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Abstract

This paper presents a computational model that integrates a dynamically structured holographic

memory system into the ACT-R cognitive architecture to explain how linguistic representations

are encoded and accessed in memory. ACT-R currently serves as the most precise expression of

the moment-by-moment working memory retrievals that support sentence comprehension. The

ACT-R model of sentence comprehension is able to capture a range of linguistic phenomena, but

there are cases where the model makes the wrong predictions, such as the over-prediction of

retrieval interference effects during sentence comprehension. Here, we investigate one such case

involving the processing of sentences with negative polarity items (NPIs) and consider how a

dynamically structured holographic memory system might provide a cognitively plausible and

principled explanation of some previously unexplained effects. Specifically, we show that by

replacing ACT-R’s declarative memory with a dynamically structured memory, we can explain a

wider range of behavioral data involving reading times and judgments of grammaticality. We

show that our integrated model provides a better fit to human error rates and response latencies

than the original ACT-R model. These results provide proof-of-concept for the unification of two

independent computational cognitive frameworks.
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1. Introduction

A hallmark of human cognition is the ability to encode, access, and manipulate composi-

tional structures (Anderson, 1983; Fodor, 2001; Newell, 1990). A prominent example involves

language processing. For instance, successful language comprehension requires the ability to

relate words and phrases that can be separated by a potentially large amount of material,

forming so-called linguistic dependencies. For instance, in Example 1a, the verb discussed
must be related to its subject, the candidates, and in Example 1b, the anaphor themselves
must be related to its referent, the girls at the boarding school. In order to construct lin-

guistic dependencies like these, comprehenders rely on mental mechanisms for encoding

and accessing linguistic structure in working memory. However, it remains an open ques-

tion as to how these mechanisms are neuro-computationally instantiated.

Example 1

a. The candidates, in the face of public scrutiny, discussed the nation’s economy.

b. The girls at the boarding school told stories about themselves.

One model that has received much attention in the psycholinguistics literature is the

activation-based model of sentence processing developed by Lewis and Vasishth (2005;

henceforth, LV05). The LV05 model characterizes the moment-by-moment working

memory retrievals that support sentence comprehension, realized in the Adaptive Control

of Thought—Rational (ACT-R) architecture (Anderson et al., 2004). In this model, the

task of comprehending a sentence is construed as a series of associative, cue-based mem-

ory retrievals, subject to fluctuating activations and similarity-based interference. The

main claim of the model is that a single, cue-based retrieval mechanism is used to access

linguistic information in memory, and that this mechanism is engaged for the range of

linguistic dependencies encountered in natural language, including those in Example 1.

The model is considered to be the most precise expression of the cue-based memory

retrieval theory, and it is frequently used to investigate the timing and accuracy of mem-

ory retrieval in sentence comprehension.

Previous work has shown that the LV05 ACT-R model of sentence processing achieves

good quantitative fits to behavioral data. For instance, an initial success of the LV05

model was that it captured interference effects observed in the processing of linguistic

dependencies, such as those involving negative polarity items (NPIs) (Vasishth, Br€ussow,
Lewis, & Drenhaus, 2008). NPIs are words like ever or any, which are generally accepta-

ble only in sentences that contain a negative-like word in a syntactically higher position,

such as No bills that the senators supported will ever become law. Several studies have

shown, however, that syntactically irrelevant negative distractors can intrude on NPI

licensing, in sentences like The bills that no senators supported will ever become law
(e.g., Drenhaus, Saddy, & Frisch, 2005; Parker & Phillips, 2016; Vasishth et al., 2008;

Xiang, Dillon, & Phillips, 2009).1 This effect reflects a kind of similarity-based interfer-

ence that manifests in human behavior as decreased accuracy in judgments of grammati-

cality and decreased reading time disruptions for sentences with a negative distractor,

relative to sentences that lack negation.
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Vasishth et al. (2008) argued that interference effects in NPI licensing are a natural

consequence of the error-prone memory retrieval mechanisms embodied in ACT-R.

Under this view, encountering an NPI triggers a memory retrieval for a negative licensor

from the set of previously encountered items. Interference arises when retrieval is misled

by the lure of a negative item in a syntactically irrelevant position. This effect can give

rise to an “illusion of acceptability,” where comprehenders are fooled into thinking that

an ill-formed sentence is actually acceptable (Phillips, Wagers, & Lau, 2011). An impor-

tant prediction of the retrieval-based account of NPI interference is that interference

effects should generalize across syntactic and semantic environments, since the effect is

attributed to error-prone retrieval mechanisms that are engaged whenever an NPI is

encountered.2

The LV05 model provides good quantitative fits to previous behavioral data, but there

are cases where the model makes the wrong predictions. For instance, Parker and Phillips

(2016) showed that NPI interference effects can be reliably switched on and off, depend-

ing on when the NPI is encountered in the sentence. Parker and Phillips (2016) tested

sentences such as The journalist that no editors recommended (ever) thought that the
readers would (ever) understand the complicated situation, where the NPI ever appeared

either early, in a main clause position, or later, in an embedded clause position. Interfer-

ence was observed when the NPI appeared in the main clause, replicating previous find-

ings, but the effect disappeared when the NPI appeared later in the embedded clause.

