal range devised for the model test 
period is shown in Figure 7. 

Harnpton Roads, VA 
0.6 

- M2+S2+N2 

C .- 

a, 

Amplitude (meters) 
0.342 
0.063 
0.076 

Constituent 
M2 
s2 

Nz 

L -0.6 
0 3 6 9 12 15 18 21 24 27 30 

Time (days) 

Period (hours) 
12.421 
12.000 
12.658 

Figure 7. Three-constituent tide model producing apogean-neap tides (day 8), 
mean range (day 25) and perigean-spring tides (day 29). 



C. Simulation of structures and their impact on flow - As indicated in the previous 
section, the VIMS HYSED3D model set up in the James River is a fine-scale numerical 
model. One of the main advantages of using a fine-scale numerical model in the present 
project is its capability to incorporate structures from different design plans and simulate 
their effects on the host water body. The tunnel island, for example, can be resolved by 
the current grid scale and therefore, its effect on the water body can be simulated directly. 
Obviously, even with the use of fine grid spacing of 370 m, it still does not permit 
investigation of all the near-field effects from the structure, such as scouring at the base 
of the pilings But it does allow the cumulative effect of the local processes to be 
parameterized at the scale of the cell size and used for studying its far-field effect. Those 
local processes include the constriction of flows by the spatial distribution of the pier in a 
cell, the impedance of flow by the collective drag forces from the individual pilings, and 
the corresponding turbulence mixing induced by the flow-structure interaction. Using 
adequate parameterization procedures, the effects of the structure on tidal fionts, eddy 
systems, and other far-field phenomena can then be properly investigated. 

Two kinds of structures considered in this project are: 1) tunnel islands whose 
dimensions cover more than one grid cell (i.e., close to 740 m in length and slightly less 
than 370 m in width); 2) cylindrical pilings of approximately 137 cm (54 in) in diameter 
standing vertically or near vertically. Based on the design drawings, the spacing between 
the individual pilings is more or less at regular intervals under the bridge. Both the pilings 
and the tunnel island extend from the water surface all the way to the bottom. Since the 
dimensions of the designed tunnel island are comparable to the grid resolution, it can 
either be treated as a 'thin wall' boundary if the shape is slender or as a land cell if it 
occupies most of the grid cell. Cells can be masked, depending on the position and 
orientation of the island, either in the west face, the south face, or both faces of a cell so 
that no flow is allowed to pass through the boundary. The resultant flow is thus forced to 
deviate and follow another path around the island boundary inserted by this procedure. 
The piling dimension designed, on the hand, is smaller than the grid resolution (i.e., a 
sub-grid scale), and thus needs to be parameterized. 

To parameterize the piling effect, first the porosity defined as the water fraction of the 
piling area in a cross-section is introduced into the constant x, y, z plane. These values 
are estimated from the actual designed plan. For example, in the application of the plan of 
Alternative 9, the design calls for a predominantly north-south oriented bridge piling with 
70 feet (21 m) intervals and 10 feet (3 m) intervals in the cross-section direction. The 
porosities, once determined, are then incorporated into the mass balance control volume 
formulations. The continuity equation is thus given as: 

where < is the water surface elevation; H is the local depth of the water column; u, v, 

w are the horizontal and vertical velocities; +x, by, q%z are porosity in x, y and z planes, 

respectively. The typical values of += q%y are estimated as 0.93, 0.96 and #z in the z 



direction as 0.99. The mass conservation equation for a dissolved or suspended material 
with concentration C is: 

where k; is the eddy difhsivity; S, is the source or sink term. The second step for the 
parameterization is to modify the momentum and the turbulence equation to include the 
flow-structure interaction. A resistance term was incorporated into the momentum 
equation as a result of the boundary shear stress introduced at and around the piling. The 
x- momentum equation is: 

where the terms on the left represent the inertial terms and the Coriolis force terms, and 
those on the right, the pressure gradient term, the vertical shear stress term and lastly the 
resistance term due to the piling. The N, represents eddy viscosity, c, the drag 

coefficient, B, the projected piling width and L, the separation length scale for the 

piling density. The resistance term is applied throughout the water column as opposed to 
the bottom shear stress, which is applied only at the bottom as a bottom boundary 
condition. The y-momentum equation (not shown) can be derived similarly. 

The accompanied turbulence production and dissipation associated with the momentum 
resistance are also incorporated into the turbulence equations. The turbulence 
formulation used is the standard Mellor-Yamada turbulence closure scheme. as extended 
by Galperin et. al. (1988) and Blumberg et. al. (1992). The modifications were made to 
include an additional term for the turbulence energy production and dissipation induced 
by the bridge piling. The term which correspond&io the resistance te& in the 
momentum equation is: 

where c ,  B,, L, are as defined in the momentum equation. The term essentially 

includes the effect of the turbulence flow at and around the piling as a result of the flow 
and the piling interaction. 



d. Sedimentation Model - The HYSED-3D model presently uses two approaches to 
investigate sedimentation effects. The first approach evaluates the hydrodynamic 
conditions under which bottom sedimentation can occur; the second determines whether 
sediment of a given particle size can be transported in suspension from a known source 
area to sites in the model domain with conditions conducive to deposition. 

The basis for the fust approach is the model-generated prediction of bottom shear stress 
at discrete time intervals in each of the basal cells within a selected sub-region of the 
model grid. M e r  continuing this calculation over many tidal cycles, the sedimentation 
potential is determined as the percent of total time that bottom shear stress falls below a 
critical value permitting sediment of a given particle size to deposit. The potential for 
each cell is computed and its distribution is then mapped over the selected bottom region. 
The sedimentation potential is defined irrespective of the availability of any sediment to 
be deposited fkom suspension. It merely serves to delineate those areas that are conducive 
to deposition as well as those that are not. More importantly, it pin-points areas subject to 
change in sedimentation potential as a result of change in hydrodynamic conditions. 

In the second approach, simulations are made treating sediment particles as discrete 
objects that are assigned a particular settling velocity according to their nominal grain 
size. The particles are released for a given time at a given rate in one or more cells 
representing a sediment source. This type of simulation is analogous to a tracer 
experiment in which a small portion of the total sediment particle population is 'tagged' 
or labeled according to known source areas and subsequently detected at various 
deposition sites. The particles are transported partially coupled to the fluid; i.e., with non- 
zero settling velocity equivalent to a negative buoyancy relative to the fluid. When these 
particles enter a basal cell during a period in which bottom shear stress is below the 
critical value (about 0.1 pascals), they are removed from the active cell layer and counted 
as deposited particles. A particle deposition density (mass per unit area) is then 
determined at the end of a run of 67 tidal cycles following particle release. This approach 
does not simulate sedimentationper se (i.e., by a rate of deposition) but is an extension of 
the sedimentation potential weighted by particle availability from a defined source area. 

