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Abstract: We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A,
with their multiplicities. Each edge of T may then be classi�ed in one of four categories, based upon the
change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of
A is replaced by 0). We show a necessary and su�cient condition for each possible classi�cation of an edge.
A special relationship is observed among 2-Parter edges, Parter edges and singly Parter vertices. Then, we
investigate the change in multiplicity of an eigenvalue based upon a change in an edge value. We show how
the multiplicity of the eigenvalue changes depending upon the status of the edge and the edge value. This
work explains why, in some cases, edge values have no e�ect on multiplicities. We also characterize, more
precisely, how multiplicity changes with the removal of two adjacent vertices.

Keywords: Edges, Eigenvalues, Graph, Matrix entries, Multiplicity, Real symmetric matrix, Tree

MSC: 15A18, 05C50, 15B57, 13H15, 05C05

1 Introduction
If T is a simple, undirected tree on n vertices, denote by S(T) the set of all n-by-n real symmetric matrices,
the graph of whose o�-diagonal entries is T. There are many papers that relate the structure of T to the mul-
tiplicities of the eigenvalues of the matrices in S(T). Among these, we make use of [2, 3, 5, 7, 8], and [4] is
particularly relevant to this work.

We denote the multiplicity of an eigenvalue λ of A ∈ S(T) by mA(λ), and the set of eigenvalues of A
by σ(A). When we remove a vertex u from T, the remaining graph is denoted by T(u). Then we denote by
A(u) the (n − 1)-by-(n − 1) principal submatrix of A ∈ S(T), resulting from deletion of the row and column
corresponding to u. So, A(u) ∈ S(T(u)). When an edge {i, j} is removed from T, we denote the remaining
graph by T(eij). Further, when two vertices i and j are removed from T, we denote the remaining graph by
T({i, j}). A[U] denotes the principal submatrix of A corresponding to the subgraph U of T. For an identi�ed
A ∈ S(T), we often speak interchangeably about the graph and the matrix, for convenience.

In past work on multiplicities, it has been noticed that often an o�-diagonal entry in A ∈ S(T), an edge
value, has little in�uence on the multiplicity of some eigenvalues. Some of our results explain how this hap-
pens. In particular, we do two main, related things. Among the known possibilities for the change in a mul-
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tiplicity when an edge is removed from a tree, we characterize exactly which occurs, and we determine what
happens to multiplicity when an edge value is changed. These questions have been studied in the case of a
vertex (instead of an edge), and there are some strong analogies to that case, both in terms of status (there is
some correlation between the status of the two vertices of an edge and that of the edge) and the consequences
of change.

In a tree T, an edge can be classi�ed in four ways based upon the change in the multiplicity of a particu-
lar eigenvalue, when the edge is removed from T. We call the classi�cation the status of the edge for a given
eigenvalue. In [4], the status of an edge for an eigenvalue has been investigated in detail from the status of ver-
tices incident to the edge. In this paper, in section 2, we investigate the necessary and su�cient conditions for
each possible classi�cation of an edge. Furthermore, we observe some properties concerning 2-Parter edges
and Parter edges.

In [2], when two adjacent vertices are removed from T, the change in the multiplicity of an eigenvalue is
also investigated for all cases. In section 3, we clarify the situations inwhich themultiplicity of the eigenvalue
increases or not, when adjacent vertices are removed.

In section 4, we investigate the change in the multiplicity of an eigenvalue, when the edge value is
changed. Andwe showhow the change depends upon the status of the edge and the edge value.We show that
if the status of the edge is neutral and the status of the incident vertices are both neutral for the eigenvalue,
then the multiplicity of the eigenvalue can increase with the change in the edge value.

Because of the interlacing inequalities for an Hermitian matrix and a principal submatrix of it, the mul-
tiplicity of the eigenvalue may change by at most 1, when a particular vertex is deleted [1]. A vertex u of T is
called “Parter′′ (respectively “neutral” or “downer”) for an eigenvalue λ of A ∈ S(T) if

mA(u)(λ) = mA(λ) + 1 (resp. mA(λ), mA(λ) − 1).

