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ABSTRACT

Aim We explored the extent to which occupancy of butterflies within three

biogeographic regions could be explained by vegetation structure and composi-

tion, topography and other environmental attributes; whether results were con-

sistent among regions; and whether assumptions of closure were met with

assemblage-level sampling designs.

Location Chesapeake Bay Lowlands (Virginia), central Great Basin (Nevada)

and western Great Basin (Nevada and California) (all USA).

Methods We applied single-season occupancy models that either assumed clo-

sure or relaxed the closure assumption to data from 2013 and 2014 for 13–15
species in each region.

Results Maximum single-year estimates of detection probabilities ranged from

0.14 to 0.99, and single-year occupancy from 0.28 to 0.98. The assumption of

closure was met for a maximum of 54% of the species in a given region and

year. Detection probabilities of > 90% of the species in each region increased

as the categorical abundance of nectar or mud increased. Measures of the dom-

inance or abundance of deciduous woody species and structural heterogeneity

were included in the greatest number of occupancy models for the Chesapeake

Bay Lowlands, which may in part reflect the intensity of browsing by white-

tailed deer (Odocoileus virginianus). Elevation and precipitation were prominent

covariates in occupancy models for Great Basin butterflies.

Main conclusions Because occupancy models do not rely on captures or

observations of multiple individuals in a population, they potentially can be

applied to a relatively high proportion of the species in an assemblage. How-

ever, estimation of occupancy is complicated by taxonomic, temporal and

spatial variation in phenology. In multiple, widely divergent ecosystems, all or

some associations between covariates and detection probability or occupancy

for at least one-third of the species could not be estimated, often because a

given species rarely was detected at locations with relatively low or high val-

ues of a covariate. Despite their advantages, occupancy models may leave

unexplained the environmental associations with the distributions of many

species.

Keywords

Chesapeake Bay Lowlands, closure, detection, elevation, Great Basin.

Lepidoptera, nectar, phenology, vegetation structure, white-tailed deer.

INTRODUCTION

The data required to precisely estimate abundance and other

demographic parameters can be expensive and difficult to

obtain (MacKenzie et al., 2004). Single-species models of

occupancy (MacKenzie et al., 2002) have been used to

explore the dynamics of populations, species and communi-

ties. Because occupancy models do not require data from
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captured individuals, or detections of multiple individuals in

a population, they potentially can be applied to species that

are problematic to handle, and to a relatively high propor-

tion of the species in an assemblage.

Among the core assumptions of the original, single-season

occupancy model (MacKenzie et al., 2002) is that occupancy

at a given location does not change among surveys (i.e. the

closure assumption). Conducting all surveys within a rela-

tively short period of time reduces the probability of violat-

ing this assumption (Rota et al., 2009). However, doing so

may not be feasible when conducting assemblage-level sur-

veys for taxonomic groups in which species composition,

phenology or activity patterns vary considerably within a sea-

son or geographically, such as anurans or invertebrates (e.g.

Harms et al., 2014).

The population dynamics of individual species of butter-

flies have been examined via both mark–recapture analyses

(e.g. Brown & Ehrlich, 1980; Fleishman et al., 2002; Leidner

& Haddad, 2011) and occupancy models (e.g. Pellet, 2008;

van Strien et al., 2011; Bried et al., 2012; Roth et al., 2014).

Collection of data on occupancy of many species within a

butterfly assemblage, and therefore application of occupancy

models to many species rather than to one or a small num-

ber of species, is complicated by many sources of variation

in phenology (e.g. Baughman et al., 1988; Weiss et al.,

1988). Moreover, the number of generations per year varies

among and within species and can be plastic. Accordingly, it

is quite difficult to gauge, a priori, the period in which a

given species is available for sampling.

Assemblage-level surveys of butterflies traditionally

addressed variation in phenology by conducting surveys

every 1–3 weeks across the assemblage’s flight season. This

method maximizes the likelihood that at least one or two

surveys will coincide with each species’ flight. However, one

survey is insufficient to estimate detection probability, and

over several weeks, butterfly assemblages are not closed. If

the flight season of a species can be estimated, then multiple

surveys potentially can be used to develop a detection his-

tory. But the occupancy status of sample units is not con-

stant across the season, and changes in occupancy are not

random. Therefore, detection estimates that treat multiple

surveys as replicate samples of the same species may be neg-

atively biased, and the resulting estimates of occupancy posi-

tively biased. Another possibility, not mutually exclusive, is

to sample each site repeatedly on each sampling date (the

robust design; Kendall et al., 1997). A third option is to

relax the closure assumption by assuming that species are

available for sampling at different times (Kendall et al.,

2013).

