
W&M ScholarWorks W&M ScholarWorks 

Reports 

8-1-1997 

VIMS Three-Dimensional Hydrodynamic-Eutrophication Model VIMS Three-Dimensional Hydrodynamic-Eutrophication Model 

(HEM-3D): Application of the Hydrodynamic Model to the York (HEM-3D): Application of the Hydrodynamic Model to the York 

River System River System 

G. M. Sisson 
Virginia Institute of Marine Science 

Jian Shen 
Virginia Institute of Marine Science 

Sung-Chan Kim 
Virginia Institute of Marine Science 

John D. Boon 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/reports 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Sisson, G. M., Shen, J., Kim, S., & Boon, J. D. (1997) VIMS Three-Dimensional Hydrodynamic-
Eutrophication Model (HEM-3D): Application of the Hydrodynamic Model to the York River System. 
Special Reports in Applied Marine Science and Ocean Engineering (SRAMSOE) No. 341. Virginia Institute 
of Marine Science, College of William and Mary. https://doi.org/10.21220/V5ZB3N 

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in 
Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact 
scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/reports
https://scholarworks.wm.edu/reports?utm_source=scholarworks.wm.edu%2Freports%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Freports%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


VIMS THREE-DIMENSIONAL
HYDRODYNAMIC-EUTROPHICATION MODEL (HEM-3D):

APPLICATION OF THE HYDRODYNAMIC MODEL TO THE YORK RIVER SYSTEM
 

  G. M. Sisson
Jian Shen

Sung-Chan Kim
John D. Boon
Albert Y. Kuo

Special Report in Applied Marine Science
and Ocean Engineering No.  341

School of Marine Science
Virginia Institute of Marine Science

College of Willi am and Mary
Gloucester Point, VA  23062

 
 

August 1997

http://www.vims.edu/physical/staff/mac.htm
http://www.vims.edu/physical/faculty/shen_j.html
http://www.vims.edu/physical/faculty/kim_sc.html
http://www.vims.edu/physical/faculty/kuo_ay.html
http://www.vims.edu/physical/faculty/boon_jd.html
http://www.vims.edu
http://www.wm.edu
http://www.vims.edu/physical/WEB/case_main.html
Hyperlinks in this Document
Text highlighted in green is an active link.  The major headings in the Table of Contents, the List of Appendices, and all references in the text to figures, tables, and appendices are links, even though the text is not highlighted.  Click the button beneath "File" up above to display a list of bookmarked figures and tables.  Click in the upper left corner to reduce this window to an icon, or click on the bar at the top and drag to move it.



ii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
    
    I.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
           a)  Design features of the HEM-3D model
           b)  Structure of the HEM-3D model
           c)  Need for a high-resolution grid for the York River system
           d)  Scope of this report 

  II.  Description of the prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
            a)  Characteristics of the York River system 
            b)  Supporting observational data
                   1) Tide gauge records - VIMS and NOAA
                   2) Salinity records
                   3) Velocity records - current meter deployment
            c) Analysis of field observation data
                   2) Temporal variations at fixed locations - time series
                   3) Use of HAMELS analysis
                    4) Spatial variations at fixed points in time - synoptic data
            d)  Related observational studies

   III.  Pre-processing of the HEM-3D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
           a)  Grid selection criteria - choice of timestep and gridlength
           b)  Capabilities of the grid generator
           c)  Grid generation
                  1)  Cartesian portion  (York mainstem)
                  2)  Curvilinear portion (tributaries)
                  3)  Merged Cartesian-curvilinear grid
           d)  Depth interpolation
           e)  Grid generation output needed as hydrodynamic input 
           f)  Treatment of marsh areas

   IV.  Execution of the HEM-3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
           a)  Setup needed to run the model
           b)  Boundary condition specification
                  1)  Tidal height specification at mouth of prototype
                  2)  Freshwater discharge input into 2 upstream tributaries
           c)  "Spinup" procedures and initial checkpoints



iii

                  1)  Initial conditions of model and phase directionality
                  2)  Salinity initialization and smoothing
                  3)  Restarting the model from a previous run

     V.  Validation of the HEM-3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
           a)  Calibration 
                   1) Order of parameters to calibrate
                   2) Tidal calibration 
                   3) Salinity calibration
           b) Verification
                   1) Selection of simulation periods for verification
                   2) Specification of initial conditions
                   3) Specification of boundary conditions
                   4) Techniques for replacement of missing portions of
                                 boundary condition data
                   5) Comparison of surface elevation, current, and salinity
  
    VI.  Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
          
     References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
            



iv

List of Tables

Table 1.  Tidal constituent amplitudes (meters) and phases (hours) for an 8-year period 
at Gloucester Point, Virginia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 2.  Available observation data for tidal elevations - 
VIMS Physical Sciences Department. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 3.  Comparison of predicted mean range from NOAA 
Tide Tables versus VIMS gauge data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 4.  Available time series data for salinity (1988-1989). . . . . . . . . . . . . . . . . . . . . . . . 17

Table 5.  Available observation data for salinity - VIMS slackwater surveys (1989). . . . . . 19

Table 6.  Available current meter data (1988-89). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 7.  Illustration of limitations to high spatial resolution. . . . . . . . . . . . . . . . . . . . . . . . 22

Table 8.  Files required to run the HEM-3D model code . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 9 . Comparison of observed versus predicted amplitudes and phases
for the 7-constituent boundary forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

 
Table 10.  Mean, mean absolute, and root-mean-square differences between time series of

observed data and HEM-3D predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



v

List of Figures

Figure 1.  Components of the HEM-3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.  Shoreline of the York, Pamunkey, and  Mattaponi Rivers . . . . . . . . . . . . . . . . . . . 6

Figure 3.  Locations of tidal height measurements used in this study . . . . . . . . . . . . . . . . . . 14

Figure 4.  VIMS slackwater survey stations for the York mainstem . . . . . . . . . . . . . . . . . . 18

Figure 5.   Moored current meter stations (1988-1989). . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 6.  The Cartesian portion of the York River grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 7.  The curvilinear portion of the York River  grid. . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 8.  The merged Cartesian-curvilinear grid for  the York River. . . . . . . . . . . . . . . . . 29

Figure 9.  Comparison of tide range from HEM-3D model output, VIMS gauge data,  and NOAA
Tide Table data at available York River stations.  Model forced with mean tide only. 41

Figure 10. Comparison of high and low tide phase lags relative to Gloucester Pt. from the HEM-
3D model output. VIMS gauge data, and NOAA Tide Table data at available York River
stations.  Model forced with mean tide only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

 
Figure 11.  Vector plot of observed versus predicted amplitudes and phases of tidal

constituents at selected locations in the York River . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 12. Comparison of vertically averaged salinities from VIMS slackwater surveys and HEM-
3D predictions (both tidal mean & tidal maximum) 
for June 12, June 27, July 12, and July 20, 1989. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 13. Comparison of vertically averaged salinities from VIMS slackwater surveys and
HEM-3D predictions (both tidal mean & tidal maximum)

 for July 27, August 11, August 29, and September 6, 1989. . . . . . . . . . . . . . . . . . 45

Figure 14. Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D
 predictions for both June 12 and June 27, 1989. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 
Figure 15.  Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D

predictions for both July 12 and July 27, 1989. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 



vi

Figure 16.  Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D
predictions for both August 11 and August 29, 1989. . . . . . . . . . . . . . . . . . . . . . . 48

 
Figure 17.  Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D

predictions for September 6, 1989. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 18a.  Regression analysis of discharge from 2 Mattaponi USGS stations:
Bowling Green, lagged by 1 day (x-axis) and Beaulahville (y-axis) for daily
discharges occurring between May 1 and September 30 for years 1978-1987. . . . . 50

 
Figure 18b.  Regression fit shown plotted against actual gauge data, 05/01/90-09/30/90 . .  50

Figure 19.  Regression fit of Gloucester Pt. hourly tidal heights (lagged by 15 minutes)
plotted against Jenkins Neck (north side of river mouth), 06/01-09/13/89 . . . . . . . . 51

 
Figure 20a.  Comparison of hourly observed tidal heights against HEM-3D predictions

at Sweet Hall (Pamunkey), 05/02/86 - 05/27/86 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 
Figure 20b.  Comparison of hourly observed tidal heights against HEM-3D predictions

at Belleview (York mainstem), 09/01/93-09/26/93 . . . . . . . . . . . . . . . . . . . . . . . . . 52
 
Figure 20c.  Comparison of hourly observed tidal heights against HEM-3D predictions

at West Point (confluence area), 09/01/93-09/26/93 . . . . . . . . . . . . . . . . . . . . . . . .  52
 
Figure 21.  Comparison of observed velocity against HEM-3D predictions at 3.7 meters depth

at Allmondsville, 12/07/89 - 01/08/90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
 
Figure 22.  Comparison of observed velocity against HEM-3D predictions at 7.7 meters depth

at Allmondsville, 12/07/89 - 01/08/90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 
Figure 23.  Comparison of observed velocity against HEM-3D predictions at 1.7 meters depth

at Claybank, 12/07/89 - 01/08/90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
 
Figure 24.  Comparison of observed velocity against HEM-3D predictions at 7.7 meters depth

at Claybank, 12/07/89-01/08/90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
 
Figure 25.  Comparison of observed salinities against HEM-3D predictions at both 7.7 and 3.7
            meters depth at Claybank and Allmondsville, 12/07/89 - 01/10/90. . . . . . . . . . . . . 57
 
Figure 26.  An example of the longitudinal representation of the model-generated salinity field in

the York River . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
 



vii

Figure 27a.  Color-enhanced contours of the vertical mean salinity, shown from the mouth of
the York to West Point (a means of visualizing the limit of salt water intrusion) . . . 62

Figure 27b.  The potential energy needed to mix the water column (used as an indicator for the
degree of stratification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



viii

    List of Appendices

Appendix A.  Time series of tidal elevations at Gloucester Point (1986 - 1993) and
at locations of VIMS gauge deployments . . . . . . . . . . . . . . . . . . . . . . . . . A-1 to A-24

Appendix B.  HAMELS analyses of tidal constituents . . . . . . . . . . . . . . . . . . . . . . B-1 to B-3

Appendix C.  Tidal constituent error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 to C-3

Appendix D.  Partial listings of required input files for grid generation . . . . . . . . . . D-1 to D-6

Appendix E.  Partial listings of required input files for the HEM-3D model run . . E-1 to E-14



ix

ACKNOWLEDGEMENTS

The authors are indebted to Dr. John M. Hamrick, developer of the Environmental

Fluid Dynamics Code (EFDC) which provides the hydrodynamic base code of the VIMS three

dimensional Hydrodynamic-Eutrophication Model (HEM-3D). We owe special thanks to Drs.

Carl T. Friedrichs, David A. Evans, Jerome P.-Y. Maa, ZhaoqingYang and Mr. William

Stockhausen for providing critical comments and many helpful suggestions during the long

process of model calibration and verification for the York River system (York, Mattaponi and

Pamunkey Rivers) in Virginia.  Messrs. Steven Snyder and Sam Wilson provided invaluable

assistance through their participation in the field program which collected the observational

data used in this project and Ms. Nancy Wilson provided assistance in data processing and

archiving.

We are especially grateful to Dr. Robert J. Byrne, former Director for Research and

Advisory Services at VIMS, for providing guidance and for defining the goals of the modeling

initiative through which the development of HEM-3D and other models has been made

possible. 



1

I.  Introduction

Ia.  Design features of the HEM-3D model 

     The Environmental Fluid Dynamics Code (EFDC; Hamrick, 1992) constitutes the

hydrodynamic portion of the VIMS three dimensional Hydrodynamic-Eutrophication Model

(HEM-3D).  EFDC was developed and refined at the Virginia Institute of Marine Science

(VIMS) over the period 1988-1995 by Associate Professor John M. Hamrick.  It is a multi-

parameter finite difference model representing estuarine flow and material transport in three

dimensions.  Whereas EFDC resembles the widely used Blumberg-Mellor model (Blumberg

and Mellor, 1987) in both the physics and the computational scheme, it has some unique

features which are noteworthy.  The code is written in standard FORTRAN 77 and is highly

portable to UNIX or DOS platforms.  It is computationally efficient due to the programmer's

avoidance of logical operators, and it  economizes on required storage by storing only active

water cell variables in memory.  This code was written to be highly vectorizable, anticipating

upcoming developments in parallel processing.  Due to a well-designed user interface, the

internal source code remains the same from application to application.  The HEM-3D model

can be quickly converted to a 2D model either horizontally  or vertically for preliminary

testing. The model's most unique features include the mass conservative scheme which it uses

for drying and wetting in shallow areas. It also incorporates vegetation resistance

formulations (Hamrick,1994).  The most valuable feature is the model's ability to couple with

both water quality and sediment transport models.

     The HEM-3D model uses a stretched (i.e., "sigma") vertical coordinate system and a

curvilinear-orthogonal horizontal coordinate system to solve vertically hydrostatic, free
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surface, variable density, and turbulent-averaged equations of motion.  This solution is

coupled with a solution of the transport equations for turbulent kinetic energy, turbulent

length scale, salinity and temperature.  A staggered grid provides the framework for the

spatial finite differencing (second order accurate) used by the numerical scheme to solve the

equations of motion.  Integration over time involves an internal-external mode splitting

procedure separating "the internal shear or baroclinic mode from the external free surface

gravity wave or barotropic mode" (Hamrick, 1995).

Ib. Structure of the HEM-3D Model.

     The HEM-3D model is structured to permit the interfacing of four separate model

components as shown in figure 1.  The fundamental component is a hydrodynamic

model (EFDC) simulating water surface elevation, current speed and direction, water

salinity and temperature over a domain that is primarily three-dimensional (grid cells

arranged in three spatial dimensions) but capable of representation in two-dimensions

where necessary (e.g., narrow tributaries with channels of one cell width but more than

one cell in both the vertical and longitudinal directions).  A two-dimensional application

can have the added complexity of either a marsh area or a wet-dry littoral margin at points

along either side of the channel where lateral flows are handled as storage with no

longitudinal transport of momentum.  Wind stress and momentum transfer can also be

represented as input at the air-water interface with salinity and freshwater discharge

handled as input at the appropriate longitudinal boundary.  Tidal input can be represented

at the downstream open boundary by either a specific time history of water level or a

simulated tide based on one or a combination of multiple tidal constituents of known
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amplitude and phase.   

     Water quality is simulated through a coupled eutrophication model incorporating up

to 21 state (scalar) variables in the water column.  This model component may also be

used to represent specific chemical processes (sediment diagenesis) near the sediment-

water interface.  A coupled suspended sediment model utilizes bottom shear stress

criteria to predict cohesive or granular sediment entrainment at the bed along with its

turbulent suspension and subsequent transport in the water column.  Other transport

models are currently being coupled with the hydrodynamic model that predict the

movement and distribution of  a scalar quantity (e.g., mass concentration of marine larvae,

toxins or dredged material).  These scalars may be modeled as either conservative or non-

conservative quantities that are either coupled or de-coupled with the fluid (e.g., sediment

particle with finite settling velocity).  In HEM-3D, scalar quantities are usually introduced

into the model domain as a point source and then followed over a time scale of hours and

days. 

 Ic.  Need for a high resolution grid for the York River system

      A map of the shoreline of the York River is shown in Figure 2.  Due to the elongation

of this water body, the ratio of shoreline to surface area is relatively large.  For this reason,

the distortion of results due to boundary effects introduced by using a coarser  (e.g, 500

meter) grid is significant.

     Certain detailed features of the shoreline also dictate the need for a higher resolution. 

For instance, at Gloucester Point, even using the present 250 meter gridlength, the

transect under the Coleman Bridge is represented by only three cells.  Further upstream,
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south of West Point, the channel is aligned along the North bank with very shallow

regions just to the south.  To represent properly the transverse gradient, throughout the

lower York, a high resolution is required.

 Id.  Scope of this report

     This report will attempt to provide a detailed document for the full calibration and 

verification of the HEM-3D model using independent data sets.  Effort was directed

primarily at demonstrating the ability of the model to reproduce tidal height and velocity,

and at the simulation of the spatial, as well as temporal, distribution of salinity.  The

important feature of the York system whereby salinity is well-mixed on spring tides and

stratified on neap tides was also demonstrated.  
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Figure 1.  Components of the HEM-3D model.



Figure 2. Shoreline of the York, Pamunkey, and Mattaponi Rivers 
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              II.  Description of the prototype

IIa.  Characteristics of the York River system

     The York River system fits  the category of a  "partially mixed" estuary according to the

classification scheme of Pritchard (1952). It is tidally dominated in the sense that the tidal

current is of  an order of magnitude larger than the residual flow.  The propagation of the tide

through the York River is unique in that at West Point, the location at which the two major

tributaries (the Pamunkey and the Mattaponi) converge, the highly non-linear features of the

tidal wave begin to manifest themselves as one moves upstream.  These are perhaps best

illustrated by the significantly larger contributions of the M4 and M6 overtides at West Point

and points upstream (see Appendix B).

     One characteristic of the salinity distribution in the York River system is that large

portions of the mainstem are relatively well-mixed on spring tides and stratified on neap tides

(see Haas, 1977).