e. Model Verification for Tide and Current - Hydrodynamic simulations produced by 
the HYSED3D model for the James River have been verified principally through 
comparison with field observations of tide and current. Least squares harmonic analysis 
of predicted and observed time series of tidal height show very good agreement in terms 
of the amplitude and phase of seven of the principal tidal constituents. Tidal height 
curves 'synthesized' with these constituents permit a visual comparison of the predicted 
and observed astronomic tide (tide of celestial origin without meteorolonical or - - 
hydrological input). Examples of astronomic tidal height comparisons are shown in 
Figures 8 and 9. Expected error based on these comparisons is approximately 5-8 minutes 
for the times and 3-4 cm for the heights of the simuiated highs aid lows. Comparison of 
predicted and observed tidal currents is not as straightforward as tidal height comparisons 
since the direction as well as the speed of the current must be considered. We follow the 
convention in which horizontal current vectors are resolved into u,v orthogonal 
components, initially projected onto east-west and north-south axes and presented as a 



dual time series in u and v. Most estuarine flows are channeled to a greater or lesser 
extent and it is convenient to rotate the reference axes until one series, u, contains the 
maximum possible variance. After this is done, the new reference axis of maximum 
variance is usually found to be aligned parallel to the channel axis and the u component 
alone is compared in that event. By convention, the upstream flow is termed flood current 
(u positive) and the downstream flow is termed ebb current (u negative). Examples of 
flood and ebb currents compared in the surface and bottom layers of the water column 
near Newport News Point are shown in Figures 10 and 11. 
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Figure 8. Astronomic tide verification, James River Bridge. 
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Figure 9. Astronomic tide verification, Newport News Point. 



Figure 10. Astronomic Surface Current Verification, 
1 kin South ornewport News Point. 

Figure 11. Astronomic Bottom Current Verification, 
1 km South of Newport News Point. 

Astronomic tidal currents are no more difficult to predict than astronomic tidal heights in 
the deterministic sense. Tidal currents, however, tend to demonstrate greater spatial 
variability (in three dimensions) in their parameters of speed and direction. This is 
particularly tme where bottom topography and shoreline configuration is complex as it is 
within the major bend of the lower James River below Newport News Point. The 



comparisons shown in Figures 10 and 11 may be judged reasonable in view of this fact 
and the fact that the model's point of current prediction and the point of current 
observation are often not the same. On the other hand, both tidal and non-tidal (tidally 
averaged) water flows are fundamentally important because of their ability to transport 
dissolved and suspended particulate material and a closer examination of the probable 
error associated with predicted tidal current is clearly warranted. 

To gain insight into the error in tidal current predictions, we compared two simple cosine 
waves representing hypothetical flood and ebb currents, one predicted and one measured. - ~. 

For the measured wave, let the amplitude and phase equal 160 cm and zero, respectively, 
while allowing the amplitude and phase of the predicted (test) wave to vary. Both cosine 
waves are assigned a period of 12.42 hours and two time series of simultaneous current 
values are calculated at short intervals over that time. The accuracy of current predictions 
may then be estimated from variation about the 1:l reference line of perfect agreement in 
a plot of predicted versus measured current speed. An example is presented in Figure 12 
with the test wave amplitude urneduced at 100 cm but with a phase 'lag' of 20 minutes 
(the time equivalent of the phase angle in radians for a 12.42-hour wave period). The lag 
may be thought of as a 20-minute error in predicting the time of maximum current. 

The standard error of estimate (RMS error) for the hypothetical example shown in Figure 
12 is 11.9 c d s .  Figure 13 illustrates an RMS error of 13.4 c d s  for the same test wave 
with its amplitude reduced by 10% (from 100 cm to 90 cm). Aside from the general 
magnitude of the expected error, Figures 12 and 13 illustrate that the error source (the 
amplitude andlor phase lag difference) may he inferred from the form of departure of data 
points from the 1: 1 line of perfect fit. More specifically, a clockwise rotation of the data 
point 'ellipse' axis relative to the 1: 1 line indicates that the current amplitude is under- 
predicted and vice-versa. For real currents in general, and surface currents in particular, 
amplitude comparison errors increase with the directional variability of the current. 

Actual current data from the surface and bottom layers of the main river channel at the 
James River Bridge are presented in Figures 14 and 15, respectively. The flow 
components compared are those in the direction parallel to the channel axis. For error 
estimation purposes, this is an optimal comparison because of the relative straightness of 
the river channel and uniformity of flow at this site. RMS error in predicted surface 
currents due to phase lag is about 6.7 c d s ,  increasing to about 9.9 c d s  due to a 
combination of phase lag and amplitude difference. RMS error in predicted bottom 
currents due to phase lag is about 4.2 c d s ,  increasing only slightly to about 5.1 c d s  
when the amplitude difference is added. These results support the generalization that 
channel "steering" greatly restricts the directional variability of the bottom current. 
When compared with the test waves, they suggest amplitude estimation error of less than 
10% with a phase estimation error of less than 20 minutes. 



Test Wave: Ap=lCU Pp=20 min 
120 

100 

80 

60 

- 40 
20 5 0 

8 -20 
er e 
a -40 

4 0  

5 0  

-100 

-120 
-120 -rm -80 -EU -40 -20 o 20 40 60 80 iw 120 

Figure 12. Predicted versus measured current, test example with 
20 minute phase lag. 
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Figure 13. Predicted versus measured current, test example with 
20 minute phase lag and 10 % amplitude reduction. 
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Figure 14. Predicted verms measured surface current James River Bridge. 

Figure 15. 
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IIL RESULTS 

a. Simulation Comparisons: Tidal Heights - Simulated time series of tidal heights 
were computed at the center of selected cell stations (crossed circles) as shown in Figure 
16. Using the boundary conditions described in Section II.b. for the generation of 
simulation results, twelve standard runs were made covering the three river intlow 
conditions and the four test cases (Base Case and three alternative crossing designs). As 
noted in Section II.b., each run covered a period of 33 days in which output was selected 
for apogean-neap tides (day 8), mean range tides (day 25) and perigean-spring tides (day 
29). 

None of the above runs produced evidence of significant change in tidal height, tidal 
range, or tidal phase in any of the three base comparisons: (1) Base Case versus 
Alternative 1; (2) Base Case versus Alternative 2; and (3) Base Case versus Alternative 9. 
An example of the type of comparison obtained with the runs described above is given in 
Figure 17. The curves shown (solid line and dots) match well &thin the accuracy limits 
expected for the model when computing height differences (about 3 cm) . A tabulation of 
high and low water tidal heights and their merence (tidal range) for the first half of day 
25 (mean tidal range) is presented in Table 3. 

Figure 16. Location of tide simulation stations, T1 -T9. Color dots indicate depth 
interval in meters. Grid interval is 370 meters east-west and north-south 
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Figure 17. Simulated tide comparison at Station T4, Base Case versus Alternative 9, 
mean river inflow condition. 



Table 3. Model predictions of high water 0, low water (LW), and tidal range (RN) 
in centimeters on model day 25 (mean range) at tide simulation Stations T1 
through T9, lower James River. 