These findings are unexpected under the ACT-R account, since the model predicts that

NPI interference effects should generalize across environments.

Parker and Phillips (2016) argued that the contrasting profiles observed for NPIs reflect

untested assumptions about how sentences are encoded in memory. The LV05 ACT-R

account argues that interference effects are the product of error-prone memory retrieval

processes, with the additional assumption that the encoding of the sentence remains fixed

over time. However, the finding that NPI interference effects can be switched on/off

depending on when the encoding is accessed for NPI licensing suggests that the encoding

is not fixed, as previously assumed, but rather changes over time, such that the internal

items become opaque as candidates for causing interference as the parse unfolds.

1.1. The present study

This paper presents a computational model that integrates a holographic memory sys-

tem (e.g., Plate, 2003) into the ACT-R framework to capture the contrasting NPI profiles.

Holographic memory systems assume that the atomic components of a compositional

structure are dynamically bound together at various points throughout processing to create

a single, integrated encoding that feeds interpretation. If the format of the encoding

changes with the passage of time, as assumed in holographic memory systems, we might

expect different behaviors at different points in time depending on when the encoding of

the licensing context is accessed. Thus, a key prediction of our model is that NPI interfer-

ence effects should be selective, depending on when the encoding is accessed. Modeling

results show good quantitative fits to the behavioral data from Parker and Phillips (2016),
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providing proof-of-concept for the unification of two computational cognitive frame-

works.

Previous work in cognitive science has argued that vector symbolic architectures,

including holographic memory systems, might play an important role in describing human

linguistic behavior (e.g., see “Open Peer Commentary” in Van der Velde & de Kamps,

2006). The research reported in this paper unites this work with recent efforts in cognitive

psychology to integrate holographic memory into the ACT-R framework. For instance,

Rutledge-Taylor, Kelly, West, and Pyke (2014) and Kelly, Kwock, and West (2015) have

shown that a holographic declarative memory system, similar to the one proposed here,

can be integrated into ACT-R to capture decision-making tasks, the fan effect, and

delayed learning. Our model demonstrates that a unified framework can also capture spe-

cialized cognitive abilities involving language comprehension.

2. The ACT-R model of sentence processing

ACT-R is a cognitive architecture based on independently motivated principles of

memory and general cognition, and it has been used to study a wide range of cognitive

phenomena involving memory access and retrieval, attention, executive control, and

learning (Anderson et al., 2004). The LV05 ACT-R model applies the cognitive princi-

ples embodied in the ACT-R architecture to the task of sentence processing.

In the LV05 ACT-R model, linguistic items are encoded as “chunks” in a content-addressa-

ble memory, and the syntactic representation of a sentence arises as the consequence of poin-

ters that index the hierarchical relations between chunks. Chunks are encoded as bundles of

feature-value pairs, inspired by the attribute-value matrices described in head-driven phrase

structure grammars (Pollard & Sag, 1994). Features include lexical content (e.g., morpho-

syntactic and semantic features), syntactic information (e.g., category, case), and local hier-

archical relations (e.g., sister, parent). Values for features include symbols (e.g., �singular,

�animate) or pointers to other chunks (e.g., NP1, VP2).

Linguistic dependencies, such as the relation between an NPI and its licensor, are

formed using a domain-general, cue-based retrieval mechanism that accesses all task-rele-

vant chunks in parallel to locate the left part of the dependency (the target/licensor) using

a set of retrieval cues. Retrieval cues are derived from the current word, the linguistic

context, and grammatical knowledge, and correspond to a subset of the features of the

target (Lewis, Vasishth, & Van Dyke, 2006). Chunks are differentially activated based on

their match to the retrieval cues, and the probability of retrieving a chunk is proportional

to the chunk’s overall activation at the time of retrieval, modulated by decay and similar-

ity-based interference from other items that match the retrieval cues.