IIb.  Supporting observational data

IIb1.  Tide gauge records  - NOAA and VIMS  

     Tidal elevation has been measured continuously at Gloucester Point for the past sixteen

years by a VIMS-NOAA cooperative tide station.  For purposes of this study, the eight-year

period 1986 - 1993 was selected.  Table 1 shows a summary of the tidal constituent variation

through these eight one-year periods as computed by the VIMS tidal analysis program

HAMELS (Boon and Kiley, 1978).

     Additionally, the VIMS Physical Sciences Department has maintained gauges at several

locations at various times along the York for periods of up to several months.   The locations
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of VIMS tide gauges are shown in Figure 3 and the summary of available data is presented

in Table 2.

     The tide range measured by the VIMS Physical Sciences Department was compared to the

NOAA Tide Tables at available locations throughout the York River system,  as shown in

Table 3.  Since VIMS measurements are limited to several months duration only, the

calculated tidal ranges are normalized with the long-term mean range of 0.73 m at Gloucester

Point.  In this comparison, one must consider factors which may account for reasonable

differences, such as durations of measurements and averaging techniques.     

IIb2.  Salinity records

      There are two types of salinity records: time series data at fixed mooring stations and

slack water survey data.  Time series of salinities are available from some current meters

equipped with conductivity and temperature sensors.  Available salinity records of this type

are shown in Table 4.  Slackwater survey stations for the York mainstem are shown in Figure

4.  A list of available dates is shown in Table 5.

IIb3.  Velocity records - current meter deployments

     Some recent current meter deployments by the VIMS Physical Sciences department are

shown in Table 6 for locations shown in Figure 5.  

IIc1.  Analysis of field observation data

     Once the physical dimensions of the geometry (shoreline configuration) and bathymetry

of the prototype have been properly represented, it is important to process these data for the

model state variables (i.e., tidal height, velocity, and salinity) not only for adequate model

boundary condition specification, but also for comparison of model results to field

observations. 
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IIc2.  Temporal variations at fixed locations - time series

     Most field observation information is from the temporal change of a variable measured at

a fixed location, often referred to as a “time series”.  Some examples of tidal elevation time

series at various locations in the York River are shown in Appendix A.

IIc3.  Use of HAMELS analysis  

     The time variation of the water level at a given location can be expressed as the sum of a

set of sinusoidally varying terms called the tidal constituents.  Tidal constituent amplitudes

and phases were determined using the harmonic analysis method of least squares (HAMELS).

The principal lunar semi-diurnal constituent,  M2, has a period of approximately 12.42 hours

and accounts for the basic semi-diurnal effect of the moon on the tide.  The amplitude of this

constituent accounts for the largest part of the tidal range in the York.  The corresponding

constituent representing the semi-diurnal effect of the sun is called S2 and has a period of

exactly 12 hours.  Because of the difference in periods, M2 and S2 tides periodically reinforce

and oppose one another through a progressive change in phase.  The resultant effect is that

the range of the tide varies periodically in time from larger ranges (spring tides) to smaller

(neap tides). The period of  a spring/neap cycle is 354.86 hours (14.786 days) and can be

calculated from the two fundamental M2 and S2 periods.

Additional features of the tidal signature are accounted for by other constituents with

various periods which depend upon the relative motions of the earth, moon, and sun.  For

example, changes in declination of the lunar orbit relative to the equatorial plane of the earth

are responsible for observed differences in the heights of sucessive high and/or low waters.

Two lunar diurnal tidal constituents, K1 and O1, are needed to account for this monthly
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variation in diurnal inequality.

Each tidal constituent is characterized by an amplitude and a phase.  For a given location

the values of these parameters are effectively constant.  It is this property that enables tide

predictions to be calculated.  The tidal constants are estimated by analysis of observed tide

records.  Originally, HAMELS was developed for the analysis of a time series of 29 days

duration (697 hours) of continuous hourly observations.  The algorithm was later modified

by Hamrick (1991) to treat a time series of arbitrary duration which also could contain some

missing observations.  However, it should be noted that a sequence of at least 29 days in

length is commonly used to resolve the major constituents because M2 and S2 complete one

cycle in lunar phases in that time.  The application of HAMELS is briefly described in

Appendix B.

     Characterization of the water level variation in terms of the amplitude and phase of the

significant tidal constituents enables more detailed checks to be made between observation

and model predictions beyond comparison of mean ranges and high/low water time lags. In

the York River system, seven constituents account for almost all the observed tidal variation

due to deterministic astronomical causes.  The model is excited with a tidal signal of seven

constituents with amplitude and phase adjusted to produce a tidal variation at Gloucester

Point which has amplitudes and phases consistent with those observed at this station. Because

of the large amount of data available at Gloucester Point, the tidal constants are known with

considerable accuracy.  The water level predictions for various stations are then analyzed with

HAMELS and the resulting tidal constants compared with those obtained from analysis of

actual observations at those stations.

The tidal constants as determined by HAMELS are, like any quantity computed from
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observational data, estimates of the unknown true values of the parameters.  Consequently

it is important to obtain some idea of how close to the true value an estimate is likely to be

either in the form of confidence intervals or standard errors.  The HAMELS program does

not currently provide these, however, the least squares method is effectively identical to a

multiple regression where the tidal constants are related to the regression parameters.  The

regression procedure in most statistical software packages provide estimates for the standard

error in the regression parameters.  The tidal records were analysed using the commercial

MINITAB ® package. The method is illustrated in Appendix C.

Plots of the residuals (observed height minus predicted height) are informative.  Normally

the difference is attributable to meteorological effects (e.g., wind) and the effect of storm

events is identifiable.  The general appearance of a residual series is that of a stochastic time

series.  The estimation of the tidal constants is not seriously affected, although large residuals

can result in an over-estimate of the errors in parameters. Occasionally a residual series will

show a large sinusoidal component; this is always due to the presence of timing errors in the

record.  The residual series allows one to locate and correct the error.  Re-analysis of the

corrected series should no longer show a residual series with the sinusoidal component.

IIc4.  Spatial variations at fixed points in time - synoptic data

     Often field surveys are designed to measure the change of a parameter spatially

(longitudinally, transversely, or through the water column).  Two or more gauges (or meters)

with simultaneous recordings can provide a measure of this spatial change.  The slackwater

surveys of the VIMS Physical Sciences Department are designed to collect salinities at

various  locations (and depths) at essentially the same stage of the tide, allowing a "snapshot"

of the change of this parameter longitudinally and through the water column.  
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    IId.  Related observational studies

     The York River HEM-3D Model provides an opportunity for other investigators to test

the impact of various modes of tidal, estuarine and river flow on management and science

issues related to the York River.  The York River is presently the site of several major

ongoing research projects at the Virginia Institute of Marine Science.  As of the summer of

1996, two large projects funded by the Navy are examining biological, physical and chemical

processes governing material and contaminant flux across the sediment-water interface of the

York River.  Principal Investigators on these Navy projects include Drs. Schaffner, Wright

and Canuel.  Two large projects funded by the Commonwealth of Virginia are also presently

focused on the York River.  The York River Regional Ecosystem project, headed by Dr.

Wetzel, integrates chemical, geophysical and biological/ecological information about

large-scale ecosystems using the techniques of computer simulation modeling.  The York

River Contaminant and Sediment Transport Study, headed by Dr. Kuo, aims to observe and

model transport of fine sediment and associated contaminants.  Many other scientists at VIMS

are working on smaller studies of the York River or larger studies of the Chesapeake Bay

which include the York River.  For example, Dr. Orth oversees a large project that monitors

the distribution of submerged aquatic vegetation throughout the Chesapeake Bay and its

tributaries.  Other examples include: Dr. Hershner's group, which facilitates resource planning

for the York River Basin; Dr. Austin, who heads regular finfish surveys of the York River;

Dr. Van Montfrans' group, which is studying York River Blue Crab distribution; and Dr.

Boon who is examining hydrodynamics and sediment transport in the York.
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const
.

1986 1987 1988 1989 1990 1991 1992 1993 Vect
Avg

M2 0.336
3.86

0.336
3.85

0.335
3.84

0.341
3.81

0.341
3.76

0.343
3.75

0.342
3.79

0.349
3.75

0.340
3.80

S2 0.064
-2.31

0.063
-2.29

0.064
-2.31

0.065
-2.30

0.064
-2.34

0.063
-2.38

0.062
-2.27

0.064
-2.35

0.064
-2.32

N2 0.074
-1.79

0.070
-1.92

0.068
-2.13

0.075
-2.03

0.076
-2.18

0.074
-2.23

0.074
-2.24

0.081
-2.17

0.074
-2.09

K1 0.056
7.59

0.055
7.71

0.056
7.29

0.050
7.06

0.056
7.15

0.052
6.79

0.049
6.92

0.048
6.82

0.053
7.18

M4 0.005
-2.90

0.005
-2.73

0.004
-2.83

0.004
-3.00

0.004
-2.93

0.005
-2.90

0.004
-3.09

0.005
-3.05

0.004
-2.92

O1 0.042
-0.13

0.045
0.22

0.041
0.29

0.041
0.45

0.043
0.78

0.039
0.81

0.039
1.07

0.035
1.28

0.040
0.57

M6 0.004
-1.29

0.004
-1.29

0.004
-1.27

0.004
-1.34

0.004
-1.35

0.004
-1.45

0.004
-1.39

0.004
-1.41

0.004
-1.35

 

          *  Amplitudes and phases are based on HAMELS analysis of

             hourly data.  Phases are relative to a time origin arbitrarily set

             at 0000 hours (midnight) on January 1, 1989.

          Table 1.  Tidal constituent amplitudes (meters) and phases (hours)

                          for an 8-year period at Gloucester Point, Virginia



Aylett I W allcerton I 
Indian 

...._ ___ ..... J : Tide gauge location 

I Allmondsville I 
1 aaybank 1 

Figure 3. Locations of tidal height measurements used in this study 
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Location Start date (time)
Model time (hrs) *

End date (time)  No.   
  of    
 obs.

Jenkins Neck 06/01/89 (1000) 09/13/89 (1300) 2500

Goodwin Islands 07/21/93 (1200) 08/29/93 (2300)  949

Claybank 10/27/89 (1100) 01/17/90 (1300) 1971

Allmondsville 06/09/93 (1100) 08/31/93 (0900) 1587

09/01/93 (0900) 10/18/93 (1000) 1130

Belleview 06/09/93 (0800) 08/31/93 (0900) 1148

08/31/93 (1000) 10/18/93 (0900) 1152

West Point 07/05/93 (2200) 08/03/93 (2200)  697

09/01/93 (1000) 10/18/93 (0900) 1128

Sweet Hall (Pam) 05/02/86 (1200) 06/01/86 (1700)  654

10/13/86 (1100) 11/20/86 (2100)  923

Elsing Green (Pam) 01/11/89 (1400) 04/25/89 (1400) 2497

Indian Reservation        
          (Mat)

10/03/96 (1200) 05/15/97 (0800) 5364

Walkerton (Mat.) 08/01/96 (1000) 03/18/97 (0900) 4862

Aylett (Mat.) 08/01/96 (1500) 03/31/97 (0900) 5489

 Table 2.  Available observation data for tidal elevations -VIMS Physical Science Department
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Station Distance from the
Mouth (km)

NOAA Tide Tables
mean range (m)

VIMS gauge data
   mean range  (m)

Quarter Point 0.0 0.70

Goodwin Islands  1.0 0.67

Gloucester Pt. 10.9 0.73 0.73

Mumford Isl. 13.2 0.76

Penniman Spit 19.0 0.76

Cheatham Annex 20.2 0.76

Claybank 26.6 0.85 0.82

Allmondsville 31.5 0.85 0.79

Roane Point 39.5 0.85

Belleview 45.0 0.85

West Point 55.4 0.85 0.85

Sweet Hall (Pam) 80.5 0.74

Sweet Hall Landing
(Pam)

83.5 0.82

White House (Pam) 105.1 0.91

Elsing Green (Pam) 109. 0.91

Northbury (Pam) 118. 1.01

Wakema (Mat) 80.4 1.04

Indian Reservation (Mat) 83.0 0.93

Walkerton (Mat) 98.9 1.19 1.01

Aylett (Mat) 114.2 0.38

Table 3.  Comparison of predicted mean range from NOAA Tide Tables vs VIMS                          
               gauge data.
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Location Station Depth Date Range

YR mouth, mid-channel  '0.0'  1.5 m 07/19-08/15/88
08/30-09/14/88

YR mouth, mid-channel  '0.0  6.5 m 07/19-09/14/88

YR mouth, mid-channel  '0.0' 11.5 m 07/19-09/14/88

YR mouth, mid-channel  '0.0' 15.7 m 07/19-08/02/88

Upriver, mid-channel  '3.9'  1.5 m 07/19-09/14/88

Upriver, mid-channel  '3.9'  6.5 m 08/02-09/14/88

Upriver, mid-channel  '3.9' 11.5 m 08/30-09/14/88

Upriver, mid-channel  '3.9' 15.7 m 07/19-08/15/88
08/30-09/14/88

YR mouth, mid-channel  'RB'  1.0 m 07/06-09/01/89

YR mouth, mid-channel  'RB'  6.0 m 07/13-09/02/89

YR mouth, mid-channel  'RB' 11.0 m 07/06-09/06/89

YR mouth, mid-channel  'RB' 16.0 m 07/06-09/06/89

YR mouth, south channel  'TUE'  6.0 m 07/13-09/06/89

YR mouth, south channel  'TUE' 10.0 m 07/06-09/06/89

Claybank 3.7 m 11/09/89-01/10/90

Claybank 5.7 m 11/09/89-01/10/90

Claybank 7.7 m 11/22/89-01/10/90

Allmondsville 1.7 m 11/09/89-12/07/89

Allmondsville 3.7 m 11/09/89-01/09/90

Allmondsville 5.7 m 11/09/89-01/09/90

Allmondsville 7.7 m 11/09/89-01/09/90

Table 4.  Available time series data for salinity (1988-89).  



Figure 4. VIMS slackwater survey stations for the York mainstem 

A • 
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Map Key
(see
Figure 4)

Distance
upstream

(km)

Total
depth
(m)

VIMS Slackwater survey sampling dates (1989)

5/30 6/12 6/27 7/12 7/20 7/27 8/11 8/29 9/06 9/15

A 0.00 19 x x x x x x x x x x

B 3.90 23 x x x x x x x x x x

C 6.58 17 x x x x x x x x x x

D 8.76 16 x x x x x x x x x x

E 12.09 19 x x x x x x x x x x

F 15.10 19 x x x x x x x x x

G 19.21 19 x x x x x x x x x x

H 23.60 12 x x x x x x x x x x

I 29.26 11 x x x x x x x x x x

J 36.95 9 x x x x x x x x

K 43.00 8 x x x x x x x x

L 50.47 6 x x x x x x x x

Table 5.  Available observation data for salinty - VIMS slackwater surveys (1989).
               Sampling occurred at 1 meter intervals over the total depth.
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Location Depths Date Range

  '0.0'   1.5 m 07/19-09/14/88

  '0.0'   6.5 m 07/19-09/14/88

  '0.0'  11.5 m 07/19-09/14/88

  '0.0'  15.7 m 07/19-09/14/88

  '3.9'   1.5 m 07/19-09/14/88

  '3.9'   6.5 m 07/19-09/14/88

  '3.9'  11.5 m 07/19-09/14/88

  '3.9'  15.1 m 07/14-09/14/88

   'N2'   1.0 m 07/06-09/07/89

   'N2'   7.0 m 07/06-09/07/89

   'RB'   1.0 m 07/06-09/07/89

   'RB'   6.0 m 07/06-0907/89

   'RB'  11.0 m 07/06-09/07/89

   'RB'  16.0 m 07/06-09/07/89

   'TUE'   1.0 m 07/06-09/07/89

   'TUE'   6.0 m 07/06-09/07/89

   'TUE'  10.0 m 07/06-09/07/89

Claybank 1.7 m 11/09/89-01/10/90

Claybank 3.7 m 11/09/89-01/10/90

Claybank 5.7 m 11/22/89-01/10/90

Claybank 7.7 m 11/09/89-01/10/90

Allmondsville 1.7 m 11/09/89-12/07/89

Allmondsville 3.7 m 11/09/89-01/09/90

Allmondsville 5.7 m 11/09/89-01/09/90

Allmondsville 7.7 m 11/09/89-01/09/90

     Table 6.  Available current meter data (1988-1989).



Figure 5. Moored current meter stations (1988-89) 
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          III.  Pre-processing of the HEM-3D model

IIIa.  Grid selection criteria

     Before the model is implemented, decisions must be made about what spatial and temporal

scales are desired and feasible, which portions of the prototype need to be represented as fully

three-dimensional, and what boundary condition and geometry information are available.

     As an example of the consequences of such decisions we consider choice of spatial

resolution.  Doubling the resolution in the horizontal requires four times the number of cells,

and due to the stability criterion, the timestep must be halved so that the number of timesteps

is doubled.  As a result, the computational requirements increase eight-fold, as shown in Table

7 below:

                                  Cartesian Portion - Assuming constant iterations/timestep

Gridlength Approximate # of

horizontal cells

Optimal

timestep

Tidal Cycles per

CPU hour- HP 735

125 m 12000 30 sec  0.125

250 m  3000 60  sec 1

500 m   750 120  sec 8

               Table 7.  Illustration of limitations to high spatial resolution.