T5 

T6 

T7 

T8 

T9 

HI 
MED 
LO 

HI 
MU) 

LO 

HI 
MED 
LO 

HI 
MED 
LO 

HI 
MED 
LO 

46.1 
43.4 
42.7 

46.2 
42.5 
41.4 

47.7 
44.2 
42.9 

46.4 
42.6 
40.1 

46.1 
42.1 
39.4 

-42.6 
-42.8 
-43.2 

-40.7 
-40.8 
-41.0 

-38.5 
-38.6 
-39.5 

-39.0 
-38.8 
-38.3 

-37.7 
-37.3 
-36.9 

88.7 
86.2 
85.9 

86.9 
83.3 
82.4 

86.2 
82.8 
82.4 

85.5 
81.4 
78.5 

83.8 
79.4 
76.3 

46.1 
43.4 
42.7 

46.2 
42.5 
41.3 

47.7 
44.2 
42.8 

46.5 
42.6 
40.1 

46.1 
42.1 
39.3 

-42.5 
42.8 
-43.2 

40.6 
-40.7 
-41.0 

-38.4 
-38.6 
-39.5 

-39.0 
-38.7 
-38.3 

-37.6 
-37.3 
-36.9 

88.6 
86.2 
85.8 

86.8 
83.2 
82.4 

86.1 
82.8 
82.3 

85.4 
81.3 
78.4 

83.8 
79.3 
76.3 

46.2 
43.4 
42.7 

46.3 
42.5 
41.3 

47.7 
44.3 
42.8 

46.5 
42.6 
40.1 

46.2 
42.1 
39.4 

-42.5 
-42.8 
-43.2 

-40.7 
-40.8 
-41.0 

-38.5 
-38.6 
-39.5 

-39.0 
-38.7 
-38.3 

-37.6 
-37.3 
-36.9 

88.7 
86.1 
85.8 

86.9 
83.2 
82.3 

86.1 
82.8 
82.3 

85.4 
81.3 
78.4 

83.8 
79.4 
76.2 

46.8 
43.8 
43.0 

46.2 
41.9 
40.5 

47.6 
43.9 
42.5 

46.5 
42.6 
40.1 

46.1 
42.0 
39.2 

-42.9 
43.0 
-43.4 

-39.7 
-40.0 
-40.7 

-37.8 
-37.9 
-38.9 

-38.2 
-38.1 
-37.7 

-37.0 
-36.7 
-36.3 

89.7 
86.8 
86.4 

85.9 
81.9 
81.2 

85.4 
81.8 
81.4 

84.7 
80.7 
77.8 

83.1 
78.6 
75.6 



b. Simulation Comparisons: Tidal Currents - Simulated time series of tidal currents 
were computed at the center of selected cell stations (red arrows) as shown in Figure 18. 
The same series of standard runs were made as described in Section m.a. for tidal 
heights. The time series are flood and ebb representations of the horizontal component of 
flow having maximum variance, usually the component parallel to the local bottom 
contours or channel axis. The directional heading of the flood component (always 
positive upstream) is referenced on each of the time series graphs presented below. 

Note that HYSED-3D tidal current simulations may contain a nontidal or residual 
component. The residual appears as a non-zero result &om tidal averaging of the time 
series data over one or more tidal cycles. 

Figure 18. Location of tidal current simulation Stations, Ci - C7. Color dots indicate 
depth interval in meters. Grid interval is 370 meters east-west and north-south. 

Most of the simulated tidal current comparisons show very little change. However, a few 
relatively minor changes were noted at certain stations for certain test case comparisons. 
~ x a m ~ l d s  for each test case are presented below. 

1. Base Case - Alternative 1: Little, if any, change is apparent for most of the conditions 
e d e d  for this case. A slight change in form of the surface current curve appears in 
tides of mean range in combination with low river inflow as shown in Figure 19. 



Time (days) 

Figure 19. Simulation comparison of tidal current at Stidion C1, Base Case 
and Alternative 1; mean tidal range and low river inflow. 

2. Base Case- Alternative 2: Minor changes are noted at Stations C1 and C2 in this 
comparison A very slight change in curve form for the surface current occurs at Station 
Cl as illustrated in Figure 20. The change in surface current form at Station C2 at the 
Elizabeth River Entrance Figure 21) is more pronounced, particularly in the flood 
segment for Alternative 2 which has a sharper peak with a detay in the time of maximum 
flood compared to the Base Case. Changes also occur in the form of the bottom current. 

Ea.3dMean Flow - w o n  C1- ourrPe(rsd) bottom(blue) 

Figure 20. Simulation comparison of tidal current at SWion C1, Base Case 
and Alternative 2; mean tidal range and mean river inflow. 



Figure 21. Simulation comparison of tidal current at Station C2, Base Case 
and Alternative 2; mean tidal range and mean river idow. 

3. Base Case - Alternative 9: Simulations for Alternative 9 produce notable changes in 
current at Stations C2, C3, and C5. For Station C2 at the entrance to the Elizabeth River, 
the change is similar to that just described for Alternative 2 but with flood current pd& 
that appear even sharper and more asymmetric (flood maxima exceeding ebb maxima) 
for Alternative 9 during both mean river inflow (Figure 22) and high river inflow (Figure 
23). The bottom current is small but highly variable at Station C2 and, therefore, difllcult 
to interpret. In general, model simulations seem to predict a small increase in peak flood 
bottom current at Station C2 due to the effects of Alternative 9. 

Station C3 in the inah Newport News navigation channel and Station C5 just below 
Newport News Point show pronounced changes in surface current, but not bottom 
current, as a result of Alternative 9. The Base Case time series curves for Station C3 
show a pronounced surface current asymmetry (peak ebb greater than peak flood) with an 
enhanced ebb current residual that appears noticeably stronger in the runs for Alternative 
9 (Figure 24). Surface currents at Station C5 show a small downstream residual initially 
that is enhanced after Alternative 9 is added. The current range (gross difference between 
flood and ebb current maxima) is reduced at Station C5 (Figure 25) but not at Station C3 
(Figure 24). The range reduotibn at Station C5 is the reskt i f  a &ge in current 
direction relative to the channel axis and not a reduction in current magnitude. 

Downstream surface current residuals are consistent with classical two-layer estuarine 
circulation models. ~rovided there is evidence of a counterbalancing upstream bottom 
current residual. 'hi bottom currents shown in Figures 24 and 25 &, & faot, appear to 
have residuals directed upstream but, unlike the surface currents, they show only a slight 
degree of change as a result of Alternative 9. This pattern of change suggests possible 
enhancement of an eddy (non-tidal) motion in the surface current. 
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Figure 22. Simulation comparison of tidal current at Station C2, Base Case 
and Alternative 9; mean tidal range and mean river inflow. 
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Figure 23. Simulation comparison of tidal current at Station C2, Base Case 
and Alternative 9; mean tidal range and high river inflow. 
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Figure 24. Simulation comparison of tidal current at Station C3, Base Case 
and Alternative 9; mean tidal range and mean river inflow. 

Figure 25. Simulation comparison of tidal current at Station C5, Base Case 
and Alternative 9; mean tidal'range and mean river idow.  



c. Simulation Comparisons: Composite Mapping of Current and Salinity - Spatial 
distributions of model simulated tidal current and salinity in Hampton Roads are 
illustrated using computer visualization and color mapping as shown in Appendix A. The 
plan view maps in Appendix A use vector 'arrows' of varying length to depict the 
instantaneous speed and direction of the horizontal current and a color scale to depict 
instantaneous salinity in parts per thousand (ppt). Maps are presented in a 6-panel layout 
representing, from left to right, Base Case, Alternative 2, and Alternative 9 results. 
Alternative 1 produced model results indistinquishable from the Base Case at the scales 
shown and is not included. Currents and salinity for the surface and bottom layers are 
shown in the top and bottom panels, respectively. The current 'arrows' show the major 
current pathways during maximum flood and ebb. In general, changes in either the 
magnitude or direction of the current are small with only a few exceptions noted locally. 
Attention in these figures also is focused on spatial salinity changes using the added 
detail that color maps impart. 