The activation of a chunked item i (Ai) is defined as in Eq. 1.3 Eq. 1 makes explicit

four fundamental principles that are known to impact memory dynamics: (a) an item’s

resting, baseline activation Bi, (b) the match between the item and each of the j retrieval
cues in the retrieval probe Sji, (c) the penalty for partial matches PM between the cues of

the retrieval probe and the item’s feature values, and (d) stochastic noise.
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Ai ¼ Bi þ
Xm
j¼1

WjSji �
Xp
k¼1

PMki þ e ð1Þ

The first term of Eq. 1 describes the baseline activation of chunk i, which is calculated

according to Eq. 2. Eq. 2 describes the usage history of chunk i as the summation of all

n successful retrievals of i, where tj is the time since the jth successful retrieval of i, to
the power of the negated decay parameter d. The output is passed through a logarithmic

transformation to approximate the log odds that the chunk will be needed at the point of

retrieval, given its usage history. After a chunk has been retrieved, the chunk receives an

activation boost, followed by decay.

Bi ¼ ln
Xn
j¼1

t�d
j

 !
ð2Þ

The second term of Eq. 1 reflects the degree of match between chunk i and the retrieval

cues. W is the weight associated with each retrieval cue j, which defaults to the total amount

of goal activation G available, divided by the number of cues (i.e., G/j). Weights are typically

assumed to be equal across all cues. The degree of match between chunk i and the retrieval

cues is the sum of the (weighted) associative boost for each retrieval cue Sj that matches a fea-

ture value of chunk i. The associative boost that a cue contributes to a matching chunk is

reduced as a function of the “fan” of that cue, that is, the number of chunks in memory that

match the cue (Anders & Reder, 1999; Anderson, 1974), according to Eq. 3.

Sji ¼ S� lnðfanjÞ ð3Þ
The third term of Eq. 1 reflects the penalty for a partial match between the cues of the

retrieval probe and the feature values of chunk i. Partial matching makes it possible to

retrieve a chunk that matches only some of the cues, creating the opportunity for retrieval

interference (Anderson et al., 2004; Anderson & Matessa, 1997). Partial matching is cal-

culated as the matching summation over the k feature values of the retrieval cues. P is a

match scale, and Mki reflects the similarity between the retrieval cue value k and the

value of the corresponding feature of chunk i, expressed by maximum similarity and

maximum difference.

Lastly, stochastic noise is added to the activation level of chunk i, generated from a

logistic distribution with a mean of 0, controlled by the noise parameter s, which is

related to the variance of the distribution, according to Eqs. 4 and 5.

e� logisticð0;r2Þ ð4Þ

r2 ¼ p2

3
s2 ð5Þ

Activation Ai determines the probability of retrieving a chunk, according to Eq. 6. The

probability of retrieving chunk i is a logistic function of its activation with gain 1/s and

threshold s. Chunks with higher activation are more likely to be retrieved.

D. Parker, D. Lantz / Topics in Cognitive Science 9 (2017) 55



P recallð Þ ¼ 1

1þ eð�Ai�sÞ=s ð6Þ

Activation Ai also determines the retrieval latency Ti of a chunk, according to Eq. 7.

F is a scaling factor that sets model predictions on an appropriate time scale. Chunks

with a higher activation value have a faster retrieval latency.

Ti ¼ Fe�Ai
i ð7Þ

Based on Eqs. 6 and 7, retrieval can be viewed as the outcome of a “race”: given mul-

tiple items in memory, retrieval mechanisms recover the item that would lead to the fast-

est latency, determined on the basis of activation values, according to Eqs. 6 and 7.

3. Predictions of the ACT-R model

The LV05 ACT-R model predicts that retrieval for linguistic dependency formation

should be susceptible to interference from non-target or syntactically irrelevant items that

overlap in features with the retrieval cues (“partial match interference”). This prediction

is based on the assumptions that retrieval queries all chunks in parallel, and that a partial

match between the retrieval cues and a chunk can result in erroneous retrieval of that

chunk (see Eq. 1). Many studies have shown that this prediction is borne out for a range

of dependencies, including subject-verb agreement (Dillon, Mishler, Sloggett, & Phillips,

2013; Tanner, Nicol, & Brehm, 2014; Wagers, Lau, & Phillips, 2009), anaphora (Parker,

Lago, & Phillips, 2015; Parker & Phillips, unpublished data), case licensing (Sloggett,

2013), and ellipsis (Martin, Nieuwland, & Carreiras, 2012, 2014).

Vasishth et al. (2008) used the LV05 model to simulate retrieval interference effects in

the processing of NPIs. As noted in our Introduction, NPIs are words like ever, any, or
yet, which can be licensed by a negative-like word in a syntactically higher position. The

NPI ever in Example 2a is licensed because it appears in the scope of the negative phrase

no students. When negation is absent, as in Example 2b, or is in a syntactically irrelevant

position, as in Example 2c, the NPI is not licensed.