We explored the extent to which occupancy of butterflies

in three assemblages – the Chesapeake Bay Lowlands, central

Great Basin and western Great Basin – could be explained

on the basis of vegetation, topography and other environ-

mental attributes. Study locations in the central and western

Great Basin fall within two different zoogeographic regions

(Toiyabe and Inyo; Austin & Murphy, 1987). We included

survey-specific covariates of detection probability, and we

modelled occupancy and detection in multiple years as a

function of the same covariates to examine the temporal

transferability of results. We also examined whether results

for species that occur in two of the assemblages were geo-

graphically consistent. Furthermore, we examined the degree

to which assumptions of closure at the single-species level

were met with an assemblage-level sampling design.

METHODS

Field methods

In the Chesapeake Bay Lowlands, our study area included

the Virginia Peninsula between Toano and Hampton

(Charles, City, Henrico, James City, Newport News, Wil-

liamsburg, and York Counties, Virginia) and the Middle

Peninsula near West Point (King and Queen County and

King William County, Virginia). Our central Great Basin

study area included much of the adjacent Shoshone Moun-

tains and Toiyabe and Toquima Ranges (Lander and Nye

Counties, Nevada). In the western Great Basin, our study

area included the east slope of the Sierra Nevada and the

adjacent Wassuk Range and Sweetwater Mountains (Mono

County, California and Mineral, Douglas, and Lyon Coun-

ties, Nevada).

In the Chesapeake Bay Lowlands, we sampled butterflies

in 2013 and 2014 along 65 0.5-km transects within upland

coniferous and deciduous forests and within riparian forests

[for species composition, see Monette & Ware (1983) and

Weakley et al. (2012)]. In the central and western Great

Basin, we located transects along the full elevational gradi-

ents of montane canyons. We sampled 64 transects in the

central Great Basin in 1995. We sampled 46 of those, and

another 39 transects, in 2013 and 2014. In the western

Great Basin, we sampled the same 100 transects in 2013

and 2014. Among the dominant land cover types in the

Great Basin are coniferous woodlands, shrubsteppe domi-

nated by sagebrush (Artemisia spp.) and riparian woodlands

dominated by deciduous trees and shrubs. We sampled each

transect approximately every 2 weeks throughout the major-

ity of the flight season (late May through mid-August; gen-

erally six visits per season). During every visit, we walked

the length of each transect at a near-constant pace and

recorded all species detected (Pollard & Yates, 1993; Pullin,

1995).

During each visit in 2013 and 2014, we recorded the rela-

tive abundance (none, low, moderate, high) of individual

plants (primarily forbs) from which one or more species of

butterflies in those ecosystems are known to take nectar and,

in the Great Basin, the relative abundance of sources of

mud, such as stream crossings (none, low, moderate, high).

Female fecundity in some species is related to nectar volume

(Boggs & Ross, 1993), and many species feed on dissolved

minerals in moist soil (Scudder, 1889; Arms et al., 1974).

We grouped some nectar and mud classes for analyses

2 Diversity and Distributions, 23, 1–13, ª 2016 John Wiley & Sons Ltd
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because the number of transects in a given class was small.

In the Chesapeake Bay Lowlands, we grouped the none and

low nectar classes in 2013 and referenced the new class as

low abundance; we grouped nectar classes none, low and

moderate in 2014 and referenced the new class as low. In the

Great Basin, we grouped the none and low nectar classes and

referenced the new class as low. We grouped mud classes

moderate and high and referenced the new class as moder-

ate.

We included five covariates in occupancy models for

butterflies in the Chesapeake Bay Lowlands: the length

(km) of all edges between forest and agriculture, ruderal

or herbaceous-developed land cover; structural heterogene-

ity of the understorey from 0 to 3 m above the ground

[the approximate height of the white-tailed deer (Odo-

coileus virginianus) browse line (Allombert et al., 2005;

Bressette et al., 2012)]; the proportion of the basal area of

trees (≥ 10 cm dbh) that was deciduous; the number of

deciduous stems (single- or multiple-stemmed trees or

shrubs; 1 to < 10 cm dbh) below the canopy; and the cat-

egorical abundance of nectar. We included categorical

abundance of nectar as a detection covariate. To derive

edge length, we first obtained data on land cover at 30-m

resolution (2013 Existing Vegetation Type data; www.land

fire.gov). Next, we delineated edges between land cover

types in Geospatial Modeling Environment (www.spatial

ecology.com/gme/index.htm). We then derived edge length

in ARCGIS 10.1 (ESRI, Redlands, CA, USA) as the mean of

the 30-m cells within a 90-m buffer on either side of the

transect. We used light detection and ranging (LIDAR)

data that were captured from 22 April through 10 May

2010 and 21 through 31 March 2013 to estimate structural

heterogeneity of the understorey on the basis of density of

returns at 10-m resolution, averaged among the 10-m cells

within the 90-m buffer. We measured the proportion of

basal area of trees that was deciduous within three circular

plots (15 m radius) that were randomly placed within the

90-m buffer. We counted the number of deciduous stems

within three circular plots (7.5 m radius), each of which

was embedded within one of the 15-m plots.

