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RESEARCH Open Access

Phylogenetic analysis of apicomplexan
parasites infecting commercially valuable
species from the North-East Atlantic reveals
high levels of diversity and insights into the
evolution of the group
Raquel Xavier1*, Ricardo Severino2, Marcos Pérez-Losada1,6, Camino Gestal3, Rita Freitas1, D. James Harris1,
Ana Veríssimo1,4, Daniela Rosado1 and Joanne Cable5

Abstract

Background: The Apicomplexa from aquatic environments are understudied relative to their terrestrial counterparts,
and the seminal work assessing the phylogenetic relations of fish-infecting lineages is mostly based on freshwater hosts.
The taxonomic uncertainty of some apicomplexan groups, such as the coccidia, is high and many genera were recently
shown to be paraphyletic, questioning the value of strict morphological and ecological traits for parasite classification.
Here, we surveyed the genetic diversity of the Apicomplexa in several commercially valuable vertebrates from the North-
East Atlantic, including farmed fish.

Results: Most of the sequences retrieved were closely related to common fish coccidia of Eimeria, Goussia and Calyptospora.
However, some lineages from the shark Scyliorhinus canicula were placed as sister taxa to the Isospora, Caryospora and
Schellakia group. Additionally, others from Pagrus caeruleostictus and Solea senegalensis belonged to an unknown
apicomplexan group previously found in the Caribbean Sea, where it was sequenced from the water column, corals,
and fish. Four distinct parasite lineages were found infecting farmed Dicentrarchus labrax or Sparus aurata. One of the
lineages from farmed D. labrax was also found infecting wild counterparts, and another was also recovered from farmed
S. aurata and farm-associated Diplodus sargus.

Conclusions: Our results show that marine fish apicomplexans are diverse, and we highlight the need for a more extensive
assessment of parasite diversity in this phylum. Additionally, parasites recovered from S. canicula were recovered as basal to
their piscine counterparts reflecting hosts phylogeny.

Keywords: 18S rRNA, Apicomplexa, Goussia, Eimeria, Aquatic pathogens

Background
Parasites from the phylum Apicomplexa are considered
some of the world’s most successful parasites, present in
most species and responsible for many important diseases
[1]. These include Plasmodium species, the causative
agents of malaria, and Toxoplasma gondii, which infects
most warm-blooded vertebrates and has a high prevalence

in humans [2]. Knowledge across the phylum, however, is
extremely patchy. Although the Apicomplexa is the largest
group of unicellular obligate parasites with more than
6000 described species, these are estimated to correspond
to only 0.1% of the total diversity [1]. Nonetheless, despite
their ubiquity and medical/veterinarian importance, the
evolutionary history of this group is only now starting to
be untangled [3]. Phylogenomic analysis based on 85 pro-
teins indicated that the Apicomplexa evolved from a free-
living ancestor since their sister group was identified as
free-living chromerids (photosynthetic) and colpodellids
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(predatory) [4]. Moreover, the Apicomplexa was split into
four groups including the most basal cryptosporidean (e.g.
Cryptosporidium), followed by the coccidians (e.g.
Eimeria, Goussia, Calyptospora and Toxoplasma), and the
sister groups of the haemosporidians (e.g. Plasmodium)
and piroplasmids (Babesia and Theileria) (see [4]).
Phylogenetic inference based on the 18S ribosomal

RNA gene (18S rRNA) suggests that the Apicomplexa
infecting aquatic organisms form a basal group within the
family Eimeriidae [5]. This was confirmed by three pivotal
studies which focused on the genetic diversity of fish-
infecting coccidia from the genera Eimeria, Goussia and
Calyptospora (see [6–8]), that led to the hypothesis that
terrestrial counterparts evolved from piscine coccidians.
Although some of the hosts included in these previous
studies can inhabit brackish waters and some are catad-
romous, almost all sequenced specimens of Eimeria (see
[6]) and Goussia (see [7, 8]) were found infecting hosts
collected in freshwater habitats in Hungary. There are
only a few exceptions: Fundulus grandis collected from
the Gulf coast of the Mississippi [7]), Taurulus bubalis
from an unknown locality [6], and Selar crumenophthal-
mus, Lutjanus kasmira and Mulloidichthys sp. from
Hawaii [8, 9]. For Calyptospora, from the three species for
which genetic data are available, only one (C. funduli) was
sequenced from a coastal fish (F. grandis; see [8]). The
genetic diversity of coccidia infecting fish has been largely
neglected; for marine fish there is just a description of an
Eimeria sp. from farmed Asian sea bass [10], later identified
as Goussia kuehae [11], the genetic characterization of G.
clupearum from Atlantic herring [12], and a description of
Apicomplexa spp. from Caribbean reef fish (Stegastes spp.
and Ophioblennius macclurei) [13].
The taxonomic uncertainty associated with some Eimeria