Example 2

a. No students have ever passed the test.

b. The students have ever passed the test.

c. The students that no teachers liked ever passed the test.

Many studies have shown that NPI licensing is highly susceptible to interference in

sentences like (2c), due to the lure of the negative distractor, for example, no teachers,
that is in a non-target, syntactically irrelevant position for the purpose of NPI licensing

(e.g., Drenhaus et al., 2005; Parker & Phillips, 2016; Vasishth et al., 2008; Xiang et al.,

2009). This effect manifests as decreased accuracy in judgment tasks and decreased read-

ing time disruptions for sentences with a syntactically irrelevant negative distractor, like

(2c), relative to sentences that lack negation, like (2b).
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Vasishth et al. (2008) argued that NPI interference effects are a natural consequence of

the error-prone retrieval mechanisms embodied in ACT-R. Under this account, NPI

licensing is treated as a direct, item-to-item dependency in which a negative licensor

is retrieved from memory using syntactic and semantic cues, for example, [+scope],
[+negative]. In (2a), retrieval finds an item that matches both cues. In (2b), retrieval fails

to find a match to either cue. In (2c), retrieval finds a partially matched item, that is, a

semantically appropriate item in a non-target, syntactically irrelevant position. The activa-

tion boost from this partial match, combined with stochastic noise, can cause the negative

distractor to be erroneously retrieved, creating the illusion that the NPI is licensed.

Vasishth et al. (2008) showed using computational simulations that Eqs. 1–7 can achieve

good quantitative fits to human reading times and judgments of grammaticality.

4. Challenges for the ACT-R model

The LV05 ACT-R model predicts that interference during NPI licensing should gener-

alize across syntactic and semantic environments, since the effect is attributed to error-

prone retrieval mechanisms that are engaged whenever an NPI is encountered. However,

this prediction is not borne out. Parker and Phillips (2016) showed using self-paced read-

ing times and speeded acceptability judgments that interference effects for NPIs can be

reliably switched on/off, depending on when the NPI is encountered in the sentence.4

They manipulated the position of the NPI relative to the potential licensors in sentences

like Example 3. Self-paced reading times and speeded acceptability judgments revealed

converging findings. Interference was consistently observed when the NPI appeared early

in the sentence, that is, in the main clause, replicating previous findings, but not when it

appeared later in the sentence, that is, in the embedded clause. Parker and Phillips repli-

cated this effect across three sets of experiments (participant sample sizes ranged from 18

to 30 depending on the task).

Example 3

The journalists that no editors recommended (ever) thought that readers would (ever)

understand the complicated situation.

These findings suggest that NPI interference effects cannot simply be due to noisy

retrieval mechanisms that are engaged whenever an NPI is encountered, as assumed in

the LV05 ACT-R model. Furthermore, the effects cannot reflect decay or faulty encoding

of the licensing context, since that would predict difficulty in the grammatical conditions,

contrary to fact.

Existing accounts of NPI interference effects, such as those proposed by Vasishth

et al. (2008) and Xiang et al. (2009), have emphasized that NPI licensing is a func-

tion of the licensing conditions on NPIs and the access mechanisms. An additional

assumption embodied in ACT-R is that the encoding of items encountered previously

in the sentence remains fixed as the parse unfolds. The finding that NPI interference

effects can be reliably switched on/off suggests that some component of this licensing
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function does not remain constant during parsing. The findings reported by Parker and

Phillips (2016) show that NPI interference effects can be switched on/off depending

on when the encoding of the licensing context is probed for NPI licensing. These

findings point to the status of the encoding as the source of the contrasting profiles,

rather than faulty licensing conditions or faulty retrieval mechanisms, as assumed in

the LV05 ACT-R model.

Parker and Phillips (2016) argued that the contrasting profiles observed for NPIs

reflect changes over time in the memory encoding of the emerging compositional-

semantic representations that support NPI licensing. ACT-R assumes that the encoding

of previously encountered items remains fixed as the parse unfolds. However, the find-

ing that interference effects can be switched on/off depending on when the encoding

of the licensing context is accessed suggests that the encoding is not fixed, but rather

changes over time: At one moment, semantic licensing features, such as negation, can

be evaluated independently of their position in the sentence structure, creating the

opportunity for partial match interference; but then, at a later point in time, those

same features are no longer independently evaluable, preventing partial match interfer-

ence. In short, it appears as though syntactically irrelevant but semantically appropri-

ate licensors become opaque as candidates for causing interference as the parse

unfolds (see Parker & Phillips, 2016, for discussion). In the next section, we discuss

how such effects are predicted in a dynamically structured holographic memory sys-

tem.