We call these the status of the vertex for the eigenvalue λ relative to A. Let T0 be a branch at vertex v in T that
contains the vertex u0 adjacent to v. IfmA[T0(u0)](λ) = mA[T0](λ)−1, then T0 is called a downer branch at v for
the eigenvalue λ. A downer branch plays an important role in identifying a Parter vertex in lemma 2.

When a vertex is removed from a tree, the change in themultiplicity of an eigenvalue of anHermitianma-
trix whose graph is the tree, has been investigated. There is a very important theorem coming from previous
work in [5, 7, 8], the Parter, Wiener etc. theorem.

Theorem 1. Let A be a Hermitian matrix whose graph is a tree T, and suppose that there exists a vertex v of T
and a real number λ such that λ is an eigenvalue of both A and A(v). Then
1. there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
2. if mA(λ) ≥ 2, then v′ may be chosen so that deg v′ ≥ 3 and so that there are at least three components T1, T2,
and T3 of T − v′ such that mA[Ti ](λ) ≥ 1, i = 1, 2, 3;
3. if mA(λ) = 1, then v′ may be chosen so that deg v′ ≥ 2 and so that there are two components T1 and T2 of
T − v′ such that mA[Ti ](λ) = 1, i = 1, 2.

To identify a Parter vertex for λ in T, it is known that the next lemma is very useful.

Lemma 2. [5] Let T be a tree, v a vertex of T, A ∈ S(T), λ ∈ σ(A). Then v is a Parter vertex for λ if and only if
there is a downer branch for λ at v.

2 The classi�cation of edges in a tree
Let T be a tree, and A ∈ S(T). Let v be a Parter vertex for an eigenvalue λ of A ∈ S(T). If there is only one
downer branch at v for λ, v is called a singly Parter vertex for λ, and if there is more than one downer branch
at v, v is a multiply Parter vertex for λ [4]. We denote a Parter vertex, a multiply Parter vertex, a singly Parter
vertex, a neutral vertex and a downer vertex for λ by P, Pm , Ps , N, D, respectively. In Theorem 2.5 in [4], it is
shown how the multiplicity of an eigenvalue λ of A can change, when we remove one edge from a tree T.
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Table 1

i j classi�cations for edge{i, j}
Pm Pm neutral
Pm Ps neutral
Pm N neutral
Pm D neutral
Ps Ps 2 − Parter, neutral
Ps N Parter, neutral
Ps D i, j cannot be adjacent
N N neutral
N D i, j cannot be adjacent
D D downer
Pm : multiply Parter vertex, Ps : singly Parter vertex
N : neutral vertex, D : downer vertex

Theorem 3. [4] Let T be a tree, A ∈ S(T), and λ ∈ σ(A). When an edge {i, j} is removed from T, then

mA(λ) − 1 ≤ mA(eij)(λ) ≤ mA(λ) + 2.

Note that, for a tree,mA(λ)−2 cannot occur. Then, we can classify edges in T as 2-Parter (resp. Parter, neutral
or downer ) for λ in A ∈ S(T)whenmA(eij)(λ) = mA(λ)+2 (resp.mA(λ)+1,mA(λ) ormA(λ)−1) in the sameway
we classify vertices. In [4], possible classi�cations for an edge {i, j} are investigated, when the classi�cations
of vertices i and j are known in T. The results are in Table 1.

There, it is shown that if vertices i and j are adjacent and both Ps, then edge{i, j} is either 2-Parter or
neutral. Further, if i is a Ps and j is N, then the edge {i, j} is either Parter or neutral. In this paper, we give
necessary and su�cient conditions for an edge {i, j} in a tree T to be 2-Parter, Parter or neutral, respectively.
For the case that {i, j} is downer, the characterization is already known as indicated in the next lemma from
[4, Theorem 3.7], or from Table 1.

Lemma 4. [4] Let T be a tree, A ∈ S(T), λ ∈ σ(A). The edge {i, j} is downer for λ in A ∈ S(T) if and only if
vertices i and j are both downer vertices for λ in A.

For a 2-Parter edge, a necessary condition on the vertices is known [4, Theorem 3.5].

Lemma 5. [4] Let T be a tree, A ∈ S(T), λ ∈ σ(A). If an edge {i, j} is 2-Parter for λ, then i and j are both Ps for
λ in T.