We included elevation, the square of elevation, terrain

roughness, precipitation in the water year (1 October–30
September) of sampling and categorical abundance of nectar

and mud as covariates of occupancy in the Great Basin. All

reasonably might be expected to affect habitat quality for

many butterfly species (e.g. Fleishman et al., 2001a,b). We

included categorical abundance of nectar and mud as detec-

tion covariates. We derived mean elevation of the transect

from a 10-m digital elevation model (www.ned.usgs.gov),

assuming that the sampled area included 25 m on either side

of the transect. We used a digital elevation model to derive

terrain ruggedness (Riley et al., 1999) within 30-m circular

neighbourhoods and then averaged terrain ruggedness for

the transect. We derived precipitation at 4-km resolution

from the Parameter–elevation Relationships on Independent

Slopes Model (PRISM).

Analysis methods

We used single-season occupancy models to analyse the data

collected from all transects and on all visits during 2013 and

2014 for 13 species of butterflies in the Chesapeake Bay Low-

lands and 15 species each in the central and western Great

Basin (Table 1). We generally restricted our analyses to spe-

cies that were detected in ≥ 30% and ≤ 70% of the transects

in each year and that are not migrants, highly vagile (e.g.

thousands of metres), or do not complete their entire life

cycle in the ecosystem. We also modelled single-season occu-

pancy of the 15 species in the central Great Basin in 1995.

We fit two parameterizations (MacKenzie et al., 2002;

Kendall et al., 2013) of the single-season occupancy model.

Both include the parameters wi, the probability that a given

species occupies transect i, and pij, the probability that the

species is detected given that it is present on transect i dur-

ing visit j. Kendall et al.’s (2013) model also allows a single

entry and exit of the species from each transect during the

sampling period; the probabilities of entry and exit between

visits j and j + 1 are denoted as bij and dij, respectively. The

model assumes that between the species’ entry and exit, it is

present and therefore available for sampling. However, pij
may vary during the period in which the species is available.

Because we focused on estimating wi and pij, we do not

report estimates of bij and dij. Prior to the analysis, we iden-

tified attributes of transects that we hypothesized could affect

wi and pij, and specified mathematical models [referenced as

submodels (Taylor et al., 2005; Pilliod & Scherer, 2015)] to

represent those relations.

We fit models to the occupancy data in two stages. In the

first stage, we evaluated submodels of pij, bij and dij and

tested the assumption of closure. For both parameterizations,

the sets of submodels of pij included effects of categorical

abundance of nectar (calculated as the maximum abundance

on any visit during the season), mud (in the Great Basin; the

maximum abundance on any visit) or both. In all cases, we

used the highest abundance class of nectar or mud as the

intercept. For example, in the Great Basin and in the Chesa-

peake Bay Lowlands in 2013, we estimated whether pij was

different on transects with no or little nectar, or on transects

with a moderate abundance of nectar, than on transects with

a high abundance of nectar. We report maximum single-year

pij in the text and all pij in Appendix S3 in Supporting Infor-

mation.

We also included a fixed effect of visit (i.e. we estimated

pij for each survey) in the submodels. Furthermore, the sub-

models included additive effects of nectar and visit and of

mud and visit. For the models in which the closure assump-

tion was relaxed, we estimated bij and dij as linear and quad-

ratic functions of visit. We specified full models that

included every combination of the submodels of pij, bij and
dij with an intercept-only submodel of occupancy. We used

Akaike’s information criterion adjusted for small sample sizes

(AICc) and Akaike weights (wm), where m indexes models,

to compare submodels of pij, bij and dij (Burnham &

Diversity and Distributions, 23, 1–13, ª 2016 John Wiley & Sons Ltd 3
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Anderson, 2002). We retained all models from the first stage

of modelling with AICc values within 2 units of the highest

ranked model and included them in the second stage of

modelling.

In the second stage of modelling, we evaluated submod-

els of wi. The set of submodels included effects of each

covariate (with classes of nectar and mud grouped as

described above). For the Chesapeake Bay Lowlands, our

submodels also included an interaction between edge length

and structural heterogeneity. For the central and western

Great Basin, our submodels also included five nonlinear

effects or combinations of effects: elevation and the square

of elevation, to account for a potential quadratic

relationship between elevation and wi; and additive effects

of elevation and terrain ruggedness; elevation and mud; ele-

vation and nectar; and nectar and mud. We combined all

submodels of wi with the submodels of other parameters

from the model that was ranked highest in the first stage.

Because many models that included covariates generated

highly imprecise occupancy estimates, we report wi from

the intercept-only submodel. Complete model-selection

results are in Appendix S2.

We standardized and centred all continuous covariates.