     In the present implementation of the VIMS HEM-3D model, it was decided that the 3D

portion extend from the York River mouth upstream to West Point, and that a vertical 2D

representation was sufficient in the Pamunkey and Mattaponi tributaries.
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     In the transition area in the vicinity of West Point, where the curvilinear portion is 2D in

the horizontal, the grid coordinates produced by the grid generator must be adjusted slightly

by aligning the grid as much as possible to ensure orthogonality.

IIIb.  Capabilities of the grid generator 

     The VIMS grid generator code, GEFDC, is a pre-processor system which can generate

either Cartesian or curvilinear-orthogonal grids using methods outlined by Mobley and

Stewart (1980) and Ryskin and Leal (1983).  Also, before the HEM-3D model is executed,

bathymetry data digitized from NOAA charts or other sources are processed through an

interpolation scheme to generate the depth at each cell location.  Enhancements to the pre-

processor were developed by Hamrick (1996) and imbedded into the HEM-3D main program.

These include the use of triangle half-cells, each using one of four possible orientations, to

provide a better fit of the grid to the prototype shoreline.

IIIc.  Grid generation

IIIc1.  Cartesian portion  (York mainstem)

     The two fundamental types of grids used in numerical modeling, curvilinear and Cartesian,

are both represented in the York River application.  The VIMS grid generation code

processes both types, depending on input file designations.  The model grid is actually

composed of two merged  "sub-grids", one of each type.

     The Cartesian portion, from the river mouth to West Point, is shown in Figure 6.  The

corresponding grid generation input file is shown in Appendix D, page D-4.  A resolution

gridlength of 250 m was selected for the Cartesian portion.  A small FORTRAN program

(‘gengrid.f’) used to specify the Cartesian grid origin and generate I,J,X,Y data (where I,J are
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the grid cell indices in the east and north directions respectively, and X,Y are the Universal

Transverse Mercator  (UTM)  projection coordinates)  is shown on page D-3.

IIIc2. Curvilinear portion (tributaries)

     The curvilinear portion, used from the convergence of the tributaries at West Point to the

respective "head of tide" locations of both tributaries, is shown in Figure 7, with its input file

on page D-5.  To construct this portion of the grid, it was necessary to digitize the shoreline

boundary surrounding this portion at discreet spatial intervals corresponding to the pre-

selected gridlengths.

IIIc3.  Merged Cartesian-curvilinear grid

     The merged grid is shown in Figure 8 and the input file required for the fully merged grid

shown on page D-6.  One important step in the grid merger is to concatenate the I,J,X,Y

output from the two sub-grids (i.e., ‘gridext.out’) to form the input file for the merged grid

(‘gridext.inp’).  At this point, the model bathymetry is generated through interpolation.  This

is done by simply setting parameter ISIDEP to 1 in Card 11 of the input file (see page D-6),

and providing the proper X,Y,Z data in file ‘depthdat.inp’.

IIId.  Depth interpolation

     A depth interpolator residing in the grid generator program was used at the time of

sub-grid merger to convert existing soundings data into depths at the derived cell locations.

This interpolator uses an inverse distance squared weighting to derive model cell depths from

soundings data.

     Due to the scarcity of soundings data for the York (2460 points) relative to the chosen

resolution for this application (3310 cells in the horizontal), a decision was made to enhance
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these soundings data by adding contour values digitized from the NOAA charts at 6, 12, 18,

24, 30 and 36 foot contour intervals.

     Preliminary attempts at calibration caused concern over the lack of agreement between

cross-sectional areas reported by Hyer et. al (1971) and those derived from the depth

interpolator in the tributaries (i.e., the 2D portion).  A test using hydraulic depths derived by

matching model cross-sectional area with measured transect data (and interpolated areas at

model cell locations in between) caused a pronounced improvement in agreement between

tidal range model prediction and observations in the region upstream.  It was concluded that

the grid generator's depth interpolator scheme is not appropriate for the 2D portion of the

model.

IIIe.  Grid generation output needed as hydrodynamic input

     The grid generator produces two files which are required input to the hydrodynamic

portion of HEM-3D.  These are as follows:

       1) ‘dxdy.out’ - cell dimensions, other parameters - rename to ‘dxdy.inp’ for HEM-3D

       2) ‘lxly.out’ - cell locations, orthogonality - rename to ‘lxly.inp’ for HEM-3D 

IIIf.  Treatment of the marsh areas

    The disjoint cells grouped in the rectangle shown to the southwest of West Point on page

D-1 represent the 'marsh cells'.  For the HEM-3D model, these are simply used for water

storage in the 2D section.  Although mass exchange is allowed between marsh and channel,

no exchange occurs between adjacent marsh cells. 

     A survey of the Pamunkey and Mattaponi revealed 13 marsh areas varying  in size from
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0.25 to 1.5 square kilometers.  These were measured for area and given an identification

number.  Each channel cell in the model's 2D portion was assigned either 0, 1, or 2 marsh ID's

depending on whether the cell had no marshes on either side, one on either the left or the

right, or marshes on both sides.  Each marsh area was distributed among the channel cells

sharing it, and an appropriate area for each "marsh cell" was thereby assigned.  Mapping of

the channel cells to the 200 marsh cells is performed in HEM-3D input file ‘modchan.inp’.
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Figure 6.  The Cartesian portion of the York River grid.  The square grids are 250 meters on a       
                 side.
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Figure 7.   The curvilinear portion of the York River grid.
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Figure 8. The merged Cartesian-curvilinear grid for the York River system. 
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          IV.  Execution of the HEM-3D model

 IVa.  Setup needed to run the model

     Application of the HEM-3D model to a specific prototype and grid representation is all

managed through a series of input files, the required ones of which are listed below:

filename type comments

efdc.f model source no changes required

efdc.com common block declarations no changes required

efdc.par parameter input array size specification

efdc executable machine specific

cell.inp input grid cell types

dxdy.inp input cell dimensions, local friction
specification

lxly.inp input cell loc's in UTM

salt.inp input salinity initialization

modchan.inp input mapping of marshes

aser.inp * input atmospheric (wind)

txser.inp * input toxicity

gwater.inp * input groundwater

        

          * optional files

               Table 8.  Files required to run the HEM-3D model code.

     Partial listings of the main input files for this application are shown in Appendix E.   

Formation of a machine-specific executable file for a particular application requires
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customizing the ‘efdc.par’ file, (shown on page E-9), to specify a sufficient dimension for the

grid indices, the number of vertical layers, the boundary complexity, and the output capability

needed.  Two application-invariant files are required at the time of formation of the

executable - the model source code file (‘efdc.f’) and the common block declarations file

(‘efdc.com’).  Once the executable file has been formed, the main input is read from file

'efdc.inp'.  A complete description of user designated input can be found in  Hamrick  (1996).

IVb.  Boundary condition specification

     The boundary condition specification required depends on the type of application at hand.

For example, when one is performing a ‘verification run’, explicit boundary condition

specification is a decided advantage.  For this reason, the model is capable of reading separate

input files for time series specifications of tidal height as well as salinity at the seaward

boundary  and freshwater discharges at upstream locations.

     However, to perform the tidal calibration (see section Va2), it was necessary only to

specify constituent amplitudes and phases, and a constant salinity at the York River mouth

and averaged freshwater discharges at the heads of the two tributaries.  The last were

obtained by taking averages over a multi-year period at two gauging stations, Hanover on the

Pamunkey and Beaulahville on the Mattaponi.  These input values are shown on Card 18 of

the main input file (‘efdc.inp’, see Appendix E, page E-3).

IVc.  "Spinup" of the model

     When the model is first activated, an initial flow field of velocity, tidal height, and salinity

values is required.  A simple way to provide this is to set all velocities and tidal heights to

zero and allow the specified boundary conditions to force the system until an equilibrium
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condition is reached.  This is referred to as a "cold start", and "spinup" refers to a period of

simulation before the model reaches equilibrium.

     It should be noted that, when performing a cold start, sharp transitions of state variable

specifications (both temporal and spatial) should be avoided.  For instance, starting the tide

height specification driving the model at the seaward boundary normally requires starting the

function at zero value, so as not to produce unreasonable gradients.  A cold start is specified

by setting the first integer flag (i.e.,ISRESTI) of Card 2 of the main input file to 0 to specify

this option (see page E-1).  The cold start can require a long simulation before reaching

equilibrium, depending on the complexity of the boundary condition specification.  In the

present application, 6 to 10 tidal cycles are required for the 'M2 only' specification, whereas

for the full 7 constituents, it may take 20 to 30 cycles).  If a change is major, such as a change

to the cell designator field or the depth field, a cold start is necessary.

     A faster way to reach an equilibrium condition is often possible by "restarting" the model,

continuing from a previous run by using the velocity and tidal height values at the end of the

previous run to initialize the flow field.  If the change is minor (e.g., local bottom roughness

increase), a restart file is simpler.  Also, a restart file is useful for short runs used to change

the specifications for output.
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V.  Validation of the HEM-3D model

Va.  Calibration

     When the HEM-3D model is fully equipped with the proper bathymetry, geometry and

other output data from the preprocessor, further parameters remain to be specified (e.g,

bottom friction values).  For this reason, it is prudent to simplify the input conditions of the

model until it generates results which do not diverge greatly from reality.  For example, it

is important to match the overall characteristics of tidal propagation (i.e., mean range and

phase lag) before proceeding to a more refined calibration.

Va1.  Order of parameters to calibrate

     The first parameter to calibrate is the bottom roughness which is adjusted first globally and

then, if necessary, locally so as to reproduce the propagation of the tide, both for the range

as the wave proceeds upriver, as well as for the high and low tide phase difference relative

to some station whose tidal features are well-established.  For this application, phase lags

relative to Gloucester Pt. were compared.

     Traditionally, most modeling efforts start with the calibration of a single sinusoidal tidal

constituent, namely the mean tide range forced at the dominant  semi-diurnal frequency.  The

advantage in this is faster convergence to equilibrium, enabling faster turn-around as

preliminary tests are made.  After the value for bottom roughness is roughly calibrated, it may

be refined with a model simulation of a multi-constituent tide. 

     After the bottom roughness is well-calibrated, the turbulent diffusion coefficient is the next

parameter to be determined.  This can be accomplished by comparing salinity time series data

and synoptic spatial distributions.

Va2.  Tidal calibration
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     The preliminary model calibration involves adjustments of parameters to simulate

 properly the tidal propagation in terms of mean tide.  The bottom roughness heights were

adjusted to minimize the differences between the model results and prototype values.  The

model was forced at the river mouth with a single constituent M2 tide and mean freshwater

discharges at the upstream boundaries.  The amplitude of this M2 tide was adjusted such that

the model range at Gloucester Pt. matched the longterm observed range (i.e., 0.73 m).

Adjustment of model bottom friction is straightforward.  If the model wave were to propagate

too rapidly with too high a range, the model friction (i.e., roughness height) needed

increasing.  The final bottom roughness heights selected were 0.075 cm for the York

mainstem and 0.06 cm for the tributaries above West Point.  The computed mean tide ranges

and times of high and low tides are compared with prototype values in Figures 9 and 10.  It

is noted in Figure 9 that there is a significant difference in the tidal range between the NOAA

Tide Tables and VIMS 1996-1997 measurements in the Mattaponi River.  Since the

Gloucester Point tide data used to normalize the 1996-1997 Mattaponi River station data are

provisionary, the long-term mean range data of the NOAA Tide Tables were emphasized for

model calibration.

     The preliminary tidal calibration was confirmed by model simulation of a multiple

constituent tide, and bottom roughness heights were refined if necessary.  The ability of the

model to predict phase relationships between constituents depends on the proper specification

of phase lags at the open boundary. The Gloucester Point 8-year record of hourly observed

tidal heights processed yields a high degree of confidence as to the amplitudes and phases of

each constituent based on a low yearly variation (see Table 1), and therefore these values
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were used to determine phase relationships of various tidal constituents at the river mouth.

Another depiction of the longitudinal change in tidal constituent amplitudes and phases is

shown by plotting each as vectors, as shown in Fig. 11.

Va3.  Salinity calibration     

     The methodology of calibrating the salinity evolved from a determination to demonstrate

the capability of HEM-3D to simulate the following important features of the prototype:

   1) accurate tracking of the estuarine-wide longitudinal salinity distribution and how it is  
     affected by various physical influences (e.g., discharge, wind, withdrawal, or tidal         
   mixing).

     2) the spring-neap cycle of the stratification-destratification phenomena (mixing strongest
       on spring tide, weakest on neap tide).  This is vital in that it governs the supply of       
       nutrients to the surface where sunlight is abundant.

   3) effects of an “event”, either heavy discharge upriver or unusual boundary conditions   
       at the mouth.

     For this reason, the calibration effort involved not only the traditional comparison of

historical time series, but also spatial comparisons showing the predicted salinity distribution

both against depth and distance upstream. The first comparison that proved beneficial was to

plot the HEM-3D salinity averaged over the 8 layers used in this calibration against the VIMS

slackwater data averaged over the number of samples taken vertically at each station, as

shown in Figures 12-13.  In this fashion the model feature of replicating the extent of salinity

intrusion could be adjusted.

     Salinity calibration of the model involved adjustment to 2 parameters.   The first parameter

is a coefficient for the specified horizontal diffusivity, which was found to be 0.05 from the

mouth to Gloucester Pt. and 0.01 upriver from Gloucester Point.  Adjustments to this

parameter were made by comparing contours of the salinity regime for the York mainstem
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for both VIMS slackwater surveys and HEM-3D predictions on 7 separate dates in the

summer of 1989, as shown in Figures 14-17.  The second parameter is a lag period (about 3

hours) from the beginning of flood at the downstream boundary to the point in time at which

the specified salinity is attained at this location (see card 6, main input file, 174 timesteps).

Model results appeared to be much less sensitive to this lag period than to the aforementioned

horizontal diffusivity.

Vb.  Verification procedures

     Verification of the model entails the simulation of a specified historical period whereby

model results can be shown to agree adequately with field observations without adjustment

of any parameters as determined in the calibration procedure as described in the previous

section.  An important aspect here is the use of datasets independent of those used in the

calibration process.  

Vb1.  Selection of simulation periods for verification

     The periods selected for verification of the HEM-3D model are constrained by availability

of suitable field observation data, both within the prototype and at the landward and seaward

boundaries.  Whereas many tide gauge deployments have been made (see Table 2), seldom

have current meters been deployed during these periods.  Additionally, one needs a

continuous specification of both observed hourly tidal heights at the mouth as well as daily

USGS discharge records upstream at the heads of both tributaries - (see section Vb3).

     The periods selected for  the York HEM-3D verification effort include:

     1) 1986                               Tidal gauge at Sweet Hall
     2) June - Sept 1993            Tidal gauges at Belleview and West Pt.
     3) Dec 1989 - Jan 1990      Tidal heights measured at Claybank
                                                2 moorings at Claybank, Allmondsville (velocity & salinity)
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Vb2.  Specification of initial conditions
 
     It is important that the residual effects of an inaccurate initial spatial distribution be

eliminated for each state variable (tidal elevation, velocity, or salinity) prior to comparing

model results to field data.  For this reason, it is often advantageous to “restart” the model

with a set of values from a prior run which are not totally unrealistic.  Phase problems with

tidal elevation or velocity may disrupt a run, but this will manifest quickly and not delay

machine scheduling.  Adjustments to these variables seem to be absorbed within 6-10 tidal

cycles, whereas salinity can require much longer to overcome a poor initial condition.  For

this reason, the “spinup” period (the period during which the model must be run with the

correctly specified boundary conditions (see next section) prior to the comparison of its

results with field observations) depends upon the quality of the initial conditions specified.

Vb3.  Specification of boundary conditions   

     Whereas the tidal calibration runs use longterm averages of discharge upriver and

specification of tidal constituents as well as average salinity at the mouth, the verification runs

were made with real time specifications as follows: 

     1) daily discharge values provided by the USGS at the 2 stream gauges upriver             
        (Hanover on the Pamunkey and Beaulahville on the Mattaponi)
     2) hourly tidal height specification at the mouth
     3) bi-weekly (or more frequent) salinity profile at the mouth
     4) daily mean wind data from the VIMS Ferry Pier

     These data are easily downloaded from the VIMS WEB site and then require proper

formatting to serve as HEM-3D input files ‘pser.inp’ (tidal height specification), ‘qser.inp’

(discharge specification), and ‘aser.inp’ (atmospheric, e.g. wind, specification) in the manner

illustrated in Appendix E.
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Vb4.  Techniques for replacement of missing portions of boundary condition data

     In two separate instances, when a period was selected for simulation by a verification run,

it was found that boundary condition data was missing.  This section describes simple

techniques to replace missing portions of boundary conditions, thus preserving these periods

as usable for verifications runs.