The above lemma shows only a necessary condition for a 2-Parter edge in T. When the adjacent vertices are
both Ps, it may also happen that the edge between them is neutral, as shown in the Table 1. So, we need to
investigate a necessary and su�cient condition for an edge {i, j} in a tree T to be 2-Parter to distingwish these
two cases.

Theorem 6. Let T be a tree, A ∈ S(T), λ ∈ R and {i, j} an edge of T. Then {i, j} is 2-Parter for λ if and only if i
and j are both Ps for λ in T, and each is the downer neighbor for the other.

Proof. First we show necessity of the stated condition for a 2-Parter edge. From lemma 5 (theorem 3.5 in [4]), i
and jmust be Ps in T. Then, the downer branch at i contains j, because if there is a downer branch that does
not contain j, i is still Parter in T(eij). Since mA(eij)(λ) = mA(λ) + 2,mA(eij ,i)(λ) = mA(i)(λ) = mA(λ) + 3. This is
contradictory to the interlacing inequalities. So, the downer branch at imust contain j. Similarly, the downer
branch at j must contain i.



54 | Kenji Toyonaga and Charles R. Johnson

To show su�ciency, assume that i and j are Ps with each being the downer for the other. Now, mA(i)(λ) −
mA(λ) = (mA(eij)(λ) −mA(λ)) + (mA(i)(λ) −mA(eij)(λ)). Since i is Parter in T, the left-hand side is 1. On the other
hand, because i is a downer in its branch at j,mA(i)(λ)−mA(eij)(λ) = −1.We conclude thatmA(eij)(λ)−mA(λ) = 2,
which means that {i, j} is 2-Parter.

Though part of the necessity portion of theorem 6 appears as theorem 3.5 of [4], for completeness, we have
chosen to give a full, self-contained proof here.

Next we investigate the conditions for an edge to be Parter or neutral. Let T be a tree with an edge {i, j}.
In [4], it is indicated that if i is Ps and j is N, then edge {i, j} is either Parter or neutral, as in Table 1. Now we
consider these cases more precisely. In the next theorem, we give a necessary and su�cient condition for an
edge to be Parter for λ in A ∈ S(T).

Theorem 7. Let T be a tree, A ∈ S(T), λ ∈ R. The edge {i, j} of T is Parter for λ if and only if vertex i is Ps for λ
such that j is the downer neighbor for i, and j is N for λ, or vice versa for i and j.

Proof. We suppose edge {i, j} is Parter for λ in A. Then it follows that vertex i is Ps, and j is N for λ in A, or
vice versa (see Theorem 3.6, [4]). If the downer branch at i does not contain j, then i is P in T(eij) since there
is a downer branch at i in T(eij). Thus,mA(eij ,i)(λ) = mA(eij)(λ) + 1. Since i is P in T,mA(i)(λ) = mA(λ) + 1. From
T(eij , i) = T(i), mA(eij)(λ) = mA(λ). So, edge {i, j} is neutral. This is contradictory to the assumption that edge
{i, j} is Parter. So the downer branch at i contains j.

Next we consider su�ciency for an edge {i, j} to be Parter. We suppose that vertex i is P for λ such that a
downer branch at i contains j, and j is N for λ in A. Then mA(j)(λ) = mA(λ). Since j is D in T(eij), mA(eij ,j)(λ) =
mA(eij)(λ) − 1. From T(j) = T(eij , j), mA(λ) = mA(j)(λ) = mA(eij)(λ) − 1. Thus the edge {i, j} is Parter in T.

Next we give a necessary and su�cient condition for an edge to be neutral for λ in A ∈ S(T). When an edge
{i, j} is neutral for λ in A ∈ S(T), then there are multiple cases for the classi�cation of vertices i and j, as seen
in Table 1. There we can observe that for an edge {i, j}, if i is Pm, then edge {i, j} is neutral, and if i is Ps, then
there are three possibilities for the classi�cation of an edge {i, j} as 2-Parter, Parter or neutral. Furtermore if
i and j are both neutral vertices, then the edge {i, j} is neutral.

Now, for all these cases, there is a necessary and su�cient condition for an edge {i, j} to be neutral for λ
in A ∈ S(T).