and Goussia species and the paraphyly of both genera has
been well studied (e.g. [6, 7]). Although most species
described under Eimeria are phylogenetically related (as
suggested by 18S rRNA data), species of Caryospora (infect-
ing birds and reptiles), Schellakia (infecting reptiles) and
Lankesterella (infecting amphibians) are clustered in the
same Eimeria clade [6]. The genus Goussia also seems to
be paraphyletic and is divided into at least three major
groups (sensu Rosenthal et al. [7]): the “dispersed” type (e.g.
G. carpelli), found in the gut; the “nodular” type (e.g. G.
balatonica), which develop in nodules within the intestine;
and the “epicellular” type, present in enterocytes of the gut
and kidneys (e.g. Goussia pannonica). Although Calyptos-
pora is estimated to be monophyletic, the genetic data
available are still limited (only three sequences, see [8]).
Despite posing a serious threat to aquaculture (e.g.

[14, 15]), there is little information regarding the diver-
sity of coccidian lineages infecting farmed species or
farm-associated fish (i.e. those species that enter farms to
take advantage of food availability; see [10]). This is

surprising given that farming practices can induce increased
parasite virulence, for example (i) by selecting for short host
lifespan which in turn prompts for accelerated parasite life
history (as in the case of Marek’s disease in farmed chicken
[16]); (ii) high host densities which facilitate transmission
(e.g. [17]); (iii) through vaccination and treatment protocols
which reduce the disease symptoms rather than eliminate
pathogens [18], thereby relaxing competition between para-
sites and favouring outbreaks of more virulent opportunistic
strains [17]; or (iv) through inbreeding depression of stocks
which favours the emergence of specialised pathogen strains
(see review by [18]).
In this study, we surveyed the genetic diversity and phylo-

genetic affinities of coccidians infecting wild and farmed
fish from the North-East Atlantic. We aim (i) to build upon
the limited knowledge regarding the genetic diversity of
coccidian parasites infecting marine vertebrates, and (ii) to
determine if farmed fish and farm-associated fish species
host genetically divergent parasite lineages.

Methods
Sample collection, DNA extraction and PCR amplification
A total of 148 teleosts and elasmobranchs were bought
opportunistically from local fish markets and supermar-
kets in northern Portugal (Labruge and Vila do Conde):
wild (n = 76), farmed (n = 38) and farm-associated (n = 34)
(see Table 1 for details). Fish were transported to the
laboratory and kept frozen at -20 °C until processed. Fish
were thawed and dissected, and tissues from internal
organs were preserved in 96% ethanol. For wild teleosts,
we screened the following internal organs: intestine, stom-
ach, ovaries/testicles, gall bladder, stomach, liver, kidney,
spleen, heart and gills, and for elasmobranchs the liver,
stomach, kidney, anal gland and testicles/ovaries. From
farmed and farm-associated specimens, only the intestines
were analysed. Genomic DNA was extracted from each
tissue using Jetquick Tissue DNA Spin Kit (Genomed,
Lohne, Germany) following the manufacturer’s instruc-
tions. The primers published by [19] and designed to
amplify Hepatozoon were used in a polymerase chain reac-
tion (PCR) to amplify a 600 bp portion of the 18S rRNA
gene (HepF300: 5′-GTI TCT GAC CTA TCA GCT TIC
GAC G-3′; Hep900 5′-C AAA TCT AAG AAT TIC ACC
TCT GAC-3′), following these steps: 3 min at 94 °C, then
30 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for
30 s; and a final extension at 72 °C for 7 min. The 18S
rRNA gene was chosen as is the preferred gene for species
identification and phylogenetics of the Apicomplexa as
sufficient data are available for comparative purposes (e.g.
[7]). PCR master mix reactions were performed using
Platinum Taq and a final MgCl2 concentration of 1.5 mM.
PCR amplicons were sent for sequencing in both direc-
tions by a commercial company Genewiz (Takeley, UK).
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All new sequences were submitted to the GenBank data-
base (accession nos. MF468290–MF468328).

Sequence alignment and phylogenetic analysis
Sequences were checked manually using the software
Geneious v4.8.5 [20] and compared against the GenBank
database to confirm whether they belonged within the
Apicomplexa. Following the criteria of Rosenthal et al. [7]
only those sequences with clean chromatograms were
included for analysis. All alignments were performed
using MAFFT v7 [21], and the software JModeltest v2.2.1
[22] was used to select the appropriate model of evolution
(AIC criteria). Phylogenetic reconstruction analyses based
on Maximum Likelihood (ML) and Bayesian Inference
(BI) were conducted using Garli v2.1 [23] and MrBayes
v3.2.6 [24], respectively.