1. Low River Inflow -Figures A1 through A4 depict elevated salinity ranging between 20 
ppt and 30 ppt in overall response to the low river inflow condition. A comparison of the 
panels in Figure A1 (apogean-neap tides) with those in Figure A2 (perigean-spring tides) 
shows the typical decrease in stratification (higher salinity, higher density water overlain 
by lower salinity, lower density water) that occurs with a higher tidal range and stronger 
vertical mixing. 

Comparing the Base Case to Alternative 2 during maximum flood, a small salinity 
difference of about 2-3 ppt is noticeable in a two- to three grid cell area just above the 
northeast corner of Craney Island (upper and lower middle panels, Figure Al). This 
reflects a local increase in turbulent mixing in the vicinity of the single tunnel island and 
bridge 'loop' placed on the west side of the Elizabeth River entrance in Alternative 2 
(Figure 4). The effect of local mixing is to reduce local stratification; i.e., to produce a 
relative increase in salinitv in the surface laver and a relative decrease in salinitv in the 

2 , , 
adjoining bottom layer. Comparing the Base Case to Alternative 9, the decrease in 
stratification is slightly more pronounced over a wider area just to the north of Cranev - .  
Island, reflecting the increased mixing induced by pilings under the east-west bridges 
added there (see Figure 5). 

Alternative 9 also adds two more tunnel islands immediately west of the existing 1-664 
tunnel islands and adds more bridge structure in a 'crossover' zone just below the present 
south tunnel island on 1-664 (Figure 5). Figure A1 (upper right panel) displays an 
anomalous reduction in surface salinity (by about 1-2 ppt) during maximum flood in a 
narrow strip extending eastward from the Alternate 9 west tunnel islands below Newport 
News and over the region known as Middle GPound Shoal (Figure 2). This change may 
be related to local flow diversion caused by the added islands or by frontal activity. 
Further discussion of the Newport News frontal system is presented in Section m.e.  



A further salinity change connected with Alternative 9 appears during maximum ebb in 
the form of a broad band of increased surface salinities extending east of the 'crossover' 
zone from 1-664 (upper right panel, Figure A3). This increase also is believed to be due to 
vertical mixing with the added salt coming from the bottom layer near the bridge 
structure (lower right panel, Figure A3). 

2. Mean River Inflow - Overall salinities decrease to the 10 to 20 ppt range in Hampton 
Roads in the model results for mean river inflow. The mixing effects noted above for 
Alternatives 2 and 9 along the east-west bridge structure north of Craney Island are still 
apparent at maximum flood during mean river inflow (Figure A5). However, the 
anomalous decrease in surface salinity previously described as a narrow band extending 
over Middle Ground Shoal during maximum flood is not evident. The salinity 
distributions for maximum ebb show the previously described changes related to mixing 
within the 'crossover' zone of Alternative 9 (Figure A7). 

3. =River Inflow -During high river inflow overall salinity is predicted to range 
between 5 and 16 ppt within Hampton Roads. At maximum flood, surface and bottom 
mixing is evident in the region north of Craney Island as noted before (Figure A9). At 
maximum ebb, mixing is again evident in the region east of the Alternative 9 'crossover' 
zone (Figure A1 1). 

Organized patterns of spatial change in the current field occurred only in the surface 
current simulated for Alternative 9 during maximum flood at apogean-neap tide. Tidal 
range is then near its minimum and vertical stratification is near its maximum. An area of 
minimum flow and an eddy-like feature appears at these times near the center of the main 
Newport News Channel. This feature is shown in the center of the upper right panel in 
Figures Al, A5, and A9 representing each of the three river inflow conditions tested. 

d. Simulation Comparisons: Tidal Prism and Residual Current - Specific 
information is required for certain parts of the lower James River system considered to be 
problem areas. Problem areas include the Elizabeth River, a semi-enclosed tidal basin 
whose branching waterways have long been adversely affected by industrial and 
domestic pollutants, causing it to be designated one of three Chesapeake Bay Regions of 
Concern (ROC) by the Chesapeake Executive Council. Among the kinds of information 
needed to evaluate the response of a tidal basin system to modifications by structures in 
or near its entrance region is the change in tidal prism and residual current as simulated 
through a transect cross-section at the entrance. Transect 1 has been developed for this 
purpose. 

Transect 1 was placed at the entrance to the Elizabeth River where it enables simulation 
of current flow entering and leaving the Elizabeth River basin normal to the cross-section 
(Figure B1). There are no other entrances admitting estuarine water and no measurable 
upstream sources of freshwater inflow are included in the simulation. Among the possible 
effects that could occur as a result of emplacement of new structure is a change in the 
tidal prism, the volume of water entering or leaving the basin over a half tidal cycle. A 
reduction in tidal prism implies a reduction in the flushing ability of the basin. Another 



measure of importance in terms of dissolved or suspended material transport in and out of 
the basin is the residual (non-tidal) current flowing through its entrance cross-section. 

1. Tidal prism - Tidal prism estimates were obtained from time-integrated volumes of 
model simulated tidal discharge. Time series of tidal discharge (m3/s) were produced at 
half-hour intervals as the summed product of current speed (mk) and cross-sectional area 
(m2) calculated by cells (6) and by layers (6)  in subsections of Transect 1. The results for 
the tested cases and conditions are presented in Table 4. Because there are no ffeshwater 
sources assigned to the Elizabeth River, model-generated net volumes (Q net) should be 
zero. Q net, expressed as a percentage of Q mean under the % change column in Table 4, 
therefore serves as an error estimate on tidal prism calculations. Except for the high 
inflow condition, the error is less than 3%. The second number given under the % change 
column compares the tidal prism estimate (Q mean) for each of the alternative test cases 
against the base case. Except for Alternative 9 under the high inflow condition, the 
compared values differ by less than 3%. The model simulations therefore provide no 
measurable evidence of a reduction in tidal prism for the Elizabeth River basin. 

Table 4. Discharge volumes (Q), in units of lo6 m3 , passing through Transect 1 

Base Case LOW ~nflow z,","": Mean ~nflow Percent High ~nflow Percent 
Change Change 

Q f lood 18.4949 17.5492 18.1150 
Q ebb -1 8.5584 -18.0786 -18.7169 
Q net -0.0635 -0.34% -0.5294 -2.97% -0.6019 -3.27% 
Q mean 18.5267 0.00% 17.8139 0.00% 18.4160 0.00% 

Alternative 1 Low Inflow Mean inflow High Inflow 
Q f lood 18.5073 17.5690 18.1178 
Q ebb -1 8.5539 -18.0684 -18.7163 
Q net -0.0466 -0.25% -0.4994 -2.80% -0.5985 -3.25% 
Q mean 18.5306 0.,02% 17.8187 0.03% 18.4171 0.01% 

Alternative 2 Low Inflow Mean Inflow High inflow 
Q f lood 18.5690 17.7283 18.2212 
Q ebb -18.5952 -18.1478 -1 8.8026 
Q net -0.0262 -0.14% -0.4195 -2.34% -0.5814 -3.14% 
Q mean 18.5821 0.30% 17.9381 0.70% 18.51 19 0.52% 