Theorem 8. Let T be a tree, A ∈ S(T), λ ∈ σ(A). The edge {i, j} is neutral for λ if and only if vertex i is P for λ
such that there is a downer branch at i that does not contain j, or both i and j are N for λ in A. Here i and j are
interchangeable.

Proof. We suppose edge {i, j} is neutral. From Table 1, we see that for a neutral edge, there are two cases
so that i(or j) is P or i and j are both neutral in T. When i is Pm, there is a downer branch at i that does not
contain j. Next we consider the case that i is Ps. We suppose the case that i is Ps and j is Pm, then there is a
downer branch at j that does not contain i. Next we consider the case in which i is Ps and j is Ps or N as seen
at Table 1. If the downer branch at i contains j, then from Theorem 6 and Theorem 7, then the edge {i, j}will
be 2-Parter or Parter. It is contradiction since {i, j} is neutral. So there is a downer branch at i that does not
contain j.

Further, from Table 1, we see that when the edge {i, j} is neutral, there is a case such that i and j are both
neutral vertices.

Next we give the su�ciency for a neutral edge. If i and j are both neutral vertices, then it is shown that
edge {i, j} is neutral from [4, corollary 3.8] as seen at Table 1. Next if vertex i is P such that there is a downer
branch at i that does not contain j, then i is also P in T(eij). So the relation mA(eij ,i)(λ) = mA(eij)(λ) + 1 =
mA(i)(λ) = mA(λ) + 1 holds. Thus, mA(eij)(λ) = mA(λ), then the edge {i, j} is neutral.

We may observe that neither do two 2-Parter edges, nor a 2-Parter edge and a Parter edge, share a vertex.
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Corollary 9. Let T be a tree. A ∈ S(T), λ ∈ R. Two 2-Parter edges for λ in A cannot share a vertex, nor can a
Parter edge and a 2-Parter edge share a vertex in T.

Proof. If edge {i, j}, and {j, k} are 2-Parter edges adjacent to each other, then from Theorem 6, j is D in A(eij).
But, since the edge {j, k} is a 2-Parter edge, there is a downer branch at j containing k. Then j is P in A(eij), a
contradiction. Thus 2-Parter edges are not adjacent.

Next we suppose an edge {i, j} is a 2-Parter edge and an edge {j, k} is a Parter edge. Then i and j are Parter
vertices and k is a netutral vertex. Then from Theorem 6, since the downer branch at i contains j, j is D in
A(eij). But, since the edge {j, k} is a Parter edge, from Theorem 7 there is a downer branch at j containing k.
Then j is P in A(eij), a contradiction. So, a 2-Parter edge and a Parter edge cannot be adjacent.

The next theorem shows that the number of Parter edges or 2-Parter edges for λ in A ∈ S(T) are bounded by
the number of singly Parter vertices for λ in A ∈ S(T).

Theorem 10. Let T be a tree. A ∈ S(T), and λ ∈ σ(A). Let vertex i be Ps for λ in A ∈ S(T). Then, exactly one
edge incident to i is either 2-Parter or Parter, and any other edges incident to i are neutral in T.

Proof. Let i be Ps in T, and we denote by B the downer branch at i. Let j be a vertex in B, which is adjacent
to i. For edge {i, j}, since the classi�cation of vertices i and j in T cannot be (Ps , D) as seen at Table 1 (cf.[4]),
classi�cation of j is one of Pm, Ps and N.

If j is Pm in T, then there is a downer branch at j in B. Then j is P in B. Since j isD in B, this is contradiction.
Thus j cannot be Pm in T. If j is Ps, since the downer branch at i contains j, edge {i, j} is a 2-Parter edge from
Theorem 6. If j is N, then the edge {i, j} is a Parter edge from Theorem 7. From Corollary 9, there is not the
case such that edge {i, j} is 2-Parter and another edge {i, k} is 2-Parter or Parter.

If edge {i, j} is Parter, then edge {i, k} is not 2-Parter from Corollary 9. Furthermore there is not the case
such that edge {i, j} is Parter and {i, k} is also Parter, because if both edges {i, j} and {i, k} are Parter edges
adjacent to i, then the classi�cation of j and k is both neutral, then there are two downer branches at i from
Theorem 7. Since i is Ps, a contradiction.