5. Multiple-stage encoding schemes

The LV05 ACT-R model assumes that the encoding of a sentence remains fixed over

time. However, this is not a widespread assumption. Many cognitive models, including

the entire class of vector symbolic architectures (VSAs), for example, tensor product

models (Smolensky, 1990), holographic memory (Plate, 2003), binary spatter codes

(Kanerva, 1994), assume that there is a qualitative shift over time in the format of an

encoding in memory.

An implicit assumption of VSAs is that compositional structures are encoded in multi-

ple stages. VSAs make a distinction between “atomic,” localist representations, in which

individual feature values are explicitly represented and independently evaluable versus

“complex,” distributed representations of feature values for an object that are constructed

from atomic representations via some sort of binding operation, for example, convolution,

addition, permutation, etc. This binding operation integrates the local atomic features into

a complex whole, creating a new representation that is completely dissimilar to any of its

bound features. In this format, the atomic features are no longer independently evaluable,

and the bound representation must exhibit an “all-or-none” match to the cues of the

retrieval probe to be recovered from memory, preventing the possibility for partial match-

ing.5 This idea of “recoding” is based on Miller’s (1956) principle of chunking, which

provides a central explanation for how human memory works.
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5.1. Proposal

We argue that the two encoding stages described in VSAs, that is, localist versus

distributed representations, can be mapped to distinct cognitive processing stages as a

principled explanation of the contrasting profiles observed for NPI licensing. Parker and

Phillips (2016) suggested that the encoding of a sentence is built in two stages. In the

first stage, the parser constructs a localist representation in which the atomic features of

the sentence are evaluable independently from their position in the structure, creating the

opportunity for partial match interference (as assumed in the LV05 model). At a later

stage, those same features are bound together to form a distributed representation that

interfaces with the interpretive system. In this stage, the individual features are no longer

independently evaluable, preventing partial match interference.

For instance, when processing sentences like those in Example 3, the parser may bind

the semantic features, such as the embedded negation, to their position in structure, creat-

ing a new composite representation. If the NPI is introduced prior to binding, such as in

the main clause position, then the atomic features of the representation may still be inde-

pendently evaluable, leading to partial match interference. However, if the NPI appears

after binding has happened, such as in the embedded clause position, then the atomic fea-

tures are no longer evaluable independently of their position in the composite representa-

tion, preventing partial matching.

Previously, VSAs have not assumed that distinct cognitive processing stages are asso-

ciated with the two representational states. However, if the format of the encoding

changes over time, as assumed in VSAs, then we might expect different behaviors at dif-

ferent points in time, depending on when the encoding is accessed. We discuss the details

of this proposal in the next section, and show how it can be implemented to capture the

contrasting NPI profiles.

5.2. Encoding linguistic structure in multiple stages

In VSAs, the feature values of a compositional sentence representation can be encoded

as high-dimensional vectors that are recursively bound together by compressing their

outer product into a single vector. For instance, in a tensor-product scheme (e.g., Smo-

lensky, 1990), features are bound together in memory by taking the outer product of the

vector representations of the features, as shown in Example 4.

Example 4

a. Feature vectors: [+scope] = [123]; [+negation] = [abc]

b. Tensor-product feature binding:

1

2

3

0
@

1
A �

a
b
c

0
@

1
A ¼

1a 1b 1c
2a 2b 2c
3a 3b 3c

0
@

1
A

However, the size of the data structure grows exponentially with the number fea-

tures encoded, which may be undesirable given the stringent limits on the amount of
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information that can concurrently occupy working memory (Cowan, 2001). Plate (2003)

proposed a solution using holographic reduced representations (HRRs), which relies on

circular convolution to bind features together, according to Eq. 8.6 With this method,

the size of the data structure does not grow as more features are added, since the cir-

cular convolution of two n-dimensional vectors, using modulo subscripts, produces a

vector with dimensionality n.

tj ¼
Xn¼1

k¼0

ckxj�k
for j¼0 to n�1

(subscripts are modulo-n)
ð8Þ

Fig. 1 shows circular convolution as the “reduced” outer product t of the feature vec-

tors c and x, corresponding here to the linguistic features [+scope] and [+negation] for

n = 3. Convolution is calculated as the summation of the outer product values along the

paths of the arrows. In the uncompressed form (Encoding stage 1), individual features c
and x are independently evaluable, making the representation susceptible to partial match-

ing. In the “reduced” form (Encoding stage 2), the individual features c and x are no

longer independently evaluable, preventing partial matching. In this state, the representa-

tion must be recovered holistically, that is, with an all-or-none match to the cues of the

retrieval probe. In holographic memory, similarity between the retrieval probe p and a

memory m is measured by their normalized dot product, that is, cosine similarity, accord-

ing to Eq. 9.