     In one case, it was found that the Mattaponi gauge at Beaulahville was inoperable for

1988-89 due to a land dispute.  This was unfortunate as VIMS has excellent slackwater

survey data for that period.  A method of replacing the missing data was devised by examining

long term data at the Bowling Green gauge (further upriver) and looking at the correlation

between discharges at these 2 Mattaponi gauges.  Looking at a full decade of data (1978-

1987), it was found that the correlation was maximized by lagging the recorded values at the

upriver Bowling Green gauge by 1 day.  It was then found that a higher correlation existed

by using only the May 1 - September 30 season corresponding to the slackwater surveys, as

shown in Figure 18a.  In this fashion we were able to reconstruct closely the Beaulahville

gauge record, as shown for 1990 in Figure 18b.

     In another case, it was shown that the continuous Gloucester Pt. tidal height specification

could be used to drive the model at the river mouth by advancing this record by 15 minutes,

a difference determined by correlating the Jenkins Neck gauge record (06/89-09/89) against

the Gloucester Pt. record, as shown in Figure 19.

Vb5.  Comparison of surface elevation, current, and salinity

     Comparisons of time series of VIMS field observations to HEM-3D predicted values

are shown for surface elevation in Figure 20, current velocity in Figure 21-24, and for salinity

in Figure 25.
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     To provide a quantitative assessment of the HEM-3D predictive capability, each time

series comparison underwent a simple statistical treatment to determine a mean difference,

mean absolute difference, and a root-mean-square difference as shown in Table 10.  In this

fashion, one could also determine tendencies of the model to under-predict or over-predict.



M2 S2 N2 Kl M4 01 M6 

A p A p A p A p· A p A p A p 

Goodwin Isl.: measured 0.317 3.5 0.056 ·2.3 0.079 ·2.0 0.052 7.1 .0.011 2.7 0.036 0.9 0.003 1.9 
modeled 0.321 3.7 0.061 ·2.8 0.070 ·2.4 0.052 7.4 0.008 2.2 0.039 0.7 0.004 0.5 

Gloucester Pt.: measured 0.340 3.8 0.064 ·2.3 0.074 ·2.1 0.053 7.2 0.004 ·2.9 0.040 0.6 0.004 ·l.4 
modeled 0.340 3.8 0.065 ·2.7 0.074 ·2.3 0.053 7.4 0.005 -3.0 0.039 0.7 0.004 -3.5 

Claybank: measured 0.366 4.7 0.066 -1.9 0.084 .1.7 0.062 8.0 0.006 -2.5 0.040 0.7 0.004 -0.6 
modeled 0.383 4.4 0.067 -2.0 0.076 -1.6 0.055 8.1 0.010 ·2.7 0.042 1.3 0.005 ·3.2 

Allmondsvtlle: measured 0.385 4.3 0.063 .1.7 0.053 ·3.0 0.055 6.9 0.006 ·3.1 0.035 1.9 0.004 -0.8 
modeled 0.389 4.6 0.067 ·l.8 0.076 .1.4 0.055 8.2 0.010 ·2.3 0.042 1.5 0.005 -3.0 

Belleview: measured 0.384 5.3 0.081 , ·0.8 0.097 -0.4 0.046 9.1 0.021 ·2.4 0.031 2.9 0.004 -1.9 
modeled 0.386 5.3 0.061 ·1.l 0.069 -0.6 0.054 9.0 0.028 -2.1 0.044 2.3 0.013 2.3 

WestPoint: measured 0.398 5.7 0.070 -0.5 0.087 9.5 0.057 9.5 0.036 -2.2 0.036 3.4 0.008 -1.7 
modeled 0.369 5.7 0.055 ·0.6 0.064 9.5 0.053 9.5 0.044 ·2.0 0.044 2.7 0.018 ·2.0 

Sweet Ball: measured 0.303 -4.3 0.057 1.2 0.056 3.0 0.050 ·11.8 0.020 -0.3 0.042 6.1 0.012 0.6 
modeled 0.315 -4.9 0.040 1.2 0.056 3.0 0.049 ·12.5 0.020 -0.3 0.043 4.7 0.020 3.3 

Elslng Green: measured 0.396 -3.2 0.052 3.6 0.052 3.4 0.056 ·11.0 0.037 1.6 0.047 6.4 0.015 1.3 
modeled 0.401 ·3.8 0.051 2.5 0.062 3.1 0.054 ·11.5 0.028 1.1 0.046 5.7 0.021 0.5 

Indian Res.: measured 0.429 -5.7 0.075 1.0 0.067 0.6 0.052 11.4 0.038 ·2.6 0.026 1.5 0.018 ·l.1 
modeled 0.463 ·5.7 0.067 0.6 0.079 1.1 0.057 10.4 0.016 -0.2 0.047 3.6 0.023 -0.8 

Walkerton: measured 0.467 .4.1 0.067 2.5 0.102 2.3 0.043 ·11.2 0.048 0.9 0.034 5;5 0.026 0.6 
modeled 0.494 -4.9 0.080 1.6 0.105 2.0 0.072 ·12.9 0.059 0.5 0.059 4.5 0.015 0.6 

Note: A = amplitude (m) and P = phase (hours) relative to 0000 hrs (midnight) 01/01/89 

Table 9. Comparison of observed versus predicted amplitudes and phases for the 7-constltuent boundary forcing. 
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Figure 9.  Comparison of tide range from HEM-3D model output, VIMS gauge data, and NOAA  
                Tide Table data at available York River stations.  Model forced with mean tide only.



42

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
H

ig
h 

Ti
de

 L
ag

 (h
ou

rs
)

Distance from York River mouth (km)

               York & Pamunkey  Mattaponi

  NOAA Tide Tables:              o                      x

  VIMS Physical Sciences:     *                       +

  HEM−3D Calibration:   ________________

Mattaponi

Pamunkey

York

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Lo
w

 T
id

e 
La

g 
(h

ou
rs

)

distance from York River mouth (km)

               York & Pamunkey  Mattaponi

  NOAA Tide Tables:              o                      x

  VIMS Physical Sciences:     *                       +

  HEM−3D Calibration:   ________________

Mattaponi

Pamunkey

York12

3

4
5

6

7

8

9

10
11

12

13

14

1 −  Gloucester Pt.      
2 −  Mumford Islands     
3 −  Penniman Spit       
4 −  Cheatham Annex      
5 −  Clay Bank           
6 −  Allmondsville       
7 −  Roane Point         

8 −  West Point          
9 −  Sweet Hall   (PAM)  
10 −  Lester Manor (PAM)  
11 −  White House  (PAM)  
12 −  Northbury    (PAM)  

8 −  West Point          

13 −  Wakema       (MAT)  
14 −  Walkerton    (MAT)  

Figure 10.  Comparison of high and low tide phase lags relative to Gloucester Pt. from the             
                  HEM-3D model output, VIMS gauge data, and NOAA Tide Table data at available     
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Figure 11.  Vector plot of observed versus predicted amplitudes and phases of tidal                 
                   constituents at  selected locations in the York River.
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Figure 12.  Comparison of vertically averaged salinities from VIMS slackwater surveys and           
                HEM-3D predictions (both tidal mean & tidal maximum) for June 12, June 27,
                    July 12, and July 20, 1989.
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Figure 13.  Comparison of vertically averaged salinities from VIMS slackwater surveys and           
                HEM-3D predictions (both tidal mean & tidal maximum) for July 27, August 11,           
                August 29, and September 6, 1989. 
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Figure 14. Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D 
predictions for both June 12 and June 27, 1989. 
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Figure 15.  Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D
                   predictions for both July 12 and July 27, 1989.
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Figure 16. Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D 
predictions for both August 11 and August 29, 1989. 
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Figure 17.  Comparison of salinity profiles for VIMS slackwater surveys and HEM-3D model predictions        
             for September 6, 1989.
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Figure 19.  Regression fit of Gloucester Pt. hourly tidal heights (lagged by 15 minutes)                  
                  plotted against Jenkins Neck (north side of river mouth), 06/01-09/13/89.
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Figure 21.  Comparison of observed velocity against HEM-3D predictions at 3.7 meters depth at   
                  Allmondsville, 12/07/89-01/08/90.
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Figure 22.  Comparison of observed velocity against HEM-3D predictions at 7.7 meters depth at   
                  Allmondsville, 12/07/89-01/08/90.
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Figure 23.  Comparison of observed velocity against HEM-3D predictions at 1.7 meters depth at   
                  Claybank, 12/07/89-01/08/90.
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Figure 24.  Comparison of observed velocity against HEM-3D predictions at 7.7 meters depth at   
                  Claybank, 12/07/89-01/08/90.
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Figure 25.  Comparison of observed salinities (dotted line) against HEM-3D predictions at both                      
3.7 meters depth at both Claybank and Allmondsville, 12/07/89-01/10/90.



Parameter Station Depth Report Mean Mean Root mean 

(units) Figure difference Abs. square 
# Diff. Difference 

Tidal height (m) West Point 20 0.0037 0.0370 0.0444 

Tidal height (m) Belleview 20 0.0161 0.0441 0.0489 

Tidal height (m) Sweet Hall 20 0.0309 0.0608 0.0668 

Salinity (ppt) Allmondsville 3.7m 25 -0.493 0.779 1.012 

Salinity (ppt) Allmondsville 7.7m 25 0.671 0.949 1.277 

Salinity (ppt) Claybank 3.7m 25 -0.115 0.671 0.842 

Salinity (ppt) Claybank 7.7m 25 0.348 0.795 1.024 

Velocity (emfs) Allmondsville 3.7m 21 2.59 14.07 16.53 
East component 

Velocity (cmfs) Allmondsville 7.7m 22 2.63 7.34 9.35 
East component 

Velocity (emfs) Claybank 1.7 m 23 2.39 12.46 15.56 
East component 

Velocity (emfs) Claybank 7.7m 24 -3.11 8.99 12.71 
East component 

Velocity (emfs) Allmondsville 3.7m 21 -2.08 9.65 11.86 
North component 

Velocity (cmfs) Allmondsville 7.7m 22 1.51 6.36 8.13 
North component 

Velocity (emfs) Claybank 1.7 m 23 -1.98 10.53 14.68 
North component 

Velocity (emfs) Claybank 7.7m 24 4.42 7.76 10.18 
North component 

Resultant (emfs) Allmondsville 3.7m 21 3.24 11.89 14.28 

Resultant ( cmf s) Allmondsville 7.7m 22 0.39 8.76 11.71 

Resultant (emfs) Claybank 1.7 m 23 2.34 12.54 17.33 

Resultant (emfs) Claybank 7.7m 24 -6.52 11.06 15.77 

Table 10. Mean, mean absolute, and root-mean-square differences between time series of 
observed data and HEM-3D predictions. 
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VI. Summary and Conclusions

The comparison of calibrated HEM-3D model output with observational data for the York

River system has shown that the model is capable of simulating basic estuarine state variables

(fluctuating water surface elevation, current speed and direction, and salinity) with a relatively

high degree of accuracy. For surface elevation, the agreement between predicted and observed

values is on the order of two to three centimeters allowing for phase-related differences; i.e.,

differences in the predicted and observed times of high and low water on the order of several

minutes. The predicted and observed time series data of current velocities at given locations

follow the same general trend even though their differences in values are much larger than those

of surface elevation.  Since the observed data are point values while model predicted currents are

average values over grid cells, the larger differences are expected.  Salinity and salinity gradients

are well represented, usually within one to three ppt, although both are sensitive to the relevant

boundary conditions, especially fresh-water inflow. Our confidence in the simulated data of the

HEM-3D model for the York is consistent with the confidence one normally places in a sampled

representation of the system, a representation which commonly includes both systematic and

random errors in both sampling and temporal-spatial interpolation.   

The use of a three-dimensional estuarine model affords greater objectivity, compared to

one- and two-dimensional models, in the simulation and display of scalar and vector quantities. In

terms of practical applications such as those involving resource management, properly validated

models of this kind afford greater opportunity to convey critical information by visual means.
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Computer graphics applications capable of yielding 3D perspective views would seem to be ideal

for this purpose but unfortunately most routines that we have tried have failed to live up to our

expectations. Instead, we have relied upon innovative graphical representations that utilize two

spatial dimensions (i.e., longitudinal-vertical, cross-sectional or plan-view sections or “slices”) and

one temporal dimension (time units) through computer animation or “movies”. This approach

appears well-suited to management applications because the use of high-resolution, color graphics

on personal computers is now widespread and offers rapid, world-wide distribution through the

Internet. 

An example of the longitudinal-vertical representation of the model-generated salinity field

in the York River is shown in figure 26. Note that this figure contains four time-slices aligned

with the indicated tidal history at the mouth of the York. Each section is a mid-channel,

longitudinal slice, not a lateral average, of the salinity field. Many other representations of scalar

and vector quantities are possible. Figure 27 illustrates two time-distance plots of scalar

quantities. The color-enhanced contours of the vertical mean salinity (figure 27a), shown from the

mouth of the York to West Point, provides an excellent means of visualizing the limit of salt water

intrusion as it varies for a specific time history in the upper York. As a companion visual to

convey what is lost in vertical averaging of the salinity field (i.e., stratification), the potential

energy needed to mix the water column (figure 27b) can be calculated  and used as an indicator of

the degree of stratification through a section of time and space.             
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Figure 26.  An example of the longitudinal representation of the model-generated salinity field in the York River. 
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Appendix A.  Time series of tidal elevations at Gloucester Point (1986 - 1993)
                                       and at locations of VIMS gauge deployments.

Gauge data time series used for model calibration are presented in this appendix. 

Hourly tidal heights at Gloucester Point are plotted for 1986 - 1993 against Julian hour since
the beginning of the respective year in figs. A.1-A.8.  Semidiurnal and spring/neap cycles are
evident in all eight figures. Linear segments such as that in fig. A.4 extending from 7690-8100
hours indicate missing data.

Available time series of hourly tidal heights at other stations along the York River system are
plotted against Julian hour (since the beginning of the year in which the record begins) in figs.
A.9-A.20. Reference datums for these stations are not known. Synoptic tidal heights at
Gloucester Point are also plotted for comparison. As in the previous plots, linear segments
indicate missing data. In addition, sections where the data go off-scale are indicative of
instrument problems.
 
Lastly,  tidal elevations  recorded at 3 Mattaponi locations (the Indian Reservation,
Walkerton,  and Aylett) during the period from August 1996 to May 1997 are plotted in fig.
A.21-A.23.



A-2

0 100 200 300 400 500 600 700 800 900 1000
1

1.5
2

2.5

Hourly Tidal Heights at Gloucester Pt. − 1986

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
1

1.5
2

2.5

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
1

1.5
2

2.5

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
1

1.5
2

2.5

4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000
1

1.5
2

2.5

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
1

1.5
2

2.5

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000
1

1.5
2

2.5

7000 7100 7200 7300 7400 7500 7600 7700 7800 7900 8000
1

1.5
2

2.5

8000 8100 8200 8300 8400 8500 8600 8700 8800 8900 9000
1

1.5
2

2.5

Julian Hour

T
id

al
 H

ei
gh

t (
m

)

Figure A.1  Hourly surface elevation record from gauge data at
Gloucester Point during 1986.
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Figure A.2 Hourly surface elevation record from guage data at 
Gloucester Point during 1987. 
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Figure A.3 Hourly surface elevation record from guage data at Gloucester Point during 1988. 
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Figure A.4  Hourly surface elevation record from gauge data at
Gloucester Point during 1989.
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Figure A.5  Hourly surface elevation record from gauge data at
Gloucester Point during 1990.
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Figure A.6  Hourly surface elevation record from gauge data at
Gloucester Point during 1991.
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Figure A.7  Hourly surface elevation record from gauge data at
Gloucester Point during 1992.
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Figure A.8  Hourly surface elevation record from gauge data at
Gloucester Point during 1993.
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Figure A.9   Comparison of hourly surface elev ation records
from gauge data (datums unknown) at Goodwin I slands (solid
line) and Gloucester Point (dashed line) stations. 
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Figure A.10   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Clay Bank (solid line) and
Gloucester Point (dashed line) stations.
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Figure A.11   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Clay Bank (solid line) and
Gloucester Point (dashed line) stations.
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Figure A.12  Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Allmo ndsv ille (solid line)
and Gloucester Point (dashed line) stations.



A-14

5850 5860 5870 5880 5890 5900 5910 5920 5930 5940

1

2

ALLMONDSVILLE (09/01−10/18/93) TIDAL ELEVATIONS

5950 5960 5970 5980 5990 6000 6010 6020 6030 6040

1

2

6050 6060 6070 6080 6090 6100 6110 6120 6130 6140

1

2

6150 6160 6170 6180 6190 6200 6210 6220 6230 6240

1

2

6250 6260 6270 6280 6290 6300 6310 6320 6330 6340

1

2

6350 6360 6370 6380 6390 6400 6410 6420 6430 6440

1

2

6450 6460 6470 6480 6490 6500 6510 6520 6530 6540

1

2

6550 6560 6570 6580 6590 6600 6610 6620 6630 6640

1

2

6650 6660 6670 6680 6690 6700 6710 6720 6730 6740

1

2

Julian Hour
Station           

Glo. Pt. reference

T
id

al
 H

ei
gh

t (
m

)

Figure A.13   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Allmo ndsv ille (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.14  Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Belle view (s olid line) and
Gloucester Point (dashed line) stations.
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Figure A.15  Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Belle view (s olid line) and
Gloucester Point (dashed line) stations.
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Figure A.16   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at West Point (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.17  Comparison of hourly surface ele vation records
from gauge data (datums unknown) at West Point (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.18   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Sweet Hall (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.19  Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Sweet Hall (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.20   Comparison of hourly surface ele vation records
from gauge data (datums unknown) at Elsing Green (solid line)
and Gloucester Point (dashed line) stations.
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Figure A.21 Surface elevation records from gauge data (datums unknown) at the Indian
Reservation.  Flat portions of record represent missing data.  Note gauge stuck due to ice January
17-20.
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Figure A.22  Surface elevation records from gauge data (datums unknown) at Walkerton.  Flat     
portions of record represent missing data.  Note gauge stuck due to ice January 17-21.