Alternative 9 Low Inflow Mean Inflow High Inflow 
Q f lood 18.6588 18.1167 18.7323 
Q ebb -1 8.781 0 -1 8.4982 -19.2132 
Q net -0.1222 -0.65% -0.3815 -2.08% -0.4809 -2.53% 
Q mean 18.7199 1.04% 18.3075 2.77% 18.9728 3.02% 



2. Residual Current - As defined in this report, the residual current is simply the 
measured or predicted current averaged over a tidal cycle at a fixed point in the water 
column. A tidal current appearing as simple periodic motion averages to zero so the 
residual current is sometimes referred to as the non-tidal current; i.e., a steady or quasi- 
steady flow that is superimposed on the tidal current. It is usually much smaller in 
magnitude than the tidal current. Classical, two-layer models of estuarine circulation call 
for residual currents directed seaward at the surface and landward at the bottom, with a 
layer of zero-net motion in between. In some estuaries, a circular horizontal current or 
eddy produces a residual current field with speed and direction dependent on horizontal 
position relative to the center of the eddy. Transport of water-borne materials then 
becomes more complex than conventional estuarine models would suggest. Recent 
studies show that high particle concentrations can develop locally within eddy systems 
through a trapping effect (Hood et al., 1999). 

Examples of eddy motion outlined by model-generated residual currents can be seen in 
plan view in Figures B2 and B3, Appendix £3. Figure B2 shows a large eddy system on 
Hampton Flats that has been recognized for many years. Figure B3 displays a smaller 
eddy at the mouth of the Elizabeth River that has not, to our knowledge, been previously 
observed. 

Within the Hampton Roads area, a large counter-clockwise eddy appears in the residual 
surface current at the southwest end of Hampton Flats (Figure B2). Characteristically, 
eddy development is greatest during apogean-neap tides. Eddy motion is not readily 
apparent in the bottom layer during any phase of the tide. During perigean-spring tides, 
the surface eddy becomes weaker and shifts to the east away from Hampton Flats. 
Comparing the Base Case with Alt,emative 2, a very slight amount of change can be seen 
in the Hampton Flats eddy. The change is more apparent, however, in the comparison for 
Alternative 9. In the latter comparison, the Hampton Flats eddy becomes less organized 
due to a strengthening of the ebb residual current in the adjacent Newport News Chamel. 
The strengthening of the ebb residual current in the Newport News Channel was also 
noted in simulated current time series for the Base Case and Alternative 9 (Figure 24). 

A clockwise eddy appears at the entrance to the Elizabeth River with a diameter 
approximately equal to the width of Transect 1 (Figure B3). Noting the strong eastward 
component of the residual current immediately north of Craney Island during apogean- 
neap tides, this plan-view display suggests that the eddy is a simple vortex generated in 
the lee of Craney Island's northeast comer. During perigean-spring tides, the residual 
current above Craney Island is directed more to the northeast and the surface eddy at the 
river entrance disappears. Likewise, the structures associated with Alternatives 2 and 9 
appear to inhibit the eastward residual current across the top of Craney Island, resulting 
in a reduction of the eddy motion in the entrance. To examine this process in more detail, 
plots of the simulated residual current through Transect 1 were developed as described in 
the following paragraph. 

The model's three-dimensional grid divides Transect 1 into 36 rectangles formed by its 
intersection with six horizontal grid cells and six vertical layers (Figure 26). Currents 
normal to the transect are obtained at the center of each rectangle. Due to the use of 



Cell Number 
1 2 3 4 5 6  

Figure 26. Cross-section, Transect 1, consisting of 6 horizontal cells and 
6 vertical layers. Residual currents normal to the cross-section 
are computed at the center of each layer (view looking upstream). 

sigma coordinates, the spatial coordinates of the current array remain fixed relative to the 
water column (i.e., as a fixed percentage of the time-varying depth) and facilitate the 
calculation of residual current in the same spatial frame. Using color mapping, the 
interpolated residual current is displayed across the face of the transect as shown in 
Figures B4 through B6 in Appendix B. Also included in each figure is the residual water 
(m3) passing upstream or downstream through the cross-section over a tidal period 
(12.42 h). Residual water is calculated by multiplying residual current by tidal period 
and rectangle area for each of the 36 points, then summing according to sign (positive 
upstream, negative downstream). Similar to the tidal discharge volumes, residual water 
volumes passing through a cross-section into, or out of, an enclosed basin should be equal 
after allowing for computational errors. It is the change in these volumes that may 
warrant concern. Results for each test case under apogean-neap and mean river inflow 
conditions are discussed below. 

Base Case - The base case illustrated in Figure B4 (upper panel) shows a strong and 
relatively concentrated residual current outflow (color blue) from the Elizabeth River on 
the shallow west side of the transect (right side of the channel looking upstream). This 
outflow is matched by inflow elsewhere in the transect with the strongest residual inflow 
(color red) moving upstream in the bottom layer of the main channel. The residual water 
volumes average 6.9 x106 m3 and differ by approximately 5% of the average. 

Alternative 1 -As illustrated in Figure B5 (lower panel), residual currents for Alternative 
1 show a nearly identical distribution compared to the Base Case. The residual water 
volumes are slightly greater for Alternative 1 and again differ by about 5% of the 
average. 

Alternative 2 - Alternative 2 (Figure B6, lower panel) shows a distinct weakening of the 
outflow (negative residual current) on the west side of Transect 1, with some shifting of 
the outflow into the mid-depth region of the channel and across to its steep east wall. 



6 3 Residual water volumes are reduced to an average of about 4.2 x10 m or about 39% less 
compared to the Base Case. 

Alternative 9 - Alternative 9 (Figure B7, lower panel) also shows a general weakening 
and eastward redistribution of the negative residual current on the west side of Transect 
1, although the pattern differs slightly from that of Alternative 2. Residual water volumes 
are reduced to an average of about 4.5 x106 m3 or about 35% less compared to the Base 
Case. 

e. Simulation Comparisons: Position and Form of Newport News Tidal Front - 
Further evaluation of potential change in the hydrodynamics of the lower James River 
system is guided by prior knowledge of specific estuarine processes. One process found 
to be of considerable importance in the lower James is the three-dimensional circulation 
that exists in association with a tidal front system located just below Newport News 
Point (Figure B8). Described as a tidally-induced salinity front, this system develops 
during the early flood stage of each tide as higher salinity (higher density) bay water 
flows westward across Hampton Flats and converges with lower salinity (lower density) 
river water still ebbing to the southeast in the main channel. Because of the difference in 
density, bay water is subducted beneath river water at the front and travels upstream in 
the bottom layer ofthe channel (Kuo et al., 1988; 1990). This unique mechanism has 
been associated with enhanced upstream transport and higher rates of larval recruitment 
of seed oysters in the middle James compared to other estuaries (Ruzecki and Hargis, 
1988). 