We calculated Pearson’s product–moment correlations

between continuous covariates. We did not include two con-

tinuous covariates in a given model if their correlation coef-

ficient was ≥ 0.60. We examined box-and-whisker plots,

created in R (R Core Team, 2013), to assess correlations

between continuous and categorical covariates. We used the

plots to anticipate potential confounding effects of multi-

collinearity. When a strongly supported model included both

a continuous and a categorical covariate, we examined

whether the magnitude or direction of regression coefficients

in the latter model and in models that included each of those

covariates alone was considerably different. We included a

maximum of two covariates in additive models.

We characterized the strength of association between

response variables and covariates on the basis of the AICc

values of the models in which they were included and the

degree to which estimates of the 95% confidence intervals

(CIs) of the regression coefficients overlapped zero. If a

covariate was included in the model with the lowest AICc, or

in a model with an AICc value within 2 units of the model

with the lowest AICc, we considered it to be associated with

pij or wi and report it below. We considered the strength of

association of a covariate with pij or wi to be greater if its

CIs did not overlap zero than if its CIs overlapped zero. We

report associations with continuous covariates as regression

coefficients and associations with categorical covariates as

effect sizes.

When data are limited or probabilities approach 0 or 1,

parameters may not be estimated correctly. Evidence of

incorrect estimates includes noticeably high values of param-

eters or their standard errors and estimates of standard

errors that are near zero. We examined estimates of model

parameters and used the diagnostics in Program MARK toT
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identify potentially questionable estimates. We also consid-

ered regression coefficients or effect sizes with absolute values

≥ 10 to be questionable; because this criterion is arbitrary,

we report values of the coefficients and their CIs in

Appendix S3.

RESULTS

In the Chesapeake Bay Lowlands, we detected 59 species in

2013 and 55 species in 2014. In the central Great Basin, we

detected 77 species in 1995, 70 in 2013 and 75 in 2014. In

the western Great Basin, we detected 86 species in 2013 and

83 species in 2014. Species lists are in Appendix S1.

A model of closure was more strongly supported than a

model of relaxed closure (AICc of the highest ranked closure

model > 2 AICc higher than that of the highest ranked

relaxed closure model) for seven of the 13 species in the

Chesapeake Bay Lowlands in 1 year and for another four

species in both years (Table 1). In the central Great Basin, a

model of closure was supported in 1 year for three species

and in 2 years for one species. In the western Great Basin, a

model of closure was strongly supported in both years for

two species and in 1 year for four species.

Below, we include the results of detection and occupancy

models in which some parameters could not be estimated or

were imprecisely estimated. By doing so, we aimed to be

transparent and to allow one to draw their own context-

specific inferences about the potential information to be

gained from applying occupancy models to data on butterfly

detections. Nevertheless, we caution that any other parameter

estimates in these models may be unreliable. Parameter esti-

mates in models for species for which detection parameters

could not be estimated also may be unreliable.

Chesapeake Bay Lowlands

Maximum single-year estimates of detection probabilities

(pij) ranged from 0.14 to 0.74 (Table 1). Nectar was associ-

ated with pij of nine species in one of 2 years and three spe-

cies in both years. In all but one case, as the abundance of

nectar increased, pij increased (Table 2). Effect sizes for any

nectar class ranged from 4.35 (Cupido comyntas, 2013;

negative association) to 0.38 (Hermeuptychia sosybius, 2013;

negative) (Appendix S3). Abundance of nectar was not asso-

ciated with pij of Cercyonis pegala.

Occupancy (wI) ranged from 0.28 (Vanessa virginiensis,

2014) to 0.89 (Celastrina ladon, 2013) (Table 1). We identi-

fied covariates associated with wi of five species in 1 year

and eight species in 2 years (Table 3). In the latter cases, one

or more of the same covariates were associated with wi of

five of the species in both years.

The deciduous proportion of the basal area of trees was

associated with wi of nine species in 2013 and six species in

2014 (Table 3), with regression coefficients from �5.57

(Phyciodes tharos, 2013) to 1.15 (Lethe appalachia, 2013)

(Appendix S3). Occupancy of one species in 2013 and five

species in 2014 was associated with the number of deciduous

stems. Regression coefficients ranged from �5.15 (C. pegala,

2014) to 1.16 (L. appalachia, 2014). Structural heterogeneity

was associated with wi of four species in 2013 and two

2013 2014

None or low

abundance,

compared with

high abundance

Moderate

abundance,

compared with

high abundance

None, low or

moderate abundance,

compared with high

abundance

Ancyloxypha numitor – – *

Poanes zabulon – – *

Epargyreus clarus – – *

Papilio troilus – – –

Calycopis cecrops – –

Cupido comyntas – – –

Celastrina ladon –

Phyciodes tharos * – *

Vanessa virginiensis – –

Limenitis arthemis – + –

Lethe appalachia * – †

Hermeuptychia sosybius – –

Cercyonis pegala

Negative direction indicates that the probability of detection increased as the abundance of

nectar increased. Shaded cells indicate that 95% confidence intervals did not include zero. Esti-

mates of the effect sizes are in Appendix S3.