A-24

0 5 10 15 20 25 30
1

2

3

09
/9

6
 Aylett (Mattaponi): 09/96 − 05/97

 TIDAL ELEVATIONS (METERS)

0 5 10 15 20 25 30
1

2

3

10
/9

6

0 5 10 15 20 25 30
1

2

3

11
/9

6

0 5 10 15 20 25 30
1

2

3

12
/9

6

0 5 10 15 20 25 30
1

2

3

01
/9

7

0 5 10 15 20 25
1

2

3

02
/9

7

0 5 10 15 20 25 30
1

2

3

03
/9

7

0 5 10 15 20 25 30
1

2

3

04
/9

7

0 5 10 15 20 25 30
1

2

3

days since start of given month

05
/9

7

Figure A.23 Surface elevation records from gauge data (datums unknown) at Aylett.  Flat
portions of record represent missing data.  Note gauge stuck due to ice January 18-21.
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Appendix B.  HAMELS Analyses of Tidal Constituents 
 

As shown in Table 9 (page 40), a key part of the HEM-3D model validation (i.e., “fine-
tune” calibration) is comparison of the individual constituents of the tide (both amplitude and
phase) for observation data and model output.  These amplitudes and phases are determined by a
FORTRAN program known as HAMELS.  This appendix is intended to illustrate the use of
HAMELS in this report.
 

Works using HAMELS (i.e., Boon and Kiley (1978) and Hamrick (1991)) are described in
Section IIc3. 
 
HAMELS analysis for observation data:
Illustrative Example:     West Point, July 5, 1993-August 3, 1993 
 
     The HAMELS program requires 2 input data files:
 
     1) Input data file # 1 (constituent data) - filename ‘tidcon.dat ’
          This is simply the number of constituents, followed by the character names and their 
periods (in seconds), as shown below: 

              7
          M2     44714.1644
          S2     43200.0000
          N2     45570.0535
          K1     86164.0908
          M4     22357.0822
          O1     92949.6300
          M6     14904.7215
 
     2) Input data file # 2 (actual hourly tidal elevations) - filename ‘xxxxxxx.hh’

In this file, each date (separate record) is followed by 2 12-field records corresponding to
tidal elevations records from midnight (0000 hours) to 2300 hours for that date.  Values of ‘-9.99'
denote missing observations.  Thus, in the following example, the analysis starts at 2200 on July 5
and ends at 2200 on August 3.  The HAMELS program expects this file to have a DOS suffix
‘.hh’ (e.g., ‘WESTPT93.HH’ ).

 HOURLY TIDAL HEIGHTS FOR WEST POINT, 07/05/93-08/03/93 
      70593
       -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99
       -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99  2.54  2.60
      70693
        2.53  2.37  2.19  2.01  1.84  1.68  1.59  1.66  1.89  2.18  2.40  2.51
        2.52  2.42  2.24  2.06  1.91  1.80  1.72  1.75  1.92  2.17  2.38  2.50
      70793
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        2.52  2.44  2.28  2.09  1.91  1.75  1.63  1.60  1.71  1.94  2.22  2.41
        2.50  2.47  2.32  2.13  1.95  1.81  1.70  1.63  1.71  1.89  2.13  2.33
      70893
        2.45  2.45  2.32  2.12  1.93  1.75  1.60  1.50  1.56  1.76  1.98  2.22
        2.39  2.45  2.38  2.23  2.05  1.89  1.74  1.62  1.60  1.77  2.00  2.21
      70993
        2.34  2.41  2.37  2.24  2.06  1.91  1.76  1.63  1.62  1.75  1.94  2.15
        2.36  2.49  2.51  2.42  2.26  2.09  1.94  1.83  1.75  1.79  1.92  2.08
      71093
        2.27  2.39  2.43  2.34  2.19  2.04  1.89  1.74  1.66  1.66  1.80  2.03
        2.27  2.42  2.51  2.46  2.34  2.21  2.04  1.91  1.75  1.63  1.82  1.90
                                .
                                .
                                .     
     
       
      73093
        1.82  1.70  1.74  1.87  1.96  2.13  2.33  2.43  2.42  2.31  2.11  1.92
        1.77  1.65  1.61  1.73  1.93  2.22  2.44  2.56  2.57  2.48  2.33  2.16
      73193
        2.00  1.84  1.72  1.65  1.73  1.91  2.15  2.34  2.43  2.40  2.25  2.07
        1.89  1.73  1.60  1.54  1.64  1.89  2.20  2.43  2.52  2.52  2.40  2.22
      80193
        2.03  1.85  1.69  1.57  1.55  1.73  1.97  2.22  2.38  2.45  2.40  2.24
        2.04  1.87  1.71  1.59  1.56  1.76  2.04  2.31  2.47  2.53  2.48  2.34
      80293
        2.16  2.01  1.84  1.69  1.58  1.59  1.80  2.05  2.28  2.40  2.43  2.37
        2.23  2.05  1.88  1.72  1.60  1.57  1.75  2.01  2.26  2.44  2.52  2.48
      80393
        2.32  2.12  1.93  1.75  1.61  1.53  1.61  1.82  2.08  2.28  2.38  2.39
        2.28  2.10  1.91  1.73  1.61  1.56  1.77  1.96  1.88  2.17  2.32 -9.99
      

The plot shown on the next page compares the actual record with the reconstruction using
HAMELS-derived constituent amplitudes and phases.  In this manner, one can partially assess the
reliability of the analysis.
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Appendix C.  Tidal Constituent Error Analysis

     The tidal constituent analysis presented in the previous appendix for the gauge data is
subject to error from two primary sources: 1) unmodeled physical phenomena (e.g., storm
setup) and 2) instrument noise.  Errors in the data introduce uncertainty in the estimates of
the tidal constituents.  In this appendix we discuss a method for evaluating the size of the
uncertainty in estimated tidal constituents.  We also present an error analysis based on this
method for the tide gauge data.

     The tidal constituents are estimated using linear regression on a time series of gauge data.
Let yi be the recorded surface elevation at time ti for a given station.  Then we model the
time series {yi} as composed of N tidal constituents using

where b0 is a constant term and b2k, b2k+1 are the in-phase and quadrature components of the
tidal constituent with period Tk.  We can express eq. C.1 succinctly in matrix form as

where y = [y1 y2 ... ym]t is the m x 1 column vector of observed surface elevations, b = [b0 b1

b2 ... b2N]t is the 2N+1 x 1 column vector of coefficients to be estimated, and X is the m x
2N+1 matrix

     The solution to eq. C.2 for the unknown vector of coefficients, b,  is

     The covariance matrix associated with the estimated coefficients is 
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bj ± t(1 	 �/2;m 	 N) )̂(bj) (C.7)

where

     The �-level confidence interval for the jth coefficient is then given by

where t is student's t distribution and is the square root of the jth component along)̂(bj)
the diagonal in  the covariance matrix (eq. C.5).

     As presented in figure C.1, the estimated 95% confidence intervals in the tidal
constituents at each station in the York River system are small compared to the largest tidal
constituent (M2); however, they are on the order of the smallest constituents (typically O1
or M6).  Estimates of the first seven tidal constituents, with accompanying uncertainty, are
plotted against distance upriver at each of nine stations.  Each constituent is plotted as a
vector in the horizontal plane.  The in-phase coefficient of the constituent is the x-
component and the quadrature coefficient is the y-component of this vector.  Using eq. C.7,
a 95% confidence "surface" is plotted centered at the tip of each constituent.  The
normalization used to plot the tidal constituents changes between figs. C.1a and C.1b; the
constituents in the latter figure are plotted using a smaller scale to make the detail more
apparent.
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Figure C.1.  The indicated tidal constituents, derived from gauge
data, are plotted as Cartesian vectors.  The horizontal position of the
base of each vector corresponds to the station distance from the river
mouth; its vertical position indicates the tidal constituent. 95%
confidence intervals for the vector components are indicated by
shaded surfaces.  Note 1) M2 error too small to see, and 2) the
change in vector scale between a) and b) is used to show detail in the
smaller components.
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  Appendix D.  Partial listings of required input files for grid generator
 
     This appendix is intended to provide some useful illustration of the sort of input required
for forming the grid over which the model runs.
     Due to the lengths of the files involved, only partial listings are provided (the full files are
available from the authors).  For further discussion, the reader is referred to the HEM-3D User’s
Manual by Hamrick (1996).
 
     D1.  Files required for the generation of the grid
 
     In addition to the source (FORTRAN), the files required for a grid are:
          a) ‘cell.inp’
          b) ‘depdat.inp’
          c) ‘gridext.inp ’
          d) ‘gefdc.inp’   (Cartesian portion)
          e) ‘gefdc.inp’   (Curvilinear portion)
          f) ‘gefdc.inp’   (merged version)

     The ‘cell.inp ’ file is most important in that it is the geometry, or domain boundary, designator
file, and it does this by simply designating cell type within the specified grid matrix.  In the
following partial listing of ‘cell.inp’, the first field is the j (or y-direction index), followed by
multiple 80-character fields of single integer designations of cell type, whereby column position
indicates the i (or x-direction index) of the specified water type.  The lines which follow illustrate
the mapping around the confluence area of West Point:

C cell.inp file, i columns and j rows, for YORK RIVER (revised)
C-------------1---------2---------3---------4---------5---------6---------7---------
8
C   
12345678901234567890123456789012345678901234567890123456789012345678901234567890
C
357 
00000000000000000000000000000000000000000000000000000000000000000000000000000000
                                  .
                                  .
                                  . 
184  00000000000000000000000000000000000000000 9559 000000000000000000000000000000000
183  00000000000000000000000000000000000000000 9559         0000000000000000000000000
182  00000000000000000000000000000000000000000 9559 99999999
181  00000000000000000000000000000000000000000 9559 955555599999999999999999999999999
180  0000000000000000000000000000000000000000 99559 955555555555555555555555555555555
179  0000000000000000000000000000000000000000 955599955599999999999999999999999999999
178  0000000000000000000000000000000000000000 95555995559    
177  0000000000000000000000000000000000000000 95555555559 000000000000000000000000000
176  0000000000000000000000000000000000000000 95555555559 000000000000000000000000000
175  0000000000000000000000000000000000000000 95555555559 000000000000000000000000000
174                                  00000000 95555555559 000000000000000000000000000
173  9999999999999999999999999999999 0000000 9955555555599 00000000000000000000000000
172  9595959595959595959595959595959 0000000 955555555551999 000000000000000000000000
171  9999999999999999999999999999999 0000000 9555555555555199 00000000000000000000000
170  9595959595959595959595959595959 0000000 95555555555555199 0000000000000000000000
169  9999999999999999999999999999999 0000000 95555555555555519 0000000000000000000000
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168  9595959595959595959595959595959 0000000 9555555555555555999 00000000000000000000
167  9999999999999999999999999999999 0000000 95555555555555555199 0000000000000000000
166  9595959595959595959595959595959 0000000 9955555555555555551999 00000000000000000
165  9999999999999999999999999999999 00000000 9955555555555555555199 0000000000000000
164  9595959595959595959595959595959 000000000 9955555555555555555199 000000000000000
163  9999999999999999999999999999999 0000000000 99999555555555555551999 0000000000000
162  9595959595959595959595959595959 00000000000    9995555555555555519 0000000000000
161  9999999999999999999999999999999 0000000000000000 999955555555555599 000000000000
160  9595959595959595959595959595959 0000000000000000000 9995555555555199 00000000000
159  9999999999999999999999999999999 000000000000000000000 99355555555519 00000000000
158  9595959595959595959595959595959 0000000000000000000000 99555555555599 0000000000
157  9999999999999999999999999999999 00000000000000000000000 9555555555519 0000000000
156  9595959595959595959595959595959 00000000000000000000000 9555555555559 0000000000
155  9999999999999999999999999999999 00000000000000000000000 95555555555599 000000000
154  9595959595959595959595959595959 00000000000000000000000 95555555555519 000000000
153  9999999999999999999999999999999 00000000000000000000000 95555555555559 000000000
152  9595959595959595959595959595959 00000000000000000000000 955555555555599 00000000
151  9999999999999999999999999999999 00000000000000000000000 955555555555559 00000000
150  9595959595959595959595959595959 00000000000000000000000 955555555555559 00000000
149  9999999999999999999999999999999 00000000000000000000000 935555555555559 00000000
148                                  00000000000000000000000 9993555555555599 0000000

 
     The first 4 card images (those with ‘C’ in column 1) are ‘comment cards’ not input by the
program.  Land cell designators (i.e.,’0') adjacent to the water-land boundaries have been replaced
with blank characters to accentuate this illustration. The region of interest begins as the j index
(columns 1-3) is decremented from 184 to 148.  As a ‘5' designates a water cell, ‘0' designates
land, and ‘9' designates land-water interface, one can recognize West Point in the vicinity of j=177
under column 47.  The Mattaponi is represented (here in the computational domain) as the single
cell eastward extension along the row for j=180.  The rectangular array of disjoint water cells
from j=172 to j=150 represent marsh storage areas.  Cell designator values between 1 and 4 (1
and 3 illustrated here) represent triangular ‘half cells’ allowing for a better fit to the shoreline for
the Cartesian portion of the grid.
  
     The file ‘depdat.inp’ is the input file for bathymetry data used by the model.  Note the data is
in simple X-Y-Z format with X and Y being UTM (Universal Transverse Mercator) coordinates. 
The Z field is depth in meters relative to NGVD.  These values were extracted from navigation
charts by digitization and converted from latitude and longitude coordinates to UTM by a
program available from the authors.

     For the York River application, the number of depth soundings was 2460.  These are
interpolated by the grid generator to provide depths at the 3300 cell locations.  Eight of the 2460
values are shown below in ‘depdat.inp’: 

316.332  183.338  2.13
316.096  183.465  2.74
315.822  183.416  1.82
315.628  183.420  2.13
315.481  183.546  1.82
315.140  183.642  1.82
315.048  183.866  1.52
314.802  183.905  1.82
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      A grid of cell indices and UTM locations is easily constructed using the following simple
FORTRAN routine:

      PROGRAM GENGRID
      OPEN(1,FILE=' gridext.inp ',STATUS='UNKNOWN')
      DO J=1,281
      DO I=1,320
      X=310.+0.25*FLOAT(I-1)
      Y=110.+0.25*FLOAT(J-1)
      WRITE(1,100)I,J,X,Y
      END DO
      END DO
  100 FORMAT(2I5,2(2X,F12.3))
      CLOSE(1)
      STOP
      END

      The file ‘gridext.inp’  is required for the formation of a Cartesian grid.  This file simply
maps the i and j indices into the UTM coordinates.  A few lines of this file are shown 

     below:
 
   1    1  310.000000  110.000000
    2    1  310.250000  110.000000
    3    1  310.500000  110.000000
        .
  318    1  389.250000  110.000000
  319    1  389.500000  110.000000
  320    1  389.750000  110.000000
    1    2  310.000000  110.250000
    2    2  310.250000  110.250000
    3    2  310.500000  110.250000
        .
  318    2  389.250000  110.250000
  319    2  389.500000  110.250000
  320    2  389.750000  110.250000   
    1    3  310.000000  110.500000
    2    3  310.250000  110.500000
    3    3  310.500000  110.500000
        .
        .
        .
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     The main grid generator input file, ‘gefdc.inp’ used for the Cartesian portion is shown below:
 
C1  TITLE
C1  (LIMITED TO 80 CHARACTERS)
     York River (Cartesian portion)
C2  INTEGER INPUT
C2  NTYPE  NBPP   IMIN  IMAX  JMIN  JMAX  IC   JC
    0      0      1     320   1     331  320   331  80
C3  GRAPHICS GRID INFORMATION
C3  ISGG  IGM  JGM  DXCG  DYCG  NWTGG
    1     320  331  250. 250.  1     
C4  CARTESIAN AND GRAPHICS GRID COORDINATE DATA
C4  CDLON1  CDLON2  CDLON3  CDLAT1  CDLAT2  CDLAT3
     310   15    -00         110     15      00  15
C5  INTEGER INPUT
C5  ITRXM  ITRHM  ITRKM  ITRGM  NDEPSM  DEPMIN
     100    100    100    100    4000   1.0
C6  REAL INPUT
C6  RPX  RPK  RPH  RSQXM  RSQKM  RSQKIM  RSQHM  RSQHIM  RSQHJM
    1.8  1.8  1.8  1.E-12 1.E-12 1.E-12  1.E-12 1.E-12  1.E-12
C7  COORDINATE SHIFT PARAMETERS
C7  XSHIFT    YSHIFT   HSCALE  RKJDKI  ANGORO
     0.        0.       1000.   1.      15.0
C8  INTERPOLATION SWITCHES
C8  ISIRKI  JSIRKI  ISIHIHJ  JSIHIHJ
     1       0       0        0
C9  NTYPE = 7 SPECIFIED INPUT
C9  IB  IE  JB  JE  N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7  SERRMAX
C10 NTYPE = 7 SPECIFIED INPUT
C10 X    Y   IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)
C11 DEPTH INTERPOLATION SWITCHES
C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP
    1      2460    1    1.2   1        5.0     0     0       0
C12 LAST BOUNDARY POINT INFORMATION
C12 ILT JLT X(ILT,JLT)  Y(ILT,JLT)
    96   115    453.616327     87.400612
C13 BOUNDARY POINT INFORMATION
C13 I   J   X(I,J)  Y(I,J)
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        If the file is curvilinear, the i and j indices are mapped into the UTM coordinates directly
the main grid generator input file (see below) and ‘gridext.inp’  is not required.