sim p;mð Þ ¼ p � m
jj p jjjj m jj ¼

Pn�1
i¼0 pimiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

i¼0 p2i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1
i¼0 m2

i

q ð9Þ

One concern is that encoding n-dimensional bindings using circular convolution can be

slow, since convolution calculates the sum of products, e.g., convolution with modulo

subscripts takes O(n2) time, where n is the size of the data structure. Processing can be

sped up by performing convolution in the frequency domain with the Fast Fourier Trans-

form (FFT), which involves element-wise multiplication, as shown in Eq. 10, where f()
represents FFT. This process implements circular convolution in O(n log n) time, again

where n is the size of the data structure.

½þscope�C» þnegation½ �x ¼ f 0ðf cð Þ � f xð ÞÞ ð10Þ
The most important property of HRRs, for present purposes, is that the encoding

changes with the passage of time, such that the internal items become opaque for partial

matching. This property can provide a principled explanation for the contrasting profiles

observed for NPIs. If the format of the encoding changes over time, as assumed in a

holographic memory system, then we should see different behaviors at different points in

time, depending on when the encoding is accessed for NPI licensing.

In the next section, we show how a holographic memory system can be integrated into the

LV05 ACT-R model to simulate human reading times and judgments of grammaticality.
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6. Integrating HRRs into ACT-R

To implement our proposal, a new memory module for the LV05 ACT-R model was

developed using HRRs, replacing traditional ACT-R chunks with holographic vectors.

Holographic vectors retain the same expressive power of the chunks used in the LV05

model, but allow for dynamic changes in the format of the encoding. To integrate HRRs

into ACT-R, we implemented a modified version of the LV05 ACT-R model of sentence

processing, using code originally developed by Badecker and Lewis (2007).7 We made

the following changes to the model. First, linguistic feature-value specifications and

retrieval cues were encoded as vectors (one dimensional arrays) of n numbers, randomly

sampled from a normal distribution. For our simulations, n = 10,000. In this format, dif-

ferent feature-value specifications and the corresponding retrieval cues are represented by

different array patterns.

In Encoding stage 1 (expanded representation), feature-value pairs and retrieval cues

are defined as bundles of independent vectors, corresponding to the linguistic chunks

assumed in the LV05 ACT-R model. In this state, the individual features of a chunk are

independently evaluable at retrieval and hence susceptible to partial matching. In Encod-

ing stage 2 (reduced representation), convolution is used to bind the feature-value vectors

Fig. 1. Circular convolution represented as the compressed outer product t of the feature vectors c and x.
Adapted from Plate (2003).
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within a chunk, according to Eq. 10. In this stage, a chunk represents a single, integrated

composite encoding that must exhibit an all-or-none match to the cues of the retrieval

probe to be recovered, that is, partial matching is not possible. Retrieval probe vectors

are constructed in the same fashion. Thus, successful retrieval of a chunk necessitates an

enriched control structure to ensure that the parser matches the format of the retrieval

probe to the format of the current encoding state, such that the match to the retrieval cues

is evaluated in an all-or-none fashion, that is, without partial matching. For present pur-

poses, we assumed that the transition to encoding stage 2 was triggered upon encountering

the main clause verb of a sentence during comprehension. According to Parker and Phillips

(2016), encountering a main clause verb may force the parser to “wrapup” and consolidate

the encoding of the previous context to conserve memory resources.

Second, we modified the standard ACT-R equation for activation values (Eq. 1) to

accommodate HRR vectors. This required us to substitute the calculation of cosine simi-

larity (Eq. 9) for the third term of the standard ACT-R activation equation (Eq. 1). This

is the term that computes the penalty for a partial match between the cues of the retrieval

probe and the feature values of chunk i. In stage 1, cosine similarity is computed over

individual feature vectors, whereas in stage 2, it is computed over reduced representation

vectors.

7. Simulations

Our goal was to determine whether the contrasting NPIs profiles reported in Parker

and Phillips (2016) would be best captured by the original LV05 ACT-R model or the

integrated HRR/ACT-R model. To this end, we conducted side-by-side comparisons of

the LV05 model with the integrated model, without adjusting model parameters.