*Effect size could not be estimated.

†Estimated effect size was ≥ |10|.

Table 2 Direction of estimates of effect

sizes in models with the lowest AICc, or

in models with AICc values within 2

units of the model with the lowest

AICc, indicating that abundance of

nectar was associated with detection

probabilities of butterflies in the

Chesapeake Bay Lowlands.
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species in 2014, with regression coefficients from �0.94

(Ancyloxypha numitor, 2013) to 3.06 (Epargyreus clarus,

2014). Edge length was associated with wi of P. tharos in

2013 (regression coefficient 0.84) and C. ladon in 2014

(�0.30). In 2013, the interaction between edge length and

structural heterogeneity was associated with wi of Papilio

troilus (regression coefficient �1.39).

Central Great Basin

Maximum single-year pij ranged from 0.28 to 0.97 (Table 1).

Abundance of nectar was associated with pij of three species

in 2013 only, two species in 2014 only and two species in

both years (Table 4). Abundance of mud was associated with

pij of two species in 2013 only, one species in 2014 only and

six species in both years. Detection probability increased as

abundance of nectar or mud increased in all but one case.

Effect sizes for either nectar class ranged from 0.41 to 2.70

(both Lycaena heteronea, 2013; both negative associations)

(Appendix S3). Minimum and maximum effect sizes for

either mud class were 0.10 (Nymphalis antiopa, 2014; nega-

tive association) and 4.97 (Papilio rutulus, 2014; negative),

respectively.

Single-year wi ranged from 0.44 (L. heteronea, 2014) to

0.98 (P. rutulus, 1995) (Table 1). Regression coefficients

could not be estimated or were ≥ |10| for N. antiopa in 1995,

L. heteronea and Satyrium behrii in 2014 and C. ladon and

Phyciodes pulchellus in 2013 (Table 5). In all other cases, one

or more covariates were associated with wi of all species in

each year. Occupancy of S. behrii and C. ladon was associ-

ated with elevation only. At least some of the covariates that

were associated with wi of the other species varied among

years.

Elevation (whether as a linear or a quadratic function) was

associated with wi of six species in 1995, 11 species in 2013

and 13 species in 2014 (Table 5). Regression coefficients ran-

ged from �7.24 (S. behrii, 1995, linear relation) to 7.98

(Coenonympha tullia, 1995, linear) (Appendix S3). Occu-

pancy of six species in 2013 and five species in 2014 was

associated with mud abundance. Minimum and maximum

effect sizes for either mud class were 0.04 (Limenitis weide-

meyerii, 2013; positive association) and 4.35 (P. rutulus,

2014; positive), respectively. Precipitation was associated with

wi of seven species in 1995 and three species in each of 2013

and 2014, with regression coefficients from �5.15 (Chlosyne

acastus, 1995) to 1.56 (Speyeria callippe, 1995). Nectar abun-

dance was associated with wi of four species in 2013 and five

in 2014. Minimum and maximum effect sizes for either nec-

tar class were 0.46 (S. callippe, 2013; negative association)

and 8.00 (Incisalia eryphon, 2014; negative), respectively.

Occupancy of three species in 1995, four in 2013 and three

in 2014 was associated with terrain ruggedness. Regression

coefficients ranged from �1.02 (Hesperia comma, 2014) to

3.51 (C. tullia, 1995).

Table 3 Direction of estimates of regression coefficients and effect sizes of covariates associated with occupancy of butterflies in the

Chesapeake Bay Lowlands.

2013 2014

Edge

length + sh

Edge

length sh

Deciduous

proportion

of basal area

of trees

The number

of deciduous

stems

Edge

length sh

Deciduous

proportion

of basal area

of trees

The number

of deciduous

stems

Nectar abundance

(none, low or

moderate, compared

with high)

Ancyloxypha numitor – + * * †

Poanes zabulon + *

Epargyreus clarus +

Papilio troilus – + †

Calycopis cecrops + –

Cupido comyntas – –

Celastrina ladon * – + – –

Phyciodes tharos + + – † –

Vanessa virginiensis – –

Limenitis arthemis – – – –

Lethe appalachia + +

Hermeuptychia

sosybius

+ – +

Cercyonis pegala – –

sh, structural heterogeneity.

Regression coefficients and effect sizes are from models with the lowest AICc, or models with AICc values within 2 units of the model with the

lowest AICc. Directions for abundance of nectar are relative to high abundance. Shaded cells indicate that 95% confidence intervals for estimates

of the regression coefficient or effect size did not include zero. Estimates of the regression coefficients and effect sizes are in Appendix S3.

*Regression coefficient or effect size could not be estimated.