From the above arguments, one 2-Parter edge or Parter edge is incident to i, and if there are other edges
incident to i other than the 2-Parter or Parter edge, then they are all neutral edges from Theorem 8.

Since the incident vertices of a 2-Parter edge are both Ps from Theorem 6, we have the next corollary from
Theorem 10.

Corollary 11. Let T be a tree, A ∈ S(T), λ ∈ R. All edges adjacent to a 2-Parter edge are neutral for λ in A.

From the previous corollaries and Theorem 10, we can show a strong relationship between the number of
2-Parter edges, Parter edges and singly Parter vertices. From Theorem 6 and Theorem 7, every 2-Parter edge
is incident to two singly Parter vertices, and every Parter edge is incident to one singly Parter vertex. From
corollary 9, 2-Parter edges cannot be ajacent to each other, and a 2-Parter edge and a Parter edge are also not
adjacent. If two Parter edges {i, j}, {j, k} are adjacent, then j cannot be Ps from Theorem 10. Thus i and k
will be Ps and j is N. So in this case, there are two singly Parter vertices. Thus we can deduce a relationship
among the number of 2-Parter edges, Parter edges and singly Parter vertices.

Theorem 12. Let T be a tree, A ∈ S(T), λ ∈ R. Let s, t and u be the number of 2-Parter edges, Parter edges and
singly Parter vertices in T, respectively. Then, we have

2s + t = u.

If there are no singly Parter vertices, Theorem 12 makes it clear that a tree may have only neutral or downer
edges. Since lemma 4 makes it clear when an edge is downer, in all other circumstances an edge is neutral.
This seems to be a common occurrence.
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Table 2

i j mA(λ) − mA({i,j})(λ)
P P −2, 0
P N −1, 0
P D 0
N N 0
N D Not possible
D D 1
P : Parter vertex, N : Neutral vertex, D : Downer vertex

3 The classi�cation of vertex pairs
When adjacent vertices i and j are removed from the tree T, the possible change in multiplicity of an eigen-
value λ of A ∈ S(T) is investigated. Table 2 below, in [2] or [4], shows the possibilities. There, it is noted that if
the classi�cation of vertices i and j is (P, P), then there are two possible cases: mA(λ) −mA({i,j})(λ) = −2 or 0.
(cf.Table 1 [4]). Furthermore if the classi�cation of vertices i and j is (P, N), then there are two possible cases:
mA(λ) − mA({i,j})(λ) = −1 or 0. We analyze what determines which of these two actually occurs.

Lemma 13. Let T be a tree with adjacent vertices i and j, A = (aij) ∈ S(T), and λ ∈ σ(A). We suppose that i
and j are both Parter vertices for λ, then
(i) mA(λ) − mA({i,j})(λ) = −2 if and only if there is a downer branch at i that does not contain j in T, or vice
versa for i and j; and
(ii) mA(λ) −mA({i,j})(λ) = 0 if and only if there is a downer branch at i that contains j in T, or vice versa for i
and j.

Proof. (i) Let T̃ = T(eij). Let Ã = (ãij) be a matrix corresponding to T̃ obtained from A, i.e, ãij = ãji = 0 and
other elements are same as A.

We suppose there is a downer branch at i in T for λ in A that does not contain j. Then the edge {i, j} is
neutral in T from Theorem 8.

If there is a downer branch at j that contains i, then from Theorem 6, the edge {i, j} becomes 2-Parter,
a contradiction. So, downer branch at j does not contain i. Then j is P in T̃ for λ in Ã. So, i and j are Parter
vertices in T̃, then mA({i,j})(λ) − mA(λ) = mÃ({i,j})(λ) − mA(λ) = 2.

Conversely, we suppose mA({i,j})(λ) −mA(λ) = 2. Then jmust be P in T(i). If there is a downer branch at i
in T that contains j, then j is D in T(i). This is contradiction. Thus downer branches at i does not contain j.

(ii) If there is a downer branch at i that contains j, then j is D in T(i). Thus mA(λ) − mA({i,j})(λ) = 0.
If mA(λ) − mA({i,j})(λ) = 0, since i is P in T, j must be D in T(i). thus j is contained in a downer branch at

i.