First, a phylogenetic analysis was conducted including
40 newly generated sequences, plus 18S rRNA gene
sequences of coccidians retrieved using the BLAST algo-
rithm against the GenBank database (e.g. apicomplexans
infecting corals) and sequences of piscine apicomplexans
(included for example in the analyses of [6–8]). Separate
phylogenetic analyses were conducted for subsets of
related sequences identified in the preliminary analysis to
improve alignment quality and outgroup choice. Two
parallel runs were conducted for all analyses in MrBayes.
In the first preliminary dataset runs were set to 30 million
generations, and in the other subsequent analyses to 10
million. The software Tracer v1.6 [25] was used to check
for adequate mixing and convergence of each run. Trees
from a stationary distribution (25% ‘burn-in’) were used to
construct a majority rule consensus tree. For the ML
analyses, 1000 bootstraps were used to evaluate branching
support. Uncorrected p-distances were calculated for each
group using the software MEGA6 [26] to evaluate inter-
specific divergence and draw taxonomic conclusions.

Results
Clean nucleotide sequences were derived from apicomplex-
ans collected from multiple organs of nine hosts, including
the elasmobranch Scyliorhinus canicula (summarised in
Table 2). The sequence retrieved from the intestine of
Thunnus sp. was only 277 bp and was not included in the
phylogenetic analysis; however, it was identical to sequences
of Eimeriidae gen. sp. retrieved from Trisopterus luscus (see
Table 2). The remaining sequence was too noisy, probably
due to length variants of ribosomal copies, multiple infec-
tions or contamination with other organisms (e.g. fungi).
Similarly, amplification but noisy sequences were obtained
for samples collected from the intestine of S. senegalensis,
the kidney of P. caeruleostictus, liver of S. japonicus, gall
bladder and stomach of T. thunnus, gills of T. luscus, the
gills, liver, kidney, spleen and stomach of D. labrax, kidney
of S. aurata, and the spleen of O. mykiss. The final
alignment (including all sequences generated plus relevant
sequences deposited on GenBank) was trimmed to 628 bp
(including gaps), and was analysed using the GTR+ I +G
model of evolution. This analysis indicated that the
sequences obtained in this study could be divided into five
major groups (Additional file 1: Figure S1 and
Additional file 2: Figure S2): Goussia spp., Eimeria spp.,
Calyptospora spp., a fourth group including species of
Caryospora, Isospora, Schellakia and Eimeria, so far only
known to infect amphibians, reptiles, birds and mammals;
and, finally, a group of yet unknown apicomplexans. Due to
the high diversity and divergence of taxa included in this
analysis which limited phylogenetic resolution, additional
phylogenetic analyses were performed separately for sub-
sets of sequences representative of these groups, including
only unique haplotypes. Sequences for Eimeria spp. and

Table 1 List of screened hosts, their origin and the number of
infected hosts

Host species Origin No. of hosts infected/
No. of hosts analysed

Trachurus trachurus Wild 2/2

Thunnus sp. Wild 1/1

Scomber japonicus Wild 1/2

Solea senegalensis Wild 2/3

Pagrus caeruleostictus Wild 2/7

Trispterus luscus Wild 4/4

Sparus aurata Wild 0/5

Dicentrarchus labrax Wild 1/5

Chelon labrosus Wild 0/2

Lepidopus caudatus Wild 0/1

Oncorhynchus mykiss Wild 0/4

Platichthys flesus Wild 0/1

Sardina pilchardus Wild 0/3

Dicentrarchus punctatus Wild 0/1

Scyliorhinus canicula Wild 6/33

Raja undulata Wild 0/1

Raja clavata Wild 0/1

Dicentrarchus labrax Farmed 4/22

Sparus aurata Farmed 1/16

Diplodus sargus Farm-associated 2/5

Diplodus annularis Farm-associated 0/1

Diplodus vulgaris Farm-associated 0/2

Chelon labrosus Farm-associated 0/8

Halobatrachus didactylus Farm-associated 0/1

Sardina pilchardus Farm-associated 0/1

Liza ramada Farm-associated 0/6

Mugil cephalus Farm-associated 0/1

Dicentrarchus punctatus Farm-associated 0/9
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Calyptospora spp. are usually recovered in phylogenetic
analyses as closely related (e.g. [8]), and for this reason,
were merged in the same analysis.
The Goussia spp. sequence alignment was 510 bp and

was analysed using the HKY + I + G model of evolution.
The resultant phylogram is depicted in Fig. 1 and included
sequences from the heart and kidney of S. japonicus, the
intestine of farmed D. labrax and Sparus aurata, and
farm-associated Diplodus sargus. The Eimeria spp. and
Calyptospora spp. alignment included 627 bp and was
analysed using the HKY + I + G model of evolution. This
phylogram showed two sequences retrieved from S. cani-
cula as basal in relation to sequences for other Eimeriidae
(Fig. 2). Sequences from parasite lineages found in several
organs of T. luscus, T. trachurus and P. caeruleostictus
formed a well-supported clade also containing Calyptos-
pora species, with the latter two being recovered as sister
lineages with high bootstrap support (99% posterior prob-
ability and 100 bootstrap support). Additionally, the
sequence from a parasite found in the intestine of T. lus-
cus as well as sequences obtained from parasites in intes-
tines of farmed D. labrax, were closely related to Eimeria
species found in the gut of other fish species (Fig. 2). The
fourth group alignment, herein designated as Caryospora-
like for the sake of simplicity, contained 512 bp and was
analysed using the GTR+ I +G model of evolution. The
resulting phylogram showed the sequences from S. canicula