†Estimate of the regression coefficient or effect size was ≥ |10|.
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Western Great Basin

Maximum single-year pij for a given species ranged from

0.34 to 0.99 (Table 1). Abundance of nectar was associated

with pij of two species in 2014 only and four species in both

2013 and 2014 (Table 6). Abundance of mud was associated

with pij of four species in 2013 only, two in 2014 only and

three in both years. Effect sizes for either nectar class ranged

from 0.23 (Polites sonora, 2014; positive association) to 3.15

(Icaricia lupini, 2014; negative) (Appendix S3). Effect sizes

for either mud class fell between 1.04 (H. comma, 2014; neg-

ative association) and 5.15 (Plebejus saepiolus, 2014; nega-

tive), respectively.

Single-year wi ranged from 0.31 (Speyeria zerene, 2014) to

0.78 (Hesperia juba, 2014) (Table 1). Regression coefficients

and effect sizes could not be estimated or were ≥ |10| for
P. rutulus and Lycaena arota in 2014 and S. behrii in 2013

(Table 7). In all other cases, one or more covariates were

associated with wi of all species in both years. A single

covariate was associated with wi of Icaricia icarioides (eleva-

tion, quadratic form), S. zerene (precipitation) and L. weide-

meyerii (precipitation) in both 2013 and 2014. At least some

of the covariates that were associated with wi of the other

species varied between years.

Elevation (whether as a linear or a quadratic function) was

associated with wi of nine species in 2013 and six species in

2014 (Table 7). Regression coefficients ranged from �2.22

(Cercyonis sthenele, 2013, linear relation) to 2.71 (P. saepiolus,

2014, linear) (Appendix S3). Precipitation was associated

with wi of eight species in 2013 and seven in 2014, with

regression coefficients from �4.06 (H. comma, 2013) to 8.14

(S. zerene, 2014). Occupancy of five species in either year

was associated with terrain ruggedness. Minimum and maxi-

mum regression coefficients were �1.26 (P. saepiolus, 2014)

and 1.70 (L. arota, 2013), respectively. Mud abundance was

associated with wi of P. saepiolus in 2013 and P. sonora in

both years. Minimum and maximum effect sizes for either

mud class were 1.00 (P. sonora, 2013; negative association)

and 3.46 (P. sonora, 2014; negative), respectively. Nectar

abundance was associated with wi of two species in 2014.

The minimum and maximum effect sizes for either nectar

class, 0.07 (positive association) and 2.00 (negative), both

were associated with wi of P. saepiolus in 2014.

DISCUSSION

We estimated pij and wi, and environmental covariates asso-

ciated with those probabilities, for a majority of modelled

butterfly species in three ecosystems while accounting for

violations of the closure assumption. The extent to which

the closure assumption was met varied among ecosystems

and years, and was greater in the Chesapeake Bay Lowlands

than in the Great Basin. Within each ecosystem, the number

and identity of species for which the closure assumption was

Table 4 Direction of estimates of effect sizes of covariates associated with detection probabilities of butterflies in the central Great

Basin.

2013 2014

Nectar abundance (compared

with high abundance)

Mud abundance

(compared with

high abundance)

Nectar abundance (compared

with high abundance)

Mud abundance

(compared with

high abundance)

None or low Moderate None Low None or low Moderate None Low

Hesperia comma – – – –

Papilio rutulus – – – –

Lycaena heteronea – – – +

Satyrium behrii * * – –

Incisalia eryphon – – * *

Celastrina ladon – – – –

Glaucopsyche piasus – – * *

Speyeria callippe * – – –

Nymphalis antiopa – – – –

Limenitis weidemeyerii – – – –

Chlosyne acastus * –

Phyciodes pulchellus – – * –

Euphydryas anicia * – * *

Coenonympha tullia – – * *

Cercyonis sthenele – – – –

Effect sizes are from models with the lowest AICc, or models with AICc values within 2 units of the model with the lowest AICc. Low, low abun-

dance; moderate, moderate abundance. Negative direction indicates that the probability of detection increased as the abundance of nectar or mud

increased. Shaded cells indicate that 95% confidence intervals did not include zero. Estimates of the effect sizes are in Appendix S3.

*Effect size could not be estimated.
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met also varied among years. It is possible that the canyon

topography of the montane Great Basin leads to greater vari-

ation in emergence dates (e.g. because solar insolation, tem-

perature and precipitation vary along gradients of elevation

and aspect) and to more extensive movements of individuals

(e.g. because air flow along the elevational gradient can be

strong) than in the relatively flat Chesapeake Bay Lowlands.

Additionally, 85% of the species we modelled in the Chesa-

peake Bay Lowlands always or sometimes have more than

one brood per year (thus would be available for sampling

more consistently), compared with 20% and 33% of the spe-

cies in the central and western Great Basin, respectively.

Consistent with previous work in these systems, we

observed considerable turnover in species composition (e.g.