     The file ‘gefdc.inp’ (curvilinear portion) is shown below:
 

 C1  TITLE
 C1  (LIMITED TO 80 CHARACTERS)

          York River (curvilinear portion - june 1996)
    C2  INTEGER INPUT
    C2  NTYPE  NBPP   IMIN  IMAX  JMIN  JMAX  IC   JC
         5      630    1     320   1     331  320   331
    C3  GRAPHICS GRID INFORMATION
    C3   ISGG  IGM  JGM  DXCG  DYCG  NWTGG
         0     320 331  1850. 1850.  1
    C4  CARTESIAN AND GRAPHICS GRID COORDINATE DATA
    C4  CDLON1  CDLON2  CDLON3  CDLAT1  CDLAT2  CDLAT3
          -77.5   1.25    -0.625  36.7    1.0     -0.5
    C5  INTEGER INPUT
    C5  ITRXM  ITRHM  ITRKM  ITRGM  NDEPSM  DEPMIN
          100    100    100    100    4000   1.0
    C6  REAL INPUT

     C6  RPX  RPK  RPH  RSQXM  RSQKM  RSQKIM  RSQHM  RSQHIM  RSQHJM
         1.8  1.8  1.8  1.E-12 1.E-12 1.E-12  1.E-12 1.E-12  1.E-12
     C7  COORDINATE SHIFT PARAMETERS
     C7  XSHIFT    YSHIFT   HSCALE  RKJDKI  ANGORO
          0.        0.       1000.   1.      15.0
     C8  INTERPOLATION SWITCHES
     C8  ISIRKI  JSIRKI  ISIHIHJ  JSIHIH
          1       0       0        0
     C9  NTYPE = 7 SPECIFIED INPUT
     C9  IB  IE  JB  JE  N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7  SERRMAX
     C10 NTYPE = 7 SPECIFIED INPUT
     C10 X    Y   IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)
     C11 DEPTH INTERPOLATION SWITCHES
     C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP
         0      2460     2.  .5    1        5.0     0     0       0
     C12 LAST BOUNDARY POINT INFORMATION
     C12 ILT JLT X(ILT,JLT)  Y(ILT,JLT)
        124 173   340.75    153.00
     C13 BOUNDARY POINT INFORMATION
     C13 I   J   X(I,J)  Y(I,J)
       123  173 340.50 153.00
       123  174 340.50 153.24
       123  175 340.47 153.48
        .    .     .      .
        .    .     .      .
        .    .     .      .
       124  173 340.75 153.00
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     In order to merge the 2 grid portions, one must concatenate the outputs of these portions
 (i.e., ‘gridext.out’) and rename to ‘gridext.inp’ using the slightly altered version of the main input
file, ‘gefdc.inp’:
 
 
     C1  TITLE
     C1  (LIMITED TO 80 CHARACTERS)
       York River (merged Cartesian & curvilinear portions -jan. 1996)
     C2  INTEGER INPUT
     C2  NTYPE  NBPP   IMIN  IMAX  JMIN  JMAX  IC   JC
         0      0      1     320   1     331  320   331
     C3  GRAPHICS GRID INFORMATION
     C3  ISGG  IGM  JGM  DXCG  DYCG  NWTGG
         1     320  331  250. 250.  1
     C4  CARTESIAN AND GRAPHICS GRID COORDINATE DATA
     C4  CDLON1  CDLON2  CDLON3  CDLAT1  CDLAT2  CDLAT3
          310   15    -00         110     15      00  15
     C5  INTEGER INPUT
     C5  ITRXM  ITRHM  ITRKM  ITRGM  NDEPSM  DEPMIN
          100    100    100    100    4000   1.0
     C6  REAL INPUT
     C6  RPX  RPK  RPH  RSQXM  RSQKM  RSQKIM  RSQHM  RSQHIM  RSQHJM
         1.8  1.8  1.8  1.E-12 1.E-12 1.E-12  1.E-12 1.E-12  1.E-12
     C7  COORDINATE SHIFT PARAMETERS
     C7  XSHIFT    YSHIFT   HSCALE  RKJDKI  ANGORO
          0.        0.       1000.   1.      15.0
     C8  INTERPOLATION SWITCHES
     C8  ISIRKI  JSIRKI  ISIHIHJ  JSIHIHJ
          1       0       0        0
     C9  NTYPE = 7 SPECIFIED INPUT
     C9  IB  IE  JB  JE  N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7  SERRMAX
     C10 NTYPE = 7 SPECIFIED INPUT
     C10 X    Y   IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)
     C11 DEPTH INTERPOLATION SWITCHES
     C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP
         1      6039     2.  .5    1        5.0     0     0       0
     C12 LAST BOUNDARY POINT INFORMATION
     C12 ILT JLT X(ILT,JLT)  Y(ILT,JLT)
         96   115    453.616327     87.400612
     C13 BOUNDARY POINT INFORMATION
     C13 I   J   X(I,J)  Y(I,J)
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  Appendix E.  Partial listings of required input files for the HEM-3D model run
 
     This appendix is intended to provide some useful illustration of the sort of input required
both for making the actual HEM-3D runs.

     Due to the lengths of the files involved, only partial listings are provided (the full files are
available from the authors).  For further discussion, the reader is referred to the HEM-3D User’s
Manual by Hamrick (1996).
 
     In addition to the main source (or corresponding executable), there are several files needed by
the HEM-3D hydrodynamic portion, for both calibration and verification.  For calibration, these
include:
             a) ‘efdc.inp’
             b) ‘efdc.com’
             c) ‘efdc.par’
             d) ‘dxdy.inp’
             e) ‘lxly.inp’
             f) ‘salt.inp ’
             g) ‘modchan.inp’
             h) ‘gwater.inp ’
             i) ‘txser.inp’
 
     Additional files required for verification include:
              j) ‘qser.inp’
              k)‘pser.inp’
              l) 'aser.inp’
            m) ‘sser.inp’
 
     The main input file, ‘efdc.inp’, for the York River calibration is shown below.  In order
to keep this document to a reasonable length, most in-line comments have been stripped out
 (see User’s Manual):