Figure B9 presents a pair of cross-sections for Transect 2 comparing instantaneous 
current and salinity results for the Base Case and Alternative 9 during early flood for 
mean inflow and mean tidal range. Alternatives 1 and 2, as expected, show no difference 
in this region.The distribution of salinity is shown by a color map in Figure B9 and the 
direction and magnitude of the horizontal current, flowing parallel to the plane of the 
transect, is indicated by arrows. The computational frame is similar to that shown in 
Figure 26 except that the instantaneous velocity component parallel to the transect is 
being shown in lieu of residual velocity normal to the transect. The shallow area shown 
on the right (northeast) side of the transect is the western edge of Hampton Flats 
adjoining the main channel. 

For the Base Case, the front shown in the upper panel of Figure B9 is located mostly 
within the middle cell (longest column) representing the deep channel. Its position is 
indicated both by a salinity change (from 17 ppt to 14 ppt at the surface) and an abrupt 
change in surface flow direction at points of current convergence. The zone of 
convergence is not static but moves from east to west as the flood stage advances toward 
maximum current strength. For Alternative 9, the front shown for the same tidal hour as 
the other cases (lower panel of Figure B9) remains operative but is displaced to the east, 
with surface water of 14-15 ppt showing the largest displacement. One half-hour later the 
front for Alternative 9 appears similar to the other cases, indicating that westward frontal 
advancement has been delayed relative to these cases, most likely in response to an 
increase in the ebb residual current. 



Additional model runs were made for the low river inflow and high river inflow 
conditions. The front does not appear as sharply defined under the low i d o w  condition 
but is clearly apparent during high inflow. Figures B10 and B11 show the frontal 
interfaces at successive half-hour intervals as red lines drawn through current 
convergence points. The results show no substantive change in the position of the tidal 
front but a slight change of form is noted in the surface layer for Alternative 9 compared 
to the Base Case. As previously indicated in Section IU.b.3, surface currents are modified 
by Alternative 9. 

f. Simulation Comparisons: Longitudinal Salinity Distribution - Transect 3 (Figure 
B8) was configured to show the longitudinal cross-section of the salinity field following 
the main channel axis of the James River. This was done to address the question of 
possible change of the limit of salt intrusion, upstream or downstream, as a result of 
construction in Alternatives 1,2, or 9. In performing model comparison tests for this 
purpose, extremes in river inflow assume primary importance and temporal salinity 
variations are commonly examined at intervals longer than a tidal period. Field 
observations of the longitudinal variation in salinity and other water properties in 
estuaries have traditionally been done during slack water periods (slack before ebb or 
slack before flood). We follow the same convention in our model comparisons. 

Figure B12 shows the instantaneous salinity distribution at slack before ebb in cross 
sections extending fiom the mouth of the James to a point 30 km upstream. For the low 
inflow condition, salinities are predicted to vary from 26-30 ppt at the mouth to 20-22 ppt 
at the upstream limit of the transect. During high inflow conditions, the salinity limits are 
predicted to range fiom 20-22 ppt at the mouth to 5 ppt or less upstream. Very little 
change is noted for any of the alternatives with the possible exception of Alternative 9 
during high inflow. Fixing the limit of salt intrusion at 10-12 ppt, it is noted that this limit 
in the bottom water moves approximately 2 km downstream in response to Alternative 9. 
No other change is apparent fiom these tests. 

Figure B13 shows the instantaneous salinity distribution at slack before flood in cross 
sections extending from the mouth of the James to a point 30 km upstream. Coming at 
the end of an ebb, the overall salinity field is displaced seaward, as expected, compared to 
slack before ebb. Again, among the transects shown, only those of Alternative 9 exhibit 
any degree of apparent change. During high inflow, the Alternative 9 transect shows a 
thicker surface layer of brackish to fresh water (5 ppt or less) in the zone extending from 
11 to 18 km from the mouth of the James. No other change is apparent from these tests. 

g: Simulation Comparisons: Sedimentation - For the effect on sedimentation, we 
adopted two approaches: (1) the study of sedimentation potential and (2) the tracking of 
sediments released from upstream into the system. Sedimentation potential was 
determined by the percentage of time during wl?ich bottom stress falls below critical 
bottom stress. We chose 1.0 pascal as the critical stress, a value observed by Maa et al. 
(1995) for Chesapeake Bay sediments. Nichols (1972) presented data showing the 
location of a turbidity maximum upstream of the study area. We simulated the fate of 
suspended sediment kom a hypothetical source based on his data. We selected 3 size 



classes with different settling velocities-very fine sand (w,f- 1.0 cds),  coarse silt (w,f- 
0.1 cds) ,  and medium silt (w,f- 0.01 cmls). Initially no bottom sediment in the system 
was assumed. For each size class, sediments were released for 2 tidal cycles from the 
surface along the James River Bridge at the rate of 2 kg/s. ARer 67 tidal cycle runs, total 
bottom sediment accumulation amounts (kg/mz) were determined in each cell. 

1.Sedimentation potential - Figure C1 shows existing data for bottom sediments in the 
James River (Nichols et al., 1991), depicting coarser sandy bottom sediments in the 
channel and northern flank in Hampton Flats and finer muddy bottom sediments in the 
southern flank near Craney Island. Figure C2 shows the calculated sedimentation 
potential for the Base Case. As can be seen, its distribution is consistent with coarser 
sediments along the northern flank and finer sediments along the southern flank of the 
lower James. This again suggests the sedimentation potential is a reasonable proxy for 
bottom sediment distribution. In addition, pier effects reported by Fang et al. (1972) in a 
previous physical model study evidence decreased sedimentation potential in the zone 
surrounding the existing 1-664 bridge pilings north of Portsmouth. This is born out in 
figure C2. 

The results for both Alternative 1 and Alternative 2 show little change except in three 
limited areas. Areas showing a slight increase in sedimentation potential include the 
northeast corner of Hampton Flats (Alternative 1) and the northeast end of Craney Island 
Flats, a shoal northeast of Craney Island (Alternative 2). Decreased sedimentation 
potential occurs in a limited zone surrounding the tunnel island west of the Elizabeth 
River entrance (Alternative 2). Runs fbr Alternative 9 illustrate a more definitive 
decrease in sedimentation potential along the immediate route for the bridge pilings north 
of Craney Island (Figure C3). Runs for Alternative 9 also forecast a broad decrease in 
deposition potential within the Elizabeth River entrance. Changing freshwater inflow 
conditions produced similar results with sedimentation potential further increasing at the 
northeast comer of Craney Island Flats during high river inflow (Figure C4 and Figure 
C5). 

2 Tracking sedi.ment released from upstream .- Figure C6 shows the grain size effect on 
particle settling velocity. Coarser sediments (very fine sand in this study) were deposited . . 

almost immediately in the area of release (the line source coinciding with the ~ a m e s  River 
Bridge). Coarse silt also did not penetrate very far toward the region of interest. Thus, we 
chose to use medium silt in our study of the proposed construction effects. For the mean 
fieshwater inflow condition, there is little change in the sedimentation pattern except for 
a limited area of increased sedimentation of medium silt in the Northeast corner of 
Hampton Flats for Alternatives 1 and 2 (Figure C7). For Alternative 9, increased 
deposition of medium silt was observed along the bridge pilings north of Craney Island. 

Little change was noted for the condition of lo$ river inflow compared to mean river 
inflow (Figure C8). High river inflow, however, produced more dramatic results. A 
higher level of particle settling is indicated throughout Hampton Roads in runs with high 
fieshwater inflow (Figure C9). Events of this type would seem to influence sedimentation 



from an upstream source to a much greater degee than any one of the three alternatives 
tested. 