7.1. Procedure

Previous implementations of ACT-R have included a wide range of modules for visual

information processing, lexical access, memory retrieval, and syntactic parsing (e.g.,

Lewis & Vasishth, 2005; Vasishth et al., 2008). However, the simulations reported here

focus solely on the retrieval module and abstract away from the contribution of the

peripheral modules by stipulating the chunks in memory and retrievals required to parse a

sentence. There are additional processes associated with sentence comprehension that

contribute to behavioral measures, but for current purposes, we adopt the standard

assumption that the dynamics and output of memory retrieval map monotonically to the

behavioral measures of interest (Anderson & Milson, 1989; Vasishth et al., 2008).

To maximize transparency and simplicity, we implemented the memory retrieval mod-

ule of ACT-R (i.e., Eqs. 1–7) in the R software environment (R Core Team, 2014), using

code originally developed by Badecker and Lewis (2007). Three conditions were simu-

lated, manipulating the presence and location of an NPI licensor (appropriate licensor,

irrelevant licensor, no licensor) and the position of the NPI (main clause, embedded
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clause), based on the sentence structures in Example 3 from Parker and Phillips (2016).

For each condition, a schedule of constituent creation times and retrievals was estimated

from the reading times reported in Parker and Phillips (2016). Differences between condi-

tions were modeled only as differences in NPI position and the feature composition of

the licensors (�scope, �negation).

To ensure that the modeling results for the LV05 and integrated HRR/ACT-R model

would be directly comparable, all models used the same default parameter settings

reported in Lewis and Vasishth (2005) and Vasishth et al. (2008). The only exception

was the scaling parameter F, which was optimized to fit the behavioral time scale (in all

models, F = 0.6). A total of 5,000 Monte Carlo simulations were run for each condition,

yielding a solid representation of the model’s behavior (Ritter, Schoelles, Quigley, &

Klein, 2011).

We report two measures of interest, following Vasishth et al. (2008). Retrieval error

rate reflects the percentage of runs for which the distractor (the item in the irrelevant

licensor position) was retrieved, rather than the target (the item in the relevant licensor

position). This measure maps monotonically to human speeded acceptability judgments,

with higher retrieval error rates corresponding to increased rates of judgment errors.

Retrieval latencies reflect the average amount of time it took to retrieve the most proba-

ble item, and map monotonically to human reading times, with higher latencies corre-

sponding to increased reading times. These measures were used to determine the

predicted interference effect, which was calculated as the difference in predicted mean

error rates and mean retrieval latencies between the ungrammatical conditions with and

without a negative distractor. We focused on these conditions because NPI interference is

observed only in ungrammatical conditions. Thus, for predicted error rates, a positive

value corresponds to an interference effect, reflecting increased rates of acceptance for

sentences with a distractor, relative to sentences with no distractor, and a larger positive

value corresponds to more interference. For predicted retrieval latencies, a negative value

corresponds to an interference effect, reflecting facilitated processing for sentences with a

distractor, relative to sentences with no distractor, and a smaller negative value corre-

sponds to more interference.

7.2. Simulation results

We compared the interference effects observed in Parker and Phillips (2016) with

those predicted by the LV05 model and the integrated HRR/ACT-R model for the reading

time measures (Fig. 2) and judgment data (Fig. 3). Error bars show levels of variance in

the model and observed data using standard error of the mean across model runs (model)

and participants (observed) for each condition.

Across both behavioral measures, the integrated HRR/ACT-R model provided a better

fit to the observed data, without the need to adjust key model parameters (fit with the

HRR/ACT-R model was adjusted R2 = 0.79; fit with the LV05 model was adjusted

R2 = 0.28; values were based on the four conditions for reading time and judgment data,

i.e., Figs. 1 and 2 combined). The LV05 model failed to capture the observed on/off
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behavior, predicting similar rates of interference across NPI positions. The integrated

model, on the other hand, captured the basic contrast between NPI positions, with a sub-

stantially attenuated interference effect for NPIs in an embedded clause position, relative

to NPIs in the main clause position.

Although the values predicted by the integrated HRR/ACT-R model did not match the

observed data perfectly, the predicted profiles were qualitatively similar to the observed

data. We could explore different parameter values to achieve an even better fit with the

observed data, but this was not our goal. Rather, our goal was to determine whether

the ACT-R model enhanced with a holographic declarative memory system would predict

the basic contrasts across NPI positions, without adjusting previously fixed parameter
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Fig. 2. Comparison of predicted and observed interference effects for reading time measures of main

clause ever versus embedded clause ever. Predicted model values are based on 5,000 runs for each condi-

tion. Observed data from Parker and Phillips (2016). Error bars show levels of variance in the model and

observed data using standard error of the mean across model runs (model) and participants (observed) for

each condition.
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Fig. 3. Comparison of predicted and observed interference effects in judgment accuracy for main clause ever
and embedded clause ever. Predicted model values are based on 5,000 runs for each condition. Observed data

from Parker and Phillips (2016).
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values. Our simulation task can be viewed as a success, as it confirmed that the integrated

HRR/ACT-R model can better capture the basic contrasts.