 *******************************************************************************
 *   WELCOME TO THE ENVIRONMENTAL FLUID DYNAMICS COMPUTER CODE SERIES          *
 *   DEVELOPED BY JOHN M. HAMRICK.                                                     
 *******************************************************************************
 C1   TITLE FOR RUN                                                            |
      ' FINAL CALIBRATION' Test horizontal diff. set it=0.020'                 |
 -------------------------------------------------------------------------------
 C2  RESTART, GENERAL CONTROL AND AND DIAGNOSTIC SWITCHES                      |       
 C2  ISRESTI ISRESTO ISRESTR ISPAR ISLOG ISDIVEX ISNEGH ISMMC ISBAL ISHP ISHOW |
     0         1       0       0     2     0       1      0     0     0    0
 -------------------------------------------------------------------------------
 C3   RELAXATION PARAMETERS AND SWITCHES                                       |      
 C3   RP  RSQM  ITERM IRVEC RPADJ  RSQMADJ  ITRMADJ  ITERHPM ISDRYCK ISDSOLV   |
     1.8 1.E-5   500  2   1.8    1.E-16   1000     1        20       0
 -------------------------------------------------------------------------------
 C4   LONGTERM MASS TRANSPORT INTEGRATION ONLY SWITCHES                        |
 C4   ISLTMT  ISSSMMT ISLTMTS  ISIA  RPIA  RSQMIA   ITRMIA                     |
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      0       0       0        0     1.8   1.E-10   100 
 -------------------------------------------------------------------------------
 C5   MOMENTUM ADVEC AND HORIZ DIFF SWITCHES AND MISC SWITCHES                 |
 C5   ISCDMA ISAHMF ISDISP ISWASP ISDRY ISQQ ISRLID ISVEG ISVEGL ISITB ISWAVE  |
      0      2      0      0      11      1    0      0     0      0     0   
--------------------------------------------------------------------------------
 C6   DISSOLVED AND SUSPENDED CONSTITUENT TRANSPORT SWITCHES                   |
 C6   TURB INT=0,SALT=1,TEMP=2,DYEC=3,SEDC=4,SNDC=5,TOXC=6,SFL=7,CWQ=8         |
 C6   ISTRAN ISTOPT ISCDCA ISADAC ISFCT ISPLIT ISADAH ISADAV ISCI ISCO         |
      1      0      0      0     0      0      0      0      0    0    !turb 0
      1      1      1      1     0      0      0      0      1    1    !sal  1
      0      0      0      0     0      0      0      0      0    0    !tem  2
      0      0      0      0     0      0      0      0      0    0    !dye  3 
      0      1      0      1     1      0      0      0      0    0    !sed  4
      0      0      0      0     0      0      0      0      0    0    !snd  5  
      0      0      0      1     1      0      0      0      0    0    !tox  6  
      0      0      0      0     0      0      0      0      0    0    !sfl  7
      0      0      0      0     0      0      0      0      0    0    !cwq  8  
 -------------------------------------------------------------------------------
 C7   TIME-RELATED INTEGER PARAMETERS                                          |       
  C7   NTC  NTSPTC NLTC NTTC NTCPP NTSTBC NTCNB NTCVB NTSMMT NFLTMT  NDRYSTP   |
      238  720   0    0   1440     8     0     2     720   1       5   
 -------------------------------------------------------------------------------
 C8   TIME-RELATED REAL PARAMETERS                                             |
 C8   TCON    TBEGIN  TREF       CORIOLIS   ISCCA   ISCFL                      |
      44714.16 0.00   44714.16     0.0001     0       0
 -------------------------------------------------------------------------------
 C9  SPACE-RELATED AND SMOOTHING  PARAMETERS                                   |       
 C9 KC  IC  JC   LC  LVC ISCO NDM LDW ISMASK ISPGNS NSHMX NSBMX   WSMH    WSMB |
    8  320 357 3311 3309 1    1  3309 0      0        0   0   0.0625  0.0625 
 ------------------------------------------------------------------------------
 C10  LAYER THICKNESS IN VERTICAL                                              |       
 C10  LAYER NUMBER    DIMENSIONLESS LAYER THICKNESS                            |
      1                 0.1250   
      2                 0.1250   
      3                 0.1250   
      4                 0.1250   
      5                 0.1250   
      6                 0.1250   
      7                 0.1250   
      8                 0.1250   
 -------------------------------------------------------------------------------
 C11  GRID, ROUGHNESS AND DEPTH PARAMETERS                                     |
 C11  DX  DY   DXYCVT ZBRADJ ZBRCVRT HMIN HMADJ HCVRT HDRY HWET BELADJ BELCVRT |
      1.  1.   1.     0.0    0.5   0.5    0.4  1.   0.40 0.40  -0.4    1.0  
 -------------------------------------------------------------------------------
 C12  TURBULENT DIFFUSION PARAMETERS                                           |
 C12  AHO   AHD     AVO      ABO      AVBCON  ISFAVB                           |
      0.0   0.020    1.E-6    1.E-8    1.0     1
 -------------------------------------------------------------------------------
 C13  TURBULENCE CLOSURE PARAMETERS                                            |       
 C13  VKC   CTURB   CTE1   CTE2   CTE3   QQMIN   QQLMIN   DMLMIN               |
      0.4   16.0    1.8    1.33   0.53   1.E-8   1.E-16   1.E-8
 -------------------------------------------------------------------------------
 C14 PERIODIC FORCING (TIDAL) CONSTITUENT AND HARMONIC ANALYSIS PARAMETERS     |       
 C14  MTIDE  ISLSHA  MLLSHA   NTCLSHA  ISLSTR   ISHTA                          |
      1      1        16        5        0         1
 -------------------------------------------------------------------------------
 C15 PERIODIC FORCING (TIDAL) CONSTITUENT SYMBOLS AND PERIODS                  |       
 C15  SYMBOL    PERIOD                                                         |
      'M2'      44714.16
 -------------------------------------------------------------------------------
 C16  HARMONIC ANALYSIS LOCATIONS AND SWITCHES                                 |       
 C16  ILLSHA   JLLSHA    LSHAP  LSHAB  LSHAUE  LSHAU   CLSL                    |
       270      52        1      0      0      0       'OPEN BNDRY'            |
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       248      42        1      0      1      0       'GOODWIN'               |
       227      52        1      0      1      0       'GLOUPT'                |
       186     105        1      0      1      0       'CLAYBA'                |
       173     118        1      0      1      0       'ALLMONV'               |
       145     160        1      0      1      0       'BELLEVW'               |
       129     180        1      0      1      0       'WESTPT'                |
       124     239        1      0      1      0       'SWEETH'                |
       124     283        1      0      1      0       'Lester Manor'          |
       124     322        1      0      1      0       'ELSING GR'             |
       124     327        1      0      1      0       'Northbury'             |
       209     180        1      0      1      0       'Wakema'                |
       277     180        1      0      1      0       'Walkerton'             |
       128     176        1      0      1      0       'mwpt'
       130     176        1      0      1      0       'nwpt'
       126     176        1      0      1      0       'swpt'
--------------------------------------------------------------------------------
 C17 SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITION PARAMETERS               |
 C17  NPBS NPBW NPBE NPBN  NPFOR  NPSER  PDGINIT                               |
      0    0    16   0     0       1      0.00 
 -------------------------------------------------------------------------------
 C18 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE BOUNDARY COND. FORCINGS    |       
 C18  NPFOR  SYMBOL   AMPLITUDE         PHASE                                  |
 -------------------------------------------------------------------------------
 C19 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON SOUTH OPEN BOUNDARIES   |
 C19  IPBS     JPBS   ISPBS    NPFORS  NPSERS                                  |
 -------------------------------------------------------------------------------
 C20 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON WEST OPEN BOUNDARIES    |
 C20 IPBW     JPBW   ISPBW    NPFORW   NPSERW
 -------------------------------------------------------------------------------
 C21 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON EAST OPEN BOUNDARIES            
 C21  IPBE     JPBE   ISPBE    NPFORE  NPSERE
       270      45    1        1       1
       270      46    1        1       1
       270      47    1        1       1
       270      48    1        1       1
       270      49    1        1       1
       270      50    1        1       1
       270      51    1        1       1
       270      52    1        1       1
       270      53    1        1       1
       270      54    1        1       1
       270      55    1        1       1
       270      56    1        1       1
       270      57    1        1       1
       270      58    1        1       1
       270      59    1        1       1
       270      60    1        1       1
 -------------------------------------------------------------------------------
 C22 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON NORTH OPEN BOUNDARIES   |
 C22 IPBN     JPBN   ISPBN    NPFORN  NPSERN                                   |
 -------------------------------------------------------------------------------
 C23 VELOCITY, VOLUMN SOURCE/SINK, FLOW CONTROL, AND WITHDRAWAL/RETURN DATA    |
 C23 NVBS NUBW NUBE NVBN NQSIJ NQSER NQCTL NQWR  ISDIQ                         |
     0    0    0    0    2     2     0     0     0
 -------------------------------------------------------------------------------
 C24 VOLUMETRIC SOURCE/SINK LOCATIONS, MAGNITUDES, AND CONCENTRATION SERIES    |       
 C24 IQS  JQS   QSSE  NQSMUL NQSMFF NQSERQ NS- NT- ND- NSD- NSN- NTX- NSF-     |
     124  352   39.2  0      0      1      0   0   0   0    0    0    0
     277  180   20.5  0      0      2      0   0   0   0    0    0    0
 -------------------------------------------------------------------------------
 C25 TIME CONSTANT INFLOW CONCENTRATIONS FOR TIME CONSTANT VOLUMETRIC SOURCES  |
 C25 SALT   TEMP   DYEC   SEDC  SNDC  TOXC  SFLC                               |
     0.     25.    0.     10.   0.    0.    0. 
     0.     25.    0.     10.   0.    0.    0.  
 -------------------------------------------------------------------------------
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 C26 SURFACE ELEV OR PRESSURE DEPENDENT FLOW CONTROL STRUCTURE INFORMATION     |
 C26 IQCTLU JQCTLU IQCTLD JQCTLD NQCTYP NQCTLQ NQCMUL NQCMFU NQCMFD IQCAX JQCAX|
 -------------------------------------------------------------------------------
 C27 FLOW WITHDRAWAL, HEAT OR MATERIAL ADDITION, AND RETURN DATA                       
 C27 IWRU JWRU IWRD JCWRD QWRE NQSERW NSS- NTS- NDS- NSDS- NSNS- NTXS- NSFS-   |
 -------------------------------------------------------------------------------
 C28 TIME CONSTANT WITHDRAWAL AND RETURN CONCENTRATION RISES                   |
 C28   SALTR  TEMPR   DYER   SEDR   SNDR   TOXR   SFLR                         |
 -------------------------------------------------------------------------------
 C29 SUSPENDED SEDIMENT SOURCE/SINK PARAMETERS                                 |
 C29 SEDO SEDBO SDEN  SSG  WSEDO SEDN   SEXP TAUD WRSPO  TAUR  TAUN  TEX SDBLV |
     20.0  0.   0.0   2.5  5.E-5 1.E-5  0.  7.5E-5 0.2  1.E-4 1.E-4  1.  0.
 -------------------------------------------------------------------------------
 C30A CONCENTRATION PARAMETERS FOR BUOY, EQ TEMP, DYE DECAY AND TOXIC COMTAM   |
 C30A  BSC TEMO  HEQT  RKDYE  TOXINIT TOXBINIT  TOXPAR  RKTOX                  |
       1.  25.0  0.0   0.0    0.0     0.0       0.05     0.
 -------------------------------------------------------------------------------
 C30B CONCENTRATION BOUNDARY CONDITION AND TIME SERIES INFORMATION             |
 C30B NCBS NCBW NCBE NCBN NSSER NTSER NDSER NSDSER NSNSER NTXSER NSFSER        |
      0    0    16   0    1     0     0     0      0      0      0
 -------------------------------------------------------------------------------
 C31  LOCATION OF CONC BC'S ON SOUTH BOUNDARIES                                |
 C31 IBBS  JBBS  NTSCRS NSSERS NTSERS NDSERS NSDSERS  NSNSERS NTXSERS NSFSERS  |
 -------------------------------------------------------------------------------
 C32 TIME CONSTANT BOTTOM CONC ON SOUTH CONC BOUNDARIES                        |
 C32 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
 -------------------------------------------------------------------------------
 C33 TIME CONSTANT SURFACE CONC ON SOUTH CONC BOUNDARIES                       |
 C33 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
 -------------------------------------------------------------------------------
 C34 LOCATION OF CONC BC'S ON WEST BOUNDARIES AND SERIES IDENTIFIERS           |
 C34 IBBW  JBBW  NTSCRW NSSERW NTSERW NDSERW NSDSERW  NSNSERW NTXSERW NSFSERW  |
 -------------------------------------------------------------------------------
 C35 TIME CONSTANT BOTTOM CONC ON WEST CONC BOUNDARIES                         |
 C35 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
 -------------------------------------------------------------------------------
 C36 TIME CONSTANT SURFACE CONC ON WEST CONC BOUNDARIES                        |
 C36 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
 -------------------------------------------------------------------------------
 C37 LOCATION OF CONC BC'S ON EAST BOUNDARIES AND SERIES IDENTIFIERS           |       
 C37 IBBE  JBBE  NTSCRE NSSERE NTSERE NDSERE NSDSERE  NSNSERE NTXSERE NSFSERE  |
      270   45     74    1      0      0      0        0       0       0
      270   46     74    1      0      0      0        0       0       0
      270   47     74    1      0      0      0        0       0       0
      270   48     74    1      0      0      0        0       0       0
      270   49     74    1      0      0      0        0       0       0
      270   50     74    1      0      0      0        0       0       0
      270   51     74    1      0      0      0        0       0       0
      270   52     74    1      0      0      0        0       0       0
      270   53     74    1      0      0      0        0       0       0
      270   54     74    1      0      0      0        0       0       0
      270   55     74    1      0      0      0        0       0       0
      270   56     74    1      0      0      0        0       0       0
      270   57     74    1      0      0      0        0       0       0
      270   58     74    1      0      0      0        0       0       0
      270   59     74    1      0      0      0        0       0       0
      270   60     74    1      0      0      0        0       0       0
 -------------------------------------------------------------------------------
 C38 TIME CONSTANT BOTTOM CONC ON EAST CONC BOUNDARIES                         |       
 C38 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
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       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
 -------------------------------------------------------------------------------
 C39 TIME CONSTANT SURFACE CONC ON EAST CONC BOUNDARIES                        |
 C39 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
       0.  25.     0.   0.    0.   0.    0.
 -------------------------------------------------------------------------------
 C40 LOCATION OF CONC BC'S ON NORTH BOUNDARIES AND SERIES IDENTIFIERS          |
 C40 IBBN  JBBN  NTSCRN NSSERN NTSERN NDSERN NSDSERN  NSNSERN NTXSERN NSFSERN  |
 -------------------------------------------------------------------------------
 C41 TIME CONSTANT BOTTOM CONC ON NORTH CONC BOUNDARIES                        |
 C41  SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                |
 -------------------------------------------------------------------------------
 C42 TIME CONSTANT SURFACE CONC ON NORTH CONC BOUNDARIES                       |
 C42 SALT  TEMP  DYEC  SEDC   SNDC  TOXC  SFLC                                 |
 -------------------------------------------------------------------------------
 C43 DRIFTER DATA (FIRST 4 PARAMETER FOR SUB DRIFER, SECOND 6 FOR SUB LAGRES)  |
 C43 ISPD NPD NPDRT NWPD ISLRPD ILRPD1 ILRPD2 JLRPD1  JLRPD2  MLRPDRT IPLRPD   |
     0    0   0     0    0      1      1      1       1       12      1
 -------------------------------------------------------------------------------
 C44  INITIAL DRIFTER POSITIONS                                                |
 C44  RI    RJ   RK
 -------------------------------------------------------------------------------
 C45 CONSTANTS FOR CARTESION GRID CELL CENTER LONGITUDE AND LATITUDE           |
 C45  CDLON1  CDLON2   CDLON3   CDLAT1  CDLAT2   CDLAT3                        |
      0.0     0.      0.        0.      0.       0.  
 -------------------------------------------------------------------------------
 C46  CONTROLS FOR PRINTED OUTPUT                                              |
 C46  ISPOP   ISPOU  ISPOV  ISPOS                                              |
      0       0      0      0
 -------------------------------------------------------------------------------
 C47 CONTROLS FOR HORIZONTAL PLANE SCALAR FIELD CONTOURING                     |
 C47 ISSPH   NPSPH   ISRSPH                                                    |
     0       24      1 
 -------------------------------------------------------------------------------
 C48 CONTROLS FOR HORIZONTAL SURFACE ELEVATION OR PRESSURE CONTOURING          |
 C48 ISPPH   NPPPH   ISRPPH                                                    |
     0       0       0 
 -------------------------------------------------------------------------------
 C49 CONTROLS FOR HORIZONTAL PLANE VELOCITY VECTOR PLOTTING                    |
 C49 ISVPH   NPVPH   ISRVPH                                                    |
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     0       24      0 
 -------------------------------------------------------------------------------
 C50 CONTROLS FOR VERTICAL PLANE SCALAR FIELD CONTOURING                       |
 C50 ISECSPV   NPSPV  ISSPV  ISRSPV  ISHPLTV                                   |
      9        12      1      1       0
 -------------------------------------------------------------------------------
 C51 MORE CONTROLS FOR VERTICAL PLANE SCALAR FIELD CONTOURING                  |
 C                                                                             |
       ISECSPV:  SECTION NUMBER                                                |
       NIJSPV:   NUMBER OF CELLS OR I,J PAIRS IN SECTION                       |
       SEC ID:   CHARACTER FORMAT SECTION TITLE                                |
 C                                                                             |
 C51 ISECSPV NIJSPV  SEC ID                                                    |
     1       140     'Horz'
     2       15      'Month'
     3        8      'G. PT'
     4       10      'L-clay'
     5        8      'clay'
     6       10      'U-clay'
     7        8      'L-belv'
     8        8      'Belv'
     9        9      'W-pt'
 -------------------------------------------------------------------------------
 C52 I,J LOCATIONS FOR VERTICAL PLANE SCALAR FIELD CONTOURING                  |
 C                                                                             |
       ISECSPV: SECTION NUMBER                                                 |
       ISPV:    I CELL                                                         |
       JSPV:    J CELL                                                         |
 C                                                                             |
 C52 ISECSPV ISPV    JSPV                                                      |
     1       127     174
              .
     1       266     50
     2       238     54
              .
     2       238     40
     3       222     67
              .
     3       215     56
     4       205     79
              .
     4       198     66
     5       192     97
              .
     5       185     83
     6       182     110
              .
     6       174     101
     7       172     128
              .
     7       165     116
     8       147     159
              .
     8       140     148
     9       123     175
              .
     9       131     175
 -------------------------------------------------------------------------------
 C53 CONTROLS FOR VERTICAL PLANE VELOCITY VECTOR PLOTTING                      |
 C                                                                             |
       ISECVPV:  N AN INTEGER NUMBER (N.LE.9) OF VERTICAL SECTIONS             |
                   TO WRITE N FILES FOR VELOCITY PLOTTING                      |
       NPVPV:      NUMBER OF WRITES PER REFERENCE TIME PERIOD                  |
       ISVPV:    1 TO ACTIVATE INSTANTANEOUS VELOCITY                          |
       ISRVPV:   1 TO ACTIVATE FOR RESIDUAL VELOCITY                           |
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 C                                                                             |
 C53 ISECVPV   NPVPV  ISVPV  ISRVPV                                            |
       6        12      1      1
 -------------------------------------------------------------------------------
 C54 MORE CONTROLS FOR VERTICAL PLANE VELOCITY VECTOR PLOTTING                 |
 C                                                                             |
       ISCEVPV:  SECTION NUMBER                                                |
       NIJVPV:   NUMBER IS CELLS OR I,J PAIRS IN SECTION                       |
       ANGVPV:   CCW POSITIVE ANGLE FROM EAST TO SECTION NORMAL                |
       SEC ID:   CHARACTER FORMAT SECTION TITLE                                |
 C                                                                             |
 C54 ISECVPV   NIJVPV  ANGVPV  SEC ID                                          |
     1       140      -135  'Horz'
     2       15        0    'Month'
     3        8       -45   'G. PT'
     4       10       -40   'L-clay'
     5        8       -30   'clay'
     6       10       -40    'U-clay'
 -------------------------------------------------------------------------------
 C55 CONTROLS FOR VERTICAL PLANE VELOCITY PLOTTING                             |
 C55 ISECVPV IVPV    JVPV                                                      |
     1       127     174
              .
     1       265     50
              .
     1       266     50
     2       238     54
              .
     2       238     40
     3       222     67
              .
     3       215     56
     4       205     79
              .
     4       198     66
     5       192     97
              .
     5       185     83
     6       182     110
              .
     6       174     101
 -------------------------------------------------------------------------------
 C56 CONTROLS FOR 3D FIELD OUTPUT                                              |
 C56 IS3DO ISR3DO NP3DO KPC NWGG I3DMI I3DMA J3DMI J3DMA I3DRW SELVMAX BELVMIN |
     0     0      12     1   0    2     331    2     320    0     0.25 -31.75
 -------------------------------------------------------------------------------
 C57 SCALES FOR 3D FIELD OUTPUT                                                |
 C57 VARIABLE    IS3D(VARID)  JS3D(VARID)   MAX SCALE VALUE  MIN SCALE VALUE   |
     'U VEL'     1            2                0.5             -0.5
     'V VEL'     1            2                0.5             -0.5
     'W VEL'     0            0                1.0E-3          -1.0E-3
     'SALINITY'  1            2               25.0              0.0
     'TEMP'      0            0               30.0             10.0
     'DYE'       0            0             1000.0              0.0
     'SEDIMENT'  0            0             1000.0              0.0
 -------------------------------------------------------------------------------
 C58 CONTROLS FOR WRITING TO TIME SERIES FILES                                 |
 C58 ISTMSR  MLTMSR  NBTMSR  NSTMSR  NWTMSR  TCTMSR                            |
     1        21        0    9990000    60      3600.
 -------------------------------------------------------------------------------
 C59 CONTROLS FOR WRITING TO TIME SERIES FILES                                 |
 C59 ILTS JLTS  MTSP MTSC MTSA  MTSUE MTSUT MTSU MTSQE MTSQ  CLTS              |
     270   52   1    1    0     1     0     0    0     0    'OPEN BNDRY'
     248   42   1    1    0     1     0     0    0     0    'GOODWIN'
     227   52   1    1    0     1     0     0    0     0    'GLOU PT'
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     203   73   1    1    0     1     0     0    0     0    'GL-CL'
     191   94   1    1    0     1     0     0    0     0    'GL-CL2'
     191   82   1    1    0     1     0     0    0     0    'GL-CL3'
     186  105   1    1    0     1     0     0    0     0    'CLAYBANK'
     173  118   1    1    0     1     0     0    0     0    'ALLMONDSV'
     145  160   1    1    0     1     0     0    0     0    'BELLEVIEW'
     129  180   1    1    0     1     0     0    0     0    'WEST PT'
     124  249   1    1    0     1     0     0    0     0    'SWEET HALL'
     124  294   1    1    0     1     0     0    0     0    'Lester Manor'
     124  325   1    1    0     1     0     0    0     0    'ELSING GREEN'
     124  332   1    1    0     1     0     0    0     0    'Northbury'
     209  180   1    1    0     1     0     0    0     0    'Wakema'
     277  180   1    1    0     1     0     0    0     0    'Walkerton'         
     124  199   1    1    0     0     0     1    0     0    'pam chan'
      90  164   1    1    0     1     0     0    0     0    'mwpt'
     124  199   1    1    0     0     0     1    0     0    'pam chan'
      90  164   1    1    0     1     0     0    0     0    'mwpt'
     209  180   1    1    0     1     0     0    0     0    'c-mat'
 ------------------------------------------------------------------------------
 C60 CONTROLS FOR EXTRACTING INSTANTANEOUS VERTICAL SCALAR FIELD PROFILES      |
 C60 ISVSFP  MDVSFP  MLVSFP  TMVSFP  TAVSFP                                    |
       0       0       0      3600.   0.0
 -------------------------------------------------------------------------------
 C61 SAMPLING DEPTHS FOR EXTRACTING INST VERTICAL SCALAR FIELD PROFILES        |
 C61 MMDVSFP  DMVSFP                                                           |
 -------------------------------------------------------------------------------
 C62 HORIZONTAL SPACE-TIME LOCATIONS FOR SAMPLING                              |
 C62 MMLVSFP  TIMVSFP  IVSFP  JVSFP                                            |
 *******************************************************************************
 *******************************************************************************
 *******************************************************************************

    
     The file ‘efdc.com’ contains common block declarations for the hundreds of arrays required by
HEM-3D.  Its header lines, along with typical declaration blocks, are shown below: 

C**********************************************************************C
C
C **  GLOBAL COMMON FILE EFDC.COM
C
C**********************************************************************C
C **  REMOVE COMMENT ON IMPLICIT FOR DOUBLE PRECISION
C     IMPLICIT REAL*8 (A-H,O-Z)
C**********************************************************************C
C 
      CHARACTER*20 CCTITLE(100),CLSL(100),CVTITLE(100),CLTMSR(MLTMSRM)
      CHARACTER*5 SYMBOL(MTM)
      CHARACTER*13 FNSAL(MLTMSRM),FNTEM(MLTMSRM),FNDYE(MLTMSRM),
     $             FNSED(MLTMSRM),FNSND(MLTMSRM),FNTOX(MLTMSRM),
     $             FNSFL(MLTMSRM),FNAVV(MLTMSRM),
     $             FNAVB(MLTMSRM),FNSEL(MLTMSRM),
     $             FNUVE(MLTMSRM),FNUVT(MLTMSRM),FNU3D(MLTMSRM),
     $             FNV3D(MLTMSRM),FNQQE(MLTMSRM),FNQ3D(MLTMSRM)
      CHARACTER*2  CNTMSR(MLTMSRM)
C
C**********************************************************************C
C 
      COMMON/CHARY/ CCTITLE,CLSL,CVTITLE,SYMBOL,CLTMSR,
     $             FNSAL,FNTEM,FNDYE,
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     $             FNSED,FNSND,FNTOX,FNSFL,FNAVV,
     $             FNAVB,FNSEL,
     $             FNUVE,FNUVT,FNU3D,
     $             FNV3D,FNQQE,FNQ3D,
     $             CNTMSR
C
C**********************************************************************C 
      COMMON/A1/  CU1(LCM,KCM),     CU2(LCM,KCM),  
     2            UUU(LCM,KCM),     VVV(LCM,KCM),  WWW(LCM,0:KCM),
     3             DU(LCM,KCM),      DV(LCM,KCM), 
     4             FX(LCM,KCM),      FY(LCM,KCM), 
     5             FBBX(LCM,KCM),    FBBY(LCM,KCM),  
     6             CAP(LCM,KCM),    CAM(LCM,KCM), CAS(LCM,KCM),
     7             CAN(LCM,KCM),    CAE(LCM,KCM), CAW(LCM,KCM),
     8             RSDZ(LCM,KCM), BH(LCM,KCM)  
C
C**********************************************************************C
 
     

     It should be noted that ‘efdc.com’ does not require change from application to application,
since its arrays are dynamically allocated in the parameter file, ‘efdc.par’, shown below:

C **  EFDC PARAMETER FILE - YORK RIVER  (Mac Sisson)
C **  LAST MODIFIED ON 15 MAY 1996
C
C     IMPLICIT REAL*8 (A-H,O-Z)
      PARAMETER (KSM=7,KCM=8,KGM=8,LCM=3588,ICM=320,JCM=331,
     $      IGM=320,JGM=331,KPCM=1,NWGGM=3587,NTSM=2000,NPDM=10,
     $      NPBSM=2,NPBWM=2,NPBEM=17,NPBNM=2,NGLM=2,
     $      NVBSM=1,NVBNM=1,NUBWM=1,NUBEM=1,LCMW=1,LCGLM=2,
     $      NQSIJM=2,NQSERM=20,NCSERM=20,NQCTLM=2,
     $      NQWRM=2,NPSERM=20,NDQSER=2000,NVEGTPM=20,
     $      NBBSM=2,NBBWM=2,NBBEM=17,NBBNM=2,
     $      MTM=1,MLM=10,MGM=2,NPFORM=12,MLTMSRM=99)
C
C      ICM= MAXIMUM X OR I CELL INDEX TO SPECIFIC GRID IN
C            FILE cell.inp
C      IGM= ICM+1
C      JCM= MAXIMUM Y OR J CELL INDEX TO SPECIFIC GRID IN
C            FILE cell.inp
C      JGM= JCM+1
C      KCM= MAXIMUM NUMBER OF LAYERS, MAX LOOP INDEX KC
C      KGM= KCM
C      KSM= KCM-1
C     KPCM= MAXIMUM NUMBER OF CONSTANT ELEVATION LEVELS FOR

C            THREE DIMENSION GRAPHIC OUTPUT
C      LCM= MAXIMUM NUMBER OF WATER CELLS + 2
C            OR 1 + THE MAX LOOP INDEX LA
C     LCMW= SET TO LCM IF ISWAVE.GE.1 OTHERWISE =2
C    LCGLM= SET TO LCM IF ISLRD.GE.1 OTHERWISE =2
C      MGM= 2*MTM
C      MLM= MAXIMUN NUMBER OF HARMONIC ANALYSIS LOCATION
C      MTM= MAXIMUM NUMBER OF PERIODIC FORCING CONSTITUENTS
C  MLTMSRM= MAXIMUM NUMBER OF TIME SERIES SAVE LOCATIONS
C   NCHANM= MAXIMUM NUMBER OF SUBGRID SCALE CHANNEL HOST CELLS
C   NCSERM= MAXIMUM NUMBER OF CONCENTRATION TIME SERIES FOR
C            ANY CONCENTRATION VARIABLE
C     NGLM= NUMBER OF ISLRD PARTICLE RELEASE TIMES
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C    NBBEM= NPBEM, NBBNM=NBBNM, NBBSM=NBBSM, NBBWM=NBBWM
C   NDQSER= MAXIMUM NUMBER OF TIME POINTS IN THE LONGEST TIME SERIES
C    NPBEM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIES
C    NPBNM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIES
C    NPBSM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIES
C    NPBWM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIES
C     NPDM= MAXIMUM NUMBER OF ISPD TYPE PARTICLE DRIFTERS
C   NPFORM= MAXIMUM NUMBER OF PERIODIC FORCING FUNCTIONS
C   NPSERM= MAXIMUM NUMBER OF SURFACE ELEVATION TIME SERIES
C   NQCTLM= MAXIMUM NUMBER OF FLOW CONTROL STRUCTURES
C   NQSERM= MAXIMUM NUMBER OF FLOW TIME SERIES
C   NQSIJM= MAXIMUM NUMBER OF NQSIJ VOLUMETRIC SOURCE-SINKS
C    NQWRM= MAXIMUM NUMBER OF FLOW WITH-RETURN PAIRS
C     NTSM= MAXIMUM NUMBER OF TIME STEP PER REFERENCE TIME PERIOD
C    NUBEM= 1, NUBWM= 1, NVBNM= 1, NVBSM= 1
C  NVEGTPM= MAXIMUM NUMBER OF VEGETATION TYPE CLASSES
C    NWGGM= NUMBER OF WATER CELLS IN CARTESIAN GRAPHIC OVERLAY
C           GRID, EQUAL TO LCM-2 FOR CARTESIAN GRIDS

     Two files output by  the grid generator (‘dxdy.out’ and ‘lxly.out ’) are renamed to
‘dxdy.inp’  and ‘lxly.inp ’ and used as input to the hydrodynamic portion.  Each devotes a full
card image to each horizontal cell in the grid.

     File ‘dxdy.inp’, shown below, includes for each cell, the i and j indices (fields 1 and 2),
the x & y horizontal dimensions (m) (fields 3 and 4), depth and bottom elevation (fields 5 and
6), and bottom roughness and vegetation class (fields 7 and 8):
   
C      dxdy.inp file, in free format across line                                          
      C 
C                    
C 
   239    35   .25000E+03   .25000E+03   .12449E+01  -.12449E+01   .15000E-02   .00000E+00
   239    36   .25000E+03   .25000E+03   .12603E+01  -.12603E+01   .15000E-02   .00000E+00
          .
          .
   131   179   .28092E+03   .37393E+03   .44894E+01  -.44894E+01   .15000E-02   .00000E+00
   124   180   .30570E+03   .23271E+03   .46920E+01  -.46920E+01   .14000E-02   .00000E+00
          .
          .
   279   180   .20000E+04   .30000E+02   .20000E+01  -.20000E+01   .14000E-02   .00000E+00
   124   181   .30854E+03   .21068E+03   .43484E+01  -.43484E+01   .12000E-02   .00000E+00
          .
          .
    82   150   .25000E+03   .25000E+03   .05000E+01  -.05000E+01   .12000E-02   .00000E+00
          .
          .
    82   172   .22160E+03   .22160E+03   .05000E+01  -.05000E+01   .12000E-02   .00000E+00
          .
          .
   102   172   .38730E+03   .38730E+03   .05000E+01  -.05000E+01   .12000E-02   .00000E+00
  

     The 9 records shown above represent cells which differ greatly.  The first 2 records
(i.e., i=239) corresponds to cells in the Cartesian portion of the grid, where the constant
gridlength is 250 m (fields 3 and 4).  The next record represents a curvilinear cell just below
West Point, whereas record 4 represents a cell in the Mattaponi tributary.  The last 3 records
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represent marsh cells, whose various horizontal dimensions must conform to the areal
estimates of the marshes to which they correspond.  Inspection of field 7 shows various
bottom friction multipliers used in the calibration effort. 
 
     The file ‘lxly.inp ’ specifies both the horizontal cell center coordinates (UTM) but also the
cell orientations (Cartesian or curvilinear).  Sample records from ‘lxly.inp ’ are shown below:

 C lxly.inp file, in free format across line
C
C    I     J    XLNUTME       YLTUTMN        CCUE            CCVE          CCUN         CCVN
C
   239    35  0.369625E+03  0.118625E+03  0.10000 0E+01  0.000000E+00  0.000000E+00
0.100000E+01
   239    36  0.369625E+03  0.11 8875E+03  0.100000E+01  0.000000E+00  0.000000E+00
0.100000E+01
   239    37  0.369625 E+03  0 .119125E+03  0.100000E+01  0.000000E+00  0.000000E+00
0.100000E+01
          .
          .
          .
   123   173  0.340621E+03  0.153122E+03  0.9998 81E+00 -0.313617E-01  0.154468E-01
0.999508E+00
   124   173  0.340866E+03  0.153127E+03  0.999634E+00 -0.716428E-01  0.270465E-01
0.997430E+00
   125   173  0.34 1114E+03  0.153134E+03  0.999549E+00 -0.850466E-01  0.300370E-01
0.996377E+00
          .
          .
          .
    82   150   .330375E+03   .147375E+03   .100000E+01   .000000E+00   .000000E+00 
.100000E+01
    84   150   .330875E+03   .147375E+03   .100000E+01   .000000E+00   .000000E+00 
.100000E+01
    86   150   .331375E+03   .147375E+03   .100000E+01   .000000E+00   .000000E+00 
.100000E+01
  

     The first 3 records represent Cartesian cells and are by definition normal and have center
spacing of 250 m, or the gridlength.  The next 3 records are for curvilinear cells and have a
more irregular spacing. And yet the orientation is nearly orthogonal.
 
     The file ‘salt.inp’ is used to initialize the model domain with a pre-determined salinity
field.  Each cell is represented by a card image with a horizontal cell counter in field 1 and
i & j in fields 2 and 3.  Salinity for the bottom layer is in field 4, and progressive fields denote
salinities moving up the water column:

    2 239  35 17.19 17.08 17.08 17.08 17.08 17.08 17.08 17.08
    3 239  36 16.58 16.36 16.36 16.36 16.36 16.36 16.36 16.36
    4 239  37 16.76 16.64 16.64 16.64 16.64 16.64 16.64 16.64
          .
 2020 166 126  9.85  9.44  9.44  9.44  9.44  9.44  9.44  9.44
 2021 167 126  9.70  9.44  9.44  9.44  9.44  9.44  9.44  9.44
 2022 168 126  9.61  9.43  9.43  9.43  9.43  9.43  9.43  9.43
          .
 2834 133 171  7.12  7.10  7.10  7.10  7.10  7.10  7.10  7.10
 2835 134 171  7.11  7.10  7.10  7.10  7.10  7.10  7.10  7.10
          .
 3309 124 351   .00   .00   .00   .00   .00   .00   .00   .00
 3310 124 352   .00   .00   .00   .00   .00   .00   .00   .00

            
      The file ‘modchan.inp’ handles the mapping of the ‘marsh cells’ into the tributary



E-12

portions to which they are attached (see Section IIIf.)  In the following example, several
header lines are followed by 8 examples of mapping.  Note the value ‘200' on line 9,
specifying the number of marsh cells (and consequently also subsequent lines).  The first
4 mappings (i.e., those records having a ‘1' in column 1) map ‘host cells’ connecting to
‘marsh cells’ in the y-direction.  Here, the ‘host cell’ at i=135,j=180 connects to the ‘marsh
cell’ located in i=108, j=150.  The last 4 mappings (i.e, those records having a ‘2' in column
1) map ‘host cells’ to ‘marsh cells’ in the y-direction:

C modchan.inp file, in free format across columns
C # host cells  MDCHHD=1 wet host from chan  MDCHHD2=1 dry ck first
C MDCHH         MDCHHD             MDCHHD2
C max iters     MDCHHQ=1 int Q=0   QCHERR= abs error for flow cms
C MDCITM        MDCHHQ             QCHERR
C type     i host  j host  i uchan  j uchan  i vchan  j vchan
C MDCHTYP  IMDCHH  JMDCHH  IMDCHU   JMDCHU   IMDCHV   JMDCHH
C
    200            1               1
    20            1               0.01
1 135 180 108 150 1 1
1 136 180 110 150 1 1
1 137 180 82 152 1 1
          .
          .
1 211 180 104 160 1 1
2 124 194 1 1 110 162
2 124 195 1 1 82 164
2 124 196 1 1 84 164
          .
2 124 319 1 1 127 319

     Finally, 2 other input files provide for, respectively, a soil moisture model (‘gwater.inp’)
and input of toxicity parameters (‘txser.inp ’).  These were not utilized in this application 
but, due to their brevity, are listed below to complete the input file group:
 
C gwater.inp file, in free format across columns
C   ISGWIE
C     1 for on
C   DAGWZ       RNPOR         RIFTRM 
C dep act gw  eff porosity  max infilt rate
C
    0
    0.4          0.3           0.0001

 
C  txser.inp file, toxic is nc=6 conc, in free format across line, Pu york
C  repeats ncser(3) times, test case
C                                                                            
8
C  ISTYP  MCSER(NS,3)  TCCSER(NS,3)  TACSER(NS,3)  RMULADJ(NS,3)  ADDADJ(NS,3)
0
C
C  if istyp.eq.1 then read depth weights and single value of CSER
C  
C  (WKQ(K),K=1,KC)
C
C  TCSER(M,NS,3)   CSER(M,NS,3)  !(mcser(ns,3) pairs for ns=3,ncser(3) series)
C
C  else read a value of dser for each layer
C
C  TCSER(M,NS,3)   (CSER(M,K,NS,3),K=1,KC) !(mcser(ns,3) pairs)
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C
    1     6     3600.0     0.     1.    0.
    0.00    0.00   0.00   0.00   0.00   0.00   0.00   1.00   
-1000.00000        0.0
   10.99167        0.0
   11.00000        3.702E+7
   11.50000        3.702E+7
   11.50833        0.0
 1000.00000        0.0
   1     6     3600.0     0.     1.    0.
    0.00    0.00   0.00   0.00   0.00   0.00   0.00   1.00   
-1000.00000        0.0
   10.99167        0.0
   11.00000        9.856E+6
   11.50000        9.856E+6
   11.50833        0.0
 1000.00000        0.0

  
    Examples of verification files (‘qser.inp’, ‘pser.inp’, ‘aser.inp’)
     
     Time series data for freshwater discharge is input to HEM-3D via the file ‘qser.inp’.
Below is a short example showing how easy it is to input USGS daily values directly, first 
for the Pamunkey gauge (June 1, 2, 3 ..... September 25, 26) and then for the Mataponi gauge
as well (note corresponding time array in exponential format).  Discharges are easily
converted from cfs to model input unit cms by specifying the .0283 constant in the header:

C qser.inp
C
C
1         118      3600   0.000000       0.283000E-01   0.000000       1
   0.1250   0.1250   0.1250   0.1250   0.1250  0.1250   0.1250   0.1250 
           1    472.000    1989.06.01
          25    436.000    1989.06.02
          49    308.000    1989.06.03
                            .
        2785    642.000    1989.09.25
        2809    926.000    1989.09.26
1         118        3600   0.000000       0.283000E-01   0.000000      1
   0.1250  0.1250  0.1250  0.1250  0.1250   0.1250  0.1250  0.1250
  1.0000000e+000  2.6178554e+002
  2.5000000e+001  2.4548842e+002
  4.9000000e+001  3.1773895e+002
                            .
  2.7850000e+003  1.2189693e+003
  2.8090000e+003  1.4134481e+003

     The file ‘pser.inp’  specifies the tidal height time series at the open seaward boundary.
Illustrated is the beginning and end of a 2500 hour-long hourly specification starting at 10
a.m. on June 1, 1989:
   
C pser.inp file, in free format across line
C
C MPSER(NS) TCPSER(NS) TAPSER(NS) RMULADJ  ADDADJ
C
C  TPSER(M.NS) PSER(M,NS)
C
    2500    3600      0.      0.81     -1.446
    1.00    1.19                       01JUN89:10
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    2.00    1.03                       01JUN89:11
    3.00    0.94                       01JUN89:12
    4.00    0.95                       01JUN89:13
    5.00    1.09                       01JUN89:14
          .
          .
          .
 2496.00    1.80                       13SEP89:09
 2497.00    1.64                       13SEP89:10
 2498.00    1.46                       13SEP89:11
 2499.00    1.34                       13SEP89:12
 2500.00    1.31                       13SEP89:13

     Atmospheric input, especially wind speed and direction, is important to the model and is
input via file ‘aser.inp’. shown below:
     

C  aser.inp file, in free format across line, repeats naser=1 times, test case
C                                                                            
8
C  MASER   TCASER   TAASER   WINDSCT  RAINCVT  EVAPCVT                       
0
C
C  TASER(M) WINDS(M) WINDD(M) PATM(M) TDRY(M) TWET(M) RAIN(M) EVAP(M) SOLSWR(M)
C
183 86400 0 1 1 1 1
-1 2.96 115 0 0 0 0 0 0 1 245
2 2.8 97 0 0 0 0 0 0 2 263
3 1.23 186 0 0 0 0 0 0 3 174
4 4.13 129 0 0 0 0 0 0 4 231
5 2.77 146 0 0 0 0 0 0 5 214
          .
          .
          .
181 5.03 129 0 0 0 0 0 0 28 231
182 3.7 17 0 0 0 0 0 0 29 343
183 3.48 111 0 0 0 0 0 0 30 249

     Salinity specification at the river mouth is an important part of a verification run.  In the
following example, file  is used to specify salinities at all 8 layers at the elapsed model time
hours specified in the first field (i.e., 576, 577, 721, 1105, 1249. 1513, 1728): 
C
C sser.inp
C
C
0          7        3600   -577.0000       1   0.000000    1
576    22.7  22.0   21.7   20.1  19.9  19.6  19.6  19.0  16.6     1989.11.25
577    22.7  22.0   21.7   20.1  19.9  19.6  19.6  19.0  16.6     1989.11.25
721    23.0  22.7   22.6   22.5  22.4  21.9  21.5  21.1  21.1     1989.12.01
1105   24.0  23.7   23.6   23.5  23.4  22.9  22.5  22.1  22.1     1989.12.17
1249   26.5  26.5   26.2   25.5  25.4  24.9  24.5  24.1  24.1     1989.12.23
1513   25.2  24.7   24.6   24.5  24.4  23.9  23.5  23.4  23.4     1990.01.03
1728   25.4  25.0   24.8   24.2  23.2  23.0  23.6  23.5  23.5     1990.01.11
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