forming a well-supported clade which was basal in the
group (Fig. 3). Finally, for the unnamed Apicomplexa, the
alignment included 524 bp and used the HKY+G model of
evolution. This phylogram showed that some parasite geno-
types found in P. caeruleostictus and S. senegalensis formed
a clade that included parasite found in a reef fish and also
in the water column of the Caribbean Sea (Fig. 4). This
clade appeared as the sister group to several parasite line-
ages found in corals from the same region (Fig. 4).
The uncorrected p-distances calculated for sequence

pairs in each group are presented in supplementary mater-
ial (Additional file 3: Tables S1-S5). This genetic distance
was chosen to allow comparisons across all taxonomic
groups. Based on these results, and on the minimum and
maximum divergence found between two accepted species
in each group, we determined if each new sequence likely
corresponded to a species or simply to a lineage within a
species. For example, the divergence between accepted
species of Goussia varied between 0.4–5.8%, so the lineages
found in S. japonicus and D. labrax likely belong to three
different species (minimum p-distance = 0.4%, see
Additional file 3: Table S1). On the other hand, sequences
of Goussia spp. recovered from the intestines of D. sargus
and S. aurata were identical and likely corresponded to a
single species different from the species for which data are
currently available (p-distance between this lineage and other
sequenced species varied between 2.2–5.8%). Divergence

Table 2 List of infected hosts, infected tissues, phylogenetic affinities of the parasites found and GenBank ID. All hosts have wild
origin unless indicated otherwise

Host species Infected organ Parasite GenBank ID

Diplodus sargusa Intestine Goussia sp. (Fig. 1, Additional file 1: Figure S1) MF468321

Sparus auratab Intestine Goussia sp. (Fig. 1, Additional file 1: Figure S1) MF468322

Scomber japonicus Heart, kidney Goussia sp. (Fig. 1, Additional file 1: Figure S1) MF468319, MF468320

Dicentrarchus labraxb Intestine Goussia sp. (Fig. 1, Additional file 1: Figure S1) MF468318

Intestine Eimeria cf. variabilis (Fig. 2, Additional file 2: Figure S2);
Eimeria sp. (Fig. 2, Additional file 2: Figure S2)

MF468291, MF468292

Dicentrarchus labrax Intestine Eimeria sp. (Fig. 2, Additional file 2: Figure S2) MF468293

Trisopterus luscus Intestine Eimeria sp. (Fig. 2, Additional file 2: Figure S2) MF468290

Stomach, gall bladder, liver,
heart, spleen, intestine

Eimeriidae gen. sp. (Fig. 2, Additional file 2: Figure S2) MF468299–MF468308

Trachurus trachurus Intestine, liver, spleen, stomach Eimeriidae gen. sp. (Fig. 2, Additional file 2: Figure S2) MF468309–MF468314

Scyliorhinus canicula Liver Eimeriidae gen. sp. (Fig. 2, Additional file 2: Figure S2) MF468294

Liver Eimeria sp. (Fig. 2, Additional file 2: Figure S2) MF468298

Liver, anal gland, stomach Coccidia sp. (Fig. 3, Additional file 2: Figure S2) MF468295–MF468297

Pagrus caeruleostictus Gall bladder, liver, intestine Calyptospora sp. (Fig. 2, Additional file 2: Figure S2) MF468315–MF468317

Heart, kidney Apicomplexa fam. gen. sp. (Fig. 4, Additional file 1: Figure S1) MF468323, MF468324