By similar arguments, when the status of adjacent vertices i and j is P and N respectively, we can determine
the di�erence between the two possibilities, mA(λ) − mA({i,j})(λ) = −1 or 0.

Lemma 14. Let T be a tree with adjacent vertices i and j. A ∈ S(T), and λ ∈ σ(A). We suppose that vertex i is
P and j is N in T, then
(i) mA(λ) − mA({i,j})(λ) = −1 if and only if there is a downer branch at i that does not contain j in T.
(ii) mA(λ) − mA({i,j})(λ) = 0 if and only if there is a downer branch at i that contains j in T.

Proof. (i) If there is a downer branch at i that does not contain j, the edge {i, j} is neutral from Theorem 8. Let
T̃ = T(eij). Then i is P in T̃ and j is N in T̃ since the edge {i, j} is neutral in T. Thus mA(λ) − mA({i,j})(λ) = −1.
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Conversely, we supposemA({i,j})(λ)−mA(λ) = −1. Since vertex j is N in T, vertex imust be P in T(j). Thus
there is a downer branch at i that does not contain j.

(ii). If there is a downer branch at i that contains j, then j is D in T(i). Since i is P in T, it holds mA(λ) −
mA({i,j})(λ) = 0.

Conversely when mA(λ) − mA({i,j})(λ) = 0, j must be D in T(i). Then j is contained in a downer branch at
i in T.

For adjacent vertices i and j in a tree T, when mA(λ) − mA({i,j})(λ) = −2 for an eigenvalue λ of A ∈ S(T), it is
clear that i and j are both P, from Table 2. Furthermore when mA(λ) − mA({i,j})(λ) = −1 for an eigenvalue λ of
A ∈ S(T), i is P and j is N in T. Sowe can deduce a necessary and su�cient condition formA({i,j})(λ)−mA(λ) =
−2 and mA({i,j})(λ) − mA(λ) = −1 for adjacent vertices i and j, as in the following corollary.

Corollary 15. Let T be a tree with adjacent vertices i and j, A ∈ S(T), λ ∈ σ(A).
(i) mA(λ) − mA({i,j})(λ) = −2 if and only if i and j are both Parter vertices for λ in A and there is a downer
branch at i that does not contain j, or vice versa for i and j.
(ii) mA(λ) − mA({i,j})(λ) = −1 if and only if i is P and j is N for λ in A and there is a downer branch at i that
does not contain j, or vice versa for i and j.

4 The change in multiplicity due to a change in an edge value
In [6, Theorem 5], when a diagonal entry is changed, the possible change in the multiplicitiy of a given eigen-
value was determined, as in the next theorem, in which Eii denotes a matrix the same size as A with (i, i)
entry 1 and zeros elsewhere.

Theorem 16. [6] Let G be a graph, and i a vertex in G. For A ∈ H(G), let A′ = A + tEii , t ≠ 0. Then
(1) mA′ (λ) = mA(λ) if and only if i is Parter in A or i is neutral in A and t is not a unique value t0;
(2) mA′ (λ) = mA(λ) + 1 if and only if i is neutral in A, and t = t0; and
(3) mA′ (λ) = mA(λ) − 1 if and only if i is downer in A.

In this section, we investigate how the multiplicity of an eigenvalue λ of A ∈ S(T) changes as a result of
change in an edge value. We consider the change in multiplcity of an eigenvalue due to the change in an
edge value for a 2-Parter, Parter, neutral and downer edge, respectively in Theorem 18. Berfore that, we give a
necessary lemma. We de�ne two functions f1(x) and f2(x) as follows, f1(x) =

∏
i

µi= ̸λ

(x − µi), µi ∈ σ(A(euv)) and

f2(x) =
∏
j

νj= ̸λ

(x − νj), νj ∈ σ(A({u, v})).

Lemma 17. Let T be a tree and A ∈ S(T), λ ∈ σ(A). Let an edge {u, v} be neutral for λ in T. We suppose u is P
and v is D in T. Then f1(λ)

f2(λ) < 0.