IV. Summary and Conclusions 

A three-dimensional hydrodynamic and sedimentation model, HYSED-3D, was used to 
simulate the tide, current, and salinity fields of the James River in Virginia. In addition to 
these physical properties, the model also was used to simulate sedimentation in the lower 
James River as part of a study to assess the environmental effects of bridge-tunnel 
construction in a planned crossing of Hampton Roads. The design infrastructure for three 
separate highway crossings, designated as Alternatives 1,2, and 9, was tested using a 
fine-scale computational grid representing the existing waterways of the lower James 
River and the Elizabeth River, a tributary basin located just inside the entrance to the 
James River. The model was required to simulate the full range of hydrodynamic and 
hydrologic conditions expected for the prototype system, including tides of maximum 
and minimum range as well as extremes in freshwater inflow expected for the headwaters 
of the James River. In each test, model-simulated properties were compared between the 
existing highway crossing structure (Base Case) and that of either Alternative 1, 2, or 9 
(simulation comparisons). The results were analyzed to determine the response to the 
design structures added to the Base Case under the test conditions specified. Several 
points may be made in conclusion: 

1. Tidal Heights - No discernable chahge in simulated tidal heights was noted at any of 
the nine tide stations selected for comparison of the Base Case with Alternatives 1 ,2  and 
9 (Figures 16 and 17; Table 3). None of the comparisons evidenced any structure- 
induced change in tidal height related to variations in tidal range or river inflow. Changes 
in the times and heights of high and low water were consistently less than the expected 
accuracy limits of the model (5-10 minutes and 3-4 cm, respectively). 

2. Tidal Currents - Changes in tidal current time histories were apparent at four of the 
seven current stations selected for comparisons in Hampton Roads (Figure 18). Station 
C1 at the entrance to the James River evidenced a slight difference in simulated currents 
for the Base Case and Alternatives 1 and 2 for most combinations of tidal range and river 
inflow. This change was manifest only in the form of the surface current curve with no 
discernable difference in either the time or speed of the flood and ebb current maxima 
(Figures 19 and 20). Station C2 at the entrance to the Elizabeth River demonstrated a 
more noticeable change in the surface current time histories for Alternatives 2 and 9 
during all nine combinations of tidal range and river inflow. In addition to changes in 
curve form (sharper peaks; e.g., Figure 21), there are small differences in the strength of 
the current maxima (stronger flood and weaker ebb; e.g., Figures 22 and 23) . Such 
differences suggest a residual current when the duration of flood and ebb are 
approximately equal as they are in these figures. Bottom currents at Station C2 were 
weaker and more variable than surface current. Although they suggest a change for 
Alternatives 2 and 9, they are more difficult to characterize in terms of a consistent and 
recognizable pattern of change. 



Surface currents at Stations C3 (Newport News Channel) and C5 (Newport News Point) 
show distinct changes in current maxima when comparing Alternative 9 to the Base Case. 
Bottom currents appear unaffected at either station. From Figure 24, under the mean tidal 
range and mean river inflow conditions, it is apparent that the surface current at Station 
C3 possesses an ebb residual which is strengthened by Alternative 9 while the current 
range (gross difference in current extremes) remains constant. At Station C5 near the 
Newport News tunnel islands required for Alternative 9, the current range at mean tide 
(120 cmls) decreases by approximately 12 cm/s (10%) while the ebb current residual 
again increases by a slight amount (Figure 25). These observations suggest a change in 
the direction of the surface current or a current divergence at Station C5 which would 
produce a reduction in current range in the direction aligned with the channel axis. 
Changes at Station C3 consist of a change in the residual current only. 

Spatial change in instantaneous surface and bottom currents (shown in plan view in 
Appendix A) is quite small and limited to a few highly local changes in current speed 
andlor direction (e.g., in the vicinity of the bridge tunnels for Alternative 9). The only 
organized change in flow patterns noted was limited to a small, eddy-like feature 
appearing in the surface current near the Newport News Channel in response to 
Alternative 9. This feature was apparent only during maximum flood and apogean-neap 
tide (e.g., Figure A9, upper-right panel). It is not unusual to see organized fields of 
motion (eddies) developing in the residual current over Hampton Flats during times of 
maximum stratification. 

3 .  Tidal Prism. Residual Current -Determination of the tidal prism (volume of flood or 
ebb flow entering or leaving an enclosed region) was deemed important for the Elizabeth 
River, a tidal basin with only a single seaward entrance and no significant freshwater 
inflow. A reduction in tidal prism is normally associated with a reduction in the flushing 
ability of a tidal basin. Simulation comparisons of the flow through Transect 1 (Table 4) 
showed no evidence of a reduction in tidal prism for the Elizabeth River under any of the 
conditions tested. 

The observation of a change in the current history at Station C2 underscored the necessity 
of examining the residual current and its possible influence on circulation within the 
entrance and perhaps other parts of the Elizabeth River. Residual currents associated with 
horizontal eddy systems have the potential to lower flushing rates and impede particle 
movement by a convergence or 'trapping' effect (Hood et al., 1999). For this reason the 
model-simulated residual currents were examined in plan and profile view and the 
residual water volumes passing through Transect 1 at the Elizabeth River entrance were 
calculated. The model results indicate that eddy motion decreases and residual water 
volumes passing through the transect are reduced as a result of Alternatives 2 and 9. 
This happens primarily during apogean-neap tidbs when eddy development is most 
pronounced. This finding suggests that residual circulation may be affected, at least 
within the Elizabeth River entrance region. Model grid resolution presently is not 
adequate to provide definitive answers on circulation throughout the interior region. 
Apart from krther modeling studies specific to the Elizabeth River, detailed 



measurements of the actual residual current in the field are needed to verify the 
simulation results. 

4. Salinitv - Changes in salinity observed through the test simulations conducted in this 
study were primarily limited to regions with measurable salinity stratification and 
enhanced vertical mixing as occurs in the vicinity of bridge pilings such as those 
specified for Alternatives 2 and 9. As expected, surface salinities increased and bottom 
salinities decreased in these regions as a result of turbulence-induced vertical mixing. The 
mixing is most intense during perigean-spring tides and least intense during apogean- 
neap tides. 

Near Newport News Point, surface water from upstream areas of the James generally 
encounters saltier water entering from Chesapeake Bay and may override it in frontal 
systems. Some variation in the position of the frontal interface and the distribution of low 
salinity surface water is predicted as a result of Alternative 9 (e.g., Figure A7). Little 
change is expected, however, in the salinity field at depth. 'simulated salinity profiles 
along Transect 3 (Figures B11 and B12) suggest little or no longitudinal change in the 
limit of salt intrusion in the James River as a result of any of the alternatives tested. Of 
course the longitudinal salinity distribution undergoes considerable change after a change 
in any of the three river inflow conditions and this effect greatly outweights that of any 
other condition tested. 