Thunnus sp. Intestine Eimeriidae gen. sp. MG724744c

Solea senegalensis Testes, liver, gills Apicomplexa fam. gen. sp. (Fig. 4, Additional file 1: Figure S1) MF468325–MF468328
aFarm-associated hosts
bFarmed hosts
cThe sequence obtained from the parasite infecting Thunnus sp. was not used in the phylogenetic analysis due to its short length
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between the three previously sequenced Calyptospora species
ranged between 5.2–7.2% (Additional file 3: Table S2), which
led us to consider that the lineages from T. trachurus may
belong to a single species (p-distance ranged between 0.2–
1.2%), as well as the lineages found in P. caeruleostictus (p-
distance ranged between 0.2–0.4%) and T. luscus (p-distance
ranged between 0 and 1.9%). In the Eimeria group, the p-
distance found between accepted Eimeria species included in
our analysis ranged between 4.0–11.2%. However, Eimeria
species described from birds, for which more data are avail-
able, can diverge by less than 1%, so these sequences could
be from other species (e.g. E. tenella and E. necatrix depos-
ited on GenBank under accession numbers KT184354 and
DQ136185). Accordingly, although two of the lineages found
in D. labrax were related with E. percae (p-distance varied
between 1.3–1.4%), it is likely they belong to a different
species, whereas a third lineage recovered from wild and
farmed D. labrax likely corresponds to E. variabilis (p-dis-
tance of 0.6%). The apicomplexans sequenced from S. cani-
cula were basal in the phylogeny so we cannot ascertain if
they belong to the genus Eimeria or a close relative; however,
they correspond to two different species (p-distance between
them of 8.5%), also quite distinct from the taxa included in
our analysis (minimum distance of 8.8%). In the unknown
clade, it is more difficult to establish a criterion to determine
species as taxa remain unclassified. However, taking into
account the previous criteria the lineages in P. caeruleostictus

may correspond to the same species (p-distance of 0.2%), as
do the lineages found in S. senegalensis (p-distance ranged
between 0–0.8%).

Discussion
The estimates of 18S rRNA phylogenetic relationships
proposed in this study are similar to those previously
published for these apicomplexan fish pathogens. Briefly,
the epicellular Goussia (Fig. 1) forms a distinct group,
positioned as basal in relation to other Goussia groups
[7], and members of Caryospora, Isospora (both Eimerii-
dae) and Schellakia (Schellakiadae) are closely related
[27–29]. Previously, Eimeria spp. from fish and other
hosts were placed within the same clade [6, 7], whereas
in the current study fish-infecting Eimeria formed a dis-
tinct clade (Additional file 1: Figure S1; Additional file 2:
Figure S2). In our opinion, this discrepancy is due to
differences in the 18S rRNA gene fragments employed
and the wider range of taxa in our analysis, including
members from an undescribed Apicomplexa group.
The criteria used here to consider as putative species the

lineages with less divergence (based on p-distance) than the
minimum calculated between accepted species, implies that
Eimeria cf. variabilis was encountered in D. labrax (see
Fig. 2). Although sequence data are becoming essential
tools for studying the Apicomplexa (e.g. [7, 30–33]), the
strict use of molecular data for species identification can be

Fig. 1 Bayesian inference analysis based on sequences for epicellular Goussia sensu Rosenthal et al. [7]. Node support values correspond to posterior
probabilities and consensus support (%) obtained from Bayesian inference and Maximum Likelihood analyses, respectively. The newly generated sequences
are indicated in bold. Only unique haplotypes were included in the analysis
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hampered in the absence of morphological characterisation
and requires this results should be interpreted with caution
(e.g. [34]). Additionally, the 18S rRNA gene was shown to
have limited resolution in Eimeria species discrimination in
comparison with the mitochondrial cytochrome c oxidase
subunit 1 gene [30]. In this respect, ours is a conservative
approach based on marker choice.
Our data also showed that potential intraspecific variation

can be high. For example, divergence between the genotypes
in T. trachurus reached 1.2% and those infecting T. luscus
reached 1.9%. This is in line with previous results [8] where
intraspecific variation could be as high as 4.2% in Calyptos-
pora spinosa. Divergent 18S rRNA paralogs have also been
reported to occur within other coccidian species (e.g. 1.3–
1.7% for Eimeria mitis [35]; Plasmodium spp. [36]) and even
within individuals (Eimeria meleagrimitis, 2.3% [37]). How-
ever, many studies have shown that the existence of paralogs
are not common, but rather the exception [38, 39].

Regarding the differentiation of wild vs fish-farm infecting
lineages, only two of the four parasites infecting famed fish,
i.e. one Eimeria sp. and one Goussia sp. (Figs. 1 and 2),
were exclusively found in fish farms. A third parasite
lineage, likely Eimeria cf. variabilis, was recovered in
farmed and reported from wild D. labrax; and a Goussia
sp. infected both farmed S. aurata and farm-associated D.
sargus. Although this is speculative as both S. aurata and
D. sargus can be natural reservoirs for this parasite, spill-
over may be occurring from wild to farmed hosts since this
parasite was found in only one individual of S. aurata, out
of 16 analysed hosts, and in two farm-associated D. sargus,
out of 5 individuals analysed (2 out of 5).