Fleishman & Mac Nally, 2003). We are among the first to

estimate occupancy of a substantial proportion of butterfly

species in an assemblage on the basis of surveys conducted

throughout flight seasons over multiple years, and to evalu-

ate the temporal consistency of associations between environ-

mental covariates and occupancy. However, in each

ecosystem, associations between one or more covariates and

pij or wi for at least one-third of the species – a total of 25

species-by-year models across the three ecosystems – either

could not be estimated or seemed implausibly large (i.e. ≥ |
10|). As noted above, other parameter estimates in these

models may not be reliable. Examination of the raw data

allowed us to identify potential causes of the estimation

problems for about two-thirds of these models. In most

cases, problems appeared to stem from clustering of detec-

tions at one end of the gradient of values of a covariate. For

example, precipitation values for the transects in the western

Great Basin on which S. zerene was detected in 2014 gener-

ally were relatively high. Similarly, in the same ecosystem,

P. sonora was detected on four of the 37 transects on which

nectar abundance was low. In a few cases, na€ıve occupancy

may have been too low (e.g. 0.35) or too high (e.g. 0.66) to

allow estimation of parameters.

Our estimates of abundance of nectar and mud were

coarse; they were intended to be rapid and fairly repeatable

among observers. Nevertheless, pij in one or more years was

associated with abundance of nectar or mud for 92% of the

species in the Chesapeake Bay Lowlands, all of the species in

the central Great Basin and 93% of the species in the western

Great Basin. In almost all cases, pij increased as the

Table 5 Direction of estimates of regression coefficients and effect sizes of covariates associated with occupancy of butterflies in the

central Great Basin.

1995 2013 2014

el el2 tr pr el el2 tr pr

Nectar

abundance

(compared with

high abundance)

Mud

abundance

(compared

with high

abundance)

el el2 tr pr

Nectar

abundance

(compared with

high abundance)

Mud

abundance

(compared

with high)

None/low Mod None Low None/low Mod None Low

Hesperia comma – + + – – – – –

Papilio rutulus + – + – – † * +

Lycaena heteronea + + + * * †

Satyrium behrii † + – * * *

Incisalia eryphon – – – + – – † † – –

Celastrina ladon – * † – + * *

Glaucopsyche piasus + + + – – + – – *

Speyeria callippe + + + – – + – + * – * –

Nymphalis antiopa † + – – – – –

Limenitis weidemeyerii – + + – – – + – – – –

Chlosyne acastus – + – + – –

Phyciodes pulchellus – † † † – * –

Euphydryas anicia + – + – + +

Coenonympha tullia † + – + –

Cercyonis sthenele – – * + + + – + + –

el, elevation; el2, square of elevation; tr, terrain ruggedness; pr, precipitation; none/low, none or low abundance; mod, moderate abundance.

Regression coefficients and effect sizes are from models with the lowest AICc, or models with AICc values within 2 units of the model with the

lowest AICc. Directions for abundance of nectar and mud are relative to high abundance. Shaded cells indicate that 95% confidence intervals for

estimates of the regression coefficient or effect size did not include zero. Estimates of the regression coefficients and effect sizes are in

Appendix S3.

*Regression coefficient or effect size could not be estimated.

†Estimated regression coefficient or effect size was ≥ |10|.
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abundance of these resources increased. These relations are

consistent with field experience. For example, species in the

Papilionidae and Polyommatinae often are detected at mud.

However, to the best of our knowledge, these relationships

have not previously been quantified at the assemblage level.

Detection probabilities tended to be relatively high for spe-

cies that are abundant (e.g. I. eryphon, C. comyntas, I. icari-

odes), have limited vagility and circumscribed habitat (e.g.

P. saepiolus) or are conspicuous (e.g. P. troilus, L. weidemey-

erii). Detection probability tended to be associated more

consistently than occupancy with abundance of nectar or

mud. Continuous estimates of sugar mass may be more clo-

sely associated with occupancy than categorical abundance of

nectar (Pavlik et al., unpublished manuscript).

Measures of the dominance or abundance of deciduous

woody species and structural heterogeneity were included in

the greatest number of occupancy models for butterflies in

the Chesapeake Bay Lowlands. In part, this association may

reflect that the larval host plants of five of the species we

modelled are deciduous. Additionally, structural heterogene-

ity may be a surrogate measure of intensity of browsing by

white-tailed deer. Areas in which white-tailed deer are abun-

dant tend to have relatively little understorey, thus relatively

few grasses or forbs that serve as larval host plants or nectar

sources. Removal of the understorey also changes microcli-

mate and may expose immature life stages to higher proba-

bilities of predation.

Elevation and precipitation were among the most promi-

nent covariates in occupancy models for butterflies in the

central and western Great Basin. One or both covariates were

associated with occupancy of all species in both ecosystems.

Strong relationships between elevation and occupancy were

consistent with previous work in these ecosystems (e.g.