Proof. Let mA(λ) = m. Then mA(euv)(λ) = m. Let l be the number of eigenvalues greater than λ in A(euv)
including multiplicity. Since u is still P in A(euv), mA(euv ,u)(λ) = m + 1. From the interlacing inequality,
the number of eigenvalues greater than λ in A(euv , u) including multiplicity is l − 1. Since v is downer in
A(euv), v is still downer in A(euv , u). Then, the number of eigenvalues greater than λ including multiplicity
in A(euv , u, v) = A(u, v) is l − 1 from the interlacing inequality. So the di�erence of the number µ′is and ν′js
greater than λ is 1. So, f1(λ)f2(λ) =

∏
(λ−µi)∏
(λ−νj)

< 0.

Theorem 18. Let T be a tree and A ∈ S(T), λ ∈ σ(A). Let Ã ∈ S(T) be a matrix obtained from a change in the
edge value on {u, v}. Then the multiplicity of λ in Ã is as follows,
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(i) If the edge {u, v} is 2-Parter or Parter for λ in A, then mÃ(λ) = mA(λ).
(ii) If the edge {u, v} is downer for λ in A, and if ãuv = ±auv, then mÃ(λ) = mA(λ) ; otherwise, mÃ(λ) =
mA(λ) − 1.
(iii) If the edge {u, v} is neutral for λ in A, thenmÃ(λ) = mA(λ), except for the case in which the status of the
vertices incident to the edge is (N, N) in A and |ãuv|2 = f1(λ)

f2(λ) , then mÃ(λ) = mA(λ) + 1.

Proof. If we focus upon the edge {u, v}, then the characteristic polynomial ofA canbe represented as follows,

pA(x) = pA(euv)(x) − |auv|
2pA({u,v})(x). (1)

(i) When the value of a 2-Parter edge is changed, we investigate the change in the multiplicity of λ. If we
put mA(λ) = m, then mA({u,v})(λ) = m, since u and v are downer vertices in A(euv). Then, from (1)

pA(x) = (x − λ)m+2f1(x) − |auv|2(x − λ)m f2(x)
= (x − λ)m{(x − λ)2f1(x) − |auv|2f2(x)},

in which f1(x) =
∏
i

µi= ̸λ

(x−µi), µi ∈ σ(A(euv)), f2(x) =
∏
j

νj= ̸λ

(x−νj), νj ∈ σ(A({u, v})). If we set g(x) = (x−λ)2f1(x)−

|auv|2f2(x), even if the edge value auv is changed, g(λ) = ̸ 0, unless auv = 0. Since A and Ã are in S(T), auv = ̸ 0
and ãuv ≠ 0. Thus, mÃ(λ) = m.

Next we consider the change in the edge value on a Parter edge in A ∈ S(T). We suppose an edge {u, v}
is Parter, then we note mA({u,v})(λ) = mA(λ), since u is neutral and v is downer in A(euv). So, from (1)

pA(x) = (x − λ)m+1f1(x) − |auv|2(x − λ)m f2(x)
= (x − λ)m{(x − λ)f1(x) − |auv|2f2(x)},

in which f1(x), f2(x) are similar de�nitions as before. From a similar argument, for the matrix Ã ∈ S(T) ob-
tained by change of auv in A, mÃ(λ) = mA(λ) holds.

(ii) We consider the change in the edge value on a downer edge in A ∈ S(T). We suppose an edge {u, v}
is downer, then mA({u,v})(λ) = mA(λ) − 1, since u and v are neutral vertices in A(euv). Then

pA(x) = (x − λ)m−1f1(x) − |auv|2(x − λ)m−1f2(x)
= (x − λ)m−1{f1(x) − |auv|2f2(x)}

SincemA(λ) = m, ifwe set h(x) = f1(x)−|auv|2f2(x), then itmust be h(λ) = 0. Thus, |auv|2 = f1(λ)
f2(λ) musthold.

The characteristic polynomial of Ã is (x− λ)m−1{f1(x)− |ãuv|2f2(x)}. So, if ãuv ≠ ±auv, thenmÃ(λ) = mA(λ)−1.
If ãuv = ±auv, then mÃ(λ) = mA(λ).

(iii) We change the edge value on a neutral edge in A ∈ S(T). For two vertices to which a neutral edge
is incident, there are four cases (P, P), (P, N), (P, D) and (N, N) as the status of u and v with reference with
Table 1 before.