Epicellular Goussia parasitic lineages infecting fish from
the North-East Atlantic
Four genotypes closely related with epicellular Goussia
species sensu Rosenthal et al. [7] were recovered among

Fig. 2 Bayesian inference based on sequences for Eimeria and Calyptospora. Node support values correspond to posterior probabilities and consensus
support (%) obtained from Bayesian inference and Maximum Likelihood analyses, respectively. The newly generated sequences are indicated in bold.
Only unique haplotypes were included in the analysis. Host species and infected organs or tissues were detailed for aquatic hosts
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the analised fish. According to the genetic distances
within this Goussia group (where interspecific distances
range between 0.4–4.4%), the genotypes found in Scomber
japonicus, Dicentrarchus labrax and Sparus aurata +

Diplodus sargus could correspond to different species as
genetic distances between them ranged between 0.4–7.3%.
To the best of our knowledge, besides G. clupearum there
are no records of other coccidia infecting Diplodus spp.

0.04

Coccidia sp. MF468297 (host: Scyliorhinus canicula; tissue: liver and stomach)

Coccidia sp. MF468295 (host: Scyliorhinus canicula; tissue: anal gland)

Coccidia sp. MF468296 (host: Scyliorhinus canicula; tissue: anal gland)
0.97/92

Caryospora cf. cheloniae KT361639 (host: Chelonia mydas; tissue: gut, brain and lung)

Eimeria ranae EU717219 (host: Rana temporaria, tissue: intestine)

Eimeria arnyi AY613853 (host: Diadophis punctatus arnyi; tissue: faeces)

Schellackia sp. KJ189384 (host: Podarcis hispanica; tissue: blood) 

Schellackia sp. JX984674 (host: Lacerta schreiberi; tissue: blood) 

Schellackia bolivari KJ131415 (host: Takydromus sexlineatus; tissue: blood) 

Eimeriidae sp. KT956976 (host: Dermochelys coriacea; 
tissue: adrenal gland)

Eimeriidae sp. KT956977 (host: Dermochelys coriacea;
tissue: faeces)

Caryospora cf. cheloniae KT361640 (host: Chelonia 
mydas; tissue: kidney and thyroid)

Isospora manorinae KT224379 (host: Manorina 
flavigula; tissue: faeces)

Isospora sp. KF648871 (host: Lamprotornis superbus; 
tissue: liver)

Carysopora bigenetica AF060975 (host: 
Rana catesbeiana; tissue: blood)

Isospora gekkonis KU180246 
(host: Phelsuma madagascariensis grandis; 
tissue: faeces)

Eimeria arizonensis AF307878 (host: rodent ; tissue: faeces)

amphibian and reptile 
hosts

mammal and bird 
hosts

1/100

0.88/57

0.77/65

0.9/61

0.99/93

1/100

0.75/65

0.98/77

1/76

0.53/na

0.84/51

elasmobranch
hosts

Goussia neglecta FJ009242

Goussia noelleri FJ009241

93/57

Fig. 3 Bayesian inference of phylogenetic analysis of sequences of the Caryospora group. Node support values correspond to posterior probabilities
and consensus support (%) obtained from Bayesian Inference and Maximum Likelihood analyses, respectively. Major lineages and respective hosts are
highlighted. The newly generated sequences are indicated in bold. Unique haplotypes were included in the analysis. Host species and infected organs
or tissues were detailed for aquatic hosts
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On the other hand, both Goussia sparis and Eimeria spari
have been described from the intestine of S. aurata; hence,
the genotypes retrieved could correspond to any of these
parasites.
The species found in S. japonicus were closely related to

another coccidian species described from the spleen and
kidneys of Lutjanus kasmira, Selar crumenophthalmus and
Mulloidichthys sp. in Hawaii (only 0.4% divergence, see [8]
and [11]), which Whipps et al. [8] suggested to belong to
Goussia. The morphology of this putative Goussia sp. is
very similar to that of the coccidian infecting the kidney of
S. aurata from the Red Sea (originally reported as an
haemogregarine [40]) and a Liza host species from Africa
(also reported as an haemogregarine [41]), suggesting that
this putative Goussia sensuWhipps et al. [8], might have a
wide host and geographical range. Although the Goussia

found in S. japonicus could belong to a distinct Goussia
species, the levels of divergence between the two are at the
lower interval of the observed interspecific divergence for
this group.

Eimeria, Calyptospora and other related parasites
infecting fish from the North-East Atlantic
Phylogenetically, Eimeria and Calyptospora are closely
related genera often recovered as sister clades [6, 8]. How-
ever, their phenotypes and life-traits are quite distinct (e.g.
[42]). While Eimeria spp. are mostly described to infect
the gut of fish, although with a few exceptions [6, 7],
Calyptospora infects the liver of their hosts (e.g. [8]). Here,
we found three genotypes that likely correspond to three
Eimeria spp., in the intestine of two in D. labrax and one
in T. luscus. One of the Eimeria sp. infecting D. labrax is

Fig. 4 Bayesian inference analysis based on sequences from an unknown apicomplexan group. Node support values correspond to posterior
probabilities and consensus support (%) obtained from Bayesian inference and Maximum Likelihood analyses, respectively. Major lineages and
respective hosts are highlighted. The newly generated sequences are indicated in bold. Only unique haplotypes were included in the analysis.
Host species and infected organs or tissues were detailed for aquatic hosts