7.3. Discussion

The contrasting profiles predicted by the integrated HRR/ACT-R model are consistent

with the hypothesis proposed by Parker and Phillips (2016) that the accessibility of com-

positional-semantic features in the encoding is not fixed, as assumed in previous work,

but rather, changes over time. In the initial stage, the individual features of a composi-

tional representation are independently evaluated, creating the opportunity for partial

match interference. Then, at a later stage, those same features are bound together, such

that the representation must exhibit an all-or-none match to the cues of the retrieval probe

in order to be recovered, reducing the possibility for partial match interference. Our simu-

lations showed that the integrated HRR/ACT-R model provides a good quantitative fit to

the observed human data, without adjusting model parameters.

These findings suggest several avenues for future research. The results raise the ques-

tion of where else we might observe similar effects. Recent work suggests that an inte-

grated HRR/ACT-R system can explain a wide range of general cognitive effects. For

instance, as noted in our Introduction, Rutledge-Taylor et al. (2014) and Kelly et al.

(2015) have shown that a holographic declarative memory system, similar to the one pro-

posed here, can be integrated into ACT-R to explain decision-making tasks, the fan

effect, and delayed learning. These results suggest that our model is not simply a “one

off” model built to explain a narrow range of effects. Instead, our study demonstrates

that this unified framework can also capture specialized cognitive abilities involving sen-

tence processing. Specific to language processing, it is important to determine what other

types of linguistic dependencies might be impacted by changes in the format of the

encoding. Parker and Phillips (2016) found that such effects are likely limited to semanti-

cally or pragmatically licensed dependencies, and our model predicts that other types of

semantically licensed dependencies, such as those involving certain types of ellipsis,

might show similar effects. We leave further investigation of this issue to future

research.

Another issue concerns the algorithm for generating reduced or compressed representa-

tions. There are numerous methods for generating reduced representations, including con-

volution, element-wise multiplication (Gayler, 2003; Kanerva, 1994, 1996, 1997), and

permutation-based thinning (Rachkovskij & Kussel, 2001). An important task for future

research is to verify the predictions of these different binding methods and to explore

their empirical consequences for a wide range of cognitive tasks.

8. Conclusion

We presented a computational model that integrates a holographic memory system into

the ACT-R model of sentence processing to explain how certain types of compositional
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linguistic structures are encoded and accessed in memory. Modeling results showed that

the integrated system is better suited to capture the observed behavioral profiles, com-

pared to existing models, yielding a good quantitative fit to data from several behavioral

tasks. These results provide proof-of-concept for the unification of two independently

developed computational cognitive frameworks and offer new insights into how humans

encode and access compositional representations in memory.
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Notes

1. In the sentence The bills that no senators supported will ever become law, the nega-

tive distractor no senators is embedded inside a subject-modifying relative clause and

hence is not syntactically higher than the NPI ever, which appears in the main clause.

2. An alternative account proposed by Xiang et al. (2009) argues that NPI interference

reflects over-application of pragmatic inferencing mechanisms, rather than misre-

trieval. This account also predicts that NPI interference effects should generalize

across environments.

3. We have based our description of Eqs. 1–7 on ACT-R 6.0. Readers familiar with

the LV05 ACT-R model may notice the non-standard presentation of Eq. 1: the

sign on the partial match component has been moved outside of the summation to

indicate its penalizing nature.

4. In the self-paced reading task reported in Parker and Phillips (2016), sentences

were initially masked by dashes, with white spaces and punctuation intact. Partici-

pants pressed the space bar to reveal each word. Presentation was non-cumulative,

such that the previous word was replaced with a dash when the next word

appeared. Each sentence was followed by a comprehension question to ensure that

participants were reading the sentences. In the speeded acceptability task, sentences

were presented one word at a time at a fixed rate. At the end of the sentence, par-

ticipants had 3s to make a “yes/no” response about the perceived acceptability of

the sentence. Both tasks are widely used in psycholinguistics.

5. Importantly, the component features of the representation are not forever lost but

require time-consuming decomposition operations to be recovered.

6. Convolution is the core mathematical operation behind holography, hence the term

“holographic.”
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7. The integrated HRR/ACT-R model can be downloaded from https://github.com/

WM-CELL/HRR-ACT-R.
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