In the case of (P, P), if we set mA(λ) = m, from (1) and corollary 15

pA(x) = (x − λ)m f1(x) − |auv|2(x − λ)m+2f2(x)
= (x − λ)m{f1(x) − |auv|2(x − λ)2f2(x)}.

For changed matrix Ã, pÃ(x) = (x − λ)m{f1(x) − |ãuv|2(x − λ)2f2(x)}. If we set q(x) = f1(x) − |ãuv|2(x − λ)2f2(x),
then q(λ) = ̸ 0. Thus, mÃ(λ) = mA(λ).

In case (P, N), from (1) and corollary 15

pA(x) = (x − λ)m f1(x) − |auv|2(x − λ)m+1f2(x)
= (x − λ)m{f1(x) − |auv|2(x − λ)f2(x)}.

By similar arguments as before, we have mÃ(λ) = mA(λ).
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Next we consider the case (P, D). Since u is Parter and v is downer in A(euv), mA({u,v})(λ) = m, then

pA(x) = (x − λ)m f1(x) − |auv|2(x − λ)m f2(x)
= (x − λ)m{f1(x) − |auv|2f2(x)}.

If |ãuv|2 = f1(λ)
f2(λ) , then mÃ(λ) = mA(λ) + 1. But, this does not happen, because f1(λ)

f2(λ) < 0 from lemma 17. Thus
mÃ(λ) = mA(λ).

Lastly, in case (N, N),

pA(x) = (x − λ)m f1(x) − |auv|2(x − λ)m f2(x)
= (x − λ)m{f1(x) − |auv|2f2(x)}.

Then, if |ãuv|2 = f1(λ)
f2(λ) , then mÃ(λ) = mA(λ) + 1, otherwise, mÃ(λ) = mA(λ).

From the above results, we can observe that when an edge value is changed, themultiplicity of an eigenvalue
can be changed only in the case in which the status of the vertices incident to the edge for the eigenvalue is
(N, N) or (D, D) and the edge value takes a particular value. In other cases, the multiplicity of the eigenvalue
is not a�ected by change in the edge value. This explains an often observed phenomenon that edge values
matter surprisingly little in the determination of multiplicity.

From the above theorem, it follows immediately that the status of the edge for λ in A changes to that in
Ã as follows.

Corollary 19. Let T be a tree and A ∈ S(T), λ ∈ σ(A). Let Ã ∈ S(T) be a matrix obtained from a change in the
edge value of {u, v} in A. Then the status of the edge {u, v} for λ changes to that in Ã as follows.

(i) In case {u, v} is 2-Parter or Parter for λ in A, the status of {u, v} for λ in Ã is same as in A.
(ii) In case {u, v} is downer for λ in A, if ãuv = ±auv, then the status of {u, v} for λ in Ã is downer,

otherwise, neutral.
(iii) In case {u, v} is neutral for λ in A, if the status of u, v is (N, N) and |ãuv|2 = f1(λ)

f2(λ) , then the status of
{u, v} for λ in Ã is downer, otherwise, neutral.

From Theorem 18, we can deduce the well known fact that even if the signs of o�-diagonal entries aij(= aji) = ̸
0, (i = ̸ j) are changed, the spectra of the matrix does not change as shown in the next corollary.

Corollary 20. Let T be a tree and A ∈ S(T). Let Ã ∈ S(T) be amatrix resulting from changing the signs of some
entries aij(= aji) = ̸ 0, (i = ̸ j), then σ(A) = σ(Ã).

In this paper, we clari�ed the conditions for the classi�cations of edges in a tree, based upon the change in
multiplicity of a particular eigenvalue, then we investigated the change in multiplicity of an eigenvalue of a
real symmetric matrix whose graph is a tree, when an edge value is changed.

Two observations areworthy of note. First, in comparisonwith [6], there are parallels between the change
in edge value and the change in vertex value. Second, there seems to be a rough correlation between the two:
the "higher" the statuses of the two vertices, the "higher" the status of the edge tends to be. We also note that
much of what we have said is equally valid in H(T), the Hermitian matrices with graph T, as an Hermitian
matrix whose graph is a tree is similar to a real symmetric one by a diagonal unitary similarity, but, as some
results are clearer to state for S(T), we decided to present results in S(T).
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