Xavier et al. Parasites & Vectors  (2018) 11:63 Page 8 of 12



likely to correspond to Eimeria variabilis as it was only
0.6% divergent from one sequenced from a Taurulus
bubalis sampled off the United Kingdom. The other line-
ages of Eimeria were obtained from D. labrax, and are
closely related to Eimeria percae (minimum 0.13% diver-
gence) from the freshwater host Perca fluviatilis captured
from freshwater habitats in Hungary [7]. So far, only two
Eimeria species are reported from the intestine of D. labrax:
E. dicentrarchi from wild and farmed fish (e.g. [43, 44]) and
E. bouixi [44]. However, there are also reports of an uniden-
tified Eimeria species in the intestine of wild D. labrax off
the coasts of Portugal [45]. As such, the lineages here
detected could also correspond to these species.
The Eimeria sp. sequenced from T. luscus is related to

Eimeria nemethi (4.4% divergence) detected in the fresh-
water host Alburnus alburnus captured in Hungary [7].
Additionally, we found other divergent parasite geno-
types infecting the heart, stomach, spleen and intestine
of T. luscus, which based on our data are more closely
related to Calyptospora and Goussia clupearum, origin-
ally described as Eimeria clupeaurum, sequenced from
Clupea pallasii. Similarly, in T. trachurus several para-
sitic genotypes, recovered as closely related with Calyp-
tospora and G. clupearum, were found in host liver,
stomach and intestine. The phylogenetic proximity of G.
clupearum with Calyptospora has already been reported
by Friend et al. [12] and confirms the high taxonomic
uncertainty associated with members of Goussia. So far,
Goussia lusca is the only coccidian parasite reported to
infect T. luscus, and this parasite shares morphological
similarities in some developmental stages with G.
clupearum (see [46]). However, the liver seems to be the
only tissue affected by G. lusca. In turn, G. clupearum
has been described from several hosts including T.
trachurus captured off the Galician coast (Spain) [47],
and other Trisopterus species (e.g. off Scotland [48]).
Despite the considerable morphological variation found
in G. clupearum from different hosts (see [46]), which
could indicate the existence of a species complex, infec-
tions by G. clupearum seem to be restricted to host liver.
In T. trachurus, besides G. clupearum, another extrain-
testinal parasite, Goussia cruciata (originally described
as Eimeria cruciata) has been reported at high preva-
lence from this fish species in the Alboran Sea [49] and
North-East Atlantic [47]. Goussia cruciata has a broader
tissue tropism, infecting multiple organs (liver, intestine
and pancreas, e.g. [50, 51]). As such it is possible that
the parasite lineages retrieved from T. trachurus in the
present work correspond to this species. This uncertainty
might be resolved with morphological characterization of
these parasites.
The genotypes sequenced from Pagrus caeruleostictus

were recovered in the present phylogenetic analysis as
sister to the genus Calyptospora. To the best of our

knowledge, the only coccidians known to infect this fish
belong to Eimeria (e.g. [52]). Although the divergence
between the genotypes found in P. caeruleostictus and
Calysptospora spp. ranges between 0.9–11.0%, i.e. above the
observed divergence between Calyptospora spp. (5.7–7.2%),
the monophyly of the clade was highly supported (99%
posterior probability and 100 bootstrap support); for this
reason we considered the genotypes recovered from P. caer-
uleostictus likely to belong to Calyptospora.
Some of the parasites found infecting the liver of S. cani-

cula were also related to Eimeria. So far Eimeria lucida is
the only coccidian described to infect Scyliorhinus canicula,
as well as other elasmobranchs. Hence the Eimeria sp. and
the Eimeriidae gen. sp. sequences recovered for this host
herein, may correspond to E. lucida.

The Apicomplexa infecting Scyliorhinus canicula are
closely related with the Eimeriidae and Schellakiidae
infecting reptiles, amphibians and birds
Some of the Apicomplexa sequenced from S. canicula
were recovered in the present phylogenetic analysis as
sister to coccidia from the Eimeriidae (Isospora, Caryos-
pora) and Schellakiidae (Schellakia) that infect amphibians
and reptiles, including marine turtles (Fig. 3). Given the
phylogenetic affinities of the available sequences attributed
to Caryospora cheloniae, (herein designated as Caryospora
cf. cheloniae), it has been suggested that the taxonomy of
this parasite should be redefined and that it should be
placed in a different genus [29]. Likewise, the genetic
divergence between the sequences recovered from S. cani-
cula and their relatives also suggests that these should be
part of a new genus.
Interestingly, the results we obtained for the phylogeny of

these parasite groups match the estimates of host phylogen-
etic relationships, as elasmobranchs are one of the oldest
vertebrates sharing a common ancestor with amphibians,
reptiles plus birds and mammals (e.g. [53]). However to
confirm this hypothesis more molecular data regarding
Apicomplexa infecting fishes and elasmobranchs is needed.