Fleishman et al., 1998, 1999, 2001a,b). In the central Great

Basin, about twice as many associations between occupancy

and precipitation were observed in 1995, a water year with

unusually high precipitation, than in 2013 or 2014. More-

over, in 1995, none of the 95% CIs for estimates of the

regression coefficient included zero. The direction of the

associations between occupancy and precipitation was incon-

sistent among species. Although extreme winters can increase

mortality of overwintering life stages, especially larvae (Dou-

glas, 1986; Dennis, 1993), precipitation may forestall senes-

cence of host plants and nectar sources.

We found considerable temporal variation in whether

covariates were associated with pij or wi of a given species

and, if so, the identity of those covariates. With respect to

probabilities associated with abundance of nectar and mud,

it is possible that outputs were affected by our use of tran-

sect-specific maxima rather than survey-specific values. The

peak of the flight season for many species did not coincide

with the maximum abundance of nectar or mud. Addition-

ally, our models did not differentiate among broods. Terrain

ruggedness was associated with occupancy of four species in

Table 6 Direction of estimates of effect sizes of covariates associated with detection probabilities of butterflies in the western Great

Basin.

2013 2014

Nectar abundance (compared

with high abundance)

Mud abundance

(compared with

high abundance)

Nectar abundance (compared

with high abundance)

Mud abundance

(compared with

high abundance)

None or low Moderate None Low None or low Moderate None Low

Hesperia juba – – – –

Hesperia comma – – – –

Polites sonora – – – +

Papilio rutulus – –

Lycaena arota * * – –

Satyrium behrii + +

Incisalia eryphon – –

Plebejus saepiolus – – – –

Icaricia icariodes – – – –

Icaricia lupini – – – –

Speyeria zerene + +

Phyciodes pulchellus – – – –

Limenitis weidemeyerii – –

Cercyonis sthenele

Cercyonis oetus – – – *

Effect sizes are from models with the lowest AICc, or models with AICc values within 2 units of the model with the lowest AICc. Low, low abun-

dance; moderate, moderate abundance. Negative direction indicates that the probability of detection increased as the abundance of nectar or mud

increased. Shaded cells indicate that 95% confidence intervals did not include zero. Estimates of the effect sizes are in Appendix S3.

*Effect size could not be estimated.
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the western Great Basin but, in contrast to previous work in

the region (Fleishman et al., 2001b), no species in the central

Great Basin. Again, the set of locations that were included in

this analysis versus previous analyses may explain some of

the discrepancy.

We modelled seven species that occurred in both the cen-

tral and western Great Basin, but covariates associated with

pij and wi of those species, or the direction of association

with the same covariate, often differed between ecosystems.

This variation may reflect that our study locations in the

central and western Great Basin are within different zoogeo-

graphic regions (Austin & Murphy, 1987). In many cases,

different subspecies occupy the two regions, and their local

ecology may be sufficiently distinct to affect covariate associ-

ations.

Occupancy rarely has been estimated for a high propor-

tion of the species within an assemblage of butterflies, and

our work highlighted some of the applications in which

occupancy estimation has limitations. Single-species occu-

pancy models often are applied to many species that were

sampled simultaneously. These situations may require or lead

to the assumption that sampling of each modelled species

was sufficiently and equally robust. But given typical finan-

cial and logistical constraints, it rarely is tractable to sample

an assemblage, especially one that is highly dynamic, with a

design that is ideal for estimating occupancy of the majority

of individual species. For example, assemblage-level surveys

generally encompass areas that are unlikely to be occupied

by a given species, which may complicate parameter estima-

tion. Moreover, if organisms are sufficiently mobile that the

occupancy status of fairly small sites is likely to change

between surveys, as is the case with adult butterflies, infer-

ences about the environmental variables that are associated

with pij and wi may become biased (e.g. Hayes & Monfils,

2015). Our work both elucidates trade-offs among applica-

tion of occupancy models to multiple co-occurring species of

butterflies and highlights a number of novel ecological rela-

tions, especially the extent to which detection probabilities

may relate to ephemeral resources.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 All species detected in the Chesapeake Bay

Lowlands (2013 and 2014), central Great Basin (1995, 2013,

and 2014), and western Great Basin (2013 and 2014).

Appendix S2 Complete results of both stages of the model-

fitting process for the Chesapeake Bay Lowlands and Great

Basin in all years.

Appendix S3 For each species in each ecosystem and year,

whether the assumption of closure or relaxed closure (not

closed) was supported more strongly; values of the regression

coefficients (for continuous covariates), effect sizes (for cate-

gorical covariates), and their lower (LCI) and upper (UCI)

confidence intervals (CIs) in models of detection probability

and occupancy that either were the most strongly supported

(lowest AICc; in black) or within 2 AICc of the most strongly

supported (in blue); estimates of occupancy and their CIs;

and estimates of detection probability on each visit.
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