5.  Sedimentation - A previous investigation on the effects of 1-664 construction relative 
to sedimentation in the Lower JamesrRiver predicted only minor changes except for a 
possible reduction in shoaling within the Newport News Channel (Heltzel, 1988). The 
present investigation has little to add in terms of expected changes in sedimentation, or 
sedimentation potential, as a result of any of the alternatives examined. In response to 
Alternative 1, a minor increase in sedimentation potential was noted near shore at the 
northeast end of Hampton Flats. For Alternatives 2 and 9, a decrease in sedimentation 
potential is indicated in the vicinity of bridge structures north of Craney Island due to 
increased bottom tubulence. The HYSED3D model generally predicts that areas of high 
sedimentation potential are located predominately along the south shore of the James 
with very little sedimentation potential along the north shore. This result is consistent 
with the observed grain size characteristics of the bottom sediments (Nichols et al., 
1991). The sediments are consistently finer grained along the south shore and within the 
Elizabeth River entrance. 

Simulated release of tagged (labeled) sediment particles with characteristic grain sizes 
and settling velocities indicate that only medium silt (15.6 - 31.3 pm) and finer grained 
sediment has the capability of reaching the lower James from known source regions 
upstream under mean freshwater inflow conditions. However, considerably more of this 
sediment and some coarser-grained material as'well can be expected to reach the lower 
James during the tested condition of high river inflow. The change that occurs between 
extremes in the river inflow condition strongly outweighs the change due to structures 
added for any of the alternatives. 
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APPENDIX A 

Surface and Bottom Distributions of Current and Salinity 
during Maximum Flood and Maximum Ebb 

Shown in Plan View, Hampton Roads, VA 
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Figure Al. Current and salinity during maximum flood, apogean-neap tide, low river inflow. 
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Figure A2. Current and salinity during maximum flood, perigean-spring tide, low river inflow. 
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Figure A3. Current and salinity during maximum ebb, apogean-neap tide, low river inflow. 
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Figure A4. Current and salinity during maximum ebb, perigean-spring tide, low river inflow. 
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Figure AS. Current and salinity during maximum flood, apogean-neap tide, mean river idow. 
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Figure A6. Current and salinity during maximum flood, perigean-spring tide, mean river inflow. 
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Figure A7. Current and salinity during maximum ebb, apogean-neap tide, mean river inflow. 
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Figure A9. Current and salinity during maximum flood, apogean-neap tide, high river idow. 
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Figure A10. Chat aod s&&y doring maximum hod, p&gean-sprhg tide, high river m. 
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Figure Al l .  Current and salinity during m h u m  ebb, apogean-neap tide, high river inflow. 
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APPENDIX B 

Non-Tidal (Residual) Currents 
Position of Tidal Front 

Shown in Selected Areas and Transects, Hampton Roads, VA 



Figure Bl. Map showing location of Transect 1, Hampton Roads, VA. 

Note concerning model Transect 1 and surrounding area 

Transect 1 is a vertical cross-section at the entrance to the Elizabeth River at the position 
shown above. In addition to facilitating the computation of net tidal transport and tidal 
prism estimates for the Elizabeth River basin, its purpose is to display the component of 
the model predicted residual (tidally-averaged) current flowing south (north) through the 
cross-section and into (out of) the basin. The residual current often appears as an "eddy" 
or circular current and is important as a mechanism affecting the net transport of 
sediments and other water-borne materials moving through an estuary. Eddy motion is 
apparent in the following figures which show the model predicted residual current field 
first in plan view (Hampton Roads, Elizabeth River entrance) and then in cross-section 
(Elizabeth River entrance, Transect 1). 
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Figure B2, Tidally-averaged current and salinity: apogean-neap tide (upper 6 vanels) and 
perigean-spring tide (lower 6 panels), simulation c&np&s~& for~ase  case, 
Alternat~e 2, and Alternative 9, Hampton Roads, VA. 



Figure B3. Tidally-averaged current and salinity: apogean-neap tide (upper 6 panels) and 
perigean-spring tide (lower 6 panels), s i i a t i o n  comparisons for Base Case, 
Alternative 2, and Alternative 9, Elizabeth River entrance. 
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Figure B4. Residual current through Transect 1: Base Case, Apogean-Neap 
Tides (upper panel) and Perigean-Spring Tides (lower panel). 
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Figure B5. Residual current through Transect 1, Base Case and Alternative 1. 
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Figure B6. Residual current through Transect 1, Base Case and Alternative 2. 



Base CaselApogeanNeap Tide/Meen River Inflow - Transeot 1 

Reeldual Water 
Qln = 6.6638 10s m3 

Qout= -7.0456 106 mJ 
Qnet= -0.35173 I06 rn3 

-14 

East 1 
West 

-16 
0 500 lo00 1500 20M) meters 

Residual Current ( c M .  positive llpstte~m) 

Flaw - T r a n m  1 
0 

Resldual Water 
Qin = 4.342 106 m3 
aaN= -4.7074 10s mS 

24 -10 
W 

anst= -0.36642 106 m3 

Wsst 

0 ISW) 2000 meters 

Residual Current (cmls, p-itive upstream) 

Figure B7. Residual current through Transect 1, Base Case and Alternative 9. 



Figure B8. Location map stowing Transects 2 and 3, and the surface 
position of an observed tidal front, Hampton Roads, VA 

Note concerning model transects 2 and 3 

Transects 2 and 3 are used to display model output data in cross-section, providing a 
vertical 'slice' through selected areas of the model domain. The data include the 
component of the horizontal current flowing parallel to the face of the cross-section and 
the salinity within the cross-section during a specific phase of the tide. Transect 2 is 
oriented approximately perpendicular to a tidal front that forms south of Newport News 
Point during the early stages of flood current and shies its position to the west with time. 
The front marks the interface between higher salinity water beginning to enter the James , 
River across Hampton Flats and low salinity river water still exiting the James River in 
the main channel. Transect 3 is composed of several straight segments that follow the 
axis of the main channel. 



Base Case 

Figure B9. Current and salinity for mean tidal range, mean river inflow at Transect 2 
during early flood for Base Case (upper panel) and Alternative 9 (lower panel). 



FigureB10. T m e c t  2, mean &er MOW, showing k i o d  interfsce (red lines). 

Figure B 11. Transect 2, high river inflow, showing frontal interface (red lines). 
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Figure B12. Salinity, slack before ebb, Transect 3, low river inflow (upper panels), 
high river inflow (lower panels). 
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Figure B13. Salinity, slack before flood, Transect 3, low river inflow (upper panels), 
high river inflow (lower panels) 



APPENDIX C 

Sedimentation 

Sedimentation Potential and Tagged Particle Deposition 



Figure C1. Bottom sediment grain size distribution et al., 1991) 

Figure C2. Sedimentation Potential: Base Case, mean river inflow. 



Figure C3. Sedimentation potential: Base Case, Alternative 1,2 and 9, 
mean river inflow. 

Figure C4. Sedimentation potential: Base Case, Alternative 1,2, and 9, 
low river inflow. 



Figure C5. Sedimentation potential: Base Case, Alternative 1,2, and 9, 
high river inflow. 

Figure C6. S e d i i t  deposition after 67 tidal cycles: Base Case, mean river inflow. 
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Figure C7. Medium silt deposition &er 67 tidal cycles: mean river inflow. 
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Figure C8. Medium silt deposition aRer 67 tidal cycles: low river inflow. 



Figure 69. Medium silt deposition after 67 tidal cycles: high river inflow. 



Figure CS. Medium silt deposition'a~er 67 tidal cycles: bigh river inflew. 
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