Undescribed diversity of the Apicomplexa in the marine
realm
The work of Janouškovec et al. [4] highlighted the under-
studied nature of marine and freshwater environments in
terms of the Apicomplexa and other related parasites. In
the present study, the parasites found in Solea senegalensis
and Pagrus caeruleostictus were close relatives of an
apicomplexan from the blood of a Caribbean fish (Ophio-
blennius macclurei, see [13]) and also of a parasite
sequenced from an eDNA seawater sample from the
Caribbean [54]. These sequences were in turn sister to an
unnamed clade composed of parasites recovered from the
mucous of several Caribbean corals (see the supplemen-
tary material in [4]). The phylogeny of Janouškovec et al.
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[4] identified these coral-dwelling lineages as sister to
Sarcocystis and eimeriids, and the authors suggested that
they remained undescribed because coral reefs are poorly
surveyed for the Apicomplexa. Here we demonstrate that
relatives of the lineages found by Janouškovec et al. [4]
parasitise common and commercially valuable fish, thus
confirming the understudied nature of this parasite group
in the marine realm. Morphological data will help clarify the
taxonomy of these parasites, but this requires fresh tissue
which was not compatible with our sampling strategy.

Conclusions
Here we demonstrate that the Apicomplexa infecting
marine fish, which could be separated into five distinct
groups according to their phylogenetic affinities. Three of
these, Goussia, Eimeria and Calyptospora, are common
coccidian parasites of fish. Another group was related to
the genera Caryospora (Eimeriidae), Schellakia (Schellakii-
dae) and Isospora (Eimeriidae), which typically infect
terrestrial vertebrates (e.g. [55]). Lastly, a set of sequences
were placed in an unknown group of the Apicomplexa so
far only recovered from the Caribbean Sea, having been
found in the mucus of corals [4], an environmental sample
from the water column [54], and a fish [13]. Additionally,
our phylogenetic results suggest that the Apicomplexa
recovered from elasmobranchs are basal, which is in line
with the host’s phylogenetic relationships since elasmo-
branchs (together with the holocephalans) are the oldest
jawed vertebrates on earth (e.g. [56]).

Additional files

Additional file 1: Figure S1. Bayesian inference analysis of epicellular
Goussia spp. and the unknown apicomplexan clade based on sequences
generated in the present study plus previously public sequences retrieved
from GenBank. The newly generated sequences are depicted in bold. Host
species and infected organs or tissues were detailed for all aquatic hosts.
(EPS 3990 kb)

Additional file 2: Figure S2. Bayesian inference analysis of dispersed
and nodular Goussia, Caryospora-, Calyptospora- and Eimeria-like
sequences generated in the present study, plus previously published
or public sequences retrieved from GenBank. Node support values
correspond to posterior probabilities and consensus support (%)
obtained from Bayesian inference and Maximum Likelihood analyses,
respectively. The major phylogenetic groups infecting aquatic hosts
are highlighted according to the legend, and the newly generated
sequences are indicated in bold. Host species and infected organs
or tissues were detailed for all aquatic hosts. (EPS 3133 kb)

Additional file 3: Table S1. Uncorrected p-distances estimated between
pairs of samples fror the Goussia group. Sequences generated in the present
study are highlighted in bold, as well as p-distances between them. Organs
from where the sequences were retrieved were coded as follows: * intestine, ˥
gall bladder, Г liver,†stomach, ‡spleen, • heart, α kidney. Table S2. Uncorrected
p-distances between pairs of sequences from the Calyptospora group.
Sequences generated in this study are highlighted in bold, as well as
p-distances between them. Organs from where the sequences were retrieved
were coded as follows: * intestine, ˥ gall bladder, Г liver, ‡spleen, • heart, α
kidney. Table S3. Uncorrected p-distances between pairs of sequences from
the Eimeria group. Sequences generated in this study are highlighted in bold,

as well as p-distances between them. All sequences were obtained from the
intestines (coded as *) or liver (coded as Г). Table S4. Uncorrected p-distances
between pairs of sequences in the Caryospora, Shellackia and Isospora group.
Sequences generated in this study are highlighted in bold, as well
as p-distances between them. Organs from where the sequences were
retrieved were coded as follows: *anal gland, Г liver,†stomach. Table S5.
Uncorrected p-distances between pairs of sequences in the Unknown
Apicomplexa group. Sequences generated in this study are highlighted in
bold, as well as p-distances between them. Organs from where the se-
quences were retrieved were coded as follows: * intestine, ˥ gall bladder, Г
liver,†stomach, ‡spleen, • heart, α kidney, ф testicle, ¥ gill. (DOCX 38 kb)
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